
Received: 30 March 2025

Revised: 17 May 2025

Accepted: 26 May 2025

Published: 31 May 2025

Citation: Saldaña Enderica, C.; Llata,

J.R.; Torre-Ferrero, C. Guided

Reinforcement Learning with Twin

Delayed Deep Deterministic Policy

Gradient for a Rotary Flexible-Link

System. Robotics 2025, 14, 76.

https://doi.org/10.3390/

robotics14060076

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

robotics

Article

Guided Reinforcement Learning with Twin Delayed Deep
Deterministic Policy Gradient for a Rotary Flexible-Link System
Carlos Saldaña Enderica 1,2,*,† , José Ramon Llata 1,† and Carlos Torre-Ferrero 1,†

1 Department of Electronic Technology, Systems Engineering and Automation, Universidad de Cantabria,
Avda. de los Castros, 39005 Santander, Cantabria, Spain; ramon.llata@unican.es (J.R.L.);
carlos.torre@unican.es (C.T.-F.)

2 Facultad de Sistemas y Telecomunicaciones, Universidad Estatal Península de Santa Elena, Santa Elena,
La Libertad 7047, Ecuador

* Correspondence: cse386@alumnos.unican.es; Tel.: +593-99-117-4027
† These authors contributed equally to this work.

Abstract: This study proposes a robust methodology for vibration suppression and trajec-
tory tracking in rotary flexible-link systems by leveraging guided reinforcement learning
(GRL). The approach integrates the twin delayed deep deterministic policy gradient (TD3)
algorithm with a linear quadratic regulator (LQR) acting as a guiding controller during
training. Flexible-link mechanisms common in advanced robotics and aerospace systems
exhibit oscillatory behavior that complicates precise control. To address this, the system is
first identified using experimental input-output data from a Quanser® virtual plant, gener-
ating an accurate state-space representation suitable for simulation-based policy learning.
The hybrid control strategy enhances sample efficiency and accelerates convergence by
incorporating LQR-generated trajectories during TD3 training. Internally, the TD3 agent
benefits from architectural features such as twin critics, delayed policy updates, and target
action smoothing, which collectively improve learning stability and reduce overestimation
bias. Comparative results show that the guided TD3 controller achieves superior perfor-
mance in terms of vibration damping, transient response, and robustness, when compared
to conventional LQR, fuzzy logic, neural networks, and GA-LQR approaches. Although
the controller was validated using a high-fidelity digital twin, it has not yet been deployed
on the physical plant. Future work will focus on real-time implementation and structural
robustness testing under parameter uncertainty. Overall, this research demonstrates that
guided reinforcement learning can yield stable and interpretable policies that comply with
classical control criteria, offering a scalable and generalizable framework for intelligent
control of flexible mechanical systems.

Keywords: guided reinforcement learning; deep reinforcement learning; TD3; linear
quadratic regulator; hybrid control; vibration suppression; flexible link systems; robotics

1. Introduction
The domain of automatic control involving robots equipped with flexible links has

emerged as a field of profound significance within control engineering and robotics, as doc-
umented in [1]. The integration of flexible links poses considerable challenges due to
vibrations induced during the transitional phases of controlling a robotic arm’s position,
which undermines the system’s performance and precision [2]. These vibrations can lead
to positioning errors, component wear, and in some cases, system failures. This issue calls
for advanced control strategies to mitigate the adverse effects and enhance the reliability
and accuracy of robotic systems.
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Passive reduction methods in dynamic robotic environments utilize the system’s in-
herent dynamics to achieve stability and control, as demonstrated in studies on passive
dynamic systems [3–5]. In contrast, active control methods employ external forces or control
inputs to actively stabilize and manipulate the system, as seen in research on vibration
isolation and reduction devices [5,6]. Passive methods leverage the system’s natural dy-
namics and energy for control, while active methods require continuous monitoring and
adjustment through external inputs to maintain stability and performance. The primary
distinction lies in the autonomy and self-regulation of passive systems versus the inter-
vention and real-time control of active systems, each presenting unique advantages and
challenges in dynamic robotic environments [5].

Effective vibration control in robotics is essential for enhancing human–robot col-
laboration (HRC) in industrial settings [7]. Techniques for vibration suppression play a
crucial role in enhancing task performance and minimizing unwanted oscillations induced
by various sources, including handheld tools and external disturbances [7–9]. Advanced
control methodologies, such as the bandlimited multiple Fourier linear combiner (BMFLC)
algorithm and disturbance observer (DOB)-based control, have been developed to ac-
tively mitigate vibrations, ensuring smoother robotic operation while maintaining task
efficiency [7,9]. Moreover, integrating feedforward force control and variable impedance
learning enables robots to effectively counteract vibrational disturbances while preserv-
ing compliance, thus optimizing human–robot collaboration (HRC) and overall system
performance [7]. Additionally, innovative approaches such as dynamic simulation and
trajectory optimization provide predictive capabilities for vibration suppression, facilitating
the development of lighter and more cost-effective robotic systems [8].

Robotic systems incorporating flexible links offer several advantages, including re-
duced structural weight, improved energy efficiency, and enhanced operational safety.
These attributes make them particularly attractive alternatives to conventional rigid robots
across various industrial and research applications [10,11]. Flexible link manipulators,
by optimizing the payload-to-mass ratio, contribute to the development of more efficient
and capable robotic systems [10]. However, the inherent compliance of flexible joints can re-
sult in increased impact forces, necessitating higher input torques for effective manipulation.
This underscores the importance of precise control strategies to minimize positioning errors
an especially critical consideration when managing substantial payloads [11]. Addressing
these challenges through state-of-the-art design and control methodologies is essential for
fully harnessing the potential of flexible link manipulators in robotic applications.

Recent research has increasingly bridged reinforcement learning (RL) with control
theory, revealing a wide spectrum of possibilities for robotic applications, particularly in
enhancing system stability and control performance. For instance, Ref. [12] introduces a
reinforcement-learning-based controller that integrates a robust integral of the sign of the
error (RISE) methodology with an actor–critic framework to address these challenges. This
convergence of machine-learning techniques with traditional control strategies highlights a
promising avenue for advancing robotic autonomy and adaptability in dynamic environ-
ments. This approach ensures asymptotic stability and enhances control performance.

Particularly, Ref. [13] highlights a hybrid control strategy that merges model-based
learning with model-free learning to enhance learning capabilities in robotic systems.
This hybrid approach significantly improves the efficiency of sampling and motor skill
learning performance, as evidenced in control tasks through simulations and hardware
manipulation. Similarly, Raoufi and Delavari have developed an optimal model-free
controller for flexible link manipulators using a combination of feedback and reinforcement-
learning methods [14].
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Rahimi, Ziaei, and Esfanjani explore a reinforcement learning-based control solution
for nonlinear tracking problems, considering adversarial attacks in [15], utilizing the deep
deterministic policy gradient (DDPG) algorithm. Moreover, Annaswamy discusses the
integration of adaptive control and reinforcement-learning approaches in [16], suggest-
ing their combined application to leverage their complementary strengths in real-time
control solutions.

