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ABSTRACT
This paper introduces a numerical method, based on a front-fixing transformation together with a combination
of the explicit finite difference schemes with the quadrature rules, to solve the Fisher-Kolmogorov, Petrovsky and
Piskunov (KPP) population model that incorporates the combined complexities of nonlocal diffusion and free
boundaries. The model utilizes nonlocal diffusion to capture intricate, potentially long-range, dispersal patterns
of species. We propose two-stage front-fixing transformation that effectively maps the original integro-differential
equation with two moving boundaries into a partial integro-differential equation on a fixed unit domain. The
transformed system, which now includes an advection term and a spatially-scaled nonlocal integral, is then solved
using a comparative analysis of several explicit finite difference schemes (explicit Euler scheme, upwind, and Lax–
Wendroff) for the differential operator, coupledwith Simpson’s rule for numerical integration. Additionally, this work
contributes to understanding accelerated spreading rates, particularly for fat-tailed kernels, by numerically validating
theoretical predictions and providing new insights into how kernel properties influence population dynamics.
The proposed method demonstrates considerable flexibility and accuracy across various kernel types and growth
scenarios, confirming its robustness and computational efficiency, which is an important prerequisite for future
extensions to more complex problems.

1 Introduction

The Fisher-KPP model [1, 2] is a well-established mathematical framework for studying population dynamics [3–8].
Traditionally, it assumes local diffusion, where the spread of individuals occurs only over short distances. However, real-
world dispersal often involves occasional long-distance movements facilitated by mechanisms like wind, water currents,
or animal vectors, which are not captured by local models. Nonlocal diffusion provides a more versatile framework to
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incorporate these significant dispersal jumps, which can fundamentally alter population spread rates and spatial dynamics
[9]. To address this, the Fisher-KPP equation has been extended to include nonlocal diffusion, allowing for more realistic
population movement patterns [10–12].
An essential aspect of population dynamics that further complicates analysis is the presence of free boundaries, which
represent the expanding or contracting edges of a habitat occupied by a species. For instance, this canmodel the expansion
of an invasive species into new territory, or the contraction of a species’ range due to climate change or habitat degradation
[13, 14]. In the ecological context, the expansion of an invasive species into new territory can be modeled as a moving front
along a river, coastline, or ecological corridor [15]. Conversely, the contraction of a species’ range due to climate change
or habitat degradation can also be captured through the retreat of these boundaries. Additionally, in the epidemiological
context, the moving boundary represents the transition between infected and uninfected zones in simulating the spread
of infectious diseases along migratory routes [16]. In the context of climate change, suitable habitats for many species
are shifting in space and moving boundary models allow researchers to assess whether populations can track these
changes or risk becoming trapped in suboptimal conditions [17]. These boundaries evolve based on population density and
dispersal rates, introducing non-trivial conditions that require careful treatment to capture the interplay between diffusion
and boundary movement. Similar complexities in modeling moving boundaries have been addressed in various fields,
including polymer swelling [18], American option pricing [19, 20], drug dissolution and release [21], etc. Furthermore,
recent advances in the study of Stefan-type problems with parabolic–logarithmic behavior illustrate the mathematical
intricacies and practical relevance of handling such free-boundary conditions [22].
The interplay of nonlocal diffusion and boundary dynamics offers a versatile framework to model real-world population
distributions more accurately, surpassing the constraints of local diffusion alone. In [23], a nonlocal diffusion model with
free boundaries, building on the local diffusion framework of Du and Lin [24], was introduced. This model extends the
Fisher-KPP equation to nonlocal diffusion with evolving boundaries, offering unique insights into population spread
dynamics. Cao et al. [23] established a spreading-vanishing dichotomy, revealing distinct outcomes based on initial
conditions and dispersal properties. Notably, the criteria for spreading versus vanishing in the nonlocal model deviate
significantly from those in the local diffusion scenario outlined in [24].
Building on this, refs. [25, 26] conducted further studies on nonlocal diffusion models with free boundaries, emphasizing
the spreading–vanishing dichotomy and focusing on the spread rate’s dependence on the kernel function. They identified
threshold conditions that result in either linear or accelerated spreading, providing a more nuanced understanding of
population expansion under nonlocal effects. These works advance prior findings by defining explicit kernel function
criteria that dictate whether spreading occurs at a finite or accelerated rate.
In this paper, we build upon the foundational studies by [23, 25, 26] by developing efficient numerical methods tailored
for nonlocal diffusion models with free boundaries. To handle the challenges associated with moving boundaries, we
introduce a front-fixing (FF) approach based on the Landau transform [27], which maps the domain with free boundaries
onto a fixed domain. This method, recently applied to local diffusion models with free boundary [28], facilitates the use
of well-established numerical techniques, enabling more efficient and accurate solutions.
FF methods have proven effective in addressing moving boundary problems in various contexts, including two-phase free
boundary problems in finite domains [29], diffusion processes involving penetrants in rubber materials [30], migration
phenomena with nonlinear boundary conditions [31], swelling solvent in a glassy polymer [22], American put options
in financial mathematics [32, 33] and freeze-drying [34]. These approaches typically involve transforming the original
problem into a fixed-domain formulation, simplifying the numerical implementation, and enhancing stability and
accuracy. Once the domain is fixed, some numerical methods could be considered for spatial discretization [35, 36].
While various numerical techniques exist for aspects of our problem, they often address either free boundaries or nonlocal
diffusion in isolation. For free-boundary PDE problems without nonlocal terms, traditional approaches apart from the
described about FF transformation include front-tracking methods [28, 37], level set methods [38, 39], and particle-
based methods like random walks [40]. Separately, for nonlocal diffusion problems, typically on fixed domains, recent
numerical advancements include exponential time-differencing schemes [41], specialized finite element methods [42],
and mesh-free optimization-based approaches [43]. However, the simultaneous presence of evolving free boundaries and
a nonlocal integral operator poses a significant combined challenge, complicating the direct application or extension of
many existing methods.
Inspired by these advancements in handlingmoving boundaries and nonlocal operators individually, thiswork specifically
focuses on the challenge presented by their combination. We adapt the FF technique to the more complex framework of
nonlocal diffusionwith free boundaries. This particular adaptation, to our knowledge, has not been extensively explored or
analyzed for this class of Fisher-KPP type models. Our primary aim is to develop and validate a numerical approach that
effectively addresses both the evolving domain and the nonlocal interactions. To this end, after the FF transformation
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maps the problem to a fixed domain, we employ explicit finite difference schemes for its solution. This choice was
motivated by their relative implementation simplicity, which allows us to clearly investigate the stability and accuracy
implications arising from the FF transformation itself, particularly concerning the newly introduced advection term
within the nonlocal context. This advection term presents a challenge: it can lead to numerical instabilities if standard
finite difference schemes, such as the forward-time centered-space (FTCS) scheme, are used. The FTCS scheme, although
simple, is known to be conditionally unstable for advection-dominated problems because it cannot effectively handle the
directional flow of information introduced by the advection term [36]. In particular, the central differencing in space fails
to respect the direction of the advection term, leading to oscillations and instability as the solution propagates.
To overcome these stability issues, we employ upwind and Lax–Wendroff schemes, which are better suited for handling
advection terms. The upwind scheme [44] is designed to respect the direction of information flow, thereby providing a
more stable solution by effectively dampening oscillations in the presence of advection. Thismethod, though slightlymore
diffusive, ensures that the solution remains stable and avoids spurious oscillations that can arise with central differencing.
Alternatively, we also explore the Lax–Wendroff scheme [45], which is a second-order accurate method that offers a
balance between stability and accuracy. This scheme achieves stability by combining the FTCS approach with a correction
term that accounts for the second derivative of the advection term. This modification helps reduce numerical diffusion
while maintaining stability.
The paper is organized as follows. In Section 2, we introduce the Fisher-KPP population model with nonlocal diffusion
and free boundaries, along with the governing partial integro-differential equation (PIDE) and Stefan-like boundary
conditions that describe the system. Section 3 outlines the FF transformation, where we detail the two-stage process
for transforming the domain with free boundaries into a fixed domain. In Section 4, we present the numerical methods
used to solve the transformed system. We describe the explicit finite difference schemes employed for the spatial and
temporal discretization, as well as the Simpson’s quadrature rule for approximating integrals. Section 5 contains numerical
simulations and examples. Finally, Section 6 concludes the paper with a summary of the results and potential directions
for future research.

