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Resumen

Comprender la naturaleza de la materia oscura (DM) sigue siendo un desaf́ıo fundamental en la f́ısica
moderna. El experimento DAMIC-M (DArk MAtter In CCDs at Modane) emplea dispositivos skipper
Charge-Coupled Devices (CCDs) para buscar interacciones de DM con una sensibilidad sin precedentes.
Uno de los retos es la caracterización de diversos fondos, como la corriente oscura y la radiactividad de
los materiales, que pueden limitar la sensibilidad de los detectores. Este estudio se centra en el proceso
de selección de datos para la dispersión DM–electrón: se definen y aplican siete máscaras jerárquicas para
suprimir artefactos instrumentales y depósitos de alta carga, y se implementan técnicas de identificación de
patrones para clasificar eventos de 1–3 e− y compararlos con los fondos esperados. En consecuencia, el es-
tudio proporciona una base validada para futuras investigaciones con exposiciones mayores en DAMIC-M.

Palabras clave: materia oscura ligera; DAMIC-M; Skipper-CCD; selección de datos; enmascarado;
identificación de patrones; fondos instrumentales.
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Abstract

Understanding the nature of dark matter (DM) remains a fundamental challenge in modern physics. The
DAMIC-M experiment (DArk MAtter In CCDs at Modane) employs skipper Charge-Coupled Devices
(CCDs) to search for DM interactions with unprecedented sensitivity. One of the challenges is the char-
acterization of various backgrounds, such as dark current and material radioactivity, which can limit the
sensitivity of the detectors. This study focuses on the data-selection process for DM–electron scattering:
seven hierarchical masks are defined and applied to suppress instrumental artifacts and high-charge de-
posits, and pattern-identification techniques are implemented to classify 1–3 e− events and compare them
with the expected backgrounds. Consequently, the study provides a validated basis for future investiga-
tions with larger exposures in DAMIC-M.

Keywords: light dark matter; DAMIC-M; Skipper-CCD; data selection; masking; pattern identifica-
tion; instrumental backgrounds.
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Chapter 1

Introduction

This master’s thesis presents a study of data selection for low-mass DM–electron scattering with DAMIC-
M. Chapter 1 provides context on the current evidence for the existence of DM, the main strategies for its
terrestrial detection, and the role played by the DAMIC-M experiment in probing sub-GeV dark matter
candidates. Chapter 2 introduces the expected dark matter–electron signal and the role of Skipper-CCD
technology in achieving single-electron resolution; it then reviews the main radiogenic and cosmogenic
backgrounds and the shielding and material-selection strategies used to mitigate them. Finally, it discusses
the dark current and instrumental-noise sources and their suppression. Chapter 3 describes the data-
selection masking techniques developed for this analysis. Chapter 4 details the pattern-identification
methods used to reconstruct and classify low-energy events, the validation of their performance, and the
results obtained from unblinded data. Chapter 5 applies the full analysis pipeline to blinded data collected
in four data sets from October to December 2024. Finally, Chapter 6 summarizes the main findings of
this study and outlines prospects for future developments and applications of the methodology.

1.1 Dark Matter and Direct Detection

DM is an invisible component of the Universe that has been inferred only through its gravitational effects.
In the ΛCDM cosmological model, cold DM contributes Ωch

2 = 0.1200 ± 0.0012,(using h ≃ 0.674, this
gives Ωc ∼ 26% of the present day energy budget, whereas ordinary baryons account for just ∼ 5% [1]. A
wide range of astrophysical and cosmological observations—including the dynamics of galaxy clusters, flat
galactic rotation curves, gravitational lensing and the temperature anisotropies of the cosmic-microwave
background—requires a non-baryonic matter density consistent with the above value [2]. Because baryons
alone cannot supply this density, DM must be a neutral, long-lived particle that couples only feebly to
the Standard Model (SM). On galactic scales it is modelled as an extended halo; in the Milky Way, the
standard-halo model adopts a local density of ρ0 ∼ 0.3 GeVcm−3 [3]. As a result, the Solar System is
immersed in a constant stream of DM particles that could, in principle, be detected on Earth.

Proposed DM candidates span a wide range of masses. A viable DM particle must (i) gravitate, (ii)
be stable over cosmic time, (iii) be non-relativistic during structure formation, and (iv) interact weakly
enough that self-interactions satisfy σ/m ≲ 1 cm2g−1, a limit inferred from the survival of elliptical halos
and from merging clusters such as the Bullet Cluster[4], which disfavour stronger elastic dark-matter
scattering. Mass hypotheses span more than forty orders of magnitude. In the GeV-TeV regime, Weakly
Interacting Massive Particles (WIMPs) dominated past searches [5]; however, the null results from LUX-
ZEPLIN experiment (LZ), XENONnT and PandaX have shifted interest toward lighter hidden-sector
candidates -sub-GeV DM, axion (like particles and dark photons) which demand sub-keV thresholds. A
hidden sector is a set of new fields that carry no Standard-Model gauge charges. They communicate
with ordinary matter only through extremely weak mixings—for example kinetic mixing with the pho-
ton, suppressed Higgs exchange, or very heavy mediator exchange. Such feeble couplings explain why the
particles have eluded past searches while still allowing them to be probed by ultra-low-threshold detectors.

Searches for DM are conducted through three types of experiments. High-energy colliders search for
missing-momentum signatures; indirect searches try to identify SM products of DM annihilation or decay
in astrophysical sources; direct-detection experiments, the focus of this thesis, aim to observe the recoil
of target nuclei or electrons after an elastic scattering with dark matter inside a well-shielded detector.

1



1.2 The DAMIC-M Experiment 2

Figure 1.1: Landscape of dark matter candidates as a function of mass [6].

For DM masses mχ ≳ 10 GeV/c2, experiments typically search for nuclear recoils with energies of
a few keV. At lower masses, scattering off electrons becomes more favorable: MeV-scale DM can ionize
one or two electron–hole pairs in a semiconductor target. Detecting such small signals requires detectors
with readout noise well below the single-electron level, enabling sub-electron thresholds and resolution of
individual charge carriers. The expected event rate falls steeply with recoil energy and can exhibit daily
or annual modulation due to the Earth’s motion through the halo [7, 8]. While shielding and material
selection are designed to suppress backgrounds to the lowest possible levels, residual backgrounds may
persist. In such cases, the distinctive time-dependent signature of a modulated DM signal, absent in
most known backgrounds, can provide a valuable discriminant to improve sensitivity. Technologies under
development include cryogenic bolometers, noble-liquid TPCs, superheated liquids, and semiconductors.
Among these, silicon CCDs and high-voltage Ge arrays stand out for their sub-electron charge resolution.

SiliconCCDs offer a unique combination of large target mass, high spatial granularity and sub-electron
noise. This makes them ideal to probe both WIMPs, induced nuclear recoils and single-electron events
from MeV-scale DM. The DAMIC program at Sudbury Neutrino Observatory Laboratory (SNOLAB)
demonstrated background rates below one event kg−1day−1 in the 1-e− bin; its successor, DAMIC-M,
now under construction at LSM, will deploy up to 104 Skipper-CCDs in its first stage, with ultra-low
thresholds and radio pure materials, pushing DM–electron searches into previously unexplored parameter
space [9].

1.2 The DAMIC-M Experiment

DAMIC-M1 is the next generation successor to DAMIC at SNOLAB. It relies on silicon Skipper-CCDs that
achieve sub-electron charge resolution. The experiment is being installed at the Laboratoire Souterrain
de Modane (LSM) under ∼ 1.7 km of rock, which attenuates the cosmic-muon flux by six orders of
magnitude [10]. The baseline design foresees ∼50 modules, each holding four Skipper-CCDs, for a total
of ∼200 sensors or ∼ 1 kg of active silicon, two orders of magnitude more target mass than DAMIC at
SNOLAB [9].

The DAMIC program at SNOLAB demonstrated background rates below one event kg−1day−1 in the
1-e− bin; its successor, DAMIC-M, now under construction at LSM, will deploy up to 104 skipper-CCDs
in its first stage, using ultra-low thresholds and radiopure materials to push DM–electron searches into
previously unexplored parameter space [9].

DAMIC-M aims to probe dark matter candidates in the MeV-GeV mass range, with a focus on DM-
electron scattering. With sub-electron thresholds and background levels below 1differential rate unit
(dru)2 the experiment can test scenarios that standard WIMPs detectors miss, including

• Freeze-out: DM particles were once in full thermal contact with ordinary matter. As the Universe
expanded and cooled, the interaction rate became too slow to keep up with cosmic expansion,

1Dark Matter In CCDs at Modane
21 event kg−1 day−1 in the 1-e− bin.



1.3 Charge-Coupled Devices (CCDs) 3

“freezing” the DM abundance at its present value.

• Freeze-in: DM couples so weakly to the SM that it never reached equilibrium. Instead, a small pop-
ulation was produced from rare SM interactions early in the Universe; once temperatures dropped,
production ceased, leaving today’s very low interaction cross-section[11].

Both mechanisms lead to interaction strengths far below current nuclear-recoil limits, yet still accessible
to single-electron detectors like DAMIC-M.

1.3 Charge-Coupled Devices (CCDs)

The DAMIC-M detector is a vertical copper tower of modules; each module hosts four Skipper-CCDs
mounted on a high-purity silicon frame that provides excellent thermal contact and minimal radio-
impurities.

Silicon CCDs are two dimensional pixelated ionization detectors whose low noise, high spatial gran-
ularity and gram-scale target mass make them ideal for rare-event searches. Invented at Bell Labs in
1969 as a solid-state analogue of magnetic-bubble memory [12], CCDs were soon adopted for imaging
[13]. High-resistivity devices developed for astronomy now provide hundreds of microns of fully-depleted
silicon, enabling experiments such as DAMIC and DAMIC-M.

1.3.1 Pixel Architecture and Image Layout

Each DAMIC-M sensor consists of a 2D array of 6144× 1536 square pixels, each measuring 15× 15µm2,
resulting in an active area of approximately 9.2× 2.3 cm2. With a thickness of 675µm, the fully depleted
volume corresponds to ∼ 3.3 g of silicon per CCD [14].

Pixels are formed as coupled Metal–Oxide–Semiconductor (MOS) capacitors on a high-resistivity n-
type substrate. A shallow p channel lies beneath the gate oxide; three polysilicon gates per pixel provide
the 3-phase clocking scheme (see Figure 1.2), with lateral confinement provided by channel stops between
columns. A backside bias Vsub≳40V fully depletes the bulk, drifting photo-generated charge to the buried
channel where holes are stored until readout.

Vertical transfer (parallel clocks) moves charge row-by-row into a horizontal serial register (effectively
the last row of the matrix); faster serial clocks then shift the charge horizontally through the serial register
to the output amplifier. In practice the 3-phase clock cycles the three gate potentials (P1, P2, P3) through
a six-step sequence, shifting a charge packet to the next pixel with each complete cycle; a schematic of
the vertical and horizontal transfers is shown in Figure 1.2. Although each CCD includes four amplifiers
(one per corner), DAMIC-M normally reads through a single corner to minimize electronic complexity
(such as cross-talk as we will see later on).

Every frame—the two-dimensional image read out after one exposure— contains two reference regions
that receive no exposure: a prescan before the first physical column and an overscan after the last. Their
pixels track the electronic pedestal and noise on a row-by-row basis, allowing a pixel-level correction of
baseline drifts. In the standard readout mode, correlated double sampling is employed to subtract the
signal before and after charge transfer, suppressing reset noise and high-frequency fluctuations. In skipper
mode, multiple non-destructive measurements of the same pixel further reduce statistical noise, enabling
sub-electron resolution.

1.3.2 Charge Generation in Silicon

When a particle deposits energy in the silicon bulk of a CCD, it can ionize the medium, producing free
charge carriers. If the deposited energy exceeds the band gap of silicon, Egap = 1.12 eV, an electron can



1.3 Charge-Coupled Devices (CCDs) 4

Figure 1.2: Schematic representation of charge transfer in a Skipper-CCD using a 3-phase clocking scheme.
Left: Cross-section of the pixel structure showing the p-n junction and the three polysilicon gates (P1, P2,
P3) connected to the global clocks. Center: 2D layout of a small pixel matrix with vertical and horizontal
registers. Charge is moved vertically by cycling the clocks, and finally read out through the serial register
and sense node. Right: Evolution of the potential wells for different clocking states, and how the charge
packet (red dots) is transferred from one pixel to the next.

be promoted to the conduction band, leaving behind a mobile hole. The resulting electron–hole pair then
drifts under the influence of the internal electric field created by the back-side bias [15].

At energies above a few keV the charge yield in silicon is well described by the asymptotic relation

⟨Neh⟩ =
E

εeh
, σ2

N = F ⟨Neh⟩, (1.1)

with εeh = (3.752 ± 0.002) eV and F = (0.119 ± 0.003) at T ≃ 123 K, as measured with Skipper-
CCDs [16]. Below ∼ 50 eV the linear approximation fails because only a few carriers participate in
each impact-ionisation cascade. In the interval 1.12 eV ≤ E ≤ 50 eV we therefore adopt the energy-
dependent probability distributions P (n,E) of Ref. [17], which give the likelihood of producing exactly
n electron–hole pairs. The model reproduces the single-pair limit just above the band gap and converges
smoothly to the asymptotic relation as additional channels open at higher energies.

1.3.3 Charge Transport and Diffusion

After a particle interaction generates electron-hole pairs in the fully depleted bulk of the CCD, the electric
field created by the back-side bias drives the charges toward opposite directions. In the case of DAMIC-M,
holes drift toward the front side of the detector, where they are stored in the potential wells defined by
the gate electrodes. These holes constitute the signal charge that is eventually read out.

As holes drift along the vertical (z) direction, they undergo lateral thermal diffusion in the x-y plane.
The magnitude of this diffusion depends on the transit time and on the electric field profile in the bulk. For
point-like deposits the transverse charge distribution is approximately Gaussian with an root-mean-square
(RMS) spread σ(z) that depends on depth z [18]:
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σ(z) =
√
−A ln |1−Bz|, (1.2)

A =
εkBT

eρn
, B =

εVsub

ρnzD(zD + 2)
, (1.3)

where ε is the permittivity of silicon, ρn the donor density and zD the detector thickness.

Measuring σ thus provides the interaction depth, supplying the third spatial coordinate and aiding
surface-background rejection. Figure 1.3 left panel, illustrates the effect of diffusion on two point-like en-
ergy deposits at different depths. Events occurring deeper in the silicon exhibit wider charge distributions
due to the longer drift time.

Figure 1.3: Left: schematic representation of charge diffusion in the CCD. Ionizing events at increasing
depths (z1 < z2) result in broader lateral charge distributions [19]. Right: representative unbinned clusters
showing the characteristic shapes of particle tracks from electrons, muons, alpha particles, and diffusion-
limited events.

1.3.4 Skipper Readout: Multiple Non-Destructive Measurements

After each column has been clocked into the the serial register, the charge packets are clocked horizontally
through three adjacent gates shown in Figure 1.4 (left panel). The Summing Well (SW) acts a temporary
potential pocket that collects the packet; the the Output Gate (OG) is a clocked barrier that can open or
close the passage, letting the packet move back and forth; and the Sense Node (SN)) is a tiny capacitor
where the packet is finally dumped and converted into a voltage step ∆V = Q/CS . That step is digitized
by a 16-bit Analog-to-Digital Converter (ADC), so the pixel values stored on disk are in Analog-to-Digital
Unit (ADU).

In a skipper device the OG is moved back and forth repeatedly, letting the same packet be sam-
pled Nskip times without destruction. Because the samples are uncorrelated, the readout noise fall as
σe(Nskip) = σ1/

√
Nskip. For the device of Figure 1.4 right panel, the single sample noise is σ1 ≃ 3.2 e−,

so the noise falls to ∼ 1.0 e− after Nskip ≈ 12, to ∼ 0.4 e− after Nskip ≈ 64, and reaches genuine single-
electron resolution, σe ≲ 0.1 e−, only after ∼ 103 skipper samples. That precision multiplies the raw
readout time by a comparable factor; DAMIC-M mitigates the penalty by operating in continuous mode,
exposing the CCD while the previous image is still being read.
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Figure 1.4: Left: schematic of the Skipper-CCD output stage (SW, OG, SN). Right: read-out noise versus
number of non-destructive samples Nskip [20]. The left axis is in ADU, the right one in electrons; for the
particular device shown one electron corresponds to ≃ 5 ADU, as determined from the 0- and 1-e− peak
separation.

1.4 Low-Background Chamber (LBC)

Before full-scale deployment, DAMIC-M technology was qualified in the LBC, a prototype cryostat
equipped with two skipper-CCD modules. The LBC reproduces the ultra-high-vacuum environment
(P ≃ 10−7mbar) and the same generation of front-end electronics foreseen for the final detector, though
it is not surrounded by the full external shielding. Each module (Figure 1.5 left panel) holds four 675 µm
thick skipper-CCDs wire-bonded to a monolithic silicon pitch adapter that serves both as low-radioactivity
mechanical support and signal fan-out. The two modules are clamped to a copper cold finger inside the
stainless-steel vacuum vessel shown in Figure 1.5 (right panel).

Installed at LSM in 2023, the LBC operates at T ≃ 120 K. With the new DAMIC-M electronics the
read-out noise measured by the two CCDs is σ1 ≲ 3 e−RMS [21]. The data analyzed in this thesis were
taken with Nskip = 500 non-destructive samples per pixel, yielding σe ≈ 0.10 e−RMS .

An exposure of 115 g·days has already produced the most stringent limits on DM-electron scattering
above a few MeV/c2, validating both the shielding concept and the Skipper read-out. Ongoing upgrades
—replacing Oxygen-Free High-Conductivity copper (OFHC) with electro-formed copper near the CCDs
and improving radon suppression— are expected to push the background below the design goal 1 dru,
unlocking the full sensitivity of DAMIC-M.

1.5 Goals and Data-Selection Strategy

Dark matter in the sub-GeV mass range remains a compelling target in astroparticle physics. At these
low masses, scattering off bound electrons in semiconductors offers the best sensitivity, as nuclear recoils
fall below threshold [8]. Skipper-CCDs, such as those of DAMIC-M, combine sub-electron noise with
gram-scale mass, enabling the identification of individual electron-hole pairs. Initial runs at LSM have
achieved background levels below one event kg−1 day−1 in the 1e− bin [19].

To exploit this sensitivity a robust data-selection pipeline is essential. Its purpose is to retain genuine
low-charge ionizations while removing instrumental artifacts -hot columns, crosstalk, charge-transfer trails
-and residuals from energetic interactions that could mimic a signal.

This study develops and validates a full data-selection pipeline tailored to the DAMIC-M detec-
tor response. Starting from raw images, the procedure includes the pre-processing of them (pedestal
subtraction, gain calibration); the identification and masking of high-energy deposits (≳ 10 e−) using
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Figure 1.5: Low-Background Chamber and module hardware used for the DAMIC-M prototype studies.
Left: DAMIC-M module hosting four Skipper-CCDs mounted on a high-purity silicon frame [22]. Right:
The LBC at LSM. The vacuum vessel (centre) encloses the CCD stack; thin aluminum lids shield infrared
light, while external lead and polyethylene (not shown) reduce γ and neutron backgrounds during com-
missioning runs [23].

WADERS algorithms and masking of CCD artifacts, hot-column and over-density algorithms, crosstalk
veto, CTI/halo expansion, multiplicity and isolated-column filters. Advanced methods are introduced for
the classification of 1-3 e− pixels and statistical consistency checks with a Poisson Dark Current (DC)
model.

The strategy is validated with dedicated Monte Carlo simulations that reproduce DAMIC-M operating
conditions, as well as with real unblinded data from the LBC, achieving high efficiency for single-electron
events with well-controlled false-rejection rates. All procedures follow the methodology established in the
recent DAMIC-M analysis that delivered the first constraints on several hidden-sector benchmark models,
based on an exposure of 141.5 g·d [24]. The data-selection and pattern identification presented in this
thesis were developed within the framework of that analysis and are fully aligned with the strategy that
led to unprecedented results in the search for DM–electron scattering in the MeV mass range. This work
therefore provides a validated basis for future studies with larger exposures in DAMIC-M.



Chapter 2

Backgrounds for Dark Matter Searches

The region of interest (ROI) for DM–electron scattering corresponds to single-pixel events depositing be-
tween 1 and 10 electrons of total charge. In this ultra-low-charge regime, the only irreducible background is
expected to be the dark current, modeled as a Poissonian distribution1. Other physical backgrounds (such
as radiogenic γ-rays, cosmogenic neutrons, and muons) could in principle yield few-electron clusters, but
the combination of layers of copper, lead, and polyethylene shielding, together with the deep-underground
location of the LBC, attenuate these contributions by several orders of magnitude, preventing an appre-
ciable number of such particles from reaching the active detector volume [24].

2.1 Expected DM-e− Signal

In the sub-GeV mass regime, DM particles are expected to interact predominantly with bound electrons in
the detector material, producing ionization signals of only a few electron-hole pairs [25]. The DAMIC-M
Skipper-CCDs, with their ability to resolve individual electrons, are uniquely suited to detect such small
signals.

The expected DM-electron scattering rate depends on several physical inputs: the local dark matter
density; the DM velocity distribution in the Galactic halo, usually modeled with a Maxwell-Boltzmann
form truncated at the Galactic escape speed [26]; and the matrix element describing the interaction, which
depends on the nature and mass of the mediator.

