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Abstract

This Final Degree Project focuses on the mathematical modeling and simulation of
mooring lines subjected to dynamic conditions in marine environments. The main
objective is to develop and implement a computational model capable of simulating
the behavior of these lines while accounting for their elasto-plastic behavior, which
introduces significant mathematical and computational challenges.
The study begins with Newton’s second law equations expressed as nonlinear par-
tial differential equations (PDEs), which are discretized using the Finite Element
Method (FEM) and time integration methods such as the second order Backward
Differentiation Formula (BDF2) with adaptive time-stepping. The work covers both
the mathematical foundations (Sobolev spaces, weak formulations) and the develop-
ment of the physical model, including its implementation within the inhouse model
developed at IHCantabria, highlighting the complexity of its code and the integra-
tion of the new tension law. The main contribution lies in the incorporation of a new
tension term that more accurately models the elasto-plastic behavior. The project
includes verification with experimental and theoretical data from works found in the
literature and validation using catenary-type solutions.
KEYWORDS: mooring lines, mathematical modeling, nonlinear partial dif-
ferential equations, Finite Element Method (FEM), second order Back-
ward Differentiation Formula (BDF2), weak formulation, elasto-plasticity.



Resumen

Este Trabajo de Fin de Grado se centra en la modelización y simulación matemática
de ĺıneas de fondeo sometidas a condiciones dinámicas en entornos marinos. El ob-
jetivo principal es desarrollar e implementar un modelo computacional que permita
simular el comportamiento de estas ĺıneas considerando su comportamiento elasto-
plástico, lo que introduce importantes retos matemáticos y computacionales.
Se parte de las ecuaciones de la segunda ley de Newton en forma de ecuaciones en
derivadas parciales (EDPs) no lineales, que se discretizan utilizando el método de
elementos finitos (FEM) y métodos de integración temporal como BDF2 con paso
adaptativo. El estudio abarca desde los fundamentos matemáticos (espacios de Sobo-
lev, formulaciones débiles) hasta el desarrollo del modelo f́ısico y su implementación
dentro del modelo desarrollado en el IHCantabria, destacando la complejidad del
código y la integración de una nueva ley de tensión. La contribución principal radica
en la incorporación de un nuevo término de tensión que modela el comportamiento
elasto-plástico de forma más precisa. El trabajo incluye una verificación con datos
experimentales y teóricos de trabajos encontrados en la literatura y una validación
con soluciones tipo catenaria.
PALABRAS CLAVE: ĺıneas de fondeo, modelización matemática, Ecuaciones
en Derivadas Parciales no lineales, Elementos finitos (FEM), BDF2, for-
mulación débil, elasto-plasticidad
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1 Introduction

1 Introduction

1.1 Motivation

Partial differential equations (PDEs) play a central role in modeling phenomena in physics
and engineering, yet their analytical solutions are limited to idealized cases. When deal-
ing with real-world systems—particularly those involving nonlinearities, complex boundary
conditions, or coupled physical processes—numerical methods become indispensable. The
study and development of such methods, including the finite element method (FEM) and
advanced time-integration schemes, lie at the heart of modern applied mathematics.

This work focuses on the mathematical modeling and simulation of mooring lines subjected
to dynamic marine environments. While the physical context is engineering-oriented, the
mathematical challenges are fundamental: modeling wave propagation through nonlinear
PDEs, deriving weak formulations suitable for FEM, and handling the temporal evolution
of highly nonlinear systems through stiff ordinary differential equations (ODEs).

Moreover, the inclusion of elasto-plastic behavior introduces further complexity, requiring
careful treatment of material laws within the numerical scheme. The accurate and stable in-
tegration of such models not only advances engineering applications but also contributes to
the broader field of computational mathematics by demonstrating how theory—functional
analysis, variational methods, numerical stability—translates into algorithms.

This work aims to explore these challenges from a mathematical perspective, highlighting
the structure, analysis, and implementation of numerical schemes that bridge theoretical
models and computational practice. The implementation of the new model was developed
in OASIS, an inhose model developed at IHCantabria for the simulation of floating bodies
coupled with mooring lines among other physical systems. Prior work has been carried out
before the current project focusing on other parts of the model [1] [2].

1.2 Objectives

The primary objective of this work is to develop, implement, and validate a mathematical
and computational model capable of simulating mooring lines under nonlinear conditions,
particularly elasto-plastic behavior. To achieve this, the following specific goals are pur-
sued:

• Review the necessary mathematical tools used in the model.

• Explain and analyze the model developed at IHCantabria.

• Couple a elasto-platicity model.

• Test the proper functioning of the implementation.

1.3 Document organization

This document is structured as follows:
Section 2: Theoretical framework. Provides the mathematical background necessary

1



2 Theoretical framework

for understanding the numerical methods employed. It covers functional analysis, partial
differential equations, finite element methods, and temporal integration schemes.
Section 3: Description of the Model. Details the physical and mathematical mod-
eling of the mooring lines. It introduces the governing equations, boundary and initial
conditions, spatial and temporal discretization, and the weak formulation used in the fi-
nite element analysis.
Section 4: Contributions to the model. Focuses on the development and implemen-
tation of new model features, such as the elasto-plastic tension law, and the technical
challenges involved in integrating them into the codebase.
Section 5: Verification and validation. Proves the reliability of the model through
comparison with empirical data, as well as the simulation of real-world conditions for moor-
ing lines.
Section 6: Conclusion and future work. Summarizes the key findings of the project
and outlines possible directions for further research and development.

2 Theoretical framework

In order to simulate the behavior of mooring lines governed by partial differential equations
(PDEs), it is essential to establish a solid mathematical foundation. This section intro-
duces the key mathematical tools required to formulate, analyze, and numerically solve
the governing equations, while Section 3 will bridge these abstract concepts to practical
implementation through concrete examples. The structure follows a logical progression
from abstract functional spaces to concrete numerical techniques, all of which are critical
to developing a stable and accurate computational model.
Though this section is theory-heavy, each concept is purposefully selected to support the
numerical treatment of mooring dynamics, particularly the handling of nonlinearities. The
transition to applied examples in Section 3 will clarify how these tools ensure stability and
accuracy in realistic scenarios.

2.1 Functional Spaces

Spaces play a crucial role in defining the functional framework for PDEs. They provide
the mathematical structure to study the properties of solutions, particularly in weak for-
mulations.
Lebesgue spaces are first introduced, which generalize the notion of integrability and pro-
vide a framework to handle functions that may not be continuous, yet are still suitable for
analysis. This generality is essential because many solutions of PDEs, especially nonlinear
ones, may lack classical differentiability. To work with derivatives in a generalized sense,
the space L1

loc(Ω) is defined, and the concept of tests functions is introduced , which are
smooth functions with compact support. These are used to define weak derivatives, al-
lowing one to interpret and work with functions whose classical derivatives may not exist.
Then, Sobolev Spaces W k,p(Ω) are introduced [3, Chapter 5], which extend Lp spaces by
including weak derivatives up to order k. These spaces are fundamental in the variational
(weak) formulation of PDEs, which is necessary for the finite element method (FEM)
discussed later.

2



2.1 Functional Spaces 2 Theoretical framework

Definition 2.1 (Lebesgue spaces). The space of functions that are Lebesgue integrable
on Ω to the power of p ∈ [1,∞) is denoted by

Lp(Ω) = {f :

∫
Ω

|f(x)|pdx < +∞}

which is equipped with the norm

∥f∥Lp(Ω) =

Å∫
Ω

|f(x)|pdx
ã1/p

< +∞

Definition 2.2 (The space of locally integrable functions). Let Ω be an open set in the
Euclidean space Rn and f : Ω → C be a Lebesgue measurable function. If f on Ω is such
that ∫

Ω

|f(x)|dx < +∞

i.e. its Lebesgue integral is finite on all compact subsets K of Ω, then f is called locally
integrable. The set of all such functions is denoted by L1

loc(Ω):

L1
loc(Ω) = {f : Ω → C measurable : f |K ∈ L1(K) ∀K ⊂ Ω, K compact}

Definition 2.3 (Test function). Let C∞
c (Ω) denote the space of infinitely differentiable

functions ϕ : Ω → R, with compact support in Ω (i.e. every ϕ is non zero in a compact set
K ⊂ Ω and ϕ(x) = 0 for every x ∈ K \ Ω). The function ϕ belonging to C∞

c (Ω) is a test
function.

Definition 2.4 (Weak nth partial derivative). Suppose that f, g ∈ L1
loc(Ω), and α =

(α1, ..., αn) is a multiindex of order |α| = α1 + ... + αn. We say that g is the αth weak
partial derivative of f , written

Dαf = g

provided ∫
Ω

fDαϕdx = (−1)|α|
∫
Ω

gϕdx

for all test functions ϕ ∈ C∞
c (Ω), where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
is the partial derivative of

order α.

In other words, if we are given f and there happens to exist a function g which satisfies
the previous equality for all ϕ, we say that Dαf = g in the weak sense. If there does not
exist such a function g, then f does not possesss a weak αth partial derivative.

Lemma 2.1 (Uniqueness of weak derivatives). A weak αth partial derivative of f , if it
exists, is uniquely defined up to a set of measure zero.
Proof. Assume that g, g̃ ∈ L1

loc(Ω) satisfy∫
Ω

fDαϕdx = (−1)|α|
∫
Ω

gϕdx = (−1)|α|
∫
Ω

g̃ϕdx

for all ϕ ∈ C∞
c (Ω). Then ∫

Ω

(g − g̃)ϕdx = 0

for all ϕ ∈ C∞
c (Ω); whence g − g̃ = 0 a.e.

3



2.1 Functional Spaces 2 Theoretical framework

We now define certain function spaces whose members have weak derivatives of various
orders lying in various Lp spaces.

