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 A B S T R A C T

Hyperspectral imaging (HSI) is a powerful analytical tool with broad applicability across diverse fields, 
including agriculture, biomedicine, and industry. This article introduces a new custom hyperspectral device 
that operates in the SWIR (Short-Wave InfraRed) range (900-1700 nm). Based on a previously tested design 
featuring a rotating mirror, this device opens new possibilities for the physicochemical characterization of 
tissues and materials. This equipment provides up to 5 nm spectral resolution and 176.8 × 111.36 μm2 spatial 
resolution, without moving the equipment or the sample. Key features of the device are detailed, and a 
dual validation method is presented: using reference spectra to their concentrations and using reference 
concentrations to estimate their spectra. Validation is carried out through the quantitative analysis of liquid 
mixtures and the qualitative analysis of biological specimens. The proposed HSI system extends the capabilities 
of the technique into the SWIR range, offering strong potential for its application in diverse biomedical and 
industrial scenarios.
1. Introduction

Hyperspectral imaging (HSI) is a chemical imaging tool able to 
characterize materials on a large number of channels, or wavelengths, 
within specific spectral ranges. Particularly, the Short-Wave Infrared 
(SWIR) spectral range, beyond the visible spectrum, reveals unique 
fingerprints of various molecules based on their vibrational properties, 
favoring non-destructive and label-free analysis, and providing valu-
able insights into the chemical composition of diverse materials and 
biological samples [1,2].

The applications of HSI-SWIR systems are varied and noteworthy. 
It has been applied to alloy inspection of fine metal particles from 
vehicle recycling and contaminant detection [3]. In the food industry, 
the SWIR range is useful for quality assessment of products like meat, 
since protein and fat peaks are detected in this range [4]. Additionally, 
HSI-SWIR is useful in detecting false smut disease in rice [5], in 
assessing seed viability [6–8], and in discriminating between abiotic 
and biotic drought stress caused by nematodes in tomato plants [9]. 
Furthermore, this spectral range is employed in selecting fertilized 
eggs and removing non-fertilized or poorly fertilized ones [10], as 
well as in the rapid, non-destructive detection of melamine in milk 
powder [11]. Other applications of HSI-SWIR include the evaluation of 
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paintings to reveal underdrawings, hidden details, and characterizing 
artists’ materials [12], and biomedical applications such as diagnosing 
skin allergies, especially in individuals with dark skin, where the SWIR 
range is particularly effective since it bypasses the coloration caused by 
melanin [13,14].

Spectral imaging systems are classified based on the number of 
bands they capture: hyperspectral imaging systems contain hundreds of 
bands, and multispectral imaging (MSI) systems contain tens of bands.

Several authors have provided detailed descriptions of the con-
struction of spectral devices in the SWIR range. For example, Kutteruf 
et al. [15] present a nine-channel SWIR system with a filter array on 
the sensor, achieving a resolution of 40 nm. Steiner et al. [16] describe 
an MSI-SWIR system for facial recognition using a ring of LEDs at 
four different wavelengths, with spectral resolutions between 65 and 
130 nm.

Some hyperspectral imaging systems are based on wavelength scan-
ning by using tunable sources [17], or liquid crystal filters on the sensor 
or on a white light source. In particular, Wang et al. developed a SWIR 
hyperspectral wavelength-scanning system with liquid crystal tunable 
filters achieving spectral resolutions ranging from 10 to 32 nm, depend-
ing on the scanned wavelength [18]. Pushbroom systems, which are 
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Table 1
Summary of features for some SWIR systems. The comparison includes spectral 
resolution (SR), number of spectral bands (SB), spatial resolution (SpR), and potential 
portability (Port.).
 System SR [nm] SB SpR [μm] Port.  
 Kutteruf et al. [15] 40 9 >1000 High  
 Steiner et al. [16] 65–130 4 >1000 High  
 Wang et al. [18] 10–32 23–75 25 Low  
 Lee et al. [11] 5.9 287 400 × 100 Low  
 Fabelo et al. [19] 5 172 128.7 × 480 Medium 

an alternative to wavelength scanning systems, use diffractive optics 
to decompose an imaging line into its spectrum with high spectral 
resolution. Pushbroom-based configurations achieve a large number of 
bands and high resolution across a wide spectral range. These systems 
generally need to move the sample, or the system itself, using motorized 
stages to scan the second spatial dimension. In Lee et al.’s work [11], 
they use an HSI-SWIR system with a platform that moves the sample, 
offering a spectral resolution of 5.9 nm within the range of 1000 to 
2500 nm.

In some applications, like in the biomedical ones that take place 
in the operating room, it is not possible to move the patient, and 
the only suitable option is to move the imaging system. In the work 
of Fabelo et al. [19], where they use several HSI systems during 
surgical interventions, a scanning platform moves the cameras to obtain 
two-dimensional images with a spectral resolution of 5 nm over 172 
bands.

Nevertheless, operating theatres are often cramped and lack the 
space for bulky setups. As an alternative, snapshot systems can capture 
a spectral image without the need for any type of scanning by using 
color filter arrays on the sensor. However, there is a tradeoff between 
the number of filters and the spatial resolution: as the number of filters 
increases, the spatial resolution decreases accordingly [20].

Another relevant characteristic for these systems is their compact 
form factor. Tran and Fei [21] define a compact HSI as one that 
weighs no more than 5 kg and does not require cables or additional 
components. An ultra-compact system is defined as one that does not 
exceed 500 g . The advantage of a compact or ultra-compact system is 
that, in addition to leaving space for other instruments, it offers simple 
setup and operation, which is crucial for many end-user applications.

Portability is defined as the system’s ability to be moved. Portability 
is considered low when the system is anchored to a fixed structure, 
requiring all samples to be placed in a specific location. Portability is 
medium when the system is mounted on a movable structure, allowing 
better adaptability to different situations. Finally, portability is consid-
ered high when the system can potentially be mounted on a tripod 
or even handheld without the need for additional structures. Table  1 
summarizes the characteristics of some of the systems found in the 
literature.