For a given DM mass mχ, the differential scattering rate with respect to the deposited ionization
energy can be written as

dR

d lnEe
∝ σ̄e

ρχ
mχ

∫
dq |fion(k′, q)|2 |FDM(q)|2 η(vmin), (2.1)

where σ̄e is the reference DM-electron scattering cross-section, fion(k
′, q) is the ionization form factor

describing the initial and final electronic states in the silicon target, FDM(q) is the DM form factor (unity
for contact interactions, 1/q2 for light mediators), and η(vmin) encodes the DM velocity distribution above
the minimum required velocity vmin for a given energy transfer.

The form factor fion is computed using numerical wave functions for the valence and conduction-band
states in silicon. Its structure leads to a sharply falling recoil spectrum, peaking at low energies (≲ 1 eV).
This makes single-electron resolution a critical requirement for probing light dark matter candidates.

In practice, once the theoretical rate is obtained, it is folded with a detector-response simulation that
accounts for charge creation, diffusion in the silicon bulk, and read-out noise. The resulting spectra
provide the expected event yields in each electron-multiplicity bin, which are later compared with the
data.

Figure 2.1 (left panel) shows the predicted differential rate R(Qpix) for two representative DM–electron
scattering models, with either a massive or a massless mediator. In both cases, the event rate drops steeply
with the number of electrons per pixel, highlighting the importance of accurate background modeling in
the 1–3 e− region.

1For our data-taking conditions the measured mean dark current is λ ≃ 2.2× 10−4 events pixel−1 image−1.
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2.2 Radiogenic and Cosmogenic Backgrounds

In addition to thermal dark current—which follows Poisson statistics— the DAMIC-M CCDs are exposed
to ionizing backgrounds from natural radioactivity and from cosmic-ray induced interactions. These
processes can generate low-energy clusters that imitate dark-matter interactions; many of them exhibit
spatial or temporal correlations, or appear preferentially near detector surfaces. Careful characterization
and mitigation are therefore essential to reach single-electron sensitivity.

2.2.1 Bulk and Surface Radioactivity

Radioactive impurities in detector materials can deposit energy in the CCD bulk or at its surfaces. Two
long-lived isotopes are of particular concern:

• 32Si. Produced cosmogenically, 32Si is incorporated during crystal growth and undergoes a two-step
β-decay via 32P. Both electrons fall in the 1-3 e− region.

• 210Pb. Radon progeny that arrive onto CCD or copper surfaces decay through 210Bi and 206Pb.
The 210Bi β (Q = 63.5 keV) and the 206Pb recoil can mimic low-energy events when emitted within
a few µm of the active silicon.

Mitigation relies on nitrogen-purged handling, chemical polishing and packaging in radon-free clean-
rooms (details in Sect. 2.2.5) [27]. With these controls, radio-induced single-electron candidates are re-
duced to ≲ 0.2 dru, consistent with DAMIC-M’s design goal[19].

2.2.2 Muon-Induced Backgrounds

Even at the depth of the LSM, cosmic-ray muons are not completely eliminated. The residual flux is
Φµ ≃ 5 × 10−9 cm−2 s−1, with a mean energy of ∼ 250 GeV. Although rare, these muons generate two
classes of backgrounds: (i) electromagnetic / hadronic showers that release fast neutrons and δ-rays in
the shielding, and (ii) cosmogenic activation of copper and silicon that produces long-lived isotopes such
as 60Co and 3H.

The DAMIC-M CCDs offer robust identification of muon tracks thanks to their excellent spatial
resolution. Muons crossing the active area leave straight, high-energy tracks that are easily distinguished
from low-energy clusters. Events correlated in time with such tracks, including delayed neutron or gamma
interactions, can be rejected offline.

After all selection cuts, simulations that use the measured LSM spectrum predict a muon-related rate
<0.1 dru in the 1-electron bin-sub-dominant with respect to radiogenic backgrounds and well within the
DAMIC-M budget [19].

2.2.3 Neutrons from Radiogenic and Cosmogenic Sources

Neutrons are a dangerous background because nuclear recoils are, in principle, indistinguishable from DM
scatters. They arise from two mechanisms: (i) radiogenic production within detector materials, and (ii)
cosmogenic production by the residual muon flux. Radiogenic neutrons are primarily emitted through
(α, n) reactions and spontaneous fission in the decay chains of 238U and 232Th present in construction
materials. Their spectrum peaks below 10 MeV and the yield depends strongly on the material composi-
tion, particularly the abundance of light nuclei that enhance (α, n) cross-sections. Cosmogenic neutrons
originate when high-energy muons interact with the surrounding rock or the lead shield; their flux at LSM
is ∼ 6× 10−10 cm−2s−1 above 1 MeV.

A 40 cm polyethylene moderator surrounding the cryostat thermalizes and captures most neutrons,
while the inner 22 cm of lead attenuates accompanying γ rays. Residual events are further suppressed
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with topology-based cuts (multi-pixel and time-correlated signatures; see Chapter 3). After all hardware
and analysis measures, simulations predict a neutron contribution well below 0.05 dru, comfortably within
the DAMIC-M background budget.

2.2.4 Electrons and Gamma Rays

Electrons and γ rays dominate the low-energy background because they are abundant and can deposit only
a few electrons in the CCD. They originate from the decay chains of 238U, 232Th and 40K in surrounding
materials and from cosmogenic isotopes such as 60Co.

Inside silicon, γ rays interact mainly through Compton scattering and photoelectric absorption, pro-
ducing secondary electrons that form single- or multi-pixel clusters. Low-energy Compton electrons are
particularly problematic: their 1–3 e− charge is indistinguishable from a potential DM signal unless
additional event-shape information is used.

External γ radiation is attenuated by the lead shield described in Sect. 2.2.5. Residual β/γ events
are rejected in analysis: extended or irregular clusters (total charge ≳ 10 e−) are masked, and shallow
interactions are removed with the depth-reconstruction cut detailed in Chapter 3. After these cuts the
projected β/γ rate in the 1-electron bin is ≲ 0.3 dru.

2.2.5 Low-Background Materials and Shielding Strategy

A graded shield and strict material screening reduce external and intrinsic backgrounds to the sub-dru
level. The cryostat is enclosed by (from inside out) 2 cm of ancient lead, 20 cm of low-activity lead and
40 cm of polyethylene, as introduced in Sects. 2.2 and 2.2.3. Mechanical and thermal parts closest to the
CCDs are machined from underground electro-formed Cu (U/Th < 0.1 ppt); outer structures use OFHC
Cu. All components are assayed with high-purity germanium detector (HPGe) and inductively coupled
plasma mass spectrometry (ICP-MS), and assembled in radon-free clean rooms. This combination of
passive shielding and material radio purity supports the background estimates presented throughout this
chapter.

Despite extensive shielding, during the data-taking period used in this work, the LBC shielding was left
partially open (by ∼ 5 cm), allowing a non-negligible contribution from ambient radiation. Simulations
based on the detailed LBC geometry predict a nearly flat background rate in the ROI of approximately
10 dru, mostly due to ambient gamma rays and muon-induced neutrons.

2.3 Dark Current Background and Instrumental Noise

After the suppression of external backgrounds, the remaining events in the ROI are dominated by the
dark current, a thermal background following Poisson statistics. In addition, a variety of instrumental
artifacts can produce spurious low-energy signals.

Spurious low-energy pixels can arise from imperfections in the Skipper-CCD material or in the read-
out chain and may mimic true DM interactions. Identifying and masking these instrumental artifacts is
therefore crucial to preserve sensitivity to single-electron events.

One of the most prominent sources of artifacts are silicon defects in the CCD bulk, which can form
charge traps that capture and later release charge carriers. These defects give rise to hot pixels—pixels
with elevated dark current—or super-hot pixels, which saturate during the exposure and corrupt pixels
during read-out; if contiguous in a column they form hot columns. Conversely, cold or bad pixels may
arise from defects that reduce charge-collection efficiency, suppressing genuine signal.

Crosstalk between read-out channels can also create false signals by coupling the signal of one amplifier
into neighboring regions of the image. These artifacts typically appear as ghost clusters at identical
coordinates in neighboring CCDs. Additional sources of noise include transient read-out instabilities,
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clocking imperfections and thermal drifts, all of which may contribute to baseline fluctuations or isolated
spurious pixels.

During read-out, the accumulated charge is transferred across the CCD using a 3-phase clocking
scheme (see Subsection 1.3.1). Small inefficiencies in this process, quantified by the CTI can lead to
partial loss or distortion of signal packets.

Baseline drifts (slow shifts in the zero level of each pixel) are corrected with the prescan/overscan
pedestal and, as detailed in Subsection 1.3.1, by correlated double sampling (CDS) or multiple Skipper
reads. Through the combination of hardware design, online monitoring and offline masking, instrumental
artifacts are kept at the sub-dru level in DAMIC-M. Nonetheless, their potential to mimic or obscure faint
ionization signals requires continuous validation with control datasets and systematic masking strategies.

In the absence of irreducible physical backgrounds, the dark current becomes the dominant contributor
in the 1–3 e− range. Provided that instrumental artifacts can be reliably identified and suppressed, this
leaves a clean window in which to search for DM–electron interactions. The expected shape of the DC
spectrum is shown in Figure 2.1 (right panel), illustrating the contribution of each electron bin in the
low-charge regime.

Figure 2.1: Left: predicted differential rate R(Qpix) for DM–electron scattering in two QEDark bench-
marks (massive and massless mediator). Right: illustrative Poisson spectrum for a mean DC level
λ = 0.1 e− pixel−1 image−1; the real data average is λ ≃ 2.2 × 10−4 but the larger value is chosen for
visual clarity.

The data-selection pipeline therefore aims to remove instrumental artifacts, external backgrounds that
may survive shielding, and regions of the CCD affected by read-out issues or non-uniform response without
suppressing potential DM signals or events consistent with dark current.



Chapter 3

Event Selection Framework

The suppression of instrumental and environmental backgrounds is essential for any search targeting
single-electron signals from sub-GeV dark matter. This chapter details the methodology that converts
the raw stream of Skipper-CCD images acquired in the LBC into a high-purity sample of pixels suitable
for a low-mass DM search. The goal is to construct a robust and reproducible data-selection pipeline
that maximizes the exposure while minimizing contamination from spurious instrumental or radiogenic
sources. The selection strategy relies on a series of masking algorithms, some defined by the DAMIC-M
collaboration and others developed specifically for this work.

3.1 Blinded Analysis Strategy

A blinded analysis strategy was implemented to avoid selection bias. This section presents the data-taking
conditions, the characteristics of the dataset, and the structure of the blinded and unblinded samples used
throughout the analysis.

3.1.1 Dataset and Run Conditions

The data analyzed in this work were acquired with the DAMIC-M LBC between October 2024 and
January 2025. The dataset corresponds to two CCD modules, labeled PA07 (ID 104) and PA08 (ID 103),
each equipped with four high-resistivity n-type silicon Skipper-CCDs. Every sensor contains 6144× 1536
active pixels of 15× 15µm2 and is 670µm thick, corresponding to a mass of 3.3 g per CCD. In this study,
we focus exclusively on data from module PA08 to simplify the analysis workflow.

The CCDs were operated at a temperature of 130 K and a vacuum of 5× 10−6 mbar, with a substrate
bias of 45 V applied to ensure full depletion of the silicon bulk. The lateral diffusion of charge carriers
during drift, which affects the spatial spread of low-energy events, depends on this bias voltage and is
modeled accordingly in Section 1.3.3. A single amplifier per CCD was used for read-out.

Data acquisition was performed in continuous-read-out mode, meaning that images were read out
continuously while simultaneously accumulating dark-matter exposure. Each image consists of 6300
columns and 16 binned rows, with each row integrating the charge from 100 physical rows summed
vertically before entering the serial register (i.e., the last row of the CCD matrix). Note that more
columns than the 6144 physical ones of the CCD are read out; these additional pixels, which receive
significantly lower exposure, provide valuable information on data quality and on the dark current in
the serial register. The corresponding exposure of each CCD pixel is approximately equal to the image
read-out time of 1668 s, corresponding to an effective exposure of ∼ 0.0193 days per pixel.

3.1.2 Blindness Protocol

To avoid analysis bias and ensure the integrity of the results, a blinded analysis strategy was adopted.
Initial data selection criteria and image processing procedures were defined using an unblinded dataset
corresponding to data acquisition on 2024-10-06, referred to as UB0. This dataset accounts for approx-
imately 9% of the total exposure (7.33 days of live time). Once the selection pipeline was finalized, it
was applied without modification to the rest of the dataset. For this work, the blinded exposure was di-
vided into four acquisition periods-2024-10-14, 2024-10-28, 2024-11-19, and 2024-12-17-corresponding to
blinded datasets B1-B4. This segmentation, motivated by the large data volume, facilitates manageable

12
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data handling, and the final results are expected to be consistent with those obtained from the full image
dataset. Table 3.1 summarizes all datasets used in this study, including the number of images, the live
time per CCD, and the relative contribution of each dataset to the total exposure.

Dataset Start date Images Live time [d] Exposure [%]
UB0 06-Oct-2024 380 7.33 -
B1 14-Oct-2024 470 9.07 12%
B2 28-Oct-2024 935 18.00 25%
B3 19-Nov-2024 1386 26.70 37%
B4 17-Dec-2024 1006 19.40 26%

Total — 4177 80.50 100%

Table 3.1: Summary of PA08-103 datasets used in this study. “Live time” refers to the effective exposure
time per CCD, accounting for continuous-read-out operation. Since the four CCDs record data simulta-
neously, the total exposure is four times the live time before masking. Columns, from left to right, give
the dataset label, the start date, the number of images acquired, the corresponding live time in days,
and the percentage contribution to the total exposure. UB0 was used only to define the analysis cuts
and is therefore excluded from the exposure calculation; the percentages listed for B1–B4 are normalized
relative to the combined exposure of those datasets alone.

3.2 Selection Strategy Overview

The analysis pipeline consists of two main stages: a standard preprocessing sequence developed by the
DAMIC-M collaboration, and a set of advanced masking algorithms, some newly introduced and others
optimized in this work, to target subtle or spatially correlated backgrounds.

To guide this selection, we define a ROI that targets single-pixel events depositing between 1 and 10
electrons of total charge1. While the expected signal is concentrated in the lowest-charge bins, the 10 e−

upper bound ensures sensitivity to potential signal tails and non-standard scenarios. Within this ROI, the
data selection aims to remove instrumental artifacts, external backgrounds that may survive shielding,
and CCD regions with unstable response, while preserving events consistent with DC or a genuine DM
signal.

The initial image processing (including Skipper compression, pedestal subtraction, charge calibration,
cluster2 identification) was performed using the softWAre for Dark matter ExpeRiments with Skippers
(WADERS) framework. This software incorporates a modular library of processes (e.g., CompressSkip-
perProcess, PedestalSubtractionProcess, CalibrationProcess, etc.), each corresponding to a predefined
algorithm for CCD data handling. The full processing sequence is described in detail in Appendix A.

Subsequent masking steps, developed specifically in the context of this work, go beyond the standard
preprocessing and clustering procedures. These include the identification of hot columns (Sec. 3.3.3),
overdensity regions (overdensity (OD)) (Sec. 3.3.4), high-charge pixel trails (CTI) (Sec. 3.3.5), charge
multiplicity anomalies (Sec. 3.3.6), and isolated column artifacts (Sec. 3.3.7). The design and imple-
mentation of these masking algorithms constitute a central contribution of this analysis. Each masking
criterion is physically motivated and its performance validated on unblinded data and/or Monte Carlo
(MC) simulations. Table 3.2 summarizes the masks applied, their purpose, whether they were inherited
or developed here, and are presented in the order in which they should be applied. These steps, their

1Above Qpix∼5 e− the predicted dark-matter rates for our benchmark models become negligible; see Figure 2.1 left panel.
2A cluster is defined as a contiguous group of pixels with charge higher than a given threshold, typically produced by the

passage of an ionizing particle through the CCD. These pixels share spatial proximity and exceed a defined charge threshold
set according to the requirements of the dark matter search, as well as, the background sources.



3.2 Selection Strategy Overview 14

motivation, and performance on unblinded data are detailed in the following sections, with supporting
figures provided in Appendix B.

Mask Name Physical Motivation Contribution
Level

Cluster Mask As mentioned, the DM-electron scattering search
targets the 1-10 e− range, where ambient back-
grounds are negligible. Therefore, any cluster with
energy > 10 eV is excluded to remove ionizing ra-
diation events.

Applied

Cluster Crosstalk Cross-talk, whereby signals from one read-out
channel unintentionally affect others, can induce
spurious pixels during the read-out of high-charge
clusters. These are identified and masked across
CCDs.

Applied

Hot Columns Columns with persistently elevated charge occu-
pancy, often called hot columns or regions, typi-
cally caused from defects or damage in the sensor,
leading to anomalously high-pixel charge even in
the absence of ionizing particles.

Optimize

Overdensity Re-
gions

Extended vertical regions with excess low-energy
events, not captured by individual hot columns.

Designed

CTI Mask Due to charge transfer inefficiencies (CTI), high-
charge pixels can leak charge along transfer paths
(vertically and horizontally). In addition, halos of
low-charge pixels (1-5 e−) can appear around these
clusters, possibly due to Cherenkov radiation.

Optimize

Charge Multiplicity
Mask

Suppress rows or columns with anomalously high
numbers of charged pixels.

Optimize

Isolated Columns Remove unmasked columns located between two
fully masked ones, ensuring spatial continuity.

Implemented

Table 3.2: Summary of masking steps in the data-cleaning pipeline, indicating their purpose and origin.

3.2.1 Motivation for Pixel Masking

The spatial correlations presented in this subsection anticipate the two masking families applied later in
the analysis:

(i) Multiplicity / hot-column masks (Section 3.3.6), designed to suppress persistent low-multiplicity
excesses that appear repeatedly in the same pixel columns or in clusters of neighbouring pixels; and

(ii) CTI-halo mask (Section 3.3.5), which removes low-charge pixels that trail bright, high-energy
clusters due to charge-transfer inefficiency (CTI) during read-out.

Before presenting the performance of the masking algorithms, it is essential to investigate the spatial
behavior of low-charge events in the unmasked dataset. Specifically, this analysis explores whether pixels
with 1, 2, or 3 e− events show (a) correlations with the nearest high-energy cluster and/or (b) correlations



3.2 Selection Strategy Overview 15

among themselves. The presence of such correlations would signal the influence of instrumental effects
and justify the need for masking strategies.

Correlations with high-energy clusters
Figure 3.1 shows the distance from isolated low-charge pixels to the closest high-energy deposit either

below (left panel) in the same column-pixels read out later during the vertical transfer-or to the right
(right panel) in the same row-pixels shifted horizontally towards the amplifier. The solid black line shows
the average result for 1 e− pixels over 500 such pseudo-images, and the shaded grey band represents the
corresponding 1σ statistical spread. Monte-Carlo predictions for 2 (red) and 3 e− (blue) events are also
shown.

Figure 3.1: Distances from 1, 2, and 3 e− pixels (step histograms in grey, red, and blue) to the closest
high-energy cluster (left) bellow and (right) on the right in the unmasked dataset. Darker lines show the
average of 500 MC images in which the same numbers of 1, 2, and 3 e− pixels are placed randomly over
the cluster-free area; shaded bands indicate the 1σ spread.

In the left panel (vertical transfer) the three colored step histograms (grey, red and blue for 1, 2 and
3 e−, respectively) displays a pronounced excess in the first bins (up to ≲ 200 rows). This is a classical
signature of vertical charge–transfer inefficiency: a fraction of the charge stored in each cluster is trapped
during the upward clocking of the column and then released a few transfers later, creating a short trail
of single-electron pixels immediately below the cluster. Beyond ∼ 200 rows the data settle back onto
the MC expectation, indicating that isolated low-charge pixels at larger separations are consistent with
uncorrelated DC statistics. Note that the MC toys use the same total of 1-, 2- and 3-e− pixels as the data;
if we had relied on the DC rates instead, 2- and 3-e− pixels would be absent. In the right panel (horizontal
transfer), one might expect similar behavior; however, this CCD exhibits a peculiar feature. A significant
number of clusters reside in a damaged column at x ≃ 5315—likely a hot column, which will be discussed
further in Section 3.3.3. When CTI effects release charge during the left-to-right serial transfer, the first
affected pixel lies immediately to the right of the cluster. Since these pixels are typically adjacent to high-
charge pixels, they are frequently masked by the cluster-selection algorithm (see Figure 3.3, left panel).
As the active region extends only up to column 6144, this fixed one-column offset translates into apparent
separations ranging from 1 up to ∼ 800 pixels for clusters in that column. As a result, a nearly flat plateau
emerges in the data for all three charge classes. Because the Monte Carlo simulations preserve the exact
cluster positions observed in the data, they naturally reproduce this feature. Only at the largest separa-
tions, where clusters from other columns dominate, do the data and the MC predictions begin to converge.

Correlations with low-charge pixels
Figure 3.2 shows the pairwise distances between identical low-charge events (1, 2 and 3e−) along

columns (left panel) and rows (right panel). The same gray, red, and blue lines are used here as in the
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previous figure to denote 1e−, 2e−, and 3e−, and the Monte Carlo is carried out in exactly the same way
(same random re-distribution and clustering algorithm) as before. Because this MC preserves only overall
counts but removes any spatial correlation, its 2e− (dark red) and 3e− (dark blue) curves remain nearly
flat. In contrast, the MC 1e− curve falls off smoothly with distance. In the real data, 1e− exhibits a spike
at low distance-far above the MC band. Beyond a few tens of pixels, however, the 1 e− histogram re-enters
the MC envelope, showing that single-electron events behave like Poisson DC at larger separations. The
2e− and 3e− data show modest peaks at low distances.