Definition 2.5 (Sobolev spaces). Let k ∈ N ∪ {0}, α a multiindex and p ∈ [1,∞). The
Sobolev space W k,p(Ω) consists of functions f ∈ Lp(Ω) whose weak derivatives up to order
k also belong to Lp(Ω):

W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) ∀α with |α| ≤ k}

This space is equipped with the norm

∥f∥Wk,p(Ω) :=

Ñ∑
|α|≤k

∥Dαf∥pLp(Ω)

é1/p

where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
is the partial derivative of order α.

Hilbert spaces are now defined, particularly Hk(Ω) = W k,2(Ω), which provide an inner
product structure allowing the use of projection methods and orthogonality arguments
tools in numerical approximation.

Definition 2.6 (Hilbert space (informal)). A Hilbert space is a vector space equipped
with an inner product operation, which allows lengths and angles to be defined.

Definition 2.7 (Hilbert space). A Hilbert space is a real or complex vector space H
equipped with an inner product

⟨·, ·⟩ : H ×H → R or C
that satisfies the following properties for all x, y, z ∈ H and all scalars α:
1. Linearity:

⟨αx+ y, z⟩ = α⟨x, z⟩+ ⟨y, z⟩
2. Conjugate symmetry (for complex Hilbert spaces):

⟨x, y⟩ = ⟨y, x⟩

In the real case, this simplifies to ⟨x, y⟩ = ⟨y, x⟩.
3. Positive definiteness:

⟨x, x⟩ ≥ 0, with equality if and only if x = 0.

The inner product induces a norm on H given by

∥x∥ =
»

⟨x, x⟩, ∀x ∈ H.

The space H is called a Hilbert space if it is complete with respect to this norm, meaning
that every Cauchy sequence (xn) in H satisfies:

∀ϵ > 0, ∃N ∈ N such that m,n ≥ N ⇒ ∥xn − xm∥ < ϵ

Moreover, there exists an element x ∈ H such that

lim
n→∞

∥xn − x∥ = 0

4



2.1 Functional Spaces 2 Theoretical framework

Remark 2.1. The completeness property ensures that limits of convergent sequences remain
in H, making Hilbert spaces a fundamental setting for functional analysis, spectral theory,
and the study of partial differential equations.

Remark 2.2. If p = 2, we usually write

Hk(Ω) = W k,2(Ω) (k = 0, 1, ...)

The letter H is used, since Hk(Ω) is a Hilbert space.

Note that H0(Ω) = L2(Ω).

Definition 2.8 (Space H1
0 ). The Sobolev space H1

0 (Ω) is defined as the closure of C∞
c (Ω)

(the space of infinitely differentiable functions with compact support in Ω) with respect to
the H1-norm:

H1
0 (Ω) = C∞

c (Ω)
∥·∥H1

The H1-norm is given by

∥ϕ∥H1 =

Å∫
Ω

|ϕ|2 dx+

∫
Ω

|∇ϕ|2 dx
ã1/2

Theorem 2.1.

H1
0 (Ω) = {f : Ω ⊂ Rn → R, f ∈ H1(Ω), f = 0 on ∂Ω}

Proposition 2.1. The space H1
0 (Ω) consists of functions in H1(Ω) that, in a weak sense,

vanish on the boundary of Ω. More precisely, any function in H1
0 (Ω) is the limit (in the

H1-norm) of a sequence of compactly supported smooth functions in Ω.

Remark 2.3. Although functions in H1
0 (Ω) may not vanish on the boundary in the classical

sense, they are approximable by smooth functions that do. This space is fundamental
in the weak formulation of partial differential equations, particularly for problems with
homogeneous Dirichlet boundary conditions.

Definition 2.9 (1D Convolution). Convolution is an operator in which

• for a fixed kernel g : R → R, and

• for any input function f : R → R

• the operation gives an output function, denoted as f ∗ g : R → R, according to the
formula

(f ∗ g)(t) =
∫
R
g(t− τ)f(τ)dτ

Proposition 2.2 (Convolution and Regularity). Let f ∈ L1
loc(R) and g ∈ C∞

c (R). The
convolution f ∗ g satisfies:

1. f ∗ g ∈ C∞(R),

2. Dα(f ∗ g) = f ∗ (Dαg) for any multiindex α,

where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
is the partial derivative of order α.

Proof can be found in [4].
This proposition justifies the use of convolution to approximate non-smooth functions and
appears in the hysteresis model, which is described in Section 4.
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2.2 PDEs analysis 2 Theoretical framework

2.2 PDEs analysis

Partial differential equations (PDEs) that arise in real-world applications can rarely be
solved in closed form (i.e., their solution cannot be expressed using a finite combination
of well-known elementary functions). In most cases, these equations are too complex to
admit explicit solutions, especially when they involve nonlinearity, irregular domains, or
complex boundary conditions. However, numerical methods such as the finite element
method (FEM), finite difference methods (FDM), or spectral methods, can succesfully be
applied to almost all well-posed PDEs. Additionally, weak formulations and variational
approaches are frequently employed to extend the notion of a solution, allowing for the
study of PDEs in broader functional spaces where classical solutions may not exist.

2.2.1 Strategies for studying PDEs

Definition 2.10. We say that a given problem for a partial differential equation is well-
posed (in the sense of Hadamard) if:

1. the problem has a solution;

2. the solution is unique;

3. the solution depends continuously on the data given in the problem.

The last condition is particularly important for problems arising from physical applications:
it would be preferable that the (unique) solution changes a little when the conditions
specifying the problem change a little. For many problems, on the other hand, uniqueness
is not to be expected.

For partial differential equations that cannot be solved in the classical sense, it is a rea-
sonable strategy to consider as separate the existence and the smoothness (or regularity)
problems. The idea is to define for a given PDE a reasonable wide notion of a weak solu-
tion, with the expectation that, since we are not asking too much by way of smoothness of
this weak solution, it may be easier to stablish its existence, uniqueness, and continuous
dependence on the given data.

2.2.2 Linear wave equation

The wave equation is a classical example of a second-order hyperbolic PDE. In its linear
form, it models wave propagation in an elastic and homogeneous medium.

Definition 2.11 (Linear wave equation). Let Ω ⊂ Rn be a bounded domain with boundary
Γ, and I = [0, T ) be the time interval. The linear wave equation is given by:

∂2u
∂t2

− c2∆u = f in Ω× I
u = 0 on Γ× I
u(x, 0) = u0(x) for x ∈ Ω
∂u
∂t
(x, 0) = u1(x) for x ∈ Ω

(2.1)

where u(x, t) is the unknown wave amplitude, c > 0 is the wave speed, the function

f : Ω× I → R is given, and ∆ = ∇2 is the Laplacian operator, where ∇ =
Ä

∂
∂x1

, ..., ∂
∂xn

ä
.

6



2.2 PDEs analysis 2 Theoretical framework

In practice, especially in engineering applications, it is often impossible to find classical
(smooth) solutions to wave equations, since Equation 2.1 requires u to be twice differen-
tiable in space and time, which may not be realistic in many applications. Instead, the
weak formulation is needed, which seeks solutions in Sobolev spaces such as H1(Ω), where
only weak derivatives are required to exist. This approach allows for discontinuous data
and irregular geometries. The weak formulation is constructed through the following steps:

• Multiplying the PDE by a smooth test function v that vanishes on the boundary Γ,
i.e., v ∈ H1

0 (Ω), and integrate over Ω.∫
Ω

Å
∂2u

∂t2
− c2∆u

ã
v dx =

∫
Ω

fv dx

• Integrating by parts (formally or in the sense of distributions), which transfers deriva-
tives from the solution to the test function, thereby reducing the differentiability
requirements on the solution itself.
Applying the multidimensional version of integration by parts (Green’s identity):∫
Ω

(∆u)v dx =

∫
Ω

∇·(∇u)v dx = −
∫
Ω

∇u ·∇v dx+

∫
Γ

Å
∂u

∂n

ã
v ds︸ ︷︷ ︸

=0 since v∈H1
0 (Ω)

where
∂u

∂n
= ∇u ·n

The equation becomes:∫
Ω

∂2u

∂t2
v dx+ c2

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx

• Rewriting the equation as an integral identity that must hold for all test functions
in the chosen space, as well as adding initial conditions.

Definition 2.12 (Weak formulation of the wave equation). The wave equation 2.1 can be
given the following variational formulation. Find u(t) ∈ V = H1

0 (Ω), such that for t ∈ I:
∫
Ω

∂2u
∂t2

v dx+ c2
∫
Ω
∇u · ∇v dx =

∫
Ω
f(t)v dx ∀v ∈ V

u(0) = u0
∂u
∂t
(0) = u1

(2.2)

To prepare for numerical simulation via the finite element method (explained in Section
2.3), the spatial domain is discretized while keeping time continuous.

Definition 2.13 (Weak semi-discrete formulation of the wave equation). Suppose the
finite element space Vh = H1

0 (Ω) is given (e.g., piecewise linear functions on a mesh). The
semi-discrete weak formulation reads: Find uh(t) ∈ Vh such that for t ∈ (0, T )

∫
Ω

∂2uh

∂t2
(t)v dx+ c2

∫
Ω
∇uh(t) · ∇v dx =

∫
Ω
f(t)v dx ∀v ∈ Vh

uh(0) = u0h
∂uh

∂t
(0) = u1h

(2.3)

where u0h, u1h ∈ Vh are approximations of the initial data u0 and u1.

Proposition 2.3 (Well-posedness of the weak formulation). For f ∈ L2(Ω × I), u0 ∈
H1

0 (Ω) and u1 ∈ L2(Ω), there exists a unique solution u ∈ C0(I,H1
0 (Ω)) ∩ C1(I,L2(Ω)),

and the solution depends continuously on the data.

