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A B S T R A C T

The interpretation of artificial intelligence (AI) and deep learning (DL) model outcomes remains a central 
challenge in hydrology and rainfall-runoff modeling. This study investigates whether hyperparameter-optimized 
regional Long Short-Term Memory (LSTM) networks can implicitly learn hydrological processes directly from 
hydrometeorological data, without access to explicit catchment attributes during training. Specifically, we 
explore to what extent these models reinforce classical hydrological understanding or reveal new insights 
through explainable AI (xAI) analyses.

Using hourly precipitation, temperature, and potential evapotranspiration data from 40 humid and flashy 
catchments in the Basque Country, Spain, we demonstrate that systematically optimized LSTMs exhibit strong 
generalization and scalability in regional rainfall-runoff modeling. Through a combination of correlation anal
ysis, Random Forest (RF) modeling, Principal Component Analysis (PCA), and SHAP-based feature attribution, 
we quantify how catchment attributes indirectly influence LSTM performance. This multi-method approach 
provides a novel framework to assess the hydrological “learning maturity” of deep neural networks in regional 
hydrology.

The results show that LSTM networks implicitly capture latent catchment characteristics that shape hydro
logical responses. Catchments with high runoff coefficients and higher mean annual streamflow tend to yield 
more accurate predictions, while catchments characterized by steep slopes, extreme flow variability, and high 
precipitation variability pose greater challenges due to their nonlinear hydrological behavior. SHAP analysis 
confirms that both catchment properties (e.g., average yearly runoff coefficient, precipitation, streamflow) and 
key LSTM hyperparameters (e.g., input sequence length, hidden size, dropout rate) play critical roles in pre
dictive success, with the latter influencing the models’ ability to better generalize and capture extremes.

Furthermore, RF and PCA highlight essential factors influencing model accuracy, including annual precipi
tation, aridity index, stream density, and land cover, where broadleaf forests improve water retention and ur
banization complicates runoff processes. These findings bridge the gap between the “black-box” nature of AI/DL 
models and hydrological interpretability, offering evidence-based guidelines for practitioners and researchers 
deploying LSTMs in regional hydrological contexts.

Ultimately, this research underscores the potential of optimized LSTM networks to generalize hydrological 
processes and reinforce domain knowledge, while also advocating for the integration of catchment attributes in 
future model designs to enhance predictive robustness. By advancing xAI methodologies for deep learning in 
hydrology, this study contributes to developing more reliable and interpretable AI-driven solutions for water 
resource management and flood risk assessment under increasing climate variability.

1. Introduction

The rise of Artificial Intelligence (AI) (Russell & Norvig, 2020) and 
deep learning (DL) (Goodfellow et al., 2016) has revolutionized 
numerous fields, including hydrology. Traditional hydrological models, 

such as conceptual and physically-based approaches, rely on explicitly 
defining relationships between meteorological variables and hydrolog
ical responses based on physical processes (Refsgaard et al., 2022; 
Beven, 2012). These models incorporate catchment attributes, including 
climate, topography, geology, land use, and vegetation, to predict 
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hydrological processes like runoff and streamflow. However, the 
increasing availability of Big data (e.g., large hydrometeorological 
datasets) and advancements in our computational power by Graphics 
Processing Units (GPUs) have positioned AI/DL models, particularly 
Deep Neural networks (DNNs) (e.g., Long Short-Term Memory (LSTM) 
(Hochreiter & Schmidhuber, 1997)), as powerful alternatives for 
modeling the complex, nonlinear relationships in rainfall-runoff pat
terns (Tripathy & Mishra, 2024; Arsenault et al., 2023; Kratzert et al., 
2024; Shen & Lawson, 2021).

LSTMs excel in sequential data processing and temporal dependency 
modeling, often outperforming hydrological traditional models in pre
dictive accuracy (Donnelly et al., 2024). Unlike conventional models 
that explicitly use catchment attributes, LSTMs implicitly learn latent 
hydrological features from input-output data (Kratzert et al., 2018). 
However, the black-box nature of these DNNs has raised concerns about 
interpretability and trustworthiness. A fundamental question remains: 
Do DNNs (e.g., LSTMs) merely mimic observed statistical patterns, or do they 
capture and learn the underlying physical processes governing catchment 
behavior?

Hydrological phenomena are inherently influenced by spatial and 
temporal variability, requiring models to account for diverse catchment- 
specific characteristics (Beven, 2020). For DNNs to gain broader 
acceptance in regional hydrology, they must address two critical as
pects: predictability—generating accurate outputs—and under
standing—uncovering the physical relationships driving these 
predictions (Başağaoğlu et al., 2022). While conceptual models explic
itly define mechanisms of hydrological behavior, DNNs infer relation
ships solely from data, emphasizing the need for hybrid approaches that 
integrate the strengths of both paradigms.

Studies on physics-informed data-driven models have sought to train 
AI frameworks using physics-based information to enhance interpret
ability (Donnelly et al., 2024; Xie et al., 2021; Hoedt et al., 2021; Samek 
et al., 2021; Kraft et al., 2020; Reichstein et al., 2019). Others have 
employed DNNs (e.g., LSTMs) to improve systematic calibration of 
traditional hydrological models, providing a bridge between these ap
proaches (Tsai et al., 2021). Nonetheless, a significant gap persists in 
understanding how catchment-specific attributes influence DNNs’ per
formance, particularly in regional contexts. For example, regional LSTM 
networks trained on multiple catchments data have been shown to 
outperform single-catchment models by employing shared regional hy
drological information (Hosseini et al, 2025; Kratzert et al., 2024). 
However, the interplay between DL model performance and physical 
catchment attributes, such as climate, land cover, and soil type, remains 
underexplored.

Explainable AI (xAI) techniques (Başağaoğlu et al., 2022) have 
emerged as valuable tools for overcoming the interpretability challenges 
of machine learning models in hydrology. These methods aim to eluci
date relationships between input features and model predictions, shed
ding light on the latent knowledge embedded through the training 
process. For example, Lees et al. (2021) demonstrated that LSTMs could 
replicate hydrological concepts like soil moisture and snow cover stor
age, with internal memory states showing strong correlations with these 
variables. Similarly, Kratzert et al. (2018) observed that LSTMs devel
oped specialized memory cells for snow-driven catchments, effectively 
mimicking the behavior of conceptual snow storage models. These 
findings underscore the potential of DL models to internalize hydro
logical processes when trained on well-prepared datasets, moving 
beyond mere statistical mimicry to capturing underlying physical 
phenomena.

However, according to Başağaoğlu et al., 2022, challenges remain. 
Many xAI techniques rely on historical data, limiting their adaptability 
to nonstationary conditions caused by climate change and human ac
tivities. Additionally, their reliability often depends on the quality of 
available datasets, which can pose difficulties in data-scarce regions. 
Hybrid models that combine AI techniques with domain knowledge or 
physics-based constraints offer a potential solution.

Building on these advancements, this study investigates whether 
regionally optimized LSTM networks (only trained on hydrometeoro
logical data) can capture the physical characteristics of different 
catchments without explicitly being exposed to unique catchments’ at
tributes. While previous studies emphasize LSTMs’ predictive capabil
ities, their ability to learn hydrological relationships unique to specific 
catchments has not been systematically examined. Exploring this ability 
is essential for bridging the gap between ML efficacy and physical hy
drological understanding, especially in regional rainfall-runoff 
modeling.

We hypothesize that regionally optimized LSTM networks, trained 
exclusively on hydrometeorological data while being blind to catchments 
attributes, are influenced by unique catchment-specific characteristics. We 
posit that DNN model performance will vary based on the catchments’ 
attributes and that optimized regional LSTMs can implicitly learn hy
drological relationships unique to specific place.

In this study, we propose a novel triple-confirmation explainability 
framework to investigate whether regionally optimized LSTM net
works—trained solely on hydro-meteorological inputs—can learn 
meaningful latent hydrological representations associated with catch
ment characteristics. While each of the individual analytical tools 
employed (correlation analysis, random forest models with SHAP and 
Gini importance, and principal component analysis) is established, their 
systematic integration for evaluating implicit catchment-specific feature 
learning from optimized black-box deep neural networks is new to the 
field. This approach contributes to the growing demand for trustworthy 
and explainable AI in hydrology by offering multiple independent lines 
of evidence to assess whether a neural network has learned hydrologi
cally plausible patterns. To our knowledge, this is the first such attempt 
to apply an ensemble explainability strategy to pretrained regional 
LSTM models optimized via large-scale hyperparameter search across a 
real-world multi-catchment dataset.

This study addresses the following objectives:
1) Correlation Between LSTM Performance and Catchment Attri

butes: To what extent do catchment attributes, such as climatic condi
tions, topography, and land use, influence the performance metrics of 
optimized regional LSTM networks?

2) Latent Learning of Unique Catchment-Specific Features: Can 
regional LSTMs trained solely on hydrometeorological data implicitly 
learn catchment-specific features that affect their prediction accuracy in 
different places?

3) Impact of Hyperparameter Optimization: How does systematic 
hyperparameter optimization influence LSTM performance across 
diverse catchments in regional hydrology?

By exploring these questions, this work aims to enhance the inter
pretability, reliability, and performance of DNNs, specifically LSTMs, in 
hydrology, contributing to their application in real-world water man
agement. Furthermore, it seeks to uncover latent hydrological insights 
embedded in DL models, complementing traditional modeling 
understandings.

2. Method

2.1. Case study and dataset: Basque Country hydrological system

This study focuses on Basque Country, located in north of Spain 
along the European Atlantic coast (Fig. 1). Covering approximately 
4,494 km2, the studied region is characterized by its humid climatology, 
abundant water resources, and diverse hydrological behaviors. The area 
includes 40 catchments ranging from small basins of 4 km2 to large 
basins of 1,000 km2. These catchments, noted for their flashy and humid 
characteristics, are situated between the Cantabrian Mountains—rising 
to elevations of 1,300 m—and the Atlantic Ocean Fig. 2.

