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ABSTRACT

In this article, a modified L1-adaptive controller with auto-tuning using a genetic algorithm is presented for dynamic 
positioning of remotely operated vehicles (ROVs) under marine currents, based on a six-degree-of-freedom nonlinear 
model of an ROV. To enable tuning of some of the parameters of the controller, a cost function related to the error of 
the steady state positions of the system is minimised with the use of the genetic algorithm. A series of simulations are 
conducted to ascertain the performance of the system with the implemented controller, taking into consideration the 
vehicle position, orientation, and control signals sent as commands to the thrusters. The simulations are carried out 
with noise levels representative of those encountered by the standard underwater instrumentation on an ROV, as well 
as with underwater current velocities. In addition, the results are compared with those of a classical controller to verify 
the improvements offered by the controller proposed in this paper.
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INTRODUCTION

Today, the use of remotely operated vehicles (ROVs) and 
unmanned underwater vehicles has become widespread, due to 
their versatility and the multitude of complex and potentially 
dangerous operations that these vehicles can perform [1]. 
Zhao [2] described the development of a mathematical and 
computational model to improve the planning and execution 
of missions combining different types of marine vehicles such 
as Autonomous Surface Vehicles (ASVs) and ROVs. In work 
by Fay [3], the design of ecological interfaces was proposed as 

a paradigm for ROVs, to facilitate optimal future performance 
and the interaction between a human and the ROV interface. 
Soylu [4] presented a method for the precise control of the 
trajectory of an ROV for inspection to improve accuracy when 
performing inspection tasks. These applications are related 
to exploration and research, the offshore energy industry, 
underwater archaeology, environmental monitoring, search 
and rescue operations, infrastructure inspection, defence 
and security, aquaculture and fisheries, underwater filming, 
hazardous environment exploration, pipeline maintenance, 
and cable installation.
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In these applications, the deployment of ROVs requires 
accurate dynamic positioning systems. Consequently, 
diverse control methodologies have been applied in this 
field. Classical control techniques such as proportional, 
integral, and derivative (PID) techniques were among the 
first approaches to be applied, for example by Fossen [5], 
[6]. These techniques were initially used due to their good 
results and their wide real-world applicability. Moreover, 
PID control is often used as a benchmark for comparison of 
the performance of more advanced techniques [7]. Robust 
control is another technique that is prevalent in this field, 
due to its ability to mitigate the external disturbances and 
unexpected phenomena that may occur during the course 
of operation [8]. A further advanced control technique that 
is often used in the marine environment for the dynamic 
positioning of different vehicles and structures is the linear 
quadratic control (LQR) technique, in which a cost function 
is minimised to obtain appropriate control signals [9]. The 
L1-adaptive control technique should also be highlighted as 
a control technique with significant potential in the field. 
This advanced control technique combines the use of an 
LQR control with a Kalman filter with an adaptive loop 
[10], which allows it to quickly compensate for external 
disturbances, giving this system a faster and more robust 
response to disturbances than other types of controllers. 
This methodology has found applications in various fields, 
including nuclear plant control [11], the dynamic positioning 
of ROVs [12],  and marine structures [13]. Due to the difficulty 
of manually tuning the parameters of some control techniques 
and the need to adjust certain controller parameters according 
to changes in the system conditions, auto-tuning techniques 
are often used, as described for example by Goheen [14]. The 
application of genetic algorithms based on the minimisation 
of a cost function is noteworthy in this area [15], as their 
implementation enhances the robustness and accuracy of 
the system response.

In the present work, we present a modified L1-adaptive 
controller with autotuning capability for the dynamic 
positioning of a ROV under marine currents. This is an 
innovative way of combining and applying these control 
techniques, as this combination of the control techniques 
presented in this document has not been found in the 
literature. The proposed controller for the dynamic 
positioning of ROVs is illustrated in Fig. 1. The controller is 
composed of a control loop with a linear quadratic optimal 
controller, a Kalman filter, and an adaptive loop, creating 
an L1-adaptive set which has been modified with respect to 
the conventional application of this control approach. This 
modification consists of the elimination of a transfer function 
just after the first subtraction operation in the first feedback 
loop. A tuning system based on genetic algorithms was also 
developed to adjust one of the controller parameters in the 
presence of ocean currents.