In this work, we present an HSI system with medium portability that 
utilizes a rotating mirror and operates in the SWIR range. Based on our 
previous work [22], this rotating mirror design, originally developed 
for an HSI system in the visible-near-infrared (VisNIR) range, has now 
been completely adapted and characterized for the new spectral range. 
The main advantage is that, by using a rotating mirror, there is no need 
to move the system nor the sample, while keeping a small footprint. 
The proposed system offers high spectral and spatial resolution over 
the SWIR range (900–1700 nm), with over 200 spectral bands. The ob-
jective is to characterize its spatial and spectral resolution and validate 
its use with liquid phantoms and biological samples, demonstrating its 
potential for biomedical applications.

2. Materials and methods

This section outlines the equipment, the liquid and biological phan-
tom preparation, and the developed methodologies to ensure the effec-
tive operation of the imaging system.
2 
Fig. 1. Proposed HSI-SWIR system: (a) photograph of the setup and light source; (b) 
schematic of the setup. The system contains a camera, diffractive optics, a macro lens 
and an actuator module with a rotating mirror. An onboard computer controls each 
subsystem to configure and synchronize the measurements and to store the data.

2.1. Imaging system setup

The hyperspectral imaging system utilizes a scanning camera fea-
turing a rotating mirror. Fig.  1 shows a photograph and a diagram of 
its components, detailed below:
Imaging subsystem. The camera, a Xeva 1.7–320 (Xenics, Belgium), is 
equipped with an InGaAs sensor that provides a resolution of 320 × 256 
pixels between 900 nm and 1700 nm and 12-bit depth. It is coupled 
with a diffractive element (ImSpector N17E, Specim, Spectral Imaging 
Ltd., Finland) that provides a theoretical spectral resolution of 5 nm, 
and a Navitar lens (Navitar Inc., IL, USA) with 18 to 108 mm focal 
length.

Actuator subsystem. Features a servomotor that drives the rotating 
mirror. The setup includes a DRV 8825 motor driver (Texas Instru-
ments Inc., TX, USA), a NEMA 17 stepper motor (CUI Devices, Lake 
Oswego, OR, USA), and a three-stage gear. An Arduino Uno serves 
as the microcontroller, orchestrating the mirror positioning via USB 
commands from the control subsystem. This subsystem divides the 
360◦ rotation of the mirror into 19200 steps (53 steps per degree). 
The system is configured to work within the angular range from 22◦
to 67◦, corresponding to steps between 1173 and 3573, where the 
characterization procedure has shown that field of view linearity is 
achieved, [22].
Control subsystem. Managed by a barebone computer (MSI Cubi 𝑁
8GL-001BEU-BN4000XX, Micro-Star International, Co., Ltd, New Taipei 
City, Taiwan) with an Intel Celeron N4000 processor, 8 GB of memory, 
and 128 GB internal storage.
Software. The control software running on a custom Linux distribution 
is designed to optimize measurement control and data storage. It 
supports remote connectivity for user terminals and integration with 
applications based on wireless devices.

During operation, the control subsystem communicates with both 
the camera and the actuator subsystem. Upon receiving a command, 
the Arduino adjusts the mirror to a specified angle. The camera then 
captures a frame to generate an image represented as 𝑋 × 𝜆, where 𝑋
is the first spatial coordinate and 𝜆 is the spectral coordinate. The data 
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is temporarily stored in memory until it is transferred to a high-speed 
NVMe solid state drive, freeing up memory for continuous measure-
ments. The spectral hypercube is obtained by rotating the mirror over 
the observation scene to add the second spatial coordinate 𝑌 , thus 
forming the final hyperspectral cube 𝑋 × 𝑌 × 𝜆, with a maximum 
resolution of 320x2400x232.

2.2. Optical measurements

The diffuse reflectance, which represents the percentage of light dif-
fusely reflected by a sample, is measured by the HSI-SWIR system. Two 
distinct measurements are required to obtain the diffuse reflectance: 
one to acquire the radiation coming from the sample itself, and another 
of the radiation coming from a reference standard. This procedure 
is necessary to decouple the system’s response and the light source’s 
response from the samples’ response. The dark current noise of the 
system must also be measured [23,24]. The exposure time set for the 
sample and for the reference measurements does not need to be the 
same, thus, the diffuse reflectance 𝑅 is defined as: 

𝑅 =
𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

⋅
𝑡𝐼0
𝑡𝐼

, (1)

where 𝐼 is the intensity of the sample, 𝑏𝐼  is the dark current noise of 
the sample’s measurement, 𝐼0 is the intensity of the reference, 𝑏𝐼0  is the 
dark current noise of the reference’s measurement, 𝑡𝐼  is the exposure 
time of the sample, and 𝑡𝐼0  is the exposure time of the reference. Notice 
that 𝑅 will take values from 0 to 1 due 𝐼0∕𝑡𝐼0 > 𝐼∕𝑡𝐼  and 𝑏𝐼∕𝑡𝐼 ≃ 𝑏𝐼0∕𝑡𝐼0 .

In the case of non-turbid samples (without scattering), the Beer–
Lambert law is used to relate diffuse reflectance to the absorption 
coefficient of the material [25]. The absorption coefficient models the 
loss of light power as it propagates through a medium as 
𝐼(𝑧) = 𝐼0𝑒

−𝜇𝑎𝑧, (2)

where 𝜇𝑎 is the absorption coefficient of the medium, 𝑧 is the optical 
path length, 𝐼0 is the illumination intensity, and 𝐼(𝑧) is the intensity 
after the light has passed through the optical path 𝑧. In this case, the 
diffuse reflectance from Eq.  (1) is related to the Beer–Lambert law Eq. 
(2) as follows: 

𝜇𝑎 = −1
𝑧
𝑙𝑛(𝑅) = −1

𝑧
𝑙𝑛

(

𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

⋅
𝑡𝐼0
𝑡𝐼

)

. (3)

The system’s dark current noise is the minimum intensity that can 
be measured (in pixel counts). The dark current noise in the light source 
measurement may not coincide with that of the sample measurement, 
as it depends on the exposure time. The minimum reflectance that the 
equipment can measure, with 𝑡𝐼0 > 0, is defined as: 

𝑅min = lim
𝐼→𝑏𝐼

(

𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

⋅
𝑡𝐼0
𝑡𝐼

)

. (4)

On the other hand, the maximum reflectance that can be measured 
corresponds to those pixel counts near the saturation point of the 
sample, defined as 

𝑅max = lim
𝐼→2𝑁−1

(

𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

⋅
𝑡𝐼0
𝑡𝐼

)

, (5)

where 𝑁 is the bit depth of the sensor, and therefore 2𝑁 − 1 is the 
maximum count level the system can provide. In this case, the camera 
is 12 bits, so the maximum count is 4095.