This result can be found in [3, Chapter 7, Section 2].
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2.3 Separation of Variables: The Homogeneous Problem 2 Theoretical framework

2.2.3 Non-linear wave equation

Many real-world phenomena involve nonlinear wave behavior, requiring extensions of the
linear model. A general nonlinear wave equation takes the form:

∂2u

∂t2
− c2∆u+ F (u,∆u) = f (2.4)

where F (u,∆u) encapsulates the nonlinear effects.

Despite the differences, the strategy used in the linear case extends naturally: weak formu-
lation is constructed by testing the nonlinear equation against smooth functions, integrat-
ing by parts, and seeking solutions in Sobolev spaces. The resulting formulation serves as
the basis for the finite element implementation developed in this work and is introduced
formally in Section 2.4. The well-posedness of nonlinear wave equations in weak form is
generally more delicate than in the linear case. Depending on the structure of the non-
linearity (particularly its continuity, growth conditions, and monotonicity) existence and
uniqueness can often still be established via Galerkin approximations, energy estimates,
and compactness arguments [3, Chapter 12]. The Galerkin method presented in [5, Chapter
2] provides the abstract framework used to establish existence and uniqueness of the semi-
discrete problem in the nonlinear case, even though the full treatment of time-dependent
hyperbolic problems is beyond their scope.

2.3 Separation of Variables: The Homogeneous Problem

Separation of variables is an important technique to master when studying solution meth-
ods of PDEs. It is explained in this section not only as an analytical tool, but also as a
foundational step in the Galerkin finite element method (FEM), explained later in Section
2.4. However, separation of variables does have its drawbacks, since it requires both the
PDE and the boundary conditions (BCs) be homogeneous. Second, in general the spatial
variable must have finite boundaries. If the spatial variable has semi-infinite or infinite
boundaries, separation usually does not work. While separation of variables cannot be
applied directly to nonlinear or inhomogeneous problems, the structure it has is used in
more advanced techniques such as the Galerkin finite element method.

The main idea of separation of variables is to assume that the solution can be written as
the product of functions, each depending on a single variable. For a PDE involving two
variables, say x and t, we seek a solution of the form:

u(x, t) = X(x)T (t)

where X(x) is a function that depends only on x and T (t) is a function that depends only
on t.
By substituting this assumption into the PDE and using algebraic manipulations, the
equation is split into separate ordinary differential equations (ODEs), each depending on
a single variable.

8
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2.4 Finite element methods (FEM)

The Finite Element Method (FEM) is a powerful numerical technique for solving par-
tial differential equations (PDEs) and integral equations. It is particularly well-suited
for problems involving complex geometries, material properties, and boundary conditions.
The method transforms continuous PDEs into discrete systems of algebraic equations by
dividing the domain into smaller, simpler subdomains called finite elements.

2.4.1 Historical context and overview

The FEM emerged as a formal computational tool in the mid-20th century, with pioneering
contributions from Turner, Clough, Martin, and Topp (1956) and Argyris (1957). Its name
reflects the discretization of a continuous domain into finite elements, where approximate
solutions are constructed. Unlike classical analytical methods, which seek exact solutions to
idealized problems, FEM provides approximate solutions to real-world problems by making
piecewise polynomial interpolation over these elements. The method gained widespread
adoption in engineering and applied mathematics due to its flexibility and robustness, as
documented in foundational texts like Zienkiewicz (1971) and Oden (1991). [6]

2.4.2 Mathematical formulation

The core idea of FEM lies in approximating the solution of a PDE using a finite-dimensional
subspace. This involves three key steps:

1. Domain discretization: The spatial domain Ω is partitioned into a mesh of finite
elements (e.g., triangles in 2D, tetrahedra in 3D).

2. Weak formulation: The PDE is reformulated in an integral (weak) form, reducing
differentiability requirements and enabling the use of Sobolev spaces (see Section
2.1).

3. Galerkin approximation: The solution is projected onto a subspace spanned by ba-
sis functions {ϕi}, typically piecewise polynomials, leading to a system of algebraic
equations.

A finite element is a mathematical tool used to break down complex problems into smaller,
solvable pieces. The domain (the region where the problem is defined, like a metal plate or
fluid volume) is divided into small, simple shapes (triangles, quadrilaterals, tetrahedrons,
etc.). These shapes are called elements, and their corners (or edges) are called nodes. Inside
each element, the unknown function (e.g., temperature, displacement) is approximated
using simple polynomial functions (often linear or quadratic). Each finite element gives
a small set of equations. To solve the full problem, all those equations are combined
(assembled) into one big system of equations. The global system is solved numerically
(using linear algebra methods) to find the approximate solution at all nodes. Once solved,
the solution can be reconstructed everywhere by combining the local approximations.

Definition 2.14 (Ciarlet´s finite element). Let

i) K ⊆ Rn be a bounded closed set with nonempty interior and piece-wise smooth
boundary (the element domain),
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ii) P be a finite dimensional space of functions on K (the space of shape functions: a set
of polynomials of a certain degree defined on K that interpolate the solution),

iii) N = {n1, n2, ..., nk} be a basis of the dual space of P , P ′. The dual space P ′ consists
of linear functionals (e.g., point evaluations ni(f) = f(xi)) that map shape functions
f ∈ P to real numbers.

Then, (K,P ,N ) is called a finite element.

Definition 2.15 (Nodal basis). Given a finite element (K,P ,N ), whereN = {n1, n2, ..., nk}
is a set of nodal variables (degrees of freedom), the nodal basis {ϕ1, ϕ2, ..., ϕk} ⊂ P is the
unique set of shape functions satisfying:

ni(ϕj) = δij =

®
1, i = j

0, i ̸= j

Definition 2.16 (Galerkin method). The Galerkin method is a finite element method
(FEM) used for solving partial differential equations (PDEs). It is based on approximat-
ing the solution in a finite-dimensional subspace while ensuring that the residual of the
equation is orthogonal to the subspace. Below, the method is explained in the context of
PDEs, particularly wave equations.

Multiplying the linear wave equation by a test function v ∈ V = H1
0 (Ω) and integrating

over Ω the weak form is obtained, where derivatives are transferred to v via integration by
parts: ∫

Ω

∂2u

∂t2
v dx+ c2

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx

The space V is discretized by choosing a finite-dimensional subspace Vh ⊂ V with basis
{ϕ1, ϕ2, ..., ϕN}. Then the approximate solution uh can be expressed as:

uh(x, t) =
N∑
i=1

αi(t)ϕi(x)

where αi(t) are time-dependent coefficients to be determined.
Then, the basis functions are used as test functions: v = ϕj for j = 1, ..., N .
Substituting into the weak form u with uh and v with ϕj:∫

Ω

(
N∑
i=1

α̈i(t)ϕi

)
ϕj dx+ c2

∫
Ω

(
N∑
i=1

αi(t)∇ϕi

)
· ∇ϕj dx =

∫
Ω

fϕj dx

which can be rewritten:

N∑
i=1

α̈i(t)

∫
Ω

ϕiϕj dx+ c2
N∑
i=1

αi(t)

∫
Ω

∇ϕi · ∇ϕj dx =

∫
Ω

fϕj dx for j = 1, . . . , N

Let´s define:
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• Mass matrix M ∈ RN×N :

Mij =

∫
Ω

ϕiϕj dx

• Stiffness matrix K ∈ RN×N :

Kij =

∫
Ω

∇ϕi · ∇ϕj dx

• Force vector F (t) ∈ RN :

Fj(t) =

∫
Ω

f(x, t)ϕj dx

The equation becomes:

N∑
i=1

Mijα̈i(t) + c2
N∑
i=1

Kijαi(t) = Fj(t), j = 1, . . . , N.

In matrix form:
Mα̈(t) + c2Kα(t) = F (t) (2.5)

where α(t) = [α1(t), . . . , αN(t)]
T .

Algorithm for implementation:

1. Discretize the domain: Divide Ω into smaller elements (e.g., triangles or quadrilaterals
in 2D).

2. Define Basis Functions: Choose piecewise polynomial basis functions ϕi(x) (e.g.,
linear or quadratic).

3. Assemble Matrices: Compute the entries of M and K by integrating over elements.
Then form the global system by assembling contributions from all elements.

4. Solve the System: Use numerical methods (e.g., implicit schemes like Newmark-Beta
or BDF2) to integrate the ODEs system in time.

Theorem 2.2 (Convergence of FEM). Given u ∈ H1
0 (Ω) as the solution to the weak form

of a PDE, and uh its FEM approximation in a finite-dimension subspace Vh ⊂ H1
0 (Ω), the

approximation error satisfies:

∥u− uh∥H1(Ω) ≤ Chk∥u∥Hk+1(Ω) (2.6)

where h is the maximum element size and k is the polynomial degree of Vh.

Proof of the theorem can be found in [7].

2.5 Temporal integration methods

Temporal integration methods are essential for solving systems of ordinary differential
equations (ODEs). This subsection introduces the basic concepts, challenges, and key
techniques for temporal resolution, with a focus on stability, accuracy, and efficiency.
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2.5.1 Boundary conditions problem

In the study of partial differential equations (PDEs), boundary conditions (BCs) play
a fundamental role in ensuring the existence, uniqueness, and stability of solutions. In
the context of the finite element method (FEM), the correct implementation of boundary
conditions is essential for obtaining accurate numerical approximations. This subsection
explores the types of boundary conditions, their mathematical formulation, and common
challenges in their numerical implementation.

• Types of boundary conditions.
Boundary conditions describe how the solution behaves at the domain boundaries
and are classified into three main categories:

1. Dirichlet Boundary Conditions: These conditions impose a fixed value of
the function at the boundary:

u(x) = g(x), x ∈ ∂Ω

They are often used in problems where the solution is known at the boundary,
such as temperature or displacement constraints in elasticity.