Fig. 1. Schematic of the system with the proposed controller

Several simulations were performed, and the results obtained 
with the modified L1-adaptive controller were compared 
with those achieved with a PID controller. The results show 
that the proposed controller positions the ROV accurately 
and with a significantly lower error than the PID controller, 
achieving this accuracy while using appropriate control signals 
for its operation. It is demonstrated that better results are 
obtained when implementing this type of proposed controller 
compared to the classical PID controller, as it is observed to 
be more accurate, with higher speed and robustness against 
disturbances. This improvement in control accuracy represents 
a potential extension of the areas of operation in which the 
ROV can be used. In particular, the improved stability and 
precision of movement will potentially allow for the use of 
an ROV in underwater inspection tasks, where this level of 
control performance is required to capture high-quality images. 

MATHEMATICAL REPRESENTATION OF 
THE ROV

To describe the motion of the ROV model Bluerov2 with 
a heavy configuration with eight thrusters (see Fig. 2), it 
is necessary to use three rotational coordinates and three 
translational coordinates.

To study the motion of the ROV, two coordinate systems 
are considered. The first is fixed to the vehicle (BODY-frame) 
and determines its translational and rotational motions, while 
the second is located on the Earth (NED-frame) and describes 
the position and orientation of the vehicle (see Fig. 2).

Fig. 2. Frames of reference used: BODY and NED frames
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The nonlinear manoeuvring model can be expressed in 
the following form [5] (for more details about the model and 
the value of the parameters, see von Benzon [16]):
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vehicle (BODY-frame) and determines its translational and rotational motions, while the second is 
located on the Earth (NED-frame) and describes the position and orientation of the vehicle (see Fig. 
2). 
 

 
Fig. 2. Frames of reference used: BODY and NED frames. 

 
The nonlinear manoeuvring model can be expressed in the following form [5] (for more details 
about the model and the value of the parameters, see von Benzon [16]): 

    𝑀𝑀𝜈̇𝜈  +  𝐶𝐶(𝜈𝜈)𝜈𝜈 +  𝐷𝐷(𝜈𝜈)𝜈𝜈 +  𝑔𝑔(𝜂𝜂)  =  𝜏𝜏                                 (1) 
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The current velocity in the body-fixed coordinate system is: 
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×  𝑉𝑉𝑐𝑐𝑐𝑐           (5) (5)

where 𝑉𝑐𝑛 = [𝑉𝑐𝑢𝑛,𝑉𝑐𝑣𝑛,𝑉𝑐𝑤𝑛,0,0,0] is the current velocity in the 
NED coordinate system, and 𝐽1(𝜂) is the first component of 
the matrix 𝐽(𝜂). For more details of the model parameters, 
thrusters, their layout on the ROV, and the system of 
distributing forces and moments, see von Benzon [16] and 
Ng [17].

The attenuators At(s) for 𝑥,𝑦,𝑧 and for 𝜙 ,𝜃, 𝜓 are:
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;          𝐴𝐴𝐴𝐴( 𝜙𝜙 ,𝜃𝜃,𝜓𝜓 )(𝑠𝑠)  =  0.1
(0.4𝑠𝑠)+0.1                    (6) 

 
 
Modified L1-Adaptive control 
 
This section describes the innovative application of the modified L1-adaptive control method to 
implement a dynamic positioning application for the ROV illustrated in Fig. 1. 
In order to achieve this, the adaptive control approach described by Cao [10] and Hovakimyan [18]  
is employed in combination with a LQG controller. The implementation follows a similar structure 
to the one described by Sainz [13], in which this system was used for the control of a marine 
structure, and by Vajpayee [11], where this controller was used for the control of a nuclear power 
plant. 
The state-space linearisation of the nonlinear model of equation Eq. (1) is carried out as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  =  𝐴𝐴𝐿𝐿  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝐿𝐿[𝑢𝑢𝑟𝑟(𝑡𝑡)]                                             (7) 
 