However, in practice, neither the sample measurements nor the 
reference measurements will reach levels close to saturation. This is 
because the system works with the aperture nearly closed to ensure the 
image is well-focused, and the exposure time cannot exceed 500 ms due 
to camera limitations. Under optimal lighting conditions, the reference 
measurements reach about 50% of the camera’s dynamic range with 
the nearly closed aperture settings.
3 
Fig. 2. Optical properties of ethanol and water: (a) absorption coefficient; (b) refractive 
index; (c) Fresnel’s reflection as a function of the angle of incidence [26–29].

2.3. Liquid phantom design

To assess the accuracy of the HSI-SWIR system, a semi-transparent 
liquid phantom with varying concentrations of water and ethanol was 
prepared. This phantom appears transparent under visible light, yet is 
distinctly translucent in the SWIR range.

It is essential to consider the spectral dependence of 𝜇𝑎 for the 
individual chemical components used for the preparation of liquid 
phantoms. These differences, which are detectable within the SWIR 
spectral range for the water-ethanol phantoms, will modify the total 
absorption of the mixture. Fig.  2 displays optical properties in the SWIR 
range of water and ethanol: Fig.  2(a) shows the absorption coefficient 
of ethanol and water as published in literature; Fig.  2(b) depicts their 
refractive index and Fig.  2(c) displays the Fresnel’s reflection as a 
function of the angle of incidence [26–29].

The exposure time restricts the maximum and minimum measurable 
reflectance (Eq.  (5), Eq.  (4)), and thus, the feasible depth of these 
phantoms. Deep phantoms would result in high absorption, thus re-
ducing system sensitivity, while shallow phantoms in combination with 
lower absorption ranges would prevent the system from quantifying it 
effectively. The maximum and minimum optical path can be quantified 
as 
⎧

⎪

⎨

⎪

⎩

𝑧max = − 1
𝜇𝑎,max

ln(𝑅min),

𝑧min = − 1
𝜇𝑎,min

ln(𝑅max),
(6)

where 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 represent the maximum and minimum optical 
paths that the equipment can measure, 𝜇𝑎,𝑚𝑎𝑥 is the maximum absorp-
tion coefficient and 𝜇𝑎,𝑚𝑖𝑛 is the minimum one [30].

Due to the refractive index change between the air and the liquid 
phantom, two effects occur when a light ray strikes the surface at a 
specific angle: Fresnel’s reflection and refraction. The latter affects the 
optical path length. Fig.  3 illustrates the path of a light ray striking the 
phantom surface at an angle 𝜃1. In Fig.  3, 𝑛1 is the refractive index of 
air, 𝑛2 is that of the medium, 𝜃1 is the angle of incidence of a light 
ray, 𝜃2 is the refracted angle, 𝑧𝑖 is the path length of light between 
the entrance of the medium and the bottom, 𝑧𝑟 is the path length of 
the light ray collected by the sensor from the bottom to the exit of the 
medium, 𝑋𝑖 is the point of incidence of the light, and 𝑋𝑟 is the point 
where the light exits the medium. The geometrical path 𝑧𝑔 , knowing 
that 𝑧𝑔 = 𝑧𝑖 + 𝑧𝑟 and that 𝑧𝑟 = ℎ, is then calculated as follows: 

𝑧𝑔(𝜃1, 𝑛1, 𝑛2) = ℎ
⎛

⎜

⎜

√

√

√

√

−𝑛22
𝑛2 sin2(𝜃 ) − 𝑛2

+ 1
⎞

⎟

⎟

. (7)

⎝ 1 1 2 ⎠
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Fig. 3. Diagram of the optical path on the sample, given an angle of incidence of the 
light source and some refractive indices and a surface that causes a diffuse reflection, 
the optical path to follow is one, assuming that the normal ray to the surface is collected 
by the image system.

Table 2
Absorption coefficient (𝜇𝑎) (900 nm - 1700 nm), refractive index (n) [31], limits of 
optical path (Z) and height limits (h) for an angle of incidence 𝜃1 = 𝜋∕4 and 𝐼0 of 
2048 counts. 
 𝝁𝒂[𝝀] (𝐜𝐦−𝟏) 𝒏[𝝀] 𝒁[𝝀]  (mm) 𝒉[𝝀]  (mm)  
 𝐻2𝑂 0.10- 21.58 1.31–1.32 0.01–1.74 0.003-0.6  
 EtOH 0.06–6.51 0.02–6.74 1.34–1.35 0.01-2.28  

Since the first medium is air, we assume 𝑛1 = 1. Therefore, 𝑧𝑔
becomes a function only of 𝜃1 and 𝑛2. The geometrical path can also 
be expressed as the sum of the path traveled by a light ray when it 
strikes the surface perpendicularly and an additional increment caused 
by the actual angle of incidence. The path traveled by the light when 
the angle is perpendicular to the surface is twice the height of the 
phantom, 𝑧𝑔(0, 𝑛2) = 2ℎ, so the geometrical path can be expressed as: 

𝑧𝑔(𝜃1, 𝑛2) = 𝑧𝑔(0) + 𝛥𝑧𝑔(𝜃1, 𝑛2) = 2ℎ + 𝛥𝑧𝑔(𝜃1, 𝑛2), (8)

where 𝛥𝑧𝑔 is defined as: 

𝛥𝑧𝑔(𝜃1, 𝑛2) = ℎ
⎛

⎜

⎜

⎝

√

√

√

√

−𝑛22
sin2(𝜃1) − 𝑛22

− 1
⎞

⎟

⎟

⎠

. (9)

Thus, the optical path can be expressed as: 
𝑧(𝜃1, 𝑛2) = 𝑛2𝑧𝑔(𝜃1, 𝑛2) = 𝑛2(2ℎ + 𝛥𝑧𝑔(𝜃1, 𝑛2)). (10)

Given the optical path and the optical properties of water and 
ethanol, displayed in Fig.  2, Table  2 includes the optical path limits 
and, consequently, the limiting heights of the phantom that the system 
can measure, considering a noise level of approximately 50 counts out 
of 4095, an incidence angle of 45◦, a reference level 𝐼0 of 2048 counts 
out of 4095, and an exposure time of 500 ms.