The region’s landscape consists predominantly of grasslands and 
evergreen forests, benefiting from the warming influence of the Gulf 
Stream. The climate is humid and temperate, with mean annual 

F. Hosseini et al.                                                                                                                                                                                                                                Journal of Hydrology 661 (2025) 133689 

2 



temperatures ranging from 9 ◦C in the mountains to 15 ◦C in lower re
gions. Annual precipitation varies between 1,200 mm and 1,600 mm, 
driven primarily by North Atlantic weather fronts. These climatic and 
geographic conditions make the region prone to intense rainfall events, 
rapid runoff, and a heightened risk of flash floods, which makes accurate 
hourly predictions a vital hydrological task in this region.

For this study, detailed hydrological and physical attributes of the 40 
catchments were compiled (Table 1), with definitions provided in 
Table 2. Most of these attributes—such as land use classes and soil 
types—were obtained from regional GIS datasets and prior hydrological 
common projects and studies conducted by IH Cantabria in collabora
tion with the Basque Water Agency (URA). These datasets were derived 
from satellite imagery, remote sensing, and field surveys, and are pub
licly available and documented in previous publications. Meteorological 
and hydroclimatic variables, including precipitation statistics, runoff 
coefficient, and aridity index, were computed directly from available 
timeseries data following standard hydrological practices. These catch
ment descriptors are essential for interpreting the relationship between 
physical basin characteristics and the performance of regional LSTM 
models. Furthermore, the methodological framework we propose is 
generalizable and can accommodate alternative or simplified attribute 
sets depending on data availability, making it applicable across different 
hydrological regions.

The Basque Water Agency (URA), a regional governmental entity, 
manages water resources and policies in this area. URA has compiled a 
comprehensive and high-quality dataset of hourly hydro-meteorological 
timeseries. In this study we utilized data for over 21 years from October 
1, 2000 to September 30, 2021. This dataset underpins the development 
of advanced hydrological models to enhance water management and 
flood prediction strategies. 

- Hydro-Meteorological Timeseries and Data Splitting

The training dataset includes precipitation, temperature, potential 
evapotranspiration (PET), and streamflow. Catchment-scale areal rain
fall and temperature were calculated using the inverse distance 
weighting (IDW) method (Ly et al., 2013), and PET was estimated using 
the Hargreaves formula (Hargreaves & Allen, 2003).

To ensure rigorous model training and evaluation, the dataset was 
partitioned into distinct subsets: 

1) Training-and-Validation Set (October 1, 2000, to September 30, 
2015):

• Training Period: October 1, 2005, to September 30, 2015.
• Validation Period: October 1, 2000, to September 30, 2005.

This subset was employed for hyperparameter optimization and 
deciding on the finally optimized networks. 

2) Test Set (October 1, 2015, to September 30, 2021): This subset was 
withheld during training and validation to provide an unbiased 
evaluation of the optimized models. Once the model is optimized, it 
is re-trained on the train set and across 10 different random seeds to 
ensure robustness, as the initial point of training can still influence 
the final model’s performance. This way, every optimized LSTM 
concluded in 10 retrained final models that is tested on the test set.

2.2. Model and main setups

This study employed the Multi-Timescale Long Short-Term Memory 
(MTS-LSTM) network, an advanced deep learning architecture tailored 
for hydrological predictions at fine temporal resolutions. The MTS-LSTM 
model, introduced by Gauch et al. (2021) and implemented via the 
NeuralHydrology Python library (Kratzert et al., 2022), is designed to 
address the computational challenges associated with hourly 

Fig. 1. Study area, including 40 catchments of Basque Country in north of Spain.
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predictions. By utilizing two parallel LSTM networks—one operating at 
hourly and the other at daily timesteps—the architecture effectively 
captures both short-term dynamics and long-term trends while expe
diting the training process, making it particularly suitable for complex 
hydrological systems like those of the Basque Country.

For the MTS-LSTM implementation, the inputs were hourly average 
precipitation, temperature, and Potential Evapotranspiration (PET). 
These three variables comprehensively reflect the region’s humid and 
temperate climate, providing essential insights into interactions be
tween meteorological conditions and hydrological responses. The target 
was hourly streamflow in all 40 catchments, simultaneously.

The LSTM models were regionally trained using the comprehensive 
dataset from 40 catchments, employing the following rigorous 
workflow: 

1. Hyperparameter Optimization and Training: All LSTM networks 
used in this study were regionally optimized through a systematic 
random search over 1000 hyperparameter configurations, as 
described in detail in our prior works (Hosseini et al., 2024a, 2024b; 
2025). The hyperparameter space included 10 key settings (see 
Table 3), and a set of regionally optimized 84 configurations were 
selected based on their high validation performance across 
Nash–Sutcliffe (NSE) and Kling–Gupta (KGE) efficiency metrics. To 
ensure robustness against initialization variability, each of these 84 
optimized LSTM networks was retrained using 10 different random 
seeds. This resulted in a comprehensive set of 840 regionally-trained 
optimized models with high performance, forming a robust and 
diverse ensemble for downstream explainability analysis. We 
emphasize that this ensemble serves as the foundation for our triple- 
confirmation framework and is based on highly optimized and 

validated deep learning models specifically designed for multi- 
catchment hydrological modeling.

2. Evaluation: The performance of the optimized LSTM networks in 
this study was evaluated using 14 performance metrics, selected to 
comprehensively assess different aspects of hydrological model 
behavior on unseen test data. These metrics include: 
- Overall performance and error-based metrics: Nash-Sutcliffe 

Efficiency (NSE) (Nash & Sutcliffe, 1970), Kling-Gupta Efficiency 
(KGE) (Gupta et al., 2009), Mean Squared Error (MSE) (Legates and 
McCabe, 1999; Makridakis et al., 1993), Root Mean Squared Error 
(RMSE) (Willmott and Matsuura, 2006).

- Decomposition metrics: Alpha-NSE and Beta-NSE for evaluating 
the linearity and bias components of NSE; Beta-KGE for decom
posing KGE (Gupta et al., 2012).

- Correlation metric: Pearson’s correlation coefficient (Pearson-r).
- Flow-segment biases: %BiasFHV (high flows), %BiasFLV (low 

flows), and %BiasFMS (mid-segment slope) (Yilmaz et al., 2008).
- Peak flow metrics: Peak-Timing, MAPE_peak (Mean Absolute 

Percentage Error for peaks), and missed_peaks (Fraction of Missed 
Peaks) (Kratzert et al., 2019; 2020).

While all 14 metrics were used in our evaluation framework and are 
presented in the correlation heatmap (Figs. 3 and 4) and overall per
formance summary (Table 4), the discussion in the results section 
focused more on the metrics that showed stronger patterns or clearer 
hydrological implications (e.g., NSE, KGE, %BiasFHV, or Peak-Timing). 
In analyses such as the Random Forest models (Fig. 5) and SHAP sum
mary plots, only the top 10 most influential metrics (based on model 
relevance or interpretability) were highlighted for clarity.

We emphasize that hydrological behavior is complex and 

Fig. 2. Methodology for assessing relations between catchments’ attributes and LSTMs’ test performances.
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Table 1 
A brief summary of 40 URA catchments’ attributes in the case study.

*PREC: precipitation; Temp: Temperature; RC: Runoff Coefficient; PET: Potential Evapotranspiration; GRAD: Gradiant (Slope).
*Land Use Distribution: Urban (UHD), Agriculture (AGR), Pasture (PAS), Broadleaf Forest (BLF), Coniferous Forest (CNF), Plantation (PLT), Shrublands (SSH), Water bodies (WAE).
*Soil Composition: CALC: calcareous soils; CONG: conglomerate soils; SDIM: sedimentary soils; VLC: volcanic soils; WATR: wetlands and water associated ecosystems.
*Soil Composition class: COND (soil conductivity), PERM (permeability), and HARD (hardness).
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multifaceted, especially in flash-prone basins like those in the Basque 
Country. Hence, relying on a broad suite of evaluation metrics provides 
a more complete understanding of model strengths and weaknesses. For 
instance, while NSE emphasizes high flows, KGE is more sensitive to 
overall variability; %BiasFHV is essential for assessing peak represen
tation, while %BiasFLV and %BiasFMS help evaluate low and moderate 
flows. Peak-specific metrics like MAPE_peak and missed_peaks offer 
insight into how well the models captured flood events — a critical 
aspect in flood-prone regions. Therefore, although not all metrics were 
equally emphasized in every figure or analysis, each served a role in the 
comprehensive evaluation framework. A complete list, including defi
nitions and expected value ranges, is provided in Supplementary docu
ment Appendix 01 for transparency and reproducibility.

Moreover, to ensure that regional hydrological behaviors were 
comprehensively learned, the LSTM networks employed in this analysis 
were regional in design (meaning that they were trained regionally on 
data from all 40 catchments). This regional training approach enabled 
the models to predict streamflow at the outlets of all individual catch
ments while uncovering insights from the broader dataset. This design 
choice reflects the study’s commitment to developing a scalable and 
effective framework for regional rainfall-runoff modeling, highlighting 
the importance of integrating shared and individual catchment 

Table 2 
Definitions of the catchments’ attributes employed in this study.