 𝑦𝑦𝐿𝐿(t) =  𝐶𝐶𝐿𝐿𝑥𝑥𝐿𝐿(𝑡𝑡) + 𝐷𝐷𝐿𝐿[𝑢𝑢𝑟𝑟(𝑡𝑡)]               (8) 
 
where 

• 𝑢𝑢𝑟𝑟 = 𝜏𝜏 are the forces and moments generated by the thrusters; 
• 𝐴𝐴𝐿𝐿 is the state matrix; 
• 𝑥𝑥𝐿𝐿(𝑡𝑡)  =  [𝑥𝑥𝐿𝐿 ,𝑦𝑦𝐿𝐿 , 𝑧𝑧𝐿𝐿 ,𝜙𝜙𝐿𝐿 , 𝜃𝜃𝐿𝐿 ,𝜓𝜓𝐿𝐿] 𝑇𝑇  is the state vector, the elements of which correspond to 

the position and the Euler angles vector of the linearised model; 
• 𝐵𝐵𝐿𝐿 is the input matrix; 
• 𝐶𝐶𝐿𝐿 is the output matrix; 
• 𝑦𝑦𝐿𝐿(𝑡𝑡)  =  [𝑥𝑥𝐿𝐿 ,𝑦𝑦𝐿𝐿 , 𝑧𝑧𝐿𝐿 ,𝜙𝜙𝐿𝐿 , 𝜃𝜃𝐿𝐿 ,𝜓𝜓𝐿𝐿] 𝑇𝑇 is the output vector; 
• 𝐷𝐷𝐿𝐿 is the feedforward matrix. 

 
The linearised model in Eq. (7) was obtained by linearising the system around the starting conditions 
of the system. The Kalman filter is also implemented to filter sensor noise from the position signals 
that are used in the control system, by considering the linear model of the ROV in Eq. (7). The 
Kalman filter is implemented using an algorithm described in detail by Fossen [19] and more 
extensively explained in [5]. The algorithm is as follows: 
 

• Matrix design: 
 

𝑄𝑄(𝑡𝑡) = 𝑄𝑄𝑇𝑇 > 0;          𝑅𝑅(𝑡𝑡) = 𝑅𝑅𝑇𝑇 > 0;            𝑥𝑥𝑓𝑓(0) = 𝑥𝑥𝑓𝑓(0)              (9) 
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of the system. The Kalman filter is also implemented to filter sensor noise from the position signals 
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where
•	  𝑢𝑟 = 𝜏 are the forces and moments generated by the 

thrusters;
•	 𝐴𝐿 is the state matrix;
• 	 𝑥𝐿(𝑡) = [𝑥𝐿,𝑦𝐿,𝑧𝐿,𝜙𝐿,𝜃𝐿,𝜓𝐿] 𝑇 is the state vector, the elements 

of which correspond to the position and the Euler angles 
vector of the linearised model;

• 	 𝐵𝐿 is the input matrix;
• 	 𝐶𝐿 is the output matrix;
• 	 𝑦𝐿(𝑡) = [𝑥𝐿,𝑦𝐿,𝑧𝐿,𝜙𝐿,𝜃𝐿,𝜓𝐿] 𝑇 is the output vector;
• 	 𝐷𝐿 is the feedforward matrix.

The linearised model in Eq. (7) was obtained by linearising 
the system around the starting conditions of the system. 
The Kalman filter is also implemented to filter sensor noise 
from the position signals that are used in the control system, 
by considering the linear model of the ROV in Eq. (7). The 
Kalman filter is implemented using an algorithm described 
in detail by Fossen [19] and more extensively explained in [5]. 
The algorithm is as follows:

•	 Matrix design:
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• 𝑥𝑥𝐿𝐿(𝑡𝑡)  =  [𝑥𝑥𝐿𝐿 ,𝑦𝑦𝐿𝐿 , 𝑧𝑧𝐿𝐿 ,𝜙𝜙𝐿𝐿 , 𝜃𝜃𝐿𝐿 ,𝜓𝜓𝐿𝐿] 𝑇𝑇  is the state vector, the elements of which correspond to 

the position and the Euler angles vector of the linearised model; 
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The linearised model in Eq. (7) was obtained by linearising the system around the starting conditions 
of the system. The Kalman filter is also implemented to filter sensor noise from the position signals 
that are used in the control system, by considering the linear model of the ROV in Eq. (7). The 
Kalman filter is implemented using an algorithm described in detail by Fossen [19] and more 
extensively explained in [5]. The algorithm is as follows: 
 