2 Fisher-KPP Population Model With Nonlocal Diffusion

The 1D Fisher-KPP populationmodel with nonlocal diffusion and free boundaries studied in [23] presents amathematical
framework for understanding population dynamics where species spread in an environment with shifting boundaries.
This model builds upon the classical Fisher-KPP equation, introducing nonlocal diffusion, which reflects more complex
dispersal mechanisms seen in nature. The key equation governing this system is

𝜕𝑡𝑢 = 𝛼2

(
∫

ℎ(𝑡)

𝑔(𝑡)

𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑦)𝑑𝑦 − 𝑢(𝑡, 𝑥)

)
+ 𝑓(𝑢), 𝑡 > 0, 𝑔(𝑡) < 𝑥 < ℎ(𝑡). (1)

Here, 𝑢(𝑡, 𝑥) represents the population density at time 𝑡 and location 𝑥 ∈ ℝ, strictly positive parameter 𝛼2 is the nonlocal
diffusion coefficient, and the terms 𝑔(𝑡) and ℎ(𝑡) define the moving boundaries of the population range. The function
𝐽(𝑥 − 𝑦) represents the probability density that an individual at location 𝑦 will move to location 𝑥. The kernel 𝐽(𝑥 − 𝑦) is
typically assumed to be symmetric, non-negative, and normalized such that:

∫
ℝ

𝐽(𝑥) 𝑑𝑥 = 1.

Hence, the core of the nonlocal dispersal is described by the term𝛼2
(∫ ℎ(𝑡)

𝑔(𝑡)
𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑦)𝑑𝑦 − 𝑢(𝑡, 𝑥)

)
, where the integral

represents the rate at which individuals arrive at location 𝑥 from all other locations 𝑦within the current habitat [𝑔(𝑡), ℎ(𝑡)].
The term−𝑢(𝑡, 𝑥) describes the rate atwhich individuals are leaving location𝑥 to travel to other sites [9]. Thus, the operator(∫ ℎ(𝑡)

𝑔(𝑡)
𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑦)𝑑𝑦 − 𝑢(𝑡, 𝑥)

)
can be viewed as the nonlocal counterpart to the standard Laplacian diffusion operator

𝑢𝑥𝑥, modeling how individuals in a population disperse over space through potentially long-range jumps. This approach
contrasts with classical local diffusion models, where dispersal is limited to immediately neighboring areas.
The growth function 𝑓(𝑢) dictates the local reproduction rate of the population, usually of the logistic type

𝑓(𝑢) = 𝑟𝑢(1 − 𝑢∕𝐾), (2)
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where 𝑟 is the growth rate, and 𝐾 is the carrying capacity. The growth function 𝑓(𝑢) is positive for 𝑢 ∈ (0, 𝐾) and has to
fulfill the following conditions [23, 25]: 𝑓(𝑢) is independent of (𝑡, 𝑥), 𝑓(𝑢)∕𝑢 is strictly decreasing for 𝑢 ∈ ℝ+, moreover,

𝑓(0) = 𝑓(𝐾) = 0; 𝑓′(𝑢) exists, and 𝑓′(0) > 0. (3)

The system is further governed by boundary conditions

𝑢(𝑡, 𝑔(𝑡)) = 𝑢(𝑡, ℎ(𝑡)) = 0, (4)

indicating that the population density at the boundaries is zero, and initial conditions

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑔(0) = −ℎ0, ℎ(0) = ℎ0, ℎ0 > 0; (5)

specifying the initial distribution of the population and the positions of the boundaries at the moment 𝑡 = 0.
The dynamics of the boundaries are described by Stefan-like conditions, which depend on the outward flux of the
population at the boundaries:

𝑑ℎ

𝑑𝑡
= 𝜇 ∫

ℎ(𝑡)

𝑔(𝑡)
∫

+∞

ℎ(𝑡)

𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑥)𝑑𝑦𝑑𝑥, (6)

𝑑𝑔

𝑑𝑡
= −𝜇 ∫

ℎ(𝑡)

𝑔(𝑡)
∫

𝑔(𝑡)

−∞
𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑥)𝑑𝑦𝑑𝑥. (7)

Based on the nature of the integrand function 𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑥) in Equations (6) and (7), we observe that these functions are
independent, consequently, we can write them in the following manner:

𝑑ℎ

𝑑𝑡
=𝜇 ∫

ℎ(𝑡)

𝑔(𝑡)

𝑢(𝑡, 𝑥)

(
∫

+∞

ℎ(𝑡)

𝐽(𝑥 − 𝑦)𝑑𝑦

)
𝑑𝑥, (8)

𝑑𝑔

𝑑𝑡
= − 𝜇 ∫

ℎ(𝑡)

𝑔(𝑡)

𝑢(𝑡, 𝑥)

(
∫

𝑔(𝑡)

−∞
𝐽(𝑥 − 𝑦)𝑑𝑦

)
𝑑𝑥. (9)

These conditions state that the speed at which the habitat boundaries, 𝑔(𝑡) and ℎ(𝑡), move is proportional to the flux
of individuals successfully dispersing across them. The constant 𝜇 represents this proportionality factor. Biologically,
individuals at a location 𝑥 within the habitat [𝑔(𝑡), ℎ(𝑡)] can disperse. The kernel 𝐽(𝑥 − 𝑦) describes the probability
distribution for an individual moving from 𝑥 to 𝑦. Consequently, the inner integral in the boundary conditions represents
the probability that an individual currently at 𝑥 will disperse beyond the existing habitat edge.
As established in [9, 23], not all individuals that disperse into new areas will successfully establish themselves and
contribute to range expansion. Various environmental factors, for instance, resource availability in the newly entered
territory, can limit establishment success. For modeling simplicity, we assume that parameter 𝜇, which encapsulates both
this establishment success rate and the general sensitivity of the boundary to the outward dispersal pressure from the
population, is constant for a given species. Thus, the overall rate of the boundary movement is modeled as proportional
to the total number of individuals effectively expanding the range.
In [23, 25, 26], the long-term behavior of the solution is analyzed through the framework of the spreading–
vanishing dichotomy, yielding several significant results. To contextualize these findings, we recall some key definitions
and theorems.
Theorem 1.2 in [23] asserts that under certain conditions on the initial population range and related parameters, the
population undergoes spreading, meaning:

lim
𝑡→∞

(𝑔(𝑡), ℎ(𝑡)) = ℝ, and 𝑢(𝑡, 𝑥) → 𝑣0 locally uniformly,

where 𝑣0 is the positive steady state of the growth function 𝑓(𝑢).
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Conversely, if the initial population range or other parameters fail to meet these conditions, the population undergoes
vanishing, with the range remaining bounded. Specifically:

lim
𝑡→∞

(𝑔(𝑡), ℎ(𝑡)) = (𝑔∞, ℎ∞), with 𝑢(𝑡, 𝑥) → 0 uniformly for 𝑥 ∈ [𝑔(𝑡), ℎ(𝑡)].

The criteria for determining whether spreading or vanishing occurs are influenced by the initial population range ℎ0, the
growth rate 𝑓′(0) at zero population density, and the amount of the rate 𝜇. These factors interact as follows [23, Theorem
1.3]:
∙ If 𝑓′(0) ≥ 𝛼2, spreading always occurs regardless of other parameters.
∙ If 𝑓′(0) ∈ (0, 𝛼2), there exists a critical value ℎ∗

> 0 such that:
⋅ Spreading occurs if the initial range is large enough, i.e., if ℎ0 ≥ ℎ∗∕2.
⋅ For ℎ0 < ℎ∗∕2, spreading happens only if 𝜇 exceeds a critical value 𝜇∗.

The kernel 𝐽(𝑥 − 𝑦)models the movement of the population from one point to another, and its shape and properties affect
the long-term behavior of the population. If the kernel is localized (i.e., it decays quickly for large distances or has compact
support), the spreading will be slower, as individuals will only influence nearby locations.
The interaction between the growth function 𝑓(𝑢) and the kernel 𝐽(𝑥 − 𝑦) affects the long-term dynamics. The growth
function dictates the reproduction and death rates of the population, while the kernel determines how fast the population
can spread across space. If the kernel 𝐽 allows for fast dispersal, the spreading may occur even for small initial population
ranges, leading to spreading as long as the growth rate 𝑓′(0) is favorable.
In [25], the authors established that if the kernel function satisfies

∫
∞

0

𝑥𝐽(𝑥)𝑑𝑥 < ∞, (10)

then, in the case of spreading, the spreading speed is asymptotically constant and determines the linear rate:

lim
𝑡→∞

ℎ(𝑡)

𝑡
= − lim

𝑡→∞
𝑔(𝑡)

𝑡
= 𝑐0, (11)

where 𝑐0 > 0 is uniquely determined by the kernel and growth parameters. Otherwise, if condition (10) is not fulfilled, the
spreading becomes accelerated, meaning the population expands faster than linearly.
Recent works by Du and Ni [26, 46] examine the phenomenon of accelerated spreading. For a free boundary problem
described by moving boundaries 𝑔(𝑡) and ℎ(𝑡), accelerated spreading implies:

lim
𝑡→∞

ℎ(𝑡)

𝑡
= lim

𝑡→∞
−𝑔(𝑡)

𝑡
= ∞.