Attribute Definition Group Units/ 
Values

Area Contributing area to the 
downstream end of the 
segment

Topography km2

CONF_DEN Number of rivers confluences 
by catchment area

Topography Number/km2

GRADIENT Mean gradient through the 
reach

Topography %

max slope max slope of catchment Topography ◦

mean slope average slope of catchment Topography ◦

elevation Average catchment elevation 
upstream the river reach

Topography m

min height min catchment eleveation Topography m
max height max catchment eleveation Topography m
UHD Surface occupied by urban 

areas upstream the river reach
Land Uses %

AGR Surface occupied by 
agricultural land upstream the 
river reach

Land Uses %

PAS Surface occupied by pasture 
upstream the river reach

Land Uses %

BLF Surface occupied by broadleaf 
forest upstream the river 
reach

Land Uses %

CNF Surface occupied by 
coniferous forest upstream the 
river reach

Land Uses %

PLT Surface occupied by 
plantations upstream the river 
reach

Land Uses %

SSH Surface occupied by moors, 
heathland, scrub and shrubs 
upstream the river reach

Land Uses %

WAE Surface occupied by wetlands 
and water ecosystems 
upstream the river reach

Land Uses %

DEN Surface occupied by denuded 
areas upstream the river reach

Land Uses %

calc Area occupied by calcareous 
rocks upstream the river reach

Geology %

cong Area occupied by 
conglomerate rocks upstream 
the river reach

Geology %

sdim Area occupied by sedimentary 
rocks upstream the river reach

Geology %

vlc Area occupied by volcanic 
rocks upstream the river reach

Geology %

watr Area occupied by wetlands 
and water associated 
ecosystems upstream the river 
reach

Geology %

conductivity Average soil conductivity 
upstream the river reach 
(derived from geology 
variables). Reaches with 
MN_watr and MN_othe = 1 
this value have 0 for this field

Geology Class: 1–––5

permeability Average terrain permeability 
upstream the river reach 
(derived from geology 
variables). Reaches with 
MN_watr and MN_othe = 1 
this value have 0 for this field

Geology Class: 1–––5

rock hardness Average soil hardness 
upstream the river reach 
(derived from geology 
variables). Reaches with 
MN_watr and MN_othe = 1 
this value have 0 for this field

Geology Class: 1–––5

no. prec 
stations

Nomber of stations 
participated in calculating 
lumped prec values for basins

Hydrology Number

Table 2 (continued )

Attribute Definition Group Units/ 
Values

no. temp 
stations

Nomber of stations 
participated in calculating 
lumped temp values for basins

Hydrology Number

possible snow Percentage of number of days 
with negative temp on total 
number of days

Hydrology %

no. days with 
negative 
temp

Number of days with negative 
temp in the dataset

Hydrology Number

mean runoff 
coeff.

yearly average runoff 
cofficient

Hydrology dimensionless

aridity index Aridity Index Hydrology dimensionless
mean 

precipitation
yearly average precipitation Hydrology mm

mean 
streamflow

yearly average streamflow Hydrology mm

mean 
temperature

yearly average temperature Hydrology ◦C

min 
temperature

yearly min temperature Hydrology ◦C

max 
temperature

yearly max temperature Hydrology ◦C

Coeff. var. Prec Cofficient of variation of 
precipitation

Hydrology dimensionless

Coeff. var. Flow Cofficient of variation of 
streamflow

Hydrology dimensionless

mean PET average potential 
evapotranspiration

Hydrology mm

Table 3 
The initial defined hyperparameters space designed for random search.

Hyperparameter Range

hidden size 16, 32, 64, 128, 256
batch size 32, 64, 128, 256
output dropout 0, 0.2, 0.4
initial forget bias − 3, − 1, 0, 1, 3
learning rates Lr0 1e-3, 1e-2, 5e-2

Lr10 5e-4, 1e-3, 5e-3
Lr25 1e-4, 1e-3

target noise std 0, 0.01, 0.02, 0.05, 0.1
loss function NSE, RMSE
seq length daily 146, 182, 365, 730, 1095
seq length hourly 168, 336, 504, 672, 1344, 2016, 4032, 6720, 8064, 8760
regularization tie_frequencies, None
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dynamics into the predictive process.

2.3. Test_DATASET Setup and compilation

To systematically evaluate the implicit learning of catchments’ at
tributes by the optimized deep neural networks in regional rainfall- 
runoff modeling, we developed a novel method based on their test 
performances in different basins. Our primary objective was to deter
mine if the optimized regional LSTMs learned some relevant information 
about catchments’ attributes without direct access to this information 
during training. Fig. 2 provides an overview of the developed method
ology for assessing the hydrological understanding of regionally opti
mized LSTMs.

To achieve the objectives, this paper employed a systematic 
approach to mine and comprehensively analyze what is referred to as 
the “test_DATASET (with capital letters).” The test_DATASET consists of 
streamflow test performance metrics from 84 distinct (in terms of their 
hyperparameter configurations) regionally optimized LSTM networks 
for rainfall-runoff modeling and catchment attributes across the 40 
studied catchments in Basque Country, Spain. All in all, we analyzed 
performance of 840 trained LSTMs (84 networks retrained on 10 
different random seeds) to study possible relations between catchments 
attributes and optimized DLs’ test performances in different basins.

The test_DATASET consisted of three main group columns: 

1) Hyperparameter Configurations: A detailed record of the hyper
parameter configurations for all 84 optimized LSTM networks.

2) Catchments attributes (See: Tables 1 and 2).
3) Test Performance Metrics in every catchment: The performance of 

the 840 optimized LSTM networks in this research was evaluated 
against observed data from the test set.

Overall, the test_DATASET included up to 67,000 records 

(comprising hourly and daily predictions on ten different random seeds 
by 84 distinct hyperparameter-optimized LSTM architectures). This 
compilation provided a solid foundation for exploring potential corre
lations and trends between the predictive performance of optimized 
regional LSTM networks and catchment attributes in the studied region. 
These records were derived from several models optimized following an 
exhaustive random search in the hyperparameter space. Each regionally 
optimized LSTM network in the test_DATASET demonstrated competi
tive regional accuracy on overall, with some marginal differences. 
While, all the configured networks exhibited statistically significant 
varying performance across different locations (See: Hosseini et al., 
2024a and 2025 for more details).

2.4. Exploration of implicit learning of catchment attributes

To investigate whether the optimized regional LSTM networks only 
trained on hydrometeorological timeseries implicitly learned 
catchment-specific features—despite not being explicitly trained on 
such attributes—we developed a triple-confirmation interpretability 
framework. This framework integrates Pearson correlation analysis, 
Random Forest regression (RF), and Principal Component Analysis 
(PCA), each contributing a unique perspective to uncover the hidden 
associations between LSTM performance and catchment attributes. 
These methods, grounded in explainable AI (xAI), aim to enhance 
transparency and interpretability in data-driven hydrological modeling 
(Başağaoğlu et al., 2022).

2.4.1. Pearson correlation analyses
Pearson correlation is a statistical measure of linear association be

tween two continuous variables, calculated as: 

r =
∑

(xi − x)*(yi − y)
(∑

(xi − x)2*
∑

(yi − y)2
)

Fig. 3. Presents a correlation heatmap summarizing the relationships between selected catchment attributes and performance metrics across all 40 basins. Only 
attributes showing moderate correlations in preliminary screening were retained for this visual summary to enhance interpretability. The darker shades in the 
heatmap highlight stronger correlations, both positive and negative. Axe y demonstrates that different catchments attributes can affect LSTM performance from 
different perspectives that is confirmed by 14 distinct metrics each having their unique evaluation view point.
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Where, r is the Pearson correlation coefficient, and xi, yi are paired 
observations. Values range from − 1 (perfect negative correlation) to + 1 
(perfect positive correlation), with 0 indicating no linear association.

We computed the Pearson correlation coefficients between catch
ment attributes (e.g., area, slope, forest cover, soil type) and models’ 
performance metrics (e.g., NSE, KGE, FHV) across all 40 catchments. 
Heatmaps were used for visualization, allowing intuitive identification 
of potentially influential relationships. We used a threshold of |r| ≥ 0.3 
to highlight moderate-to-strong correlations.

This step helped identify attributes that might have been implicitly 
captured by the LSTM networks through patterns in regional 
input–output timeseries data, despite not being directly provided.

2.4.2. Catchment-aware random forest model for implicit learning analysis
We then trained Random Forest regression models (RF) (Breiman, 

1996), a tree-based ensemble learning method known for its robustness 
and interpretability. The RFs were used as a meta-model to predict 
different LSTM performance metrics (e.g., NSE) from both LSTM 
hyperparameters and catchment attributes for different catchments, 
thus enabling quantitative assessment of implicit learning.

Two complementary key interpretability techniques applied to 
analyze feature importance in the RF models: 

- Gini Importance (Mean Decrease in Impurity): Measures how each 
feature reduces the impurity (variance) in regression tree splits 
(Breiman, 1996; Louppe et al., 2013).

- SHAP (SHapley Additive exPlanations) summary plots: A game- 
theoretic approach that computes the marginal contribution of 
each feature to model predictions, enabling local (catchment-spe
cific) and global interpretability (Eun Choi et al., 2024; Lundberg & 
Lee, 2017).

The RFs were trained on 70 % of the test_DATASET and validated on 
the remaining 30 %. SHAP and Gini scores were then analyzed to: 

- Identify key hyperparameters affecting LSTM performance.
- Discover catchment attributes most predictive of perform

ance—indicating implicit learning by LSTMs.

2.4.3. Principal Component Analysis (PCA) for dimensionality reduction
Finally, we used PCA, a dimensionality reduction technique, to 

further validate whether LSTM performance trends clustered according 
to latent catchment features. PCA transforms input data into orthogonal 
principal components that maximize variance, revealing dominant 
patterns in high-dimensional data (Prieto et al., 2019; 2021; 2022; 
Jolliffe, 2002).

We applied PCA on the matrix of LSTM test performance metrics 
across catchments to observe whether performance trajectories aligned 
with groups of catchments sharing similar physical or hydrological 
properties. This unsupervised analysis helped visually confirm the 
emergence of catchment-specific learning patterns.

Together, these three methods provided converging evidence that 
regionally trained optimized LSTM networks—despite being trained 
without catchment attribute inputs—learned to reflect physical differ
ences among basins. This finding underscores the capacity of deep 
learning models to extract latent geographical and hydrological signals 
from multi-catchment data and contributes to the growing field of 
interpretable hydrological modeling.

3. Results

We implemented a triple-confirmation analytical approach to 
investigate the relationships between catchment attributes and the ac
curacy metrics of optimized regional LSTM configurations on the test 
set. This approach encompassed Pearson correlation analysis, Random 
Forest (RF) regression modeling, and Principal Component Analysis 

(PCA). Together, these methods allowed us to: 1) Examine the associa
tions between catchment attributes and model performance metrics, 2) 
Evaluate the predictability of LSTM performance using RF models, and 
3) Identify the most influential features among the catchments’ attri
butes and hyperparameters.