For their construction, the custom-designed 3D printed wells were 
used. The wells were printed in polylactide plastic (PLA) with a Prusa 
P3Steel 3D printer. These wells were coated with matte black Pintyplus 
paint (NOVASOL SPRAY, S.A., Spain), with their bases finished in matte 
white to enhance the diffuse reflectance measurement.

Due to the technical limitations of the employed printer, the final 
height of the wells is 1 mm with a diameter of 30 mm. Although the 
diameter does not influence the measurements, it allows us to take 
enough points in the image, obtaining a large number of spectra (> 105) 
of each phantom. This way, we can obtain the volume of the wells as 

𝑉 = 𝜋
(𝐷
2

)2
ℎ = 706.86 mm3 = 706.86 μL. (11)

For the experiment, 8 different mixtures of 96% ethanol and water 
were prepared. The measurement process is illustrated in Fig.  4. Each 
phantom was measured in the same well, starting with 100% water and 
then alternating between different concentrations of water and ethanol. 
4 
Fig. 4. Schematics of the measurements made on a 1mm well with different liquid 
phantom compositions. The top number indicates water concentration, bottom number 
indicates ethanol ones, sorted by measurement sequence from (a) to (h). All measure-
ments were conducted with 500 ms exposure time at 4 ◦C for 3 min.

The well was thoroughly dried between measurements to prevent po-
tential cross-contamination of the mixtures. The liquid phantoms were 
stored in a refrigerator at 4 ◦C, and each measurement did not exceed 
3 minutes, minimizing the likelihood of significant evaporation.

2.4. Corrected absorption coefficient

Relating the variations in optical path length with the absorption 
coefficient and diffuse reflectance, we obtain the following relation-
ship [25,32]: 

𝜇𝑎𝑧 = 𝜇𝑎𝑛(2ℎ + 𝛥𝑧𝑔) = − ln(𝑅). (12)

However, as previously explained, when light hits a material with 
a different refractive index than air at a certain angle, the angle 
is modified, and part of the light is reflected according to Fresnel’s 
equations:

𝑅𝑝 =
|

|

|

|

𝑛1 cos 𝜃1 − 𝑛2 cos 𝜃2
𝑛1 cos 𝜃1 + 𝑛2 cos 𝜃2

|

|

|

|

2
(13)

𝑅𝑠 =
|

|

|

|

𝑛1 cos 𝜃2 − 𝑛2 cos 𝜃1
𝑛𝑖 cos 𝜃2 + 𝑛2 cos 𝜃1

|

|

|

|

2
(14)

𝑅eff =
1
2
(𝑅𝑠 + 𝑅𝑝) (15)

where 𝜃1 is the angle of incidence, 𝜃2 is the angle of transmission, 𝑛1 is 
the refractive index of the first medium (usually air), 𝑛2 is the refractive 
index of the second medium (a mixture of water and ethanol), 𝑅𝑝 is 
the p-polarized light reflection, 𝑅𝑠 is the s-polarized light reflection, 
and 𝑅eff is the effective reflection when assuming the incident light is 
unpolarized (natural light). The angle 𝜃2 is substituted using Snell’s law 
as: 

𝜃2 =

√

1 −
(

𝑛1
𝑛2

sin 𝜃1

)2
, (16)

so that the specular reflection is only a function of the refractive index 
and the angle of incidence.

By incorporating the specular reflection, we modify Eq.  (1) as 
follows: 

𝑅 = 𝑒−𝜇𝑎𝑧 = (1 + 𝑅eff)
𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

. (17)

The introduction of Fresnel’s reflection models the light loss upon 
incidence, which is about 2% when the angle is normal to the surface, 
and reach up to 4.5% for a 45◦ angle.

We define a term 𝛽 as the natural logarithm of 1 + 𝑅eff, such that 
𝛽 = ln(1 + 𝑅 ), to simplify the calculations. Using Eqs.  (12) and (17), 
eff
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we obtain: 
𝜇𝑎 = −1

𝑧
𝑙𝑛(𝑅) =

= − 1
𝑛2(2ℎ + 𝛥𝑧𝑔)

[

ln

(

𝐼 − 𝑏𝐼
𝐼0 − 𝑏𝐼0

)

+ 𝛽

]

.
(18)

With this model, we relate 𝐼 , 𝛽 and 𝛥𝑧 to the absorption coefficient. 
In this case, the model is treated as a linear fit where all the terms are 
simplified as follows: 
𝜇𝑎 = −𝑎𝑋 + 𝑏, (19)

where
𝑎 = − 1

𝑛2(2ℎ+𝛥𝑧𝑔 )
,

𝑋 = ln
(

𝐼−𝑏𝐼
𝐼0−𝑏𝐼0

)

,

𝑏 = − 1
𝑛2(2ℎ+𝛥𝑧𝑔 )

𝛽.

2.5. Spectrum and concentration estimation

The total absorption coefficient of a sample is related to the absorp-
tion coefficients of its pure components which, for the case of biological 
samples, are available in the literature [33–37]. Therefore, the total 
absorption coefficient is expressed as a sum of the several substances’ 
absorption coefficients, each multiplied by a volume fraction [32], as 
follows: 

𝜇𝑎 =
𝑁
∑

𝑖=0
𝜑𝑖𝜇𝑎,𝑖, (20)

where 𝜇𝑎 is the total absorption coefficient, 𝜑𝑖 the volume fraction, and 
𝜇𝑎,𝑖 the absorption coefficient of each of the compounds in the mixture. 
For a mixture of water and ethanol, this is rewritten as: 
𝜇𝑎 = 𝜑𝐻2𝑂𝜇a, 𝐻2𝑂 + 𝜑EtOH𝜇a,EtOH, (21)

where the subindex H2O represents water and, EtOH, ethanol.
Having multiple samples with known concentrations, one can estab-

lish multiple equations that relate the absorption coefficient to the dif-
ferent concentrations. Using least squares regression, the pure spectra 
are estimated. Conversely, with known pure spectra, the concentrations 
of mixtures are determined.

2.6. Biological phantom

In addition to the liquid phantoms of water and ethanol, a bi-
ological phantom has been developed using minced chicken breast 
meat and pork lard. The objective is to validate the system for fat 
content detection by observing spectral changes in the SWIR region 
(900–1700 nm) as the fat content increases. Fat content is used a 
disease biomarker in muscular dystrophy [38] atherosclerosis [39,40] 
or fatty liver disease [41].