Focusing on robotics control, Ref. [17] presents a method based on reinforcement
learning to teach robots continuous control actions in object manipulation tasks through
simulations. This method allows robots to adapt to new situations and object geome-
tries with minimal additional training. Further deepening research in system control,
Ref. [18] addresses trajectory tracking for a robotic manipulator and a mobile robot using
deep-reinforcement-learning-based methods. However, in [19], an approach based on
reinforcement learning is proposed to control a continuous planar three section robot using
the DDPG algorithm, thereby enriching research and blending classic and modern control
strategies with reinforcement learning, as seen in [20]. Here, a predictive control scheme
based on reinforcement learning (RLMPC) for discrete systems integrates model predictive
control (MPC) and RL, where RLMPC demonstrates performance comparable to traditional
MPC in linear systems and surpasses it in nonlinear systems.

In our specific field of research, the control of vibrations in flexible links has seen
advancements as in [21], where a reinforcement-learning controller (RL) is presented
for vibration suppression in a two-link flexible manipulator system while maintaining
trajectory tracking. Experimental results demonstrate the practical applicability of the
RL controller. Lastly, a DRLC-DDPG control for flexible link manipulators using an ARX
model and an adaptive Kalman filter (AKF) is presented in [22].

The twin delayed deep deterministic policy gradient (TD3) algorithm has demon-
strated superior control performance across various applications, including aero-engine
systems, missile autopilots, hybrid electric vehicle (HEV) energy management, and micro-
grid frequency regulation [23–26].

However, TD3 faces challenges in robotic applications, such as slow convergence rates
and high collision risks in complex path planning [27]. Additionally, TD3 often converges
to boundary actions, leading to suboptimal strategies and overfitting [28]. To mitigate these
issues, researchers have proposed enhancements like the deep dense dueling twin delayed
deep deterministic (D3-TD3) architecture, which improves convergence speed and reduces
collisions [27]. Other advancements, such as adaptively weighted reverse Kullback–Leibler
divergence, enhance TD3’s performance in offline reinforcement learning [29].

Despite these improvements, TD3 still faces limitations related to training time and
computational demands. To address these, guided reinforcement learning (GRL) has
been proposed to accelerate convergence by integrating prior knowledge [30]. Hybrid
approaches combining RL with classical control methods, such as using a linear quadratic
regulator (LQR) to initialize TD3 agents, enhance training stability while reducing compu-
tational costs [31,32]. These innovations contribute to making TD3 a more efficient solution
for robotic control and continuous motion tasks.

Controlling a rotary flexible-link system demands both high-performance tracking
and active vibration damping, which single-method controllers often struggle to achieve.
We propose a hybrid control framework that simultaneously integrates a model-free deep-
reinforcement-learning agent (twin delayed deep deterministic policy gradient, TD3) with a
model-based linear quadratic regulator (LQR) and experimental system identification. This
approach leverages the strengths of each component: the LQR provides an optimal baseline
derived from a linearized model for immediate stability and performance, while the TD3
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agent learns to compensate for unmodeled nonlinearities and uncertainties, fine-tuning
control signals beyond the LQR’s fixed gains [33].

Experimental system identification is used to obtain an accurate dynamic model
of the flexible link, which not only informs the LQR design but also serves as a high-
fidelity simulator for training the TD3 agent [34,35]. The inclusion of LQR in the loop also
accelerates RL training by guiding the agent with a reasonable control policy from the
start, thus reducing exploration of unsafe actions. This synergy between optimal control
and learning ensures that the flexible link remains stabilized during learning while the
TD3 gradually learns to outperform the LQR’s baseline in terms of damping and tracking
optimality [33].

Importantly, the proposed framework is portable to other flexible-link mechanisms
with different physical properties and operating conditions. Because the methodology is
model-based and model-free, it generalizes well: one can re-identify the dynamics of a new
flexible-link device (e.g., with different link stiffness or inertia), derive an updated LQR for
that model, and then re-train or fine-tune the TD3 agent in simulation using the identified
model [35]. This modular process can be applied to custom-built or open-source testbeds
just as readily as to the Quanser system, requiring only a system identification phase to
calibrate the simulator to the new hardware [34].

In practice, even significant variations in dynamics can be handled by the RL agent
through retraining or robust training (e.g., with domain randomization), allowing the
controller to adapt to parameter changes and unmodeled effects in the new platform [33,35].
Our research focuses on a cantilever beam coupled to a DC motor, whose state-space
dynamic model was developed and validated using real experimental data through the
QUARC platform and Simulink® [36]. We propose a simulated controller based on guided
reinforcement learning (GRL), where a linear quadratic regulator (LQR) guides the training
of the twin delayed deep deterministic policy gradient (TD3) algorithm. This hybrid
approach significantly reduces training time and improves convergence stability, optimizing
trajectory tracking accuracy and minimizing vibrations. Simulation results, compared with
conventional methods (LQR, GA-LQR, and fuzzy control), demonstrate its potential for
practical applications in flexible systems and collaborative robotics. As a next step, we
suggest experimental validation and the exploration of adaptive techniques to enhance
control robustness against real-world disturbances.

2. System Description
2.1. Identification of the Rotary Flexible Link System

The rotary flexible link (RFL) system consists of a rotary servo motor coupled with a
flexible steel link, serving as a model for lightweight robotic manipulators and cantilever
beam structures. The servo angle (θ) is measured through an incremental encoder, while a
strain gauge captures the link deflection (α). Data acquisition and communication are con-
ducted via Simulink®, version R2022B and the QUARC interface, version 2.15, as depicted
in Figure 1 [37] and Figure 2.

The system identification process involves applying a square wave voltage to the
motor and capturing the corresponding responses of θ and α. Key parameters considered
include the time vector (t), motor voltage (u), servo angle (θ), and link deflection (α).
The controller is designed to ensure precise reference trajectory tracking while minimizing
vibrations, maintaining operation within voltage constraints of ±10 V and a deflection
range of [−5◦, 5◦].
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Figure 1. Rotary flexible link communication (Quanser®, Markham, QC, Canada).

Figure 2. Quanser Interactive Labs (Quanser®).

2.2. Experimental Setup

All experiments in this study were conducted using the QLabs Virtual Rotary Flexible
Link platform, a high-fidelity digital twin of the physical Quanser Rotary Flexible Link
hardware [38]. According to Quanser, the virtual platform is dynamically accurate and
replicates the behavior of the physical hardware, making it suitable for rigorous experi-
mentation in vibration suppression, system identification, and optimal control [39,40]. It
allows full instrumentation and control through MATLAB/Simulink, version R2022B and
provides the same model-based lab experience as the real-world system, except for the
presence of physical sensor noise and cable disturbances, which are inherently absent in
the virtual environment [38].