Accelerated spreading occurs when the kernel 𝐽(𝑥) does not satisfy the finite first-moment condition (10). Additionally,
the thin-tail condition

∃ 𝜙 > 0 such that ∫
∞

−∞
𝐽(𝑥)e𝜙𝑥𝑑𝑥 < ∞, (12)

is related to the existence of traveling waves, see for details [26, p. 2937]. When (12) is violated, accelerated spreading
becomes more likely. If the kernel satisfies (10) but not the stricter “thin-tail” condition (12), the spreading remains linear
but may still differ qualitatively from the local Fisher-KPP spreading, see [47].
Specific rates of acceleration depend on the asymptotic behavior of the kernel [26, 46]. For kernel functions 𝐽(𝑥) with
heavy tails, accelerated spreading occurs at rates determined by the tail behavior of 𝐽(𝑥). In particular, we can consider
the following scenarios [26]: if 𝐽(𝑥) ∼ |𝑥|−𝛾 as |𝑥| → ∞ with 𝛾 ∈ (1, 2), the spreading rates are:

lim
𝑡→∞

ℎ(𝑡)

𝑡1∕(𝛾−1)
= lim

𝑡→∞
−𝑔(𝑡)

𝑡1∕(𝛾−1)
= 22−𝛾

2 − 𝛾
𝜇𝜆, (13)

where 𝜆 > 0 is a parameter related to the kernel.
For 𝛾 = 2, one gets

lim
𝑡→∞

ℎ(𝑡)

𝑡 ln 𝑡
= lim

𝑡→∞
−𝑔(𝑡)

𝑡 ln 𝑡
= 𝜇𝜆. (14)
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The well-posedness, including existence and uniqueness of solutions to this nonlocal free boundary problem, along with
the spreading–vanishing dichotomy, has been established in foundational works such as [23, 25, 26]. In particular, see
Theorem 1.1 in [23]. This paper focuses on developing and analyzing numerical methods for its solution. Further, we
present a numerical algorithm for solving the problem and conduct several simulations to investigate the spreading–
vanishing dichotomy, focusing on its dependence on the kernel properties, the growth function, and the initial habitat size.

3 Front-Fixing Transformation

To address the complexities of dealing with two moving boundaries, an FF transformation is employed. This technique
transforms the domain with free boundaries into a fixed domain, facilitating the use of numerical methods. The
transformation is performed in two stages: first, introducing new variables to fix one boundary, and second, applying
additional transformations to ensure the entire domain is of unit length independent of the time. This approach allows
for the effective application of numerical methods to solve the system and analyze the population dynamics.

3.1 First Stage

In the first stage of the method, we introduce a new variable and function to simplify the moving boundaries. The new
variable is defined as 𝑧 = 𝑥 − 𝑔(𝑡), which shifts the left boundary to 𝑧 = 0. We also define a new function 𝑣(𝑡, 𝑧) = 𝑢(𝑡, 𝑥),
where 𝑢(𝑡, 𝑥) is the original population density. This transformation changes the domain 𝑔(𝑡) ≤ 𝑥 ≤ ℎ(𝑡) into an interval
with the fixed left boundary 0 ≤ 𝑧 ≤ 𝑙(𝑡), where 𝑙(𝑡) = ℎ(𝑡) − 𝑔(𝑡) represents the length of the interval.
The partial derivatives of 𝑢 are transformed as follows:

𝜕𝑢

𝜕𝑥
= 𝜕𝑣

𝜕𝑧
,

𝜕𝑢

𝜕𝑡
= 𝜕𝑣

𝜕𝑡
− 𝑔′(𝑡)

𝜕𝑣

𝜕𝑧
. (15)

Next, the integral term in the original equation becomes

∫
ℎ(𝑡)

𝑔(𝑡)

𝐽(𝑥 − 𝑦)𝑢(𝑡, 𝑦) 𝑑𝑦 = ∫
𝑙(𝑡)

0

𝐽(𝑧 − 𝜂)𝑣(𝑡, 𝜂) 𝑑𝜂. (16)

Now, by combining these changes, the original integro-differential Equation (1) is transformed into the following PIDE
for the new unknown 𝑣(𝑡, 𝑧):

𝜕𝑣

𝜕𝑡
− 𝑔′(𝑡)

𝜕𝑣

𝜕𝑧
= 𝛼2

(
∫

𝑙(𝑡)

0

𝐽(𝑧 − 𝜂)𝑣(𝑡, 𝜂) 𝑑𝜂 − 𝑣(𝑡, 𝑧)

)
+ 𝑓(𝑣), 0 ≤ 𝑧 ≤ 𝑙(𝑡). (17)

The free boundary conditions (8)–(9) are also transformed. The equation for 𝑔′(𝑡), the speed of the left boundary, becomes

𝑔′(𝑡) = −𝜇 ∫
𝑙(𝑡)

0

𝑣(𝑡, 𝑧)∫
0

−∞
𝐽(𝑧 − 𝜂) 𝑑𝜂 𝑑𝑧. (18)

Here, 𝑔′(𝑡) describes the evolution of the moving boundary 𝑔(𝑡) over time. For the right boundary, ℎ′(𝑡) = 𝑔′(𝑡) + 𝑙′(𝑡),
and the length 𝑙(𝑡) of the original interval varies with the time as follows:

𝑙′(𝑡) = 𝜇 ∫
𝑙(𝑡)

0

𝑣(𝑡, 𝑧)∫
+∞

𝑙(𝑡)

𝐽(𝑧 − 𝜂) 𝑑𝜂 𝑑𝑧 + 𝜇 ∫
𝑙(𝑡)

0

𝑣(𝑡, 𝑧)∫
0

−∞
𝐽(𝑧 − 𝜂) 𝑑𝜂 𝑑𝑧. (19)

Taking into account that ∫
ℝ

𝐽(𝑥)𝑑𝑥 = 1, we simplify the expression for 𝑙′(𝑡)

𝑙′(𝑡) = 𝜇 ∫
𝑙(𝑡)

0

𝑣(𝑡, 𝑧)

(
∫

+∞

𝑙(𝑡)

𝐽(𝑧 − 𝜂) 𝑑𝜂 + ∫
0

−∞
𝐽(𝑧 − 𝜂) 𝑑𝜂

)
𝑑𝑧 = 𝜇 ∫

𝑙(𝑡)

0

𝑣(𝑡, 𝑧)

(
1 − ∫

𝑙(𝑡)

0

𝐽(𝑧 − 𝜂) 𝑑𝜂

)
𝑑𝑧. (20)
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3.2 Second Stage

To establish a fixed domain, we apply the Landau transformation [27] introducing a new variable 𝑟 = 𝑧

𝑙(𝑡)
, 0 ≤ 𝑟 ≤ 1, and

the function 𝑤(𝑡, 𝑟) = 𝑣(𝑡, 𝑧). The partial derivatives of 𝑣 with respect to 𝑡 and 𝑧 are expressed in terms of 𝑤:

𝜕𝑣

𝜕𝑧
= 1

𝑙(𝑡)

𝜕𝑤

𝜕𝑟
,

𝜕𝑣

𝜕𝑡
= 𝜕𝑤

𝜕𝑡
− 𝑟

𝑙′(𝑡)

𝑙(𝑡)

𝜕𝑤

𝜕𝑟
.

The integral in (17) is transformed to the following:

∫
𝑙(𝑡)

0

𝐽(𝑧 − 𝜂)𝑣(𝑡, 𝜂) 𝑑𝜂 = 𝑙(𝑡)∫
1

0

𝐽(𝑙(𝑡)(𝑟 − 𝜌))𝑤(𝑡, 𝜌) 𝑑𝜌. (21)

Hence, the transformed equation in the fixed domain is written as follows:

𝜕𝑤

𝜕𝑡
−
(

𝑟
𝑙′(𝑡)

𝑙(𝑡)
+

𝑔′(𝑡)

𝑙(𝑡)

)
𝜕𝑤

𝜕𝑟
= 𝛼2

[
𝑙(𝑡)∫

1

0

𝐽(𝑙(𝑡)(𝑟 − 𝜌))𝑤(𝑡, 𝜌) 𝑑𝜌 − 𝑤(𝑡, 𝑟)

]
+ 𝑓(𝑤), 𝑡 > 0, 0 ≤ 𝑟 ≤ 1. (22)

Stefan conditions (18) and (19) are transformed as follows:

𝑔′(𝑡) = −𝜇𝑙2(𝑡)∫
1

0

𝑤(𝑡, 𝜌)∫
∞

𝜌

𝐽(𝑙(𝑡)𝜂) 𝑑𝜂 𝑑𝜌, 𝑙′(𝑡) = 𝜇𝑙(𝑡)∫
1

0

𝑤(𝑡, 𝜌)

(
1 − 𝑙(𝑡)∫

𝜌

𝜌−1

𝐽(𝑙(𝑡)𝜂) 𝑑𝜂

)
𝑑𝜌. (23)

Let us define the CDF 𝐾[𝑥] of the kernel function 𝐽(𝑠) as follows:

𝐾[𝑥] = ∫
𝑥

−∞
𝐽(𝑠) 𝑑𝑠, (24)

where 𝐽(𝑠) is assumed to be a symmetric probability density function over ℝ, with the following properties:

∙ For any 𝑎, 𝑏 ∈ ℝ, the integral of 𝐽(𝑠) over [𝑎, 𝑏] can be expressed in terms of 𝐾 as

∫
𝑏

𝑎

𝐽(𝑠) 𝑑𝑠 = 𝐾[𝑏] − 𝐾[𝑎].