2. Neumann Boundary Conditions: These conditions specify the normal deriva-
tive of the function at the boundary:

∂u

∂n
= h(x), x ∈ ∂Ω

They arise in problems involving fluxes, such as heat conduction or stress con-
ditions in elasticity.

3. Robin (Mixed) Boundary Conditions: These conditions involve a combi-
nation of Dirichlet and Neumann terms:

αu+ β
∂u

∂n
= f(x), x ∈ ∂Ω

They are used in heat transfer with convection, wave propagation problems, and
fluid-structure interactions.

In time-dependent problems, initial conditions play a critical role in ensuring the solution’s
accuracy and stability. The general form of a temporal problem is:

du

dt
= f(t, u), u(t0) = u0

where u(t0) = u0 specifies the initial state of the system. For second-order problems like
wave equations, the initial conditions may include both displacement and velocity:

u(0) = u0,
du

dt
(0) = v0

12
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2.5.2 Common Challenges

1. Accuracy of Initialization: Errors in u0 or v0 propagate through the solution.

2. Compatibility with Spatial Discretization: Initial conditions must align with the
discretized system to prevent instability.

3. High-Frequency Artifacts: Poorly chosen initial conditions (e.g., non-smooth) can
create rapid oscillations in the numerical solution that do not correspond to the true
physical behavior.

2.5.3 Methods to Address Challenges

1. Use consistent initialization derived from the continuous equations (in this work static
equilibrium conditions are imposed, see Section 3.2.5).

2. Apply regularization techniques to smooth out incompatible initial conditions.

3. Use temporal integrators that damp or control high-frequency errors from poor ini-
tialization (e.g., BDF2).

2.5.4 Stiff ODEs system

There is no precise definition of what a stiff equation is, but it is known that certain
numerical methods became unstable when solving the equation, and they require extremely
small step sizes to achieve stability. The reason why this subsection is of high importance
is that the central model of this project results in an ODEs system, explained in detail in
Section 3, which is stiff.
The integration method chosen to solve ODEs systems must be as fast as possible and
present great stability at the same time. Explicit methods (the solution at a future time
step is calculated directly from the known values at the current time step) are not usually
recommended for problems which can be stiff. Stiffness is typically characterized by the
eigenvalues of the system’s Jacobian matrix (stiffness matrix K in the ODE system 2.5).
While analytical eigenvalue computation is intractable for large nonlinear systems (like
mooring lines), stiffness arises when a system’s eigenvalues λ span widely separated time
scales [8]. In practice, stiffness is deduced from the system’s behavior (e.g., explicit solvers
fail unless step sizes are impractically small), not explicit eigenvalue calculations.

Definition 2.17 (Stability function). The function R(z) is called the stability function of
the method. It can be interpreted as the numerical solution after one step for the Dahlquist
test equation:

y′ = λy, y0 = 1, z = hλ, (2.7)

This is a simple linear test equation used to analyze stability, where λ is a constant (possibly
complex), h is the step size of the numerical method, and z = hλ is dimensionless. The
exact solution of the equation is:

y(t) = eλt

A numerical method approximates this evolution, and its behavior is captured by the
function R(z), which expresses the numerical result after one time step.
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For a given numerical method, applying one step to the test equation y′ = λy results
in an update of the form yn+1 = R(z)yn. Thus, after one step, the numerical solution is
y1 = R(z)y0. If we started with y0 = 1, then y1 = R(z). So, R(z) tells us how the numerical
method transforms the initial condition after one step, relative to the exact exponential
solution.
The set

S = {z ∈ C; |R(z)| ≤ 1}

is called the stability domain of the method.

Definition 2.18 (A-Stability (Dahlquist 1963)). A method, whose stability domain satis-
fies

S ⊃ C− = {z; Re(z) ≤ 0}

is called A-stable.

Some methods are stable on the entire left half-plane C−. This is precisely the set of
eigenvalues, where the exact solution of (2.7) is stable too [9]. A desirable property for a
numerical method is that it preserves this stability property. A-stability ensures that the
method remains stable for all step sizes when applied to problems with eigenvalues in the
left half-plane (common in stiff systems).
Multistep methods use solutions from several prior time steps to compute the current step,
offering higher-order accuracy with fewer function evaluations compared to single-step
methods. Their implicit nature makes them particularly suited for stiff systems, where
stability constraints dominate step size selection.

Theorem 2.3 (The Dahlquist second barrier). The highest order of an A-stable multistep
method is 2. [10]

Definition 2.19 (BDF2 adaptive step). The Backward Differentiation Formula (BDF) is
a family of implicit multistep methods widely used for stiff ODEs. The second-order BDF
(BDF2) is particularly attractive due to its balance between accuracy and stability. For
the problem du

dt
= f(t, u), BDF2 approximates the solution at time tn+2 using:

3

2
un+2 − 2un+1 +

1

2
un = hf(tn+2, un+2)

where h is the time step size.

Remark 2.4. It’s important to note that this requires solving a nonlinear system for un+2

at each step.

Nevertheless, the advancing formula of the adaptive step size BDF2 is given by the next
expression [11]:

yn+2 −
(1 + wn+1)

2

1 + 2wn+1

yn+1 +
w2

n+1

1 + 2wn+1

yn = hn+2
1 + wn+1

1 + 2wn+1

fn+2

being wn+1 =
hn+2

hn+1
, hn+2 = tn+2 − tn+1 and hn+1 = tn+1 − tn
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The local truncation error (LTE) becomes:

LTE = y(tn+2)− yn+2 ≈
h2
n+2(hn+1 + hn+2)

6
y(3)(tn+2) (2.8)

where y(3) is an approximation of the third derivative of y:

y(3)(tn+2) ≈
1

h2
n+2

ï
yn+2 − yn+1

hn+2

− (1 +
hn+2

hn+1

)
yn+1 − yn

hn+1

+
hn+2

hn+1hn

(yn − yn−1)

ò
(2.9)

2.5.5 Summary

The BDF2 algorithm solves the system of ODEs derived from the finite element discretiza-
tion by:

• Applying a second-order accurate implicit multistep method.

• Solving a nonlinear equation at each time step using Newton-Raphson iterations for
example.

• Adapting the time step based on an estimate of the local truncation error.

• Ensuring stability for stiff problems due to its A-stability up to second order.

Advantages of Adaptive BDF2:

1. Stability: Well-suited for stiff problems.

2. Efficiency: Saves computation time by using larger time steps in smooth regions.

3. Accuracy: Maintains second-order convergence.

3 Mooring line model

The dynamic behavior of mooring lines in marine environments is governed by complex
interactions between mechanical forces, material properties, and hydrodynamic effects.
Accurately simulating these systems requires a well defined and numerical stable approach
capable of capturing nonlinearities, geometric deformations, and time-dependent responses.
This section presents a model for mooring line dynamics, beginning with the derivation
of the governing equations from Newtonian mechanics and finishing in their numerical
implementation via the Finite Element Method (FEM).
With the theoretical framework of Section 2 established—including Sobolev spaces, weak
formulations, and semidiscretization— the focus now lies on their practical application to
mooring line dynamics. This section details the steps to transform the governing PDEs
into a solvable numerical system. A nonlinear partial differential equation (PDE) describes
the motion of the mooring line under tension, external forces, and boundary constraints.
To address the challenges of this PDE, such as its high nonlinearity and coupling between
spatial and temporal variables, the problem is reformulated in a weak form, enabling the use
of FEM for spatial discretization. The resulting system of ordinary differential equations
(ODEs) is then solved using advanced time-integration techniques, including the adaptive
BDF2 method, which ensures stability and accuracy for stiff systems.
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3.1 PDE formulation

Considering that no external angular momentum is applied, Newton´s equation expressed
per unit of line length is used to model mooring and towing lines [12], [13], [14], [15].

ρ0
∂2r(t, s)

∂t2
=

∂

∂s

Å
T (t, s)

∂r(t, s)

∂s

ã
+ f(t, s) ·

∣∣∣∣∂r∂s
∣∣∣∣ (3.1)

where ρ0 is the cable mass per unit length, s ∈ [0, L] the arc-length parameter and r :
[0,∞) × [0, L] → R3 the position in the inertial frame. T : [0,∞) × [0, L] → R is the
tension vector and f : [0,∞)× [0, L] → R3 the external forces per unit of length vector.
The considered external forces are:

f = fhg + fdt + fdn + fmt + fmn + fgnk + fgnd (3.2)

where

• fhg =
ρ0−ρw·A
| ∂r∂s |

g represents the combined gravitational and buoyancy forces acting on

the mooring line, based on Archimedes’ principle. Since the mooring line is always
submerged, both forces are continuously acting. The gravitational force tends to pull
the line downward, while the buoyancy force acts in the opposite direction.

• fdt = −1
2
·CDT ·d ·ρw · |vt| ·vt and fdn = −1

2
·CDN ·d ·ρw · |vt| ·vn are the tangential and

normal drag forces, respectively, due to fluid resistance as the mooring line moves
through seawater. This drag force arises from the interaction between the moving
mooring line and the surrounding water, which resists the motion of the line.

• fmt = −CMT · πd
2

4
·ρw ·at and fmn = −CMN · πd2

4
·ρw ·an are the tangential and normal

added mass forces, respectively, that arise from the displacement of the surrounding
fluid as the mooring line moves through it, creating an additional inertia force that
must be accounted for. This force is due to the fact that when the mooring line
accelerates, it not only moves its own mass but also displaces and accelerates the
fluid around it. This results in added resistance to motion, known as the added mass
effect.

• fgnk = z · |fhg| ·e−GKd(rz−zf )/|fhg | is the normal ground reaction force, which represents
the contact force exerted by the seabed on the mooring line when it touches the
ground. This force prevents the mooring line from penetrating the seabed by pushing
back upward.