Table 1 summarizes the physical parameters of the flexible beam emulated by the
virtual model. These parameters are used in both modeling and control stages and represent
the mechanical configuration of the hardware platform used in typical experimental labs.

Table 1. Physical parameters of the flexible link [40].

Property Value

Material Stainless Steel
Total length 48 cm
Effective length (to strain gage) 41.9 cm
Link Mass 0.065 kg
Moment of inertia 0.0038 kg·m2

Strain gage range ±5 V
Strain gage sensitivity 1/16.5 rad/V

The system used in this study is the QLabs Virtual Rotary Flexible Link; it consists of a
rotary base driven by a servo motor, a flexible stainless-steel link, and calibrated sensors
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capable of accurately measuring the base angle and the tip deflection. To evaluate control
performance, a full-state linear quadratic regulator (LQR) was implemented based on
a four-state state-space model identified from virtual system data. Table 2 details the
simulation and implementation setup.

Table 2. LQR implementation capabilities of the QLabs Virtual System [39].

Aspect Details

Control objective Servo angle tracking and vibration minimization
Feedback type Full-state feedback (4 states)
Simulation environment Simulink + QUARC Real-Time
Platform used QLabs Virtual Rotary Flexible Link
LQR computation lqr(sys,Q,R) in MATLAB
Sampling time 0.002 s
Sensor interface Incremental encoder and strain gage

2.3. State Definition and Identification Procedure

The rotary flexible link system is modeled as a linear state-space system with four
states, one input, and two outputs. The input is the motor voltage Vm, and the measured
outputs are the servo angle θ and the relative deflection angle of the flexible link α.

The four states of the system are defined as follows:

• x1 = θ: angular position of the servo (rad);
• x2 = α: relative angular deflection of the flexible link (rad);
• x3 = θ̇: angular velocity of the servo (rad/s);
• x4 = α̇: angular velocity of the flexible link deflection (rad/s).

These states describe the coupled dynamics of the underactuated rotary base and
flexible link mechanism.

The identification process followed these detailed steps:

1. Experimental Setup:The experiment was conducted using the QLabs Virtual Rotary
Flexible Link platform, which, according to Quanser documentation, faithfully repli-
cates the behavior of the physical hardware [40,41]. Proper initial conditions were
ensured by starting from a non-vibrating position and avoiding cable interference.

2. Input Signal: A square wave voltage was applied to the motor to sufficiently excite
the dynamics of both the servo and the flexible link.

3. Data Acquisition: The servo angle was measured using an incremental encoder,
and the flexible link deflection was measured using a calibrated strain gauge. The data
were recorded with a sampling time of 2 ms and stored in MATLAB variables.

4. Dataset Preparation: The recorded data were organized into an iddata object.
5. Model Estimation: A fourth-order state-space model was estimated using the ssest

function from MATLAB’s System Identification Toolbox [42]. This function employs an
iterative prediction error minimization algorithm to fit the model to the measured data.

2.4. Use of the ssest Function in System Identification

The ssest function, part of MATLAB’s System Identification Toolbox [43], is a ro-
bust and widely validated tool for estimating state-space models using time-domain or
frequency-domain data [42]. It relies on an iterative prediction error minimization al-
gorithm, which fine-tunes model parameters to best represent the dynamic behavior of
the system [44]. Furthermore, the ability to initialize the estimation with known model
structures enhances its adaptability to incorporate prior system knowledge [45].
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2.5. System Identification Validation

The validation dataset, sourced from Quanser, corresponds to an RFL plant connected
to a data acquisition (DAQ) card. The system features a 10V servo motor equipped with
an incremental encoder offering a resolution of 4096 counts per revolution, alongside
a strain gauge for deflection measurement. Data acquisition is carried out through the
“Quanser Interactive Labs” platform (version 2.15) and processed via QUARC Real-Time
Control Software [41]. This high-fidelity dataset enables the construction of an accurate
state-space model, which is validated through open-loop response analysis, comparison of
measured and simulated data, residual autocorrelation analysis, cross-correlation, and cross-
validation [46–49].

The obtained data are presented in a series of graphs showing the open-loop response
of the system. Figure 3 shows the temporal evolution of the servo angle, link deflection,
and the applied motor voltage.

Figure 3. Open loop response RFL.

The comparison between the measured results and the simulations provided by the
model, Figure 4, was performed using the compare command.

The auto-correlation of the residuals was calculated to assess the model’s sufficiency
in capturing the system’s dynamics [50]. While the residuals for the servo angle out-
put showed behavior close to white noise, indicating a good fit, the residuals for the
link deflection exhibited some significant auto-correlations, suggesting areas for future
model improvements (Figure 5).

Through cross-validation, the predictions generated by the model are compared with
the actual measured data, providing a critical assessment of the model’s ability to generalize
to new data not used during the identification process [51]. The results visualized in Figure 6
demonstrate a high degree of agreement between the predictions and the real observations,
particularly in tracking the servo angle (θ), suggesting that the model accurately captures
the system’s primary dynamics. However, the figure also reveals areas for improvement,
as evidenced by the slight discrepancies observed in the prediction of the link deflection (α).
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Figure 4. Comparison between the SS model and measured data.

Figure 5. Auto-correlations.
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Figure 6. Cross-validation of SS model (prediction).

To assess how well the identified model replicates the experimental system behavior,
several standard quantitative metrics have been computed. These metrics are widely
accepted in the system identification and control literature for evaluating model accuracy,
predictive capability, and response fidelity. Table 3 summarizes the results and compares
them to generally accepted thresholds or desirable ranges for model validation.

Table 3. Quantitative evaluation metrics for model validation.

Metric θ (Base) α (Tip) Desirable Ranges

RMSE (%) 1.1846 4.9196 <5%
MAE (%) 0.9298 3.4012 <5%
R2 (coefficient of determination) 0.9986 0.9654 ≥0.90
Willmott’s concordance index 0.9997 0.9921 ≥0.90
IAE (

∫
|e(t)| dt) 0.0518 0.0217 As low as possible

ISE (
∫

e2(t) dt) 0.00087 0.00020 As low as possible

2.6. State-Space Model

The state-space model used in this work is defined as:

dx(t)
dt

= Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

where the state vector is given by:

x(t) =


θbase(t)
αlink(t)
θ̇base(t)
α̇tip(t)

 (3)
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The matrices obtained via experimental identification are:

A =


0.2629 −0.6923 2.055 1.013
−11.52 23.99 −54.79 −30
−4.291 −10.42 −63.96 −20.63
−3.471 77.02 24.48 −10.19

 (4)

B =


−0.05998

1.608
7.151
−6.666

 (5)

C =

[
29.62 0.706 0.1893 0.134
−0.151 0.8635 −0.7005 −0.5094

]
(6)

D =

[
0
0

]
(7)

Equations (1) and (2) represent the standard form of the state-space system. In this case:
the matrix A defines the internal dynamics of the system;
the matrix B describes how the input (motor voltage) affects the states;
the matrix C defines the relationship between the states and the measured outputs

(servo position and tip deflection);
the matrix D is null, which is typical when there is no direct feedthrough between

input and output.
The matrices A, B, C, and D were obtained through the experimental identification

process using the ssest function of the MATLAB System Identification Toolbox, based
on measured data in the Quanser Virtual Flexible Link environment. This process is
documented in the technical manuals of Quanser [40], and in the methodology applied in
this study following [39].