The most relevant chromophores in these mixtures are water and 
fat, as tissues consist of approximately 70 % water. Spectrally, water 
and fat exhibit significant differences, as shown in Fig.  5. It might be 
assumed that the spectra of a meat-fat mixture can be decomposed 
using the absorption coefficients shown in Fig.  5 by means of Eq. 
(20). However, it is not possible to directly estimate the absorption 
coefficient of this meat-fat mixture, nor its optical path length due, to its 
high scattering, which should not be ignored even in the SWIR range.

Alternatively, an analysis based on peaks and valleys enables the 
identification of spectral differences between water and fat. Specifi-
cally, water peaks at 970, 1170, and 1450 nm, and lipid peaks at 927, 
1030, 1211, and 1390 nm, along with their respective valleys, provide 
optimal reference points. Based on these spectral characteristics, a ratio 
between the diffuse reflectance at two wavelengths can be defined, 
which is related to the fat concentration, as expressed by 

𝐾 =
𝑅(𝜆 = 𝜆𝑓𝑎𝑡) , (22)

𝑅(𝜆 = 𝜆𝑤𝑎𝑡𝑒𝑟)

5 
Fig. 5. Reference spectra of lipids and water in the SWIR region [42]. Vertical lines at 
927 and 970 nm have been marked as these wavelengths are of interest for this work.

Table 3
The mass of each component used to create the mixtures is shown. A portion of each 
mixture was extracted and reweighed before being measured.
  M1 (g)  M2 (g)  M3 (g)  M4 (g)  M5 (g)  
 Chicken 36.929 18.214 8.933 4.86 0  
 Fat 0 6.45 9.041 14.828 17.644  
 Portion 17.556 15.585 16.834 17.265 17.644  

Table 4
Volume fractions calculated for each mixture using the density of chicken breast as 
𝜌𝑚𝑢𝑠𝑐𝑙𝑒 = 1.06 g/mL and the density of pork lard as 𝜌𝑓𝑎𝑡 = 0.9196 g/mL [43]. 
 M1 (%) M2 (%) M3 (%) M4 (%) M5 (%) 
 Chicken 100 71.03 46.16 22.14 0  
 Fat 0 29 54.84 77.96 100  

where 𝑅 represents the diffuse reflectance, 𝜆𝑓𝑎𝑡 corresponds to a wave-
length where fat exhibits a valley, 𝜆𝑤𝑎𝑡𝑒𝑟 is the wavelength where water 
exhibits a valley, and 𝐾 is the ratio of the corresponding two diffuse 
reflectances.

As observed in Fig.  5, the wavelength of 970 nm is a strong candi-
date for 𝜆𝑓𝑎𝑡, as water exhibits a peak in this region while lipids present 
a valley. Complementarily, 927 nm is a suitable choice for 𝜆𝑤𝑎𝑡𝑒𝑟, where 
fat shows a peak and water displays reduced absorption.

Different mixtures of minced chicken breast and pork lard were pre-
pared, with their proportions detailed in Table  3, as well as the initial 
mass of each component and the amount used for the measurements.

Taking as reference the density of muscle tissue 𝜌𝑚𝑢𝑠𝑐𝑙𝑒 = 1.06 g/mL
and adipose (fat) tissue 𝜌𝑓𝑎𝑡 = 0.9196 g/mL [43], the volume fraction of 
each component in the mixtures can be calculated using the equation: 

𝜑𝑖 =
𝑚𝑖∕𝜌𝑖

𝑚𝑖∕𝜌𝑖 + 𝑚𝑗∕𝜌𝑗
, (23)

where 𝜑𝑖 is the volume fraction of component 𝑖, 𝑚𝑖 is its mass, 𝜌𝑖 is 
its density, and 𝑗 represents the values of the other component in the 
mixture. The volume fractions for each phantom prepared with meat 
and fat are presented in Table  4.

3. Results

This section presents the results of our study. First, we describe the 
characterization of the HSI-SWIR equipment, in terms of the obtained 
spatial resolution using a USAF chart, and the spectral resolution 
achieved with a set of tunable lasers. Then, we describe the spectral 
calibration of the equipment using two different methods.

We have evaluated how specular reflection and optical path length 
vary, as well as the estimation of volume fractions in the prepared 
liquid phantoms. Changes in the specular reflection and the optical path 
have led to the observed variations in the spectrum, which has been 
characterized both statistically and through 2D imaging maps.

Finally, we present several application examples on biological tis-
sues and chemical components, demonstrating the capabilities of this 
equipment in assessing the biological and tissue compositions.
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Fig. 6. Contrast measurement using a 1951 USAF chart: (a) USAF chart; (b) image 
contrast as a function of resolution for both vertical and horizontal axes at 1000 nm; 
(c) contrast as a function of wavelength at 4 lp/mm.

3.1. Spatial resolution and field of view

The lens and diffractive optics assembly function together as a 
macro lens. At approximately 5 cm above the image plane, we achieve 
a sharp image, so we used this value as the working distance. The field 
of view (FoV) varies between 2 × 10 cm and 10 × 10 cm, depending 
on the zoom setting used or, in other words, between 22◦ and 90◦. 
To characterize the spatial resolution, a 1951 USAF resolution test 
chart was used, assessing the contrast, both vertically and horizontally, 
in lines per millimeter (lp/mm). Fig.  6(a) shows part of USAF chart 
reflectance acquired at 1000 nm.

The USAF chart is divided in groups (𝑔) and elements (𝑒) which 
were used to calculate the contrast transfer function of the system 
(CTF). Let 𝐼80% be the 80th percentile of the intensity values of each 
group-element, 𝐼(𝑔, 𝑒), and 𝐼20% its 20th percentile. Then, the contrast 
is calculated as 

CTF(𝑔, 𝑒) =
𝐼80%(𝑔, 𝑒) − 𝐼20%(𝑔, 𝑒)
𝐼80%(𝑔, 𝑒) + 𝐼20%(𝑔, 𝑒)

. (24)

By avoiding using the outlier values of each 𝐼(𝑔, 𝑒) distribution, 
spurious effects due to hot or dead pixels are not included in the 
contrast calculations [44].

