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Challenges in assessing Fire Weather
changes in a warming climate
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Joaquín Bedia5, Francesca Di Giuseppe6, Robert J. H. Dunn7, Sixto Herrera5, Antonello Provenzale8,9,
Yann Quilcaille10, Miguel Ángel Torres-Vázquez2,11 & Marco Turco2

TheCanadian FireWeather Index (FWI), widely used to assesswildfire danger, typically relies on noon-
specific meteorological data. However, climate models often provide only daily aggregated values,
posing a challenge for accurate FWI calculations.We evaluated daily approximations for FWI95d—the
annual count of extreme fire-weather days—against the standard noon-based method (1980–2023).
Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44
years). In contrast, daily approximations tend to overestimate these trends by 5–10%, with
combinations involvingminimum relative humidity showing the largest divergences. Globally, up to 15
million km²—particularly in the western United States, southern Africa, and parts of Asia—exhibit
significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological
data in future climatemodel intercomparison projects to enhance FWI accuracy, and (ii) adopting daily
mean approximations as the least-biased alternative if noon-specific data are unavailable.

The Canadian Fire Weather Index (FWI) is one of the most widely used
indicators for evaluating how climatic and meteorological conditions
influence wildfire spread once ignition occurs1,2. Relying solely on meteor-
ological inputs—2-meter air temperature, 2-meter relative humidity, 24-
hour precipitation, and 10-meter wind speed—the FWI was calibrated for
fire weather conditions at the point of maximum air temperature. The FWI
formulation uses meteorological data recorded at local noon, as it is
intended to represent fire danger at its midafternoon peak (around 16:00);
this timingwas chosen because noonweather conditions show the strongest
correlation with fine fuel moisture levels and fire activity observed later in
the day3. However, noon-specific observations are often unavailable in cli-
mate model outputs commonly shared through the Earth System Grid
Federation (ESGF; https://esgf.llnl.gov/; last accessed 16 January 2025). As a
result, researchers have relied on approximations using daily-averaged
meteorological data4.

ref. 5 first demonstrated systematic biases in FWI when using daily
means for the Iberian Peninsula, advising the use of noon-specific data for
climate projections. ref. 6 extended this toEurope and found that combining

maximum air temperature and minimum relative humidity was reliable in
representing fire danger. More recently, ref. 7 produce a global fire weather
index dataset based on simulations performed under the Coupled Model
Intercomparison Project Phase 6 (CMIP6) and provided sensitivity analysis
of fire weather indices to relative humidity proxies, comparing future pro-
jections of the FWI when using either minimum ormean relative humidity
values, as derived from global climate models. Their findings indicated that
replacing minimum relative humidity with mean relative humidity con-
sistently reduced FWI during fire seasons, regardless of the time period
(1994–2014 or 2081–2100). This suggests that the choice of humiditymetric
may not drastically alter relative changes in FWI over time. However, they
donot assess the influenceof other approximations (e.g.,meanormaximum
temperature instead of noon values) and do not check for differences in
trend. As we will see, the differences introduced by daily approximations
may not be constant but accumulate over time, leading to overestimated
projections of future fire weather danger. Thus, relatively simple andwidely
used methods for future projections, like the delta method, cannot fully
compensate for these differences because it corrects for the mean biases but
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does not account for diverging trends. That is, it remains still unclear how
much deviations the approximations based on daily values may introduce.

Answering this question could have significant implications for esti-
mates of changes in landscape flammability, underpinning a substantial
body of recent research (e.g., refs. 2,7–9). This is particularly relevant as
global analyses indicate that high FWI conditions have become increasingly
frequent, prolonged, and severe under ongoing greenhouse gas emissions10.

Most studies analysing the projected changes under anthropogenic
climate forcings have relied on daily aggregated variables, likely modifying
the expected trends. Another concern is that, in the absence of a consensus
on the best approach, many studies have adopted different methodological
approaches (e.g., substituting air temperature at local noon with maximum
ormeandaily air temperature), further complicating reproducibility and the
comparison of results.