• fgnd = fhg ·GD · d ·min(vz, 0)
2 is the normal ground damping force, which accounts

for the energy dissipation (damping) that occurs as the mooring line interacts with
the seabed. It is a velocity-dependent force that resists the vertical motion of the
mooring line as it moves downward toward the seabed.

and the parameters are
The tangent vector velocity is computed as vt = (v · t) · t, where t is the unitary tangent
vector. Normal velocity is vn = v − vt. The same applies for acceleration.
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ρw water density vt line tangential velocity
g gravity acceleration vector vn line normal velocity
A line section at line tangential acceleration
d line diameter an line normal acceleration
e axial strain GK ground normal stiffness
CDT line tangential drag coefficient GD ground´s critical damping
CDN line normal drag coefficient z vertical unitary vector
CMT line tangential added mass coefficient rz vertical coordinate of a line node
CMN line normal added mass coefficient zf vertical coordinate of ocean floor

vz vertical velocity of a line node

It is important to note that the strain ε(t, s) is defined as:∣∣∣∣∂r(t, s)∂s

∣∣∣∣ = 1 + ε(t, s) (3.3)

Furthermore, Eq. 3.1 is restricted to the following conditions.

• The spatial boundary conditions on the lines will be the positions of both ends: the
fixed anchor at point r(t, 0) = r0, and the time-dependent position of the fairlead
r(t, L) = rF(t), describing the wave movement that is typically a sinusoidal equation.

• As second derivatives appear in the PDE system in 3.1, both the initial mooring line
position r(0, s) and initial velocity ∂r(0,s)

∂t
must be provided to be able to solve it.

The initial mooring line position will be described by a function g(s), and the initial
mooring line velocity will be considered zero (static approach).

∂r(0, s)

∂t
= 0; r(0, s) = g(s) (3.4)

Existence and uniqueness of solutions are proved in [12] for when the mooring line is purely
elastic (i.e. linear tension term). When the material exhibits hysteresis (i.e. non linear
tension term, which is introduced in Section 4), proving the existence and uniqueness is
more delicate, and shown in [16].

3.2 FEM: From PDE to ODEs system

3.2.1 Weak formulation

The PDE line system 3.1 is multiplied with the test function and taking the integral with
s along the line length:

ρ0
∂2r(t, s)

∂t2
w(s) =

∂

∂s

Å
T (t, s)

∂r(t, s)

∂s

ã
w(s) + f(t, s) ·

∣∣∣∣∂r∂s
∣∣∣∣w(s) =⇒∫ L

0

ρ0
∂2r(t, s)

∂t2
w(s)ds =

∫ L

0

∂

∂s

Å
T (t, s)

∂r(t, s)

∂s

ã
w(s)ds+

∫ L

0

f(t, s) ·
∣∣∣∣∂r∂s
∣∣∣∣w(s)ds
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Finally, using integration by parts and knowing that as w(s) ∈ V =⇒ w(0) = w(L) = 0,
the weak formulation of the problem is obtained∫ L

0

ρ0
∂2r(t, s)

∂t2
w(s)ds = −

∫ L

0

T (t, s)
∂r(t, s)

∂s

dw(s)

ds
ds+

∫ L

0

f(t, s) ·
∣∣∣∣∂r∂s
∣∣∣∣w(s)ds (3.5)

equivalent to finding the minimum error (minimization problem) in L2 (Burden and Faires,
2013)

3.2.2 Galerkin Finite Element Method

Lets consider the division of the mooring line into N equidistance nodes {si}N−1
i=0 . The

finite sub-base of V will have dimension N , {ϕi}N−1
i=0 , which must satisfy ϕi(0) = ϕi(L).

The mooring line position can be written as a combination of the base functions:

r(t, s) =
N−1∑
i=0

ri(t)ϕi(s)

where ri(t) = r(t, si) are the mooring line nodes positions. It is important to note that the
coefficients {ri}N−1

i=0 are vectors in R3.
Also, for the derivatives:

∂mr(t, s)

∂tm
=

N−1∑
i=0

∂mri(t)

∂tm
ϕi(s)

and
∂m+1r(t, s)

∂tm∂s
=

N−1∑
i=0

∂mri(t)

∂tm
∂ϕi(s)

∂s

Furthermore,

∂r

∂s
=

N−1∑
k=0

rk(t)
∂ϕk(s)

∂s

and so ∣∣∣∣∂r∂s
∣∣∣∣ =
Ã(

N−1∑
k=0

rk(t)
∂ϕk(s)

∂s

)2

for which the following approximation can be done:∣∣∣∣∂r∂s
∣∣∣∣ ≈ N−1∑

k=0

Jk(t)ϕk(s)

With a good choice of the base and knowing the positions and velocities of certain points
in the line, the derivatives needed to compute internal forces F(t, s) = T (t, s)∂r(t,s)

∂s
and

external forces f can be easily obtained, as it is shown later. Considering this, internal and
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external forces can be expressed in terms of the base, as it was done for r:

F(t, s) =
N−1∑
i=0

T (t, s)ri(t)
dϕi(s)

ds
f(t, s) =

N−1∑
i=0

fi(t)ϕi(s)

Choosing the test function to be a function of the bases of V , w(s) = ϕj(s), equation 3.5
results in:

ρ0

∫ L

0

(
N−1∑
i=0

∂2ri(t)

∂t2
ϕi(s)

)
ϕj(s)ds =

−
∫ L

0

(
N−1∑
i=0

T (t, s)ri(t)
dϕi(s)

ds

)
dϕj(s)

ds
ds+

∫ L

0

(
N−1∑
i=0

fi(t) · ϕi(s)

)(
N−1∑
k=0

Jk(t)ϕk(s)

)
ϕj(s)ds

for j = 0, 1, ..., N − 1

which applying the integrals´ linearity:

ρ0

N−1∑
i=0

∂2ri(t)

∂t2

∫ L

0

ϕi(s)ϕj(s)ds =

−
N−1∑
i=0

ri(t)

∫ L

0

T (t, s)
dϕi(s)

ds

dϕj(s)

ds
ds+

N−1∑
i=0

fi(t)
N−1∑
k=0

Jk(t)

∫ L

0

ϕi(s)ϕj(s)ϕk(s)ds

for j = 0, 1, ..., N − 1

where using matrix notation, a second order system of ODEs is obtained:

ρ0M

à
∂2r0(t)
∂t2

∂2r1(t)
∂t2
...

∂2rN−1(t)

∂t2

í
= −K(t)

á
r0(t)
r1(t)
...

rN−1(t)

ë
+ Fext(t) (3.6)

where: Mij = ·
∫ L

0

ϕi(s)ϕj(s)ds Kij(t) =

∫ L

0

T (t, s)
dϕi(s)

ds

dϕj(s)

ds
ds (3.7)

usually named the mass matrix and stiffness matrix, respectively.
In order to compute Mij, Kij, F

ext
i , first it is necessary to describe the basis functions,

which has a significant importance in computational cost when solving Eq. 3.6.

3.2.3 Spatial discretization and basis functions.

Let the spatial domain be denoted by the closed interval [0, L] ⊂ R, representing the length
of the mooring line. The discretization of this domain and the choice of basis functions are
fundamental in ensuring both numerical accuracy and computational efficiency.

Definition 3.1. The interval [0, L] is discretized into N equidistant points {si}N−1
i=0 , called

nodes, satisfying the following properties:

1. s0 = 0, sN−1 = L
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2. si − si−1 = l =
L

N − 1
, for all i = 1, . . . , N − 1

Remark 3.1. A regular discretization guarantees uniform spacing between nodes, which
simplifies the construction and analysis of basis functions.

Definition 3.2. Let {ϕi}N−1
i=0 be a set of piecewise linear basis functions associated with

the nodes {si}. Each function ϕi : [0, L] → R is defined as

ϕi(s) =



0, s < si−1

s− si−1

l
, si−1 ≤ s < si

−s+ si+1

l
, si ≤ s < si+1

0, s ≥ si+1

(3.8)

with l = si − si−1.

Remark 3.2. The choice of piecewise linear basis functions avoids the Runge phenomenon
associated with higher-order polynomials and ensures good interpolation properties. Specif-
ically, polynomials of order higher than 5 are avoided, following best practices highlighted
in the literature [12].

Proposition 3.1 (Kronecker Delta Property). The basis functions 3.8 satisfy the interpo-
lation condition

ϕi(sj) = δij =

®
1, i = j

0, i ̸= j
(3.9)

Proof. By the definition of ϕi(s) in (3.8), we have:

• ϕi(sj) = 0 if sj /∈ [si−1, si+1]

• ϕi(si) =
−si + si+1

l
=

l

l
= 1

Thus, ϕi(sj) = δij.

Proposition 3.2 (Support Overlap Property). The basis functions 3.8 have the following
orthogonality property with respect to their support:∫ L

0

ϕi(s)ϕj(s) ds = 0 ∀j /∈ {i− 1, i, i+ 1} (3.10)

Definition 3.3 (Weak Derivatives of Basis Functions). The weak derivative of ϕi is piece-
wise constant and given by

dϕi(s)

ds
=



0, s < si−1

1

l
, si−1 ≤ s < si

−1

l
, si ≤ s < si+1

0, s ≥ si+1

(3.11)
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Proposition 3.3 (Derivative Support Overlap Property). The derivatives of the basis
functions satisfy

dϕi(s)

ds

dϕj(s)

ds
= 0 ∀j /∈ {i− 1, i, i+ 1} (3.12)

Remark 3.3. The fact that the product of derivatives vanishes outside the index set {i −
1, i, i + 1} leads to a tridiagonal stiffness matrix in the finite element formulation. This
sparsity structure significantly reduces the computational complexity of matrix assembly
and subsequent linear system solutions.