The analysis of Table 4 reveals that a free-form parameterization with 36 coefficients
and no feedthrough component was used, estimating disturbances from measured data.
Specific tools (idssdata, getpvec, getcov) and the SSEST method were employed, achiev-
ing a highly accurate fit (ranging from 96.95% to 99.85%) with exceptionally low errors
(FPE and MSE).

Table 4. Parameterization and estimation details of the SS model.

Detail Value

Parameterization type FREE form (all coefficients free)
Feedthrough None
Disturbance component Estimate
Number of free coefficients 36
Software tools idssdata, getpvec, getcov
Estimation method SSEST
Data source “MeasuredData”
Fit to data [99.85%, 96.95%]
FPE 2.89 × 10−13

MSE 1.326 × 10−6

2.7. Theoretical Model

The complete theoretical derivation of the rotary flexible link system’s dynamic model,
including the formulation based on Euler–Bernoulli beam theory, the application of Hamil-
ton’s principle, the use of generalized coordinates, and the modal decomposition into a
state-space representation, has been thoroughly developed in our previous work [52].
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That article presents both the mechatronic modeling of the system and the analysis of
its natural and forced vibration modes, laying the foundational framework for the design
and evaluation of robust and tracking control strategies. The resulting model captures
the kinetic energy contributions from both the motor and the flexible link, the bending
potential energy, and the dynamic relationship between the applied motor torque and
the angular response of the system. Additionally, it identifies the experimentally relevant
vibrational modes for control applications.

For the sake of continuity, only the essential equations required to link the previous
theoretical development with the experimental identification and controller validation
proposed in this study are presented here. For full derivations involving boundary condi-
tions, Laplace transforms, motion equations, and the final state-space model, the reader is
referred to [52].


θ̇

α̇

θ̈

α̈

 =


0 0 1 0
0 0 0 1

0 −Kstiff
Ibase

−KTKbK2
g

IbaseR 0

0 −Kstiff

(
1
IT
+ 1

Ibase

)
−KTKbK2

g
IbaseR 0




θ

α

θ̇

α̇

+


0
0

KTKg
IbaseR

− KTKg
IbaseR

Va (8)

C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
(9)

The experimental modal parameters that characterize the vibrational response of the
system have also been previously identified. Table 5 summarizes the open-loop vibration
frequencies, emphasizing the dominant modes relevant to controller design. These values
support the validity of a reduced order single degree of freedom approximation under
controlled conditions and are consistent with the findings reported in [52].

Table 5. Frequencies of vibration modes in open loop. Adapted from [52].

Mode Open Loop (Hz)

0 * 0
1 5.4245
2 3.7937

* Rigid-body mode.

The vibrational response of the rotary flexible link system is characterized by the
presence of both rigid-body motion and flexible link deformation. In open-loop conditions,
the system exhibits distinct resonance modes, primarily dominated by the first two vibra-
tional frequencies, as reported in Table 5. These modes correspond to the elastic dynamics of
the flexible link and are critical for control design, as they determine the system’s tendency
to oscillate in response to external torques. The first vibrational mode, around 5.42 Hz,
represents the fundamental elastic deformation of the link, while the second mode at
3.79 Hz suggests a higher-order interaction potentially influenced by boundary effects and
damping. The identification and characterization of these frequencies allow for targeted
suppression strategies using state-feedback control.

The proposed GRL-LQR control methodology combines the reliability of optimal
control with the adaptability of deep reinforcement learning. Initially, a LQR controller
is used to provide structured reference signals, guiding the learning process and accel-
erating convergence. As training progresses, control authority gradually shifts from the
LQR to the TD3 agent, allowing the policy to autonomously refine its behavior while
preserving stability.
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2.8. Using an Internal LQR Controller for the Initial Training Phase

To guide the agent’s learning in the early stages of training, an LQR controller was
implemented in the system’s inner loop. This controller acted as a “behavioral baseline”,
allowing the agent to observe a controlled response in terms of stability and accuracy across
both output variables, even though it did not fully meet the desired control objectives.
The LQR served as a preliminary stabilization mechanism to reduce initial oscillations and
prevent extreme actions that could interfere with learning in the initial iterations. This
initial “assisted learning” approach enabled the agent to begin adjusting its policy based
on a relatively stable dynamic, decreasing the risk of instability during early exploration.

2.9. Internal Mechanisms of TD3 for Flexible-Link Control

The agent used in this study incorporates three key mechanisms, such as flexible-link
mechanisms: (i) a twin critic architecture that mitigates overestimation bias by taking the
minimum of two Q-value estimates; (ii) delayed policy updates, which enhance train-
ing stability by updating the actor less frequently than the critics; and (iii) target policy
smoothing through Gaussian noise, which regularizes learning and improves generaliza-
tion. Additionally, the LQR-guided training process imposes a stabilizing structure on the
learned policy.

2.10. Reward Function

The reward function is designed to achieve two simultaneous objectives: accurate
tracking of the base angle and minimization of tip oscillations. It is defined as:

R(t) =

−λT |x1(t)− ci|, if t < td,

RT(t) + RO(t), if t ≥ td,
(10)

Here, ci denotes the initial reference (before the step), and c f the final reference (after
the step). The step reference is applied at time td, and λT is a weight that penalizes tracking
error before the step is applied.

For t ≥ td, the reward R(t) is composed of two components:

1. Tracking reward RT(t):

The tracking error is defined as:

eT(t) =
∣∣∣x1(t)− c f

∣∣∣. (11)

If the tracking error is within a predefined settling band BB, a positive reward proportional
to the remaining margin is given:

RT(t) = λT (BB − eT(t)). (12)

Otherwise, a penalty is applied:

RT(t) = −λT eT(t). (13)

2. Oscillation penalty RO(t):

Tip oscillation is defined by:

O(t) = |x2(t)|, (14)
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where x2 corresponds to the tip angular deflection. If O(t) exceeds a defined tolerance BT ,
the agent is penalized:

RO(t) = −λO (O(t)− BT). (15)

Otherwise, a small bonus is given to encourage stability:

RO(t) = λ′
O (BT − O(t)). (16)

Here, λO is the penalty weight for excessive oscillation, and λ′
O is a smaller bonus weight

for low oscillations.
Thus, the complete reward after t ≥ td is:

R(t) = RT(t) + RO(t). (17)

This formulation differentiates between the pre-reference activation phase (t < td)
and the post-activation phase (t ≥ td), penalizing anticipatory deviations from the initial
reference ci and, once the reference changes to c f , emphasizing accurate tracking of the
new target while suppressing excessive tip oscillations. The parameters λT , λO, λ′

O, BB,
and BT can be tuned to reflect the desired control objectives.

