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Abstract

Muscular dystrophies are a group of inherited myopathies characterized by progressive muscle weakness
and degeneration, leading to significant physical disability and reduced quality of life. Current diagnostic
methods often rely on invasive procedures like muscle biopsies, which can be painful, carry risks, and may
not be readily accessible. This PhD dissertation explores the potential of advanced optical imaging techniques
as non-invasive tools for the diagnosis and monitoring of muscular dystrophies, aiming to provide detailed
information about muscle structure, composition, and function. This research utilizes a unique dataset of
ex-vivo mice skeletal muscle tissue, both healthy and dystrophic, to comprehensively investigate the optical
properties associated with the disease.

The primary objective of this thesis is to evaluate the feasibility and efficacy of several optical imaging
modalities to aid in muscular dystrophy diagnosis and evaluation: intensity and polarization-sensitive optical
coherence tomography (OCT/PS-OCT), hyperspectral imaging in the visible-near infrared (HSI-VISNIR)
and short-wave infrared (HSI-SWIR) ranges, spatial frequency domain imaging (SFDI), and multispectral
Mueller matrix imaging (MMI). Each technique offers unique capabilities for visualizing different aspects of
muscle tissue. OCT and PS-OCT provide high-resolution microstructural information, with PS-OCT being
particularly useful in the assessment of birefringence, a key indicator of muscle fiber organization. HSI in both
spectral ranges allows for the identification and quantification of tissue components based on their spectral
signatures. At the same time, SFDI provides similar information to that of HSI, with the advantage of being
able to decouple scattering and absorption. MMI offers a comprehensive characterization of the polarization
properties of muscle tissue, providing insights into retardance, diattenuation, and depolarization.

The findings of this thesis demonstrate the significant potential of these optical techniques for characterizing
muscle pathology in muscular dystrophies. PS-OCT analysis revealed that birefringence is a more sensitive
marker to dystrophy-related changes than attenuation, likely due to the disruption of muscle fiber organization
occurring at a small enough scale to not be detectable as intensity variations but at phase variations instead.
HSI and SFDI measurements indicated distinct spectral characteristics and differences in scattering and
absorption properties between healthy and dystrophic samples, which suggests fat accumulation and altered
chromophore content in diseased tissue. MMI analysis highlighted depolarization as a key parameter
for distinguishing healthy muscle from damaged tissue and fat, with the additional benefit of simplified
polarimetric classifiers achieving comparable accuracy to full Mueller matrix analysis, opening the doors to
partial Mueller polarimetry for achieving fast muscle diagnosis.

Multimodal data analysis, while presenting challenges due to inter-sample variability and to the random
sampling approach, offered a richer understanding of muscle pathology by considering both structural and
chemical aspects. While a direct combination of all features for classification did not consistently outperform
individual modalities, treating each imaging technique as an independent source of information yielded
promising results, suggesting the potential for specialized diagnostic devices tailored to specific optical
modalities. Visualization techniques effectively highlighted key differences in birefringence and tissue
organization between healthy and dystrophic tissues, making these techniques useful to aid in pinpointing
damaged areas in the muscle.

In conclusion, this dissertation demonstrates that optical imaging methodologies hold significant promise
for aiding in the diagnosis and monitoring of muscular dystrophies. By providing non-invasive, label-free,
and potentially real-time assessment of muscle tissue structure and composition, these techniques can
complement existing diagnostic methods, potentially leading to earlier detection, improved understanding of
disease progression, and the development of more effective therapeutic strategies for individuals living with
muscular dystrophies. Future efforts should focus on refining these techniques, validating their clinical utility
through larger studies, and developing practical tools for in vivo applications to reach their full potential in
managing this debilitating group of diseases.





Resumen

Las distrofias musculares son un grupo de miopatías hereditarias caracterizadas por debilidad y degeneración
muscular progresiva, lo que conlleva una discapacidad física significativa y una reducción de la calidad
de vida. Los métodos de diagnóstico actuales a menudo se basan en procedimientos invasivos como las
biopsias musculares, que pueden ser dolorosas, acarrear riesgos y no ser fácilmente accesibles. Esta tesis
doctoral explora el potencial de las técnicas avanzadas de imagen óptica como herramientas no invasivas
para el diagnóstico y el seguimiento de las distrofias musculares, con el objetivo de proporcionar información
detallada sobre la estructura, composición y función muscular de músculos sanos y distróficos. Esta
investigación utiliza un conjunto de datos único de tejido muscular esquelético ex vivo de ratones para
investigar exhaustivamente las propiedades ópticas asociadas con la enfermedad.

El objetivo principal de esta tesis es evaluar la viabilidad y la eficacia de varias modalidades de imagen óptica
para ayudar en el diagnóstico y la evaluación de la distrofia muscular. Entre las técnicas seleccionadas se
incluyen: tomografía de coherencia óptica sensible a la intensidad y la polarización (OCT/PS-OCT), imagen
hiperespectral en los rangos visible-infrarrojo cercano (HSI-VISNIR) e infrarrojo de onda corta (HSI-SWIR),
imagen de dominio de las frecuencias espaciales (SFDI) e imagen de matriz de Mueller multiespectral
(MMI). Cada técnica ofrece capacidades únicas para visualizar diferentes aspectos del tejido muscular. OCT
y PS-OCT proporcionan información microestructural de alta resolución, siendo PS-OCT particularmente
útil en la evaluación de la birrefringencia, un indicador clave de la organización de las fibras musculares.
HSI en ambos rangos espectrales permite la identificación y cuantificación de los componentes del tejido
en función de sus firmas espectrales. De la misma manera, SFDI proporciona información similar a la de
HSI, con la ventaja de poder desacoplar el esparcimiento y la absorción. MMI ofrece una caracterización
exhaustiva de las propiedades de polarización del tejido muscular, proporcionando información sobre el
retardo, la diatenuación y la despolarización.

Los hallazgos de esta tesis demuestran el potencial significativo de estas técnicas ópticas para caracterizar
la patología muscular en las distrofias musculares. El análisis PS-OCT reveló que la birrefringencia es un
marcador más sensible a los cambios relacionados con la distrofia que la atenuación, probablemente debido a
la alteración de la organización de las fibras musculares que ocurre a una escala lo suficientemente pequeña
como para no ser detectable como variaciones de intensidad, sino como variaciones de fase. Las medidas HSI
y SFDI indicaron características espectrales distintas y diferencias en las propiedades de esparcimiento y
absorción entre las muestras sanas y distróficas, lo que sugiere acumulación de grasa y contenido alterado de
cromóforos en el tejido enfermo. El análisis MMI destacó la despolarización como un parámetro clave para
distinguir el músculo sano del tejido dañado y de la grasa, con el beneficio adicional de que los clasificadores
polarimétricos simplificados logran una precisión comparable al análisis completo de la matriz de Mueller, lo
que abre las puertas a la polarimetría parcial de Mueller para lograr un diagnóstico muscular rápido.

El análisis de datos multimodales, a pesar de presentar desafíos debido a la variabilidad entre muestras y al
enfoque de muestreo aleatorio, ofreció una comprensión más rica de la patología muscular al considerar tanto
los aspectos estructurales como los químicos. Si bien una combinación directa de todas las características
para la clasificación no superó consistentemente a las modalidades individuales, el tratamiento de cada
técnica de imagen como una fuente de información independiente mostró resultados prometedores, lo
que sugiere el potencial de dispositivos de diagnóstico especializados adaptados a modalidades ópticas
específicas. Las técnicas de visualización resaltaron eficazmente las diferencias clave en la birrefringencia y la
organización del tejido entre los tejidos sanos y distróficos, lo que hace que estas técnicas sean útiles para
ayudar a identificar las áreas dañadas en el músculo.

En conclusión, esta tesis demuestra que las metodologías de imagen óptica son muy prometedoras para
ayudar en el diagnóstico y el seguimiento de las distrofias musculares. Al proporcionar una evaluación no
invasiva, sin marcadores y potencialmente en tiempo real de la estructura y composición del tejido muscular,
estas técnicas pueden complementar los métodos de diagnóstico existentes, lo que podría conducir a una
detección más temprana, una mejor comprensión de la progresión de la enfermedad y el desarrollo de



estrategias terapéuticas más eficaces para las personas que viven con distrofias musculares. Los esfuerzos
futuros deberían centrarse en refinar estas técnicas, validar su utilidad clínica a través de estudios más
amplios y desarrollar herramientas prácticas para aplicaciones in vivo para alcanzar su máximo potencial en
el manejo de este grupo de enfermedades debilitantes.



Resumo

As distrofias musculares son un grupo de miopatías hereditarias caracterizadas por debilidade e dexeneración
muscular progresiva, o que causa unha discapacidade física significativa e unha redución da calidade de vida.
Os métodos de diagnóstico actuais baséanse a miúdo en procedementos invasivos como as biopsias musculares,
que poden ser dolorosas, carrexar riscos e non ser facilmente accesibles. Esta tese de doutoramento explora o
potencial das técnicas avanzadas de imaxe óptica como ferramentas non invasivas para o diagnóstico e o
seguimento das distrofias musculares, co obxectivo de proporcionar información detallada sobre a estrutura,
composición e función muscular. Esta investigación utiliza un conxunto de datos único de tecido muscular
esquelético ex vivo de ratos, tanto sans como distróficos, para investigar exhaustivamente as propiedades
ópticas asociadas coa enfermidade.

O obxectivo principal desta tese é avaliar a viabilidade e a eficacia de varias modalidades de imaxe óptica
para axudar no diagnóstico e na avaliación da distrofia muscular. Entre as técnicas seleccionadas inclúense:
tomografía de coherencia óptica sensible á intensidade e a polarización (OCT/PS-OCT), imaxe hiperespectral
nos rangos visible-infravermello próximo (HSI-VISNIR) e infravermello de onda curta (HSI-SWIR), imaxe
no dominio das frecuencias espaciais (SFDI) e imaxe de matriz de Mueller multiespectral (MMI). Cada
técnica ofrece capacidades únicas para visualizar diferentes aspectos do tecido muscular. OCT e PS-OCT
proporcionan información microestrutural de alta resolución, sendo PS-OCT particularmente útil na avaliación
da birrefrinxencia, un indicador clave da organización das fibras musculares. HSI en ambos rangos espectrais
permite a identificación e cuantificación dos compoñentes do tecido en función das súas sinaturas espectrais.
Ao mesmo tempo, SFDI proporciona información similar á de HSI, coa vantaxe de poder desacoplar o
esparexemento e a absorción. MMI ofrece unha caracterización exhaustiva das propiedades de polarización
do tecido muscular, proporcionando información sobre o retardo, a diatenuación e a despolarización.

Os achados desta tese demostran o potencial significativo destas técnicas ópticas para caracterizar a patoloxía
muscular nas distrofias musculares. A análise PS-OCT revelou que a birrefrinxencia é un marcador máis
sensible aos cambios relacionados coa distrofia que a atenuación, probablemente debido á alteración da
organización das fibras musculares que ocorre a unha escala o suficientemente pequena como para non
ser detectable como variacións de intensidade, senón como variacións de fase. As medicións HSI e SFDI
indicaron características espectrais distintas e diferenzas nas propiedades de esparexemento e absorción
entre as mostras sans e distróficas, o que suxire acumulación de graxa e contido alterado de cromóforos
no tecido enfermo. A análise MMI destacou a despolarización como un parámetro clave para distinguir o
músculo san do tecido danado e da graxa, co beneficio adicional de que os clasificadores polarimétricos
simplificados acadan unha precisión comparable á análise completa da matriz de Mueller, o que abre as
portas á polarimetría parcial de Mueller para lograr un diagnóstico muscular rápido.

A análise de datos multimodais, aínda que presentou desafíos debido á variabilidade entre mostras e ó
enfoque de mostraxe aleatorio, ofreceu unha comprensión máis rica da patoloxía muscular ao considerar tanto
os aspectos estruturais como os químicos. Aínda que unha combinación directa de todas as características
para a clasificación non superou consistentemente as modalidades individuais, o tratamento de cada técnica
de imaxe como unha fonte de información independente arroxou resultados prometedores, o que suxire o
potencial de dispositivos de diagnóstico especializados adaptados a modalidades ópticas específicas. As
técnicas de visualización resaltaron eficazmente as diferenzas clave na birrefrinxencia e a organización do
tecido entre os tecidos sans e distróficos, o que fai que estas técnicas sexan útiles para axudar a identificar as
áreas danadas no músculo.

En conclusión, esta tese demostra que as metodoloxías de imaxe óptica son moi prometedoras para axudar
no diagnóstico e o seguimento das distrofias musculares. Ao proporcionar unha avaliación non invasiva, sen
marcadores e potencialmente en tempo real da estrutura e composición do tecido muscular, estas técnicas
poden complementar os métodos de diagnóstico existentes, o que podería conducir a unha detección máis
temperá, unha mellor comprensión da progresión da enfermidade e o desenvolvemento de estratexias
terapéuticas máis eficaces para as persoas que viven con distrofias musculares. Os esforzos futuros deberían



centrarse en refinar estas técnicas, validar a súa utilidade clínica a través de estudos máis amplos e desenvolver
ferramentas prácticas para aplicacións in vivo para alcanzar o seu máximo potencial na xestión deste grupo
de enfermidades debilitantes.
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Part I

Introduction and clinical context





Introduction

The human body is a complex and dynamic system, and muscle tissue
is no exception. Its intricate network of fibers and proteins, essential for
movement and strength, is also susceptible to devastating disruptions,
as seen in muscular dystrophies. These disorders affect not only the
physical body but also have profound psychological, social, and economic
consequences.

Muscular dystrophy (MD) is a term that encompasses a specific type
of gene-related, inherited myopathy characterized by muscle weakness
[1]. It is the inherited genetic nature of MD that helps differentiate it
from other muscle problems. The many types of MD are related to
different genetic alterations with a specific phenotype and are present
in various populations. Blaszczyk et al. [2] summarize those diseases
included under the umbrella of “muscular dystrophy” as having three
main characteristics in common: weakness and disability caused by
muscular disorders, young onset age (5-30 years), and a high probability
of heart failure due to cardiac involvement. Nonetheless, the symptoms
and consequences of each MD can be vastly different.

The impact of muscular dystrophies extends beyond physical symptoms.
For individuals living with MD, their daily lives are often marked by a
progressive loss of independence. Simple tasks such as walking, climbing
stairs, or even reaching objects from high shelves become increasingly
difficult. As the disease progresses, many individuals become dependent
on assistive devices like wheelchairs or ventilators, impacting their
mobility and overall quality of life. The emotional burden of living with
a progressive, debilitating disease can be quite considerable, leading to
frustration, anxiety, and depression. Social isolation is also common, as
participation in activities with friends and family becomes restricted.
Furthermore, the economic costs associated with MD can be substantial,
including medical expenses and the need for long-term care. MDs also
places a heavy burden on caregivers, whose commitment throughout the
patient’s remaining time needs to increase as the disease becomes more
debilitating. Thus, caregivers may risk unemployment while potentially
needing to hire specialized medical professionals. This escalating level of
involvement, coupled with the potential for a shortened patient lifespan,
often becomes an unbearable reality for both patients and their loved
ones.