• Matrix design: 
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𝐽𝐽1(𝜂𝜂) is the first component of the matrix 𝐽𝐽(𝜂𝜂). For more details of the model parameters, 
thrusters, their layout on the ROV, and the system of distributing forces and moments, see von 
Benzon [16] and Ng [17]. 
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•	 Initial conditions:
• Initial conditions: 

 
𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))

𝑇𝑇 ]  =  𝑃𝑃0                     (10) 
 

• Kalman propagation matrix: 
𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 

 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
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where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(12)

In this context, the tuning variables are represented by the 
terms Q and R, which correspond to the covariances of the 
states and the covariances of the noise, respectively. The term 
𝑢𝑟 denotes the forces and moments generated by the thrusters, 
while the term 𝑦𝑓 represents the Kalman filter output vector. 
The estimated state vector is given by the expression 

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

𝑓 , while 
the filtered state vector is represented by the equation 

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

𝑓=𝑦𝑓.

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(13)
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The term 𝑢𝐿𝑄𝑅(𝑡) denotes the nominal control signals of 
the LQR controller, whereas 𝑢𝑎(𝑡) represents the adaptive 
control. The linear feedback of the control state is calculated 
by minimising the cost function

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(14)

The cost function was set up as described by Fossen [5]:

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(15)

𝑃𝐿𝑄𝑅 is calculated by solving the algebraic equation of 
Riccati:

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(16)

The matrix 𝑄𝐿𝑄𝑅 is employed as a tuning parameter, while 
the matrix 𝑅𝐿𝑄𝑅 represents the second of the controller tuning 
parameters for the LQR controller.

The state in Eq. (7) can be expressed as follows:

• Initial conditions: 
 

𝑃𝑃 (0)  =  𝐸𝐸[(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))(𝑥𝑥𝑓𝑓(0) −  𝑥𝑥𝑓𝑓(0))
𝑇𝑇 ]  =  𝑃𝑃0                     (10) 

 
• Kalman propagation matrix: 

𝐾𝐾(𝑡𝑡) =  𝑃𝑃(𝑡𝑡)𝐶𝐶𝑇𝑇(𝑡𝑡)𝑅𝑅−1(𝑡𝑡)                     (11) 
 
where P is the solution of the algebraic Riccati equation. 

• Propagation of estimated states 
 

𝑥̇̂𝑥𝑓𝑓(𝑡𝑡) =  𝐴𝐴𝐿𝐿(t) 𝑥𝑥𝑓𝑓(𝑡𝑡) + 𝐵𝐵𝐿𝐿(t)𝑢𝑢𝑟𝑟(t) + 𝐾𝐾(𝑡𝑡)[𝑦𝑦𝑓𝑓(𝑡𝑡)−𝐶𝐶(𝑡𝑡)𝑥𝑥𝑓𝑓(𝑡𝑡)]                      (12) 
 

In this context, the tuning variables are represented by the terms Q and R, which correspond to the 
covariances of the states and the covariances of the noise, respectively. The term 𝑢𝑢𝑟𝑟 denotes the 
forces and moments generated by the thrusters, while the term 𝑦𝑦𝑓𝑓  represents the Kalman filter output 
vector. The estimated state vector is given by the expression 𝑥𝑥𝑓𝑓, while the filtered state vector is 
represented by the equation 𝑥𝑥𝑓𝑓=𝑦𝑦𝑓𝑓. 

 
𝐹𝐹𝑐𝑐(𝑡𝑡) = −𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) + 𝑢𝑢𝑎𝑎(𝑡𝑡)                                     (13) 

 
The term 𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) denotes the nominal control signals of the LQR controller, whereas 𝑢𝑢𝑎𝑎(𝑡𝑡) 
represents the adaptive control. The linear feedback of the control state is calculated by minimising 
the cost function. 