Figure 3.2: Pairwise distance distributions for equal-charge pixels before masking. Step histograms show
the data for 1−1 e− (grey), 2−2 e− (red) and 3−3 e− (blue) pairs. Solid colored curves with shaded bands
represent the mean and 1σ spread of 500 toy Monte-Carlo images in which the observed numbers of 1,
2 and 3 e− pixels are randomly placed on the cluster-free area, thus preserving global occupancies while
removing spatial correlations.

This analysis highlights the need to apply and optimize the series of masking techniques previously
introduced in Table 3.2 in order to effectively suppress multiplicity events within the ROI defined for
the dark matter search. Such events are correlated with high-energy ionization, structural defects, or
inhomogeneities in the silicon crystal, and-although they may mimic genuine dark matter interactions-
can be discriminated based on their characteristic spatial correlations.

The selection strategy described in this section is applied to fully processed images. Standard image
preparation steps—including pedestal subtraction, charge calibration, and preliminary clustering—are
performed using the WADERS software developed by the collaboration. A detailed description of this
processing framework is provided in Appendix A.

3.3 Custom Masking Techniques for low-background selection

3.3.1 Cluster Mask (WADERS)

Clusters are groups of contiguous charged pixels, produced when ionizing particles-such as muons, neu-
trons, or radiogenic backgrounds-deposit energy in the active silicon of the CCD. These interactions gen-
erate extended, often irregular charge distributions whose total signal typically exceeds the few-electron
scale relevant for dark-matter searches. Because our analysis targets low-multiplicity events (0–10 e−),
any cluster whose summed charge exceeds 10 e− must be removed to suppress background contamination.
In this work we employ the standard WADERS clustering framework, which first identifies high-energy
“seed” pixels and their neighbors via the ClusterFinder step, then builds a binary mask of all pixels
belonging to each cluster using BuildClusterMask.

The ClusterFinder algorithm identifies individual pixels as signal if they fulfill the condition:

pth > ncut · σ, (3.1)
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where ncut is a configurable threshold obtained in Subsection A.4 and σ represents the read-out noise of
the CCD, estimated independently for each CCD amplifier channel. In this analysis, a pixel is considered
as signal if pth > 0.7 e−. To initiate the formation of a cluster, the algorithm requires the presence of a seed
pixel, defined as one with signal significantly above the expected dark current fluctuations. Specifically,
a pixel is considered a seed if its charge satisfies:

qpix > qseed = nseed · σ, (3.2)

with nseed = 27 in this analysis. This high threshold ensures that the probability of a random noise
fluctuation producing a false seed is negligible (less than 10−12 for Gaussian noise with σ ∼ 0.15 e−). Given
a typical dark current rate of λ ∼ 3.6·10−6 e−/pix/img, the occurrence of such high-charge pixels from DC
alone is extremely rare. Therefore, pixels passing this cut are robust indicators of ionizing radiation. Once
a seed is identified, the algorithm recursively includes neighboring pixels that pass the lower threshold
defined in Equation 3.1, constructing the full cluster. An example of a reconstructed cluster, showing
only the pixels that exceed the threshold and are therefore masked, is displayed in Figure 3.3 (left panel).
Such clusters, dominated by ionizing radiation, are removed from the low-multiplicity analysis using the
BuildClusterMask procedure.

It is important to note that the elongated vertical appearance of the reconstructed clusters is not
an intrinsic feature of the ionizing radiation, but rather a consequence of the vertical binning applied
during read-out, which groups the charge from 100 consecutive rows into a single bin. As a result, all
clusters in this analysis appear vertically stretched, and their characteristic morphologies —such as the
compact shape of electron recoils, the track-like signatures of alpha particles, or the more diffuse profiles of
gammas— are no longer distinguishable. Representative examples of unbinned clusters with characteristic
shapes can be found in Figure 1.3 (right panel).

Figure 3.3: Illustration of the cluster masking procedure. Left: Example cluster detected in UB0 CCD D.
Only pixels above the clustering threshold are shown; the seed (brightest pixel at the center) triggers
the inclusion of neighboring signal pixels. This entire structure is excluded from the dark-matter ROI
by the BuildClusterMask. Right: Pixel charge distribution in the same CCD after masking. he black
histograms represent the charge distributions after applying cluster mask. The red fit corresponds to a
Poissonian fit of two peaks.

A dedicated toy-MC study was performed to estimate the maximum total charge that could result
from the accidental aggregation of dark current electrons. In this simulation, 106 images containing only
Poisson-distributed DC (λ = (2−5) × 10−4 e− pix−1 img−1) were generated, and clusters were identified
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using the same 4-connected clustering algorithm applied to real data (pixels connected via their edges).
The simulation results show that the largest contiguous cluster was ever observed carries at most 4 e−,
and the probability of creating a cluster with Qcluster ≥ 4 e− is below ∼ 5× 10−6. Therefore, in real data
any group of adjacent pixels whose summed charge exceeds this limit cannot plausibly arise from random
pile-up of dark current electrons. In this analysis, only clusters extending at least one pixel in both
horizontal and vertical directions and with a total charge greater than 10 e− are masked. As illustrated
in Figure 2.1 (left panel), the predicted differential rate for DM-electron scattering already drops by more
than two orders of magnitude at Q = 8 e− and is negligible by 10 e−. Consequently, the 10 e− cut defines a
region of interest where the expected signal-to-noise ratio is most favorable for dark matter searches, as it
preserves low-charge events -where a potential dark matter signal would lie- while effectively suppressing
backgrounds from ionizing radiation.

The impact of this cluster mask procedure is illustrated in Figure 3.3 (right panel) which shows pixel
charge distributions from the unblinded dataset before (in blue) and after (in black) masking. The red
curve represents a two-peak Poissonian fit used to extract the dark current and noise parameters from the
cleaned distribution; the blue line shows the raw charge distribution before any masking and the black
histogram corresponds to the distribution after applying the cluster mask.

3.3.2 Cluster Crosstalk

Cluster crosstalk refers to the phenomenon in which a charge signal in one CCD induces a spurious
signal in neighboring CCDs due to electronic interference, resulting in artificial charge contamination.
To mitigate this effect, a dedicated crosstalk mask is applied. This mask excludes all pixel positions
where a cluster has been identified by the clustering algorithm (see Subsection 3.3.1), regardless of which
CCD the cluster originated from. In other words, any pixel identified as part of a cluster in one CCD
is masked at the same position across all CCDs. An example of this effect is illustrated in Figure 3.4.
A high-energy cluster is observed in CCD C (third panel of Figure 3.4) with pixel values exceeding 104

electrons (approximately 37 keV). At the same coordinates-and read out simultaneously-signals of up to
1.5 electrons are visible in CCDs A and B, while CCD D exhibits a negative signal reaching -0.8 electrons.
This sign inversion likely results from capacitive coupling between the read-out channels, where a strong
signal in one amplifier induces a response of opposite polarity in others. The matching cluster topology
across all CCDs further supports the interpretation of these signals as crosstalk, rather than coincidental
charge deposits.

Figure 3.4: Example of cluster crosstalk in CCD module 103. A high-charge cluster is observed in CCD
C, while fainter, spurious signals appear at the same pixel coordinates. Sorted top to bottom: CCD A,
B, C and D, respectively.

3.3.3 Hot Columns

Hot columns are individual CCD columns whose occupancy of low-charge pixels is significantly higher
than that of their neighbours. These features typically arise from defects in the silicon bulk, radiation-
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induced damage, or instabilities in the read-out electronics. If not properly identified and masked, hot
columns may mimic low-energy events or distort the charge distribution, compromising the accuracy of
the analysis.

Detection and masking follow a two-stage procedure: (i) identification of candidate columns through
a statistical threshold, and (ii) block expansion to capture neighbouring columns that belong to the same
defect.

Candidate hot columns are first identified via their column occupancy, Mcol,i, which is computed using
only unmasked pixels as:

Mcol,i =
N low

i

Nunm
i

·Nrows, (3.3)

where N low
i is the number of unmasked pixels in column i with charge in the range [0.7 e−, 3.7 e−],

Nunm
i is the total number of unmasked pixels in the same column, and Nrows is the number of rows

in the image. The Mcol,i values are then sorted in ascending order to form a one-dimensional profile.
The algorithm searches for the largest discontinuity in this profile, defined as the maximum increase
between two consecutive values in the sorted list. This jump indicates an abrupt transition between
background and anomalous behavior. The upper value of the largest jump defines the threshold M th

col; all
columns with Mcol > M th

col are marked as hot. The procedure is repeated iteratively on the remaining
columns until no additional discontinuities are found, requiring in each step that the new threshold
satisfies M th

col ≥ µbck + 3σbck (with µbck, σbck computed from the ∼ 60% lowest-occupancy columns).
While this iterative detection efficiently identifies isolated columns with abnormally high occupancy, it
may miss extended structures where the anomaly affects not only a single column but also its neighbors.
In particular, hot columns with strongly elevated occupancy can induce a spatially correlated increase in
nearby columns, forming a profile that decreases gradually (commonly referred to as ”exponential” hot
columns). An illustrative example from unblinded data is shown in Figure 3.5.

The left panel shows a ”single” hot column: the occupancy rises sharply in one column and drops
back to background in the neighbors. The right panel on the other hand, presents an ”exponential”
hot column whose tail (red curve: exponential fit) decays over several adjacent columns. A second step
therefore analyses the spatial continuity of the signal and expands each candidate block.

Figure 3.5: Mcol profiles of two hot-column types observed in the UB0 dataset that motivate the block-
expansion algorithm. Left: Single hot column; Right: Exponential hot column (red: fit).

The detected hot columns are grouped into contiguous blocks; two columns belong to the same block
if they are separated by at most one clean column (gap ≤ 1). Each identified block is then expanded by
examining a sliding window of 20 columns on either side. In this region, additional columns are included
if at least two exceed a relaxed threshold defined by:

M exp
col = M th

col −∆Mcol, ∆Mcol = 6e−. (3.4)
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Expansion stops when no further columns meet the criterion, and adjacent blocks separated by one
clean column are finally merged.

The choice of ∆Mcol = 6e− is based on Monte Carlo validation studies, ensuring that the mask ex-
pansion efficiently captures spatially correlated activity while minimizing false positives.

The robustness of the algorithm was tested with a MC study that reproduces the statistical conditions
of the PA08 dataset. Each simulated image has a size of 6800 × 6300 pixels and includes a realistic
background of dark current and electronic noise. The DC is drawn from a Poisson distribution with mean
µDC = 2.7× 10−4 e− pix−1 day−1, and a Gaussian read-out noise with standard deviation σread = 0.16 e−.
Seven synthetic hot columns are added to every image: five isolated columns, whose occupancies are
randomly chosen between 20 and 100 low-energy pixels, and two ”exponential” columns whose central
core contains 30-100 low-energy pixels and whose exponentially decreasing tails contaminate neighboring
columns. The length of the tails and their decay constants are drawn randomly: the left and right tails
extend up to 25 columns, with decay rates µ sampled independently from a uniform distribution between
0.01 and 0.25. A total of 103 images were generated to provide good statistical precision.

The refinement stage of the mask has two free parameters: the expansion radius (neighbor range),
which is the number of neighboring columns inspected on each side of a candidate hot region (10, 20,
30, 40, 50, 60); the relaxed threshold ∆Mcol (0, 2, 4, 5, 6, 8, 10 e

−), which allows a neighboring column to
be included when its multiplicity is within ∆Mcol of the main threshold. To find the best configuration,
different combinations of these two parameters were tested. For each case, three metrics were calculated:

• The efficiency (or true positive rate), defined as the fraction of real hot columns correctly identified;

• The false negative rate (FNR), corresponding to missed hot columns ;

• The false positive rate (FPR), or the fraction of clean columns wrongly masked.

Figure 3.6: Performance of the hot-column-detection algorithm for the full parameter scan (∆Mcol and
neighbor range). Left: detection efficiency (eff). Right: FPR

Left panel of Figure 3.6 shows that the algorithm reaches efficiencies above 93% over most of the
parameter space. The absolute maximum, ε = 99.70%, appears at neighbor range=10 and ∆Mcol =
8 e−; however, that working point increase the masked area to FPR ≃ 0.18%. Conversely, a tighter
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setting of neighbor range = 20 combined with a relaxed threshold of ∆Mcol = 6 e− provides an excellent
compromise for the simulated data: ε = 97.27%, FPR = 0.020%, and FNR = 2.73%.3

neighbor range = 10, ∆Mcol = 5 e−

This configuration retains the majority of genuine hot columns while keeping the masked fraction very
low.

The performance of the hot column detection algorithm was also evaluated on the unblinded dataset
using the parameter values obtained during validation. Figure 3.7 presents the normalized column oc-
cupancy (Mcol) for two representative sensors: CCD A and CCD C. The corresponding distributions
for CCDs B and D are relegated to Appendix B for brevity. Red dashed lines indicate the positions of
columns flagged as hot by the algorithm.

Figure 3.7: Normalized column occupancy Mcol for CCD A (left) and CCD C (right) in UB0, displayed on
a logarithmic scale. Red dashed lines mark columns flagged as hot by the algorithm. The corresponding
plots for CCDB and CCDD are shown in Appendix B, Figure B.1.

In CCD A (left panel of Figure 3.7), no column exhibits significant deviations from the background
level, confirming the absence of hot columns and confirming the absence of localized defects in the low-
charge regime. In CCD B (left panel of Figure B.1), a narrow and intense peak appear at columns 1520.
This feature correspond to a hot column with column occupancy reaching values hundreds of times above
the average. Such extreme activity is likely caused by severe localized defects in the silicon substrate
or electronic leakage paths, which generate persistent charge independent of true ionizing events. The
behavior of CCD C (right panel of Figure 3.7) reveals multiple types of hot column activity. Several
isolated features are visible across the sensor, with varying intensity. In particular, a group of very hot
columns centered around column 5316 stands out, with thousands of pixels showing elevated occupancy.
Notably, column 5316 also marks the beginning of a broader region characterized by persistently elevated
occupancy values, which extends beyond the localized peak and will be analyzed in more detail in the
following section. Additionally, a wide block of consecutive hot columns is observed starting at column
6132. Finally, CCD D (right panel of Figure B.1) exhibits a broad exponential-shaped region spanning
columns 328 to 358 (see right panel of Figure 3.5). Such an exponential tail is more consistent with
trapping effects, possibly originating in the serial register, rather than simple lateral diffusion of charge.

A summary of the hot regions detected in each CCD is provided in Table 3.3. The second column
lists the columns initially flagged by the thresholding method, while the third column shows the final

3For comparison, increasing the relaxed threshold to ∆Mcol = 6 e− boosts the efficiency to 98.66% but raises the false-
positive rate by more than a factor three (FPR = 0.067%).
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expanded blocks. The fourth column reports the total fraction of masked columns with respect to the full
CCD width. The masked area remains below 0.5% in all cases, confirming that the algorithm preserves
exposure while reliably identifying problematic regions. The results demonstrate that the procedure is
effective in real data, capturing both isolated and extended hot columns with high sensitivity and minimal
over-masking.

CCDs HC Detected Expanded HC Blocks %

A None None 0.000
B 1520 1520 0.016
C 86, 1989, [5315, 5318], 6141,

6146, [6150, 6151]
86, 1989, [5315, 5318], [6141,

6151]
0.277

D 328, [333, 342], 344 [328, 350] 0.374

Table 3.3: Summary of hot column detection in the UB0 dataset. The second column lists the columns
initially flagged by the thresholding algorithm. The third column shows the final blocks after expansion.
The last column reports the fraction of masked pixels with respect to the total number of columns in the
CCD.

3.3.4 Overdensity Regions

Overdensity regions are areas of the CCD exhibiting a statistically excess in the local multiplicity of low-
energy events (1− 3e−), with respect to the surrounding columns as we see in Figures 3.8 and B.2. Such
structures are attributed to extended sensor defects, thermal gradients that break the flat-field uniformity,
surface traps, or radiation-induced damage. Since these anomalies can span tens to hundreds of columns,
they are not captured by the hot-column mask and must be detected and masked explicitly.

The detection algorithm proceeds in three sequential stages: (i) sliding-window scan to compute the
local multiplicity median, (ii) sub-window refinement to profile continuous excesses, and (iii) merging and
length-filtering to define the final overdense bands. Starting from the column-multiplicity profile Mcol,i

defined in Section 3.3.3, a sliding window of width W = 100 columns is used to compute the median
column multiplicity µglobal of low-energy pixels Mcol,i:

µw,i = median
{
Mcol,j

}i+W−1

j=i
, i = 0, . . . , Ncols −W.

A window is considered as “candidate” whenever µw,i exceeds µw,i > wthr · µglobal, where wthr = 1.7.
This threshold was optimized via MC studies to detect genuine extended excesses while keeping the over-
all masked fraction low. For each candidate window [i, i + W − 1], we examine sub-windows of width
Wsub = 10 columns. Inside these sub-windows, the threshold is relaxed to µsubw,i > subwthr · µglobal with
subwthr = 1.2 so that the slowly varying edges of real OD bands are kept continuous. Finally, neighboring
slices are merged and the resulting band is retained only if its length is at least 150 columns. Shorter
bands are considered statistical fluctuations and discarded. All columns within the surviving bands are
masked in subsequent low-energy analysis.

To quantify the performance of the overdensity algorithm, a MC study-built on the same framework
used for the hot-column validation-reproduced the statistical conditions of the PA08 dataset. Each syn-
thetic image (6800×6300 pixels) contains a baseline dark current λ = 2.7×10−4e−/pix/img and a Gaussian
read-out noise σ = 0.16 e−. A shallow parabolic gradient in λ is added to mimic the flat-field curvature
observed in real data. Zero, one, or two OD bands are then injected at random positions; every band
spans 150-800 columns and its mean DC rate is boosted by a factor 1.2-1.4. The boost is implemented as
an additional Poisson draw that contributes on average 1-3 single-electron pixels per column, following
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either a linear ”ramp” or a flat ”plateau” profile. More than two thousand parameter combinations of
the sliding-window algorithm were then exercised: principal widths W = 50, 100, 150, 200; sub-windows
Wsub = 5, 10, 20; global thresholds wthr = 1.25-1.95; local thresholds subwthr = 1.20-1.50; band lengths
Lmin = 50, 100, 150, 200 and gap tolerances gap max = 0, 20, 30, 50. For each tuple 500 statistically inde-
pendent images were generated and the true-positive (efficiency), false-positive and false-negative rates
were averaged. Two limiting regimes emerged. Loose thresholds (wthr ≤ 1.35) recovered virtually every
band, but masked a quarter of the sensor (FPR ≳ 0.25). Conversely, very tight thresholds (wthr ≥ 1.75)
reduced the masked area below 1× 10−2 yet missed one band in three (FNR ≳ 0.15). The configuration
finally adopted is W = 100, Wsub = 10, wthr = 1.70, subwthr = 1.20, Lmin = 150 for which the MC gives
eff = 0.923, FPR = 4.6 × 10−3 and FNR = 0.073. To verify that no simpler or more sophisticated tool
could outperform the tuned sliding-window, the same MC sample was processed with six change-point
algorithms from the ruptures library-PELT, Window, Binseg, BottomUp, Dynp and KernelCPD-plus an
unsupervised anomaly-detection scheme based on Isolation Forest. Each detector underwent an indepen-
dent grid search on a calibration subset. The best scores obtained were eff = 0.55, FPR = 0.65 for PELT
(pen=100), eff = 0.50, FPR = 0.53 for sliding Window (width 80, nbkps = 3), and eff = 0.41, FPR = 0.32
for Isolation Forest (trained on pixel-multiplicity profiles with default hyper-parameters). All other rup-
tures modes-Binseg, BottomUp, Dynp and KernelCPD-yielded similar or worse trade-offs: they retrieved
less than 50 % of the true bands and misclassified 30-100 % of clean columns as defective. Although the
selected sliding-window parameters do not provide perfect recall, they combine the highest efficiency with
the lowest masking overhead among thousands of tested variants and outperform every generic change-
point or isolation-based method. They are therefore adopted as the baseline for the blinded analysis.

Figure 3.8 shows the normalized column occupancy Mcol after hot-column masking for CCD A (left
panel) and CCD C (right panel). Black bars show the raw per-column counts, the blue line is a Savitzky-
Golay smoothing of the same data and the red curve is the quadratic baseline obtained from a robust fit.
Columns flagged by the OD algorithm are highlighted in orange.

Figure 3.8: Normalized charge distribution per column after hot-column masking for CCD A (left) and
CCD C (right) in UB0. Orange bands mark the regions masked as overdense; the blue curve is a 201-point,
second-order Savitzky-Golay smoothing, and the red line the quadratic baseline fit. The corresponding
plots for CCDB and CCDD are shown in Appendix B, Figure B.2.