Themain aimof this study is to quantify the discrepancy betweenFWI
calculated fromdaily-averaged versus noon-specific values and to assess the
implications this might have. Given that sub-daily data remain sparse in
many climate simulations, we address this question through a sensitivity
analysis using a reanalysis dataset. Reanalysis datasets integrate observations
into atmospheric models to produce physically consistent estimates of cli-
mate variables with both spatial and temporal continuity11. Such datasets
have been widely used in recent fire weather research (e.g., refs. 2,12–14).
Among these resources, the Copernicus Emergency Management Service
FWI dataset15—derived from the ERA5 reanalysis16 and developed by the
European Centre for Medium-Range Weather Forecasts (ECMWF)—has
become a benchmark for evaluating fire danger trends (see e.g., ref. 2, and
references therein).

In this analysis, we calculate the FWI globally from 1980 to 2023 using
various daily approximations and compare these results with the FWI
dataset from ref. 15, which is based on sub-daily, noon-specific values. Our
goal is to determine whether trends derived from approximate inputs differ
significantly from those based on noon-specific inputs, as well as to identify
approximation strategies that minimize these discrepancies. We assume
that ourfindings can provide a ballpark estimate of the error associatedwith
climate changeprojections.Therefore, this analysiswill inform the reliability
and limitations of future global FWI assessments that rely on climatemodel
outputs lacking midday-specific meteorological data.

Results and discussion
We compare the FireWeather Index (FWI) dataset (version 4.1)15 that uses
the original FWI definition against four alternative combinations based on
daily variables commonly available from climate models—maximum and
mean daily air temperature, mean and minimum daily relative humidity,
daily precipitation, and daily mean wind speed—to approximate the FWI.
Using these daily variables, we generate four different input combinations
(C1 to C4), as summarized in Table 1.

The global trend analysis (Fig. 1) shows that the baseline FWI95d (C0)
increased by 2.65 days per decade between 1980 and 2023. Over 44 years,
that amounts to 11.66 additional days, representing a ~ 65% rise relative to
the global average of 18 extreme fire weather days per year. These results

align with the findings of ref. 13 and of ref. 2, who similarly observed global
increases in extreme fire weather. Specifically, ref. 13 identified decreasing
relative humidity and increasing air temperature as key drivers of these
trends.

Fig. 1 also highlights that none of thedaily approximations (C1–C4; see
Table 1) preserve the C0 trend exactly, and all combinations overestimate
the trend, ranging from 2.86 to 3.06 days per decade. That equates to an
approximate increase of 70–75%over the averageFWI95dvalue (Fig. 1a). In
Fig. 1b, we first compute the difference between the FWI95d time series
obtainedwith each daily approximation (C1–C4) and the baseline (C0) and
then assess the trend in these difference series. The resulting trends—ran-
ging from 0.22 to 0.39 days per decade—are statistically significant in all
cases, indicating that the daily approximations do not preserve the baseline
trends and systematically overestimate them.

These results highlight an important caveat for projections of future
FWI based on daily-mean meteorological data, as often used in climate
models. The reliance on daily averages rather than noon-specific meteor-
ological inputs tends to overestimate the rateof increase inFWI95dglobally.
It is particularly concerning that combination C4, which uses maximum
daily air temperature, minimum daily relative humidity, daily mean wind
speed, and daily precipitation, performs the worst among all combinations.
C4 is widely accepted as the default approach when subdaily data are
unavailable (e.g., refs. 6,7,17). However, Fig. 1 shows that C4 not only
overestimates the trend the most but also introduces the largest deviation
from the baseline. These findings underscore the urgency of reassessing the
methodologies used to approximate the FWI95d when only daily data are
available. For instance, reliance on C4 could result in projections that sig-
nificantly overstate the risks of future extreme fireweather, emphasizing the
need to utilize noon-specific meteorological data wherever possible to
improve the accuracy of fire weather projections.

While we later discuss our recommendations in detail, we next explore
the spatial differences in trends at the grid scale to better understand why
these discrepancies arise and where they are most pronounced.

Fig. 2 shows the trends in the FWI95d based on our five combinations
(C0-C4). The spatial patterns of the trends are notably similar across all
combinations and align with previous studies (e.g., refs. 2,12,13), that
identified increasing fire weather in several regions globally.