 
𝑢𝑢𝐿𝐿𝐿𝐿𝐿𝐿 = −𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓                                           (14) 

 
The cost function was set up as described by Fossen [5]: 

 
𝐽𝐽(𝑢𝑢) = ∫ [𝑥𝑥𝑓𝑓𝑇𝑇𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝑓𝑓 + 𝑢𝑢𝑟𝑟𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑟𝑟]𝑑𝑑𝑑𝑑 ; 

∞
0 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿                      (15) 

 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 is calculated by solving the algebraic equation of Riccati: 

 
𝐴𝐴𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵𝐿𝐿𝑇𝑇𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 = 0                         (16) 

 
The matrix 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 is employed as a tuning parameter, while the matrix 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 represents the second 
of the controller tuning parameters for the LQR controller. 

 
The state in Eq. (7) can be expressed as follows: 
 

𝑥̇𝑥𝐿𝐿(𝑡𝑡)  = 𝐴𝐴𝑚𝑚  𝑥𝑥𝐿𝐿(𝑡𝑡)  + 𝐵𝐵𝑚𝑚[𝜔𝜔0𝑢𝑢𝑎𝑎(𝑡𝑡) + 𝜎𝜎1(𝑡𝑡)]                                        (17) 
 

(17)

The closed loop system matrix, denoted by 𝐴𝑚, can 
be expressed as follows: 𝐴𝑚 = 𝐴𝐿 − 𝐵𝑚𝐾T

𝐿 𝑄𝑅, where 𝐾𝐿𝑄𝑅 
represents the control feedback gain. The input matrix is 
represented by 𝐵𝑚 = 𝐵𝐿. The disturbance is represented by the 
function 𝜎1(𝑡), and the input gain matrix by the function 𝜔0. 
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The quantity represented by 𝐾𝑔 corresponds to the value of 
the feedforward filter, which is also known as a feedforward 
pre-filter. This filter is configured in such a way that the overall 
system is provided with the requisite conditions for effective 
control, with the signals being decoupled.

It should be noted that the usual structure of the L1-adaptive 
controller has been modified by eliminating the integral 
action that is usually incorporated between the two loops of 
the controller. This integral action can be eliminated due to 
the implementation of an auto-tuning system based on the 
genetic algorithm to tune the control parameter 𝐾𝑔 to obtain 
the desired response and reducing the stationary state error.

AUTO-TUNING WITH THE GENETIC ALGORITHM

In the proposed method described in the previous section, 
several tuning parameters need to be properly set to obtain 
the desired response from the system, due to the complexity 
of the controller. In addition to the parameters corresponding 
to the Kalman filter and the LQR controller, there are other 
parameters specific to the L1-adaptive control. The system 
response is highly sensitive to the tuning of the 𝐾𝑔 parameter, 
corresponding to the feed-forward prefilter. Hence, an auto-
tuning process for the parameter was established using the 
genetic algorithm [21].

A genetic algorithm is used to tune the 𝐾𝑔 with the aim of 
reducing to a minimum the error in the ROV position output 
by performing the steps shown in Fig. 3.
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where 𝑟1(𝑠) is the reference signal after attenuation, and 𝑦𝑓 
is the Kalman filter output vector.

SIMULATION RESULTS AND DISCUSSION

A series of simulations were conducted in the MATLAB-
Simulink environment to ascertain the viability of the 
proposed control scheme, using a sampling period of 0.1 s.

In the simulations, the reference vector was set to 
𝑟(𝑠) =  [1𝑚, 1𝑚,1𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]𝑇, and the Kalman 
filter matrices were adjusted as follows:
•	 𝑄 =   𝑑𝑖𝑎𝑔([1,1,1,9,12,30,1,1,1,900,900,900])
•	 𝑅 =   𝑑𝑖𝑎𝑔([0.001,0.001,0.0001,10−1, 10−1, 10−1, 10−1, 

10−1, 10−1, 10−1, 10−1, 10−1])
The LQR tuning matrices were adjusted as follows: 