∙ For any scalar 𝜆 > 0, the integral of a scaled version of 𝐽(𝑠) over [𝑎, 𝑏] is given by

∫
𝑏

𝑎

𝐽(𝜆𝑠) 𝑑𝑠 = 1

𝜆
(𝐾[𝜆𝑏] − 𝐾[𝜆𝑎]).

∙ Due to the symmetry of 𝐽(𝑠) around zero (i.e., 𝐽(𝑠) = 𝐽(−𝑠)), we have

𝐾[0] = 1

2
.

This symmetry implies that the cumulative probability up to zero is half of the total mass, consistent with 𝐽(𝑠) being a
symmetric probability distribution.

The Stefan conditions from (23) can be expressed in the transformed coordinates as follows:

𝑔′(𝑡) = −𝜇𝑙(𝑡)∫
1

0

𝑤(𝑡, 𝜌)(1 − 𝐾[𝑙(𝑡)𝜌]) 𝑑𝜌, (25)

𝑙′(𝑡) = 𝜇𝑙(𝑡)∫
1

0

𝑤(𝑡, 𝜌)(1 − 𝐾[𝑙(𝑡)𝜌] + 𝐾[𝑙(𝑡)(𝜌 − 1)]) 𝑑𝜌. (26)
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Next, we substitute the expressions for 𝑔′(𝑡) and 𝑙′(𝑡) from (25) and (26) into the transformed PIDE, given in (22), resulting
in the following form:

𝜕𝑤

𝜕𝑡
= 𝜇

[
𝑟 ∫

1

0

𝑤(𝑡, 𝜌)(1 − 𝐾[𝑙(𝑡)𝜌] + 𝐾[𝑙(𝑡)(𝜌 − 1)]) 𝑑𝜌 − ∫
1

0

𝑤(𝑡, 𝜌)(1 − 𝐾[𝑙(𝑡)𝜌]) 𝑑𝜌

]
𝜕𝑤

𝜕𝑟

+ 𝛼2

[
𝑙(𝑡)∫

1

0

𝐽(𝑙(𝑡)(𝑟 − 𝜌))𝑤(𝑡, 𝜌) 𝑑𝜌 − 𝑤(𝑡, 𝑟)

]
+ 𝑓(𝑤), 𝑡 > 0, 0 ≤ 𝑟 ≤ 1.

(27)

The term involving the advection effect, controlled by the integrals of 𝑤(𝑡, 𝜌) and the cumulative kernel 𝐾, captures the
impact of boundary movement in the transformed coordinates.
The initial and boundary conditions from (4)–(5) are now rewritten as follows:

𝑤(𝑡, 0) = 𝑤(𝑡, 1) = 0, 𝑤(0, 𝑟) = 𝑢0((ℎ0 − 𝑔0)𝑟 + 𝑔0), 𝑙(0) = 𝑙0 = ℎ0 − 𝑔0. (28)

4 Numerical Algorithm

The transformed PIDE problem (27) with conditions given in (25)–(26) and (28) is solved numerically by using a finite
difference method (FDM).

Let 𝑡 range from 0 to 𝑇 with a time step Δ𝑡 = 𝑇

𝑁
. Similarly, 𝑟 ranges from 0 to 1 with a space step Δ𝑟 = 1

𝑀
. Here, 𝑇 is the

final simulation time, 𝑁 is the total number of time steps, and 𝑀 is the number of spatial subintervals in the transformed
domain [0,1].
We define a uniform grid

𝑟𝑖 = 𝑖Δ𝑟, 𝑖 = 0, 1, 2, … , 𝑀, 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, … , 𝑁. (29)

The approximated numerical solution at each grid node is denoted by 𝑤𝑛
𝑖

≈ 𝑤(𝑡𝑛, 𝑟𝑖) and the distance between two free
boundaries 𝑔𝑛 ≈ 𝑔(𝑡𝑛) and ℎ𝑛 ≈ ℎ(𝑡𝑛) is denoted by 𝑙𝑛 ≈ 𝑙(𝑡𝑛).
The integrals can be approximated numerically using various quadrature rules, such as themidpoint rule or the trapezoidal
rule. In this case, we choose Simpson’s rule for its improved accuracy compared to other methods. While the midpoint
and trapezoidal rules exhibit second-order convergence for the approximation error, Simpson’s rule provides fourth-order
convergence, leading to more accurate integral approximations for a given number of sub-intervals, see [48, Chapter 2].
Let us introduce the following notation:

𝑆(𝑤𝑛) = Δ𝑟

3

(
𝑤𝑛

0
+ 4

∑
odd 𝑖

𝑤𝑛
𝑖
+ 2

∑
even 𝑖

𝑤𝑛
𝑖
+ 𝑤𝑛

𝑀

)
, (30)

where 𝑤𝑛 = [𝑤𝑛
0
, 𝑤𝑛

1
, … , 𝑤𝑛

𝑀
]. Then, Stefan conditions (25)–(26) are discretized as follows:

𝑔𝑛+1 − 𝑔𝑛

Δ𝑡
= −𝜇𝑙𝑛𝑆(𝑝𝑛),

𝑙𝑛+1 − 𝑙𝑛

Δ𝑡
= 𝜇𝑙𝑛𝑆(𝑞𝑛), (31)

where 𝑝𝑛 and 𝑞𝑛 are two vectors of the components

𝑝𝑛
𝑗
= 𝑤𝑛

𝑗
(1 − 𝐾[𝑙𝑛𝑟𝑗]), 𝑞𝑛

𝑗
= 𝑤𝑛

𝑗
(1 − 𝐾[𝑙𝑛𝑟𝑗] + 𝐾[𝑙𝑛(𝑟𝑗 − 1)]), 𝑗 = 0, … , 𝑀. (32)

Hence, the advection coefficient is approximated at the node (𝑟𝑖, 𝑡𝑛) by using the Simpson’s rule

𝜇

[
𝑟𝑖 ∫

1

0

𝑤(𝑡𝑛, 𝜌)(1 − 𝐾[𝑙(𝑡𝑛)𝜌] + 𝐾[𝑙(𝑡)(𝜌 − 1)]]) 𝑑𝜌 − ∫
1

0

𝑤(𝑡𝑛, 𝜌)(1 − 𝐾[𝑙(𝑡𝑛)𝜌]) 𝑑𝜌

]
≈ 𝜇(𝑟𝑖𝑆(𝑞𝑛) − 𝑆(𝑝𝑛)) = 𝐴𝑛(𝑟𝑖).

(33)
Initial and boundary conditions (28) for all considered methods are given by

𝑤𝑛
0
= 𝑤𝑛

𝑀
= 0, 𝑛 = 0, 1, 2, … , 𝑁; 𝑤0

𝑖
= 𝑢0((ℎ0 − 𝑔0)𝑟𝑖 + 𝑔0), 𝑖 = 0, 1, 2, … , 𝑀; 𝑙0 = ℎ0 − 𝑔0. (34)
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4.1 Forward-Time Centered-Space Scheme

The simplest algorithm for the discretization of the differential operator of Equation (27) is the FTCS scheme. It uses the
forward difference for the time step:

𝜕𝑤

𝜕𝑡
≈

𝑤𝑛+1
𝑖

− 𝑤𝑛
𝑖

Δ𝑡
. (35)

For the advection term 𝜕𝑤

𝜕𝑟
, the centered difference scheme is applied:

𝜕𝑤

𝜕𝑟
≈

𝑤𝑛
𝑖+1

− 𝑤𝑛
𝑖−1

2Δ𝑟
. (36)

Substituting these into the transformed PIDE (27) gives the FTCS scheme:

𝑤𝑛+1
𝑖

− 𝑤𝑛
𝑖

Δ𝑡
= 𝐴𝑛(𝑟𝑖)

𝑤𝑛
𝑖+1

− 𝑤𝑛
𝑖−1

2Δ𝑟
+ 𝛼2

[
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ 𝑓(𝑤𝑛

𝑖
), (37)

where 𝑦𝑛(𝑟𝑖) is the vector of the components 𝑦𝑛
𝑗
(𝑟𝑖) = 𝑤𝑛

𝑗
𝐽(𝑙𝑛(𝑟𝑖 − 𝑟𝑗)), 𝑗 = 0, … , 𝑀.