Early diagnosis of muscular dystrophy is crucial. When detected early,
physical therapy, medication, and assistive devices can help slow down
the progression of muscle weakness, maintain function, and improve
quality of life. On the other hand, a delayed diagnosis can lead to missed
opportunities for intervention, resulting in more rapid muscle deteri-
oration, worsening disability, and a poorer prognosis. Unfortunately,
current diagnostic methods often rely on invasive procedures like muscle
biopsies, which can be painful, carry complication risks, and may not
be readily available in all healthcare settings. These biopsies can also
be expensive and time-consuming, leading to delays in diagnosis and
treatment. The limitations of current diagnostic approaches highlight
the urgent need for alternative methods that are non-invasive, accurate,
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1 The complete definition of a rare dis-
ease according to the European Commis-
sion is available here.
2 Specifically, the NIH states that a rare
disease must not affect over 200000 peo-
ple in the US, and the calculation was
estimated with 325 million inhabitants.
More information on the NIH’s defini-
tion is available here.
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Figure 1: Prevalence of the most com-
mon dystrophies per 100000 inhabitants.
DMs = Myotonic dystrophies. DMD =
Duchenne muscular dystrophy. FSHMD
= Fascioscapulohumeral muscular dys-
trophy. EDMD = Emery-Dreifuss muscu-
lar dystrophy. LGMD = Limb-girdle mus-
cular dystrophy. BMD = Becker muscular
dystrophy. OPMD = Oculopharyngeal
muscular dystrophy. CMD = Congenital
muscular dystrophy. MFM = Myofibril-
lar myopathy.

and accessible to all. Although there exist less-invasive procedures for
diagnosis, these can still cause distress to the patient. Thus, having alter-
native diagnostic methods that could be used regularly might improve
physicians’ ability to monitor disease progression while minimizing
patients’ suffering.

The definition of a rare disease varies across regions. According to
the European Commission, a rare disease is defined as a chronically
debilitating, life-threatening disease, with low prevalence (no more than
5 per 10 000 inhabitants, or 1 per 2000)1, while the United States National
Institutes of Health (NIH) indicates a prevalence of no more than 1 in
1625 people2. MDs with an estimated global prevalence of 1 in 5000
individuals (Fig. 1), are considered as rare diseases [3].

Numerous organizations are committed to rare disease research, in-
cluding muscular dystrophies. Major examples include the Muscular
Dystrophy Association (MDA) in the US and, in Europe, the European
Reference Network of Neuromuscular Diseases (EURO-NDM) and the
European Neuromuscular Centre (ENMC). However, the ongoing dis-
covery of new muscular dystrophy-causing mutations -each with unique
diagnostic and treatment needs- coupled with the additional challenge of
muscular dystrophy samples’ scarcity and overall low number of studies,
highlights the critical importance of integrating alternative monitoring
and diagnostic approaches in the clinical environment.

The field of optical imaging remains largely unexplored in the diag-
nosis, evaluation, and monitoring of muscular dystrophies, as well as
in the search for any optical biomarkers that might represent these
diseases. To address this gap, this thesis aims to explore the potential
of optical imaging technologies to assess muscle tissue composition,
both chemically and structurally, and to evaluate their potential as tools
for aiding in the understanding and managing of complex pathologies
like muscular dystrophies through the development of disease-specific
optical equipment and dedicated software analysis tools. With its ability
to provide non-invasive, real-time assessment of muscle tissue, optical
imaging has the potential to provide earlier and more accurate diagnoses
and to monitor pharmacological development and efficacy, facilitating
timely intervention and improving patient outcomes. For instance, optical
coherence tomography (OCT), a technique analogous to ultrasound but
using light, along with its polarization-sensitive variant (PS-OCT), could
provide high-resolution images of muscle structure, allowing for the
visualization of changes in muscle fiber size and organization associated
with different stages of muscular dystrophy. Hyperspectral imaging (HSI),
which captures images across a wide range of wavelengths, may detect
subtle alterations in muscle tissue composition, such as changes in the
concentration of specific proteins or the accumulation of fatty deposits,
which are hallmarks of muscular dystrophy progression. Additionally, po-
larization imaging can assess the birefringence of muscle fibers, providing
information about the organization of contractile proteins and the degree
of muscle damage, potentially aiding in identifying and characterizing
different muscular dystrophies. These techniques, among others, will be
explored throughout this thesis to evaluate their potential for improving
the diagnosis and follow-up of muscular dystrophies, leading to earlier
diagnosis and more effective disease monitoring.

https://bit.ly/RareDiseasesEU
https://rarediseases.info.nih.gov/about
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Objectives of this work

This PhD dissertation aims to explore the potential of advanced optical
imaging techniques for the diagnosis and monitoring of muscular dys-
trophies. As previously introduced, these diseases encompass a group of
inherited disorders characterized by progressive muscle weakness and
degeneration, leading to significant physical disabilities and reduced
quality of life. Current diagnostic methods often rely on invasive pro-
cedures or have limitations in terms of sensitivity and specificity. This
research seeks to address these limitations by investigating the capa-
bilities of non-invasive optical imaging modalities to provide detailed
information about muscle structure, composition, and function.

While some individual optical techniques have shown promise in various
biomedical applications, others, along with their combined use for char-
acterizing muscle pathology in muscular dystrophies, represent a novel
approach in this field. This research will utilize a unique dataset of ex
vivo mice skeletal muscle tissue with and without muscular dystrophies,
allowing for a detailed investigation of the optical properties associated
with healthy and diseased muscle, contributing to both the field of optical
imaging and muscular dystrophy research.

The primary objective of this work is to evaluate the feasibility and efficacy
of four specific optical imaging techniques – intensity and polarization-
sensitive optical coherence tomography (OCT/PS-OCT), hyperspectral
Imaging in two different spectral ranges, visible-near infrared (HSI-
VISNIR) and short-wave infrared (HSI-SWIR), spatial frequency domain
imaging (SFDI), and multispectral Mueller matrix imaging MMI – for
characterizing muscle pathology in muscular dystrophies. Each of these
techniques offers unique advantages in terms of visualizing different
aspects of muscle tissue.

By combining these complementary imaging modalities, this research
aims to develop a comprehensive approach for assessing muscle health
in muscular dystrophies. This involves not only visualizing the structural
and compositional changes associated with the disease but also extract-
ing quantitative parameters that can serve as potential biomarkers for
diagnosis and disease monitoring. A final aspect of this work will be to
develop a methodology for integrating the measurements obtained from
the different techniques. This will involve creating visualizations that ef-
fectively represent the combined data and performing statistical analyses
to evaluate the correlations and interdependency between the various
parameters derived from each method. Furthermore, this work will
explore the application of advanced image analysis techniques, including
classification and machine learning algorithms, to enhance the diagnostic
capabilities of these optical imaging methods. Ultimately, this research
seeks to contribute to the development of non-invasive, accurate, and
accessible diagnostic tools for muscular dystrophies, with the potential
to improve early detection, personalized treatment strategies, and patient
outcomes.
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Document structure

This thesis uses optical imaging to improve the diagnosis of muscu-
lar dystrophies with the aim of providing new insights into muscle
structure. Organized into six parts, it covers the clinical context, theory,
methodology, results, and broader applications.

Part I: Introduction and Clinical Context

This part introduces the topic of muscular dystrophies and lays the
groundwork for the research presented in the thesis. It provides essential
background information on the clinical aspects of muscular dystrophies
and the current state of diagnostic methods.

▶ Chapter 1: Muscular Dystrophies: A Cellular and Clinical Overview:
This chapter provides a comprehensive overview of muscular dys-
trophies, starting with the cellular anatomy of different muscle
types. It then focuses on the classification and characteristics of
various dystrophies. The chapter follows with a discussion of the
current gold-standard diagnostic methods and biomarkers used in
clinical practice. Finally, it introduces the concept of using optical
imaging techniques for MD diagnosis, providing a brief overview
of different optical methods, categorized by their underlying prin-
ciples: intensity-based, spectrum-based, and phase-based.

Part II: The Behavior of Light

This part provides the necessary theoretical background on the physics of
light and its interaction with matter. All the content in this part conforms
to a comprehensive summary of the fundamentals of electromagnetism
and light-matter interactions and was included based on the content
already existing in reference textbooks. Readers familiar with these con-
cepts may choose to skip this part and proceed directly to the description
of the optical imaging techniques.

▶ Chapter 2: Light propagation in uniform and non-uniform media:
This chapter covers the fundamental principles of light propagation,
including Maxwell’s equations, wave behavior in different media,
and light-matter interactions. It discusses concepts such as refractive
index, reflection, refraction, and absorption.

▶ Chapter 3: Light polarization: This chapter delves into the concept of
light polarization, explaining different polarization states and how
they can be represented using Jones and Mueller matrix formalisms.
It also discusses the polarization properties of various optical
elements, as well as multiple matrix decomposition methods.

Part III: Materials and Methods

This part details the experimental setups, imaging techniques, and
analysis methods used and developed in this research. It provides a
comprehensive description of how the data was acquired, processed, and
analyzed.
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▶ Chapter 4: Optical Imaging Technologies: This chapter describes
the optical imaging techniques employed in the study: OCT, PS-
OCT, HSI, SFDI and MMI. For each technique, the chapter covers
the fundamental principles, instrumentation, and relevant optical
properties.

▶ Chapter 5: Analysis of Optical Imaging Measurements: This chapter
outlines the methods used to analyze the acquired optical imaging
data. It covers signal denoising, spectral data compression, Monte
Carlo simulations for deriving optical properties, visualization,
and classification methods.

Part IV: Results and Discussion

This part presents the main findings of the research, including experimen-
tal results, data analysis, and interpretation. It focuses on the application
of the used optical imaging techniques to dystrophic mice muscles and
the insights gained from analyzing the data.

▶ Chapter 6: OCT and PS-OCT measurements of dystrophic mice
muscles: This chapter presents the results obtained from OCT and
PS-OCT imaging of muscle tissue in dystrophic mice. It includes a
description of the samples and an overview of the measurements.
It further analyzes specific parameters derived from the images,
such as attenuation and birefringence.

▶ Chapter 7: HSI and SFDI measurements of dystrophic mice muscles:
This chapter focuses on the results from HSI and SFDI imaging of
the same muscle tissues. It analyzes HSI reflectance, color recon-
struction, scattering and absorption properties, and chromophore
concentrations. It also examines SFDI reflectance, scattering, and
absorption characteristics decoupled with this technique.

▶ Chapter 8: Multispectral Mueller-matrix imaging of dystrophic
mice muscles: This chapter presents the results from multispectral
Mueller-matrix imaging. It describes the sample preparation and
dataset used for this technique, analyzes the Mueller matrices, and
discusses matrix decomposition methods. It further explores the
importance of specific Mueller matrix elements through different
methods for feature extraction and tissue identification.

▶ Chapter 9: Combination of optical imaging data from different
modalities: This chapter explores the integration of data from the
different optical imaging techniques. It presents visualization meth-
ods to represent the combined data effectively and discusses the
statistical evaluation of the parameters derived from each method.
The chapter also introduces a first approach to the created dataset’s
performance on classification tasks. This integrated analysis aims to
provide a more comprehensive understanding of muscle pathology
in muscular dystrophies.

Part V: Related Work

This part explores the application of optical imaging techniques in fields
beyond muscular dystrophy. It highlights the versatility of these methods
and their potential for broader impact in different research areas.
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▶ Chapter 10: Optical imaging in other fields of research: This chapter
provides a brief overview of how optical imaging is being used in
other fields, including ophthalmology, archaeology, bioengineering,
and neuroscience. It discusses specific examples and key findings
from each field, demonstrating the diverse applications of these
technologies.

Part 6: Final remarks

This concluding section synthesizes the findings from each chapter,
connecting them to the fundamental aspects of the disease. The aim
is to provide a comprehensive understanding of the presented optical
technologies and their usage in muscular dystrophies, as well as to
highlight their potential applications in the future.

Remaining document

After introducing the general conclusions of this work, the document
finishes with a comprehensive summary of the thesis in Spanish and
Galician, including the introduction, optical imaging techniques, and
main results. It is followed by a list of publications produced during
this PhD research, showcasing the dissemination of the findings to the
scientific community.
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1.1 Muscular cell anatomy

Muscular dystrophies cause damage to various muscle cell types in
different locations, resulting in diverse clinical presentations. While
the symptoms of muscular dystrophies are evident on a larger scale,
understanding muscle cell anatomy is crucial for visualizing the specific
structures that may be damaged, replaced, or undergo necrosis when
a patient develops a muscular dystrophy. This subsection provides a
concise overview of each muscle cell type, detailing its structure, key
chemical components, and physiological function.

Muscle cells, also known as myocytes, are classified into three distinct types:
skeletal, cardiac, and smooth. Each type possesses unique structural,
functional, and compositional characteristics that will be summarized in
this section.

1.1.1 Skeletal muscle cells

Skeletal muscle cells (Fig. 1.1) form the muscular groups responsible for
movement, posture, and breathing, including those in the limbs, back,
chest, neck, and face. These highly anisotropic cells are composed of
smaller, elongated structures called myofibrils, consisting of individual
contractile units known as sarcomeres. Cellular organelles and multiple
nuclei are located in the sarcoplasm, the cytoplasm of the muscle fiber
surrounding the myofibrils [1].

Skeletal muscle fibers consist primarily of water (approximately 75%),
distributed throughout the sarcoplasm, myofibrils, and organelles. Water
plays essential roles in maintaining cellular structure, facilitating protein
interactions, and serving as a medium for the transport and storage of
various molecules [2]. The dry mass of skeletal muscle fibers is primarily
composed of proteins, which are essential for their contractile, regulatory,
and structural activities (Fig. 1.2). Actin and myosin are the main proteins
of the sarcomere, enabling muscular contraction. Regulatory proteins,
such as troponin and tropomyosin, control the interaction between actin
and myosin. Structural proteins, including titin and nebulin, provide
a framework that supports and aligns the contractile and regulatory
proteins essential for muscle contraction. Skeletal muscle cells store
energy primarily as glycogen (a complex carbohydrate), while ions like
calcium, sodium, and potassium play crucial roles in regulating muscle
contraction [3]. Skeletal muscle fibers are wrapped in a protective layer
called the sarcolemma. Many fibers bundle together into larger groups
called fascicles. These fascicles, along with blood vessels and nerves,
combine to form the muscle itself. Each level of organization - the fiber,
fascicle, and whole muscle - is encased in a rugged, flexible connective
tissue sheath made primarily of collagen and elastin [4].
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1.1.2 Smooth muscle cells (SMCs)

Smooth muscle cells (SMCs) surround blood vessels and hollow organs,
such as the intestines and stomach, to facilitate essential functions like
blood circulation, digestion, and nutrient absorption [5]. Their main
function is to contract, which enables the movement of substances
through the structures they are attached to, ensuring proper physiological
function [6]. As such, their contraction is involuntary and continuous.