•	 𝑄𝐿𝑄𝐺 =𝑑𝑖𝑎𝑔([1.99 × 103, 0.300 × 103, 0.013 × 103, 0.005 × 103, 
0.005 × 103, 0.005 × 103, 0.005 × 103, 0.005 × 103, 0.005 × 103, 
0.005 × 103, 0.005 × 103, 0.005 × 103])

•	 R𝐿𝑄𝐺 = 𝑑𝑖𝑎𝑔([0.0035, 0.0015, 0.0002, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5, 0.5, 0.5])

Tab. 1. Tuning parameters for the modified L1-adaptive control

𝐾𝑔 ϒ 𝜀
[965.01, 866.02, 360.33, 1, 1, 1] [0.1, 15, 12] [0, 30, 30, 3]

A  PID controller was also implemented (Eq. 26) to 
determine the improvements offered by the proposed 
controller compared to a classical PID control with the tuning 
parameters given in Table 2. The references and filter were the 
same in both scenarios. Consequently, the scenarios in which 
the simulations were carried out are identical, except that the 
proposed controller was replaced by the PID controller, as 
can be seen from Fig. 4.

Tab. 2. Tuning parameters for the PID controller

P [1356.97,764.73,609.1827,391.93,81.43,4.4466]
I [80.49, 1.31, 152.28, 293.52, 76.20, 0.6539]
D [0, 0, 2.08, 12.64, 20.38, 7.41]
N [0,100, 2.08,100, 136.40, 17.66]
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Fig. 4 Schematic of the system with the PID controller

Fig. 5, which represents the motion of the ROV in the 
x-direction, shows how the controller is able to follow the 
reference signal without overshoot or oscillations that could 
lead to a collision with objects or other underwater vehicles. 
The steady-state error for the implemented controller with 
self-tuning is approximately 0% of the reference signal. This 
is acceptable, since it can be observed that the currents that 
were incorporated into the system are being adequately 
compensated. Fig. 5 shows that the Kalman filter performs 
acceptable filtering of the signals.

Fig. 5. Results for the ROV with modified L1-adaptive controller for position 
in the x-direction.

Moreover, it can be observed from Fig. 5 and Fig. 6 that the 
response at the surge output of x for the modified L1-adaptive 
controller does not show overshoot or any subsequent 
attenuation until the response converges to the reference, as 
in the response for the system with the PID.
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Fig. 6. Results for the ROV with PID controller for position in the x-direction.

Fig. 7 shows the movement along the x-, y- and z-axes of 
the system with the PID controller. As in the previous cases, 
a higher deviation is observed when carrying out the motion 
to arrive at the reference position than when carrying out the 
motion with the modified L1-adaptive controller, as shown 
in Fig. 8.

Fig. 7. Results for the ROV with PID controller for the positions in the x-, y- 
and z-directions

Fig. 8. Results for the ROV with modified L1-adaptive controller for the 
positions in the x-, y- and z-directions

It can be observed from Fig. 9 that the system despite the 
external perturbances induced by the currents on three of 
the axes, presents slight steady state errors in roll, pitch, and 
yaw motions (𝜙,  𝜃, 𝜓), which can be considered negligible.

Fig. 9. Results for the ROV with modified L1-adaptive controller for the 
position in the directions.

The response in terms of the angular movements of both 
controllers in the steady state is correct, since the deviation in 
regard to the reference is very small, as can be seen in Fig. 10 
for the PID controller and in Fig. 9 for the modified adaptive 
controller. However, from the output of the PID controller 
under pitch, it can be seen that during the manoeuvres, the 
deviation from the reference shown in Fig. 10 is considerably 
higher than for the modified L1-adaptive controller in Fig. 9.

Fig. 10. Results for the ROV with PID controller for positions in the directions.

It can be seen from Fig. 11 that the control signals present 
no steady-state oscillations and the control effort is low. This 
leads to an increase in the actuators’ service life, and means 
that an actuation margin can be maintained in the case where 
marine conditions require it.

Fig. 11. Results for the ROV with modified L1-adaptive controller for the 
control signal  calculated by the controller

Finally, a comparison of the control signals for the PID 
controller (Fig. 12) and the proposed modified L1-adaptive 
controller (Fig. 11) shows that for the PID controller, there is 



POLISH MARITIME RESEARCH, No 2/2025 121

greater oscillation and higher values of the control signals, 
which translates into a  more demanding performance 
requirement for the actuators of the system, and hence to 
a reduction in the life expectancy of the actuators.