Let us introduce the Courant number 𝐶𝑛
𝑖
= 𝐴𝑛(𝑟𝑖)

Δ𝑡

Δ𝑟
, see for details [36, 44], then the scheme (37) is written as follows:

𝑤𝑛+1
𝑖

= 𝑤𝑛
𝑖
+

𝐶𝑛
𝑖

2
(𝑤𝑛

𝑖+1
− 𝑤𝑛

𝑖−1
) + Δ𝑡𝛼2

[
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ Δ𝑡𝑓(𝑤𝑛

𝑖
). (38)

The FTCS scheme, while explicit and straightforward to implement, suffers from significant stability limitations,
particularly in advection-dominated problems. As noted in [36, p. 280], the FTCS scheme is unconditionally unstable
for pure convection problems. This contrasts with its conditional stability for the diffusion equation. Due to its inherent
instability, the FTCS scheme is generally impractical for problems of the form (27).

4.2 Upwind Differencing Scheme

In order to avoid the stability issues, we employ the upwind scheme [36, p. 280] to the differential operator in (27). The
key idea is to account for the direction of the flow when determining which values to use for numerical computations.
When the advection coefficient 𝐴𝑛(𝑟𝑖) is positive, the scheme takes information from the point ahead. Conversely, when
the advection coefficient is negative, values are taken from the point behind. This helps to stabilize the numerical solution
and prevent non-physical oscillations by ensuring that information propagates correctly in the direction of the flow.
The PIDE (27) is then discretized as follows:

𝑤𝑛+1
𝑖

− 𝑤𝑛
𝑖

Δ𝑡
=

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑛(𝑟𝑖)

𝑤𝑛
𝑖+1

− 𝑤𝑛
𝑖

Δ𝑟
+ 𝛼2

[
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ 𝑓(𝑤𝑛

𝑖
), if 𝐴𝑛(𝑟𝑖) > 0,

𝐴𝑛(𝑟𝑖)
𝑤𝑛

𝑖
− 𝑤𝑛

𝑖−1

Δ𝑟
+ 𝛼2

[
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ 𝑓(𝑤𝑛

𝑖
), if 𝐴𝑛(𝑟𝑖) ≤ 0.

(39)

The upwind scheme can be written in the following form:

𝑤𝑛+1
𝑖

= 𝑤𝑛
𝑖

(
1 − |𝐶𝑛

𝑖
|) + |𝐶𝑛

𝑖
|𝑤𝑛

𝑖+sign(𝐴𝑛(𝑟𝑖))
+ Δ𝑡𝛼2

[
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ Δ𝑡𝑓(𝑤𝑛

𝑖
), (40)

where sign(𝐴𝑛(𝑟𝑖)) =

{
+1, if 𝐴𝑛(𝑟𝑖) > 0,

−1, if 𝐴𝑛(𝑟𝑖) < 0.
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4.2.1 Positivity

To establish bounds for 𝑝𝑛
𝑗
and 𝑞𝑛

𝑗
, we leverage the properties of 𝐾[𝑥], the cumulative distribution function (CDF) of

the symmetric kernel 𝐽. As a CDF, 𝐾[𝑥] is non-decreasing and its range is [0,1]. Due to the symmetry of 𝐽, 𝐾[0] = 1∕2.
Since 𝑙𝑛 > 0 and 𝑟𝑗 ≥ 0 within the computational domain (𝑗 = 0, … , 𝑀), it follows that 𝑙𝑛𝑟𝑗 ≥ 0, which implies 𝐾[𝑙𝑛𝑟𝑗] ≥
𝐾[0] = 1∕2. Assuming the population density 𝑤𝑛

𝑗
is non-negative and does not exceed a normalized carrying capacity

(thus 0 ≤ 𝑤𝑛
𝑗
≤ 1), then:

0 ≤ 𝑝𝑛
𝑗
≤ 1 − 𝐾[𝑙𝑛𝑟𝑗] ≤ 1 − 𝐾[0] = 1

2
, (41)

0 ≤ 𝑞𝑛
𝑗
≤ 1 − 𝐾[𝑙𝑛𝑟𝑗] + 𝐾[𝑙𝑛(𝑟𝑗 − 1)] ≤ 1. (42)

Since 𝑆(𝑤𝑛) is the Simpson’s rule for the integration over the interval [0, 1], then the following estimations take place:

0 ≤ 𝑆(𝑝𝑛) ≤ 𝑆

(
1

2

)
= Δ𝑟

3
⋅

1

2

(
1 + 4

∑
odd 𝑖

1 + 2
∑
even 𝑖

1 + 1

)
= 1

2
, (43)

0 ≤ 𝑆(𝑞𝑛) ≤ 𝑆(1) = 1. (44)

Hence, if 𝐴𝑛(𝑟𝑖) > 0, one gets

|𝐴𝑛(𝑟𝑖)| = 𝜇(𝑟𝑖𝑆(𝑞𝑛) − 𝑆(𝑝𝑛)) ≤ 𝜇𝑆(𝑞𝑛) ≤ 𝜇. (45)

On the other hand, if 𝐴𝑛(𝑟𝑖) < 0,

|𝐴𝑛(𝑟𝑖)| = 𝜇(𝑆(𝑝𝑛) − 𝑟𝑖𝑆(𝑞𝑛)) ≤ 𝜇𝑆(𝑝𝑛) ≤ 𝜇

2
. (46)

Hence, |𝐴𝑛(𝑟𝑖)| ≤ 𝜇.
Then, it is straightforward that the main coefficient of the scheme (40) is positive if

Δ𝑡 <
Δ𝑟

𝜇
, (47)

which corresponds to the condition that the Courant number satisfies |𝐶𝑛
𝑖
| < 1 ∀𝑖, 𝑛.

4.2.2 Numerical Diffusivity

Let us expand the exact solution𝑤(𝑡, 𝑟) at the grid point (𝑡𝑛, 𝑟𝑖) using a Taylor series in time and space. Expanding in time
gives:

𝑤𝑛+1
𝑖

= 𝑤(𝑡𝑛 + Δ𝑡, 𝑟𝑖) = 𝑤𝑛
𝑖
+ Δ𝑡

𝜕𝑤

𝜕𝑡
+ Δ𝑡2

2

𝜕2𝑤

𝜕𝑡2
+ 𝑂(Δ𝑡3), (48)

and expanding in space gives:

𝑤𝑛
𝑖+sign(𝐴𝑛(𝑟𝑖))

= 𝑤(𝑡𝑛, 𝑟𝑖 + sign(𝐴𝑛(𝑟𝑖))Δ𝑟) = 𝑤𝑛
𝑖
+ sign(𝐴𝑛(𝑟𝑖))Δ𝑟

𝜕𝑤

𝜕𝑟
+ Δ𝑟2

2

𝜕2𝑤

𝜕𝑟2
+ 𝑂(Δ𝑟3). (49)

Substituting these expansions into the upwind scheme, one gets

𝑤𝑡 +
Δ𝑡

2
𝑤𝑡𝑡 = 𝐴𝑛(𝑟𝑖)𝑤𝑟 + |𝐴𝑛(𝑟𝑖)|Δ𝑟

2
𝑤𝑟𝑟 +

[
𝛼2

(
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

)
+ 𝑓(𝑤𝑛

𝑖
)
]
+ 𝑂(Δ𝑡2, Δ𝑟2). (50)

Assuming that 𝐴𝑛(𝑟𝑖) and
[
𝛼2

(
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

)
+ 𝑓(𝑤𝑛

𝑖
)
]
are constant at the fixed point (𝑟𝑖, 𝑡𝑛), we get that 𝑤𝑡𝑡 =|𝐴𝑛(𝑟𝑖)|2𝑤𝑟𝑟, hence

𝑤𝑡 = 𝐴𝑛(𝑟𝑖)𝑤𝑟 + |𝐴𝑛(𝑟𝑖)|Δ𝑟

2

(
1 − |𝐶𝑛

𝑖
|)𝑤𝑟𝑟 +

[
𝛼2

(
𝑙𝑛𝑆(𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

)
+ 𝑓(𝑤𝑛

𝑖
)
]
+ 𝑂(Δ𝑡2, Δ𝑟2). (51)
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The upwind scheme introduces a truncation error that results in a term proportional to the second spatial derivative of𝑤,
which acts as an artificial diffusion term. Specifically, the artificial diffusivity 𝜈num can be written as:

𝜈num = 1

2
|𝐴𝑛(𝑟𝑖)|Δ𝑟

(
1 − |𝐶𝑛

𝑖
|).

This artificial diffusivity acts like physical diffusion, smoothing out the solution over time. It is clear that setting Δ𝑡 to give|𝐶𝑛
𝑖
| = 1, which would avoid the artificial diffusivity, is not possible due to variations in |𝐴𝑛(𝑟𝑖)|.