Similarly to the skeletal muscle cells, SMCs are formed of filaments,
including actin, tropomyosin, or myosin [6], that stabilize the cell during
contraction. However, the structure of skeletal muscle cells is vastly
different from that of skeletal muscle cells in that they are not arranged
via sarcomeres. Instead, SMCs are surrounded by actin networks that
contract the whole cell in all directions when needed (Fig. 1.3). Dense bodies
are anchoring points within each cell, allowing the forces generated by
the actin network to be transmitted efficiently and uniformly throughout
the cell body. These forces are also anchored to the cell’s exterior through
dense plaques [7], which contain desmin—another protein that helps
maintain the structural and mechanical integrity of the cells and that is
also present in the Z disk of skeletal muscle cells [8], depicted in Figs. 1.1
and 1.2. Multiple cells connect to each other primarily through adherens
junctions and gap junctions, both of which anchor the cells together, enable
coordinated contractions across smooth muscle tissue [9, 10], and form
the three-dimensional structures that surround vessels and organs (Fig.
1.4).

1.1.3 Cardiac muscle cells (cardiomyocytes)

Cardiac muscle cells, also known as cardiomyocytes (Fig. 1.5), form the
walls of the heart and are responsible for generating the contractions that
pump blood throughout the body. The contraction of these branched,
anisotropic cardiomyocytes allows for the coordinated propagation of
electrical waves, which initiate and synchronize the heart’s movements
[11].

The structure of cardiomyocytes shares similarities with skeletal myocytes,
especially in the presence of actin and myosin filaments organized into
myofibrils and sarcomeres. However, cardiomyocytes also have unique
features. They are branched and interconnected, forming a complex
network. Desmin is also present in cardiomyocytes, and it provides
structural support by linking myofibrils and other cellular components
within the cardiomyocyte. The entire cell is enveloped by the sarcolemma,
which interacts with the extracellular matrix through a specialized group
of proteins [12].

Calcium ions play a central role in triggering cardiomyocyte contraction.
An electrical signal initiates calcium influx across the cell membrane,
further amplified by calcium release from the sarcoplasmic reticulum,
the network of interconnected membrane-bound sacs and tubules that
extends throughout the sarcoplasm. This increment in intracellular
calcium binds to troponin, allowing myosin to interact with actin and
generate the power stroke that shortens the sarcomere, resulting in
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1 Gene: a segment of DNA that carries
the instructions for building and main-
taining an organism, often by encoding
for a specific protein [15].

2 Inheritance pattern: describes how
genes, and their different versions (alle-
les), are passed from parents to offspring,
influencing the likelihood of inheriting
specific traits [15].

3 Mutation: a permanent change in the
DNA sequence of a gene, which can alter
the instructions it carries and potentially
affect the resulting [15].

4 X-linked: genetic condition caused by a
mutation in a gene on the X chromosome.
Males, having only one X chromosome,
are more likely to be affected by the con-
dition if they inherit this mutation [15].

5 Recessive inheritance: defines genetic
traits that only appear if an individual
inherits two copies of a gene, one from
each parent [15].

contraction. Active removal of calcium from the cytoplasm leads to
relaxation, resetting the cell for the next beat [13].

1.2 Types of Muscular dystrophies

Muscular dystrophies encompass a range of inherited diseases caus-
ing progressive muscle weakness and disability. These disorders share
common pathological features, including muscle fiber necrosis and re-
generation, variations in fiber size, and, in some cases, fiber splitting. The
ongoing cycle of muscle damage and attempted repair ultimately leads
to irreversible muscle loss, replaced by fatty and fibrous tissue [14].

This section explores various types of muscular dystrophy, their charac-
teristic symptoms, and underlying causes. The specific genes1 involved,
inheritance patterns2, and the impact of these genetic mutations3 on muscle
proteins are examined here as well. The observable changes in muscle
tissue, as well as distinct biomarkers associated with each type, are also
covered by this section. Furthermore, the typical age of onset and life
expectancy for individuals with different forms of muscular dystrophy
are also covered.

1.2.1 Duchenne (DMD) and Becker muscular dystrophies
(BMD).

Duchenne and Becker muscular dystrophies (DMD and BMD, respec-
tively) are both X-linked4, recessive5 disorders caused by mutations in a
gene, the DMD gene that encodes dystrophin (i.e., dystrophinopathies).
Dystrophin is a protein located in the sarcolemma which stabilizes the
cell wall during muscular contraction and expansion by linking the cells
to the extracellular matrix [16, 17]. The lack (DMD) or a reduced amount
(BMD) of dystrophin leads to the cell’s inability to keep up with muscular
movements. As a consequence, the sarcolemma goes through consistent
microfractures that contribute to the muscular fiber’s replacement with
adipose tissue (i.e., fat infiltration) or fibrotic tissue (i.e., collagen and
elastin increment) [18, 19].

Dystrophin is also present in brain tissue. Although its presence is only 1%
of that in muscles, mutations in the DMD gene also lead to slight cognitive
impairment [20]. Aside from muscle cells, a lower background level of
dystrophin is also present in most tissues [20], specifically in vascular
smooth cells, which can, in turn, lead to a deficiency in vascularization
that makes muscular recovery after fibrous fractures even less effective
[21]. The sarcolemma fractures lead to first inflammation, then fatty
replacement, and finally fibrosis in DMD that transforms healthy muscle
into larger (hypertrophy) but less functional muscle mass, especially
in the lower limbs [17]. These deficiencies lead to loss of strength and
ambulation capabilities at first and later evolve into respiratory and
cardiac insufficiency [22], the main causes of death in DMD patients [23].
In BMD, the clinical pattern is similar but usually less severe and appears
later in life [22].

Given that DMD and BMD are both X-linked dystrophies, they are mainly
present in the male population. Specifically, DMD is the most common
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6 This chapter includes multiple side
notes with links to Web of Science
searches. Said searches were last ac-
cessed in December 2024. Direct access
through the links requires institutional
access.
7 Web of Science searches
TI=(Duchenne muscular dys-
trophy) AND DT=(Article) and
TI=(Becker muscular dystrophy) AND
DT=(Article), available here and here,
respectively.

8 Autosomal: refers to traits or genes
located in the non-sex chromosomes [15].
9 Dominant inheritance: defines genetic
traits that appear if an individual inherits
at least one copy of a gene [15].

10 267 articles identified through the
Web of Science search (TI=(Emery
Dreifuss muscular dystrophy)
OR TI=(Emery Dreifuss)) AND
DT=(Article), available here.

11 Transcription factor: protein that con-
trols the rate of gene transcription, the
process of copying a DNA sequence into
an RNA molecule, by binding to DNA
[15].

type of early-onset MD [20] as affects 1 in 3000-5000 male births with a
prevalence of 6 in 100000 [18, 22–25], while BMD is approximately 10
times less common [18]. DMD patients’ life expectancy has been recently
estimated to be over 25 years [23], with a median of 24 years [18], while
BMD patients live longer, even without symptoms until middle age [22].
Although rare, there have been a small number of female cases reported,
and female DMD carriers might have symptoms similar to those of BMD
[26] or present cardiomyopathy-related issues [18]. These numbers6 set
DMD as the most studied MD7 , with over 4600 journal articles focusing
on it and just over 700 for Becker’s.

1.2.2 Emery-Dreifuss muscular dystrophy (EDMD)

Another kind of MD is Emery-Dreifuss muscular dystrophy (EDMD),
typically inherited as an X-linked recessive trait (EDMD1 or X-EDMD) or
as a rarer autosomal8 dominant9 (EDMD2 or AD-EDMD) form [18, 22, 27].
However, there are other less common variants [28]. The recessive variant
is caused by a mutation in the gene that codes for emerin (EMD), while
the AD variant affects the gene that codes for lamins A and C (LMNA)[22].
Unlike dystrophin, emerin is a protein of the nuclear membrane that
stabilizes the nucleus inside skeletal muscle cells and acts as extra support
during muscle contraction [29, 30]. Lamins A and C are also involved
in nuclear positioning by modifying the contractile properties of the
nucleus under mechanical strain [29].

EDMD presents itself initially as contractures, typically in the Achilles
tendons and the elbows, with variable intensity levels that increase
in severity in the second decade [31]. In AD-EDMD, the biceps and
quadriceps are more affected and weak than in X-EDMD in the early years,
and contractures start appearing later in life [32]. Muscular problems
often lead to cardiac issues, which are more predictable in the case of
X-EDMD than in AD-EDMD[31], and to loss of ambulation in the case of
AD-EDMD[32].

EDMD is less common than DMD10, with a prevalence of 1 in 100000
[22], although AD-EDMD’s exact prevalence is unknown due to the few
cases reported [33]. X-EDMD is present mainly in the male population,
but female carriers have been identified with a similar cardiac pattern to
that of X-EDMD patients [27].

1.2.3 Fascioscapulohumeral muscular dystrophy
(FSHMD)

The gene affected in Fascioscapulohumeral muscular dystrophy (FSHMD)
is the DUX4 gene, which encodes for the double homeobox 4 protein,
a transcription factor11 [34]. The DUX4 gene is present during embryonic
development and gets silenced in most tissues, including muscle cells,
after this early stage. However, in patients with FSHMD, the DUX4 gene
is over-expressed in muscle cells, leading to transcription irregularities,
cell toxicity, myocyte death, or immune responses [35, 36].

Physiologically, FSHMD is subject to loss of muscle mass and strength,
muscular replacement with fat and fibrotic tissues, and inflammation

https://www.webofscience.com/wos/woscc/summary/379131f0-25d6-4ce8-944b-a773fc89098c-f1095212/relevance/1
https://www.webofscience.com/wos/woscc/summary/45c25b73-0d92-4bb7-948d-45d7513c7594-f1091db7/relevance/1
https://www.webofscience.com/wos/woscc/summary/e007ac04-4cd0-46fd-8170-fdf568d1024c-f1f9b350/relevance/1
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12 698 articles identified in
Web of Science through the
search (TI=(facioscapulohumeral
muscular dystrophy) OR
TI=(facioscapulohumeral)) AND
DT=(Article), available here.

13 1068 articles identified in Web of
Science through the search (TI=(limb-
girdle muscular dystrophy) OR
TI=(limb-girdle)) AND DT=(Article),
available here.

14 Genetic locus: the specific physical
location of a gene or other DNA sequence
on a chromosome [15].

[36]. Specifically, FSHMD initially affects the facial muscles, along with
the shoulder and upper arm, and progresses to the abdomen, lower limb,
and pelvic girdle muscle weakness [34]. Although FSHMD can cause
different levels of loss of ambulation, it has been established that this
disease does not affect the life expectancy of the patients [22, 34, 37].

In Europe, FSHMD prevalence has been established to be between 5 to 12
per 100000 inhabitants [34], and 5 in 100000 worldwide [38], making one
of the most frequent MDs12. The onset age for this disease is variable, but
usually within the second decade of life [34]. While there are variations
in prevalence and genetic subtypes, the overall impact of FSHMD is not
restricted to any specific population [37].

1.2.4 Limb-girdle muscular dystrophy (LGMD)

Limb-girdle muscular dystrophies (LGMD) comprise a diverse group
of inherited muscle disorders primarily impacting the shoulder and hip
muscles13 . These diseases lead to progressive weakening of proximal
limb muscles, with potential involvement of the heart and respiratory
system. The clinical presentations of LGMD vary widely, reflecting the
broad genetic and phenotypic heterogeneity of these conditions [39,
40].

The inheritance patterns of LGMD are diverse and include autosomal
dominant and recessive variants, further contributing to clinical het-
erogeneity of limb-girdle muscular dystrophies. As of 2016, 31 distinct
genetic loci14 have been identified [39], with eight autosomal dominant
and 23 autosomal recessive, each impacting a different gene and its
corresponding protein product.

Autosomal dominant LGMDs typically disrupt structural and support
proteins like myotilin, lamin A/C, and desmin, crucial for muscle in-
tegrity. In contrast, autosomal recessive AR-LGMDs impact a wider range
of proteins essential for muscle function, including calpain, dysferlin,
sarcoglycans, titin, and desmin [39]. These recessive forms encompass
diverse subtypes like calpainopathies, dysferlinopathies, and sarcogly-
canopathies, affecting components like the contractile apparatus, nuclear
lamina, and sarcolemma [40].

Limb-girdle muscular dystrophies manifest diversely, with possible
distal or proximal weakness, muscle inflammation, cardiomyopathy,
and respiratory issues. Additional symptoms can include calf changes,
scapular winging, limb weakness, dysphagia, and limited finger/toe
flexion. Some cases exhibit brain, eye, or spinal anomalies, alongside
intellectual disability [39, 40].

The onset and progression of LGMD vary widely, from severe and
fatal to mild with near-normal lifespans, with onset ranging from early
childhood to late adulthood depending on the type [39]. AR-LGMD is
far more common than AD-LGMD, with a prevalence of 1:15000 for the
autosomal recessive variant, compared to only 10% of all LGMD cases
for the autosomal dominant one [39, 41], which implies a prevalence
of 1:135000 cases. Some types are globally distributed, while others are
concentrated in specific regions [40].

https://www.webofscience.com/wos/woscc/summary/27518814-a817-48a6-b5b7-75a5701d8811-f232ea77/relevance/1
https://www.webofscience.com/wos/alldb/summary/b2562f2d-dce4-4e8e-8365-593fa209cbed-0101d8503d/relevance/1
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15 Congenital: present at birth.

16 1040 articles identified in Web
of Science through the search
(TI=(congenital muscular dystrophy)
OR TI=(congenital dystrophy)) AND
DT=(Article), available here.
17 Glycosylation: the process of attach-
ing sugars to proteins or lipids.

18 Details on T2-weighted imaging are
included in section 1.3.

19 Nucleotide pattern: refers to a specific
sequence of nucleotides in DNA or RNA.

20 DNA-RNA binding: refers to the
interaction between DNA and RNA
molecules, often facilitated by proteins
that can bind to both types of nucleic
acids.

21 Creatine kinase: an enzyme found in
muscles that enables muscular energy
production.

1.2.5 Congenital muscular dystrophy (CMD)

Similarly to LGMDs, congenital15 muscular dystrophies (CMDs) encom-
pass a spectrum of diverse phenotypes unified by their early onset of
muscular weakness, neonatal low muscle tone (hypotonia), and charac-
teristic dystrophic lesions on muscle biopsies [42]. The main difference
between CMDs and other childhood-onset MDs like Duchenne’s is that
CMDs traits are visible even before the first year of life, with symptoms
showing almost immediately after birth. Although its presence in the
population is not precisely known, it has been estimated at a prevalence of
1 per 1000000 [42, 43], and the inheritance pattern is primarily autosomal
recessive [44].