Fig. 12. Results for the ROV with PID controller for the control signal   
calculated by the controller

As a consequence of the abovementioned effect, the control 
signals in the thrusters of the system (−1 to 1) also reflect an 
improvement in the results of the ROV with the modified 
L1-adaptive controller. It can be observed from Figs. 13 to 
16 that the modified L1-adaptive controller only reaches 
saturation at the beginning of the results for thrusters 2 and 3, 
and for a shorter time, without other saturation events. From 
a comparison between the previous results and the results 
for the ROV with the PID controller, it can observed that 
the ROV shows saturation of the signals for all the thrusters, 
over a longer period, with oscillations in the saturation in 
some cases.

Fig. 13. Results for the ROV with modified L1-adaptive controller for the 
signals of thrusters 1-4; for more details on the thrusters and their layout on 

the ROV, see von Benzon [16]

Fig. 14. Results for the ROV with PID controller for the signals of thrusters 1-4

Fig. 15. Results for the ROV with modified L1-adaptive controller for the 
signals of thrusters 5-8 

Fig. 16. Results for the ROV with PID controller for the signals 
for thrusters 5–8 

CONCLUSION

In this paper, we have presented a modified L1-adaptive 
control with autotuning using a genetic algorithm for the 
dynamic positioning of an ROV subject to undersea currents. 
Dynamic control is performed in the presence of disturbances 
corresponding to a standard level of noise for this type of 
vehicle instrumentation and currents inducing motion along 
three of the axes. Hence, the dynamic marine environment 
in which an ROV operates is realistically represented. Several 
simulations were carried out to verify the correct behaviour 
of the proposed controller and the autotuning established 
with the genetic algorithm. Simulation results showed that 
the implemented controller accurately positioned the ROV 
at the reference point, and there were no oscillations or 
overshoots during the positioning manoeuvre. A Kalman 
filter correctly performed filtering of the ROV positioning 
signals, and contributed to achieving suitable control signals. 

In addition, the control signals were adequate, as they did 
not exhibit abrupt oscillations; this means that the actuators 
can have a longer service life, and if the marine environment 
conditions become worse, the desired position can still be 
maintained. A comparative study of the proposed controller 
against a PID controller was also carried out. For all the 
reasons mentioned in the previous section, it can be concluded 
that under all the movements studied, the proposed modified 
L1-adaptive controller produced a better response than the 
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PID controller. The simulations showed that there was no 
overshoot and no oscillation. 

This system would allow an ROV to operate in scenarios 
where there is a possibility of collision with other objects, and 
where precise motion control is required. Similarly, when 
capturing images using underwater vision instruments, the 
vehicle is sometimes required to remain as stable as possible. 
It is notable that with the modified L1-adaptive controller, 
the oscillations in these positions, which are otherwise 
present with the classical PID controller, are eliminated. In 
addition, the control signals of the proposed controller are 
more desirable than those of the PID controller because they 
do not undergo such strong oscillations, meaning a greater life 
expectancy for the actuators. Hence, the proposed controller 
extends the operational range over which an ROV can operate, 
due to the possibility of superior control of the vehicle with 
increased safety for both the human operators and the 
equipment involved. 

The proposed controller also offers a significant advantage 
for underwater vision, an area which is currently expanding 
due to the need for supervision of offshore structures and 
transoceanic pipelines, since if stability can be adequately 
maintained while the vehicle is moving, it is possible to 
improve the image capture process and thus simplify the 
subsequent processing required. Finally, in addition to all 
the benefits of applying the proposed controller to ROVs 
that have been highlighted here, which already represent 
a significant advance, it should be noted that the application 
of the genetic self-tuning algorithm significantly reduces the 
difficulty of tuning the controller’s parameters. As a result 
of this self-tuning process, the controller response is robust 
and adequate, without the need for difficult manual tuning. 
It may not have been possible to obtain the excellent results 
presented here with manual tuning.
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