3.1. Pearson correlation analysis

To explore whether LSTM networks captured physical differences 
across catchments, we performed a Pearson correlation analysis be
tween model performance metrics and several documented catchment 
attributes (e.g., topography, climate, land cover). The goal was to 
determine whether certain physical characteristics consistently influ
enced LSTM accuracy, despite not being explicitly used during model 
training.

Fig. 3 presents a Pearson correlation heatmap, illustrating the re
lationships between catchment attributes and performance metrics for 
multiple optimized LSTM configurations. While many relationships 
were weak to moderate, several patterns emerged and are analyzed in 
more detail below and in Table 4, which lists only the strongest attrib
ute–metric correlations exceeding ± 0.3 threshold. These correlations 
revealed trends between catchment attributes and specific metrics, 
providing a clearer understanding of the conditions under which DNNs 
performed more accurately or struggled. These relationships suggest 
that regionally trained LSTM networks implicitly encoded catchment 
characteristics, likely through patterns in precipitation, temperature, 
and potential evapotranspiration sequences.

We emphasize that the heatmap in Fig. 3 is intended to illustrate 
general trends and not to suggest uniformly strong correlations. Instead, 
it visually supports the broader finding that LSTM models display 
sensitivity to catchment-specific traits even without direct access to 
those traits during training. The underlying data analysis and correla
tions are discussed in detail in the following subsections. We also 
acknowledge that formal significance testing (e.g., p-values for each 
correlation) and broader grouping of attributes can add statistical rigor. 
We note its potential value in future works, especially in larger sample 
contexts with more catchments and different climates.

Runoff Coefficient and Yearly Streamflow Impact on Prediction 
Accuracy: High positive correlations between MSE and RMSE test 
metrics and the average runoff coefficient (0.63 and 0.70, respectively) 
as well as mean yearly streamflow (0.50 and 0.58, respectively) suggest 
that catchments with higher runoff coefficients tend to have a bit larger 
absolute errors in these metrics. Since MSE and RMSE are not dimen
sionless and scale with streamflow magnitude, larger streamflow natu
rally leads to higher absolute error values. However, this does not 
necessarily indicate lower relative predictive accuracy, as normalized 
performance metrics (e.g., NSE or KGE) may provide a different 
perspective on model effectiveness.

Given that all models in this study are optimized and demonstrate 
acceptable accuracy, this suggests that catchments with high runoff 
coefficients—such as those in the Basque Country—exhibit clear hy
drological signals, making flow dynamics easier for LSTM networks to 
capture. However, at both very high and very low runoff coefficient 
values, LSTMs may struggle to accurately learn the trends, potentially 
leading to slightly diminished performance.

Topographic Influence on Predictive Metrics: Moderate correla
tions were observed between catchment slope and gradient and metrics 
like NSE (0.40), KGE (0.42), and Pearson-r (0.44). Steeper catchments 
likely exhibit distinct runoff patterns with reduced surface retention, 
aiding DNN model accuracy. However, negative correlations with 
extreme slopes (e.g., maximum slope attribute: − 0.31 for RMSE) suggest 
that highly steep terrains might introduce noise, complicating model 
learning due to complex flow dynamics or input data limitations.

Influence of Climate and Variability: The aridity index showed 
negative correlations with KGE (− 0.44) and RMSE (− 0.40), indicating 
that less wet catchments with variable precipitation pose challenges for 

F. Hosseini et al.                                                                                                                                                                                                                                Journal of Hydrology 661 (2025) 133689 

8 



the LSTM models. Such variability reduces the generalizability of hy
drological responses, impacting DLs’ prediction accuracy. Similarly, the 
coefficient of variation for precipitation negatively correlated with KGE 
(− 0.45) and Pearson-r (− 0.49), emphasizing that stable precipitation 
regimes facilitate better model generalization and accuracy, whereas 
irregular patterns increase complexity.

Land Use and Vegetation Cover: Moderate positive correlations 
between coniferous forest cover and metrics like KGE (0.33) and NSE 
(0.32) suggest that consistent vegetation patterns may stabilize hydro
logical responses, improving prediction accuracy. Conversely, agricul
tural land use showed a negative correlation with NSE (− 0.32), likely 
due to human-induced variability, such as irrigation and land manage
ment practices, which disrupt natural flow dynamics.

Geological Characteristics: Negative correlations between sedi
mentary soils and metrics like NSE (− 0.39) and KGE (− 0.47) suggest 
that heterogeneous permeability and storage properties introduce vari
ability, complicating model performance. Similarly, attributes like 
wetlands (AWE) and water bodies (Watr) correlated positively with FLV 
(0.31) but negatively with RMSE (− 0.31), indicating their role in 
modulating flow dynamics over time.

Probability of Snowfall and Temperature Variability: The nega
tive correlation of KGE with snowfall probability (− 0.35) highlights the 
challenge of capturing snowmelt dynamics, which introduces delays and 
variability in runoff. While snowfall is less predominant in Basque 
Country, its presence in specific basins underscores the complexity of 
hydrological modeling under such conditions by DNNs. Additionally, 
temperature variability negatively correlated with NSE, further high
lighting the difficulty of handling highly fluctuating thermal conditions.

Aggregated Group-Level Correlation Analysis.
To provide a clearer overview of attribute–metric relationships, we 

grouped the 40 catchment attributes into four categories—Topography, 
Land Use, Geology, and Hydrology—and computed the sum absolute 
correlation between each group and the 14 LSTM performance metrics 
(Fig. 4a). We further calculated the signed total correlation for each 
group (Fig. 4b) on all 14 metrics and identified the top five positive and 
negative contributors within each group (Fig. 4c-f). This aggregated 
approach amplifies the most relevant signals—e.g., Hydrology exhibits 
the highest overall correlation magnitude—while preserving the direc
tional information of positive versus negative influences. The detailed 
breakdown of contributors corroborates and refines our interpretation of 

Fig. 4. Aggregated group-level correlation analysis between LSTM performance metrics and catchment attribute categories. (a) Sum absolute correlation heatmap 
showing the overall strength of association between each of the 14 performance metrics (rows) and the four attribute groups (columns): Topography, Land Use, 
Geology, and Hydrology. (b) Bar plot of the signed sum of correlations across all metrics for each attribute group, with green bars indicating total positive influence 
and red bars indicating total negative influence. (c–f) Horizontal bar charts displaying the top five positive (green) and top five negative (red) contributors within 
each attribute group: (c) Topography, (d) Land Use, (e) Geology, and (f) Hydrology on all 14 metrics. These panels highlight which individual attributes drive LSTM 
performance most strongly in either direction.
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Fig. 3, demonstrating that specific attributes (e.g., mean precipitation, 
runoff coefficient in Hydrology; mean slope, maximum slope in 
Topography) are primary drivers of model performance in Basque 
Country catchments. This new representation strengthens the robustness 
of our conclusions by showcasing both broad trends and individual 
variable impacts.

3.2. Random Forest analysis

As stated, to further investigate the factors influencing the perfor
mance of optimized LSTM models in regional hydrology, we employed a 
Random Forest (RF) regression approach. The RF model utilized 
hyperparameter configurations and catchment attributes as inputs, 
while performance metrics of the LSTM networks served as the output 
targets. The dataset was divided into 70 % for training and 30 % for 
validation, ensuring robust model evaluation.

Fig. 5 displays the validation results of the RF model, illustrating the 
predicted versus actual performance metrics for streamflow across 
various catchments. The alignment of data points along the 1:1 line, 
combined with well-accepted metrics such as near-zero mean squared 
error (MSE) and R-squared values up to 0.97, demonstrates the trained 
RF model’s capability to predict specific LSTM configurations’ perfor
mance metrics accurately in different places. This indicates that the 
trained RF model effectively captured the relationships between 

catchment attributes, hyperparameter configurations, and the resulting 
LSTM model performance, underscoring its utility in analyzing complex, 
nonlinear interactions.

3.2.1. Feature importance analysis by Gini gains
Feature importance rankings derived from the RF model, presented 

in Fig. 6, reveal the most influential catchment attributes and hyper
parameters contributing to regional LSTM model performance in 
different locations. The Gini gains, used to rank feature importance, 
highlighted several key findings: 

1) Hydrological Attributes: Attributes related to hydrological proc
esses—such as mean yearly streamflow, precipitation patterns, and 
the aridity index—emerged as critical predictors for several metrics, 
including KGE, Beta-NSE, and Missed-Peaks. For instance: Mean 
yearly streamflow ranked among the most significant predictors for 
RMSE and Beta-KGE, highlighting its importance in refining the 
predictive accuracy of LSTM models. Or, aridity index, which reflects 
climatic conditions, was also influential.

2) Land Cover and Vegetation: Land cover attributes, such as conif
erous forest (CNF) and pasture cover (PAS), played a notable role in 
influencing accuracy metrics. Specifically, CNF ranked highly for 
metrics like NSE, Alpha-NSE, and Pearson-r, suggesting that vege
tation types contributing to hydrological consistency can enhance 

Table 4 
The attributes with correlations beyond the ± 0.3 threshold, linking them to their influence on LSTM performance.