2.11. System Architecture and Network Design

Table 6 summarizes the configuration parameters used in training the reinforcement
learning agent using the twin delayed deep deterministic policy gradient (TD3) algorithm.
The discount factor (γ = 0.95) prioritizes long-term performance, while the mini-batch size
of 256 provides a stable gradient estimation during updates. The training proceeds over a
maximum of 200 episodes, each with a fixed step budget defined by the total simulation
time Tf and the sample time Ts. Training stops early when the average reward over the last
100 episodes surpasses a threshold of 200, reflecting satisfactory performance.

Table 6. TD3 training and agent parameters.

Parameter Value

Sample time 0.001 s
Experience buffer length 500,000
Discount factor 0.95
Mini batch size 256
Max episodes 200
Max steps per episode ⌈Tf /Ts⌉
Stop training criteria Average Reward
Stop training value 200
Score averaging window length 100
Actor network learning rate 5 × 10−4

Critic network learning rate 1 × 10−2

Exploration model standard deviation 0.9
Exploration model decay rate 1 × 10−3

Exploration model minimum std. 0.91
Use parallel training No

The actor and critic networks are trained using learning rates of 5× 10−4 and 1× 10−2,
respectively. These values reflect the necessity for conservative policy updates (actor) and
faster value estimation convergence (critic). The exploration model incorporates Gaussian
noise with a standard deviation of 0.9, which decays at a rate of 1 × 10−3 until a minimum
threshold of 0.91 is reached, ensuring continued exploration while avoiding excessive
variability in the control policy.
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3. Problem Formulation
3.1. Control Objectives and System Constraints

The main objective of this study is to develop a controller capable of tracking a desired
trajectory at the base of a rotary flexible-link system while actively suppressing tip vibra-
tions. This problem is particularly challenging due to the underactuated and oscillatory
nature of flexible structures, which tend to amplify disturbances and delay stabilization.

A significant constraint arises from the limited sensory information: the angular
deflection at the tip (α) is not directly measurable. Instead, strain gauges are placed at
the base of the link, providing indirect observations of the system’s deformation. This
lack of direct measurement complicates precise damping of vibrations, especially under
fast or abrupt reference inputs. Therefore, the control strategy must rely on partial state
information and learn to infer relevant dynamics during execution.

3.2. Guided Reinforcement-Learning Framework

Reinforcement-learning (RL) algorithms such as the twin delayed deep deterministic
policy gradient (TD3) have shown promise in continuous control tasks due to their ability
to learn policies in complex, nonlinear environments. However, standard RL approaches
often face critical limitations, including:

• Slow convergence: High-dimensional problems require extensive interaction to learn
optimal policies [53].

• High computational cost: Continuous updates to actor and multiple critic networks
lead to intensive training [54].

• Inefficient exploration: Suboptimal exploration strategies increase training time and
reduce policy robustness [55].

To address these limitations, this work adopts a guided reinforcement-learning (GRL)
strategy. In this framework, the RL agent is initialized with a baseline policy derived from
a classical linear quadratic regulator (LQR), which provides structure and stability during
early learning. This hybrid guidance accelerates convergence, reduces variance in early
episodes, and ensures that the learned policy remains within a region of safe and stable
behavior [30].

Figure 7 illustrates the GRL workflow, which begins with system modeling and knowl-
edge integration, followed by policy optimization and real-world deployment. The in-
clusion of prior control knowledge enhances learning stability across multiple stages of
the pipeline.

Problem
Representation

Learning
Strategy

Task
Structuring Sim-to-Real Real-World

Deployment

RL Pipeline

Guided RL

Additional Knowledge

?

mini-batch size, experience buffer length, learning rates, and discount factor—significantly
accelerated convergence. convergence.

Figure 7. Workflow of the guided reinforcement-learning (GRL) approach for robotic control opti-
mization [30].
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4. Training Process
The training process (Figure 8) of the GRL–TD3 agent demonstrates a rapid and stable

convergence. During the process, the agent was able to learn a robust control policy in
just 200 episodes, highlighting the effectiveness of the initial guidance provided by the
LQR controller in accelerating the learning process. This guided-learning strategy reduced
random exploration and focused the training on optimizing reference tracking.

Figure 8. Training performance.

The episode reward curves and average reward exhibited consistent improvement,
leading to reduced tracking error and enhanced overall performance. The stabilization
of the Episode Q0 metric suggests a reduction in Q-value estimation bias, contributing to
learning stability. Furthermore, the reward function effectively balanced base tracking ac-
curacy with acceptable tip oscillations, while well-optimized hyperparameters—including
mini-batch size, experience buffer length, learning rates, and discount factor—significantly
accelerated convergence.

Training Process of the GRL–TD3 Agent (Summary)

The GRL–TD3 agent was trained within a Simulink environment based on a state-
space model obtained through experimental system identification of a flexible manipulator.
Utilizing the TD3 algorithm, the agent maps state observations, including base angular
position, angular velocity, and tip deformation to continuous torque actions, with a reward
function designed to penalize tracking errors and excessive oscillations.

An internal LQR controller provides initial guidance, accelerating convergence by
offering baseline control references. Over successive episodes, the initially dispersed
trajectories of the base and tip oscillations gradually stabilize as the agent refines its policy
through a replay buffer and a progressively decreasing Gaussian noise exploration strategy
(Figure 9).
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Figure 9. Training process of the reinforcement-learning-based controller for the flexible rotary
system. Note: These curves represent the training process and not the final controller results.

5. Evaluation of the GRL–TD3 Control Results
5.1. Step Response Analysis of GRL–TD3 Controllers

During training, critical parameters such as settling time, overshoot, and steady-state
error for both output variables were evaluated. Iterative adjustments were made to the
reward function and the maximum number of steps per episode to allow the agent to
complete each simulation within an appropriate timeframe and maximize its learning in
each episode.

The system’s response is compared to the response generated by an LQR controller. In
Figure 10, the response of the base position to a step signal is compared due to the LQR
control and the GRL–TD3 control. The GRL–TD3 and LQR controllers both stabilize the
system close to the reference value within a similar timeframe. Notably, the response of
the GRL–TD3 controller aligns more closely to the reference value slightly faster than the
LQR. The steady-state error for the GRL–TD3 controller (±0.0318%) is significantly lower
than that of the LQR (±6.2657%). Furthermore, the transition response of the GRL–TD3
controller is smoother, exhibiting no signs of oscillations or instabilities.