Specifically, the western United States shows substantial increases in
FWI (Fig. 2), underscoring escalating fire weather conditions and wildfire
activity in that region -concerns that have been tragically highlighted by
recent large-scale fires such as those in the Los Angeles area in January
202518–22. Southern and Central Europe, particularly France, Spain, and
Portugal, also exhibit pronounced positive trends23,24. Similarly, Central
and South America, especially Brazil, display significant positive trends2.
Africa shows an increase in fire weather, particularly in the central and
southern areas. Additionally, significant positive trends are observed in
extended areas in Asia, including parts of Turkey and the Middle East. By
contrast, India and other parts of South Asia exhibit negative trends, likely
tied to increased atmospheric moisture25 and irrigation patterns26.

Although the trends in Fig. 2 appear very similar visually, careful
analysis is needed to confirm whether daily combinations conserve or alter
the reference trend. Fig. 3 shows the trend differences between the four daily
approximations (C1–C4) and the baseline (C0) to make it easier to detect
divergences in trends. As expected, this highlights regions most sensitive to
approximations, revealing potential biases when only daily data are used.

Most grid points do not exhibit statistically significant trends in the
differences from the C0 baseline (Fig. 3). In general, daily approximations
provide reliable FWI95d trends inmany regions. Significant positive trends,
where the proxy combinations exceed the baseline, are predominantly
observed in the western U.S., southern Africa, localized areas in South
America, central Africa, the Iberian Peninsula, western Asia, and eastern
Australia. In C3 and C4, additional positive trends appear in western
Canada. Few areas show negative trend differences, and these are generally
scattered.The extent of these regions varies across combinations (Table2). It

Table 1 | Approaches to estimate the FWI

Comb. Temp. (°C) R. Hum. (%) Precip. (mm) W. vel.
(km h⁻¹)

C0 at noon at noon 24 h* at noon

C1 DM DM 24 h DM

C2 Max DM 24 h DM

C3 DM Min 24 h DM

C4 Max Min 24 h DM

C0 refers to the baseline approach of ref. 15 using the original FWI definition. C1-C4 are the daily-
data alternatives replacing noon values. DM daily mean, Max/Min daily maximum/minimum.
*Precipitation is the 24 h accumulation ending at noon for C0 and ending at 00 UTC for the other
combinations.
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is lower for C1 and C2, which use mean relative humidity, but higher in C3
and C4, which incorporate minimum relative humidity (Table 2).

Based on the results, relative humidity emerges as pivotal in under-
standing FWI trends when using daily proxies. Figure. 4 and S2, which
isolate each substituted variable, confirm that substituting relative humidity
exerts the strongest effect on FWI trends. In contrast, air temperature, wind
speed, or precipitation have comparatively minor impacts (Figure. S2).
Notably, using mean or minimum RH leads to the largest deviations from
C0 in western U.S., southern Africa, eastern parts of central Africa, and
eastern Australia (Fig. 4).

To better understand why relative humidity (RH) plays such a
central role in determining whether FWI trends are preserved when
using approximated RH inputs, we first examine the changes in the key
atmospheric variables that drive RH: air temperature and absolute
humidity.

As highlighted by ref. 13, the increasing FWI95d globally is primarily
driven by rising air temperatures and declining relative humidity. However,
although air temperature (T) and RH each influence fire weather, they are
not independent: as T increases, RH will decrease unless dew point tem-
perature (Td) also rises. Fig. 5 illustrates spatial T and Td trends, showing
where RH becomes disproportionately influential in FWI95d. Trends in T
are nearly uniform globally, whereas Td trends exhibit considerable spatial
heterogeneity. Inparticular, Tddecreases significantly in thewesternUnited
States, southern Africa, South America, and parts of Australia.