CCD A (left panel of Figure 3.8) exhibits a uniform charge distribution: the blue Savitzky-Golay trace
oscillates symmetrically about the quadratic baseline, with excursions fully compatible with Poisson noise
from DC. Because no section meets the OD criteria, the mask leaves the entire sensor untouched and A is
regarded as free of any large-scale structure. CCD B (left panel of Figure B.2) exhibits a single overdense
slice at the far serial edge, spanning approximately columns 5823-6056. In this region, the smoothed profile
rises almost linearly above the baseline-a shape characteristic of charge-injection or bias-edge phenomena.
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The algorithm marks this entire block, ensuring that the modest but persistent excess of one- to three-
electron hits does not bias the overall DC estimate. CCD C (right panel of Figure 3.8) carries a broad
excess beginning near column 5311 and extending to the end of the image. Both the smoothed curve and
the quadratic fit show a gentle upward curvature, revealing a low-frequency spatial gradient superimposed
on a genuine surplus of single-electron counts. This flagged region overlaps the hot columns previously
removed, indicating that beyond the sharp spikes there is a diffuse tail of low-level activity spanning
many tens of columns. CCD D (right panel of Figure B.2) contains two overdensity blocks: one from
roughly 5657 to 5836 and a second from about 5908 to 6160. Each island produces a local bump of two to
four extra one-electron pixels above the baseline, and between them the profile returns to the global mean.

Overall, the OD algorithm successfully identifies and masks extended regions of excess charge. Table
3.4 summarizes the coordinates of the bands for each CCD.

CCDs Overdensity band(s) [columns] %

A none 0.0
B [5823, 6056] 3.8
C [5311, 6140] 13.5
D [5657, 5836], [5908, 6160] 7.0

Table 3.4: Coordinates of overdensity regions identified in the UB0 dataset. The last column reports the
fraction of masked pixels with respect to the total number of columns in the CCD.

3.3.5 CTI Mask

Extended blobs or high-energy clusters can degrade the charge-transfer efficiency during read-out. When
a very energetic pixel is shifted through the CCD, a small fraction of its charge may be left behind,
creating vertical or horizontal trails. Because these CTI trails consist of 1− 10e− pixels, they can mimic
low-energy events and leak into the region of interest defined for the dark matter search. The presence of
such contamination is supported by the observed excess of low-charge pixels found near clusters, as shown
in Figure 3.1. Moreover, by introducing spurious pixels that are not Poisson-distributed, they distort the
expected statistical behavior of the dark current background. CTI effects cannot be accurately simulated
due to the complexity and variability of their physical origin. Therefore, the algorithm for their identifica-
tion is defined using real unblinded data (UB0), where their morphological characteristics can be directly
observed and studied. In addition to the vertical and horizontal trails, bright clusters often display a
faint halo of 1-5 e− pixels surrounding the core. This halo is produced by a combination of lateral charge
diffusion and secondary emission inside the silicon (e.g. internal Cerenkov light or mild bremsstrahlung),
generating a sparse ring of low-energy pixels a few columns wide. Although much weaker than the main
cluster, these pixels fall exactly in the energy region of interest and must therefore be masked with dedi-
cated expansion rules (HaloCTI in Table 3.5).

This mask is carried out in two steps: identification of seed pixels based on charge thresholds, and
application of expansion rules tailored to the expected trail morphology. Two thresholds are used to
categorize cluster-energy seeds: 50 ≤ Q < 100 e− and Q ≥ 100 e−. The split reflects the observation that
brighter seeds generate longer CTI tails. For every seed, pixels are masked according to Table 3.5. Three
trail morphologies are considered: vertical CTI (VCTI), horizontal CTI (HCTI) and a faint symmetric
halo (HaloCTI) around very bright seeds. The VCTI mask targets pixels read after the seed along the
vertical direction (i.e., subsequent rows in the read-out sequence), while the HCTI mask corresponds
to pixels read after the seed horizontally, during the serial transfer to the amplifier. In contrast, the
HaloCTI mask covers pixels immediately surrounding the seed, assuming an isotropic origin unrelated to



3.3 Custom Masking Techniques for low-background selection 25

the read-out direction. In Table 3.5, each value indicates the number of pixels masked on either temporal
side of the seed. For example, ’10 pixels’ in VCTI corresponds to ten rows read after the seed in both
physical directions (upward and downward), since both are shifted later in time. Because 100 physical
rows are summed into one binned row, a genuine vertical trail spanning hundreds of rows appears only a
few rows long in the binned image; hence the comparatively small VCTI radii. Horizontal trails, on the
other hand, extend across many columns in the serial register, justifying more aggressive masking.

CTI Type 50 ≤ Q < 100 e− Q ≥ 100 e−

VCTI 10 pixels 100 pixels
HCTI 100 pixels 6300 pixels (entire CCD row)
HaloCTI No expansion 10 pixels

Table 3.5: Mask expansion applied to High-energy seeds. Values indicate the number of pixels masked in
each direction.

The masking strategy was defined using unblinded data by testing different expansion configurations
for each CTI type. The aim is to maximize the containment of charge trails while minimizing the loss
of unaffected area where the DM-electron scattering search will be performed. Figure 3.9 shows how the
masking fraction evolves for three CTI components and for four low-energy charge ranges (1 e−, 2 e−, 3 e−,
and ≥ 4 e−) in UB0 CCD D. The grey histogram corresponds to the smallest expansion, while the blue
gradient marks highest radii. All panels were produced with the seed (Qseed ≥ 100 e−); seeds in the range
50 ≤ Q < 100 e− give the same trends with proportionally lower percentages. As the left panel shows,
the masked fraction for 2e− and 3e− pixels remains essentially constant once the expansion exceeds about
5 px binned, indicating that CTI trails in those bins are already fully captured at very small radii. By
contrast, the 1e− population-the dominant CTI contaminant-continues to grow up. In CCD D, increasing
the V-CTI radius from 5 px to 50 px raises the masked 1e− fraction from 0.67% to 1.07% while only
increasing the total masked area from 0.034% to 0.310%. Extending further to 100 px binned removes
1.37% of all 1e− pixels at the cost of masking 0.615% of the sensor. Doubling the radius again to 200
px only boosts the 1e− rejection by 0.63% but doubles the masked area to 1.21%. Therefore, a 100 px
binned expansion (10 000 physical rows) is chosen for seeds with Qseed ≥ 100 e−. This radius captures the
vertical CTI trail seen in unbinned data while keeping the total V-CTI-masked area below 1%, leaving
margin for the remaining CTI masks (Halo and H-CTI) and other filters. For medium seeds (50-100 e−),
whose CTI tails are correspondingly shorter, a 10 px binned radius is sufficient.

Horizontal trails can cross thousands of columns. In right panel the masked fraction for 2-3 e− pixels
levels off as soon as the expansion reaches ∼ 500 pixels; extending the mask further does not cause changes
in the percentage, indicating that the trail has been fully covered. To be conservative the entire row (6300
pixels) is masked when Qseed ≥ 100 e−, ensuring that no residual trail survives. For 50 ≤ Q < 100 e− the
horizontal smear is shorter, and a 100-pixel margin is enough.

The halo consists of a faint corona only a few columns wide. As shown in the center panel of Fig-
ure 3.9, a radius of 10 pixels already masks ∼ 60− 70% of the ≥ 4 e− pixels (mostly corresponding to the
high-charge seeds themselves) and ≲ 30% of 2–3 e− pixels. Larger expansions lead to significantly more
masking at low energies without a proportional gain, increasing the overall masked area of the CCD. To
balance containment and area preservation, a 10-pixel radius is fixed for Qseed ≥ 100 e− and apply no
expansion for lower energies, where the CTI effect is milder.

The final CTI mask is obtained by combining masks for both charge regimes. Figure 3.10 illustrates
typical examples in unblinded CCD A. In Left panel of Figure 3.10, a bright pixel is observed with a
long horizontal charge trail. The horizontal trail spans multiple pixels, which are correctly masked by the



3.3 Custom Masking Techniques for low-background selection 26

Figure 3.9: Masked-pixel fraction in each low-energy charge range as a function of the expansion radius
around high-Q seeds (Qseed ≥ 100 e−). The grey bar is the minimum expansion; deeper blues indicate
larger radii Left: VCTI; Center: Halo CTI; Right: HCTI.

HCTI expansion. The Right panel of Figure 3.10 shows a zoomed-in region from a CCD after applying
the full CTI masking. The corresponding VCTI, HCTI, and HaloCTI masks applied to each cluster are
clearly visible.

A quantitative check confirms that the mask mainly removes truly energetic pixels (Table 3.6). More
than 98 % of pixels with Q > 4e− are excluded-indicating that these 4e− pixels are highly correlated
with genuine high-energy clusters in their vicinity. A similarly high fraction of 3e− pixels is also removed,
reflecting that many of them arise as part of energetic cluster substructures. In contrast, fewer than 2 %
of single-electron (1e−) and 2e− pixels are lost overall, as expected, since dark-current-induced hits are
not correlated with high-energy clusters and dominate the 1e− population.

Total Masked [%] 1e− [%] 2e− [%] 3e− [%] > 4e− [%]

0.65 1.67 11.49 47.06 98.09

Table 3.6: Masking impact per charge bin for the selected CTI configuration. The last column reports
the fraction of masked pixels with respect to the total number of columns in the CCD.
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Figure 3.10: Application of the CTI mask in UB0 CCD A. Left panel show a high-energy cluster and the
right panel a zoom-in of the CTI mask.

3.3.6 Charge Multiplicity

Rows and columns with an unusually high multiplicity-defined as the number of pixels in that row or
column with charge Q > 0.7 e−-are potential indicators of defects or correlated noise. After all previous
masks have been applied, two complementary criteria are used to decide whether a whole row/column
must be discarded: The multiplicity distributions for rows and columns are computed, which are expected
to be purely statistical: for a uniform DC rate λ, the distribution follows a binomial law that approaches
a Gaussian in the limit of large statistics. Because only the first few populated bins (m = 0-6) have
sufficient statistics, a full-range Gaussian fit is unstable. Instead, the fit is performed only on the upper
tail (bins above the 60th percentile), and a row/column is masked once the data exceed that fit by more
than 3σ. If no bin satisfies the 3σ excess, the cut is placed at the 99th percentile, providing a conservative
upper bound:

Tmask =

minm≥m60

{
m

∣∣ Ndata(m)−Nfit(m) > 3σdata

}
, if deviation found

99th percentile of distribution, otherwise
(3.5)

where m60 is the multiplicity at the 60% percentile, Ndata is the observed bin content, and Nfit is
the value from the Gaussian fit. This procedure suppresses only those rows/columns whose multiplicities
are statistically incompatible with a pure dark current process while leaving the bulk of the detector
untouched.

Rows or columns are directly masked if they contain more than one non-consecutive pixel exceeding
Q ≥ 2 e−, since under normal operational conditions the probability that two non-adjacent pixels in the
same row or column both fluctuate above 2 e− from DC alone is ≪ 10−6 for the measured λ. If two
adjacent pixels exceed 2 e−, they may originate from a single energetic cluster.

The validity of the two masking criteria was assessed with UB0 data and a dedicated MC simulation
of dark current. The MC assumes that the charges per pixel follow a Poisson law with mean λ, convolved
with Gaussian read-out noise. To reproduce detector non-idealities it includes (i) the measured per-column
λ(x) profile, (ii) the live-pixel mask, and (iii) the read-noise distribution. Figure 3.11 shows the row (left)
and column (right) multiplicity distributions for UB0 CCD A. The grey bars are the data; black markers
are the same points with Poisson uncertainties; blue squares are the MC prediction; the red curve is the



3.3 Custom Masking Techniques for low-background selection 28

Gaussian tail fit; and the orange line marks the 99th percentile.

Figure 3.11: Row (left panel) and column (right panel) multiplicity histograms in CCD A. Gaussian fits
(red) are applied to the upper tail. Orange lines indicate the 99th percentile thresholds.

In an ideal detector with uniform λ and independent pixels, the multiplicity distributions would fol-
low a nearly Gaussian shape, and the data and MC would be indistinguishable. In CCD A, we observe
good agreement between the data and the MC prediction up to a m ∼ 6 (columns) and m ∼ 7 (rows),
confirming that the simulation correctly models the typical DC fluctuations. Beyond this range (above
the orange line), the statistics become sparse and isolated outliers begin to dominate. These outliers are
precisely the types of structures that the masking procedure is designed to suppress. Even in the high-
multiplicity tail we still expect the points to fall along a bell-shaped (Gaussian) curve. The reason is the
central-limit theorem: when you add up many independent pixel ‘trials’-each pixel can either contribute
a hit or not-the total number of hits tends to follow a Gaussian distribution once the number of pixels is
large. Small departures from an ideal Gaussian remain visible and are expected for three reasons: (i) the
per-column variation of λ(x) broadens the distribution; (ii) rows and columns have different lengths, so
their variances scale differently; and (iii) the statistics in the tail are limited, giving a coarse multiplicity
spectrum.

Table 3.7 lists the number of rows and columns that were masked by criterion (2) in the UB0 sample
(pixels with Q ≥ 2 e−). Across all CCDs, only a small number of rows were masked, and no columns
were flagged. This is likely because other masking procedures-particularly those targeting column-related
anomalies such as hot columns and crosstalk-have already removed most pathological columns earlier in
the processing pipeline.

CCDs Masked Rows Masked Columns %

A 2 0 0.033
B 1 0 0.016
C 0 0 0.000
D 1 0 0.016

Table 3.7: Masked rows and columns in unblinded data using Method 2 Q ≥ 2 e− in the UB0 dataset.

Figure 3.12 complements the previous plot by displaying the full charged-pixel count per row/column
in CCD A of UB0, together with the thresholds (red vertical lines).
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Figure 3.12: Charged pixel counts per (left panel) row and (right panel) column in CCD A. Red lines
indicate thresholds.

3.3.7 Isolated Columns

Due to the masking procedures described previously, some columns may remain unmasked between two
fully masked neighbors. To preserve spatial consistency and avoid fragmented masking patterns, an
additional step is applied to identify and mask such isolated columns. A column is classified as isolated
if both its immediate neighbors (left and right) are entirely masked, while the column itself is not. After
applying all previous masking steps, a small number of isolated columns were identified and masked.
This correction affected fewer than 0.1% of the pixels, ensuring minimal impact on data efficiency while
improving the coherence of the final mask (see Table 3.8).

CCDs Masked Isolated Columns %

A 1 0.016
B 2 0.032
C 3 0.049
D 3 0.049

Table 3.8: Number of isolated columns masked in the UB0 dataset. The last column reports the fraction
of masked pixels with respect to the total number of columns in the CCD.

3.3.8 Efficiency Summary of the Data Selection

After applying all masking procedures described in Sections 3.3.1 to 3.3.7, this section summarizes the
cumulative impact of the selection process on UB0 dataset. Table 3.9 presents the resulting efficiency
and number of masked pixels at each step, focusing on the active region (AR) of each CCD. Efficiency is
calculated as:

ϵacc =
numskAR

nAR
, (3.6)

where numskAR is the number of unmasked pixels in the active region after a given masking step, and nAR

is the total number of pixels in the active region of the CCD, 6080× 6144, (see Section 3.1.1 for details).
As observed, the Clustering mask (Section 3.3.1) preserves nearly all pixels in CCDs A and B, while

slightly affecting CCDs C and D. More pronounced effects are seen with Hot Columns (Section 3.3.3) and
Overdensity (Section 3.3.4), particularly in CCDs B, C and D, reflecting vertical defects and high-charge
accumulations identified in Figures 3.7,B.1 and 3.8, B.2.
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Mask
CCD A CCD B CCD C CCD D

ϵacc nmsk ϵacc nmsk ϵacc nmsk ϵacc nmsk

Clustering+AR 1.0000 383 1.0000 931 0.9998 3004 1.0000 1646

Cluster Crosstalk 0.9998 5964 0.9998 5964 0.9998 5964 0.9998 5964

Hot Columns 0.9998 0 0.9997 6080 0.9957 158080 0.9961 139840

Overdensity 0.9998 0 0.9616 1422720 0.8627 5046400 0.9271 2577920

CTI 0.9933 245962 0.9511 403697 0.8536 395221 0.9116 646881

Charge Multiplicity 0.9804 482156 0.9337 670296 0.8397 573059 0.8966 591294

Isolated Columns 0.9802 6080 0.9334 12160 0.8392 18240 0.8961 18240

Final 0.9802 737994 0.9334 2487142 0.8392 6007578 0.8961 3879813

Table 3.9: Cumulative efficiency and number of masked pixels at each step of the data selection process
applied to the UB0 dataset. Values are reported for each CCD in the active region (6080 rows · 6144
columns). The final row shows the overall result after applying all masking criteria.

CCD C experiences the largest impact, consistent with the multiple hot-column groups listed in Ta-
ble 3.3 and the substantial overdensity near the overscan region. Meanwhile, CCD A shows minimal
disruption, suggesting stable operational conditions and uniformity. The CTI mask (Section 3.3.5) affects
CCD D by addressing prominent charge-transfer inefficiencies (CTI), whereas CCD A maintains a higher
efficiency level, implying fewer bright pixels from CTI. Further refinements by the Charge Multiplicity
mask (Section 3.3.6) affect all CCDs similarly, identifying regions with elevated pixel multiplicity, while
the Isolated Columns step (Section 3.3.7) finalizes the process by merging fragmented or single-column
artifacts. CCD A retains the highest efficiency after all cuts, with 98.02% of its active pixels still usable-
consistent with its lack of large-scale defects. CCD B follows at 93.34%; most of the loss stems from the
wide OD band on the serial edge that had to be fully masked. CCD D finishes at 89.61%, although trailing
from very hot columns required sizable masks, the sensor remains largely exploitable once charge-transfer
and multiplicity artifacts are removed. CCD C is the most affected, ending at 83.92% because multiple
hot-column clusters and the broad OD near the overscan region combine to mask several million pixels.
Overall, the results confirm high data quality in all CCDs, with most masking attributed to real defects
or instrumental effects.

Figure 3.13 provides a final overview of the masking procedure applied to UB0. For CCD A the left
panel shows the two-dimensional occupancy map, where masked pixels appear in white. The right panel
displays the corresponding Pixel Charge Distribution (PCD) after all masking steps. The corresponding
plots for CCDs B, C, and D are presented in Appendix B.

3.4 Deviations from Poisson Statistics

After the full masking described in Section 3.3, the cleaned charge distributions from the unblinded dataset
were analyzed to determine their compatibility with the expected dark current model. Each distribution
was fitted with a convolution of a Poisson distribution (to model the nature of DC) and a Gaussian (to
account for read-out noise):

f(x) = A ·
kmax∑
k=0

λke−λ

k!
· 1√

2πσ
e−

(x−k)2

2σ2 , (3.7)
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Figure 3.13: Left CCD map with masked pixels in white. Right: PCD for UB0 CCD A. The corresponding
plots for CCDs B, C and D are provided in Appendix B, Figure B.5.

where λ is the average number of electrons per pixel, σ is the charge resolution obtained from the
Gaussian fit, and A is a normalization factor. Figure 3.14 shows the results of the fits for CCDs A and
C, and the equivalent plots for CCDs B and D are included in Appendix B, Figure B.6. Table 3.10
summarizes the extracted parameters. The best-fit values for the dark current after masking (λ) and
their respective uncertainties obtained from these fits are expressed in units of electrons per binning per
image (e−/bin/img). To facilitate interpretation and comparison with other results, these values were
converted into daily rates and normalized by detector mass.

Figure 3.14: Dark current distributions from CCD A (left) and CCD C (right) in UB0. The black
histograms represent the charge distributions after all masking procedures. The red fit corresponds to the
convolution of Poisson and Gaussian distributions. The corresponding plots for CCD B and CCD D are
shown in Appendix B, Figure B.6.

The CCD has a vertical binning of 100 pixels, so the dark current in terms of electrons per pixel
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per image will be λe−/bin/img =
λ
e−/pix/img

100 . The read-out of each CCD image is performed in continuous
acquisition mode, where the exposure time per pixel corresponds to the total read-out duration. This
duration was computed from the metadata time using the difference between the start and end of the
acquisition:

tread-out = DATE END− DATE INI = 2200.627970− 532.347327 = 1668.280643 s,

which corresponds to approximately 0.0193 days. Thus, the average DC per day is obtained as λday =
λpix

0.0193 . To express the rate in units of electrons per gram per day (e−/g/day), the mass of a single CCD
pixel was estimated. Using the measurements for an LBC CCD described in Section 1.3, with a pixel size
of 15× 15 µm2 and a thickness of 670 µm, the volume of one pixel is:

Vpix = (15 · 10−4 cm)2 · 670 · 10−4 cm = 1.5075 · 10−7 cm3.

Assuming the density of silicon to be ρ = 2.33 g/cm3, the corresponding pixel mass is:

mpix = Vpix · ρ = 3.51 · 10−7 g.

The dark current rate per gram per day is then given by λg/day =
λday

mpix
. These derived quantities are

summarized for each CCD in Table 3.10.

CCDs e−/bin/img e−/pix/day e−/g/day σ

A (3.6± 0.5) · 10−4 (1.9± 0.2) · 10−4 531± 70 0.152± 0.000

B (3.0± 0.6) · 10−4 (1.6± 0.3) · 10−4 443± 90 0.156± 0.000

C (3.2± 0.5) · 10−4 (1.7± 0.3) · 10−4 472± 80 0.159± 0.000

D (4.0± 0.6) · 10−4 (2.1± 0.3) · 10−4 591± 90 0.163± 0.000

Table 3.10: Extracted parameters from Poisson-Gaussian fits for each CCD, including statistical un-
certainties. The values correspond to the average charge per pixel per image (e−/bin/img), per day
(e−/pix/day), and normalized per gram per day (e−/g/day), along with the charge resolution parameter
σ.