Metric Attribute Correlation

SF_RMSE mean runoff coff. 0.70
SF_MSE mean runoff coff. 0.63
SF_RMSE mean streamflow 0.58
SF_MSE mean streamflow 0.50
SF_NSE GRADIENT 0.47
SF_Pearson-r GRADIENT 0.44
SF_KGE mean slope 0.42
SF_Peak-MAPE coff. var. Prec 0.41
SF_NSE mean slope 0.40
SF_Pearson-r max slope 0.39
SF_Pearson-r mean slope 0.38
SF_KGE mean precipitation 0.38
SF_NSE max slope 0.38
SF_RMSE mean precipitation 0.38
SF_Peak-MAPE aridity index 0.35
SF_KGE GRADIENT 0.34
SF_KGE CNF 0.33
SF_NSE CNF 0.32
SF_FLV watr − 0.31
SF_RMSE max slope − 0.31
SF_RMSE WAE − 0.31

Metric Attribute Correlation

SF_MSE max slope − 0.32
SF_NSE min hight − 0.32
SF_MSE aridity index − 0.32
SF_NSE AGR − 0.32
SF_Pearson-r aridity index − 0.33
SF_RMSE CONF_DEN − 0.34
SF_Peak-MAPE mean precipitation − 0.34
SF_Peak-MAPE GRADIENT − 0.34
SF_Pearson-r sdim − 0.34
SF_KGE possible snow − 0.35
SF_NSE aridity index − 0.36
SF_RMSE Area − 0.37
SF_Peak-MAPE mean slope − 0.38
SF_NSE sdim − 0.39
SF_RMSE aridity index − 0.40
SF_KGE aridity index − 0.44
SF_KGE min hight − 0.45
SF_KGE coff. var. Prec − 0.45
SF_KGE sdim − 0.47
SF_Pearson-r coff. var. Prec − 0.49
SF_NSE coff. var. Prec − 0.51
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model predictions. In contrast, agricultural land use (AGR) which, 
also, exhibited negative correlations with performance metrics, 
demonstrates high Gini values likely due to human-induced vari
ability in hydrological processes.

3) Topographical and Climatic Factors: Features such as maximum 
temperature and maximum slope showed significant importance for 
specific metrics. Maximum temperature was particularly relevant for 
metrics like Missed-Peaks, indicating its role in regions with pro
nounced seasonal variations. Maximum slope showed varying 
importance, emphasizing the role of topography in shaping hydro
logical responses.

4) Hyperparameter Configurations: Several hyperparameters signif
icantly influenced the RF model’s predictive accuracy. However, 

Fig. 5. Random Forest prediction accuracy for different test performance 
metrics for streamflow. The Random Forest was trained on Hyperparameters, 
and Attributes as inputs and the metrics as outputs. The figure suggests that a 
Random Forest model can be trained in a way that accurately predicts the 
performance outcomes of a configured LSTMs in every catchment by knowing 
their attributes.

Fig. 6. Feature importance ranking for 10 top features for different target 
metrics derived from the trained Random Forest model. This figure highlights 
the relative importance of various features in predicting the test metrics, 
emphasizing the most influential attributes shaping DNNs’ accuracy.
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input sequence length, output dropout, and hidden size were critical 
for predicting metrics across catchments, from Gini gains perspec
tive, indicating the importance of tailoring model configurations to 
specific hydrological conditions. Among them, the length of the 
input sequence could have hydrological importance carrying unique 
hydrological characteristics of the catchments (Hosseini et al., 
2024c) in the hydrological domain. Seed values also showed 
consistent importance, emphasizing the influence of initialization on 
model outcomes. This finding aligns with the potential of ensemble 
learning to improve robustness and accuracy in hydrological pre
dictions (Hosseini et al., 2025).

The Gini gains revealed variability in feature importance depending 
on geographic and climatic contexts. For example, Broadleaf Forest 
cover (BLF) and the coefficient of variation of flow were more influential 
in regions with variable flow regimes or significant forest contributions, 
affecting metrics like Alpha-NSE and Beta-NSE. Or, attributes like max 
slope and max temperature exhibit greater importance for metrics such 
as Missed-Peaks and FHV in catchments with distinct topographical and 
climatic characteristics, suggesting localized factors that affect hydro
logical responses.

The RF analysis highlights critical catchment attributes and hyper
parameters that influence the performance of LSTM models in stream
flow predictions. By effectively capturing nonlinear relationships and 
complex interactions, the RF model offers insights into the underlying 
drivers of model accuracy. Key takeaways include, 1) the significant role 
of hydrological attributes, such as streamflow and precipitation pat
terns, in enhancing model performance; 2) the influence of land cover 
types and topographical features on predictive accuracy; and 3) the 
importance of hyperparameter configurations, including input sequence 
length and seed values, in optimizing LSTM outcomes.

3.2.2. Explainable AI analysis through SHAP summary plots
To further explore the implicit learning behavior of optimized 

regional LSTM models, we employed SHAP (SHapley Additive exPla
nations) summary plots—an advanced interpretability tool grounded in 
cooperative game theory. These plots quantify the contribution of each 
input feature (both LSTM hyperparameters and catchment attributes) to 
the model’s output, providing both global and local explanations of 
model behavior across different hydrological contexts.

In this study, SHAP was used to analyze the 20 most influential 
features across 10 hydrological performance metrics, including NSE, 
KGE, RMSE, Alpha-NSE, Beta-NSE, Beta-KGE, Pearson-r, %BiasFHV, 
Peak-MAPE, and Missed-Peaks. This multifaceted evaluation allowed us 
to observe how various features influenced different aspects of LSTM 
networks skill—ranging from general accuracy to event-based or high/ 
low flow sensitivity—within the humid and flashy hydrological regime 
of the Basque Country, Spain.

Each SHAP summary plot presents a horizontal axis representing the 
SHAP value (i.e., the impact of a feature on the model output), with 
individual dots denoting specific model instances. The color gradient 
(typically from blue to red) indicates the feature’s actual value (low to 
high), and the position along the x-axis shows whether that value 
increased or decreased the predicted performance metric. This dual 
encoding enables nuanced interpretation, such as identifying whether 
high values of a given feature consistently lead to higher metrics values. 
Unlike traditional feature importance measures like Gini gain—which 
provide only aggregated, global insights—SHAP values enable instance- 
level (local) explanations and capture nonlinear feature interactions, 
which are particularly relevant for interpreting complex deep learning 
architectures like LSTM networks.

Influence of Catchment Attributes on LSTM Performance
The SHAP analysis reveals that the below catchment-specific hy

drological and geomorphological characteristics are consistently domi
nant drivers of model performance across nearly all evaluated metrics:

Yearly mean runoff coefficient, streamflow, and precipitation 

emerge as the most impactful features, recurrently ranking at the top 
across NSE, KGE, RMSE, and Pearson-r. Their prominence reflects strong 
control over discharge dynamics and the data-driven model’s capacity to 
capture basin-specific flow patterns. This aligns with classical hydro
logical understanding, where catchments with higher runoff generation 
and precipitation exhibit more predictable flow responses, favoring 
LSTM learning.

Catchment area and confluence density (CONF_DEN) significantly 
affect volumetric performance metrics such as NSE and RMSE. Larger 
catchments with denser drainage networks introduce spatial heteroge
neity and complex routing effects, which challenge LSTM’s ability to 
generalize learned patterns.

Slope-related features, including mean slope, maximum slope, and 
gradient, play a critical role in metrics related to extremes, noticeably 
for Peak-MAPE, FHV, and Missed-Peaks. These attributes reflect basin 
steepness, indicative of fast runoff generation and short response times, 
requiring the LSTM to learn rapid temporal dynamics effectively.

Land cover variables (e.g., pasture (PAS), agriculture (AGR), 
broadleaf forest (BLF), coniferous forest (CNF), shrubland (SSH), water 
surfaces (watr), wetlands (PLT), and denuded lands (DEN)) also exhibit 
substantial influence, particularly on KGE, NSE, and FHV. Their role 
underscores the effect of land use and vegetation on hydrological pro
cesses such as infiltration, evapotranspiration, and storage, which 
modulate streamflow generation and nonlinear responses to 
precipitation.

These findings provide empirical, data-driven validation of known 
hydrological principles, while also highlighting the capability of opti
mized regional LSTM networks to implicitly learn catchment-specific 
behaviors without direct access to these attributes during training.

Impact of LSTM Hyperparameters on Model Performance
In addition to catchment attributes, SHAP plots underscore the 

crucial influence of LSTM hyperparameters on regional model 
performance:

Sequence lengths daily and hourly (Seq_1D, Seq_1H) is consistently 
among the top influential hyperparameters across multiple metrics, with 
highest impact on Missed_peaks. Longer sequence lengths enable the 
model to capture longer temporal dependencies crucial for hydrograph 
reproduction; however, this could increase the computational costs.

Hidden size and learning rates are pivotal in shaping the model’s 
capacity to learn complex flow patterns. Larger architectures generally 
enhance performance in metrics like KGE and FHV but may simulta
neously increase vulnerability to errors in extreme flow metrics (e.g., 
NSE, Peak-MAPE), revealing a trade-off between model complexity and 
stability.

Dropout rate emerges as a critical regularization mechanism, influ
encing consistency and robustness across catchments. Properly tuned 
dropout rates reduce overfitting and enhance generalization, particu
larly noticeable in NSE, FHV, and KGE.

Batch size and loss function selections demonstrate metric-specific 
impacts, noticeably on NSE and Missed_peaks, suggesting their role in 
stabilizing model convergence and handling the variance in streamflow 
patterns. Larger batch sizes appear to smooth learning but may overlook 
localized peak behaviors.

Metric-Specific Findings and Hydrological Interpretations
Each performance metric yields distinct insights into how both 

catchment features and hyperparameters govern LSTM effectiveness:
NSE and KGE (global metrics) are primarily controlled by hydro

logical attributes—precipitation, area, runoff coefficient, and aridity 
index—highlighting their central role in shaping overall discharge 
reproduction. LSTM hyperparameters, particularly input sequence 
length and hidden size, are secondary but crucial to achieving high 
predictive skill.

RMSE, being sensitive to large deviations, is heavily influenced by 
slope, permeability, and confluence density, reflecting the difficulty in 
predicting extreme flows in steep or highly connected catchments.

Alpha-NSE and Beta-NSE, focusing on high and low flows 
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Fig. 7. SHAP summary plots for the 20 most influential catchment attributes and LSTM hyperparameters affecting regional model performance across Basque Country catchments. Each dot represents a single model- 
catchment instance, with color gradients showing feature magnitudes (red: high, blue: low). The SHAP value axis indicates feature positive and negative contribution to test performance metrics. Aggregated insights 
highlight dominant hydrological and architectural drivers of LSTM performance across diverse evaluation criteria.
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respectively, show differential sensitivity to both catchment and LSTM 
architectural parameters, reflecting the need for targeted model ad
justments to handle flow extremes.