These decreases are likely driven by a combination of processes
reflecting the complex interplay between regional climate dynamics, land
use, and the water cycle (e.g., refs. 13,27–29). In semi-arid areas,
land–atmosphere feedback constrains moisture availability30, while defor-
estation in the Amazon diminishes local evapotranspiration31. Such
decoupling between T and Td results in sharper RH declines, thereby

Fig. 1 | Globally averaged FWI95d time series and
linear trends from 1980 to 2023. a Time series of
FWI95d for different input combinations (C0 to
C4). b Differences in FWI95d trends for daily
approximations (C1 to C4) relative to baseline
(C0). Trend estimates (in days per decade) are
included, with statistical significance indicated
(** for p-value < 0.01).
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amplifying FWI’s sensitivity to humidity changes. Likely, in regions where
Td is decreasing, RH becomes more sensitive to even minor fluctuations in
moisture availability, exacerbating its influence on FWI trends. Such con-
ditions not only amplify the severity of fire weather but also underscore the
potential for RH proxies, such as daily mean or minimum values, to mis-
represent the actual fire weather dynamics when noon-specific data are
unavailable.

To investigate more directly how RH approximations (mean and
minimum RH) differ from noon RH during extreme fire danger conditions,
we analyse the trends in their differences over FWI95 days (Fig. 6). For each
year, we identify days when the FWI exceeds its 95th percentile, compute
corresponding RH values (RHnoon, RHmean, and RHmin), and then cal-
culate annual means to evaluate their trends over time. Interestingly, in
regions where approximated RH values fail to preserve FWI trends—such as
western North America and southeastern Australia—both RHmean and
RHmin exhibit steeper negative trends than RHnoon during extreme fire
weather days. Despite their different climatological baselines (i.e., RHmean >
RHnoon > RHmin), these approximations yield similarly biased FWI trends
because of their sharper declines relative to RHnoon.

Moreover, the trend differential between RHmin and RHnoon is
locally even greater than betweenRHmean andRHnoon. This explainswhy
combinationsC3andC4,whichuseRHmin, produce largerdeviations from
the reference FWI trend than C1 and C2 (which use RHmean). The key
driver of these differences is not the absoluteRHvalues but rather their trend
differentials, amplified by the nonlinear dependence of FWI on RH, parti-
cularly in increasingly dry and warm conditions. Minimum RH typically

occurs during thewarmest anddriest part of theday,when the atmosphere’s
capacity to hold moisture is greatest. In regions experiencing declining
absolute humidity (i.e., decreasing Td), this effect is magnified, making
afternoon RH minima more sensitive to drying conditions. Consequently,
higher temperatures combined with reduced moisture availability result in
sharper RHmin reductions relative to RHnoon, which occurs earlier in the
day, before peak dryness is reached.

Discussion
In our study, we conducted a comprehensive evaluation of the assumptions
used in Fire Weather Index (FWI) calculations for climate change appli-
cations. Specifically, we assessed the feasibility of approximating noon-
specific FWI inputs using daily-mean meteorological data rather than the
noon-specific data required by the original FWI definition. We focused on
FWI95d, the annual count of days exceeding the local 95th-percentile
threshold, for 1980–2023. By comparing the daily approximations against
the benchmark by ref. 15, we offered a global perspective of differences and
implications for wildfire danger assessment.

Our findings confirm that extreme fire weather is increasing globally:
FWI95d has risen by about 65% since 1980, but daily approximations can
inflate thisfigure by an additional 5–10%.This overestimation indicates that
future climate projections relying ondailymeandatawill likely overestimate
the rate of global rise in extreme fire weather conditions. This has important
implications for the climatemodelling community. For future globalmodel
experiments, such as the forthcoming Coupled Model Intercomparison
ProjectPhase 7 (CMIP7),we strongly recommendmaking a greaternumber
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of key variables available on a sub-daily basis. This would not only enhance
the accuracy of FWI assessments but also improve the reliability of climate
change impact studies across various sectors.

Previous studies generally agree that the best proxies for calculating the
FWI are noon air temperature paired with dailymaximum air temperature,
and noon relative humidity pairedwith dailyminimum relative humidity—
representing the combination we identify as C46,7,17. However, our findings
indicate that this combination leads to the highest global overestimation of
FWI95d trends, with a 75% increase compared to 65% for the baseline
calculation (C0). Moreover, C4 shows the largest area of statistically sig-
nificant differences, covering approximately 15 million km². Similarly, the
combination involving minimum relative humidity (C3) also tends to
overestimate FWI trendsmore than those based onmean relative humidity.
Considering these results we recommend the use of combinationC1 (which
utilizes daily mean values of air temperature, relative humidity, precipita-
tion, and wind speed) for climate change assessments when noon-specific
variables are unavailable. An additional advantage ofC1 is that it enables the
use of a larger number of climatemodel simulations, as dailymean variables
are more commonly available across models and scenarios.