3.4.1 Excess over Poisson Statistics

Although the Poisson-Gaussian model in Figure 3.14 and B.6 is tuned to reproduce the 0 e− pedestal and
the 1 e− peak, it consistently under-predicts the 2 and 3 e− bins in every CCD. This deficit is hard to
spot on the logarithmic scale of the figure, but becomes evident when the number of isolated single-pixel
events is integrated and compared with the pure-Poisson expectation P (k;λ) = λke−λ/k! obtained from
the fitted mean λ. Table 3.11 summarizes the result.

Three effects can raise the probability of observing two or more electrons in the same pixel. First,
burst-like dark current traps occasionally release several electrons at once, violating the assumption of
independent arrivals. Second, a few-electron halo left by bright clusters, CTI tails or blooming can escape
the masking cuts and appear as isolated multi-electron pixels. Third, genuine multi-electron deposits from
low-energy X-rays, Compton electrons, bremsstrahlung photons-or even sub-GeV dark-matter scatters-
can populate the same charge range. In fact, recent Skipper-CCD studies (Barak et al. 2022) show that
even after removing bulk dark current, two additional processes-amplifier-emitted photons during read-
out and spurious charge from clock transitions-produce residual single-electron events whose stochastic
combination can boost the 2-3 e− bins above a pure Poisson expectation.
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CCDs

q 1 e− 2 e− 3 e−

Exp [104] Obs [104] Exp Obs Exp [10−4] Obs

A 1.28± 0.17 1.231± 0.011 2.3± 0.6 4± 2 2.8± 1.1 0± 0

B 1.04± 0.20 0.949± 0.010 1.6± 0.6 4± 2 1.6± 1.0 0± 0

C 0.98± 0.16 0.942± 0.010 1.6± 0.5 5± 2 1.7± 0.9 0± 0

D 1.34± 0.19 1.260± 0.011 2.8± 0.8 4± 2 3.6± 1.6 0± 0

Table 3.11: Isolated single-pixel counts after masking for UB0. “Exp” values stem from the Poisson mean
fitted to the 1 e− peak; “Obs” are the data. Columns whose headings contain a power of ten indicate a
scale factor: multiply every entry in that column by the bracketed factor to obtain the absolute count.
All CCDs exhibit a significant excess at 2 e−.

µ = λEXP tEXP + λRO tRO + µSC,

quantifies these three contributions (thermal, read-out, and clocking), and naturally explains the observed
excess in 2-3e− even after masking the bulk Poisson DC [28]. EXP refers to the exposure duration, RO
to the read-out phase, and SC to the spurious charge contribution.

The observed excess therefore motivates an alternative approach to improve the sensitivity of our
dark matter analysis. We introduce a method-referred to as pattern analysis-where the background model
exhibits better agreement with the data by identifying random coincidences of single-electron events. This
strategy will be described extensively in the next chapter.



Chapter 4

Pattern-base Observable for Dark Matter Detec-
tion

Building on the deviations highlighted in Section 3.4.1, this chapter develops a systematic method to
identify and characterize the multi-pixel charge patterns that survive the masking. A pattern is defined
as a group of two or three adjacent pixels —only patterns found in rows are considered for DM searches
because the images are binned over 100 physical rows— in which every pixel carries non-zero charge
and the total charge lies between 2 and 4 e−. While isolated pixels with charges ≥ 2 e− already show
discrepancies from Poissonian expectations, it is essential to assess whether such multi-pixel patterns also
exhibit inconsistencies with statistical predictions.

The dark matter search presented in this work is conducted through the identification of these low-
charge patterns. Specifically, we consider the ordered sets {mn} and {mnl}, where the number corre-
sponds to the pixel charge in e− of each pixel. When permutations are taken into account, this yields
{11}, {12}, {13}, {21}, {31} for two-pixel patterns and {111}, {211}, {121}, {112} for three-pixel patterns.

Patterns with total charge exceeding 4, e− can still appear, as the clustering algorithm only discards
patterns with total charge above 10 e−. However, for the analysis presented here, the energy threshold is
conservatively reduced to 6 e− to account for the open shielding conditions. Patterns in the intermediate
range 4 < Q ≤ 6 e− are not assigned to specific combinations; they are grouped into a single high-charge
category that is treated identically in data and in the dark-matter signal simulations, ensuring an unbi-
ased analysis.

The following sections detail the methodology for selecting, isolating, and evaluating these patterns,
providing the foundation for the subsequent dark-matter analysis.

4.1 Score metrics for Pattern Classification

After masking, the analysis searches for charge patterns formed by one, two, or three neighboring pixels.
Charge patterns in the CCD are identified by analyzing small groups of neighboring pixels and evaluating
their compatibility probabilistically. The method models the likelihood of a measured charge being
produced by a given electron deposition using a Gaussian cumulative distribution function (CDF):

CDF(q |m,σ) =
1

2

(
1 + erf

(
q −m

σ
√
2

))
, (4.1)

where q is the measured pixel charge, m is the expected charge m = 0, 1, . . . , 4, and σ1 is the charge
resolution. A small CDF value means q is unlikely to originate from m electrons. For a pattern that
spans k pixels, the probability is given by:

Λm,n,... = −
k∑

i=1

log
[
CDF(qi |mi, σ)

]
, (4.2)

so that Λm, Λm,n and Λm,n,l are the one-, two- and three-pixel scores that enter the cascade. For
convenience we work with the negative logarithm of the CDF, so that good candidates correspond to

1σ is taken from the dark-current fits of Figures 3.14 and B.6 and depends on CCD and amplifier.

34
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small values of Λ. To determine the most probable charge pattern m,n, l, the algorithm evaluates multiple
charge combinations across one-, two-, and three-pixel configurations, as summarized in Table 4.1. Within
each configuration, patterns are tested sequentially, starting from the smallest total charge. Candidate
patterns are evaluated using a cascade approach that sequentially applies thresholds tailored to each
pattern group size.

The pattern selection proceeds by testing all one-pixel patterns first, followed by two-pixel patterns,
and finally three-pixel patterns. Each configuration is fully evaluated before moving to the next. If multi-
ple patterns satisfy the threshold criteria, only the last valid pattern (i.e., the most extended structure) is
retained. This strategy favors selecting the largest consistent structure while minimizing false identifica-
tions. Although the dark-matter analysis ultimately uses only horizontal patterns because the images are
binned over 100 physical rows, the search itself is performed along rows, columns and both main diagonals.

The three charge thresholds are set to thr1 = 3.5, thr2 = 4.0, and thr3 = 5.5. These classification
thresholds were chosen based on simulation results to strike a balance between efficiency and misclassifica-
tion. Their optimization procedure—and the resulting efficiencies and false-rejection rates—is discussed
in detail in Section 4.2.

Single pixel (m) Pattern (m,n) Pattern (m,n, l)

Λ1 < thr1 Λ1,1 < thr2 Λ1,1,1 < thr3
Λ2 < thr1 min{Λ1,2,Λ2,1} < thr2 min{Λ1,1,2,Λ1,2,1,Λ2,1,1} < thr3
Λ3 < thr1 min{Λ1,3,Λ2,2,Λ3,1} < thr2 min{Λ1,2,2,Λ2,1,2,Λ2,2,1} < thr3

min{Λ2,3,Λ3,2} < thr2

Table 4.1: Cascade logic for one-, two- and three-pixel patterns (m,n, l = 1, 2, 3 electrons). Only the
lowest Λ in each group is compared to the corresponding threshold.

4.2 Selection Performance: Efficiency and Misclassification

The performance of the pattern-selection cascade was quantified with dedicated Monte Carlo samples
in which every allowed charge pattern was injected 106 times and Gaussian readout noise was added
(σ = 0.16 e−). Each replica was classified through the algorithm described in Section 4.1 and compared
to its original label. To reproduce the expected physical population every event was weighted by its
Poisson probability, and the resulting ensemble was used to build a confusion matrix P(m,n,l)→(p,q,r) that
counts how often a true pattern (m,n, l) is finally classified as (p, q, r). The efficiency, ϵ(m,n,l), is the
fraction of genuine (m,n, l) patterns that are correctly identified:

ϵ(m,n,l) =
P(m,n,l)→(m,n,l)∑

(p,q,r)

P(m,n,l)→(p,q,r)

, (4.3)

where P(m,n,l)→(m,n,l) is the number of correctly identified patterns, and the denominator corresponds
to the total number of events whose true pattern is (m,n, l). The misidentification rate (MisID) rate
quantifies how often a detected pattern (p, q, r) actually originates from a different true pattern (m,n, l).
It is defined as:

MisID(m,n,l) = 1−
P(m,n,l)→(m,n,l)∑

(p,q,r)

P(p,q,r)→(m,n,l)

, (4.4)

where P(m,n,l)→(m,n,l) represents the number of correctly identified (m,n, l) patterns, and the denominator
accounts for all patterns detected as (m,n, l), regardless of their true origin. Large efficiency and a small
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MisID therefore indicate an optimal operating point.

Figure 4.1 compares the efficiency and the mis-identification probability for one-, two-, and three-
pixel patterns, showing how both metrics vary as the score threshold Λm, Λm,n, or Λm,n,l —defined in
Equation 4.2 — is adjusted. The efficiency rises rapidly as the score threshold moves above the noise
tail, stabilizing at around 98% for single-pixel and 91% for multi-pixel patterns. Mis-identification begins
at a few percent due to overlaps between charge patterns and increases steadily as the thresholds is
lowered, reaching 100% when almost all candidates are accepted. Thresholds values are determined by
selecting points on the efficiency plateau where MisID remains at the acceptable level. Optimizing the
figure of merit S = ϵ−MisID under the constraint ϵ ≳ 90% yields the thresholds thr1 = 3.5, thr2 = 4.0,
and thr3 = 5.5. At these thresholds, the efficiency reaches about 98% for single-pixel patterns and 91%
for both two- and three-pixel patterns. These thresholds ensure the preservation of the vast majority of
genuine patterns while limiting contamination to approximately 11% for two-pixel and 18% for three-pixel
patterns. Finally, the confusion matrix P(m,n,l)→(p,q,r) is shown in Figure 4.2 at a representative noise
level of σ = 0.16e−. Within the noise range of 0.15-0.17 e− observed during data acquisition, the matrix
remains essentially stable, with only minor degradation in the two- and three-pixel channels.

Figure 4.1: Efficiency (solid) and mis-identification (dashed) as a function of the score threshold Λ. Left:
single-pixel candidates Λm; Center: two-pixel Λm,n; Right: three-pixel Λm,n,l.

4.2.1 Pattern Isolation

A detected pattern is considered valid only if it is isolated from other charge deposits. For a single–pixel
pattern this means that the eight neighboring pixels (horizontal, vertical and diagonal) must exhibit
charge values consistent with zero electron. This condition is evaluated using the one electron CDF
demanding that Λ1 and requires Λ1 > thr1. For larger patterns the isolation region is defined as every
pixel that shares an edge or a corner with any pixel belonging to the pattern, excluding the pattern pixels
themselves.

Λ1 = − log CDF(q |m = 1, σ)) > thr1, (4.5)

where q is the measured charge, m = 1 is the one-electron hypothesis, σ is the charge resolution from
Table 3.10, and thr1 = 3.5 is the same single-pixel threshold used in the selection cascade (Section 4.1).
The pattern is kept only if all surrounding pixels pass the test; if a neighbor fails the inequality in
Equation (4.5), its charge is not compatible with zero and the entire pattern is discarded.
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Figure 4.2: Confusion matrix for a readout noise of 0.16e−. Color intensity indicates the transition
probability P(m,n,l)→(p,q,r).

4.3 Validation of the Classification Methodology

The thresholds introduced in Section 4.1 were validated by analyzing the score distributions of rep-
resentative patterns obtained from dedicated simulations, ensuring properly isolation of the intended
configurations.

Figure 4.3 compares the first–step score Λ for the three candidate types examined at the start of the
cascade: single pixels tested against the one-electron hypothesis (1) (black), doublets against (1, 1) (blue),
and triplets against (1, 1, 1) (magenta). The red dashed lines indicate the threshold cuts {thr1, thr2, thr3}.
A low Λ value signals good compatibility with the hypothesis, while high values point to poor matches. As
expected, most entries lie well below the corresponding thresholds, reflecting that all simulated patterns
were generated with at least one full electron of charge, to which only readout noise was added. The few
events exceeding the cuts result from noise shifting one or more pixel charges so low that the pattern
no longer fits. In multi-pixel patterns, this may happen when several pixels are simultaneously affected
by downward fluctuations. While moderate shifts (e.g., 0.9, 0.9) can still pass, stronger losses (e.g., 0.6,
0.8) may lead to rejection. These misidentifications are rare and do not significantly impact the overall
performance, which remains highly efficient for all pattern types, as detailed in Section 4.2.

To confirm the clustering of charge combinations in multi-pixel patterns, 2D projections were stud-
ied. Figure 4.4 displays representative charge combinations and their correlations for (1, 1) and (1, 1, 1)
patterns, highlighting the region isolated by the selection. Green dashed line represents 0.6 e− charge.
The left panel plots the (q[i], q[i+1]) pairs selected as (1, 1) doublets. Most events cluster tightly around
(1 e−, 1 e−). The red dashed lines at 0.7 e− mark the single-pixel acceptance threshold to consider a pixel
with charge. Charges up to ≃ 2.3 e− on one axis are therefore still compatible with the (1, 1) hypothesis
provided that the partner pixel sits very close to the 0.7 e− cut. The center panel shows the (1, 1, 1)
triplets, coloring each point by the charge of the third pixel. A color island centered at (1, 1) e− shows
that the combination of the other charge is around ≈ 1.8 e−. Only a few peripheral points extend beyond
the red selection lines and to almost none to the green lines, illustrating the efficiency of the threshold
impose. The right panel presents a smoothed density map of the same (1, 1) sample. The high-density
core is clearly visible, while the population drops steeply as soon as one of the charges approaches the
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Figure 4.3: First–stage score (Λm,n,l) distributions for one-pixel (black), two-pixel (blue) and three-pixel
(magenta) candidates, tested against the (1), (1, 1) and (1, 1, 1) hypotheses, respectively. The red dashed
lines mark the working thresholds {thr1, thr2, thr3}; everything to its right is rejected.

0.7 e− boundary. Additional visualizations for all studied patterns are provided in Appendix C.

Figure 4.4: Charge-correlation plots. Left: raw (q[i], q[i+1]) pairs for the (1, 1) hypothesis; Center: triplet
(1, 1, 1) colored by the third pixel; Right: density map of the (1, 1) sample. Green dashed lines delimit
the 1 e− core and the red lines indicate the selection borders.

Additional pixel-charge histograms illustrating the same behavior are shown in Appendix C.2.3 (Fig-
ure C.4).

4.4 Diffusion-Induced Pattern Formation Probabilities

Up to this point the study has evaluated the classification efficiency of pre-defined patterns, assuming they
already exist in the image. That description is sufficient for dark-current events, whose signal is created
at the CCD surface and recorded pixel-by-pixel. For ionizing interactions, however, charge is produced at
arbitrary positions inside the 675µm-thick bulk and drifts to the pixel array while diffusing laterally. In
this section, the focus shifts to evaluating the pattern formation efficiency resulting from diffusion, which
plays a crucial role in shaping the observable patterns of ionizing signals, such as those expected from
dark matter interactions.

The lateral charge spread follows the depth-dependent model of Equation(1.3) in Section1.3.3. MC
simulations were used to model this process through the diffusion probability pdiff(q → p), which quantifies
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the likelihood that an initial charge deposit of q electrons evolves into a final pattern p due to lateral
diffusion. Using the work [17], the measured creation probabilities P (neh |E) are sampled to obtain an
integer number (q = 1–5) of electron-hole pair created given an energy lost E. Then, the charge cloud is
placed at a random (x, y, z) inside the CCD and diffused according to:

σ2
xy(z, E) = −A log |1− bz| · (α+ βE)2 , (4.6)

using the following values:

A = 803.5 µm2, b = 6.5 · 10−4 µm−1,

α = 0.83, β = 0.0112 eV−1.

calibrated with cosmic-ray tracks at Vsub = 45 V. Following diffusion, the resulting charge distributions
were vertically binned (100 pixels per bin), Gaussian readout noise and the same pattern detection
algorithm used for data analysis (see Sections 4.1) was applied to the simulated charge matrices.

Figure 4.5: Simulated distribution of pixel charges before (blue) and after (red) applying charge diffusion.
A Gaussian noise with σ = 0.16 was included after diffusion. Binning: 100 pixels per bin.

Figure 4.5 shows the simulated distribution of pixel charges before and after applying diffusion. Before
diffusion, the charge is localized, resulting in a broader distribution of higher charge values per pixel. After
diffusion, charge is spread over multiple pixels, leading to a concentration of counts at lower pixel charges.
Using this simulation setup, diffusion probabilities pdiff(q → p) were extracted by counting how often
each true deposited charge q resulted in a specific detected pattern p. Table 4.2 shows the most relevant
results, corresponding to pattern types also analyzed in real data. These simulations confirm that multi-
pixel structures naturally arise from the diffusion of low-charge deposits. For instance, a charge of q = 2e−

leads to the appearance of a two-pixel pattern ({11}) in approximately 38% of cases. Additionally, patterns
where both electrons remain confined to the same pixel ({2}) or are split as isolated single electrons ({1})
occur with relative frequencies of 35% and 46%, respectively. Because several patterns can arise from one
event, probabilities need not sum to unity. Similarly, for q = 3e−, the combined frequency of patterns such
as {11}, {21}, and {111} exceeds 45%, highlighting the relevance of multi-pixel detection in low-energy
event reconstruction.

4.5 Expected Pattern Rates under a Poissonian Background

In the context of this DM search, the dedicated masking procedures described in the previous chapter
(Chapter 3) have been designed to suppress any population of low-multiplicity (< 3) events that cannot
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q

p
{1} {2} {3} {11} {12} {111} {13} {211}

2 0.462 0.351 0.000 0.380 0.000 0.000 0.000 0.000

3 0.311 0.143 0.163 0.133 0.187 0.138 0.000 0.000

4 0.250 0.090 0.144 0.061 0.063 0.043 0.097 0.062

Table 4.2: Diffusion probabilities pdiff(q→ p) obtained from 5 · 104 simulated events (σread = 0.16 e−). q
is the number of initial electrons and p is the detected pattern.

be attributed to dark current. As a result, after these cuts the residual background in the low-charge
region should originate exclusively from uncorrelated, purely random charge depositions, which are well
modeled by a Poisson process. Under this assumption, this section focuses on estimating the expected
occurrence rates of each pattern providing a reference distribution against which to compare the observed
data.

The expected number of observed patterns (p, q, r) is calculated by summing over all true patterns
(m,n, l), weighted by their Poisson occurrence probability and the corresponding confusion matrix ele-
ments:

Nexp(p, q, r) = Nselec ·
∑

(m,n,l)

[
pdc(m,n, l;λ) · P(m,n,l)→(p,q,r)

]
, (4.7)

where Nexp is the expected number of patterns that will be classified as (p, q, r), Nselec the total number
of pixels that survive the masking, pdc(m,n, l;λ) is the Probability that the dark-current model produces
exactly the set of integer charges (m,n, l) in the same exposure, and P(m,n,l)→(p,q,r) is the corresponding
transition probability. Because DC electrons are produced independently in each pixel, the probability of
a given pattern is modeled as the product of independent pixel contributions:

pdc(m,n, l;λ) =
∏

ki∈(m,n,l)

Poisson(ki;λ), (4.8)

where ki are the integer charge values within the pattern and λ is the average number of electrons per pixel
obtained from the fit in Table 3.10. For example, the probability of a genuine {11} doublet is Poisson(1;λ)2

The uncertainties on the expected pattern counts combine two contributions. The dominant term
arises from the uncertainty in the Poisson mean λ, extracted from the Poisson+Gaussian fit (Figures
3.14 and B.6) to the single-pixel charge distribution. This contribution is estimated using a symmetric
variation around the best-fit value:

σλ(E) = 1
2 |Nexp(λ+ δλ)−Nexp(λ− δλ)| . (4.9)

A second, smaller contribution comes from the statistical uncertainty in the transition probabilities
P(m,n,l)→(p,q,r), derived from MC simulations. This term is propagated as:

σ2
stat(p, q, r) =

∑
(m,n,l)

[
Nselec pdc(m,n, l;λ) δP(m,n,l)→(p,q,r)

]2
, (4.10)

where δP(m,n,l)→(p,q,r) is the MC error on each matrix element. The total uncertainty on the expected
number of patterns is then given by:

σN (E) =
√
σ2
λ(E) + σ2

stat(E). (4.11)
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No additional uncertainty is assigned to the number of selected pixels Nselec, to the electronic noise width
σe, which is well constrained by the fit, or to the pattern selection thresholds, which are kept fixed across
all analyses.

4.6 Do the Observed Patterns in UB0 Follow Poissonian Expectations?

In this section, the pattern classification methodology developed throughout this chapter is applied to
the UB0 dataset in order to quantify the observed pattern rates and assess their compatibility with the
expectations from a purely Poissonian background.