FHV and Peak-MAPE, representing high-flow and peak-specific er
rors, are predominantly controlled by steepness and precipitation ex
tremes, underscoring the need for models that can handle rapid 
responses and flow surges.

Missed-Peaks, a direct indicator of LSTM capacity to capture critical 
events, shows notable sensitivity to hyperparameters such as sequence 
lengths (Seq_1D, Seq_1H), regularization, dropout, hidden size, learning 
rate, batch size, and initial forget gate bias, demonstrating that archi
tectural design strongly influences extreme event detection capability.

All in all, the ensemble of SHAP plots (Fig. 7) offers a unified 
framework for understanding the interplay between catchment-specific 

Fig. 9. Biplot of the PCA analysis. This figure displays the principal components in relation to the original features, visually representing how each feature con
tributes to the principal components and their interactions.

Fig. 8. PCA results applied to the test_DATASET, showing the distribution of principal components. This plot illustrates how much variability is captured by each 
component, providing insights into the test_DATASET’s structure.
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hydrological behavior and LSTM model design. The results convey that 
hydrological features dominate overall model predictability, while 
hyperparameter tuning remains essential to optimize performance, 
particularly for flow extremes and peak events. Noticeably, the fact that 
LSTMs—trained solely on lumped hydrometeorological timeseries 
(precipitation, temperature, PET)—implicitly exhibit sensitivity to 
catchment attributes (not directly provided during training) illustrates 
the emergence of latent hydrological knowledge within the deep 
learning framework.

3.3. Principal Component Analysis (PCA)

A Principal Component Analysis (PCA) was conducted on the test_
DATASET, incorporating catchment attributes alongside the average 
NSE and KGE test performance metrics derived from optimized LSTM 
networks for streamflow across different catchments.

Figs. 8 and 9 illustrate the PCA model results, including the scree plot 
(Fig. 8) and the biplot analysis (Fig. 9). The scree plot demonstrates that 
the first ten principal components cumulatively explain around 87.8 % 
of the test_DATASET’s total variance with three first PCs having near 60 
%. These 10 components capture the majority of the test_DATASET’s 
variability, thus representing key aspects of the underlying structure. 
The biplot in Fig. 9 visualizes the relationships between the first two 
principal components and the original features, indicating which 
catchment attributes contribute most significantly to each component. 
This figure shows a biplot from the local PCA analysis, illustrating how 

original catchment features contribute to the principal components and 
interact with one another. It visually represents the contributions of 
individual features to the first few principal components and highlights 
their relationships in the context of catchment hydrology.

Explained Variance and Component Loadings
Table 5 displays the component loadings and explained variance 

ratios, illustrating each principal component’s contribution to the total 
variance. These loadings help identify key catchment features that in
fluence the hydrological performance metrics of the optimized regional 
LSTMs.

Explained Variance: The first principal component (PC1) captures 
approximately 25.7 % of the variance, with PC2 and PC3 accounting for 
16.7 % and 14.7 %, respectively. The first five components collectively 
account for 71.3 % of the variance, while the first ten components cover 
around 87.8 %, providing a comprehensive view of the test_DATASET.

Component Loadings: According to Table 5, the PCA loadings reveal 
each feature’s influence on the principal components:

PC1: Climatic and topographic attributes dominate, explaining 25.7 
% of the variance. Features with high positive loadings include the 
probability of snowfall (0.271), aridity index (0.270), area occupied by 
sedimentary soils (0.262), elevation (0.255), sedimentary rocks (0.261), 
and agricultural land area (0.252). Meanwhile, attributes such as 
average precipitation (− 0.231), mean runoff coefficient (− 0.185), 
average temperature (− 0.208), and average slope (− 0.232) show sig
nificant negative loadings. This pattern suggests that hydrological dy
namics are strongly influenced by both climatic (e.g., aridity, 

Table 5 
PCA components’ loads and the explained variance ratios.

Attributes Principal components
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Area 0.054 − 0.203 − 0.099 0.355 − 0.247 − 0.061 − 0.053 − 0.024 0.066 − 0.036
CONF_DEN 0.040 − 0.243 − 0.068 0.344 − 0.157 − 0.054 − 0.019 − 0.127 0.058 − 0.100
GRADIENT − 0.172 − 0.225 − 0.096 − 0.106 − 0.011 − 0.018 − 0.048 0.084 0.255 0.012
max slope − 0.030 − 0.235 − 0.108 0.118 0.188 0.247 − 0.020 0.046 0.437 − 0.144
mean slope − 0.232 − 0.079 − 0.198 − 0.140 − 0.094 − 0.079 − 0.137 0.036 0.006 0.007
elevation 0.142 − 0.100 − 0.295 − 0.112 0.110 0.169 0.008 0.109 0.064 − 0.037
min hight 0.255 0.048 − 0.133 − 0.126 0.119 0.107 0.117 − 0.027 − 0.128 − 0.026
max hight 0.083 − 0.214 − 0.285 0.016 0.084 0.157 − 0.011 0.092 0.111 0.057
UHD 0.019 0.185 0.248 0.158 − 0.119 0.190 0.076 − 0.052 − 0.050 0.279
AGR 0.252 0.108 − 0.053 0.008 − 0.082 − 0.120 0.101 0.143 − 0.005 0.026
PAS − 0.148 − 0.041 0.222 − 0.121 − 0.214 0.191 − 0.056 0.088 0.153 − 0.151
BLF 0.084 0.147 − 0.229 0.091 0.067 0.306 − 0.086 0.318 − 0.117 − 0.233
CNF − 0.124 − 0.154 0.053 − 0.247 − 0.222 − 0.262 0.056 − 0.297 0.122 0.117
PLT − 0.091 − 0.137 − 0.111 0.036 0.278 − 0.148 − 0.272 − 0.103 − 0.288 0.324
SSH − 0.010 − 0.039 0.151 0.298 0.390 − 0.124 0.065 − 0.119 0.060 − 0.094
WAE 0.218 0.101 − 0.090 0.044 − 0.091 − 0.248 − 0.176 0.107 0.069 0.258
DEN − 0.027 − 0.118 − 0.068 0.032 0.337 0.028 0.451 − 0.326 0.110 0.153
calc 0.100 − 0.307 0.123 − 0.178 0.068 − 0.057 0.037 0.101 − 0.131 − 0.016
cong − 0.121 0.276 − 0.102 0.145 − 0.139 0.145 − 0.095 − 0.118 0.149 0.079
sdim 0.261 0.106 − 0.050 0.035 − 0.031 − 0.093 0.056 0.067 − 0.023 0.123
vlc − 0.110 0.183 − 0.094 0.159 0.241 − 0.237 0.176 − 0.001 0.009 − 0.276
watr 0.089 − 0.055 − 0.118 0.250 − 0.061 0.028 − 0.378 − 0.389 − 0.130 − 0.114
conductivity 0.101 − 0.317 0.128 − 0.153 0.031 0.077 0.023 0.111 − 0.017 0.079
permeability 0.049 − 0.280 − 0.114 − 0.175 0.044 − 0.113 − 0.123 0.183 − 0.292 0.031
rock hardness − 0.170 0.094 − 0.228 0.006 0.150 − 0.244 − 0.124 − 0.015 − 0.166 − 0.322
no. prec stations − 0.029 − 0.222 − 0.042 0.279 − 0.147 − 0.034 0.172 0.203 − 0.141 0.099
no. temp stations − 0.034 − 0.197 − 0.078 0.326 − 0.220 − 0.094 0.224 0.090 − 0.121 0.098
possible snow 0.271 0.056 − 0.166 − 0.002 − 0.071 − 0.075 0.021 − 0.090 − 0.006 0.019
no. days with negative temp 0.262 0.054 − 0.186 − 0.009 − 0.072 − 0.093 0.024 − 0.052 0.010 0.078
mean runoff coff. − 0.185 0.078 − 0.116 0.078 0.069 0.207 0.321 0.112 − 0.211 0.292
aridity index 0.270 − 0.044 0.143 0.124 0.036 0.098 − 0.037 − 0.009 0.042 − 0.046
mean precipitation − 0.231 0.112 − 0.218 − 0.094 − 0.053 − 0.044 − 0.046 − 0.069 − 0.036 0.025
mean streamflow − 0.222 0.133 − 0.222 − 0.001 0.015 0.051 0.112 0.017 − 0.117 0.152
mean temperature − 0.208 0.015 0.232 0.147 − 0.011 0.014 − 0.126 0.162 − 0.131 0.050
min temperature − 0.143 − 0.065 0.187 0.163 0.070 0.080 − 0.076 0.206 − 0.270 − 0.126
max temperature − 0.041 − 0.006 0.114 0.127 0.366 − 0.066 − 0.350 0.142 0.250 0.386
coff. var. Prec 0.243 0.166 0.136 − 0.007 0.119 0.050 − 0.151 0.040 0.013 0.051
coff. var. Flow 0.144 − 0.079 0.263 − 0.054 0.105 − 0.127 0.117 − 0.120 − 0.208 − 0.242
mean PET 0.021 − 0.123 − 0.027 − 0.059 − 0.006 0.483 − 0.140 − 0.425 − 0.290 0.045
Explained Variance Ratio 25.7 % 16.7 % 14.7 % 8.9 % 5.2 % 4.7 % 3.9 % 3.2 % 2.5 % 2.1 %
Cumulative Variance 25.7 % 42.4 % 57.1 % 66.1 % 71.3 % 76.0 % 80.0 % 83.2 % 85.6 % 87.8 %
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precipitation) and topographical factors (e.g., elevation, slope) in this 
region, highlighting complex hydrological responses in relation to these 
variables. High aridity and elevation values correspond to increased 
runoff variability, while higher precipitation and temperature appear to 
dampen streamflow variability.

PC2: Geological and morphological characteristics are predominant 
in PC2, capturing 16.7 % of the variance. Features with high negative 
loadings include river confluence density (CONF_DEN: − 0.243), average 
soil conductivity (− 0.317), area of calcareous rocks (− 0.307), catch
ment size (− 0.203), and max slope (− 0.235). Conversely, the area 
occupied by conglomerate rocks (0.276) has a strong positive loading. 
These loadings suggest that the density of river confluences and soil type 
diversity are critical factors shaping catchment hydrological behavior in 
Basque Country basins, with more complex confluence networks likely 
introducing additional variability in hydrological responses.