Our findings also highlight the critical role of relative humidity for fire
weather trends, especially in regions experiencing sharply declining atmo-
spheric moisture. In such areas, inaccuracies in RH proxies translate directly
into exaggerated FWI estimates. Future research should delve deeper into
regional-scale dynamics—especially in data-scarce regions like Africa and
South America—to refine local wildfire danger assessments. We acknowl-
edge that our analysis relies on ERA5 reanalysis data over a relatively short
period (1980–2023). Extending the analysis further back would require
substantial reliance on pre-satellite era data, raising additional concerns

about data homogeneity and reliability. Additionally, ERA5 itself has known
limitations, especially in areas with sparse observational coverage, potentially
introducing uncertainty into trend estimations32. Nonetheless, several key
findings from our study appear robust and generalizable beyond these
limitations. For instance, the impact of daily approximations on FWI trends
is demonstrably significant, and our analysis clearly indicates that combi-
nation C4 (maximum temperature with minimum RH) systematically
produces larger trend biases compared to C1 (daily mean values). Although
these conclusions are influenced by pronounced changes in specific regions,
we find no compelling evidence to favour C4 over C1, particularly as
observed trends in temperature (T) and dew point temperature (Td) are
broadly consistent with other independent assessments10. Furthermore, the
enhanced sensitivity of RH to changes in Td and T in regions with declining
absolute humidity is not specific to ERA5 alone. Future studies using longer
or alternative observational (e.g., the global sub-daily station dataset
HadISD33) and reanalysis datasets (e.g., MERRA-234 and JRA-3Q35) would
further test the robustness and broader applicability of our conclusions.
Additionally, our focus here on the Canadian Fire Weather Index (FWI) is
due to its widespread use in both academic research and operational fire-
management systems. However, the FWI was originally developed for boreal
forests in Canada and may not always be the most appropriate metric for
regional studies elsewhere. Other indices, such as the McArthur Forest Fire
Danger Index36 or the Fosberg Fire Weather Index37, may be preferred and
could exhibit different sensitivities to sub-daily meteorological proxies.
Although FWI may not optimally capture fire danger in all regions due to
local ecological and climatic variability, its widespread use and standardized
formulation make it a practical and consistent tool for assessing fire weather
trends globally. Future research should investigate whether proxy-induced
biases like those documented here also occur in other fire-danger indicators
and across diverse ecosystems.

Overall, we underscore the need for caution when using daily approx-
imations for FWI calculations in climate change studies. By highlighting the
factors and regions where discrepancies occur, this work contributes toward
more accurate modelling of wildfire danger in a changing climate.

Methods
We obtain the Fire Weather Index (FWI) dataset (version 4.1)15 from the
Copernicus EmergencyManagement Service, which provides global data at
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Table 2 | Areas (million km²) with statistically significant
(p < 0.05) trend differences from C0

Combination Significant area (M·km²)

C1 9.76

C2 9.44

C3 11.65

C4 14.82
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a spatial resolution of 0.25° × 0.25° with daily temporal resolution, available
at https://ewds.climate.copernicus.eu/datasets/cems-fire-historical-v1 (last
accessed 7 June 2025).

To obtain the daily air temperature, relative humidity, precipitation
and wind speed values referenced in Table 1, we processed hourly ERA5
data to compute daily minimum, mean, and maximum values. Specifi-
cally, for wind speed, we (i) downloaded the hourly 10-meter zonal and
meridional wind components (u10 and v10, respectively), and (ii) cal-
culated the daily mean wind speed by averaging the square root of the
sum of the squared hourly u10 and v10 components. For relative
humidity (RH), we (i) downloaded the hourly 2-meter air temperature,
and 2-meter dew point temperature, and (ii) calculated RH using the
Magnus formula38.

Then, we computed the FWI from these daily approximationswith the
fireDanger R package (v1.1.0; available at https://github.com/
SantanderMetGroup/fireDanger; last accessed 7 June 2025). To validate
this method for calculating the FWI, we compared our results -obtained
using the same input drivers as ref. 15- against the original FWI dataset of
ref. 15. The results showed no discernible differences (see Figure. S1),
confirming the reliability of this algorithm for estimating the FWI.