In Figure 11, the GRL–TD3 response (Blue) reaches the equilibrium position faster
and exhibits significantly lower oscillation compared to LQR. The peak of the oscillation
is 0.6875◦, and the amplitude of these oscillations quickly decreases, stabilizing the tip
at a position close to zero degrees. In contrast, the LQR response (Red) shows more
pronounced oscillation that persists longer before stabilizing with a maximum oscillation
peak of 2.3974◦. The oscillations are of greater amplitude compared to GRL–TD3 and take
longer to diminish, suggesting lesser effectiveness in managing the system dynamics.

Despite its initially more abrupt oscillation, the GRL–TD3 controller achieves more
effective control in reducing the amplitude of subsequent oscillations more quickly than
LQR. This improvement is due to the parameter adjustments in learning and adapting to
the system’s dynamics.



Robotics 2025, 14, 76 17 of 28

Figure 10. Response comparison–servo base.

Figure 11. Response comparison–link tip.

The stabilization time was approximately two seconds longer than that of the LQR,
and the reduction in reference error and improvement in overall stability allowed the TD3
agent to outperform the LQR in meeting multiple objectives, as shown in Figures 10 and 11
and in Tables 7 and 8.

Table 7. Comparison of the system dynamics (link base) against proposed controllers.

Parameter GRL–TD3 LQR

Settling time (s) 7.838 4.854
Overshoot (%) 0 0
Rise time (s) 4.332 2.686
Peak (°) 0.99403 0.93747
Peak time (s) 14.298 9.338
Steady state value (%) 0.50 6.25
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Table 8. Comparison of system dynamics (link tip) against proposed controllers.

Parameter GRL–TD3 LQR

Rise time (s) 0.2 0.002
Peak (°) 0.016306 0.039933
Peak time (s) 0.108 0.07
Steady state value (°) −0.0032371 −0.007148

Table 9 presents the quantitative performance metrics obtained for both the GRL–TD3
and LQR controllers, evaluated for the base angle (θ) and the tip deflection (α). The ta-
ble includes standard error metrics such as RMSE and MAE expressed as percentages,
along with statistical indicators like the coefficient of determination (R2) and Willmott’s
concordance index. Additionally, integral performance measures are reported through
the integral of absolute error (IAE) and the integral of squared error (ISE), providing a
cumulative assessment of tracking error over time. Each metric is calculated independently
for both variables of interest, enabling a direct numerical comparison between the two
control strategies.

Table 9. Quantitative performance metrics for GRL–TD3 and LQR controllers.

Metric θ (GRL–TD3) θ (LQR) α (GRL–TD3) α (LQR)

RMSE (%) 20.02 23.72 6.94 7.66
MAE (%) 11.91 11.03 2.60 4.65
R2 (coefficient of determination) 0.1561 −0.1848 −0.0581 −0.2945
Willmott’s concordance index 0.8183 0.7670 0.0743 0.1561
IAE (

∫
|e(t)| dt) 273.07 252.73 2.30 1.86

ISE (
∫

e2(t) dt) 10,526.90 14,779.42 1.8885 0.4667

5.2. Stability Assessment of the Learned Policy

Since the TD3 controller operates in a model-free setting, classical stability analysis
based on pole placement or Lyapunov functions is not directly applicable. Instead, we adopt
an empirical boundedness criterion to assess external stability, consistent with the BIBO
(bounded-input bounded-output) definition. Specifically, the system output is considered
externally stable if the response remains within a finite and proportional range relative to
the reference signal over time. This approach is commonly employed in the evaluation of
learned controllers where only input-output data are available, and no analytical model is
accessible [56].

In our analysis, the output θ was monitored to ensure that it remained bounded with
respect to the reference, using a threshold set at twice the steady-state value. No divergence
or sustained growth was detected in the trajectories under either controller. This supports
the conclusion that both LQR and GRL–TD3 policies yielded externally stable behavior
over the test horizon.

5.3. Comparative Analysis of Control Systems on a Rotatory Flexible Link

The following comprehensive comparison, presented in Table 10, involves various
control systems applied to a rotatory flexible link system. This analysis evaluates two
main variables: stabilization time and the dynamics at the tip of the flexible link for
four different controllers: fuzzy, neural network (NN) [57], GA–LQR [52], LQR, and the
proposed GRL–TD3 controller. Significant differences in their settling times and peak
magnitudes are highlighted, emphasizing each controller’s capabilities and limitations in
dynamic response.
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The controllers exhibit notable differences in response speed and tip oscillation peaks.
GA–LQR (0.45 s) and LQR (0.7 s) stabilize rapidly, enabling immediate corrections, whereas
the fuzzy controller, with a settling time exceeding 60 s, is more suitable for precision-
demanding tasks. The neural network controller balances speed and control with a response
time of 9 s, while the proposed GRL–TD3 achieves stabilization in 7.83 s, offering a versa-
tile solution.

Regarding tip oscillations, GA–LQR maintains a low peak of 0.0216° for smooth
control, whereas LQR exhibits a higher peak of 0.0400°. Both the fuzzy and neural network
controllers present moderate peaks of 0.0573°. Notably, GRL–TD3 outperforms all others,
achieving the smallest oscillation peak of 0.016306°, demonstrating superior oscillation
suppression and enhanced stability.

Table 10. Comparison of system dynamics for additional controllers [52].

Features Fuzzy NN GA–LQR LQR GRL–TD3

Settling time (s) >60 9 4.5 4.8 7.83
Peak (º) 0.0573 0.0573 0.0216 0.0400 0.0163

6. Parameter Uncertainty Analysis and Robustness Evaluation
Reinforcement learning (RL) has shown promising advancements in control applica-

tions; however, given that a general theory of stability and performance in the RL domain
has not yet been established, it is essential to conduct exhaustive and rigorous testing
of the controller prior to implementation. This ensures that potential instabilities and
performance degradation are identified before deployment [58].

In order to evaluate the robustness of the GRL–TD3 control system, a parameter uncer-
tainty analysis was performed by applying ±30% offsets to the nominal gains of the LQR
controller. This approach simulates variations in the plant model and allows for an assess-
ment of the closed-loop system’s sensitivity to parameter deviations. The uncertainties are
visualized using polar plots, the nominal gain for each channel is represented as a reference
orbit (highlighted in red), with the perturbed gains distributed around it (see Figure 12).
Although the angular coordinates in these plots do not carry direct physical significance,
they serve as a convenient means to illustrate the magnitude and directional bias of the
variations. This methodology is well supported by robust control theory [59] and multivari-
able feedback control principles [60], both of which advocate the inclusion of parametric
uncertainties in controller design to ensure robust performance. Moreover, recent studies
in reinforcement learning for control have demonstrated that guided exploration using an
expert controller such as the LQR to steer the learning process can accelerate convergence
and enhance robustness, thereby justifying the GRL–TD3 framework.
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Figure 12. Stored final gains in polar coordinates.