For each CCD we compare the observed pattern counts (Obs) with the Poisson expectations (Exp)
derived from Equation 4.7; the results are summarized in Tables 3.11 and 4.3. Numbers without square
brackets refer to patterns oriented along rows, which are the only candidates evaluated in this analysis.
Values in square brackets give the total over all directions. All four CCDs (A, B, C, and D) show similar
results supporting the reliability of the data selection and pattern identification methods.

CCDs
p {11} {12} {13} {111} {112}

[100] [10−3] [10−7] [10−3] [10−7]

A
Exp 4.3± 1.1 0.8± 0.3 0.9± 0.5 1.6± 0.6 2.9± 1.5
Obs 3.0± 1.7[15] 0 0 0 0

B
Exp 2.9± 1.2 0.5± 0.2 0.4± 0.3 0.9± 0.5 1.5± 1.2
Obs 4± 2[14] 0 0 0 0

C
Exp 3.0± 1.0 0.5± 0.2 0.5± 0.3 1.0± 0.5 1.7± 1.1
Obs 1± 1[6] 0 0 0 0

D
Exp 5.1± 1.5 1.0± 0.5 1.4± 0.8 2.2± 1.0 4.6± 2.7
Obs 9± 3[22] 0 0 0 0

Total
Exp 15.4± 2.4 2.7± 0.7 3.3± 1.1 5.7± 1.4 11± 4
Obs 17± 4[57] 0 0 0 0

Table 4.3: Expected (Exp) and observed (Obs) counts for multi-pixel patterns in each CCD of the UB0
dataset. Results are shown in the format x±δx [N ], where x±δx refers to the expected or measured counts
in rows, and N is the total number of patterns detected over all directions. Columns whose headings
contain a power of ten indicate a scale factor: multiply every entry in that column by the bracketed factor
to obtain the absolute count. Each pattern symbol implicitly includes all charge permutations of the same
topology.

After masking, the vast majority of pixels appear singly, so the only multi-pixel topology with non-zero
statistics is the nearest-neighbor pair {11}. For every CCD the measured row-oriented {11} count lies
close to the Poisson prediction. Combining the four sensors, the row count is 17± 4 against a prediction
of 15.4± 2.4, a difference of only 0.4σexp. All higher-order shapes ({12}, {13}, {111}, {112} and permu-
tations) are completely absent, exactly as one would expect in a sample of this size and looking at the
Poisson expectation.

Because the masking and pattern filters behave as expected on UB0, it demonstrates that the masking
and pattern filters effectively suppress instrumental artifacts. The same pipeline is therefore applied
unchanged to the four blinded periods analyzed in Chapter 5; any departure from the baseline established
here will hence be readily identifiable.



Chapter 5

Event Selection on Blinded Data

The complete data-selection and pattern-identification pipeline defined in Chapters 3 and 4 is now applied
without any modification to the four blinded data taking periods B1–B4 listed in Table 3.1.

5.1 Final Pixel Charge distribution

This section (i) compares the masked structures observed in each run, (ii) reviews the resulting masking
efficiencies, and (iii) presents the residual pixel-charge spectra after all selections.

5.1.1 Consistency of Masked Features Across Datasets

The unblinded reference set (UB0) already revealed two persistent defects: column 1807 in CCDB and the
block [5315, 5318] in CCDC, together with a broader band in C and an exponential tail in D (Table 3.3).

Hot-column masks in the blinded datasets show the same picture with minor run-to-run variations. In
CCDA no hot column persists through all periods: columns 1532 and 2350 appear only in B1, whereas the
block [1531, 1533] and column 6092 recur in B2–B4 (with [3764, 3765] present in B2–B4), while isolated
columns 796 and 1018 appear only in B3 and 979 and 1017 only in B4. CCDB is more stable: column
1807 is masked from B1 to B3, the block [4206, 4207] reappears in B2–B3 and 4206 in B4; column 1520
shows up in B1 and B4 but not in B2–B3. CCDC exhibits the most robust defect: the cluster [5315,
5318] is present in every run, accompanied by columns 86 and 1989 throughout often flanked by activity
near ∼ 6100. CCDD retains an exponential-like regions at [323, 360] in all periods (with slight endpoint
shifts) and [3800, 3810] in B2-B4. Thus, the dominant structures first seen in UB0—[5315, 5318] in C
and 1807 in B—remain evident in all blinded runs, whereas lower-intensity defects fluctuate with time,
as summarized in Table 5.1.

CCD A CCD B CCD C CCD D

B1 1532, 2350 1520, 1807, 5313
86, 1989, [3355, 3356], [5315,

5318], [6141, 6151]
[329, 346], 4328

B2
[1531, 1533], [3764,

3765], 6092
1807, 3929, 3938,
[4206, 4207], 5967

86, 1989, [5315, 5318], [6093,
6098], [6140, 6151]

[324, 360], [3798,
3810]

B3
796, 1018, [1531,

1533], [3764, 3765],
6092

[8, 9], 1807, [3930,
3941], [4205, 4207]

86, 1989, [5315, 5318], 5571,
5918, 6085, [6090, 6103],

6135, [6142, 6151]

[323, 357], [3800,
3809]

B4
979, 1017, [3764,

3765], 6092
1520, 4206

8, 86, 1989, [5315, 5318],
6086, 6094, [6097, 6109],

6126, [6131, 6151]

[325, 357], 1169,
1171, 2144, [3798,
3810], [4328, 4333],

6146, 6150

Table 5.1: Hot columns detected in each blinded dataset. Columns 1807 (CCD B) and 5315–5326 (CCD
C) persist through all runs, matching the UB0 baseline.

UB0 already revealed a broad overdensity in CCDC [5311–6140], a narrower edge band in CCDB
[5823–6056] and two tails in CCDD [5657–5836], [5908–6160], while CCDA showed none (Table 3.4).
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The four blinded datasets confirm and extend this picture. In CCD A every run displays a shallow
parabolic excess around column 950, with widths of [820–1031] (B1), [789–1101] (B2), [792–1074] (B3)
and [791–1077] (B4). In CCD B the serial-edge overdensity appears as follows: no mask is applied in B1;
in B2 two bands at [5591, 5898] and [5905, 6057] are flagged; in B3 the band spans [5703, 6058]; and in
B4 it covers [5727, 6059]. In CCD C a diffuse excess starts near 5310 and reaches the image edge in all
periods, exactly reproducing the UB0 overdensity in both position and shape. CCD D remains essentially
clean: only B1 masks at [297, 451] and [5143, 5307], while no overdensity cut is required in B2–B4.

Table 5.2 summarizes the overdensity bands identified in each blinded run; therefore, the algorithm
removes the same low-level charge gradients seen in UB0, with only minor adjustments.

CCD A CCD B CCD C CCD D

B1 [820, 1031] none [5311, 6149] [297, 451], [5143, 5307]

B2 [789, 1101] [5591, 5898], [5905, 6057] [5313, 6096] none

B3 [792, 1074] [5703, 6058] [5310, 6150] none

B4 [791, 1077] [5727, 6059] [5298, 6139] none

Table 5.2: Overdensity regions detected in the blinded datasets B1–B4. The broad band in CCDC and
the serial-edge excess in CCDB reproduce the UB0 structures listed in Table 3.4.

Layout-independent masks —clustering in the active region and crosstalk suppression— remove prac-
tically the same fraction of pixels in every CCD because they target transient, uniformly distributed
events rather than fixed silicon defects. Clustering+AR excludes only 0.01−0.02% of the active area in
all runs, whereas the crosstalk mask rejects 0.04% in B1 and increases to at most 0.10% in B2–B4. These
fractions vary by less than a factor of two from B1 to B4 and are identical across the four CCDs within
each dataset. Compared with the percent-level losses produced by the hot-column and overdensity masks,
the impact of the layout-independent cuts is negligible (see Tables D.1–D.7).

Complete lists of hot columns, overdensity bands, and masked-pixel maps are provided in Appendix D.1
(see Figs. D.3–D.20).

5.1.2 Final Masking Efficiency

Table 5.3 lists the overall acceptance ϵacc after all masks. Each CCD changes by less than two percentage
points across the four blinded periods, showing the stability of the selection pipeline.

CCD A CCD B CCD C CCD D

B1 0.942 0.977 0.840 0.923

B2 0.924 0.907 0.842 0.968

B3 0.929 0.917 0.837 0.964

B4 0.928 0.919 0.835 0.960

Table 5.3: Global acceptance ϵacc after all masks for every blinded dataset.

For CCDA the acceptance oscillates between 0.924 and 0.942, limited chiefly by the shallow over-
density at columns [820–1031] and the hot-column pair at [3764–3771]. CCDB shows the largest drop,
from 0.977 in B1 to 0.907 in B2, as the edge overdensity expands toward the serial register; afterwards it
stabilizes near 0.91–0.92. CCDC, dominated by its broad overdense band starting at 5310, remains close
to 0.84 in every dataset. For CCDD , the acceptance remains very high in B2–B4 (0.960–0.968) since no
overdensity cuts are applied there, but dips to 0.923 in B1 due to two narrow masked bands. Overall, D
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shows minimal loss outside that single run, with no trend of progressive degradation.

Step-by-step efficiency tables together with the row- and column-multiplicity histograms for every
period are collected in Appendix D.1 (Tables D.1–D.7).

5.1.3 Dark-Current Stability and Charge Resolution

After masking, the single-pixel charge spectra of B1–B4 are described by the same Poisson–Gaussian
model validated on UB0. The fitted Poisson means vary by less than 10 % from run to run: CCDs A and
B lie in the range (3.3−4.3) · 102 e− g−1 day−1, CCD C clusters around 4.0 · 102 e− g−1 day−1, and CCD
D is consistently higher at (4.5−4.8) · 102 e− g−1 day−1.

The Gaussian width, which quantifies single-electron resolution, is equally stable: every sensor returns
σ = 0.153−0.167 e− with no drift over the three-month campaign. Table 5.4 lists the mean values per
CCD; run-to-run fluctuations stay below 10 %.

CCD A CCD B CCD C CCD D

⟨λ⟩ [e− g−1 day−1] 4.2 · 102 3.4 · 102 4.0 · 102 4.7 · 102

⟨σ⟩ [e−] 0.154 0.157 0.160 0.165

Table 5.4: Average dark-current rate λ and Gaussian width σ for each CCD, obtained by combining the
four blinded datasets. Quoted values are the mean of B1–B4; run-to-run fluctuations stay below 10 %.

The constancy of both parameters confirms that the PA08 module operated under stable environmental
conditions and that the masking strategy does not distort the low-energy spectrum. The Poisson–Gaussian
template derived from UB0 can therefore be applied to all blinded data without further adjustment.

5.2 Pattern Identification in Blinded Data

Having validated the pattern identification method and its compatibility with Poisson expectations on
unblinded data, we now apply the same selection pipeline to the four blinded periods.

The analysis aims to test the presence of statistically significant deviations in multi-pixel structures
beyond those expected from dark current and electronic noise. Particular attention is given to patterns
with total charges of two or three electrons, whose occurrence rates may hint at low-energy ionization
signals.

Each of the following subsections presents the results for an individual data-taking period, comparing
the number of observed patterns with the predicted counts from Poisson convolutions. The analysis in-
cludes per-CCD breakdowns, directional pattern identification, and an evaluation of the potential excesses
relative to statistical expectations.

5.2.1 Dataset B1 (2024-10-14)

Table D.9 compares the measured population of isolated one-, two- and three-electron pixels with the
expectations of the Poisson model for the first blinded dataset B1. The one-electron population agrees
with the Poisson model in every CCD by definition. For isolated two-electron hits we find 22±5 candidates
compared with 6.6 ± 1.2 expected, an overall excess of about 3σ. It is distributed over the four CCDs
rather than being driven by a single CCD. Exactly one three-electron pixel survives the cascade. Although
the expected rate is very low (((6.4± 1.8) · 10−4)), the observed count of 1± 1 remains consistent within
1σ, due to the large statistical uncertainty.

Multi-pixel results for B1 are given in Table D.10. A global summary appears in the first row of
Table 5.6 (and Table 5.7 for three-pixel patterns). The only topology that appears is the {11} doublet.
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Restricting the comparison to row-aligned pairs-the numbers in parentheses in the tables-we found 14± 4
events versus 12 ± 2 expected, a marginal 1σ. No patterns such as {12}, {13}, {111} or permutations,
are observed; their expected rates are below one event and the non-observation is fully compatible with
Poisson noise. A compact overview of all pattern topologies is already given by Tables D.9–D.10 (see
also Appendix D.2). Dataset B1 therefore shows a modest excess of two-electron single pixels with no
significant anomaly in pair topologies.

5.2.2 Dataset B2 (2024-10-28)

The one-electron sample matches the background model in every CCD by construction. In the second row
of Table 5.5, an excess is seen for isolated 2e− pixels: observed 44±7, whereas the Poisson model predicts
15 ± 2. The excess, about 4σ is shared by all four CCDs with the largest share in CCD C (see Tables
D.11 and D.12). Five isolated 3e− pixels are also found, well above the expectation (1.4 ± 0.3) · 10−3);
given the very low background, these few events are simply noted for future statistics.

In agreement with the Poisson expectations of 29 ± 4, a total of 29 ± 5 row-aligned {11} patterns
are found. No excess appears in any other two- or three-pixel pattern topology; all are consistent with
accidental coincidences at the sub-percent level (Tables D.11–D.12 show all patterns per-CCD).

5.2.3 Dataset B3 (2024-11-19)

As in the previous datasets, we observe an excess in the two- and three-electron event rates. The pop-
ulation of isolated one-electron patterns follows the expectation by definition. In contrast, single-pixel
two-electron events show a pronounced excess 53±7 against 21±3 predicted, corresponding to a ∼5σ up-
ward fluctuation. Similarly, 11± 3 triple-electron singlets survive the selection cascade, while the Poisson
model predicts only (2.0± 0.4) · 10−3, confirming the same trend of two and three electron patterns seen
in earlier datasets. Extending the search to neighboring pixels reveals a comparable excess. Row-aligned
{11} pairs are measured at 40 ± 6, in line with the predicted 39 ± 5. Only one candidate each is seen
for {12} and {13}; given their sub-milli-level probabilities, the appearance of a single event is statisti-
cally improbable. No three-pixel patterns are identified. The full per-CCD tables for B3 are provided in
Appendix D.2 (Tables D.13 and D.14).

5.2.4 Dataset B4 (2024-12-17)

The one-electron population again matches the background model by construction. Isolated 2e− pixels
are measured at 33± 6 while the background model predicts 14.6± 1.8, a ∼ 3σ excess distributed over all
sensors. For 3e− isolated pixels, 3±2 are found; the Poisson prediction is practically zero (1.5±0.3) ·10−3.
Row-aligned pattern doublets of type {11} remain consistence 29±5 candidates versus 27±3 expected. No
other two- or three-pattern survives the isolation cuts, exactly as anticipated from their millipercent-level
probabilities (see Tables D.15–D.16 in Appendix D.2).

5.2.5 Global pattern Blinded Data

Table 5.5 collects the single-pixel yields for the four blinded runs, while Tables 5.6 and 5.7 summarize the
two- and three-pixel topologies, respectively1. Poisson–Gaussian expectations are computed run-by-run
from the 1-e− peaks and then summed; quoted errors on the data are statistical (

√
N), and the treatment

of expected errors follows Section 4.5.
The 1 e− population matches the dark-current model by construction, confirming the stability of the

background fit over the entire three-month dataset. Conversely, isolated multi–electron pixels remain

1Columns with bracketed powers of ten must be multiplied accordingly; Obs in red exceed the Poisson expectation. Each
multiplicity-pattern symbol implicitly includes all charge permutations of the same topology.
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an open issue: the method records 152 ± 13 two–electron and 20 ± 4 three–electron single pixels, to be
compared with expectations of 57±4 and (5.5±0.6)×10−3, respectively. The corresponding fluctuations
reach ∼ 7σ and ∼4.7σ, and echo the behavior was already seen in the unblinded reference data (for 2e−).
Because these extra events are spread over all four runs and all CCDs, they are unlikely to originate from
a single localized defect.

When examining patterns, no three-pixel configuration survives the cascade, exactly as expected from
the negligible Poisson probabilities. Row-aligned {11} doublets total 112 ± 11, in agreement with the
prediction 107 ± 7. Only two exotic topologies appear: {21} and {13}. A cross–check at the same
coordinates in the companion sensors shows that the {21} candidate’s 2 e− pixel registers just 0.67 e−

elsewhere, identifying it as crosstalk; this event is therefore discarded. The single {13} hit is kept for
completeness but, given its vanishing Poisson probability and lack of spatial or temporal correlation, is
likewise attributed to residual instrumental background.

{1} {2} {3}
Exp [104] Obs [104] Exp Obs Exp [10−3] Obs

B1 4.6± 0.4 4.37± 0.04 6.6± 1.2 22± 5 0.64± 0.18 1± 1

B2 11.0± 0.8 10.62± 0.03 15± 2 44± 7 1.4± 0.3 5± 2

B3 14.0± 0.9 13.39± 0.12 21± 3 53± 7 2.0± 0.4 11± 3

B4 10.0± 0.6 9.50± 0.01 15± 2 33± 6 1.5± 0.3 3± 2

Total 39.6± 1.4 37.88± 0.13 57± 4 152± 13 5.5± 0.6 20± 4

Table 5.5: Expected and observed counts for patterns {1}, {2} and {3} across all datasets.

{11} {12} {13}
Exp Obs Exp [10−3] Obs Exp [10−7] Obs

B1 12± 2 14± 4 1.8± 0.5 0 1.7± 0.7 0

B2 29± 4 29± 6 4.0± 0.9 0 4.0± 1.2 0

B3 39± 5 40± 6 5.7± 1.1 1 5.7± 1.5 1

B4 27± 3 29± 5 4.0± 0.7 0 4.0± 1.0 0

Total 107± 7 112± 11 15.5± 1.7 1 15± 2 1

Table 5.6: Expected and observed counts for patterns {11}, {12}, and {13} for all datasets.

{111} {112}
Exp [10−3] Obs Exp [10−6] Obs

B1 3.6± 1.0 0 0.59± 0.23 0

B2 8.4± 1.8 0 1.3± 0.4 0

B3 12± 2 0 1.9± 0.5 0

B4 8.2± 1.5 0 1.3± 0.3 0

Total 32± 3 0 5.1± 0.7 0

Table 5.7: Expected and observed counts for patterns {111}, {112} for all datasets.



Chapter 6

Conclusions

The main goal of this work has been to implement and validate a complete masking strategy for the
analysis of low-charge events in the DAMIC-M Skipper-CCDs. A total of seven masks were applied to
remove instrumental backgrounds and select a clean and reliable data sample. These masks include the
removal of clusters, crosstalk, hot columns, overdensities, CTI trails and halos, high-multiplicity pixels
and isolated columns. After this procedure, the final area efficiencies obtained for the blind datasets B1
to B4 range between 84% and 98%, depending on the CCD, with the lowest efficiencies found in CCD C
(about 0.84, due to a large overdensity near the prescan) and the highest in CCD D (about 0.96).

Some of the masking steps are already stable and do not require further changes, like the cluster and
crosstalk masks. Others, such as the hot column mask, could benefit from improving the method used
to detect the end of exponential tails, which currently relies on a fixed discontinuity. A more precise
method, based on fitting the decay and identifying deviations from the expected behavior, could allow
for a more accurate definition of the masked region. The overdensity mask, while effective, still depends
on manually tuned parameters such as the window size and detection thresholds. Although alternative
approaches based on change-point or isolation-forest methods were tested, their performance in efficiency
was too low. Future work should therefore focus on alternative, less parameter-dependent statistics to
refine this mask.

Once the cleaned data is obtained, the charge spectrum deviates from the expectation of a purely
Poissonian dark current. In particular, the number of isolated 2 e− and 3 e− pixels is significantly higher
than predicted by the model. Regarding isolated 1 e− pixels, since their rate is directly measured from
data we cannot know whether there is an excess. The true origin of these events remains unknown,
and may include contributions from DC, infrared photons, or even a dark matter signal. A promising
discriminator is a search for daily modulation in the 1 e− rate, which would be a clear signature of dark-
matter interactions. With the current background model, which includes only random coincidences of 1 e−

pixels, the expected rate for a {31} pattern is B31 = 1.5×10−6 events, so the observation of a single event
represents a clear upward fluctuation. This estimate, however, does not include radiogenic backgrounds
that can mimic multi-pixel patterns. Using the same dataset, Ref. [24] finds a background expectation
of B31 ≃ 7 × 10−2 events for this topology, which renders the observation statistically consistent with
background fluctuations. In either case, the single candidate is insufficient to claim evidence of a dark-
matter signal.

For the excesses observed in 2 e− and 3 e− isolated pixels, a dark matter interpretation is unlikely. Dark
matter is expected to interact uniformly in the bulk of the detector, and due to charge diffusion, many
of the resulting energy deposits would appear as multi-pixel patterns. Diffusion simulations (Section 4.4)
show that 38% of true 2 e− deposits and 65% of true 3 e− deposits should form multi-pixel patterns. In
the combined blind dataset (B1+B2+B3+B4), we observed 152 isolated 2 e− pixels and 21 isolated 3 e−

pixels. Using the simulated diffusion probabilities pdiff(2 → 2) = 0.351 and pdiff(3 → 3) = 0.163, we
estimate a true number of deposits of Nreal(2e

−) ≈ 433 and Nreal(3e
−) ≈ 129. Such populations would

yield clear excesses of patterns like {11}, {2}, {21}, {12} or {111}, which we do not observe. For instance,
we would expect an excess of about 166 {11} patterns, but the observed numbers are compatible with
background expectations. We therefore conclude that the excesses arise from a mixture of radiogenic
events and residual instrumental background, not from dark-matter interactions uniformly distributed in
the CCD bulk.