4.3 Lax–Wendroff Scheme

The Lax–Wendroff method is a well-known second-order method for solving hyperbolic partial differential equa-
tions (PDEs), particularly in fluid dynamics applications, including inviscid, compressible flow [36]. The method is
effective because it combines accuracy with stability by leveraging a Taylor series expansion to achieve a second-order
approximation in both time and space avoiding the artificial diffusivity.
The time derivative is approximated as follows:

𝜕𝑤

𝜕𝑡
≈

𝑤𝑛+1
𝑖

− 𝑤𝑛
𝑖

Δ𝑡
− Δ𝑡

2
𝑤𝑡𝑡 =

𝑤𝑛+1
𝑖

− 𝑤𝑛
𝑖

Δ𝑡
− Δ𝑡

2
|𝐴𝑛(𝑟𝑖)|2𝑤𝑟𝑟. (52)

Then, (27) is approximated as follows:

𝑤𝑛+1
𝑖

= 𝑤𝑛
𝑖
+

𝐶𝑛
𝑖

2

(
𝑤𝑛

𝑖+1
− 𝑤𝑛

𝑖−1

)
+

(
𝐶𝑛

𝑖

)2

2

(
𝑤𝑛

𝑖+1
− 2𝑤𝑛

𝑖
+ 𝑤𝑛

𝑖−1

)
+ Δ𝑡𝛼2

[
𝑙𝑛𝑆 (𝑦𝑛(𝑟𝑖)) − 𝑤𝑛

𝑖

]
+ Δ𝑡𝑓

(
𝑤𝑛

𝑖

)
. (53)

The Lax–Wendroff scheme is conditionally stable for linear convection equation if the Courant number is less or equal to
one, which corresponds, in our case, to the condition (47).

5 Numerical Examples and Simulations

This section presents numerical examples and simulations to validate the proposed FFmethod and to explore the behavior
of the nonlocal Fisher-KPP model. First, in Section 5.1, we compare the performance of the different numerical schemes
(FTCS, upwind, and Lax–Wendroff). Section 5.2 investigates the spreading–vanishing dichotomy predicted by the theory.
The impact of different kernel functions on the spreading rate is analyzed in Section 5.3. Finally, Section 5.4 examines how
the initial population distribution affects the solution dynamics.
Computations have been carried out by Matlab software version R2024b for Windows 11 Home (64-bit) 11th Gen Intel(R)
Core(TM) i5-11300H @ 3.10GHz 3.11 GHz.

Example 1. Let us consider the problem (1) – (7) with the following parameters:

ℎ(0) = ℎ0 = 0.7 = −𝑔(0), 𝜇 = 1.5, 𝛼2 = 2, 𝑢(0, 𝑥) = ℎ2
0
− 𝑥2, 𝑓(𝑢) = 2𝑢(1 − 𝑢), 𝐽(𝑥) = 1

𝜋(1 + 𝑥2)
. (54)

5.1 Comparison of the Schemes

In the preceding section, we introduced several explicit numerical schemes (FTCS, upwind, and Lax–Wendroff) to
discretize the differential operator in Equation (27). For the integral approximation in all cases, we employed Simpson’s
quadrature rule. In this subsection, we will evaluate the performance of these schemes.
In Example 1, we set the time step size as Δ𝑡 = 1 × 10−4 and investigate the spatial discretization using a set of values for
𝑀 from the set {50, 100, 200, 400, 800, 1600} for three different numerical methods. For comparison, we utilize the solution
obtained from the Lax–Wendroff method with 𝑀 = 3200 as our reference solution.
The maximum Courant number is defined as 𝐶∗ = max𝑖,𝑛 |𝐶𝑛

𝑖
| = max𝑖,𝑛 |𝐴𝑛(𝑟𝑖)| Δ𝑡

Δ𝑟
. Table 1 reports the maximum

Courant number for different numbers of spatial nodes, alongside the corresponding CPU times (in seconds) for the
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TABLE 1 Maximum Courant number 𝐶∗(𝑀) and corresponding CPU time (in seconds) for various spatial step counts 𝑀 in
Example 1, with 𝑇 = 50 and a time step size of Δ𝑡 = 10−4.

𝑴 50 100 200 400 800 1600

𝐶∗(𝑀) 7.72 ⋅ 10−4 1.54 ⋅ 10−3 3.09 ⋅ 10−3 6.17 ⋅ 10−3 1.23 ⋅ 10−2 2.47 ⋅ 10−2

Lax–Wendroff scheme CPU-time (s) 14.36 32.36 73.97 209.95 598.72 1622.77

0 200 400 600 800 1000 1200 1400 1600

Number of spatial steps

10-5

10-4

10-3

10-2

10-1

100

Lax-Wendroff
Upwind
FTCS

FIGURE 1 Comparison of mean absolute errors at 𝑡 = 50 as a function of the number of spatial discretization nodes
for the FTCS, upwind, and Lax–Wendroff schemes against the reference solution. FTCS, forward-time centered-space.

Lax–Wendroff numerical scheme. Other numerical methods (upwind and FTCS) exhibit comparable performance, as
the number of temporal and spatial iterations remains consistent across schemes.
To assess the accuracy of the various methods, we compare the computed solutions at time 𝑡 = 𝑇 = 50 employing cubic
spline interpolation. The resulting mean absolute errors, illustrated in Figure 1, are calculated based on the number
of spatial discretization nodes. Notably, we observe oscillatory behavior in the numerical solutions for 𝑀 < 300. This
phenomenon can be attributed to the inverse FF transformation employed to derive the solutions in the original variable
space. This oscillatory effect has been similarly documented in previous research [28], where it was demonstrated that
the FF method loses accuracy over extended time horizons if the spatial stepsize is not diminishing. Consequently, it
is advisable to select a sufficiently large 𝑀 when dealing with large values of 𝑇 to mitigate this limitation. However,
for 𝑀 > 800, the FTCS scheme becomes unstable, resulting in the generation of NaN (not a number) values in the
computed solutions.
Analogously, taking into account previous comments about spatial discretization, we set 𝑀 = 300 and consider 𝑁 ∈{

103, 2 ⋅ 103, 4 ⋅ 103, 8 ⋅ 103, 16 ⋅ 103
}
for three considered methods. In Figure 2, mean absolute errors as a function of

the number of temporal discretization steps computed at 𝑡 = 𝑇 using cubic spline interpolation are presented.
Note that themaximumCourant number𝐶∗(𝑁) < 1 for𝑁 > 2 ⋅ 103. However, for𝑁 = 2 ⋅ 103,𝐶∗ = 1.1574, which exceeds
the stability threshold. This can lead to numerical instabilities and a loss of accuracy in the solution. This behavior explains
the non-monotonic trend observed for smaller 𝑁 in the mean absolute errors shown in Figure 2).
In both plots, the Lax–Wendroff scheme consistently demonstrates superior performance compared to the other methods.
In contrast, the upwind scheme exhibits the slowest convergence, likely attributable to numerical diffusion. In further
examples, we employ the Lax–Wendroff scheme (53).

5.2 Spreading-Vanishing Dichotomy Study

Now, let us examine the theoretical results regarding the spreading–vanishing dichotomy proposed in [23]. According
to this theory, vanishing occurs if 𝑓′(0) < 𝛼2, ℎ0 < 𝓁∗∕2, and 𝜇 ≤ 𝜇∗, where 𝓁∗ and 𝜇∗ are some positive constants to
be determined.
In the case of the parameters given by (54), where 𝑓′(0) = 𝛼2 = 2, spreading always occurs, independent of the choice
of ℎ0 and 𝜇. However, if we consider a family of functions 𝑓𝛾(𝑢) = 𝛾𝑢(1 − 𝑢) as the growth term, we expect to observe
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0 2000 4000 6000 8000 10000 12000 14000 16000

Number of time steps

10-6

10-5

10-4

10-3

10-2

10-1

100

Lax-Wendroff
Upwind
FTCS

FIGURE 2 Comparison of mean absolute errors at 𝑡 = 50 as a function of the number of time levels for the FTCS,
upwind, and Lax–Wendroff schemes against the reference solution. FTCS, forward-time centered-space.
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FIGURE 3 Evolution of 𝑙(𝑡) for various growth term 𝑓𝛾(𝑢) = 𝛾𝑢(1 − 𝑢).

both spreading and vanishing scenarios. For this analysis, we extend the time horizon to 𝑇 = 25, while the rest of the
parameters remain the same as taken in (54). The evolution of 𝑙(𝑡) for 𝑡 ∈ [0, 25] for various 𝛾 is plotted in Figure 3. For
𝛾 = 1, the length of the domain 𝑙(𝑡) = ℎ(𝑡) − 𝑔(𝑡) is increasing but tends to some constant 𝐶 < ∞.
Now, we set 𝑓(𝑢) = 𝑢(1 − 𝑢) as a boundary case and vary ℎ0 to observe spreading–vanishing dichotomy (see Figure 4).
If ℎ0 < 0.7, the vanishing observed, however, for ℎ0 > 0.7, the spreading occurs. Note that here we do not pretend that
ℎ0 = 0.7 is a threshold value 𝓁∗∕2, but it can be considered an initial guess for the approximation.
We now set 𝑓(𝑢) = 𝑢(1 − 𝑢) as a boundary case and vary ℎ0 to examine the spreading–vanishing dichotomy (see Figure 4).
When ℎ0 < 0.7, vanishing is observed, whereas for ℎ0 > 0.7, spreading occurs. It is important to note that we do not claim
ℎ0 = 0.7 to be the exact threshold value 𝓁∗∕2; rather, it can be considered an initial estimate for this threshold.
Finally, we consider 𝑓(𝑢) = 𝑢(1 − 𝑢) with ℎ0 = 0.5 (resulting in vanishing, as shown in Figure 4) and vary 𝜇 to examine
the spreading–vanishing dichotomy (see Figure 5). When 𝜇 ≥ 5, spreading occurs. This indicates that there exists a critical
value 𝜇∗ such that if 𝜇 > 𝜇∗, spreading will happen.