PC3: Vegetation cover and land use attributes are influential in PC3, 
explaining 14.7 % of the variance. High negative loadings include 
maximum (− 0.295) and average (− 0.285) elevation, area covered by 
broadleaf forests (− 0.229), and bedrock hardness (− 0.228). Average 
precipitation (− 0.218) shows a negative loading, while coefficient of 
flow variation (0.263) and pasture lands (0.222) and urban area (0.248) 
have positive loadings. This component suggests that broadleaf forests 
influence water retention, while urbanization affecting impervious 
surfaces, complicate runoff dynamics. Loadings for flow variability and 
urban areas reflect the crucial role of land cover in hydrological 
behavior in this region.

Other Components: Attributes such as soil conductivity, perme
ability, and anthropogenic influences further contribute to variance in 
the higher components. These factors highlight the impact of land use 
and soil properties on natural hydrological processes, modifying water 
storage and flow patterns.

Interpretation of PCA Outcomes
The PCA results reveal the interconnectedness of catchment attri

butes in driving hydrological behavior:
Component 1 (PC1): Highlights the combined influence of climatic 

and topographical factors, suggesting that aridity and elevation enhance 
runoff variability while precipitation and temperature have a buffering 
effect that facilitate predictions by LSTM networks.

Component 2 (PC2): Emphasizes the importance of catchment 
morphology and geology. Catchments with higher confluence densities 
and unique soil types exhibit increased variability in hydrological re
sponses, reflecting the complex geological landscape’s impact that 
makes it harder for LSTMs to accurately predict runoff from rainfall 
events.

Component 3 (PC3): Underlines the significance of vegetation cover 
and land use. Broadleaf forests impact retaining water in this region, 
while urban areas disrupt natural runoff processes. Flow variability is a 
distinguishing factor, with specific land cover types amplifying or 
mitigating runoff responses. These behaviors can indirectly affect 
LSTMs’ performance in different locations and catchments.

The PCA outcomes underscore the intricate nature of hydrological 
dynamics in catchments, where climate, topography, geology, and land 
use interact in complex ways to shape runoff and streamflow behavior. By 
interpreting optimized LSTM performance through PCA, we gain insights 
into these interrelationships, which can guide future modeling efforts 
and improve rainfall-runoff predictions under changing environmental 
conditions. These findings are especially valuable for enhancing regional 
hydrological deep learning (DL) models, like DNN LSTMs, which are 
critical for managing water resources amid variable climatic scenarios. 
The results highlight the potential of PCA-informed approaches to opti
mize DNNs in hydrology, enabling more accurate rainfall-runoff pre
dictions in response to complex, shifting climate patterns.

4. Discussion

4.1. Regional hydrological artificial intelligence

Although the LSTM networks were trained solely on hydrometeo
rological inputs—without explicitly incorporating catchment attributes 
such as soil type, land cover, or elevation—the observed correlations 
between model performance and physical basin characteristics suggest 
that the models implicitly learned representations of catchment-specific 
features. In effect, the LSTMs were able to internalize the unique 
“fingerprint” of each catchment during regional training, using only 
timeseries input data. This capability likely emerged from the combi
nation of informative input variables and carefully optimized 
hyperparameters.

Importantly, the results align with established hydrological under
standing and complement recent findings by Kratzert et al. (2024) and 
Heudorfer et al. (2025). The former emphasized the benefits of regional 
training for enhancing model generalization and the latter concluded 
that “the superior performance of Entity-Aware deep learning models is 
primarily driven by information provided by meteorological data, with 
limited contributions from physiographic static features.”.

Key Findings and Implications from correlation analyses: This 
analysis underscores that catchments with stable hydrological regi
mes—characterized by high runoff coefficients, steady precipitation, 
and certain vegetation types like coniferous forests—are more condu
cive to accurate predictions by LSTM networks. In contrast, catchments 
with high climate variability, extreme flow fluctuations, complex 
geological features, or significant human modifications (e.g., agricul
ture, controlled flows) challenge DNN model accuracy.

Despite the absence of explicit catchment attributes in the training 
phase, the optimized regional LSTM models appear to have implicitly 
learned latent hydrological patterns and what we know from physical 
hydrology. These patterns likely reflect underlying processes and envi
ronmental interactions unique to specific catchments. Overall, this 
correlation analysis offers critical insights for refining DNNs, guiding 
future optimization efforts, and improving the understanding of how 
catchment characteristics influence hydrological predictions in DLs.

Intersection of physical hydrology and AI/DL models
The findings reveal the intricate relationships between catchment 

attributes and the performance metrics of optimized regional Long 
Short-Term Memory (LSTM) networks in rainfall-runoff modeling. 
Despite the absence of explicit catchment features in the training phase, 
the LSTM networks showcased a remarkable ability to capture complex 
latent relationships inherent in hydrometeorological data. This capa
bility underscores the potential of deep learning (DL) techniques and 
hyperparameter optimization to interpret underlying hydrometeoro
logical dynamics, aligning with advances in machine learning that 
highlight deep neural networks’ strengths in identifying patterns within 
extensive datasets, often exceeding the capabilities of traditional 
models.

Moreover, integrating both timeseries data and catchment attribute 
information into the training process could expedite model convergence 
and improve the fitting process, leading to computational efficiency 
gains. By incorporating both hydrometeorological and environmental 
features, DL models can uncover critical relationships earlier, facili
tating more efficient training and enhancing predictive accuracy. This 
advocates for a multifaceted approach to DL model training that in
corporates diverse factors instead of relying solely on historical times
eries data.

Additionally, the LSTM networks demonstrated ability to discern 
relationships from extensive hydrometeorological datasets highlights 
their potential as powerful modeling tools in hydrology. These findings 
suggest that LSTMs are effective in capturing nonlinear relationships 
and temporal dependencies often present in hydrological systems, 
reinforcing the cautions presented by Kratzert et al. (2024) against 
training LSTMs exclusively on single catchments. Training on data from 
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multiple catchments is essential for capturing the variety of hydrological 
behaviors across geographic and climatic contexts, helping to avoid 
overfitting to individual water basin characteristics (the catchments’ 
uniqueness paradigm (Beven, 2000, 2020) and enhancing model 
robustness and generalizability.

The implications of these results extend beyond model performance 
to water resource management strategies. An improved understanding 
of catchment attributes and hydrological responses aids informed 
decision-making in water resource management, particularly amidst the 
era of climate variability. As hydrological extremes become more 
frequent, accurate predictions are crucial for effective management and 
mitigation.

4.2. Interpreting the hydrological relevance of AI explainability insights

The combined interpretation of Random Forest (RF) Gini gains and 
SHAP summary plots consistently highlights that a combination of 
catchment-specific hydrological attributes and AI-related hyper
parameters governs LSTM networks performance in regional rainfall- 
runoff modeling across the Basque Country’s humid and flashy catch
ments. Together, these explainability approaches provide robust and 
complementary insights into the factors shaping DNN’s skill, supporting 
both hydrological reasoning and AI-specific considerations.

Hydrological attributes related to catchment behavior and rainfall- 
runoff processes dominate as key factors influencing LSTM accuracy 
and robustness. Specifically, mean yearly streamflow, precipitation 
seasonality, precipitation intermittency (prec_cv), and aridity index 
emerge as top contributors to model skill in both Gini and SHAP ana
lyses. These variables reflect essential hydrological controls: streamflow 
magnitude and variability act as proxies for catchment responsiveness, 
hydrological stability, and memory effects, while precipitation regime 
characteristics inform the timing and intensity of runoff responses. The 
positive SHAP effects of streamflow on accuracy metrics (e.g., NSE, KGE) 
suggest that LSTMs perform best where hydrological signals are stable 
and continuous, while in highly variable or intermittent systems, 
generalization becomes more challenging. Furthermore, the aridity 
index highlights model sensitivity to intermediate climatic conditions, 
where a balance between predictability and hydrological complexity 
may govern LSTM learning capacity.

The role of land cover attributes, specifically coniferous forest (CNF), 
pasture (PAS), and agriculture (AGR), underscores the influence of 
vegetation as well as land use and human intervention on streamflow 
predictability. Coniferous forests generally stabilize flow regimes, 
dampening peaks and supporting sustained baseflows, which facilitates 
model learning. This is confirmed by their positive SHAP associations 
with model accuracy and negative associations with error metrics (e.g., 
Missed-Peaks, Bias). In contrast, pasture and agricultural areas, 
although important, are often associated with higher uncertainty and 
anthropogenic variability, as indicated by SHAP analyses showing 
negative influences on model accuracy in many catchments. This sug
gests that land use heterogeneity and human influences introduce 
additional complexity that challenges LSTM generalization.

Wetlands (WAE) and water bodies (watr) also exert important in
fluences, pointing to eco-hydrological processes such as time-lagged 
responses, storage effects, and regulated discharges. These factors 
introduce delayed and nonlinear dynamics that are difficult for LSTMs to 
capture, explaining why their presence is often associated with reduced 
accuracy and higher Missed-Peaks as shown in SHAP summary plots.

Topographical features, especially maximum slope, emerge as 
important in the context of extreme flow events. Steep catchments, 
prone to quick runoff and flash floods, require LSTM models to learn 
fast-response dynamics. SHAP results show that higher slopes are asso
ciated with better peak capture (lower Missed-Peaks) but sometimes at 
the cost of increased bias, reflecting the trade-off between representing 
extremes and maintaining overall balance.

Hyperparameter Optimization: Hydrologically Informed AI 

Design
An important and novel insight emerging from both RF Gini gains 

and SHAP analyses is the critical role of LSTM hyperparameters in 
shaping model performance, underscoring the need for hydrologically 
informed AI design. Among these, input sequence length—which de
termines how much antecedent hydrological memory is provided—
shows one of the highest SHAP impacts across all performance metrics. 
The consistent positive influence of sequence length on accuracy and 
error reduction confirms that longer memory windows are beneficial for 
capturing delayed runoff processes, especially in flashy catchments with 
short response times. However, SHAP analyses also reveal diminishing 
returns and even negative impacts for excessively long sequences, 
signaling potential overfitting or dilution of relevant information. This 
highlights a critical trade-off between capturing hydrological memory 
and maintaining model generalization.