6.1. Experimental Setup and Performance Metrics

To evaluate the robustness of the GRL–TD3 control system, an experimental campaign
was conducted comprising 16 simulations. In each simulation, a unique offset was added
to the nominal gain vector of the LQR controller, resulting in a modified gain matrix
expressed as

Ktotal = Knom + koffset,

where each element of koffset was perturbed by up to ±30% of its nominal value. The ob-
jective was to assess the system’s robustness to parametric uncertainty by observing the
closed-loop response to both a step reference and a periodic reference with variable am-
plitude. Performance was evaluated using metrics such as the relative error (%) which
quantifies the deviation between the actual response and the desired reference and a per-
formance index that summarizes the overall behavior of the system. In the polar plots (see
Figure 12), the parameter variations are clearly observed, represented by the gain values in
the K matrix.

Figure 13 shows the simulation results for the LQR controller. Although the controller
maintains closed-loop stability across all 16 simulations, its robustness, measured by
performance, is not consistently achieved. Specifically, while the tip response is attenuated,
the base response fails to reliably track the reference signal under the evaluated parametric
uncertainties. This disparity suggests that, despite the LQR’s ability to stabilize the system,
its performance deteriorates under significant gain variations, highlighting a gap between
mere stability and robust performance.

In Figure 14, the simulation results for the GRL–TD3 controller are illustrated. The base
position trajectories converge very closely to the reference signal, exhibiting only a minor
steady-state error, which indicates effective tracking performance. Concurrently, the tip
of the flexible link displays controlled oscillations, which are a direct consequence of
the reward function designed to balance the performance between base tracking and tip
regulation. Compared to the conventional LQR controller, the GRL–TD3 approach not only
achieves a more uniform clustering of the base responses in steady state but also realizes
a slight reduction in the maximum tip oscillations. This demonstrates that the guided
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reinforcement-learning strategy successfully enhances overall robustness by mitigating
excessive tip movement while maintaining precise base control.

Figure 13. Simulation results for LQR controller.

Figure 14. Simulation results for GRL–TD3 controller.

6.2. Performance Evaluation of the LQR Under a Periodic Input of Variable Amplitude

Figure 15 illustrates the response of the system, controlled using an LQR, to a periodic
input with variable amplitude. The graph reveals that, in most experiments, the base
response does not reach the desired reference, indicating a lack of robustness in the LQR
controller. Moreover, during abrupt or large changes in the reference signal, the resulting
oscillations can reach up to 10 degrees.
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Figure 15. Simulation results for using LQR controller.

6.3. Response of the GRL–TD3 Controlled System

In Figure 16, the simulation results using the GRL–TD3 controller are shown. In this
case, the system successfully reaches the desired reference, demonstrating that the control
strategy not only meets the tracking requirements but is also capable of significantly
reducing oscillations, even in the presence of the complex flexible dynamics of the link.
Although some oscillations are observed at the tip, they remain at very low levels since
the controller prioritizes precise tracking of the base position. This behavior is crucial in
real-world applications, where minimizing tip oscillations is essential to ensure system
stability and accuracy.

Figure 16. Simulation results for GRL–TD3 controller.
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6.4. Analysis of Excluded Simulations and Robustness of the GRL–TD3 Controller

Out of the 16 simulations performed, five (specifically, simulations 1, 4, 7, 9, and 14)
were excluded due to instability issues. This instability arises because the uncertainty pa-
rameters, particularly the offset applied to k1, are around the critical value of 1. In the polar
plot, these simulations cluster around the orbit with a radius of 1, indicating that values
near this threshold lead to closed-loop instability or critical stability of the system. This
behavior demonstrates that, within a defined robustness margin, the GRL–TD3 controller
can effectively track the base reference even under substantial disturbances.

It is noteworthy that, as a reinforcement-learning-based control system, the GRL–TD3
controller has learned to prioritize accurate tracking of the base position, even if that
entails permitting slightly larger oscillations at the tip. This approach is consistent with the
designed reward function, which heavily penalizes both oscillations and tracking errors of
the base. In scenarios where the parameter variations are excessive, it may be necessary
to adjust or redesign the reward function to achieve a more balanced trade-off between
reducing oscillations and maintaining precise reference tracking.

6.5. Comparative Analysis of LQR and GRL–TD3 Controllers Under Parametric Uncertainty

Table 11 presents the outcomes of the system controlled by a conventional LQR
approach under varying parametric offsets. Each simulation corresponds to a different
offset applied to the baseline gains (k11, k22, k33, k44), reflecting the plant’s sensitivity to
uncertain dynamics. Notably, while the LQR controller ensures nominal stability in most
cases, the relative error percent (RE) and performance score (PS) vary considerably. The more
substantial RE values (e.g., simulations 6, 8, and 12) highlight the limitations of relying
solely on an LQR scheme for robust performance. This underscores the need for advanced
control or learning-based techniques when the plant experiences significant parameter
fluctuations, especially in highly flexible or underactuated systems.

Table 11. LQR controller results.

Simulation k11 k22 k33 k44
Relative

Error
Percent

Performance
Score

1 0.13183 −0.011333 0.020657 −0.059544 5.7752 94.225
2 −0.13344 0.11285 0.039999 −0.058782 12.096 87.904
3 −0.16545 0.069495 0.11091 −0.054971 17.211 82.789
4 0.36533 0.035785 −0.069487 −0.0622 8.4181 91.582
5 −0.37781 0.0075371 −0.11089 −0.016193 26.721 73.279
6 −0.14002 −0.15247 −0.068786 −0.01243 33.668 66.332
7 0.22574 −0.089573 0.049242 −0.063679 10.25 89.75
8 −0.067397 0.13082 0.09777 0.064049 36.325 63.675
9 0.28758 0.010565 0.085774 −0.013965 6.6262 93.374
10 −0.26253 0.11467 −0.010186 −0.047168 8.4703 91.53
11 −0.23059 −0.049063 −0.088685 −0.013012 25.287 74.713
12 −0.29867 −0.15448 −0.04223 0.0038678 35.985 64.015
13 −0.2681 −0.012506 0.0050516 0.058336 7.4662 92.534
14 0.24821 −0.10443 −0.072677 −0.048352 21.059 78.941
15 −0.081101 −0.089413 −0.025884 0.035313 11.215 88.785
16 −0.26667 0.079369 −0.041524 0.0077923 6.5444 93.456

Table 12 illustrates how the guided reinforcement-learning (GRL–TD3) controller,
specifically the GRL–TD3 approach, adapts to the same set of parametric variations used
in the LQR tests. Despite facing the same uncertain conditions, the relative error percent is
generally lower, and the performance score is consistently higher or comparable across most
simulations These results validate the premise that a learning-based controller, guided
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by an expert policy (LQR in this case), can effectively mitigate performance degradation
induced by model uncertainty.