5.3 Impact of Kernel Function

Let us analyze and compare several kernel functions listed in Table 2 (see Figure 6):
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FIGURE 4 Evolution of 𝑙(𝑡) for the growth term 𝑓(𝑢) = 𝑢(1 − 𝑢) and various ℎ0.
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FIGURE 5 Evolution of 𝑙(𝑡) for the growth term 𝑓(𝑢) = 𝑢(1 − 𝑢), ℎ0 = 0.5 and various 𝜇.
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FIGURE 6 Kernel functions given in Table 2.
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TABLE 2 Kernel functions and corresponding integrals.

𝑱(𝒙) 𝑲[𝒙] = ∫
𝒙

−∞ 𝑱(𝒔) 𝒅𝒔

𝐽1(𝑥) = 1

𝜋(1+𝑥2)
𝐾1[𝑥] = arctan 𝑥

𝜋
+ 1

2

𝐽2(𝑥) = 𝑒−𝑥2√
𝜋

𝐾2[𝑥] = erf (𝑥)+1

2

𝐽3(𝑥) = sech 𝑥

𝜋
𝐾3[𝑥] = 2

𝜋
arctan(𝑒𝑥)

𝐽4(𝑥) =
Γ
(

3
4

)
√

𝜋Γ
(

1
4

)
(1+𝑥2)

3∕4
𝐾4[𝑥] =

1

2
+

Γ
(

3
4

)
√

𝜋Γ
(

1
4

)𝑥(1 + 𝑥2)
1∕4

2𝐹1

(
3

4
, 1;

3

2
; −𝑥2

)

𝐽5(𝑥) = 1

(1+|𝑥|)3 𝐾5[𝑥] =
⎧⎪⎨⎪⎩

1

2(𝑥−1)2
, if 𝑥 < 0

1 − 1

2(𝑥+1)2
, if 𝑥 ≥ 0

𝐽6(𝑥) =

{
1 − |𝑥| , if 𝑥 ∈ [−1, 1]

0, otherwise
𝐾6[𝑥] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑥 ≤ −1

(𝑥+1)
2

2
if 𝑥 ∈ (−1, 0)

−𝑥2+2𝑥+1

2
if 𝑥 ∈ [0, 1)

1 if 𝑥 ≥ 1

𝐽7(𝑥) =
⎧⎪⎨⎪⎩

3

4
(1 − 𝑥2), if 𝑥 ∈ [−1, 1]

0, otherwise
𝐾7[𝑥] =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑥 ≤ −1

−𝑥3+3𝑥+2

4
if 𝑥 ∈ (−1, 1)

1 if 𝑥 ≥ 1

1. Kernel 𝐽1(𝑥) is the Cauchy distribution, characterized by its heavy tails and peak at 𝑥 = 0. This function decays as|𝑥|−2 for large |𝑥|.
2. 𝐽2(𝑥) is the Gaussian kernel, characterized by rapid exponential decay satisfying so-called thin-tail condition. The

cumulative function uses the error function erf (𝑥).
3. 𝐽3(𝑥) is based on the hyperbolic secant function sech(𝑥). It has exponential decay similar to the Gaussian.
4. 𝐽4(𝑥) has a decay behavior proportional to |𝑥|−3∕2, where the decay rate is slower than the Gaussian kernel. The

cumulative function𝐾4[𝑥] involves the hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑑), capturing the non-elementary integral
behavior.

5. 𝐽5(𝑥) is a kernel with polynomial decay, 𝐽5(𝑥) ∼ |𝑥|−3. It is heavy-tailed but satisfies the first-moment condition (10).
6. 𝐽6(𝑥) is a triangular kernel compactly supported within [−1, 1]. It is piece-wise-linear, peaking at 𝑥 = 0, and decays

linearly to 0 at 𝑥 = ±1.
7. 𝐽7(𝑥) is a parabolic kernel compactly supported within [−1, 1].

The evolution of the habitat, ℎ(𝑡), over time, is shown for each kernel in Figure 7. The results are consistent with previous
theoretical findings for nonlocal diffusion problems discussed in [25, 26]. Specifically, in the case of spreading, it has a
finite speed if and only if condition (10) is satisfied; otherwise, spreading becomes accelerated.While kernels with compact
support (𝐽6(𝑥) and 𝐽7(𝑥)) exhibit asymptotically linear spreading behavior, they are not fat-tailed (equal to zero if |𝑥| > 1)
and therefore, they are less relevant for further exploration of accelerated propagation dynamics.
Among the kernels examined, 𝐽1(𝑥) and 𝐽4(𝑥) fail to satisfy the first-moment condition (10) (see the third column of
Table 3). Specifically, for 𝐽1(𝑥) ∼ |𝑥|−2 as |𝑥| → ∞, we have:

𝜆1 = lim
𝑥→∞

𝐽1(𝑥)𝑥2 = lim
𝑥→∞

𝑥2

𝜋(1 + 𝑥2)
= 1

𝜋
. (55)
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FIGURE 7 Free boundary ℎ(𝑡) over time for various kernel functions and parameters given in (54). Dashed lines
represent the corresponding regression curves.

TABLE 3 Kernel functions and characteristics.

𝑱(𝒙) ∫
∞

𝟎
𝒙𝑱(𝒙)𝒅𝒙 Thin/heavy tail Spreading rate

𝐽1(𝑥) = 1

𝜋(1+𝑥2)
∞ Heavy lim𝑡→∞

ℎ(𝑡)

𝑡 ln 𝑡
= 𝜇

𝜋

𝐽2(𝑥) = 𝑒−𝑥2√
𝜋

1

2
√

𝜋
Thin lim𝑡→∞

ℎ(𝑡)

𝑡
= 𝑐0 = 0.2381

𝐽3(𝑥) = sech 𝑥

𝜋

2𝐺

𝜋
Thin lim𝑡→∞

ℎ(𝑡)

𝑡
= 𝑐0 = 0.5019

𝐽4(𝑥) =
Γ
(

3
4

)
√

𝜋Γ
(

1
4

)
(1+𝑥2)

3∕4
∞ Heavy lim𝑡→∞

ℎ(𝑡)

𝑡2
=

2
√

2Γ
(

3
4

)
√

𝜋Γ
(

1
4

) 𝜇

𝐽5(𝑥) = 1

(1+|𝑥|)3 1

2
Heavy lim𝑡→∞

ℎ(𝑡)

𝑡
= 𝑐0 = 0.4759

Note: Here, 𝐺 is Catalan constant, 𝐺 ≈ 0.91597.

Therefore, according to (14), the spreading rate is:

lim
𝑡→∞

ℎ(𝑡)

𝑡 ln 𝑡
=

𝜇

𝜋
. (56)

Numerically, by fitting the regression equation𝐿𝑅(𝑡 ln 𝑡) = 𝑐0𝑡 ln 𝑡 + 𝑐1, we obtain 𝑐0 = 0.4247, which closely approximates
the theoretical value 𝑐∗

0
= 𝜇

𝜋
= 0.4775. This agreement validates the accuracy of our numerical algorithm in capturing the

theoretical accelerated spreading rate. The coefficient of determination is 𝑅2 = 0.9974, such a high degree of fit confirms
that the observed spreading behavior closely follows the expected asymptotic form.
Similarly, for 𝐽4(𝑥) ∼ |𝑥|−3∕2 as |𝑥| → ∞, we compute:

𝜆4 = lim
𝑥→∞

𝐽4(𝑥)𝑥3∕2 = lim
𝑥→∞

Γ
(

3

4

)
𝑥3∕2√

𝜋Γ
(

1

4

)
(1 + 𝑥2)

3∕4
=

Γ
(

3

4

)
√

𝜋Γ
(

1

4

) ≈ 0.1907. (57)

Thus, from (13), the spreading rate is:

lim
𝑡→∞

ℎ(𝑡)

𝑡2
=

√
2

1∕2
𝜇𝜆4 =

2
√

2Γ
(

3

4

)
√

𝜋Γ
(

1

4

) 𝜇. (58)
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TABLE 4 Initial population density function and corresponding characteristics.