The groups and elements of the USAF chart are related to the spatial 
resolution (𝑅𝑥𝑦) as follows 

𝑅𝑥𝑦 = 2𝑔+
𝑒−1
6 , (25)

derived in lp/mm. Fig.  6(b) displays the contrast as a function of lp/mm 
at 1000 nm and the contrast as a function of wavelength at 4 lp/mm. 
The spatial resolution differs between the vertical and horizontal lines. 
This is attributable to the horizontal lines being parallel to the scanning 
axis, and the vertical lines being parallel to the sensor axis, which has 
lower resolution.

At 1000 nm, the contrast remains above 0.2 for resolutions less 
than 5.656 lp/mm on the sensor axis and 8.98 lp/mm on the scan-
ning axis, corresponding to a final resolution of 176.8 × 111.36 μm2, 
making this equipment suitable even for small samples. Lastly, Fig. 
6(c) shows how the contrast decreases as the wavelength increases 
(50% approximately), which is predictable according to Rayleigh’s 
criterion [45].

3.2. Spectral calibration and resolution

Spectral calibration in these devices involves establishing a relation-
ship between the sensor position on the spectral axis and its corre-
sponding wavelength [46]. To perform this calibration, two methods 
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were used: a Wavelength Calibration Standard (WCS) (WCS-MC-020 
by Labsphere, Inc., North Sutton, NH, USA) and three tunable lasers. 
The spectral ranges of the lasers are: laser A from 1255 to 1365 nm 
(HP8168B, Hewlett-Packard Inc., Palo Alto, CA, USA); laser B from 
1450 to 1590 nm (HP8168F, Hewlett-Packard Inc., Palo Alto, CA, USA) 
and laser C from 1580 to 1680 nm (SANTEC TSL-210V, Santec Holdings 
Corporation, Aichi, Japan). Additionally, an Optical Spectrum Analyzer 
(OSA) (MS9740 A, Anritsu Corporation, Kanagawa, Japan) was used to 
record the reference spectra of the different lasers.

Fig.  7(a) shows the three lasers in different colors as recorded by 
the OSA, all with a spectral bandwidth of approximately 0.1 nm and 
varying power depending on the laser and wavelength. These lasers 
were measured by the HSI-SWIR system by reflecting them off a white, 
diffuse surface (Spectralon®, by Labsphere, Inc., North Sutton, NH, 
USA), and the intensity of each laser has been divided by its maximum 
recorded intensity for visualization purposes. The OSA provides enough 
points (500 points over a 10 nm range) to measure the spectral width 
of the lasers, whereas the HSI-SWIR equipment represents the laser’s 
spectrum with 3 pixels. The laser peaks do not necessarily align with 
the sensor, as they may fall between pixels. It is also observed that the 
normalized intensities match in both the OSA and the HSI, except for 
Laser C, where there is a sensitivity drop beyond 1650 nm due to the 
decrease in the sensor’s quantum efficiency.

Fig.  7(b) shows the diffuse reflectance measurement of the WCS, 
compared to the reflectance in the datasheet, along with manually se-
lected points. This selection establishes a relationship between position 
on the sensor and its wavelength. It is observed that, in the regions 
below 1000 nm and above 1650 nm, the measured reflectance does 
not match the theoretical reflectance due to the low quantum efficiency 
of the sensor in these spectral regions. In areas with good sensitivity, 
the measured reflectance aligns with the theoretical reflectance with an 
error of approximately 5%.

Fig.  7(c) shows the relationship between the wavelengths of the 
lasers measured with the OSA and the sensor position, as well as the 
pairs obtained from the WCS. Fitting these points with a second-degree 
polynomial results in the following equation:

𝜆𝑖 = 4.06 ⋅ 10−5𝑝2𝑖 + 3.32𝑝𝑖 + 845.66. (26)

where 𝑝𝑖 is the pixel position on the sensor and 𝜆𝑖 is the corresponding 
wavelength. The second-degree term is five orders of magnitude smaller 
than the linear term, indicating a high degree of linearity with a 
Pearson coefficient 𝑅2

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 greater than 0.99.
In Fig.  7(d), a comparison is made between the spectrum of a laser 

tuned near 1631 nm, both on the OSA and the HSI-SWIR system. 
Estimating the bandwidth based on the 3 dB drop, the width reaches 
approximately half a pixel, suggesting a spectral resolution of 4.6 nm 
with an uncertainty of ±3.3 nm due to the pixel size. The HSI-SWIR 
system features an Imspector N17E, whose datasheet specifies a spectral 
resolution of 5 nm, indicating that the spectral resolution of this 
equipment is limited by the pixel size on the sensor.

These results indicate high linearity and good system performance, 
as well as a satisfactory spectral resolution.

3.3. System evaluation with liquid phantoms

Once the equipment was characterized and calibrated, its function-
ality was evaluated using eight liquid phantoms composed of ethanol 
and water at different and known concentrations, as described in 
Section 2.3. After printing and painting the phantom wells, their depth 
was measured with a caliper, indicating a depth of 0.96 ± 0.02 mm. By 
applying Eq.  (3) for this depth value, with a noise level of 50 counts 
and a reference intensity of 2000 counts, we calculated the maximum 
absorption coefficient that the equipment can measure, which is 10 
cm−1, approximately.
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Fig. 7. Spectral calibration and resolution: (a) laser measurements on the OSA and the normalized intensity of the lasers in the HSI system; (b) diffuse reflectance of the WCS 
measured compared to the theoretical values; (c) relationship between the sensor position and wavelength along with the fitting curve; (d) results of the spectral resolution of the 
HSI and OSA.
Fig. 8. Measurement of the absorption coefficient of each water-ethanol phantom and its comparison with theoretical values from different sources [26–29]. The shaded area 
indicates the 95% confidence range of all attenuation coefficient values, when considering the effect of varying 𝛽 and 𝛥𝑧𝑔 . The green line represents the maximum absorption 
coefficient that our system can measure. The labels (a-h) of the different spectra correspond to those liquid concentrations shown in Fig.  4.
Knowing the concentrations and spectra of water and ethanol, the 
values of 𝛽 and 𝛥𝑧𝑔 for each pixel and each phantom are estimated by 
fitting the spectra to Eq.  (19). These values range from 0.05 to 0.12 
for 𝛽 and from 0.25 to 0.78 mm for 𝛥𝑧𝑔 (with a 2𝜎, 95% confidence 
interval). From 𝛽, we derive that the specular reflection ranges from 
5% to 12%, which implies an incidence angle of 45 ◦ to 55 ◦. With an 
incidence angle of 55 ◦, theoretically, we expect an increase of 0.25 mm 
in the optical path length. Any further increase in the optical path 
length may be attributed to non-optical phenomena, such as the surface 
tension of the liquids.