The expanding list of CMDs16 has led to a proposed classification based on
the types of genes affected: those encoding structural proteins of the basal
lamina or extracellular matrix (including collagen), those involved in
glycosylation17, those causing abnormalities in nuclear envelope proteins,
in proteins of the endoplasmic reticulum, or the mitochondrial envelope
structure [45].

The gene-related defects of CMDs lead to a deficiency of the involved
proteins, which macroscopically manifest as muscular weakness, intellec-
tual disability, along with contractures of shoulders, elbows, or knees [43,
45]. However, the symptoms of a CMD do not tend to evolve fast [43]. It
has been found that in CMD muscles tend to show abnormal variations
in fiber size when biopsied, and MRI findings of the brain indicate white
matter involvement through an increment on the T2-weighted modality
signal with respect to healthy brain18 [43].

1.2.6 Myotonic dystrophies types I (DM1) and II (DM2).

Myotonic dystrophies (DMs) are particularly interesting due to their
genetic origin. Contrary to most dystrophies, myotonic dystrophies are
not related to protein-encoding regions of genes [46], meaning that,
while related to protein genes, DMs are not directly affecting how the
protein is created, but instead they deregulate how RNA behaves. There
are two types of myotonic dystrophies, namely DM1 and DM2, that
are associated with mutations at two different non-coding regions of
RNA, both caused by the repetition of unstable RNA sequences [47].
While inherited in an autosomal dominant fashion[48], the size of the
repetition determines if the symptoms are visible at birth (congenital),
in childhood, as an adult, or later in life [49]. DM1 is caused by an
expansion in the CTG nucleotide pattern19 of the DMPK gene (involved in
intercellular communication), while DM2 is originated by an expansion
of the CCTG nucleotide pattern of the CNBP gene (related to DNA-RNA
binding20) [47, 48, 50]. As the proteins themselves are not affected by the
length increment of the affected RNA, it is believed that the remaining
multiplied RNA forms clumps inside of the cell that induce cell toxicity,
leading to the different symptoms of DM1 and DM2 [46].

There are several symptoms related to DMs, including muscular weak-
ness and atrophy, myotonia, pain or myalgia, respiratory and cardiac
deficiencies, overall fatigue, hearing loss, early-onset cataracts, endocrine
disorders, elevated serum creatine kinase21, and even higher predisposi-

https://www.webofscience.com/wos/alldb/summary/4c87b562-4336-4f3d-92a6-2820a47f2746-0101e5300b/times-cited-descending/1
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22 4675 articles identified in Web of Sci-
ence through the search (TI=(myotonic
dystrophy) OR TI=(myotonic dystro-
phies) or TI=(dystrophia myotonica))
AND DT=(Article), available here.

23 Nucleotide repeats: short DNA se-
quences that are repeated a number of
times in a row.

24 410 articles identified in Web
of Science through the search
(TI=(oculopharyngeal muscular
dystrophy) OR TI=(oculopharyngeal
dystrophy) or TI=(oculopharyngeal)
or TI=(oculo-pharyngeal)) AND
DT=(Article), available here.

25 137 articles identified in Web
of Science through the search
(TI=(Myofibrillar myopathy)) AND
DT=(Article), available here.

tion for cancer [47–50]. Those symptoms have been found in patients with
a prevalence of over 1 in 8000 [50], with variable geographical presence
[48].

The fact that these diseases are the most commonly inherited form of
muscle disorders [48] and that are not immediately lethal might have
contributed to the increment of studies published regarding MDs in recent
years. Specifically, studies published on these diseases per year between
2017 and 2023 (average of 132 studies/year) are almost twice those that
were published between 2001 and 2007 (average of 69 studies/year)22.

1.2.7 Oculopharyngeal muscular dystrophy (OPMD)

As occurred with DMs, oculopharyngeal muscular dystrophy (OPMD)
is caused by mutations in the PABPN1 gene due to short repeats23 of GCN
nucleotide triplets, where N could be any of the bases [51]. The repeat
also leads to the accumulation of clumps inside the nucleus of muscle
cells, named intranuclear inclusions, that result in cell death [52].

Although OPMD shows similar traits to other muscular dystrophies, the
first characteristic these patients present is ptosis, a weakness of the upper
eyelid causing them to drop, followed by dysphagia, which is trouble
swallowing [51–53]. These symptoms start showing later in life, mainly
during the fifth or sixth decade [53]. In diagnosis, these symptoms are
complemented with high serum creatine kinase, with the amount being
dependent on the severity of the case, and with fatty replacement of
muscles, specifically the tongue and lower leg muscles [54].

OPMD is present24 in multiple populations of the world with variable
prevalence, being less common in the European population (0.13 per
100000 inhabitants in Northern England [55] and 1 in 100000-1000000
in Europe [54]), and more common in Israel (1 in 600 [54]) or in French-
Canadians (1 in 1000 inhabitants [54]), with both autosomal dominant
and recessive pathways being possible.

1.2.8 Myofibrillar myopathy (MFM)

Myofibrillar myopathy is a disease caused by alterations in proteins
of the Z disk (Fig. 1.2) that lead to myofibril deterioration [56]. Many
mutations in genes encoding proteins have been found to cause MFM,
including those in desmin, lamin A/C, 
�-crystalin, titin, sarcoglycans,
or dystrophin, among others [57]. Given the overlap in gene mutations
between MFM and other dystrophies, MFM can also appear accompanied
by other MDs. The field of MFMs is not extensive and continues to grow25.
Therefore, the exact prevalence of MFM is not known and varies with
the population (0.07 per 100000 inhabitants in Northern England [55]).
However, it appears that most forms of MFM are transmitted in an
autosomal dominant manner, although there are autosomal-recessive or
X-linked forms as well [58].

The similarity of MFM with other MDs in terms of genetic mutations
also implies similar symptoms, and the onset age varies between early
childhood and late adulthood [58]. This overlap leads to a complicated

https://www.webofscience.com/wos/alldb/summary/4ab86fc6-40ce-4e96-81a0-8174ffc922d6-0101e52d5f/times-cited-descending/1
https://www.webofscience.com/wos/alldb/summary/3ed672e5-d9f6-44c1-aba2-38bad537b8d7-0101e52b32/times-cited-descending/1
https://www.webofscience.com/wos/alldb/summary/9ccb1575-f2fe-4d4f-b866-ebd5a0ca0105-0101e5eee4/times-cited-descending/1
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diagnosis, and the main way to detect the destruction caused to the Z
disk (Fig. 1.2), characteristic of MFM, is based on muscle biopsy [59].

1.3 The gold standard: Diagnostic methods and
biomarkers

Genetically induced sub-cellular defects in muscular dystrophies manifest
in two primary macroscopic changes. First, structural proteins in skeletal,
cardiac, or smooth muscle, or even the brain, are disrupted, leading
to alterations in those tissues. Some structures may become enlarged
(hypertrophy), while others shrink (atrophy) with impaired function.
Both scenarios can result in cell death and necrosis. Second, these
structural changes often coincide with chemical imbalances throughout
the body. These might stem directly from the mutation (altered protein
production) or arise from the breakdown of healthy and necrotic tissue,
often accompanied by increased fat or extracellular matrix deposition.

Consequently, diagnosing MDs involves more than just genetic testing
or histopathology. Functional testing, electromyography (EMG), elec-
trocardiography (ECG), and imaging techniques often play a crucial
complementary role. This section outlines the most common diagnostic
methods utilized for MDs.

1.3.1 Observational diagnosis

All muscular dystrophies lead to some degree of movement impairment,
whether it is evident at birth or emerging later. Thus, a simple physical
examination can sometimes reveal signs of MDs. Specifically, enlarged
calf muscles (hypertrophy) are common in DMD, BMD or some subtypes
of LGMD, whereas reduced muscle mass (hypotonia) is seen in CMD,
EDMD or FSHMD patients. Lower limb muscle involvement is also
typical in FSHMD and OPMD, while FSHMD may also affect the upper
limbs. Even facial muscles can exhibit symptoms. All these muscular
issues result in weakness during walking, standing, lifting arms, or
general movement, all of which can be assessed with a basic clinical
assessment. For example, Gower’s sign, characterized by difficulty rising
from a sitting or squatting position, indicates weakness in the lower limbs
and pelvic girdle and has been observed in nearly every type of MD [60].
Additional symptoms, such as respiratory or cardiac insufficiency, may
be initially detected using a stethoscope.

1.3.2 Diagnosis from samples

Beyond physical examinations, blood and muscle tissue samples offer
crucial information for definitively diagnosing muscular dystrophy.
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26 Gene sequencing: the method used
to determine the order of the DNA nu-
cleotides [65].

27 Template: A strand of RNA or DNA
used for replication of new RNA/DNA
strands [67].

28 DNA Polymerase: the enzyme capa-
ble of synthesizing DNA [65].

Serum creatine kinase Blood samples can be utilized two-fold for
the diagnosis of MDs. Specifically, serum creatine kinase levels (CK)
can provide information about the stage of the disease. One indicator
standard in many muscular dystrophies is the presence of elevated
values of CK in blood serum. Creatine kinase is a protein present in high
amounts in muscle, especially in the myocardium, but also in skeletal
muscle and even in the brain [61]. Therefore, any process that breaks the
sarcolemma may induce the travel of CK to the bloodstream, leading to
an increase with respect to normal levels. Although normal processes
like heavy exercise, trauma, or surgery may increase serum CK [61–63], it
is well known that the disruption of muscular and neural tissue caused
by MDs can be detected by screening blood samples for high CK levels
[64].

Genetic testing The other use for blood samples in MDs is genetic
testing. Due to the high amount of overlap between symptoms of the
different MDs, the only way to tell for sure which pathology the patient
has is through genetic testing. Single- or multiple-gene sequencing26 can
be applied to the diagnosis of muscular dystrophies to confirm the
suspicions of one specific dystrophy or to know if there is more than one
gene involved in the patient’s phenotype. The most commonly used ones
are Sanger sequencing, next-generation sequencing (NGS), and multiplex
ligation-dependent probe amplification (MLPA) [66].

Sanger sequencing involves cutting a template27 DNA and using modified
bases (ddNTPs) to identify individual base positions on the template
DNA of interest [68]. Although this method is highly accurate for small
sections, it is slow and costly for larger ones. MLPA, on the other hand, can
examine multiple DNA sections simultaneously, using probes to detect
extra or missing DNA pieces [69]. Next-Generation Sequencing (NGS)
technologies, like Nanopore [70, 71], Pacific Biosciences [72], and Illumina
[73], have improved sequencing speeds. Nanopore utilizes nanopores
and electrical currents for direct, long-read sequencing [70], while Pacific
Biosciences employs fluorescently labeled bases for real-time analysis by
copying the DNA strand with a DNA polymerase28 [72]. Illumina uses a
complex preparation phase involving proprietary, surface-modified flow
cells and clusters of DNA copies performed on said cells via thermally
induced unions. Its imaging-based approach allows parallel processing
of billions of templates, significantly accelerating sequencing [74]. The
human genome project, which used exclusively Sanger sequencing due
to it being the only method available, took almost 15 years to sequence the
entire human DNA [75], while using Illumina’s method could provide
whole genome sequencing in a day.

Muscular biopsies Although genetic testing remains the only possible
way to precisely identify what gene has the mutation related to one of the
many dystrophies, it is worth noting that overlapping phenotypes still
pose a challenge for accurate muscular dystrophy identification, especially
in those with many variants, like LGMDs or CMDs [76]. Additionally,
serum CK levels can tell that there is some muscular degeneration, but
not where in the body it is happening or whether it definitely comes
from a muscular disorder since it can also be caused by muscular strain
and it varies significantly between populations and ethnicities [63, 77].
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As an alternative, muscle biopsies can be valuable for identifying specific
muscular dystrophy subtypes, assessing muscle damage severity, and
even conducting genetic testing as well.

Given the highly structured morphology of muscle tissue, skeletal mus-
cular biopsies of healthy individuals look like uniform patterns of fibers
with the nuclei on the periphery [78]. On the contrary, dystrophinopathies
(DMD, BMD, MFMs...) tend to show uneven fiber size and an increase in
internal nuclei, as well as the presence of necrotic or regenerated patches
[79, 80]. Nuclear envelope disorders (X-EDMD, FSHMD) show loss of
some nuclear membranes and channel formation inside the nuclear
matrix [81], and hindered interaction with nuclear-related proteins [82,
83], or even intranuclear inclusions like in the case of OPMD [52].

Minimally invasive biopsies (needle- or punch-based) offer reduced
patient discomfort but can be trickier in terms of sample orientation and
size. Open biopsies, while providing more control over the sampled area,
are more invasive and less suitable for frequent use [78].

1.3.3 Specialized diagnosis

The diagnosis of MDs can be complemented and better understood with
the use of specialized tools that provide insight into the stage of the
disease. More precisely, several diagnostic methods based on muscular
electrical performance or imaging are often applied to the diagnosis and
the follow-up of MD patients.

Electromyography (EMG) Neuromuscular disorders change how mus-
cles work, and their structural differences and effects can be seen, for
example, in electromyography (EMG) signals. EMG operation is based
on inserting needles into the muscles under study. Then, by instructing
the patients on a series of relaxation-contraction movements, muscles
release their electrical currents, captured in terms of the sample rate
chosen a priori. EMG measures a magnitude called motor unit potential or
MUP that defines the amplitude and phase of the electrical currents that
make muscles contract and relax.

Thus, the analysis of EMG data can discern if a muscle is healthy or
affected by a disorder. Nonetheless, it is worth noting that the choice of
analysis method can drastically impact its diagnostic value [84]. When
assessing muscle damage, the quantitative variant of EMG has been
proven helpful to distinguish between different stages of the disease and
even its progression throughout the various muscle groups involved in
FSHMD, LGMD and BMD [85]. Specifically, it has been shown that the
MUP signal can be more complex at the early stages of the disease due to
the existence of multiple changes in fiber size caused by degeneration/re-
generation patterns, while the loss of amplitude in MUP at later stages
could be an indicator of muscular fiber loss [85].

Even when the diagnosis is already known, EMG can also be used to
provide an objective metric to common muscular dystrophy symptoms,
like the quantification of the degree of dysphagia, although further
research has been suggested to confirm these claims [86]. A significant
difference between EMG results was also found when studying DM1 and
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29 QRS Wave complex: represents the
electrical depolarization behavior of the
heart’s ventricles. The Q and R waves
relate to the depolarization of specific
areas in the ventricles [90].
30 PR interval: time interval between
atrial depolarization and the first step
of the QRS complex [90].
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31 Also known as echogenicity.