The identification of patterns based on charge distribution offers a more sensitive observable than
the simple pixel-charge histogram. By reconstructing and classifying 1-, 2-, and 3-pixel patterns, and
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comparing their observed rates with a background model based on Poissonian dark current plus radiogenic
components, we are able to increase the sensitivity of the analysis. A dedicated study of the systematic
uncertainties introduced by the pattern selection, similar in spirit to the analysis carried out by Paula
[TFM Paula Pérez], is ongoing and will be crucial for future limit calculations.

Future work

There are several directions in which this work could be extended. First, the overdensity mask could
be made more robust by exploring new statistical approaches that reduce its dependence on manually
tuned parameters. Similarly, the method used to define the extent of hot columns could be improved
by replacing the current thresholding strategy with a fit to the exponential tail followed by a dynamic
cutoff. Another relevant improvement would be the implementation of a mask to remove residual corre-
lated noise. This type of noise can be identified by detecting spatial patterns that systematically repeat
across exposures or CCDs and deviate from statistical expectations. A suitable criterion would be to
mask pixels with abnormally high variance or those exhibiting consistent correlations across modules, as
done in recent DAMIC-M analyzes.

Although current masks have shown high efficiency in the available datasets, it would be important
to validate their performance on larger exposures, where new sources of instrumental noise might appear
or current thresholds might become suboptimal. In particular, it would be worth checking whether the
combined dataset B1 to B4 yields consistent results with those obtained from the individual runs, both
in terms of masking efficiency and pattern statistics. This comparison has not been performed in the
present work because the computer used for the analysis was not able to process the full dataset at once.
In addition, the model used to describe charge multiplicity, assumed to follow a Gaussian distribution,
should be re-evaluated once higher-statistics datasets become available, since the limited sample size in
the present analysis did not allow a reliable fit to the data. In terms of physics analysis, the next natural
step is the study of daily modulation in the 1 e− event rate, which could help discriminate a possible dark
matter component from known backgrounds.

In conclusion, the masking and pattern-based methodology developed in this thesis provides a clean and
efficient framework for analyzing low-charge events in DAMIC-M. It allows us to identify and understand
deviations from the expected background and improves our ability to search for dark matter signals with
unprecedented sensitivity.
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Appendix A

Data Pre-Processing

The initial processing of CCD images was performed using the WADERS framework [29], a modular
Python-based tool developed within the DAMIC-M collaboration. WADERS is designed to apply a chain
of processes over a real data CCD image. The sequence of processes applied to each raw FITS image is
detailed below.

A.1 Compress of the Skipper images

The CompressSkipperProcess is a process that combines all individual skip measurements into a single
image, reducing readout noise, by using a statistical function which can be set by the user. In this analysis,
the statistical function used is the mean. This produces a two-dimensional array in which each pixel value
represents the average charge measured during the exposure. This compressed image, serves as the input
for all subsequent processing steps.

A.2 Pedestal Subtraction Process

The PedestalSubtractionProcess removes the electronic baseline (pedestal) from each pixel introduced
during the CCD readout. In this analysis, the pedestal, µrow

ped, is obtained via a Gaussian fit to the pixel
charge distribution in each row of the compressed image. To ensure stability, pixels with charges deviat-
ing by more than 3σ from the median were excluded, and the right tail of the distribution was suppressed.

This process corrects for the variation of the baseline with row index, due to charge accumulation
during the readout. increase of baseline with row index due to charge accumulation during readout. The
row-by-row standard deviation, σrow, remains approximately constant across the sensor and is later used
to define charge thresholds for cluster identification.

Figure A.1: Left panel: Baseline µrow
ped as a function of row index, showing the gradual increase due to

exposure time accumulation. Right panel: Standard deviation σrow of the pedestal fit per row, used to
define clustering thresholds. Note that both the baseline and electronic noise are expressed in analog-to-
digital units (ADUs); see Section A.3 for their conversion to electrons.
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Figure A.2: PCD with optimal threshold indicated (green dashed line), determined using the
get energy threshold tool for CCD A values.

A.3 Calibration Process

The CalibrationProcess converts the pixel charge from analog-to-digital units (ADU) to physical units
of electrons (e−) using a gain constant k determined for each amplifier. This constant is obtained by
analyzing the pixel charge distribution with single-electron resolution, identifying the positions of peaks
corresponding to 0, 1, 2, ... e−, and fitting them individually with Gaussian functions. The gain k is then
extracted as the mean distance between adjacent peaks, typically between the 0 and 1 e− peaks. After
this step, all pixel values are expressed in physical units of charge.

A.4 Threshold Optimization

The identification of signal pixels relies on the definition of a threshold above the noise level, beyond
which a pixel is considered signal. To determine this optimal threshold, the script get energy threshold,
developed by the DAMIC-M collaboration, was used. The tool takes as input the gain (in ADU/e−),
the electronic noise σ (in e−), and the dark current rate λ (in e−/pixel/image), all obtained from the
Poisson-Gaussian fit described in Section A.3.

Rather than directly setting a fixed pixel charge threshold, the threshold optimization script imple-
ments two complementary statistical methods to determine the optimal value of ncut, which defines the
cut as a multiple of the calibrated readout noise σ, expressed in units of electrons.

The first method maximizes the F1-score for signal-pixel detection, balancing efficiency (true posi-
tives) and purity (precision) in the identification of 1 e− events. The second method finds the threshold
pth = ncut ·σ that equalizes the number of misclassified pixels on each side: the area of the 1 e− Gaussian
left of the cut (missed signal) is set equal to the area of the 0 e− Gaussian right of the cut (false posi-
tives). This criterion inherently depends on the expected dark-current rate, which determines the relative
normalization between the two peaks.

Since the readout noise σ differs between CCD amplifiers, the resulting ncut is channel-specific and
used as input to the ClusterFinder process. Figure A.2 illustrates the optimization result for CCD A,
showing that both methods yield consistent results and identify a charge threshold of 0.7 e− as optimal
for separating signal from noise.



Appendix B

Complementary Event Selection on Unblinded Data

This appendix collects supplementary figures from the unblinded UB0 dataset, complementing the data-
selection procedure described in Chapter 3. While the main text focused on CCD A, here we present the
corresponding figures for CCDs B, C and D.

The normalized column occupancy Mcol is shown for CCDs B and D. Dashed red lines mark the
columns flagged by the hot-column algorithm. Together with Fig. 3.7 (CCD A and C), this completes
the survey of hot columns in UB0.

(a) CCDB (b) CCDD

Figure B.1: Normalized column occupancy Mcol for UB0 sensors B and D.

The second plot (Fig. B.2) shows the charge per column in the range [0.7, 3.7] e− after masking hot
columns for CCDs B and D. Orange bands indicate overdensity regions, the blue curve is a Savitzky–Golay
smoothing and the red line the quadratic baseline fit. This supplements Fig. 3.8 for CCD A and C.

Figure B.2: Overdensity masks for UB0 sensors B and D.

Figures B.3–B.4 shows the multiplicity distributions of the charge multiplicity mask (Subsection 3.3.6).
Left panels show charged-pixel multiplicity per row; right panels per column, for CCDs B, C, D. Figure B.3
uses threshold lines (red) to illustrate the mask cut; Fig. B.4 overlays Gaussian fits (red) and 99th-
percentile thresholds (orange).

Mask maps and PCDs (Figure B.5). For each CCD we show (left) the 2D mask map and (right) the
PCD after all masking steps. From top to bottom: B, C and D. See Fig. 3.13 for CCD A.
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Figure B.3: Multiplicity per row/column with masking thresholds for UB0 CCDs B–D.

Dark-current distributions (Figure B.6). The histograms (black) show the post-mask charge distribu-
tions; the red curve is the Poisson–Gaussian fit of 2 picks. These complete Fig. 3.14 for CCDs A and
C.
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Figure B.4: Multiplicity per row/column with Gaussian fits (red) and 99% thresholds (orange) for UB0
CCDs B–D.
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Figure B.5: Left: 2D mask map; Right: PCD after masking for UB0 dataset. From top to bottom: B, C
and D. Continuation of Fig. 3.13 (CCD A).
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Figure B.6: Dark-current spectra and Poisson–Gaussian fits for UB0 CCDs B and D.



Appendix C

Pattern Distributions and Pixel Charge Correla-
tions

This appendix compiles all figures related to the distributions and pixel charge properties of the patterns
identified in the masked images. These plots serve to visually inspect the quality of the thresholds used in
the pattern selection algorithm and to verify that they retain pixels consistent with low-charge ionization
events. Only patterns with total charge up to 5 e− are shown.

C.1 One-Pixel Pattern Distributions

The total score distributions Λm for isolated patterns with m = 1 to 5 e− are shown below. These
distributions reflect the global likelihood score assigned to each candidate, as computed from the CDF-
based selection algorithm.

Figure C.1: Score distributions Λm for single-pixel patterns with total charge from 1 to 5 e−. These scores
are calculated using the likelihood-based pattern selection method.

C.2 Two-Pixel Pattern Distributions and Charge Correlation

This section presents detailed results for two-pixel patterns. Each pattern corresponds to a fixed charge
configuration (m,n) such that m + n ≤ 5. The figures include score distributions, pixel-pixel charge
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correlations, and charge histograms. These visualizations assess the selection quality and help identify
potential mis-identified combinations.

C.2.1 Score distributions for specific two-pixel patterns Λmn

Figure C.2: Score distributions Λmn for selected two-pixel patterns, ordered as follows (left to right, top
to bottom): (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1). Each plot includes all two-pixel
configurations with fixed charges (m,n), evaluated using the CDF-based score.
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C.2.2 2D charge correlation maps

Figure C.3: Two-dimensional charge correlation maps for accepted two-pixel patterns Λmn, ordered as
follows (left to right, top to bottom): (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1). Each
heatmap displays the charge distribution in both pixels for a given pattern.

C.2.3 Pixel-Charge Histograms

Complementary information is provided by Figure C.4. Here each histogram displays the individual pixel
charges that survive the selection. For the (1, 1) pattern (left) the two curves sit almost perfectly on top of
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each other, both peaking at ≈ 1.0 e−. The triplet case (right) mirrors this behavior. The histograms show
a secondary shoulder around 1.7–1.8 e− and a sparse tail extending to ∼ 2.3 e−. These entries correspond
to pairs in which one pixel sits at ≈ 0.7 e− while the partner pixel carries nearly the full two-electron
charge. Such borderline combinations are formally accepted by the score-based selection and constitute
the dominant source of the mis-identification rate. Their low statistics, however, ensure that the cascade
still preserves the integrity of the main, quantized 1 e− population and keeps the impact on the overall
charge spectrum negligible.
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Figure C.4: Charge histograms for the pixels inside each accepted pattern. Left: the two members of a
(1, 1) doublet; Right: the three members of a (1, 1, 1) triplet. The agreement of the peaks at 1 e− confirms
correct quantification.
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Figure C.5: Histograms of pixel charges for selected two-pixel patterns Λmn, ordered as follows (left to
right, top to bottom): (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1). Each histogram shows
the individual pixel charges retained by the selection algorithm.

C.3 Three-Pixel Pattern Distributions and Charge Correlation

Figures show the total scores Λmnl for patterns with specific three-pixel charge combinations, such as
(1, 2, 3). These include all possible permutations.
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C.3.1 Score distributions for specific two-pixel patterns Λmnl

Figure C.6 displays the score distributions Λmnl for selected three-pixel patterns. Each histogram includes
all permutations of the indicated configuration, scored using the CDF-based selection algorithm.

Figure C.6: Score distributions Λmnl for selected three-pixel patterns, ordered as follows (left to right,
top to bottom): (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,3,1), (2,1,1), (2,1,2), (2,2,1), (3,1,1). Each
distribution includes all permutations of the given charge configuration, scored using the CDF-based
selection method.
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C.3.2 2D charge correlation maps

Figure C.7 shows the 2D correlation maps of individual pixel charges within each three-pixel pattern.
These maps visualize how the charge is typically distributed among the three components, and can reveal
systematic asymmetries or tails caused by borderline or mixed-charge configurations.

Figure C.7: 2D charge correlation maps for selected three-pixel patterns, in the same order as in Fig-
ure C.6: (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,3,1), (2,1,1), (2,1,2), (2,2,1), (3,1,1).
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C.3.3 Pixel-Charge Histograms

Figure C.8 presents histograms of the individual pixel charges for each accepted three-pixel pattern. As
with two-pixel patterns, the presence of secondary peaks or shoulders at sub-electron values indicates the
inclusion of borderline combinations, particularly in cases where one or more pixels carry only partial
charge.
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Figure C.8: Histograms of individual pixel charges in selected three-pixel patterns, following the same
order as above: (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,3,1), (2,1,1), (2,1,2), (2,2,1), (3,1,1). These
show the internal charge structure of each accepted pattern.



Appendix D

Extended Event Selection from Blinded Data

This appendix provides the full breakdown of masking efficiencies, pixel–charge distributions, and pattern
counts for each blinded dataset (B1–B4), complementing the summary tables in Chapter 5. For every
run you’ll find: (i) Cumulative masking efficiencies ϵacc and counts of masked pixels at each cut stage; (ii)
final mask maps and PCDs per CCD; (iii) extended diagnostics: hot-column scans, overdensity fits, and
multiplicity histogram; (iv) single-pixel and multi-pixel pattern tables, with “Exp” vs. “Obs” for each
CCD and for the total.

D.1 Extended Masking Efficiencies and Figures of Blinded Data

Each subsection includes a detailed table reporting the cumulative efficiency ϵacc and number of masked
pixels nmsk at every step of the selection. These steps include clustering, hot column detection, overdensity
removal, and filters based on charge quality, multiplicity and column isolation as described in Chapter 3.

For each dataset, the final masked-pixel maps and the associated PCDs is also shown. In addition,
extended figures that illustrate the identification of structural anomalies are provided: Column-wise nor-
malized occupancy profiles used to identify hot columns; Sliding-window scans employed in the detection
of overdensity regions; and Multiplicity histograms in rows and columns used to reject structured residuals.

D.1.1 Dataset B1 (2024-10-14)

Table D.1 summarizes the cumulative masking efficiency and pixel counts at each selection step for dataset
B1.

Mask
CCD A CCD B CCD C CCD D

ϵacc nmsk ϵacc nmsk ϵacc nmsk ϵacc nmsk

Clustering+AR 0.9999 3108 0.9999 4108 0.9999 5929 0.9999 4787

Cluster Crosstalk 0.9996 17932 0.9996 17932 0.9996 17932 0.9996 17932

Hot Columns 0.9993 15040 0.9991 22560 0.9965 142880 0.9965 160809

Overdensity 0.9648 1594240 0.9991 0 0.8621 6309280 0.9474 2430990

High-Q Pixels 0.9560 418875 0.9884 500907 0.8506 650670 0.9341 3044504

Charge Multiplicity 0.9425 640015 0.9775 506844 0.8401 517206 0.9242 3503133

Isolated Columns 0.9424 7520 0.9773 7520 0.8401 0 0.9234 37600

Final 0.9424 2662121 0.9773 1046963 0.8401 7386197 0.9234 3540204

Table D.1: Cumulative efficiency ϵacc and number of masked pixels nmsk at each step of the data selection
process for B1. Pixel counts refer to the active region (7520 rows · 6144 columns). Values of nmsk are
per-mask (not cumulative).
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Figure D.1: Pixel ChargeDistribution (PCD) for B1. From top to bottom: A, B, C and D.
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Figure D.2: Masked-pixel maps for B1. White regions are excluded pixels. From top to bottom: A, B, C
and D.

Additional figures used in the identification of hot columns, overdensity regions, and row/column
multiplicity anomalies for this dataset are shown in Figs. D.3, D.4 and D.5.
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Figure D.3: Structural-defect identification for dataset B1. Left panels: hot-column scan with vertical red
dashed lines indicating the columns removed. Right panels: column–multiplicity profiles; the red curve is
the parabolic baseline and the orange band marks the detected overdensity. From top to bottom: CCDs
A, B, C and D.
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Figure D.4: Charged–pixel multiplicity distributions per row (left) and per column (right) for dataset B1.
Red horizontal lines mark the masking thresholds. From top to bottom: CCDs A, B, C and D.
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Figure D.5: Charged–pixel multiplicity histograms per row (left) and per column (right) for dataset B1.
Gaussian fits (red) are applied to the upper tail. Orange line indicates the 99th percentile threshold.
From top to bottom: CCDs A, B, C and D.
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After masking, the four PCDs are well described by a Poisson–Gaussian convolution (Fig. D.6). The
fit parameters are collected in Table D.2; charge-resolution values cluster around σ ≃ 0.16 e−, matching
UB0. The mean dark-current rates span 3.46 × 102–4.55 × 102 e− g−1 day−1, fully compatible (within
10%) with the UB0 reference.

Figure D.6: PCDs for dataset B1 after all masking. The black histograms represent the charge distribu-
tions after all masking procedures. The red fit corresponds to the convolution of Poisson and Gaussian
distributions (Table D.2). Sorted top to bottom: CCD A, B, C and D, respectively.

CCD e−/bin/img e−/pix/day e−/g/day σ

CCD A (2.8± 0.6) · 10−4 (1.5± 0.3) · 10−4 415± 80 0.155± 0.000

CCD B (2.3± 0.5) · 10−4 (1.2± 0.2) · 10−4 346± 70 0.159± 0.000

CCD C (2.6± 0.6) · 10−4 (1.3± 0.3) · 10−4 382± 90 0.162± 0.000

CCD D (3.1± 0.5) · 10−4 (1.6± 0.3) · 10−4 451± 80 0.167± 0.000

Table D.2: Poisson–Gaussian fit parameters for dataset B1, including statistical uncertainties. The values
correspond to the average charge per pixel per image (e−/bin/img), per day (e−/pix/day), and normalized
per gram per day (e−/g/day), along with the charge resolution parameter σ.

D.1.2 Dataset B2 (2024-10-28)

Table D.3 summarizes the cumulative masking efficiency and number of masked pixels at each step of the
selection for dataset B2.
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Mask
CCD A CCD B CCD C CCD D

ϵacc nmsk ϵacc nmsk ϵacc nmsk ϵacc nmsk

Clustering+AR 0.9999 5947 0.9999 7061 0.9999 11223 0.9999 11890

Cluster Crosstalk 0.9997 36121 0.9997 36121 0.9997 36121 0.9997 36121

Hot Columns 0.9987 592416 0.9987 107712 0.9958 430848 0.9915 897600

Overdensity 0.9478 5618976 0.9238 8275872 0.8626 15043776 0.9915 0

High-Q Pixels 0.9401 892419 0.9157 971507 0.8511 1449164 0.9781 1502261

Charge Multiplicity 0.9242 1697806 0.9081 865755 0.8423 1043732 0.9682 1102632

Isolated Columns 0.9236 71808 0.9073 89760 0.8418 53856 0.9676 71808

Final 0.9236 8430401 0.9073 10225977 0.8418 17449064 0.9676 3750483

Table D.3: Cumulative efficiency ϵacc and number of masked pixels nmsk at each step of the data selection
process for the B2 dataset. Pixel counts refer to the active region (14960 rows · 6144 columns). Values of
nmsk are per-mask (not cumulative).

Figures D.7 and D.8 show the final masked-pixel maps and the corresponding PCDs for each CCD:

Figure D.7: Pixel Charge Distribution (PCD) for B2. From top to bottom: A, B, C and D.
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Figure D.8: Masked-pixel occupancy maps for B2. White regions denote masked pixels. From top to
bottom: A, B, C and D.
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Additional figures used in the identification of hot columns, overdensity regions, and row/column
multiplicity anomalies for this dataset are shown in Figs. D.9, D.10 and D.11.

Figure D.9: Structural-defect identification for dataset B2. Left: hot-column scan with vertical red dashed
lines indicating the columns removed. Right: column–multiplicity profiles; the red curve is the parabolic
baseline and the orange band marks the detected overdensity. From top to bottom: CCDs A, B, C and
D.
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Figure D.10: Charged–pixel multiplicity distributions per row (left) and per column (right) for dataset
B2. Red horizontal lines mark the masking thresholds. From top to bottom: CCDs A, B, C and D.
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Figure D.11: Charged–pixel multiplicity histograms per row (left) and per column (right) for dataset B2.
Gaussian fits (red) are applied to the upper tail. Orange line indicates the 99th percentile threshold.
From top to bottom: CCDs A, B, C and D.
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After masking, the four Pixel Charge Distributions (PCDs) are well described by a Poisson–Gaussian
convolution (Fig. D.12). Fit parameters-summarized in Table D.4- show charge resolutions clustered
around σ ≃ 0.16 e− and mean dark-current rates that agree with those of B2 to better than 5 %.

Figure D.12: PCDs for dataset B2 after all masking. The black histograms represent the charge distribu-
tions after all masking procedures. The red fit corresponds to the convolution of Poisson and Gaussian
distributions (Table D.4). Sorted top to bottom: CCD A, B, C and D, respectively.