Fig.  8 shows the measured spectra for each phantom with varying 
concentrations of water and ethanol, when tuning the parameters 𝛽 and 
𝛥𝑧𝑔 . The measured spectra are compared with reference spectra from 
the literature [26–29].

It is seen that the absorption coefficient does not reach the maxi-
mum value previously calculated. This is evident in the initial phan-
toms, where the higher water concentration results in greater absorp-
tion in the SWIR spectral range. In spectral regions where absorption 
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is lower, there is more variability in the estimation of the absorption 
coefficient, indicating reduced precision when the coefficient is smaller. 
This effect is visually enhanced by the logarithmic representation.

Using the theoretical spectra, the concentrations of water and 
ethanol are estimated. Fig.  9 shows the concentration estimates for 
each phantom. In Fig.  9(a) the estimate is shown without any correction 
parameters; in Fig.  9(b) the estimate is shown using average parameters 
𝛽 = 0.052 and 𝛥𝑧𝑔 = 0.5 mm, and in Fig.  9(c) pixel-wise parameters are 
used. The pixel-wise parameters for a point (x, y) are those obtained 
by fitting the measured spectrum to the theoretical one based on the 
given concentrations of ethanol and water.

It is observed that when no correction parameters are used
(Fig.  9(a)), the concentration at each point varies due to not considering 
𝛽 and 𝛥𝑧𝑔 . Even on average, the concentration exceeds 1, which has no 
physical meaning. This does not occur when average parameters are 
used (Fig.  9(b)), although some data dispersion may still exist.

The results of Fig.  9 are obtained from the hyperspectral images 
displayed in Figs.  10, 11, and 12. In these figures, the labels (a-h) 
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Fig. 9. Estimation of water and ethanol concentrations on the phantom: (a) estimation 
without correction parameters; (b) estimation with average parameters (𝛽 = 0.052 and 
𝛥𝑧𝑔 = 0.5 mm); (c) estimation with pixel-wise parameters.

correspond to those in the diagram of Fig.  4. Fig.  10 showcases the 
image equivalent to the boxplots in Fig.  9(a). It is observed that in 
Fig.  10 (a.0-h.0), the ethanol concentration increases, and in Fig.  10 
(a.1-h.1), the water concentration decreases. The concentration appears 
to be higher in the center than at the edges, indicating that surface 
tension could indeed be the source of this effect. Additionally, the water 
concentration exceeds 100% in Fig.  9 and when both concentrations 
are added in Fig.  10 (a.2-h.2). The MSE between the measured and 
theoretical spectra is shown in Fig.  10 (a.3-h.3), indicating that it is 
higher in the center of the well. The increment in MSE in the center 
could be caused by the flatter surface of the samples at these locations, 
which creates specular reflections not accounted for in Eq.  (21).
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Fig.  11 shows the concentration maps that correspond with Fig.  9(b) 
where the average optical parameters 𝛽, 𝛥𝑧𝑔 were used. A similar dis-
tribution to the previous case is observed, although with concentrations 
closer to the theoretical values. This is expected, as the use of average 
optical parameters does not aim to correct at the pixel level. Finally, 
in Fig.  12, the concentration maps using pixel-wise optical parameters 
are shown. Here, the effects of surface tension are compensated for, 
resulting in a much more homogeneous image across the surface.

From the results, it is concluded that estimating the optical path 
and surface reflections substantially improves the concentration es-
timation for liquid mixtures. Furthermore, using parameters at the 
pixel-wise level corrects for variations in the optical path and the angle 
of incidence of the light. The proposed pixel-wise model is useful for 
large-scale quantification of the individual components of any liquid 
composition of known materials, as long as the mixture does not have 
a significant scattering contribution.

3.4. Biological phantom results

This subsection presents the results of measurements conducted 
on the biological phantom made from minced chicken breast meat 
and pork lard. These phantoms were measured and calibrated using 
Spectralon® placed at the same height as the sample to characterize 
their diffuse reflectance. Fig.  13 shows the measurement results, start-
ing with an RGB image where the fat gradient in the meat is visually 
evident. This is further reflected in the SWIR spectrum, where meat 
exhibits significantly higher absorption than fat, primarily due to its 
high water content. Upon analyzing the spectrum, distinct peaks are 
observed, which become more pronounced as the fat content increases.

As mentioned earlier, the analysis was performed by selecting wave-
lengths deemed relevant to calculate a ratio (𝐾) related to the fat 
volume fraction. The results of these ratios are presented in Fig.  14; (a) 
using boxplot graphs, while (b.1-b.5) shows the results in 2D images.

As seen in Fig.  14, the ratios are directly proportional to the fat 
volume in each sample, with similar deviations across the samples. 
Fig. 10. Results of concentration measurements without using any coefficients. The images have been labeled following Fig.  4: (a.0-h.0) ethanol concentrations; (a.1-h.1) water 
concentrations; (a.2-h.2) concentrations of the ethanol and water mixture; (a.3-h.3) MSE (Mean Squared Error) of the absorption coefficient fit to Eq.  (20). Each row has its own 
colorbar, which is shared across all images within that row.
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Fig. 11. Results of concentration measurements using average coefficients. The images have been labeled following Fig.  4: (a.0-h.0) ethanol concentrations; (a.1-h.1) water 
concentrations; (a.2-h.2) concentrations of the ethanol and water mixture; (a.3-h.3) MSE (Mean Squared Error) of the absorption coefficient fit to Eq.  (20). Each row has its own 
colorbar, which is shared across all images within that row.

Fig. 12. Results of concentration measurements using pixel-wise coefficients. The images have been labeled following Fig.  4: (a.0-h.0) ethanol concentrations; (a.1-h.1) water 
concentrations; (a.2-h.2) concentrations of the ethanol and water mixture; (a.3-h.3) MSE (Mean Squared Error) of the absorption coefficient fit to Eq.  (20). Each row has its own 
colorbar, which is shared across all images within that row.
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Fig. 13. Results of the chicken meat and pork lard mixtures. (a) RGB photograph of the mixtures, arranged from left to right with increasing fat content; (b) average reflectance 
map of the mixtures; (c) average spectra and their standard deviation for each mixture (around 195,000 samples per mixture).
Fig. 14.  Results of diffuse reflectance ratios (K) at 970 and 927 nm as a function of 
fat volume; (a) representation using boxplots; (b) representation in 2D maps.