DM2 patients, at least for an initial diagnosis [87]. While EMG needles
penetrate only about 1 cm, surface EMG, using taped electrodes, offers
a non-invasive alternative with promising results in assessing DMD
presence and severity [88].

Electrocardiography (ECG) More often than not, the heart’s muscula-
ture is also damaged by muscular dystrophies, which makes ventricular
failure one of the principal causes of death in MD patients [22]. When
cardiac involvement is present or suspected, conventional electrocardio-
grams (ECG) are the main tool of choice for fast and periodic evaluation.
Less invasive than EMG, ECG is performed by placing electrodes on the
skin near the heart to record the electrical signals it generates. In a recent
review by L. Tang et al. [89], several common features were found in
DMDs patients of different ages and ethnicities. For example, the authors
found that multiple articles reported unusual Q waves and increased
amplitude on the R waves29, both involved in describing the electrical
behavior of the heart’s ventricles [89]. They also report the common sinus
tachycardia and shortened PR interval30 in DMD patients, meaning that
the heart was often beating faster than in healthy individuals and that the
electrical signals between the atria and the ventricles were also traveling
faster [89].

Atrial and ventricular arrhythmias, electrical conduction abnormalities,
and ventricular hypertrophy have also been found across multiple studies
of myotonic dystrophies, as reported by D. McBride et al. [91]. Specifically,
DM1 patients are more prone to ECG abnormalities than DM2 [91]. Other
muscular dystrophies have also been assessed with ECG, like the limb-
girdle type, which showcased a low prevalence of conduction delays,
or the fascioscapulohumeral type, whose patients had ECG parameters
within normal limits [92].

Ultrasound (US) Imaging technologies provide an additional point
of view that can complement the previously described diagnostic tech-
nologies by indicating the extent of muscle damage in the studied areas.
Ultrasound (US) modalities are basic staples of muscular dystrophy di-
agnosis, specifically when focusing on skeletal muscle (echomyography)
or the heart (echocardiography) (Fig. 1.6). In general, the core principle
of ultrasound lies in the varying ways that different tissues interact with
the sound waves the USs devices produce. Some tissues reflect the waves
strongly, creating bright areas in the resulting image, while others allow
the waves to pass through, resulting in darker areas [93].

US: Echomyography Two main approaches in muscle ultrasound,
namely the grayscale level (GSL) and quantitative backscattering analysis
(QBA), have been proven helpful for DMD diagnosis [94]. GSL measures
the intensity of the recorded US image, and an increment in brightness31

can be an indicator of muscle damage and inflammation [95]. On the other
hand, QBA focuses on obtaining tissue parameters from the backscattered
US signal by analyzing it according to the sound waves-tissue interactions.
Both magnitudes have been monitored over time in healthy and DMD
skeletal muscles and have been found to increase faster in the latter,
leading to earlier deterioration detection when compared to using only

https://www.webofscience.com/wos/woscc/summary/ddc9ac07-bed0-43fc-854b-c457c8282f04-010458e634/relevance/1
https://www.webofscience.com/wos/woscc/summary/1772bdab-feef-43e9-878d-2d80458fc83f-010458dc39/relevance/1
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functional assessments [94]. However, in the same study, US was not
able to detect corticosteroid effects related to dystrophy treatments. In
OPMD, absolute echo intensity (AEI) was used to effectively detect
muscle abnormalities through higher AEI values than those captured
for healthy muscles, and to relate AEI increment over time to muscular
deterioration [96]. Muscle ultrasound has also been proven useful for
detecting characteristic imaging patterns in collagen 6-related muscular
dystrophies from an early age [97]. A similar result was found in FSHMD
[98] and DM1 patients [99], who showcased widespread echogenicity,
even in asymptomatic patients and disease carriers.

US: Echocardiography Echocardiography was used in multiple studies
as well, as compiled in the review by G. Song et al., where they provided a
meta-analysis about the usefulness of speckle-tracking echocardiography
(STE) in DMD [100]. STE can be used to measure the strain the heart
suffers by measuring the stretch and contraction properties in US images
through the analysis of the same speckle points over time [101]. The review
showed that several measures of myocardial strain were significantly
decreased in children with DMD compared to healthy controls, indicating
impaired heart function in DMD patients. Their findings suggest that
STE can detect early signs of cardiac dysfunction in DMD, even before
symptoms or other imaging techniques show abnormalities [100]. STE
was also used to explain further the processes of cardiac involvement
of some of the most common LGMD, revealing that not all sub-types of
the limb-girdle affecting dystrophies deteriorate the heart in the same
way [102]. Using echocardiography, ventricular geometry was found to
be larger than usual in both types of EDMD with respect to healthy
individuals, and often with lower capacity to pump blood than the latter
as well [103].

Magnetic resonance imaging (MRI) Ultrasound plays a valuable role
in evaluating muscular dystrophies, but magnetic resonance imaging
(MRI) remains the preferred imaging technique for these conditions
(Fig. 1.6). As previously introduced, many types of muscular dystrophies
lead to enough muscular degeneration to cause inflammation, muscular
replacement, and necrosis, all of which can be assessed with MRI [104].
Magnetic resonance imaging is based on the application of strong mag-
netic fields and radio frequencies to the patient’s tissue. By analyzing the
changes in molecular orientation caused by the strong magnets, different
tissue types can be discerned, leading to three-dimensional images of the
body with tissue-specific responses [105]. T1- or T2-weighted imaging,
magnetic resonance spectroscopy (MRS), diffusion-weighted (DWI) and
diffusion tensor imaging (DTI), or Dixon sequences are some of the
MRI-based modalities that have been applied to MD evaluation [104].

MRI: T1- and T2-weighted imaging After being excited by the magnet,
the molecules turn to their basal states. Specifically, the time required for
protons to become aligned with the magnetic field, which is also the time
they need to return to equilibrium, is known as the T1 or longitudinal
relaxation time [106]. This type of imaging has been able to detect the
level of cardiac involvement in DMD patients via higher T1 than for the
controls, even with normal ventricular function [107], and to indicate
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32 Also known as spin-spin relaxation
time

myocardial fibrosis as short T1 times in myotonic dystrophy patients
[108]. T1 was also used for evaluating the progression of fatty infiltrations
over a two-year period of FSHMD patients [109]. However, T1-weighted
MRI needs to be referenced to the patient’s bone marrow intensity in
each frame, which is also subject to image inhomogeneities, making it
not the ideal way to measure fat infiltrations [110].

Similarly to T1, T2-weighted imaging measures a relaxation time. Still,
instead of referring to a single proton, T2 is the time a whole section
of tissue takes to return to equilibrium after taking into account both
the interaction with the excitation field and also between the molecules
themselves32 [106]. The T2 time of water is useful for the identification of
inflammation or edema [110] and has been previously used to monitor
disease progression in FSHMD through textural analysis [111]. Similarly,
edema was also found in DMD patients, as well as a correlation between
T2 fat values and actual fat fractions, indicating that T2-weighted imaging
can also detect fatty infiltrations in muscle tissue [112].

MRI: Dixon sequences MRI’s Dixon sequences are some of the estab-
lished ways to quantify fatty infiltrations in muscular tissue. These types
of sequences are based on evaluating the phase of the received signals
instead of the intensity values. Each Dixon sequence requires capturing
two or three images in order to quantify fat infiltration as a biomarker of
muscular degradation. In one of the images, fat and water are captured
in phase, meaning tissues with high water and fat content will appear
bright in the MRI images. In the next capture, fat and water are captured
in opposing phases, meaning they will have opposing intensities as well.
This procedure is known as the 2-point Dixon sequence, and it can retrieve
individual fat and water images by adding or subtracting the in-phase
and out-of-phase images [104]. A third image can be used to avoid the
effects of inhomogeneities of the magnetic field, according to the 3-point
Dixon sequence protocol [110]. Recently performed analyses indicate that
the Dixon sequences correlation with clinical DMD and BMD measures
could potentially perform well as non-invasive biomarkers of muscular
dystrophy [113, 114].

MRI: Magnetic resonance spectroscopy Magnetic resonance spec-
troscopy (MRS) is a particularly interesting modality of MRI that looks at
the whole spectrum of magnetic energy bands emitted by the different
molecules (1H, 23Na, 31P...) in the specimen for tissue identification or
to create molecule-specific images [104]. MRS provides an alternative
way to measure edema and fat infiltrations as main biomarkers of MDs
that can be enhanced by combining it with T1, T2, or Dixon sequences
to detect DMD accurately, FSHMD, or potentially other dystrophies,
sometimes even before fat infiltration occurs [115–117]. Nonetheless, the
need for spectral references and voxel-wise calculations might limit the
applicability of MRS to specific muscle groups only with well-known
spectroscopic properties [110].

MRI: Diffusion-weighted and diffusion tensor imaging Diffusion-
weighted imaging (DWI) and diffusion tensor imaging (DTI) are two
modalities based on measuring the diffusivity of water through tissue
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either from T2-images or voxel-wise calculations [116]. Given that muscu-
lar dystrophy-affected muscles are prone to inflammation, tracking water
through muscles can lead to edema foci. Specifically, fractional anisotropy,
which measures the degree of isotropy in water diffusion, has been found
to be a promising biomarker to assess the severity of DMD [118]. Another
recently developed model, known as the random permeable barrier
model, which models skeletal muscular tissue as randomly oriented
barriers to estimate fiber diameter, provided good agreement with the
increased diameter visible in histological results of BMD patients [119]. In
LGMD, the apparent diffusion coefficient (ADC) obtained through DTI
was a good indicator of connective tissue infiltration in muscle [120], and
specific cases reported the possible existence of edema in white matter
tissue in the brain of congenital MD patients, thanks to the detection of
increased ADC [121].

1.4 Optical methods and their potential for MD
diagnosis

So far, we have explored the most commonly used diagnostic methods for
the identification and evaluation of MDs over time. Optical techniques are
not among them, and yet they can bring new opportunities and points of
view into this field. Due to only using wavelengths between the ultraviolet
(UV) and infrared (IR), most optical technologies are considered non-
invasive, as they can provide chemical and/or structural information
without damaging the patient, specimen, or sample. Additionally, they
do not need any kind of sample preparation, although there are specific
modalities that can benefit from some specific prior procedures.

A broad classification of methods can be done in terms of the properties
of light being studied by each system: intensity-based, spectrum-based,
or phase-based methods. We will provide an overview of each of them
in the following sections.

1.4.1 Intensity based

This section includes the main optical technologies that focus on the
intensity of light returned by the samples, i.e., in the amount of light
they transmit or reflect. Generally, these methods can be performed with
monochrome light sources or detectors, and the information they provide
is derived from the interaction between light at specific wavelengths (�)
and the sample. Said interaction is modulated by the refractive index (=)
of the sample and its interaction properties, namely the absorption (�0),
scattering (�B), and anisotropy (6) coefficients.

Microscopy As one of the staples in biopsy evaluation, microscopy
is commonly used for MD diagnosis. Although the technique itself is
non-invasive for the samples, the slide preparation protocol must be
thoroughly followed for optimal image results [122]. First, the biopsy is
taken, typically from skeletal muscle tissue, and later on, it can be quickly
frozen using liquid nitrogen to avoid freezing artifacts [122]. The next
step involves cutting the biopsy into 8-10 �< slices by using a cryostat
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to keep the sample frozen [122]. Finally, each slice can be tinted using
hematoxylin and eosin (H&E stain) and evaluated in the microscope,
one by one, in search for MD biomarkers such as non-uniform tissue,
nuclei migration, or nuclear inclusions [122]. The whole protocol, from
extraction to diagnosis, can take from two to three days to over a week.
Nonetheless, the high-resolution images (≈200 nm/px) that optical
microscopy provides remain undisputed to understand the extent of
the damage caused to muscle tissue, even with the limited sampling
options.

Optical Coherence Tomography (OCT) Optical Coherence Tomogra-
phy (OCT) uses light interferometry to obtain 3D images of the sample
[123]. Although resolution is lower than that of microscopy (in the range
of a few �</px), the field of view analyzed in each image is much
greater (tens of millimeters), allowing for fast evaluation of the whole
biopsy at once. At the core of each OCT system lies an interferometer
that splits a laser beam, typically in the IR range, into two independent
rays. One of them bounces on a mirror and returns to the detector unper-
turbed (reference beam). The other (sample beam) reaches the sample
and recombines with the reference beam in the detector by creating an
interference pattern. This pattern contains intensity variations that are
specific to each sample, thanks to the different ways light decays inside
different tissues. This decay is related to the attenuation coefficient of the
samples (�C), which can act as a marker of structural uniformity [123].
Some preliminary studies assessed the viability of OCT to successfully
distinguish between healthy and damaged or regenerated muscle fibers
[124], which later on led to accurately determining necrotic lesions in
fresh ex vivo samples of DMD mouse models [125].

Spatial Domain Frequency Imaging (SFDI) Muscular damage caused
by muscular dystrophies is not uniform and depends on the different
muscle groups. OCT can be used to guide microscopy in the sense
that it can give a fast, 3D evaluation of a region of tens of millimeters,
but microscopy is still needed for the in-depth analysis of sub-micron
structures. Nonetheless, when the damage is not widely spread, Spectral
Domain Frequency Imaging (SFDI) can potentially help broadly identify
areas in the tens of centimeters as healthy or damaged. Some of the
already established MRI modalities are used for this task. However, if
surgery is needed, none of them can be used while operating, whereas
SFDI can potentially be implemented. SFDI works by projecting patterns
of light using a 2D projector in order to obtain the decoupled �0 and �B
characteristic of each tissue [126]. To the author’s knowledge, SFDI has
never been applied to MD evaluation outside of this thesis (see chapters
4 and 7 and reference [127]). Still, it has been used to measure real-time
oxygenation levels [128], to distinguish between stromal and epithelial
breast tissue [129], and for breast surgical margin delineation [130]. All
of this highlights the potential of SFDI to provide similar information to
MRI data while performing surgery if it is ever needed.
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33 Or filter-like optical elements.

1.4.2 Spectrum-based

The optical methods introduced in the previous section are based on
wavelength-dependent properties, meaning tissues are not going to pro-
vide the same responses if the images are taken at different wavelengths.
As such, there is an extensive field of research focusing on obtaining
the absorption, attenuation, or scattering properties at various wave-
lengths and using the whole spectral information for tissue identification.
Contrary to the intensity-based devices, these systems must have the
capability to capture images at multiple wavelengths, which can be
done by using spectrally tunable sources or wavelength filters33 at light
emission or capture. To be considered “optical”, the wavelength range
must roughly be between 200 nm (UV) and 1800 nm (IR).