𝒖𝟎(𝒙)

𝑷(𝟎) =
∫

𝒉𝟎
−𝒉𝟎

𝒖𝟎(𝒙)𝒅𝒙

𝐦𝐚𝐱𝒙∈[𝒉𝟎,𝒉𝟎]

𝒖𝟎(𝒙) Observations

𝑢0(𝑥) = ℎ2
0
− 𝑥2 0.4573 0.4900 Symmetric

unimodal

𝑢1
0
(𝑥) = cos

(
𝜋

𝑥

ℎ0

)
+ cos

(
3𝜋

𝑥

ℎ0

)
+ 2 2.8000 3.9950 Symmetric

multimodal

𝑢2
0
(𝑥) =

(
𝑥

ℎ0

)3

− 1.2

(
𝑥

ℎ0

)2

−
(

𝑥

ℎ0

)
+ 1.2 1.1200 1.3648 Asymmetric

unimodal

𝑢3
0
(𝑥) = −

(
𝑥

ℎ0

)4

+ 0.4

(
𝑥

ℎ0

)3

+ 0.71

(
𝑥

ℎ0

)2

− 0.4

(
𝑥

ℎ0

)
+ 0.29 0.4573 0.5697 Asymmetric

multimodal

Numerically, by fitting the parabolic regression equation 𝑃𝑅(𝑡) = 𝑐0𝑡2 + 𝑐1𝑡 + 𝑐2 to the data for the range of values
𝑇 = {30, 35, 40, 45}, we obtain 𝑐0 = 0.8535 with a coefficient of determination 𝑅2 = 0.9996. This high 𝑅2 value indicates
a good fit between the regression model and the numerical data, demonstrating the strong reliability of the fit.
The obtained numerical value 𝑐0 approximates the theoretical value 𝑐∗

0
= 0.8091 with high accuracy. Larger values

of 𝑇 were specifically chosen to better capture the parabolic asymptotic behavior, as smaller values of 𝑇 do not
accurately reflect the long-term quadratic growth. This approach ensures a more precise estimation of the asymptotic
coefficients.
In contrast, kernels 𝐽2(𝑥) and 𝐽3(𝑥) satisfy the first-moment condition (10), meaning their asymptotic behavior is linear.
To calculate the spreading rate, we performed a series of simulations with 𝑇 = 5, 10, … , 50, and fitted a linear regression
of the form 𝐿𝑅(𝑡) = 𝑐0𝑡 + 𝑐1 with 𝑅2 = 1.
Finally, the kernel 𝐽5(𝑥) satisfies the first-moment condition (10), but it does not satisfy the thin-tail condition (12).
Specifically, since 𝐽5(𝑥) ∼ |𝑥|−3 as |𝑥| → ∞, it falls into a class of kernels with heavy tails, where the decay rate of the
kernel is slower than what is required by the thin-tail condition. According to the results in [46], this behavior implies that
the difference 𝑐0𝑡 − ℎ(𝑡) asymptotically behaves as ln 𝑡. Consequently, the regression equation for the asymptotic growth
takes the form 𝐿𝐿𝑅(𝑡) = 𝑐0𝑡 + 𝑐1 ln 𝑡. Based on numerical fitting, we obtain 𝑐0 = 0.4759. The coefficient of determination
is 𝑅2 = 0.99973.
In conclusion, our numerical simulations confirm that spreading occurs at finite speeds when the kernel satisfies the first-
moment condition (10), while accelerated spreading arises when this condition is violated. For thin-tailed kernels, such as
𝐽2(𝑥) and 𝐽3(𝑥), spreading remains linear, consistent with theoretical predictions. In contrast, fat-tailed kernels like 𝐽1(𝑥)

and 𝐽4(𝑥) exhibit logarithmic or quadratic spreading rates, reflecting the kernel’s influence on the population’s dispersal
patterns. Figure 7 visually highlights these distinctions.

5.4 Impact of the Shape of Initial Population

Next, let us examine the impact of the initial conditions.

Example 2. Let us consider the problem (1)–(7) with the following parameters:

ℎ(0) = ℎ0 = 0.7 = −𝑔(0), 𝜇 = 1.5, 𝛼2 = 2, 𝑓(𝑢) = 2𝑢(1 − 𝑢), 𝐽(𝑥) = 1

𝜋(1 + 𝑥2)
, 𝑇 = 1, (59)

and vary the initial population function 𝑢0(𝑥).

First, let us consider 𝑢0(𝑥) = ℎ2
0
− 𝑥2. Integrating this function over interval [−ℎ0, ℎ0] we obtain the initial population

𝑃(𝑡 = 0) = 0.45. Moreover, max𝑥∈[ℎ0,ℎ0] 𝑢0(𝑥) = ℎ2
0
, which is less than the carrying capacity 𝐾 that is equal to 1. Initial

and final (at 𝑇 = 1) solutions are presented in Figure 7, black and blue lines, respectively.
Now, let us consider the initial density functions given in Table 4.
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FIGURE 8 Initial and final density distribution at 𝑇 = 1, 10 for 𝑢1
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FIGURE 9 Initial and final density distribution at 𝑇 = 1, 10 for 𝑢2
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FIGURE 10 Initial and final density distribution at 𝑇 = 1, 10 for 𝑢3
0
(𝑥) = −

(
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ℎ0

)3

+ 0.71
(

𝑥

ℎ0

)2

− 0.4
(

𝑥

ℎ0

)
+

0.29.

The initial population distributions from Table 4, denoted by 𝑢1
0
(𝑥), 𝑢2

0
(𝑥) and 𝑢3

0
(𝑥), are illustrated in Figures 8–10,

respectively. The corresponding numerical solutions at times 𝑇 = 1 and 𝑇 = 10 are also shown. Regardless of the initial
distribution, the numerical solution consistently converges to a symmetric unimodal pattern.
For the given parameters in Equation (59), the carrying capacity is 1. Even when the initial population exceeds this
limit (see column max𝑥∈[ℎ0,ℎ0] 𝑢0(𝑥) in Table 4), the solution approaches the theoretical boundaries. While symmetry
and unimodality are observed in all cases, the convergence to this pattern is slower for the more complex, asymmetric,
multimodal initial density 𝑢3

0
(𝑥).
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6 Conclusion

In this study, we developed and analyzed a numerical method for solving 1D nonlocal diffusion models with free
boundaries, focusing on the Fisher-KPP framework. This research builds upon and extends numerically the foundational
theoretical studies [23, 25, 26], offering a robust numerical perspective to explore and validate the qualitative properties of
the model.
A key novelty of our approach lies in the successful adaptation and application of a two-stage FF transformation. This
technique effectively addressed the challenges posed by moving boundaries, reformulating the original ordinary integro-
differential equation (OIDE) with a free boundary into a PIDE on a fixed spatial domain. This transformation enabled the
application of established numerical techniques, including several explicit finite difference methods (FTCS, upwind, and
Lax–Wendroff) and quadrature rules for integral approximations. We established stability conditions for these schemes,
notably for the upwindmethod, and demonstrated the superior accuracy and stability balance of the Lax–Wendroff scheme
for this class of transformed problems.
Our numerical simulations confirm the accuracy and efficiency of the proposed method in capturing the dynamics
of population spreading and boundary movement. The method demonstrated flexibility by successfully handling
diverse initial conditions and various kernel functions, including those leading to accelerated spreading. Through
these simulations, we numerically validated key theoretical results, such as the spreading–vanishing dichotomy, where
the population either expands indefinitely or contracts to extinction depending on the growth parameters and initial
conditions. Furthermore, we investigated the rate of accelerated spreading for fat-tailed kernels, highlighting how these
rates deviate from classical linear spreading and providing deeper insights into the influence of kernel properties on
propagation dynamics. These findings reinforce the method’s robustness and its utility in studying complex nonlocal
diffusion models. The computational efficiency demonstrated is an important prerequisite before extending this
methodology to more complex scenarios.
Overall, the FF transformation coupled with appropriate finite difference schemes provides a reliable and efficient
framework for studying population models with nonlocal diffusion and evolving boundaries. This work highlights the
originality of extending FF techniques to effectively tackle the combined complexities of nonlocality and free boundaries.
While presented here in one dimension, this study serves as a crucial first step. Future work will focus on extending this
approach to higher-dimensional problems, potentially leveraging symmetries (such as radial symmetry in 2D, which can
reduce to 1D nonlocal problems as seen in recent literature [49]) and investigating models with random parameters or
more complex ecological interactions.
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