Figure 1: Linear basis functions ϕi(s), as introduced in Aamo and Fossen [12].

Remark 3.4. The basis functions ϕi ∈ H1(0, L), ensuring they are suitable for Galerkin
finite element formulations that require H1 regularity.

Remark 3.5. The choice of basis functions for constructing the solution space is not unique.
Alternative approaches, such as using higher-order functions like B-splines or higher-order
polynomials, also exist (Burden and Faires, [17]). One key advantage of these higher-order
functions is that they provide smooth and continuous derivatives without requiring their
definition in the sense of distributions, offering improved accuracy for certain types of
problems.
However, these benefits come with trade-offs. Incorporating higher-order basis functions
adds complexity to the formulation, particularly by increasing the number of terms in the
mass and stiffness matrices. This increase leads to a higher computational burden when
solving the system of ordinary differential equations (ODEs) in 3.6. The computational
cost grows significantly unless measures are taken to reduce the number of mooring line
nodes or adopt more efficient numerical strategies.
Moreover, while higher-order methods can offer improved precision, especially in capturing
complex physical behaviors such as bending and twisting in structures, they may not
always be the most practical choice in large-scale simulations. In scenarios where real-time
performance or limited computational resources are priorities, the increased complexity
could outweigh the accuracy gains, prompting a trade-off between computational efficiency
and solution fidelity. Hence, the selection of basis functions often hinges on balancing these
competing factors: the need for accuracy, the nature of the problem, and the available
computational resources.

Remark 3.6. Note that by choosing this piecewise linear basis, for s ∈ [si−1, si]∣∣∣∣∂r∂s
∣∣∣∣ = ∣∣∣∣ri−1(t)

−1

h
+ ri(t)

1

h

∣∣∣∣ = |ri(t)− ri−1(t)|
h
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3.2.4 From second order to first order ODEs system

By applying the Galerkin FEM approximation, the second order ODEs system was obtained
in 3.6. The following procedure is done to convert the N equations of the second order
ODEs system into 2N .
From Eq. 3.6:

∂2ri(t)

∂t2
= − 1

ρ0
M−1K(t)ri(t) +

1

ρ0
M−1Fext(t) ∀i ∈ {0, ..., N − 1}

Lets define ∀i ∈ {0, ..., N − 1}
ui(t) = ri(t)

vi(t) =
dri(t)
dt

then, ∀i ∈ {0, ..., N − 1}
dui(t)
dt

= vi(t)
dvi(t)
dt

= d2ri(t)
dt2

= − 1
ρ0
M−1K(t)ui(t) +

1
ρ0
M−1Fext(t)

These equations can be reordered into the following first order ODEs system:Ç
du(t)
dt

dv(t)
dt

å
=

Å
0 1

− 1
ρ0
M−1K(t) 0

ãÅ
u(t)
v(t)

ã
+

Å
0

1
ρ0
M−1Fext(u(t))

ã
(3.13)

3.2.5 Initial conditions

Let s ∈ [0, L] ⊂ R denote the spatial parameter along the mooring line, with L > 0 being
the total length of the line. The initial configuration of the mooring line 3.4 is given by a
mapping

r(0, s) = g(s) : [0, L] → R3,

where g(s) describes the initial position in space of each material point along the mooring
line. The initial velocity of the mooring line is assumed to be zero:

∂r

∂t
(0, s) = 0.

Remark 3.7. The function g(s) corresponds to the static equilibrium configuration of the
mooring line. Thus, the determination of g(s) reduces to solving a static equilibrium
problem.

The static equilibrium configuration g(s) is computed by solving the nonlinear system of
equations associated with the balance of internal and external forces at the discrete nodal
points.

Problem 3.1 (Static Equilibrium). Let r ∈ R3N be the concatenated vector of nodal posi-
tions of the mooring line, defined as

r = (r0,x, r0,y, r0,z, . . . , rN−1,x, rN−1,y, rN−1,z)
⊤ ,

where N is the number of nodes, and the subscripts x, y, z refer to the spatial components.
Find r∗ ∈ R3N such that

F(r∗) = 0,

where F : R3N → R3N is the nonlinear vector-valued function representing the net force
acting on each node.
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Newton’s Method for Static Equilibrium
The solution r∗ is computed using Newton’s iterative method, defined as follows:

Algorithm 3.3.1 (Newton’s Method for Static Equilibrium)

• Initialization: Choose an initial guess r(0) ∈ R3N , typically corresponding to a
catenary shape between the anchor point and the fairlead. Set k = 0.

• Iteration: For k = 0, 1, 2, . . ., compute the update direction d(k) ∈ R3N by solving
the linear system:

JF(r(k))d(k) = −F(r(k)),

where JF(r(k)) ∈ R3N×3N is the Jacobian matrix of F at r(k).

• Update:
r(k+1) = r(k) + d(k).

• Convergence criteria: The iteration is stopped if either of the following conditions
is satisfied:

∥r(k+1) − r(k)∥ < εabs = 10−6 (absolute tolerance),

∥r(k+1) − r(k)∥
∥r(k)∥

< εrel = 10−3 (relative tolerance).

• Termination: The algorithm terminates if convergence is achieved or if k ≥ kmax =
30, in which case the method is considered to have failed to converge.

Definition 3.4 (Jacobian Approximation by Finite Differences). The Jacobian JF(r(k)) ∈
R3N×3N is approximated using finite differences as:

JF(r(k)) ≈
ñ
F(r(k) + he1)− F(r(k))

h
· · · F(r(k) + he3N)− F(r(k))

h

ô
,

where {ej}3Nj=1 is the canonical basis of R3N , and h = 10−12 is the finite difference increment.

Remark 3.8 (Dimension of the System). The nonlinear system consists of 3N equations
corresponding to the balance of forces in three spatial dimensions at each of the N nodes.
The vector r ∈ R3N describes the unknown positions of these nodes.

Proposition 3.4 (Convergence of Newton’s Method). If F : R3N → R3N is continuously
differentiable in a neighborhood of r∗, and JF(r∗) is nonsingular, then Newton’s method
converges quadratically to r∗, provided the initial guess r(0) is sufficiently close to r∗.

3.2.6 Solving the first order ODEs system: BDF2

The system of ordinary differential equations (ODEs) considered in Eq. 3.13 has the general
form:

dy

dt
= f(y, t), y(0) = y0, (3.14)

where y ∈ Rn is the state vector, and f : Rn × R → Rn represents the dynamics of the
system. The Backward Differentiation Formula of Second Order (BDF2) is a second-order
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accurate implicit linear multistep method. It approximates the derivative at tk+1 using the
values yk−1, yk, and yk+1.
For variable time steps hk−1 = tk − tk−1 and hk = tk+1 − tk, the general form of the BDF2
scheme, as implemented in OASIS, is given by:

h2
kyk−1 − (hk−1 + hk)

2yk + hk−1(hk−1 + 2hk)yk+1 − hkhk−1(hk−1 + hk)f(yk+1, tk+1) = 0

This equation is nonlinear in yk+1 because the function f depends on yk+1. To solve it, a
Newton-Raphson iterative method is used.

3.2.7 Newton-Raphson Method for BDF2

The nonlinear residual is defined as:

F (yk+1) = h2
kyk−1− (hk−1+hk)

2yk+hk−1(hk−1+2hk)yk+1−hkhk−1(hk−1+hk)f(yk+1, tk+1)

Problem 3.2. Find the unknown yk+1 at the next time step such that:

F (yk+1) = 0 (3.15)

where F : Rn → Rn is the nonlinear residual function, dependent on yk+1.

The Jacobian matrix of F with respect to yk+1 is:

JF (yk+1) = hk−1(hk−1 + 2hk)I − hkhk−1(hk−1 + hk)Jf (yk+1, tk+1) (3.16)

where Jf is the Jacobian of f with respect to y computed with finite differences:

Jf (y, t) =
1

δ

[
f(y + δe1, t)− f(y, t), f(y + δe2, t)− f(y, t), . . . , f(y + δen, t)− f(y, t)

]
(3.17)

where:

• δ is the finite difference increment, typically chosen as δ = 10−8.

• ei is the i-th canonical unit vector in Rn.

• f(y, t) is the right-hand side of the ODE system.

The Newton-Raphson method linearizes F (y) around the current guess y
(i)
k+1:

F (y
(i)
k+1 + dy(i)) ≈ F (y

(i)
k+1) + JF (y

(i)
k+1)dy

(i) (3.18)

and then solves for dy(i) such that the linearised residual vanishes:

JF (y
(i)
k+1) · dy

(i) + F (y
(i)
k+1) = 0 (3.19)
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Algorithm: Newton-Raphson Method: The Newton-Raphson method is used to find
yk+1 that solves 3.15 iteratively. Starting from the initial guess y

(0)
k+1 = yk, the following

steps are performed at each iteration i:

1. Evaluate the residual:
F (y

(i)
k+1)

2. Compute the Jacobian matrix:

JF (y
(i)
k+1) as in 3.16

3.

Problem 3.3. Solve the linear system for the correction dy(i):

JF (y
(i)
k+1) · dy

(i) = −F (y
(i)
k+1) (3.20)

4. Update the approximation:

y
(i+1)
k+1 = y

(i)
k+1 + dy(i) (3.21)

5. Check for convergence: The iteration stops if:

∥dy(i)∥ ≤ atol + rtol · ∥y(i+1)
k+1 ∥, (3.22)

and optionally:
∥F (y

(i+1)
k+1 )∥ ≤ atol (3.23)

Purpose of dy(i): Finding dy(i) is the core of the Newton-Raphson process. It gives both:

• The direction in which to move to reduce the residual F (yk+1).