Optical spectroscopy The most fundamental technique of optical spec-
troscopy is based on punctual measurements of UV or visible (VIS) to
near-infrared absorption of light. These systems typically use some form
of focusing optics to illuminate a sample in a single point with a light
source with a known emission spectrum, whether by design or because
it was measured. Then, similar optics are used to capture the light that is
either reflected by or transmitted through the sample. When light enters
and travels through the sample according to its absorption and scattering
properties, some of the initial intensity will be absorbed at specific wave-
lengths. This leads to a modification of the emission spectrum of the light
source that will be specific to the chemical composition of the sample.
Similarly to magnetic resonance spectroscopy, optical spectroscopy can be
used to identify specific compounds that can act as MD biomarkers, like
water (edema/inflammation) [131–133], fats (fatty infiltrations) [134], and
elastin and collagen (fibrosis) [135, 136]. Thin samples would be required
for transmission spectroscopy, while any kind of sample can be used in
reflectance configurations. Although typically optical spectroscopy is not
the main focus of MD articles, it is used as a tool to aid in specific tasks
like treatment monitoring [137].

Vibrational spectroscopy Vibrational spectroscopy is a variant of opti-
cal spectroscopy that returns a spectrum generated by the vibration of the
molecules after absorbing the incident light. The molecules that constitute
the sample vibrate in multiple ways by stretching or contracting, rotating,
or bending in multiple planes, leading to a spectrum of molecule-specific
infrared peaks, also known as the molecular fingerprint of the sample.
Two main modalities stand out in this field: Raman spectroscopy and
Fourier transform infrared spectroscopy (FTIR). Raman spectroscopy
involves a light conversion process where, typically, a visible-range laser
excites the sample, and some of that excitation turns into heat, i.e., in-
frared radiation or vibrations [138]. On the other hand, FTIR uses an
interferometer setup and a broadband infrared light source to capture
the infrared interferogram caused by the molecular vibrations [139]. Both
Raman and FTIR have been applied to muscular dystrophies in differ-
ent aspects. For example, Raman has been found useful for evaluating
exercise-induced necrosis in DMD mice models [140], while FTIR shows
promise in aiding the biochemical characterization of DM1 [141]. The
main drawback of Raman is that it requires high power sources to deal
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34 Tens of centimeters.

with the low efficiency of the wavelength conversion process, and trying
to compensate with long exposure times might lead to autofluorescence
signals or photobleaching of the samples. FTIR does not have the same
issues, but the spectra recorded are subject to low signal regions due to
water absorption.

Multispectral (MSI) and hyperspectral (HSI) imaging Sometimes,
especially when doing a first exploration, it is convenient to have a way to
evaluate a large area to pinpoint regions where damage is more prominent
[142]. Multispectral (MSI) and hyperspectral (HSI) imaging provide a
way to do precisely so by obtaining pixel-wide spectral information over
a wide34 field of view (FoV). The main difference between MSI and
HSI systems lies in the number of wavelengths used. Usually, an MSI
system can resolve between 4 and 10 wavelengths, while a higher number
can be considered HSI. There are several possible configurations for
spectral imaging devices in terms of the wavelength-capturing method.
Since camera sensors are two-dimensional and spectral imaging captures
three dimensions, one spectral and two spatial, either spatial or spectral
scanning is commonly used [143]. Spatial scanning involves capturing
the whole spectrum in a single point (whiskbroom scanning) or line
(pushbroom scanning) and using either a moving stage for the sample
or a moving system to scan the remaining spatial dimensions. Spectral
scanning, on the other hand, captures the 2D image at one wavelength
at a time by using wavelength filters or using tunable light sources.
Snapshot systems are non-scanning alternatives of MSI/HSI devices
that capture the spectral information by adding wavelength filters on
top of the sensor’s pixel, allowing for faster capture than the scanning
alternatives at the cost of worse spatial resolution [143]. The biomarkers
detectable by spectral imaging are usually the same as those detected
with optical spectroscopy, but with the added benefit of having 2D maps
of the biomarker distribution throughout the whole sample [142–144].

Fluorescence imaging Fluorescence is a non-linear effect caused when
photons at some wavelengths interact with the sample’s electrons by
exciting them and then getting re-emitted when the electrons return to
the basal state [145]. However, before re-emission, some of the photon’s
initial energy is lost when electrons shift to lower vibrational states
before returning to the starting orbital. This phenomenon causes the
emitted photon to be lower energy (i.e., red-shifted in wavelength)
than the absorbed one [145]. Endogenous fluorescence exists in some
tissues, making them easily detectable by using fluorescence-specific
wavelength filters. In other cases, molecule-specific fluorescent markers
can be introduced in the sample or patient to create images of the
distribution of specific compounds. Fluorescence is often combined with
microscopy by adding specific sources for excitation and specific filters
for detection, and its use in MD detection is commonly linked to the use
of Illumina’s gene-sequencing method, where images of the nitrogenous
bases are taken to identify the genetic sequence under study. However,
fluorescent markers can also be used directly attached to RNA molecules,
through the method called RNA fluorescence in situ hybridization, to
accurately diagnose DM1 with no false positives [146]
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35 Or two or three photon luminescence.

Multi-photon imaging Multi-photon imaging is an optical microscopy
technique utilizing the simultaneous absorption of multiple photons
to generate an image. Second harmonic generation (SHG) and third
harmonic generation (THG) are label-free processes where the sample
itself adsorbs two or three photons and generates a signal at twice or
three times the excitation frequency, respectively. There are non-linear
analogs to SHG and THG, where the two or three photons absorbed
are not emitted right away, but instead, some energy is lost before
returning to the basal state, similar to what occurs in fluorescent tissues.
The methods that exploit this phenomenon are called two or three-
photon fluorescent microscopy35 in terms of the number of photons
absorbed each time. Multi-photon luminescence can also be used with
exogenous fluorophores. The main advantage that multi-photon imaging
or luminescence provides versus conventional microscopy is that by using
lower-energy photons for excitation, mainly in the IR, light can penetrate
deeper inside tissues without getting absorbed, aiding in in-vivo sub-
superficial imaging. Some research groups have applied two-photon
fluorescent microscopy to visualize the delivery of immunotherapy
medicine in animal models of DMD [147], and to locate specific protein
in healthy muscle fibers and its absence in a mouse model for LGMD,
suggesting its potential involvement in the disease [148]. Interestingly,
two-photon microscopes can also be used to induce controlled laser
damage due to their confocal properties. This method was applied to
damage precise areas of muscle cells in healthy and dysferlin-deficient
muscle samples (like LGMD) to confirm the reduced repair properties
of the latter [149]. More recent experiments in mouse models indicate
that SHG can be used to visualize and evaluate the 3D collagen network
at different stages of cardiac fibrosis of DMD [150] thanks to collagen’s
autofluorescence.

1.4.3 Phase-based

The optical methods explained so far are based on the analysis of single
or multi-wavelength intensity of light. Instead, its phase can also be
used to analyze the polarization of light produced or disturbed by the
sample. Samples with low structural anisotropy will tend to depolarize
the incident light, while anisotropic tissues like healthy muscle fibers
will keep some of the polarization. To analyze the phase, polarization
techniques need to have optical elements with known polarization
properties, i.e., polarizers and waveplates, and all-optical paths must
keep the polarization of the light without modifying it, either by using
volume optics or polarization-maintaining fibers.

Polarized light microscopy Polarized light microscopy can be used
to enhance anisotropic structures of tissues. This technique is typically
performed in transmission microscopy with the aid of two linear polariz-
ers - one before and another after the sample. Anisotropic samples can
showcase birefringence (Δ=), which is an optical property that indicates
how much faster light travels through the sample when parallel to the
main anisotropy axis versus perpendicular to it. The more anisotropic a
tissue is, the higher its birefringence. In this sense, birefringence can act
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as a marker of healthy skeletal muscle tissue without the need for exter-
nal staining, aiding in fast diagnosis. It can also help identify the main
direction of fibers or crystals in the sample [151]. It is worth noting that
there are polarized light microscopes that do not have phase elements
like waveplates, meaning that only the linear properties of the samples
can be measured, but not the circular ones like circular dichroism and
optical rotation, which are good indicators of molecular chirality.

Polarization Sensitive OCT Similarly to polarized light microscopy,
polarization-sensitive OCT (PS-OCT) is a functional variant of conven-
tional OCT that enables measurements of the phase of light by adding
polarizers and waveplates. Most PS-OCT excite the sample with polarized
light with one specific state (circular) to excite all the orientations of the
sample in a similar way. This allows for the measurement of the Stokes
parameters at every point inside the sample, which describe precisely the
polarization state of light. Stokes parameters can also be used to retrieve
the birefringence of the sample by evaluating how the phase changes
when traveling through it. Different tissue types will lead to different
birefringence properties that can be identified with this methodology,
which can later on be used as a marker of disease [152].

Mueller imaging Light with some specific polarization will suffer
changes after interacting with a sample, and the induced changes will
be a function of the polarization properties of the sample. The Stokes
parameters are useful for describing the polarization properties of light
but not of the samples. Instead, the Mueller matrix is used for this
purpose, which acts as a transference matrix between an input and
output Stokes vectors. To measure the full Mueller matrix of a sample, it
is necessary to excite the sample with multiple different and controlled
polarization states, which can only be done by using a combination of
polarization optics that can be modified either in position, rotation, or
phase. Although more cumbersome than other methodologies, Mueller
imaging can reconstruct images of the polarization properties of tissues,
like their depolarization, retardance, or diattenuation [153]. It can also be
adapted to any other kind of imaging technique, whether it is wide-field
imaging or transmission microscopy.
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Part II

The behavior of light
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Figure 2.1: Representation of the electric

force ®�� that a charge @ experiences un-

der an electric field ®�.

1 Sometimes, in the literature, both the
terms magnetic induction and magnetic
field are used interchangeably to describe

vector ®�. However, we will keep the stan-
dard naming convention of magnetic in-

duction for ®� and magnetic field for ®�.
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The corpus of this chapter is focused on providing the fundamentals re-
quired to understand the optical diagnostic methods that will be explored
throughout this document. To ensure a clear and consistent foundation,
this chapter will establish a uniform mathematical description of light
behavior that will be followed throughout the book. This framework will
facilitate a deeper understanding of the principles underlying various
optical imaging techniques and their applications in the study of muscu-
lar dystrophies. Therefore, this chapter synthesizes information from key
references, notably Born and Wolf’s Principles of Optics [1] and Hecht’s
Optics [2]. Any information not directly derived from these sources is
explicitly referenced.

There are two main formalisms for describing the behavior of light:
one that considers light as an electromagnetic wave and another that
considers it as particles called photons. In this chapter, we will focus
on the former, namely the electromagnetic theory of light, given that it
provides a straightforward way of analyzing light in terms of its intensity,
spectral properties, or phase, which will help relate the theory described
here with the different optical modalities studied in this thesis. Readers
familiar with this content can skip to the next chapter for polarization
properties of light or to the next part for materials and methods.

In this chapter, scalars (and vector magnitudes) are introduced in italics
(0), vectors are depicted with an arrow on top (®0), and unitary vectors are
represented with a hat (0̂). The dot product is introduced as a centered
dot (·), the vector product with a cross (×), and the tensor product with
a circled cross (⊗). This notation will be used in subsequent theory
chapters.

2.1 Maxwell’s laws of electromagnetism

Light can be described as an electromagnetic field and, as such, its
behavior is well described by Maxwell’s electromagnetic equations,
which we will derive in this section, based on [1] and [2].

2.1.1 Electromagnetic force

A way to understand an electromagnetic field is by its effect on punctual
charges. If one punctual charge @ is subject to an electromagnetic field,
this field will impose a force on it so that it will start moving. When the
field has only an electric component, ®�, the force it applies on the charge
@, namely ®�� , will be aligned with the field (Fig. 2.1) and proportional to
the value of the charge,

®�� = @ · ®� .

On the other hand, if only a magnetic induction1 ®� is present, the charge
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Figure 2.2: Representation of the mag-

netic force ®�� that a charge @ that moves
with a speed ®E experiences under a mag-

netic induction ®�.

2 In the electromagnetic context, the elec-
tromotive force � is a voltage – a potential
difference. When possible, the term force
will not be used to avoid confusion.
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Figure 2.3: Representation of Faraday’s
law of induction. A closed loop � with

line differential ®3; is inserted in a mag-

netic inductance ®�. Part of the field goes
through the area enclosed by the loop �

with surface differential ®3(. As a result,
an electromotive force � (and an electric
field ®�) travels in the loop �.

3 Often, ®� is not going to be uniform in
space, and really be a function of the spa-

tial point ®A and time (®� = ®�(®A, C)). There-
fore, the partial derivative %/%C might be
depicted instead of the total derivative
3/3C.

@ will travel perpendicularly to ®� with a speed ®E (Fig. 2.2). Thus, the

force a magnetic induction applies over a charge ( ®��) is defined as

®�� = @ · ®E × ®� .

Generally speaking, an electromagnetic field will have both components
®� and ®�, and the force applied on a charge @ for an electromagnetic field,
®�, will include both ®�� and ®�� as follows:

®� = ®�� + ®�� = @ · ®� + @ · ®E × ®� . (2.1)

2.1.2 Faraday’s law of induction

When a closed, flat, conductive loop is introduced inside a magnetic
inductance ®�, a part of ®� will go through the area enclosed by the loop,
�. The part that travels through �, i.e., the magnetic flux Φ" , generates
the movement of charges and, thus, an electromotive force2 � inside of
the loop. The magnetic flux that travels through the area of the closed
loop is described by

Φ" =

∬
�

®� · 3 ®( ,

where 3 ®( is the surface differential that points perpendicularly to the
surface of the area enclosed by the loop. The speed at which the loop is
introduced in ®� will determine the magnitude of � according to

� = − 3Φ"

3C
= − 3

3C

∬
�

®� · 3 ®( . (2.2)

The first equality of 2.2 is known as Lenz’s Law, which states that the
voltage induced by a changing magnetic flux will oppose (thus the minus
sign) the rate of variation of said flux.

On the other hand, � is a potential difference, which relates to an electric
field through

� =

∮
�

®� · 3®; , (2.3)

where � indicates an integral on the loop and 3®; is a line differential
on the loop. Equation 2.3 indicates that the existence of � is due to an
electric field that is traveling inside of the closed loop. When we combine
equations 2.2 and 2.3, we arrive at the Faraday induction law (Fig. 2.3),∮

�

®� · 3®; = − 3

3C

∬
�

®� · 3 ®( , (2.4)

which states that a time-varying magnetic induction ®� generates electric
fields ®� that travel in closed loops in planes perpendicular to ®�3.

2.1.3 Gauss’s law for electric fields

When an electric field is enclosed by a surface �, an electric flux Φ� will
travel, outwards or inwards, through the said surface (Fig. 2.4). The net
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Figure 2.4: Electric field ®� traveling in-
side and outside of one closed arbitrary

surface ( with surface differential ®3(.
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Figure 2.5: Electric field ®� created by a
point charge @ traveling through a spher-
ical surface ( of radius A with surface
differential ®3(.