Table 12. GRL–TD3 controller results.

Simulation k11 k22 k33 k44
Relative

Error
Percent

Performance
Score

1 0.13183 −0.011333 0.020657 −0.059544 4.9515 95.048
2 −0.13344 0.11285 0.039999 −0.058782 6.7966 93.203
3 −0.16545 0.069495 0.11091 −0.054971 7.1133 92.887
4 0.36533 0.035785 −0.069487 −0.0622 4.0058 95.994
5 −0.37781 0.0075371 −0.11089 −0.016193 10.505 89.495
6 −0.14002 −0.15247 −0.068786 −0.01243 6.8345 93.165
7 0.22574 −0.089573 0.049242 −0.063679 4.5156 95.484
8 −0.067397 0.13082 0.09777 0.064049 6.2222 93.778
9 0.28758 0.010565 0.085774 −0.013965 4.2771 95.723
10 −0.26253 0.11467 −0.010186 −0.047168 8.3251 91.675
11 −0.23059 −0.049063 −0.088685 −0.013012 7.8639 92.136
12 −0.29867 −0.15448 −0.04223 0.0038678 8.8643 91.136
13 −0.2681 −0.012506 0.0050516 0.058336 8.3932 91.607
14 0.24821 −0.10443 −0.072677 −0.048352 4.4225 95.577
15 −0.081101 −0.089413 −0.025884 0.035313 6.3136 93.686
16 −0.26667 0.079369 −0.041524 0.0077923 8.3824 91.618

The comparative table (Table 13) quantifies the relative error (RE) and performance
score (PS) improvements achieved by the GRL-based controller over the classical LQR
approach. A positive RE improvement reflects a reduction in tracking error, and a positive
PS improvement denotes enhanced overall performance. Most simulations (e.g., 2, 3, 4, 7,
8) show substantial gains, frequently exceeding 50% in RE improvement, underlining the
robustness of the learned controller in coping with uncertain parameters. Nonetheless,
a few simulations (e.g., 13, 16) demonstrate negative improvement, revealing that while
GRL generally outperforms LQR, certain parameter offsets can challenge the controller’s
learned policy. These findings highlight the importance of thorough parameter studies,
reward function refinement, and potentially hybrid robust-learning designs to consistently
ensure performance across a broad range of operational scenarios.

Table 13. Comparative results: percentage improvement between LQR and GRL controllers.

Sim LQR RE (%) GRL RE (%) RE Improvement (%) LQR PS GRL PS PS Improvement (%)

1 5.78 4.95 14.26 94.23 95.05 0.87
2 12.10 6.80 43.83 87.90 93.20 6.03
3 17.21 7.11 58.63 82.79 92.89 12.19
4 8.42 4.01 52.38 91.58 96.00 4.81
5 26.72 10.51 60.73 73.28 89.50 22.15
6 33.67 6.83 79.66 66.33 93.17 40.42
7 10.25 4.52 55.93 89.75 95.48 6.39
8 36.33 6.22 82.81 63.68 93.78 47.27
9 6.63 4.28 35.44 93.37 95.72 2.52

10 8.47 8.33 1.71 91.53 91.68 0.16
11 25.29 7.86 68.87 74.71 92.14 23.32
12 35.99 8.86 75.33 64.02 91.14 42.38
13 7.47 8.39 −12.42 92.53 91.61 −1.00
14 21.06 4.42 78.98 78.94 95.58 21.08
15 11.22 6.31 43.70 88.79 93.69 5.52
16 6.54 8.38 −28.10 93.46 91.62 −1.97
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7. Discussion and Future Work
This study demonstrated that integrating a linear quadratic regulator (LQR) with a

twin delayed deep deterministic policy gradient (TD3) agent via guided reinforcement
learning (GRL–TD3) enhances control performance and robustness in rotary flexible link
systems. The LQR component ensures initial stability and accelerates convergence, while
TD3 adapts to dynamic variations and learns effective control strategies. Despite these
benefits, the methodology remains sensitive to reward design, hyperparameter tuning,
and lacks interpretability posing challenges for certification and safety-critical deployment.

The analysis adopted an empirical BIBO–based criterion to evaluate external stability,
given that classical model-based approaches are not directly applicable to learned policies.
Monitoring the output trajectory confirmed that the GRL–TD3 controller produced bounded
responses across all test scenarios. Nonetheless, the absence of formal guarantees highlights
the need for further research into theoretical stability analysis and certification frameworks
for reinforcement-learning-based controllers.

As the approach has only been validated in a simulation environment, future work
should focus on real-world implementation. Practical deployment may involve unmodeled
phenomena such as friction, backlash, and sensor delays, which could affect performance.
Experimental validation on physical platforms is necessary to assess robustness under
these conditions and confirm the applicability of the controller in real settings.

The lightweight architecture of the trained policy makes it suitable for embedded
real-time applications. Prior research has shown that deep RL policies can be exe-
cuted efficiently on microcontrollers using techniques such as quantization and hardware
acceleration [61–63]. Deploying the trained actor on embedded systems while offloading
training to external platforms offers a feasible path for industrial implementation.

A further research direction involves evaluating the controller’s robustness to struc-
tural variations (e.g., link stiffness, damping), which were not explored here due to the
fixed configuration of the experimental platform. This would extend the current framework
toward transferable or adaptive policies applicable across families of flexible mechanisms.

8. Conclusions
This work presented a hybrid control methodology that combines a linear quadratic

regulator (LQR) with a twin delayed deep deterministic policy gradient (TD3) agent,
using guided reinforcement learning (GRL–TD3) to control a rotary flexible link system.
The approach leverages the stability guarantees of classical control and the adaptability of
reinforcement learning to achieve robust trajectory tracking while mitigating oscillations at
the flexible link’s tip.

Simulation-based experiments confirmed that the integration of LQR guidance during
TD3 training accelerates convergence, constrains unsafe exploration, and enhances the
overall robustness of the learned policy. The learned controller achieved stable and bounded
performance under a range of operating conditions. However, the architecture remains
sensitive to reward shaping and hyperparameter selection, which directly influence learning
quality and final performance.

Future work should aim at validating the approach on physical hardware, incorpo-
rating adaptive mechanisms, and exploring policy transfer to structurally similar systems.
Moreover, efforts to phase out or adapt the expert LQR guidance over time could foster
greater policy autonomy while retaining stability. This research highlights the potential of
GRL–TD3 as a versatile solution for controlling flexible robotic systems and opens avenues
for broader application in real-world scenarios requiring both precision and robustness.
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