CCD e−/bin/img e−/pix/day e−/g/day σ

CCD A (2.8± 0.4) · 10−4 (1.5± 0.2) · 10−4 414± 60 0.153± 0.000

CCD B (2.2± 0.4) · 10−4 (1.15± 0.19) · 10−4 327± 50 0.158± 0.000

CCD C (2.7± 0.4) · 10−4 (1.40± 0.2) · 10−4 400± 60 0.161± 0.000

CCD D (3.1± 0.4) · 10−4 (1.61± 0.19) · 10−4 459± 50 0.164± 0.000

Table D.4: Poisson–Gaussian fit parameters for dataset B2, including statistical uncertainties. The values
correspond to the average charge per pixel per image (e−/bin/img), per day (e−/pix/day), and normalized
per gram per day (e−/g/day), along with the charge resolution parameter σ.

D.1.3 Dataset B3 (2024-11-19)

Table D.5 summarizes the cumulative masking efficiency and number of masked pixels at each step of the
selection for dataset B3.
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Mask
CCD A CCD B CCD C CCD D

ϵacc nmsk ϵacc nmsk ϵacc nmsk ϵacc nmsk

Clustering+AR 0.9999 7916 0.9999 12341 0.9999 18889 0.9999 16279

Cluster Crosstalk 0.9996 55425 0.9996 55425 0.9996 55425 0.9996 55425

Hot Columns 0.9983 177408 0.9967 399168 0.9941 753984 0.9923 997920

Overdensity 0.9526 6275808 0.9387 7894656 0.8623 18650016 0.9923 0

High-Q Pixels 0.9446 1151739 0.9277 1595704 0.8473 2333495 0.9774 2055706

Charge Multiplicity 0.9294 2132256 0.9178 1386739 0.8376 1440684 0.9653 1677244

Isolated Columns 0.9286 110880 0.9173 66528 0.8371 66528 0.9641 155232

Final 0.9286 9723762 0.9173 11261760 0.8371 22191666 0.9641 4886641

Table D.5: Cumulative efficiency ϵacc and number of masked pixels nmsk at each step of the data selection
process for the B3 dataset. Pixel counts refer to the active region (22176 rows · 6144 columns). Values of
nmsk are per-mask (not cumulative).

Figures D.13 and D.14 show the final masked-pixel maps and the corresponding PCDs for each CCD:

Figure D.13: Pixel ChargeDistribution (PCD) for B3. From top to bottom: A, B, C and D.
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Figure D.14: Masked-pixel occupancy maps for B3. White areas denote masked pixels. From top to
bottom: A, B, C and D.

Additional diagnostics for hot-column detection (Fig. D.15), overdensity removal and multiplicity
anomalies (Figs. D.16–D.17) follow.



D.1 Extended Masking Efficiencies and Figures of Blinded Data 81

Figure D.15: Structural-defect identification for dataset B3. Left: hot-column scan with vertical red
dashed lines indicating the columns removed. Right: Column occupancy profiles; the red curve is the
parabolic baseline and the orange band marks the detected overdensity. From top to bottom: CCDs A,
B, C and D.
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Figure D.16: Charged–pixel multiplicity distributions per row (left) and per column (right) for dataset
B3. Red horizontal lines mark the masking thresholds. From top to bottom: CCDs A, B, C and D.
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Figure D.17: Charged–pixel multiplicity histograms per row (left) and per column (right) for dataset B3.
Gaussian fits (red) are applied to the upper tail. Orange line indicates the 99th percentile threshold.
From top to bottom: CCDs A, B, C and D.
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Finally, the Poisson–Gaussian fits to the PCDs are shown in Fig. D.18, and the fit parameters are
collected in Table D.6; charge resolutions cluster around σ ≃ 0.16 e− and the mean dark-current rates
remain consistent with previous runs, the highest being 4.74× 102 e− g−1 day−1 in CCD D.

Figure D.18: PCDs for dataset B3 after all masking, with Poisson–Gaussian fit to two picks (red) from
Table D.6. Sorted top to bottom: CCD A, B, C and D, respectively.

CCD e−/bin/img e−/pix/day e−/g/day σ

CCD A (2.9± 0.4) · 10−4 (1.51± 0.19) · 10−4 429± 50 0.153± 0.000

CCD B (2.3± 0.4) · 10−4 (1.20± 0.19) · 10−4 342± 50 0.157± 0.000

CCD C (2.9± 0.4) · 10−4 (1.50± 0.19) · 10−4 427± 50 0.160± 0.000

CCD D (3.2± 0.4) · 10−4 (1.66± 0.19) · 10−4 474± 50 0.164± 0.000

Table D.6: Poisson–Gaussian fit parameters for dataset B3, including statistical uncertainties. The values
correspond to the average charge per pixel per image (e−/bin/img), per day (e−/pix/day), and normalized
per gram per day (e−/g/day), along with the charge resolution parameter σ.

D.1.4 Dataset B4 (2024-12-17)

Table D.7 summarizes the cumulative masking efficiency and number of masked pixels at each step of the
selection for dataset B4.
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Mask
CCD A CCD B CCD C CCD D

ϵacc nmsk ϵacc nmsk ϵacc nmsk ϵacc nmsk

Clustering+AR 0.9999 5109 0.9999 10411 0.9999 13454 0.9999 12013

Cluster Crosstalk 0.9996 40936 0.9996 40936 0.9996 40936 0.9996 40936

Hot Columns 0.9988 80480 0.9993 32192 0.9924 708224 0.9903 917472

Overdensity 0.9524 4619552 0.9451 5359968 0.8602 13552832 0.9903 0

High-Q Pixels 0.9452 748545 0.9324 1339118 0.8453 1746571 0.9754 1508488

Charge Multiplicity 0.9283 1722660 0.9202 1236216 0.8354 1045174 0.9606 1489650

Isolated Columns 0.9278 48288 0.9194 80480 0.8351 32192 0.9601 48288

Final 0.9278 7139111 0.9194 7971351 0.8351 16306637 0.9601 3946779

Table D.7: Cumulative efficiency ϵacc and number of masked pixels nmsk at each step of the data selection
process for the B4 dataset. Pixel counts refer to the active region (16096 rows · 6144 columns). Values of
nmsk are per-mask (not cumulative).

Figures D.19 and D.20 show the final masked-pixel maps and the corresponding PCDs for each CCD:

Figure D.19: PCDs for B4. From top to bottom: A, B, C and D.
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Figure D.20: Masked-pixel maps for B4. White regions are excluded pixels. From top to bottom: A, B,
C and D.

Additional figures for hot-column detection (Fig. D.21), overdensity regions and row/columnmultiplic-
ity anomalies (Figs. D.22–D.23) follow.
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Figure D.21: Structural-defect identification for dataset B4. Left: hot-column scan with vertical red
dashed lines indicating the columns removed. Right: column–multiplicity profiles; the red curve is the
parabolic baseline and the orange band marks the detected overdensity. From top to bottom: CCDs A,
B, C and D.
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Figure D.22: Charged–pixel multiplicity distributions per row (left) and per column (right) for dataset
B4. Red horizontal lines mark the masking thresholds. From top to bottom: CCDs A, B, C and D.
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Figure D.23: Charged–pixel multiplicity histograms per row (left) and per column (right) for dataset B4.
Gaussian fits (red) are applied to the upper tail. Orange line indicates the 99th percentile threshold.
From top to bottom: CCDs A, B, C and D.
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After masking, the probability–charge distributions are well described by a Poisson–Gaussian con-
volution (Fig. D.24). Fit results are summarized in Table D.8: charge resolutions cluster around σ ≃
0.16 e− and the mean dark-current rates remain fully consistent with earlier periods, the highest being
4.74× 102 e− g−1 day−1 in CCD D.

Figure D.24: PCDs for dataset B4 after all masking. The black histograms represent the charge distribu-
tions after all masking procedures. The red fit corresponds to the convolution of Poisson and Gaussian
distributions (Table D.8). Sorted top to bottom: CCD A, B, C and D, respectively.

CCD e−/bin/img e−/pix/day e−/g/day σ

CCD A (2.9± 0.4) · 10−4 (1.50± 0.19) · 10−4 428± 50 0.153± 0.000

CCD B (2.3± 0.4) · 10−4 (1.2± 0.2) · 10−4 342± 60 0.155± 0.000

CCD C (2.7± 0.4) · 10−4 (1.42± 0.18) · 10−4 404± 50 0.158± 0.000

CCD D (3.2± 0.3) · 10−4 (1.67± 0.17) · 10−4 475± 50 0.164± 0.000

Table D.8: Poisson–Gaussian fit parameters for dataset B4, including statistical uncertainties. The values
correspond to the average charge per pixel per image (e−/bin/img), per day (e−/pix/day), and normalized
per gram per day (e−/g/day), along with the charge resolution parameter σ.

D.2 Complete Pattern Statistics

This section presents the full pattern statistics from the four blinded datasets analyzed in Chapter 5.
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Each subsection provides two tables per dataset. The first includes the counts of single-pixel patterns
with charges of one, two, and three electrons. The second lists all the detected multi-pixel structures,
grouped by topology and compared to the expected number of occurrences under the Poisson background
model.

Measured values (“Obs”) are shown with statistical uncertainties estimated as
√
N , and the “Exp”

values correspond to the expected counts based on the fitted dark current and detector noise. These
extended results complement the summaries in Chapter 5.2, enabling a more detailed cross-check of any
potential deviations or excesses across CCDs and data periods.

D.2.1 Dataset B1 (2024-10-14)

Pattern {1} {2} {3}

CCD A
Exp (1.2± 0.2) · 104 (1.7± 0.7) (1.6± 0.9) · 10−4

Obs (1.142± 0.011) · 104 8± 3 1± 1

CCD B
Exp (1.1± 0.2) · 104 (1.3± 0.5) (1.1± 0.6) · 10−4

Obs (1.003± 0.010) · 104 3± 2 0± 0

CCD C
Exp (1.0± 0.2) · 104 (1.4± 0.6) (1.2± 0.8) · 10−4

Obs (0.949± 0.010) · 104 3± 2 0

CCD D
Exp (1.3± 0.2) · 104 (2.3± 0.7) (2.5± 1.2) · 10−4

Obs (1.281± 0.011) · 104 8± 3 0

All
Exp (4.6± 0.4) · 104 (6.6± 1.2) (6.4± 1.8) · 10−4

Obs (4.37± 0.04) · 104 22± 5 1± 1

Table D.9: Isolated single-pixel counts after masking for B1. ”Exp” values come from the Poisson mean
fitted to the 1 e− peak; ”Obs” are the data. All CCDs exhibit a significant excess at 2 e− and 3 e−.

CCDs
p {11} {12} {13} {111} {112}

[100] [10−3] [10−7] [10−3] [10−7]

A
Exp 3.3± 1.3 0.5± 0.3 0.4± 0.3 0.9± 0.5 1.3± 1.1
Obs 1± 1[8] 0± 0 0± 0 0± 0 0± 0

B
Exp 2.4± 0.9 0.27± 0.16 0.3± 0.2 0.6± 0.3 0.8± 0.6
Obs 4± 2[15] 0± 0 0± 0 0± 0 0± 0

C
Exp 2.5± 1.1 0.3± 0.2 0.3± 0.3 0.7± 0.5 1.0± 0.9
Obs 4± 2[7] 0± 0 0± 0 0± 0 0± 0

D
Exp 3.9± 1.3 0.7± 0.3 0.8± 0.5 1.4± 0.7 2.8± 1.7
Obs 5± 2[11] 0± 0 0± 0 0± 0 0± 0

All
Exp 12± 2 1.8± 0.5 1.7± 0.7 3.6± 1.0 5.9± 2.3
Obs 14± 4[41] 0± 0 0± 0 0± 0 0± 0

Table D.10: Expected (Exp) and observed (Obs) counts for multi-pixel patterns in each CCD of the B1
dataset. Results are shown in the format x±δx [N ], where x±δx refers to the expected or measured counts
in rows, and N is the total number of patterns detected over all directions. Columns whose headings
contain a power of ten indicate a scale factor: multiply every entry in that column by the bracketed factor
to obtain the absolute count. Each pattern symbol implicitly includes all charge permutations of the same
topology.
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D.2.2 Dataset B2 (2024-10-28)

Pattern {1} {2} {3}

CCD A
Exp (2.8± 0.4) · 104 3.9± 1.1 (3.7± 1.6) · 10−4

Obs (2.651± 0.016) · 104 8± 3 1± 1

CCD B
Exp (2.2± 0.4) · 104 2.4± 0.8 (1.9± 0.9) · 10−4

Obs (2.125± 0.015) · 104 9± 3 0± 0

CCD C
Exp (2.5± 0.4) · 104 3.5± 1.1 (3.3± 1.5) · 10−4

Obs (2.414± 0.016) · 104 17± 4 3± 2

CCD D
Exp (3.3± 0.4) · 104 5.5± 1.3 (5± 2) · 10−4

Obs (3.210± 0.018) · 104 10± 3 1± 1

All
Exp (1.1± 0.8) · 105 15± 2 (1.4± 0.3) · 10−3

Obs (1.062± 0.003) · 105 44± 7 5± 2

Table D.11: Isolated single-pixel counts after masking for B2. ”Exp” values come from the Poisson mean
fitted to the 1 e− peak; ”Obs” are the data. All CCDs exhibit a significant excess at 2 e− and 3 e−.

CCDs
p {11} {12} {13} {111} {112}

[100] [10−3] [10−7] [10−3] [10−7]

A
Exp 7± 2 1.1± 0.5 1.0± 0.6 2.1± 0.9 3.0± 1.7
Obs 5± 2[25] 0± 0 0± 0 0± 0 0± 0

B
Exp 5± 2 0.5± 0.3 0.4± 0.3 1.0± 0.5 1.3± 0.8
Obs 6± 2[18] 0± 0 0± 0 0± 0 0± 0

C
Exp 7± 2 0.9± 0.4 0.9± 0.5 1.9± 0.9 2.8± 1.7
Obs 5± 2[26] 0± 0 0± 0 0± 0 0± 0

D
Exp 10± 2 1.6± 0.6 1.8± 0.8 3.3± 1.2 6± 3
Obs 13± 4[36] 0± 0 0± 0 0± 0 0± 0

All
Exp 29± 4 4.0± 0.9 4.0± 1.2 8.4± 1.8 13± 4
Obs 29± 6[105] 0± 0 0± 0 0± 0 0± 0

Table D.12: Expected (Exp) and observed (Obs) counts for multi-pixel patterns in each CCD of the B2
dataset. Results are shown in the format x±δx [N ], where x±δx refers to the expected or measured counts
in rows, and N is the total number of patterns detected over all directions. Columns whose headings
contain a power of ten indicate a scale factor: multiply every entry in that column by the bracketed factor
to obtain the absolute count. Each pattern symbol implicitly includes all charge permutations of the same
topology.
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D.2.3 Dataset B3 (2024-11-19)

Pattern {1} {2} {3}

CCD A
Exp (3.5± 0.4) · 104 5.2± 1.3 (5.0± 1.9) · 10−4

Obs (3.424± 0.019) · 104 16± 4 4± 2

CCD B
Exp (2.8± 0.4) · 104 3.3± 1.0 (2.6± 1.2) · 10−4

Obs (2.754± 0.017) · 104 8± 3 2± 1

CCD C
Exp (3.3± 0.4) · 104 4.9± 1.2 (4.7± 1.8) · 10−4

Obs (3.129± 0.018) · 104 23± 5 5± 2

CCD D
Exp (4.3± 0.5) · 104 7.1± 1.5 (8± 3) · 10−4

Obs (4.09± 0.02) · 104 6± 2 0± 0

All
Exp (1.4± 0.9) · 105 21± 3 (2.0± 0.4) · 10−3

Obs (1.339± 0.012) · 105 53± 7 11± 3

Table D.13: Isolated single-pixel counts after masking for B3. ”Exp” values come from the Poisson mean
fitted to the 1 e− peak; ”Obs” are the data. All CCDs exhibit a significant excess at 2 e− and 3 e−.

CCDs
p {11} {12} {13} {111} {112}

[100] [10−3] [10−7] [10−3] [10−7]

A
Exp 10± 2 1.5± 0.5 1.4± 0.6 2.9± 1.1 4± 2
Obs 9± 3[34] 1± 1 0± 0 0± 0 0± 0

B
Exp 6.3± 1.9 0.7± 0.3 0.6± 0.4 1.5± 0.7 1.8± 1.1
Obs 9± 3[29] 0± 0 1(col)± 1 0± 0 0± 0

C
Exp 9± 2 1.4± 0.5 1.4± 0.7 2.8± 1.0 4± 2
Obs 10± 3[33] 0± 0 0± 0 0± 0 0± 0

D
Exp 14± 3 2.2± 0.7 2.5± 1.1 4.5± 1.5 9± 4
Obs 12± 3[47] 0± 0 1± 1 0± 0 0± 0

All
Exp 39± 5 5.7± 1.1 5.7± 1.5 12± 2 19± 5
Obs 40± 6[143] 1± 1 1± 1 0± 0 0± 0

Table D.14: Expected (Exp) and observed (Obs) counts for multi-pixel patterns in each CCD of the B3
dataset. Results are shown in the format x±δx [N ], where x±δx refers to the expected or measured counts
in rows, and N is the total number of patterns detected over all directions. Columns whose headings
contain a power of ten indicate a scale factor: multiply every entry in that column by the bracketed factor
to obtain the absolute count. Each pattern symbol implicitly includes all charge permutations of the same
topology.
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D.2.4 Dataset B4 (2024-12-17)

Pattern {1} {2} {3}

CCD A
Exp (2.6± 0.3) · 104 3.8± 0.9 (3.7± 1.4) · 10−4

Obs (2.575± 0.016) · 104 9± 3 1± 1

CCD B
Exp (2.1± 0.3) · 104 2.4± 0.7 (1.9± 0.9) · 10−4

Obs (1.985± 0.014) · 104 6± 2 0± 0

CCD C
Exp (2.2± 0.3) · 104 3.0± 0.8 (2.9± 1.1) · 10−4

Obs (2.132± 0.015) · 104 8± 3 2± 1

CCD D
Exp (3.1± 0.3) · 104 5.4± 1.1 (6.2± 1.8) · 10−4

Obs (2.912± 0.017) · 104 10± 3 0± 0

All
Exp (1.00± 0.06) · 105 14.6± 1.8 (1.5± 0.3) · 10−3

Obs (9.500± 0.001) · 104 33± 6 3± 2

Table D.15: Isolated single-pixel counts after masking for B4. ”Exp” values come from the Poisson mean
fitted to the 1 e− peak; ”Obs” are the data. All CCDs exhibit a significant excess at 2 e− and 3 e−.

CCDs
p {11} {12} {13} {111} {112}

[100] [10−3] [10−7] [10−3] [10−7]

A
Exp 7.1± 1.8 1.0± 0.4 1.0± 0.5 2.1± 0.8 3.1± 1.6
Obs 5± 2[28] 0± 0 0± 0 0± 0 0± 0

B
Exp 4.6± 1.5 0.5± 0.3 0.4± 0.3 1.1± 0.5 1.3± 0.9
Obs 4± 2[10] 0± 0 0± 0 0± 0 0± 0

C
Exp 5.7± 1.4 0.8± 0.3 0.7± 0.4 1.6± 0.6 2.5± 1.3
Obs 7± 3[17] 0± 0 0± 0 0± 0 0± 0

D
Exp 9.5± 1.9 1.6± 0.5 1.9± 0.7 3.3± 0.98 6± 2
Obs 13± 4[45] 0± 0 0± 0 0± 0 0± 0

All
Exp 27± 3 4.0± 0.7 4.0± 1.0 8.2± 1.5 13± 3
Obs 29± 5[100] 0± 0 0± 0 0± 0 0± 0

Table D.16: Expected (Exp) and observed (Obs) counts for multi-pixel patterns in each CCD of the B4
dataset. Results are shown in the format x±δx [N ], where x±δx refers to the expected or measured counts
in rows, and N is the total number of patterns detected over all directions. Columns whose headings
contain a power of ten indicate a scale factor: multiply every entry in that column by the bracketed factor
to obtain the absolute count. Each pattern symbol implicitly includes all charge permutations of the same
topology.



Appendix E

Data Selection and Pattern Identification Scripts

Tis appendix summarizes the Python scripts developed for the selection of low-energy events, masking, and
pattern identification in CCD images from the DAMIC-M experiment. These tools allow the identification
of instrumental artifacts, estimation of residual backgrounds, and classification of charge patterns.

All scripts are publicly available at: https://github.com/elenamruc/dataselectionCCDs.git
The repository is organized as follows:

• data selection masks/: Implements pixel-level masks to remove instrumental backgrounds such
as hot columns, charge transfer inefficiency (CTI), overdense regions, and high multiplicity areas.
A summary script computes the residual dark current and overall masking efficiency.

• pattern identification and efficiencies/: Detects isolated single- and multi-pixel patterns in
masked images using CDF-based scoring. Also includes scripts to compute recall, misidentification,
and pattern expectations from Poisson statistics.

– diffusion probabilities/: Contains a Monte Carlo simulator to compute the diffusion proba-
bilities pdiff(q → p), based on a physics-motivated charge diffusion model. Used to correct the
expected pattern distributions.

Most scripts can be executed with a command like:

python3 pattern_identification.py -f image1.fits image2.fits ...

Optional parameters are documented within each script.
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Acronyms

ΛCDM Lambda Cold Dark Matter. 96

ADC Analog-to-Digital Converter. 5, 96
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