• The magnitude of the step we should take from the current approximation.

3.2.8 Adaptive Time Stepping

The local truncation error (LTE) is estimated as described in 2.8:

LTE ≈ h2
k(hk−1 + hk) · y(3)k+1,

where y
(3)
k+1 is an approximation of the third derivative of y as described in 2.9.

The new time step hk+1 is calculated by:

hk+1 = σ · hk, (3.24)

with the scaling factor σ given by:

σ =

Å√
n ·
∣∣∣∣EWT

LTE

∣∣∣∣ã1/3 , (3.25)

where EWT = rtol · ∥y∥+ atol is the error weight tolerance.
The value of hk+1 is limited between user-defined minimum and maximum values, hmin

and hmax, and adjusted to align with output times.
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3.2.9 Initialization with BDF1

The BDF2 method is a two-step method. To compute the solution at time tk+1, it requires
the two previous solutions: yk−1 and yk. Knowing the initial condition y(0) = y0, the first
step is computed with the backward Euler method (BDF1):

y1 − y0
h0

= f(y1, t1) (3.26)

or equivalently,
y1 − y0 − h0f(y1, t1) = 0 (3.27)

This equation is solved via Newton-Raphson iteration, using the same procedure described
above.

1. Define the residual:
F (y

(i)
1 ) = y

(i)
1 − y0 − h0f(y

(i)
1 , t1). (3.28)

2. Compute the Jacobian:
JF (y

(i)
1 ) = I − h0Jf (y

(i)
1 , t1), (3.29)

where Jf (y
(i)
1 , t1) is the Jacobian matrix of f with respect to y.

3. Solve the linear system:
JF (y

(i)
1 ) · dy(i) = −F (y

(i)
1 ). (3.30)

4. Update the solution:
y
(i+1)
1 = y

(i)
1 + dy(i). (3.31)

5. Repeat until convergence:

∥dy(i)∥ ≤ atol + rtol · ∥y(i+1)
1 ∥. (3.32)

4 Coupling with a elasto-plastic hysteresis model

4.1 Tension model

The challenge of this work lies in the tension term, expressed as a function of the strain.
The materials used for the mooring lines present hysteresis, i.e., they are viscoelastic:
the relationship between the tension and the strain is path-dependent, meaning that the
loading and unloading cycles do not follow the same trajectory (Fig. 2). This results
in energy dissipation, which must be accounted for in the modelling of the system. The
tension in the mooring lines depends not only on the instantaneous strain but also on the
strain history, adding complexity to the problem.
To model the viscoelastic behavior of materials with memory, Banks et al. [18] proposed a
constitutive law based on the Boltzmann superposition principle. This approach accounts
for how the stress at a given time depends not only on the current strain but also on its
entire history.
When modelling, time is discretized as 0 ≤ t0 < t1 < . . . < tN , and at each time point,
the strain ε(t) and its rate ε̇(t) are known or computed. The viscoelastic response is
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Figure 2: A schematic stress-strain curve of a viscoelastic material, showing hysteresis: dissipation
of energy.

described by nonlinear functions ge(ε) and gv(ε, ε̇), representing the instantaneous elastic
and rate-dependent viscoelastic contributions, respectively.
For a single step change in strain applied at time t0, the stress response over the time
interval t0 < t < t1 is given by

σ(t) = Y (t− t0) · gv(ε(t0), ε̇(t0)),

where Y (t − t0) is the relaxation function (or memory kernel), characterizing how the
material’s memory fades over time.
When additional strain changes occur at subsequent times, the Boltzmann Superposition
Principle states that the total stress is the sum of the effects of all previous strain incre-
ments, weighted by the relaxation kernel. In the continuous case, this principle leads to
the following integral form of the constitutive law:

σ(t) = ge(ε(t)) +

∫ t

0

Y (t− s)
d

ds
gv(ε(s), ε̇(s)), ds (4.1)

In this equation:

• ge(ε(t)) models the instantaneous elastic response.

• The convolution integral accounts for the history-dependent viscoelastic stress, where
the derivative d

ds
gv(ε(s), ε̇(s)) represents the rate at which the viscoelastic contribu-

tion evolves with time.

• Y (t − s) is the memory kernel or relaxation function, describing how past strain
events influence the current stress.

This formulation captures the nonlinear nature of the material response, since both ge and
gv can be nonlinear functions of strain and strain rate.
Furthermore, Banks et al. proposed the following viscoelastic function, where the loading
and unloading responses are different:

gv(ε(s), ε̇(s)) =

®
gvi(ε(s)) if ε̇(s) > 0

gvd(ε(s)) if ε̇(s) < 0
(4.2)
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These material´s memory significantly depends on a history of finite length. If we define
the turning points ti, i = 0, ...,M as the points for which ε̇ = 0, and assume tk < t < tk+1

for 0 ≤ k < M . Since gv need not be continuous, derivatives must be interpreted in the
sense of distributions.
Integration by parts is done, taking

u = Y (t− s) =⇒ du = −Ẏ (t− s) and dv =
d

ds
gv(ε(s))ds =⇒ v = gv(ε(s))ds

the viscoelastic term in Eq. 4.1 results in∫ t

0

Y (t− s)
d

ds
gv(ε(s), ε̇(s))ds = Y (t− s)gv(ε(s), ε̇(s))

∣∣∣∣∣
t

0

−
∫ t

0

−Ẏ (t− s)gv(ε(s), ε̇(s))ds =

Y (0)gv(ε(t), ε̇(t))− Y (t)gvi(ε(0)) +
M∑
k=0

Y (t− tk)(−1)k [gvi(ε(tk))− gvd(ε(tk))] +∫ t

0

Ẏ (t− s)gv(ε(s), ε̇(s))ds

and so Eq. 4.1 results in

T (t)

A
= σ(t) = ge(ε(t)) +

∫ t

0

Ẏ (t− s)gv(ε(s), ε̇(s))ds

+ Y (0)gv(ε(t), ε̇(t))− Y (t)gvi(ε(0))

+
M∑
k=0

Y (t− tk)(−1)k[gvi(ε(tk))− gvd(ε(tk))]

(4.3)

where A is the cross-sectional area.
Furthermore, the following functions were proposed:
• A third degree polynomial for the elastic component,

ge(ε(t)) =
3∑

i=1

Eiε
i(s) (4.4)

• A third degree polynomial for the viscoelastic component,

gvi(ε(s)) =
3∑

i=1

aiε
i(s) (4.5)

gvd(ε(s)) =
3∑

i=1

biε
i(s) (4.6)

• A decay of exponential type for the memory kernel,

Y (t) = e−Ct (4.7)

The aim is to couple this hysteresis model for the simulation of mooring lines in floating
marine structures.
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4.2 Implementation considerations

The development and implementation of the elasto-plastic mooring line simulation model
presented several challenges that had to be carefully addressed to ensure numerical stability,
accuracy, and efficiency. The primary difficulties encountered during this work include
numerical instabilities at zero crossing times, the need for an additional damping term,
issues with buffer management and convergence, precision problems in strain rate detection,
and computational efficiency concerns. This subsection provides a detailed discussion of
each difficulty and the strategies employed to overcome them.

1. Numerical instability at the zero crossing times. Since initial conditions are
not perfect, small vibrations occur when going from the static initial conditions to
the dynamic simulation. Because of this, during the early stages of the simulation,
numerical instabilities were observed when computing the zero crossing times ti,
where ε̇ = 0. These instabilities caused oscillations in the computed tension, leading
to physically unrealistic results.
To mitigate this issue, a smoothing function was introduced at the beginning of the
simulation. By gradually increasing the applied forces rather than applying them
instantaneously, the model could stabilize the strain rate evolution and reduce sudden
jumps in the numerical solution.

2. Implementation of a Kelvin-Voigt damping term for stability.
To improve numerical stability, a Kelvin-Voigt damping term of the form βε was
added to the constitutive law. This term acts as a dissipative force that smooths
out high-frequency oscillations, preventing excessive strain rate fluctuations. The
coefficient β needs to be carefully calibrated to provide damping without excessively
altering the physical behavior of the system. This adjustment proved particularly
useful at the start of the simulation, where abrupt transitions often caused numerical
problems.

3. Buffer management and convergence issues.
The simulation required a buffer system to store past and present steps, which is
essential for computing the Jacobian matrix in the time integration scheme. However,
an unexpected issue arose when the buffer continued calling past values even after
numerical convergence had been achieved. This resulted in persistent fluctuations in
the computed tension, making it difficult to determine a stopping criterion.
To address this, the algorithm was modified by quitting instants after or equal to the
current function call. It is called with previous steps because when convergence is not
achieved, the time step is repeated with a smaller dt. This way, once convergence was
achieved, the buffer was prevented from making redundant calls, ensuring a smooth
transition to the next time step.

4. Precision issues in detecting strain rate sign changes.
One of the most critical aspects of modeling the hysteresis effect is detecting changes
in the strain rate ε̇, as these transitions define the turning points ti in the material’s
response. Initial implementations showed inconsistencies when determining these
sign changes, particularly when the strain rate approached zero but fluctuated due
to numerical round-off errors.
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To solve this, a tolerance threshold tolzero = 1 × e − 9 was introduced. Instead of
strictly detecting ε̇ = 0, the algorithm now considers the small interval around zero
−tolzero ≤ ε̇ ≤ tolzero as a valid transition region. This adjustment significantly
improved the robustness of the detection algorithm, ensuring that switching between
loading and unloading regimes was handled correctly.