Other LSTM architectural hyperparameters, including hidden size 
and dropout rate, also exhibit substantial influence. Hidden size, which 
controls model capacity, must be carefully balanced to capture flow 
variability without overfitting, as evidenced by SHAP’s mixed but sig
nificant contributions. Similarly, dropout rates, essential for regulari
zation, show dual roles—improving generalization but, when 
excessively high, hampering the model’s ability to learn fine-grained 
patterns, as revealed in both accuracy and error-based SHAP plots.

Interestingly, random seed (seed), which governs the stochastic 
initialization of LSTM weights, appears frequently among influential 
factors in both RF and SHAP results. This underlines the sensitivity of 
LSTM networks to initialization, a key challenge in deep learning 
(Sutskever et al., 2013; Glorot and Bengio, 2010). The results support 
ensemble modeling approaches, where training multiple models with 
different seeds can reduce variance and improve robustness (Hosseini 
et al., 2025).

Altogether, this joint SHAP and Gini analysis provides a compre
hensive and hydrologically coherent narrative: 

- Catchment hydrological attributes, especially those related to flow 
magnitude, precipitation regime, and aridity, fundamentally control 
LSTM skill and generalization.

- Land cover and topography modulate flow predictability and ex
tremes, adding complexity that challenges AI models.

- LSTM hyperparameters, specifically input sequence length, hidden 
size, and dropout, need careful tuning guided by hydrological in
sights to ensure optimal performance.

- The sensitivity to random seed emphasizes the importance of 
ensemble learning to achieve stable and generalizable predictions for 
multi-objective tasks such as regional hydrological rainfall-runoff 
modeling in different catchments.

4.3. Limitations of the research

Despite the promising results, this study has some limitations that 
should be acknowledged to guide future research and real-world 
application: 

1. Generalizability Across Hydrological Regimes

The models and findings presented in this study are based on 
catchments in the Basque Country, Spain, which are predominantly 
humid and flashy. As such, the generalizability of the interpreted results 
to drier regions, snow-dominated basins, or basins with different hy
drological regimes (e.g., dominant groundwater influence, snowmelt) 
may be limited. Hydrological regimes vary widely in terms of dominant 
processes, seasonal variability, and input–output lags, which may affect 
the ability of LSTM networks to implicitly learn meaningful represen
tations from meteorological data alone. Future work should test the 
proposed framework in contrasting climatic zones and broader hydro
logical regimes to assess its transferability and robustness. 
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2. Data Requirements and Quality Constraints

The training and evaluation of the LSTM models relied on high- 
quality data, which is critical for capturing fast-response events and 
hydroclimatic variability in flashy catchments such as Basque Country, 
Spain. However, such granular data (e.g., hourly) is not always available 
in many regions, especially in developing countries or sparsely moni
tored basins. This poses a practical limitation on the applicability of the 
approach in data-scarce settings. Alternative strategies, such as down
scaling or transfer learning from data-rich regions, may be explored to 
mitigate this challenge. 

3. Temporal Non-Stationarity and Model Stability

Hydrological systems are inherently non-stationary due to land use 
changes, climate variability, and anthropogenic interventions. Deep 
learning models trained on historical data may degrade in performance 
over time unless retrained periodically or rely on latest ideas of rein
forcement learning by getting updated through the time. However, 
retraining raises challenges related to data drift, parameter instability, 
and computational cost. Incorporating temporal adaptation mechanisms 
(e.g., online learning, domain adaptation) or hybrid physical-AI models 
may offer a path forward for sustaining model relevance in changing 
environments.

4.4. Future research directions

Hydrological Regime Sensitivity and Implicit Learning: The key 
contribution of this study is the demonstration that LSTM networks, 
when trained regionally on hydrometeorological data, can implicitly 
learn catchment-specific hydrological behaviors. However, the strength 
and nature of this implicit learning are likely to vary across different 
hydrological regimes. In humid and flashy environments like the Basque 
Country, streamflow responses are more tightly coupled with meteoro
logical drivers, which enhances the learnability of catchment-specific 
dynamics from timeseries alone. In contrast, arid basins, snow- 
dominated regions, or areas with complex groundwater–surface water 
interactions may present additional challenges due to lagged, nonlinear, 
or less deterministic runoff processes. These differences could limit the 
transferability of implicit learning frameworks without auxiliary inputs. 
Future studies should explore how hydrological regime complexity in
fluences the degree to which deep learning models can infer physical 
characteristics solely from meteorological signals by training them on a 
much broader datasets from different hydrological regimes such as the 
CAMELS US catchments.

Expanding Hyperparameter Optimization Techniques: While 
random search proved effective in hyperparameter optimization, future 
studies could explore more sophisticated techniques, such as Bayesian 
optimization, to refine model tuning further. Incorporating methods like 
clustering-based optimization or alternative ensemble strategies may 
identify better configurations that balance accuracy with computational 
efficiency. Uncertainty quantification methods (Klotz et al., 2022), 
including Bayesian LSTMs, Monte Carlo dropout, and Mixture Density 
Networks, could also enhance prediction reliability, an important 
consideration as climate variability introduces heightened risk in re
gions prone to hydrological extremes.

Hybrid Modeling Approaches: Integrating LSTM models with 
traditional physically-based hydrological models present an opportunity 
to leverage the strengths of both approaches. Hybrid models combining 
physically-based principles with data-driven insights could improve 
accuracy across multiple timescales and catchment types, extending the 
applicability of LSTMs to varied hydrological environments. Moreover, 
further exploration of DL ensemble models, particularly those that 
combine LSTMs with Transformers (Vaswani et al., 2017), could in
crease robustness, enabling better performance in regions affected by 
seasonal shifts and climate-driven hydrological changes.

Extending Model Validation Across Diverse Regions: To validate 
the robustness of optimized LSTM frameworks, future studies should 
apply these methods in regions with diverse hydrological and climatic 
characteristics. Evaluating model flexibility in different environments is 
essential as climate change amplifies hydrological extremes. Moreover, 
integrating DL models with real-time environmental data from remote 
sensing and Internet of Things (IoT) technologies could further enhance 
adaptability, enabling timely responses to climate-affected water 
resource needs.

Enhancing Interpretability with Explainable AI (xAI): Future 
research should prioritize improving the interpretability of DL models 
through more different and advanced Explainable AI (XAI) techniques, 
fostering collaboration between AI specialists and hydrologists. By 
clarifying how DL models weigh different features and adjust to new 
conditions, xAI could increase trust in AI-driven hydrological fore
casting, particularly in applications sensitive to climate-induced vari
ability. Moreover, the integration of SHAP-based interpretability in this 
study enhances transparency and provides actionable insights into 
model design for operational hydrology. Future research should inves
tigate dynamic DL architectures (e.g., attention mechanisms) and hybrid 
physics-informed neural networks to improve model adaptability and 
robustness in complex catchments.

5. Conclusion

This study demonstrates that hyperparameter-optimized regionally- 
trained Long Short-Term Memory (LSTM) networks can effectively learn 
rainfall-runoff dynamics in diverse catchments of the Basque Country, 
using only hydrometeorological inputs. Despite being trained without 
explicit access to catchment-specific attributes, the LSTMs were able to 
implicitly capture latent unique hydrological signatures of different 
catchments, achieving robust generalization across humid and flashy 
basins. Generally, this study posits that regionally-trained optimized 
LSTMs learned knowledge is aligned with our understanding of physical 
hydrology.

To assess the internal learning behavior of these models, we intro
duced a triple-confirmation explainability framework—integrating 
Pearson correlation analysis, Random Forest modeling (via Gini and 
SHAP), and Principal Component Analysis. These tools consistently 
revealed that both catchment characteristics (e.g., runoff coefficient, 
streamflow magnitude, precipitation variability) and LSTM hyper
parameters (e.g., input sequence length, hidden size, dropout) signifi
cantly influence model performance.

Catchments with stable hydrological signals were easier to predict, 
while basins with high variability, steep slopes, or low moisture posed 
greater challenges. SHAP summary plots further confirmed that larger 
and wetter basins tended to yield better LSTM accuracy, whereas high 
precipitation intermittency and topographic extremes negatively 
affected performance.

From a modeling perspective, input sequence length emerged as a 
key hyperparameter, with longer memory improving predictions in 
flashy catchments in general—though with diminishing returns beyond 
certain thresholds. This highlights the importance of systematic hyper
parameter optimization with respect to finding true input sequence 
length for every catchment when applying deep learning in hydrology 
(See: Hosseini et al., 2024a, c).

Overall, this study contributes a reproducible methodology for 
interpreting deep learning models in hydrology, offering practical in
sights for both AI developers and hydrologists. While our results affirm 
the potential of regional LSTMs trained solely on meteorological inputs, 
future work may explore the integration of catchment attributes to 
further enhance performance in complex or data-scarce regions and 
broader climates.

These findings support the development of more interpretable, reli
able, and operationally useful AI models for hydrological forecasting 
and water resource management, especially in flash-flood-prone areas 
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like the Basque Country.

6. Codes, data and reproducibility

The dataset and all related codes utilized for this research, along with 
comprehensive instructions for replicating the experiments, are acces
sible on our repositories on https://doi.org/10.5281/zenodo.15080569, 
https://doi.org/10.5281/zenodo.15080600, https://github.com/ 
farzadhoseini/xAI_LSTMs_BasqueCountry, https://github.com/farzadh 
oseini/ensemble.deep.learning, https://github.com/farzadhoseini/Prec 
ise_Tuning_of_Regional_Hydrological_LSTM_Networks. We prioritize 
transparency and reproducibility so that fellow researchers and practi
tioners can verify our findings and employ the same codes for hyper
parameter optimization, ensemble learning, and Explainable AI 
techniques of their research and applications.
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