4 &0 = 8.854188 × 10−12 �/<
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Figure 2.6: Electric field ®� created by a
charge density � distributed over a vol-
ume+ (& =

∭
+
�3+) traveling through

a spherical surface ( of radius A with sur-

face differential ®3(.

5 In the case where the charges are not
in vacuum but in a material medium, the
electric permittivity of the medium (&)
should be used instead of that of vacuum
(&0).

electric flux is thus

Φ� =

∯
�

®� · 3 ®( . (2.5)

Now, if this field is generated by a single point charge @ and we evaluate

it on a spherical surface, ®� will be perpendicular to the surface and,
therefore, ®� and 3 ®( will be parallel. Additionally, the magnitude of the
electric field � would be uniform in any spherical surface with radius A
(Fig. 2.5), thus

Φ� = �

∯
�

3( = �4�A2 . (2.6)

On the other hand, Coulomb’s law states that the magnitude of the
electric field generated by a point charge is

� =
1

4�&0

@

A2
(2.7)

where, in this case, A represents the distance to the point charge and &0

the vacuum permittivity4. Combining equations 2.6 and 2.7 gives the
electric flux caused by a point charge as

Φ� =
@

&0
,

which can be extended to the electric flux caused by a group of # point
charges as

Φ� =
1

&0

#∑
=

@= . (2.8)

In the case where the charges are not individually considered but instead
treated as a charge density � that occupies a volume + (Fig. 2.6), the
Gauss law for electric fields is finally derived from the combination of
equations 2.5 and 2.8, and transforming the charge sum by the volume
integral of the charge density as∯

�

®� · 3 ®( =
1

&0

∭
+

�3+ , (2.9)

where ®� is the electric field, � the closed integration area, 3 ®( the surface
differential of �, &0 the vacuum permittivity5, + the integration volume,
and 3+ the volume differential of + .

2.1.4 Gauss’s law for magnetic fields

There is no magnetic equivalent to the electric point charge, meaning
that there are no known particles that act as sources or sinks of magnetic
field lines. Instead, a point “magnet” can be considered as an equivalent
to the electric point charge, but every field line that exits the north pole of
this magnet will end up on its south pole (Fig. 2.7). As such, any closed,
arbitrary surface that we could trace around the point magnet will have
the same number of lines exiting the surface and entering it at another
point. Therefore, the magnetic flux on said surface will always be null.



44 2 Light propagation in uniform and non-uniform media

𝑁
𝑆 Ԧ𝑟𝑑𝑆

𝑆
𝐵

Figure 2.7: Magnetic induction ®� created
by a magnet traveling through a spher-
ical surface ( of radius A with surface
differential ®3(.

6 The notation for the current was taken
from [2], where the current is indicated
by a lowercase letter (8) and its density by

an uppercase letter (®�). Here, we changed
the lowercase from 8 to 9 to avoid confu-
sion with the imaginary unit.

7 �0 = 1.256637 × 10−6 #/�2
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Figure 2.8: Representation of the en-
closed loop of integration � to obtain the

magnetic induction ®� created by an uni-

form current density ®� traveling through

a thin wire with path differential of 3®;.
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Figure 2.9: Representation of the en-
closed loop of integration � to obtain

the magnetic induction ®� created by a

non-uniform current density ®� traveling
through a wire with path differential of

3®; and differential cross section of 3 ®(.

8 Note that, according to this first ver-
sion of Ampère’s law, the integration
area does not need to be closed, since
we are evaluating the current that travels
through the area and not a net flux that
needs to consider what enters and what
exits a volume.
9 Similarly to Eq. 2.9, if the current is
embedded in a medium, the medium
permeability (�) should be used instead
of that of the vacuum (�0).

The Gauss law for magnetic fields is then given by:

Φ" =

∯
�

®� · 3 ®( = 0 . (2.10)

2.1.5 Ampère’s circuital law

When a straight, infinitesimally thin wire transports a uniform charge
current6 9, a magnetic induction ®� is generated around said wire by the

moving current. Specifically, ®� is perpendicular to the travel direction of
9, and its magnitude is given by

� =
�0 9

2�A

where A is the distance from the wire and �0 is the vacuum permeability7.

Note that the total current 9 and the current density ®� are related through
the integral

9 =

∬
�

®� · 3 ®( =

∬
�

� · 3( .

By tracing a closed, circular loop � in a perpendicular plane to 9, the

line differential on the loop 3®; and the magnetic induction ®� are parallel,
giving

®� · 3®; = � · 3; = �A · 3) ,

where A is the radius of �, and 3) ∈ [0, 2�] the angle differential (Fig.
2.8).

Now, by integrating the field around the thin wire, we obtain Ampère’s
circuital law for a single, infinitesimally thin wire as

∮
�

®� · 3®; =
∮
�

�A · 3) =
�0 9

2�A
· A

∫ 2�

0

3) ,

∮
�

®� · 3®; = �0 · 9 . (2.11)

Following the same rationale applied to deriving Gauss’s law for electric
fields, we could assume that adding # infinitesimally thin wires inside
of � would lead to changing 9 for

∑#
= 9= in equation 2.11. We could go

further and explore what happens when the wire is not infinitesimally
thin. In that case, the wire would have a non-zero cross-section, and the
current 9 would no longer be uniform when traveling through the wire.

In this case, a current density ®� would need to be evaluated in an area �
with a surface differential8 3 ®(, leading to the complete integral definition
of Ampère’s law9 (Fig. 2.9):∮

�

®� · 3®; = �0

∬
�

®� · 3 ®( (2.12)

This first version of Ampère’s law is not complete and can lead to
some inconsistencies. An example is provided in [2], which consists of
evaluating Eq. 2.12 in the case of charging a capacitor with two wires.
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Figure 2.10: A time-variable electric field
®� exists between the plates of a capacitor

in the presence of a moving current ®�,
so that the integrals of the magnetic field
along �1 and �2 are both non-zero.

In this example, each wire would be connected to each terminal of
the capacitor, and, between both terminals, no current is able to travel
through (the inside of a capacitor is filled with a non-conductive medium).
According to Eq. 2.12, we can integrate the right side on any area �. If we
choose � in one of the wires, a current will be traveling from the source to
one of the capacitor plates, and the integral would be non-zero. However,
by choosing � as one of the plates, no current is actually traveling through
it, and the integral would now be zero, although nothing has physically
changed, and we know sinks of ®� do not exist. This inconsistency is
fixed by considering that a charging or discharging capacitor produces a
magnetic field between its plates, even without moving charges, meaning
that charges are not the only source of magnetic fields, as equation 2.12
suggests.

Specifically, an electric field ®� exists between the plates of area � of a
capacitor with total charge & (Fig. 2.10) given by

&� =
&

�
.

When this field varies over time, the previous equation results

&
%�

%C
=

%&/%C
�

=
9

�
,

which is, by definition, a current density known as displacement current
density ®�� = &(% ®�/%)C, parallel to ®�.

This addition to Eq. 2.12 leads to what today is known as Ampère’s Law

∮
�

®� · 3®; = �

∬
�

(
®� + &

% ®�
%C

)
· 3 ®( , (2.13)

which states that both moving currents and time-varying electric fields
are sources of magnetic fields.

2.1.6 Maxwell’s equations

The four previous sections introduced equations 2.4, 2.9, 2.10, and 2.13,
which constitute the four Maxwell’s laws for electromagnetic fields. In
their simplest form, when no charges (� = 0) or currents (®� = 0) are
present, and the field is evaluated in free space (& = &0, � = �0), the four
equations are reduced to ∯

�

®� · 3 ®( = 0 ,

∯
�

®� · 3 ®( = 0 ,

∮
�

®� · 3®; = −
∬

�

% ®�
%C

· 3 ®( , and

∮
�

®� · 3®; = �0&0

∬
�

% ®�
%C

· 3 ®( .
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10 The Nabla operator ®∇ is used to ex-
press the partial derivatives on the cho-
sen coordinate space. For example, in
Cartesian coordinates,

®∇ = Ĝ
%

%G
+ Ĥ %

%H
+ Î %

%I
,

where (Ĝ, Ĥ, Î) are the Cartesian unit
vectors.

11 We refer to reference [2], section 3.1.5
for the full transformation from the in-
tegral to the differential Maxwell’s equa-
tions

®� and ®� are vector fields, which means that we can take their divergence10

(®∇·) and curl (®∇×) to evaluate their behavior. By using these operators,
alongside Gauss’s divergence theorem for a vector field ®�∯

�

®� · 3 ®( =

∭
+

®∇ · ®�3+ , (2.14)

and Stokes’s theorem ∮
�

®� · 3®; =
∬

�

®∇ × ®� · 3 ®( , (2.15)

one can reach11 the differential form of Maxwell’s equations:

®∇ · ®� =
�

&0
(2.16)

®∇ · ®� = 0 (2.17)

®∇ × ®� = −% ®�
%C

(2.18)

®∇ × ®� = �0&0
% ®�
%C

(2.19)

2.2 Material and wave equations

Maxwell’s laws define entirely the electromagnetic field caused by a
distribution of charges or currents. Still, when evaluated on a medium
other than the vacuum, one must also consider the effect the field has on
the medium and vice versa. This section will introduce the remaining
equations that describe the impact of the effects mentioned above, which
lead to the wave equation that describes how light moves through space.
All the content in this section is included in references [2] and [1].

2.2.1 Material polarization and material equations

When a dielectric medium is subject to the effects of an electric field ®�,
the charges inside the medium will shift positions, leading to a different
charge distribution than when ®� is absent. Specifically, the charges will
tend to align with ®�, leading to positively and negatively charged areas
inside the material, i.e., a dipole is created inside the material. The
separation between those areas will, in turn, create its own electric field
that will overlap with the external field and that is characterized by
the dipole moment per unit volume, defined as electric polarization ®%.
When the medium is isotropic, lineal and homogeneous, ®% is parallel
and proportional to ®� and can be derived as

(& − &0) ®� = ®% (2.20)

When no medium is present (& = &0), ®% = 0.

The electric polarization ®% will alter the electric field inside the medium
with respect to its value in the vacuum. The electric displacement ®�,
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12 We refer to references [2], appendix 1,
and [1], section 1.2 for the full derivation
of the vector expressions of Maxwell’s
equations.

13 The Laplacian operator ∇2 is a scalar
operator defined in terms of the coordi-
nate space of choice. In Cartesian coordi-
nates, its definition is

∇2
=

%2

%G2
+ %2

%H2
+ %2

%I2
,

not to be confused with the Nabla opera-

tor ®∇.

defined as
®� = &0

®� + ®% ,

measures the change in the electric field given by the existence of ®%.
Including Eq. 2.20 to the previous one leads to

®� = & ®� ; (2.21)

while ®% exists only inside of the medium, ®� exists everywhere ®� exists.

Analogously, where a material is subject to a magnetic inductance ®�, said
field will induce a magnetic dipole moment per unit volume ®", that
will alter the incident ®�. The alteration can be characterized through the
magnetic field intensity ®� as follows:

®� =
1

�0

®� − ®" .

Again, for an isotropic, linear, homogeneous, and non-ferromagnetic
medium, ®� and ®� are related through

®� =
1

�
®� . (2.22)

The last equation needed to describe the electromagnetic behavior of
materials is Ohm’s law

®� = � ®� (2.23)

which states that the application of an electric field over a material with
conductivity � will lead to the creation of currents ®�.

2.2.2 The wave equations for electromagnetic fields

By using the material equations (2.21, 2.22, and 2.23) to rewrite Maxwell’s
equations (2.16, 2.17, 2.18 and 2.19), one can derive12 the following two
equations13

∇2 ®� − �&
%2 ®�
%C2

− ��
% ®�
%C

= ®∇
(�
&

)

∇2 ®� − �&
%2 ®�
%C2

− ��
% ®�
%C

= 0

When a medium is non-conducting (� = 0) and has no charge (� = 0),
the previous equations reduce to

∇2 ®� − �&
%2 ®�
%C2

= 0 , and

∇2 ®� − �&
%2 ®�
%C2

= 0 ,

and, in free space (� = �0 and & = &0)

∇2 ®� − �0&0
%2 ®�
%C2

= 0 , and (2.24)
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∇2 ®� − �0&0
%2 ®�
%C2

= 0 . (2.25)

Given two fields ®� = (�G , �H , �I) and ®� = (�G , �H , �I), equations 2.24
and 2.25 are in fact a set of three equations each, one for each component
of ®� and one for each element of ®�, taking into account that the Laplacian
∇2 acts for all directions of the vector field.

All these equations have the shape of a scalar wave equation

%2#

%G2
+ %2#

%H2
+ %2#

%I2
=

1

E2

%2#

%C2
(2.26)

under the condition that the propagation speed of said waves needs to
be

E =
1√
�0&0

,

which indeed leads to the speed of light in a vacuum

2 = (√&0�0)−1
= 2.998926 × 108</B . (2.27)

Thus, electromagnetic fields can be treated as energy-carrying waves
moving through any medium.

2.2.3 The transverse nature of light waves

To evaluate the way light propagates through space, we will start consid-
ering a plane wave that is traveling in the I direction, with ®� = ®�(I, C).
In this case, Maxwell’s equation 2.16 reduces to

% ®�
%I

= 0

which means that if the wave is not uniform across space, its variation is
not going to be in the direction of propagation I but instead in the other
components. This is the definition of a transverse wave. Light behaving
as a transverse wave means that to have a complete definition of the
wave, it is necessary to know the direction ®� is pointing to. The complete
description in the plane perpendicular to I is known as Polarization,
which will be explored further down this chapter.

Let us now consider an electric field such that

®� = �G(I, C) · Ĝ ,

i.e., a plane wave that travels in the I direction, and its oscillations are
restricted to the G axis of the Cartesian coordinate space. By Maxwell’s
equation 2.18 we obtain

%�G
%I

= −
%�H

%C
, (2.28)

with �I being the component of ®� parallel to the I axis. This expression
indicates that for a time-varying ®� to exist, with oscillations restricted to
the G axis, the only time-varying ®� possible that follows Maxwell’s laws
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14 We refer to section 3.2.1 of reference
[2], and section 1.4.1 of reference [1] for
the full derivation of equations 2.30 and
2.31.

must have its oscillations parallel to the H axis. As such, the directions

of ®� and ®� are restricted to a plane perpendicular to the propagation
direction of the wave, meaning that the complete electromagnetic field
behaves as a transverse wave.

If we apply the previous relationship to a harmonic field with angular
frequency $ and phase ), described by

�G(I, C) = �0,G cos
[
$

( I
2
− C

)
+ )

]
, (2.29)

it can be derived14 that
�G = 2�H ,

which indicates that the amplitudes of the ®� and ®� fields are in phase,
perpendicular to each other, and proportional through 2. In dielectric
(non-magnetic and non-conducting) media with light propagation speed
E in the :̂ direction, this expression can be generalized for the amplitudes
| | ®� | | = � and | | ®�| | = �, as

� = E� , (2.30)

and, for any general medium,

®� = −
√

�

&
:̂ × ®� , and

®� =

√
&

�
:̂ × ®� .