5. Computational efficiency and cost considerations.
Given the complexity of the finite element formulation, the simulation of long-
duration mooring line behavior required significant computational resources. The
adoption of a Boltzmann-type stress-strain relation involves time-history dependent
terms. As a result, at each timestep, the numerical scheme must evaluate integral
expressions that depend on past strain history, and solve a nonlinear system of equa-
tions due to the elasto-plastic constitutive law. These computations increase the
CPU time per timestep, particularly in long simulations where memory access and
accumulation of past data (if not optimized) may create bottlenecks. Since BDF2 is
an implicit method, each time step also requires a Newton–Raphson solver, involving
Jacobian evaluations or approximations, further adding to the cost.
To improve efficiency, the OASIS model required significant extension to couple the
new tension law, such as designing new class attributes to represent the evolving
internal state (e.g., strain memory) and force calculations. Proper memory man-
agement and efficiency were essential due to the long-term simulation goals (tens of
thousands of time steps with fine spatial resolution).

Overcoming these challenges was essential for achieving a stable, accurate, and computa-
tionally efficient simulation of mooring lines with elasto-plastic behavior. The combination
of numerical damping, improved strain rate detection, buffer management, and computa-
tional optimizations ensured that the model could reliably capture the mechanical response
of mooring lines under realistic conditions.

5 Verification and validation

5.1 Verification with Banks

In order to verify the implementation of the elasto-plastic tension model in OASIS, the
experiments made by Banks et al. [18] for the uniaxial tension of a viscoelastic material
with memory effects have been reproduced. These tests consist of simulating the dynamic
response of a discrete chain under uniaxial cyclic loading, where the stress-strain relation-
ship exhibits hysteresis due to nonlinear viscoelastic behavior. The same experiment has
been previously analyzed and discussed in detail in the author’s Final Degree’s Thesis in
Physics [19], to which the reader is referred for the full derivation of the model parameters
and the physical interpretation of the results.

In order to discretize this problem, a simple three-node mooring line was simulated, sub-
jected to a displacement z-axis displacement at one end while the opposite end remains
fixed. This setup allows isolating the material’s intrinsic response from external hydrody-
namic or geometric effects. The internal tension is governed by the nonlinear stress-strain
law proposed by Banks 4.3. The material parameters used in these tests were taken from
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[18], ensuring consistency. These include the coefficients of the third-degree polynomials
defining ge, gvi , and gvd, and the exponential decay parameter of the kernel Y (t).

Figure 3 shows the simulated stress-strain curves obtained from the implemented model
for several loading-unloading cycles. The typical hysteresis loop associated with energy
dissipation is clearly observed, and the qualitative features of the response closely match
those reported by Banks et al. The correct reproduction of turning points and the asym-
metry between loading and unloading phases confirms that the nonlinear memory effects
have been correctly incorporated.

Figure 3: Comparison between the stress-strain curves obtained with the implemented model in
OASIS (solid blue lines) and the reference signals from Banks et al. (dashed black lines). The
left plot corresponds to Case Type I Cbh, while the right plot corresponds to Case Type II Cbm.

5.2 Validation: catenary

The catenary validation serves as a qualitative evaluation of the model’s stability and
physical plausibility in a realistic scenario, where quantitative experimental data were un-
available.
The simulation aims to reproduce the behavior of a chain attached to the seabed. The
objective is to validate the mechanical accuracy of the implemented finite element model
under static equilibrium conditions. To achieve this, a composite mooring line is con-
structed, consisting of two distinct materials:

• 4 meters of steel chain, representing a heavy and relatively inextensible segment,
typically used near the anchor to ensure that part of the line remains on the seabed
under low tension.

• 1 meter of polymer rope, which is lighter and more elastic, commonly used for its
ability to absorb dynamic loads near the floating structure (e.g., buoy or vessel).
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The combined 5-meter line is fixed at one end (representing the seabed anchor) and held
at an elevated position at the other end (representing the fairlead or connection to the
floating structure). In the simulation, the external force is applied along the horizontal
axis (x direction) at the fairlead point. This simulates a scenario where horizontal tension
is induced by the floating body due to current, wind, or wave forces. Gravity and buoyancy
effects are included in the vertical direction (z-axis), ensuring that the line naturally adopts
a catenary shape, the classic equilibrium curve under gravity.
In this validation test, two different approaches have been tested for the polymer rope:

• Elastic model (from 4.4): This linear elastic approximation simplifies the tension-
strain relationship and assumes no energy dissipation during loading and unloading.

• Hysteresis model: This approach incorporates nonlinear elasto-plastic behavior with
memory effects, accounting for energy dissipation during cyclic loading, as observed
in real mooring chains.

The parameters used correspond to those of Cbh, which can be found in [18]. They have
been increased by a factor of e3 so that the rigidity was realistic, making physical sense.

Figure 4 shows both the tension at the Fairlead and the whole line position. The simulations
demonstrate how different material behaviors affect the overall line configuration.
Elastic case (orange):

• For the same displacement, the line with hysteresis dissipates more energy because
the area inside the curve is larger. The elastic line also presents ”hysteresis” because
energy is dissipated by hydrodynamic drag, the friction of the water with the chain,
even though there is no elastic hysteresis.

• It follows a shape close to the ideal catenary, expected from a line that deforms
elastically and conservatively.

Hysteresis case (blue):

• The mooring line exhibits more pronounced curvature and sag.

• The hysteresis model shows greater tension under the same loading.

• The effect of energy dissipation and material memory can be appreciated since as the
cycles pass, the curve stabilizes. This simulates how real mooring systems deform
under cyclic loads (due to wave or platform motion).

For the simulation of the linear model, 720 thousand total function calls were made, as
well as 257 total Jacobian calls. And for the simulation of the hysteresis model, 2.9 mil-
lion total function calls were made (four times more), as well as 5930 total Jacobian calls
(twenty-three times more). The computational cost increases not only because of the mem-
ory usage, but also because a shorter time step is required for the hysteresis model to be
stable.

While the results align with theoretical expectations (e.g., catenary geometry, hysteresis
loops), the lack of empirical data prevents quantitative validation (e.g., exact tension values
or displacement magnitudes). However, the model’s stability under dynamic loads and its
consistency with mechanical principles support its reliability for practical applications.
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(a) (b)

(c) Initial line position, static equilibrium, for
the hysteresis model.

(d) Line position under applied circular move-
ment at the fairlead at t = 113.20s for the hys-
teresis model

Figure 4: The simulations replicate a catenary setup, where a composite mooring line composed
of a heavy, inextensible chain segment and a lighter, more elastic polymer rope is suspended
between a fixed anchor and an elevated fairlead point.

6 Conclusion and future work

This project has developed a mathematical and computational model for the simulation of
mooring lines subjected to dynamic marine conditions, with a particular focus on elasto-
plastic behavior. By formulating the problem through nonlinear partial differential equa-
tions (PDEs) and employing the Finite Element Method (FEM), the study bridges theo-
retical mathematical principles with real-world engineering applications. The inclusion of
adaptive BDF2 time integration has allowed for the handling of stiff systems while main-
taining numerical stability and efficiency.

The main achievement of this work lies in the successful implementation of a new ten-
sion model that incorporates hysteresis-based elasto-plastic behavior. This allowed the
simulation to realistically capture material memory and energy dissipation effects, which
are fundamental to accurately represent the dynamics of marine mooring lines. The in-
tegration of this model into the OASIS model had significant technical challenges, such
as numerical instabilities, numerical integration and coupling the non-linear tension term,
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but was ultimately achieved with promising results in terms of accuracy. A critical part
of the validation process was the comparison between the elastic, linear, model and the
elasto-plastic, non-linear, hysteresis model. This comparison demonstrated that while the
constant stiffness model produces a more rigid and idealized configuration, the hysteresis
model is a more physically accurate that reflects realistic behavior under cyclic loading.
This result not only validates the model’s mechanical consistency but also confirms that
the new implementation significantly enhances the simulation’s fidelity to real marine en-
vironments.

This project highlights the importance of Sobolev spaces and weak formulations in the
numerical treatment of PDEs, especially when dealing with nonlinearity and irregular
boundary conditions. The use of Newton-Raphson methods for both static and dynamic
systems, along with adaptive step size control, proved essential for the stability and con-
vergence of the simulations.

Future research could focus on:

• Enhancing the numerical stability of the current model in order to reduce computa-
tional cost without compromising accuracy.

• Another important direction is the incorporation of creep effects into the model,
which account for permanent damages suffered in the material. This phenomena
is especially relevant in cables subjected to sustained loads or high temperatures.
Adding a creep term to the model would introduce more non-linear formulation. [20]

• Additionally, experimental validation of the proposed catenary models would signif-
icantly strengthen the credibility of the computational approach. Controlled labora-
tory experiments or scaled physical models could be designed to compare displace-
ment, tension, and dynamic responses with those predicted by the simulation.

• Furthermore, future extensions could also include coupling the catenary dynamics
with environmental interactions, such as wind loads or water currents, and exploring
their effects on fatigue and vibration.

In summary, this project demonstrates how rigorous mathematical theory can be trans-
lated into practical computational tools with direct relevance to engineering. The results
obtained are not only promising for the simulation of mooring systems but also serve as
a foundation for future research in applied mathematics, numerical analysis, and marine
engineering.
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A Appendix

A Appendix

• Oasis is a code implemented in C++ with approximately 38,000 lines of code.

• For this work, the code was compiled and executed in a Linux environment on the
IHCantabria cluster.

• Its versions are managed using Git with GitHub. For the development of this project,
work was done on a specific branch.

• The generation of inputs and the graphical representation of outputs were performed
using Python scripts developed by the author.

• The implementation of the elastoplasticity model in Oasis involved the addition of
approximately 600 new lines of code by the author, including reading new input data
and calculating the elasto-plastic stress term.This implementation was carried out
by creating new methods and modifying existing ones in pre-existing classes, due to
the object-oriented nature of C++ and OASIS. Additionally, memory was managed
using pointers, and new attributes were declared within the same classes.
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