We calculated the FWI starting from 1979 but excluded that year to
minimize spin-up effects39, ensuring that initial conditions did not bias our
results. Consequently, our analysis covered the 44-year period from 1980 to
2023. For intercomparison at a resolution typical of global climate models,
we bilinearly remapped the data from 0.25° to a 1° x 1° grid, consistent with
the IPCC AR6 report (https://github.com/SantanderMetGroup/ATLAS/
blob/main/reference-grids/; last accessed 7 June 2025). Comparison tests
(Figure. S1) confirmed this remapping does not alter our assessment. Fol-
lowing the approach of ref. 7, we apply a mask based on the ESA Climate
Change Initiative land cover dataset from 201640,41. Grid cells with >80%
bare areas, water, snow/ice, or sparse vegetation are excluded as areas with
infrequent burning (shown in white in subsequent maps). To support the
research community, we provide two NetCDF datasets available at https://
zenodo.org/records/14964973. The first dataset comprises a mask that
delineates regions characterized by infrequent fire occurrences at a 1°
resolution. The second dataset consists of a mask designed to identify areas
where trend biases are present, based on daily approximationmethods. The
global spatialmean serieswas obtained through a spatially weighted average
based on the cosine of the latitude, which accounts for the decreasing area of
grid cells toward the poles.
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We assess trends in extreme fire weather by calculating the FWI95d,
defined as the annual number of days when fire weather exceeds the 95th
percentile of all daily observations for 1980–2023. This metric is chosen
because (i) FWI95d focuses on periods of high fire danger when fire growth
is more likely (e.g., ref. 42); (ii) many studies have adopted this metric (e.g.,
refs. 2,7,17); and (iii) as a quantile-based metric, FWI95d minimizes biases
in absolute FWI values, enabling amore reliable assessment of trends when
using proxies.

We calculated time series slopes via the Theil–Sen estimator43,44. We
then used the modified Mann-Kendall test for serially correlated data,
including the variance correction proposed by Hamed and Rao45. All tests
employed the mmkh function (modifiedmk package46) in R47. We applied
the False Discovery Rate (FDR) method48 for multiple testing corrections
across the spatial grid.

Todeterminewhether the trenddifferences between eachcombination
(C1, C2, C3, C4) and the reference dataset (C0) were statistically significant,
we followed the same procedure used for the individual time series. Speci-
fically, we (1) computed the difference time series (e.g., C1 – C0), (2) esti-
mated the trend of this difference series using the Theil–Sen estimator, and
(3) applied themodifiedMann–Kendall test with the Hamed–Rao variance
correction to account for serial correlation. We again adjusted for multiple
hypothesis testing using the False Discovery Rate procedure. This approach
is consistent with ref. 49, where a difference-based test effectively removes
the large-scale variability common to both datasets, making it easier to
detect subtle differences between their respective trends. In short, we use the
same trend estimation (Theil–Sen) and significance assessment (modified
Mann–Kendall) for the difference series as we do for the original series. This
ensures consistency and robustness in how we quantify and test the sig-
nificance of the observed trend differences.

Data availability
The datasets used in this study are publicly available. ERA5 hourly variables
canbe accessedvia theCopernicusClimateData Store at https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels. Historical
Fire Weather Index data, provided by the Copernicus Emergency Man-
agement Service, is available at https://ewds.climate.copernicus.eu/datasets/
cems-fire-historical-v1. The global 1 × 1 land-sea mask grid used in this
study is available on GitHub at https://github.com/SantanderMetGroup/
ATLAS/raw/main/reference-grids/land_sea_mask_1degree.nc4. Global
land cover data consistent with the CCI 1992–2015 map series is accessible
at https://www.esa-landcover-cci.org/?q=node/197. The same meteor-
ological forcingsused to calculate theFWI inVitolo et al. (2020) are available
upon request. While this dataset is not publicly accessible, it is not required
to reproduce the main results of this study. Additionally, the code used for
the analyses in this study is available upon request from the corresponding
author.
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