Furthermore, the proportionality observed suggests that K is sensitive 
to variations in fat content, making it an indicator for quantifying 
fat volume in heterogeneous samples. It is observed that, while the 
pure fat sample appears homogeneous in the RGB image, it exhibits 
a heterogeneity in the SWIR range similar to the other samples. This 
occurs because scattering is much higher in the VisNIR range compared 
to the SWIR range, making fat more easily distinguishable in SWIR.

3.5. Biological tissue

An interesting use case of the HSI-SWIR system involves the mea-
surement of biological samples. In this case, a pork fillet was imaged 
10 
and two regions were localized within the fillet, one with muscle and 
another with high fat content.

Fig.  15 contains the results of the pork sample: Fig.  15(a) displays 
a RGB photograph of the sample taken with a standard camera; Fig. 
15(b) shows the average diffuse reflectance with the labeled region of 
muscle depicted in green and the labeled region of fat depicted in blue; 
in Fig.  15(c) displays the spectra from the marked areas (green for fat 
and blue for muscle) and their standard deviations are shown. Vertical 
lines indicate the wavelengths of 927 and 970 nm. Finally, Fig.  15(d) 
presents a 2D map of the reflectance ratio between 970 and 927 nm. 

When comparing the RGB image with the ratio map, it is observed 
that the muscle area on the left shows a low ratio, while the upper 
central region with fat exhibits a high ratio. Additionally, in the central-
right area, where fat is visible in the RGB image, the ratio is also high. 
However, there are areas where fat is not apparent in the RGB image 
but is detected in the ratio map. This is because the system can detect 
subcutaneous fat, which a standard imaging system would not be able 
to identify.

These results demonstrate the potential of the HSI-SWIR system for 
distinguishing between muscle and fat in biological tissues with high 
precision by inherently considering sub-surface tissue structures. The 
ability to penetrate deeper layers of tissue in the SWIR range provides 
valuable insights that are not apparent in standard RGB imaging. This 
capability has significant implications for various applications, such 
as food quality assessment, medical imaging, and the characterization 
of biological tissues, where accurate differentiation between fat and 
muscle is critical.
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Fig. 15. HSI-SWIR imaging of a pork fillet: (a) RGB image obtained by a photographic camera; (b) average spectral reflectance with two marked regions, muscle (blue) and fat 
(green); (c) average spectra in the marked regions with their standard deviation (35,967 samples (pixels) of fat, 190,901 samples of muscle); (d) ratio map at 970 and 927 nm.
3.6. Identification of fat content in milk composition

There are scenarios where colorimetric distinction based on RGB or 
VisNIR device is not enough. An example is determining the fat content 
in commercial milk to distinguish whether it is whole, semi-skimmed, 
or skimmed. Milk fat causes significant scattering, giving milk its 
white and translucent appearance in the VisNIR range. This scattering 
becomes less noticeable as the wavelength increases, enabling better 
chemical identification in the SWIR range.

For this experiment, containers, 13.7 mm-height and 28.18 mm-
diameter, were filled with whole milk (3.6 g of fat per 100 mL), 
semi-skimmed milk (1.8 g of fat per 100 mL), and skimmed milk 
(0.3 g of fat per 100 mL). The containers were measured using both 
the VisNIR and SWIR systems. Fig.  16(a) shows the nearly flat and 
overlapping spectra of milk in the VisNIR range. In contrast, Fig.  16(b) 
shows more pronounced peaks and valleys in the SWIR range with 
clearly separated spectra between milk categories. While milk fat quan-
tification is possible in the VisNIR range through the characterization 
of its unique spectral features, the SWIR range simplifies this task 
considerably by directly providing clear spectral variations associated 
with the fat concentration.

The results of applying the peak ratio proposed in Eq.  (22) are 
shown in Fig.  17, demonstrating a correlation between the peak ratio 
and the milk fat content. Additionally, it is important to emphasize 
that milk and meat differ greatly in both composition and structure, 
preventing the application of a direct quantitative relationship between 
the two models.
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The use of the SWIR range addresses the limitations of VisNIR 
systems, particularly in cases where subtle differences in scattering 
or absorption are not enough to account for fat content levels. Con-
sequently, this spectral range and system are well-suited for applica-
tions requiring precise fat quantification, like food quality control or 
biomedical analysis, where VisNIR range measurements may struggle 
to provide accurate or reliable results.

4. Conclusion

This work proposes a rotating mirror hyperspectral system operating 
in the SWIR range. The system provides a high spatial resolution of 
176.8 × 111.36 μm2, when working with a FoV of 2 × 10 cm2 (or 22◦), 
and a spectral resolution of 5 nm, making it able to capture nearly 230 
wavelengths in the spectral range of 900 to 1700 nm.

This system performs high-resolution hyperspectral measurements 
in approximately 30 s to 5 minutes, depending on the chosen scanning 
resolution and exposure time.

By conducting a preliminary geometrical analysis, it is possible to 
estimate the concentrations of the various compounds that compose a 
liquid mixture, provided that their spectra are known. Conversely, the 
spectra of the samples are estimated if their concentrations are known.

The proposed system also demonstrates its applications in industrial, 
agri-food, and biomedical fields, as it can identify peaks associated with 
the presence of its chromophores. Unlike the VisNIR range, where scat-
tering is more pronounced, the SWIR range is less affected scattering, 
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Fig. 16. Spectrum of whole milk, semi-skimmed milk, and skimmed milk: (a) spectra in VisNIR range; (b) spectra in SWIR range. The shaded area indicates the standard deviation 
(around 35,000 samples per milk type).
 

Fig. 17. Results of reflectance ratios at two different wavelengths as a function of fat 
content in milk at 970 and 927 nm.

enabling deeper penetration into the samples. This greater penetration 
highlights properties that remain hidden in the VisNIR range.

Furthermore, the SWIR system has proven capable of detecting 
small variations in concentrations, particularly distinguishing the
amount of fat content present in milk.

All these features, combined with its imaging capability, enable 
numerous applications that are beyond the reach of the VisNIR range. 
Additionally, the proposed system’s semi-portable design allows it to 
be transported to various locations for in-situ measurements.
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