(2.31)

2.3 Energy and irradiance

An electromagnetic field carries energy with it, which allows us to
measure the field and its properties with conventional detectors. This
section aims to provide the necessary equations to describe energy
propagation in electromagnetic fields. This section constitutes a summary
of what is described in reference [1].

2.3.1 Poynting vector

The density of electric (D�) and magnetic (D�) energy are defined as

D� =
1

2
®� · ®� =

&0

2
�2 , and

D� =
1

2
®� · ®� =

1

2�0
�2 ,

respectively. Then, the total electromagnetic energy contained in a region
of space of volume + must be

* = *� +*� =

∫
+

(D� + D�)3+ =
1

2

∫
+

( ®� · ®� + ®� · ®�)3+
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15 $ can be denoted in the literature as
angular frequency or angular speed, and
represents the number of radians per
second. It is directly proportional to the
frequency 5 by a factor 2�.

This integral appears in the energy conservation law for electromagnetic
fields, which is a continuity equation defined as

∫
+

(
®� · %

®�
%C

+ ®� · %
®�

%C

)
3+ +

∫
+

( ®� · ®�)3+ +
∮
�

( ®� × ®�)3( = 0 , (2.32)

that states that in order for the energy to be conserved inside a volume
+ enclosed by a surface �, three terms need to cancel each other. The
first term corresponds to the temporal variation of total electromagnetic
energy %*/%C, which, as previously indicated, is the total energy in the
volume. The second term indicates that part of the variation of energy
inside of + is due to the appearance of some currents ®�. Specifically, ®�
has two components: a displacement current caused by the movement of
a charge density � with speed ®E inside of + , and another caused by the
ohmic conductivity of the medium �. Therefore:

®� = � ®� + �®E .

Finally, the last term on equation 2.32 represents the amount of energy
that leaves the volume + through the surface �, which leads to the
definition of Poynting’s vector:

®( = ®� × ®� =
1

�0

®� × ®� = 22&0
®� × ®�. (2.33)

This vector indicates that the energy carried by an electromagnetic wave
is perpendicular to ®� and ®�, which means that the energy travels parallel
to the propagation speed of the electromagnetic wave.

2.3.2 Irradiance

The amount of light that illuminates a surface is the average energy per
unit area and unit time. It receives the name irradiance and is denoted
by �. Electromagnetic waves have a periodic nature, and their period
of variation, especially for those waves on the visible wavelength range
(� ∼ 10−7 m), is in the range of � = 10−15 s. Therefore, any actual
measurement of � with a conventional camera with minimum exposure
speeds in the range of microseconds is going to take a minimum of
109� to capture an image, leading to the impossibility of measuring the
instantaneous state of the field.

As its definition suggests, the irradiance is related to the Poynting vector ®(,
but not to its instant value, but to its average behavior after a measurement
time ) >> �:

� = ⟨®(⟩) = ⟨ ®� × ®�⟩
Let us now consider the specific case of a harmonic electromagnetic field
with

®� = ®�0 cos(®: · ®A − $C) and

®� = ®�0 cos(®: · ®A − $C) ,
(2.34)

where ®: represents the propagation vector (i.e., parallel to the Poyting vec-
tor orientation), ®A represents a point in space, $ is the angular frequency15
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16 In this section, we will interchange-
ably use electromagnetic field and light.
Usually, the latter often refers to the visi-
ble part of the electromagnetic spectrum.
Still, for us, the term light or radiation will
cover the whole electromagnetic range,
given that there is no formal mathemati-
cal distinction between the two terms.

of the wave, C is time, and ®�0 and ®�0 are the real amplitudes of the fields.
By considering a point with a constant phase and differentiating the

phase with respect to time, one can relate the propagation vector ®: to the
angular frequency $ and the propagation speed of the wave E through
the following relationship:

E =
$

| | ®: | |
=

$

:
, (2.35)

where the absolute value of the propagation vector, :, is defined as the
wavenumber of the wave, and relates to its wavelength � through

| | ®: | | = : =
2�

�
(2.36)

The time average of the Poynting vector for the field described in equations
2.34 is

⟨®((A, C)⟩) = 22&0 | ®�0 × ®�0 |⟨cos2(®: · ®A − $C)⟩ = 22&0

2
| ®�0 × ®�0 | ,

which leads to an irradiance of

� =
2&0

2
�2

0 . (2.37)

The energy of an electromagnetic field is balanced between ®� and ®� so
that its irradiance, which is the measurable magnitude of the energy the
fields carry, is proportional to the square of the electric field.

2.4 Light-matter interactions in non-dispersive,
continuous media

This section explores how light interacts with uniform biological tissues,
such as those found in the cornea or vitreous humor, covering funda-
mental concepts like refraction, reflection, and transmission. Here, we’ll
examine Snell’s Law, Fresnel’s equations, and the behavior of evanescent
waves.16. The contents of this section can be found in references [1] and
[2].

2.4.1 Refractive index

We have introduced in section 2.2.1 that when light travels inside a
medium, the medium affects the electromagnetic field. We have also
introduced the two principal magnitudes that help describe the changes
the electromagnetic field suffers, namely the electric permittivity (&) and
magnetic permeability (�) of the medium. We have also seen, in section
2.2.2, that electromagnetic fields travel as a wave with speed defined by
the same two magnitudes in a vacuum, 2 = (√&0�0)−1 (Eq. 2.27).

It is natural, then, to define that light moving inside a medium will travel
with a speed given by

E =
1√
�&

.
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17 Usually, by refractive index, the litera-
ture refers to the real part of the complex
refractive index.

18 We refer to M. Born and E. Wolf’s
book, Principles of Optics [1], section 1.1.3
for the full derivation of the boundary
conditions.

The index of refraction or refractive index17 is the measurement of the
speed of light inside a medium with respect to its speed in vacuum,

= =
2

E
=

√
&�

&0�0
≥ 1 , (2.38)

with the refractive index of the vacuum being =0 = 1.

Even though we have not mathematically introduced & and �, it is worth
noting that these are wavelength-dependent quantities, meaning that
they are going to provide a different response in terms of the wavelength
of the electromagnetic field, �. This wavelength dependency of the
refractive index is the reason why shining a white light at an angle onto
a prism (= = =(�)) is enough to split it into its different colors, given that
each wavelength moves at a different speed (and angle, as we will see in
the following sections). This phenomenon is known as dispersion.

In reality, the refractive index is the real part of the complex refractive
index

=̃(�) = =(�) − 8�(�) (2.39)

where �(�) contains the wavelength-dependent attenuation of light
inside the medium, as we will introduce in the next sections.

2.4.2 Boundary effects

Light traveling in a vacuum has different properties (i.e., propagation
speed) than when traveling inside a medium. Therefore, when an elec-
tromagnetic wave reaches a boundary that separates the vacuum from
the inside of the medium, there must be a specific set of equations that
describe the transition from the outside to the inside. We know that
Maxwell’s laws describe the behavior of the electromagnetic field in
any medium, so it must be possible to derive a set of specific boundary
conditions that relate the fields on both sides of the boundary.

Let =̂1 be a unitary vector normal to the boundary pointing to the inside
of the first medium, and =̂2 be a unitary vector normal to the boundary
pointing to the inside of the second medium, so that =̂1 = −=̂2. Let the
sub-indexes 1 and 2 denote magnitudes on the first and second medium,
respectively, on each side of the boundary. Then, the following four
conditions can be derived18 from Maxwell’s equations by considering
closed volumes or areas that cross the boundary:

=̂2 · ( ®�2 − ®�1) = 0 , (2.40)

=̂2 · ( ®�2 − ®�1) = 4�� , (2.41)

=̂2 × ( ®�2 − ®�1) = 0 , and (2.42)

=̂2 × ( ®�2 − ®�1) =
4�

2
®� , (2.43)

where � (Eq. 2.41) represents a possible charge density present on the

boundary, and ®� (Eq. 2.43) is a current density flowing on the boundary’s
surface. Note that while � is a scalar quantity, ®� is a vector quantity, with
direction pointing to the current movement.
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These four equations are known as the boundary conditions of the
electromagnetic field, and are interpreted as follows [1]:

▶ Eq. 2.40: The normal components of the magnetic inductance are
continuous on the boundary.

▶ Eq. 2.41: The normal components of the electric displacement are
modified in the presence of a surface charge density or otherwise
continuous when � = 0.

▶ Eq. 2.42: The tangential components of the electric field are contin-
uous on the boundary.

▶ Eq. 2.43: The tangential components of the amplitude of the mag-
netic field are modified in the presence of a surface current density
or otherwise continuous when ®� = 0.

Now that we know how the electromagnetic field behaves in a boundary
between two media, we can use the boundary conditions to derive how
a boundary modifies an incident field after their interaction. For the
following steps, we will continue with the wave formalism to derive the
equations that indicate how the electromagnetic field is modified after
reaching a boundary between two media, starting with a monochromatic
(� = constant) plane wave. Let ®�8 be an incident wave onto a two-medium
boundary, with a time-independent amplitude ®�0,8 , propagation vector
®:8 , propagation speed E, and angular frequency $8 . Let ®A = (G, H, I) be
the position vector and C be the point in time. According to this definition,
®�8 is given by

®�8 = ®�0,8 cos
(
®:8 · ®A8 − $8C

)
= ®�0,8 cos

(
:8 :̂8 · ®A8 − $8C

)
=

= ®�0,8 cos

(
$8

E8
:̂8 · ®A8 − $8C

)
= ®�0,8 cos

[
$8

(
:̂8
E8

· ®A8 − C
)]

.
(2.44)

After reaching the boundary, part of the incident wave’s energy will
reach the second medium, while another part will stay on the first. Let ®�A
and ®�C represent the part of ®�8 that is reflected to the first medium and
transmitted into the second one, respectively. Then, their expressions
are

®�A = ®�0,A cos

[
$A

(
:̂A
EA

· ®AA − C
)]

,

®�C = ®�0,C cos

[
$C

(
:̂C
EC

· ®AC − C
)]

,

where the sub-indices A and C refer to the same properties of the incident
wave defined in Eq.2.44, but for the reflected and transmitted wave,
respectively.

Let �8 be the incidence angle of ®�8 on the surface that separates both
media, with respect to the surface normal, that relates to :̂8 via

:̂8 = (sin�8 , 0, cos�8) . (2.45)

For the reflected and transmitted waves, their respective propagation
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vectors would be

®:A =
FA
EA

(:̂G,A , :̂H,A , :̂I,A) and

®:C =
FC
EC

(:̂G,C , :̂H,C , :̂I,C) ,
(2.46)

where :̂0,1 represents component 0 of the unitary propagation vector
:̂1 .

2.4.3 Phase of the electromagnetic field in a boundary:
Reflection and Snell’s laws

At the point ? = (?G , ?H , ?I) in the surface where ®�8 , ®�A and ®�C coincide,
the phase of the three waves must be the same. Therefore, it must be
fulfilled that

$8

(
:̂8
E8

· ®A8 − C
)
= $A

(
:̂A
EA

· ®AA − C
)
= $C

(
:̂C
EC

· ®AC − C
)
.

If we consider the coordinate origin on the surface, the point ? reduces
to (?G , ?H , 0), which leads to:

$8

(
:̂8
E8

· (?G , ?H , 0) − C
)
= $A

(
:̂A
EA

· (?G , ?H , 0) − C
)
=

= $C

(
:̂C
EC

· (?G , ?H , 0) − C
)
.

We can modify the previous equation by considering the equations of
the unitary propagation vectors 2.45 and 2.46, leading to

$8

(
?G sin�8
E8

− C
)
= $A

(
?G :̂G,A + ?H :̂H,A

EA
− C

)
=

= $C

(
?G :̂G,C + ?H :̂H,C

EC
− C

)
.

(2.47)

Now, for the previous equation to be true, three rules must be obeyed.
The first one is that the angular frequency of the three waves must be the
same

F8 = FA = FC . (2.48)

By Eqs. 2.35 and 2.36, we know that the angular frequency relates to the
wavelength through

$ = E: =
2�E

�

so, if $ is the same for the three waves and E is not, the wavelength �
must be modified to fulfill Eq. 2.48. The first relationship in equation 2.48
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𝜃𝑖 𝜃𝑟
𝜃𝑡
ො𝑛1

ො𝑛2

Figure 2.11: Schematics of the reflection
and refraction laws given an incident
wave (subindex 8) that reaches a bound-
ary between two media with different
refractive indices, leading to a reflected
(subindex A) and a transmitted (subindex
C) wave.

is

$8 = $C
2�E8
�8

=
2�EC
�C

�C
�8

=
EC
E8

�C = �8
=8
=C

(2.49)

which states that light changing from one medium to another can lead to
shorter (=8 < =C , �C < �8) or longer (=8 > =C , �C > �8) wavelengths. To
consider the second relationship of equation 2.48 is sufficient to change
all C by A in the previous derivation, and we would arrive at the same
relationship for the wavelengths of the incident and reflected waves.
However, given that the reflection is produced inside the first medium,
=8 = =A and �8 = �A .

The second relationship in the equation 2.47 that must be fulfilled to be
true is

0 = ?H :̂H,A = ?H :̂H,C

which indicates that when a wave that only has components in the direc-
tions Ĝ and Î, the transmitted and reflected waves only have components
in the same directions. Another way to say the same is that the three
waves are constrained to the same plane, i.e., they are co-planar.

The last relationship to evaluate in Eq. 2.47 is

?G sin�8
E8

=
?G :̂G,A

EA
=
?G :̂G,C

EC
(2.50)

Let us evaluate the first equality of this equation. If we consider that
E8 = EA , due to ®�8 and ®�A being in the same medium, and we know both
waves are co-planar, we can define the unitary propagation vector of ®�A
as

:̂A = (sin�A , 0,− cos�A) ,
with �A being the angle between ®:A and the normal to the interface surface
inside the first medium. By adding this information to the first side of
Eq. 2.50, we get

?G sin�8
E8

=
?G sin�A

E8
, or

�8 = �A , (2.51)

which is known as the law of reflection (Fig. 2.11). This relationship states
that reflections are produced at the same angle �A as the incidence angle
�8 .

Now, for the second equality of Eq. 2.50, we need to consider that the
normal to the surface now points to the second medium, and the unitary
propagation vector of ®�C is

:̂C = (sin�C , 0,− cos�C) .
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19 The sub-indexes B and ? come from
the German words, senkrecht and paral-
lel, meaning “perpendicular” and “par-
allel”, respectively. When the literature
mentions “s-polarized” waves, it indi-
cates that the amplitude of the field lies
in a plane perpendicular to the incidence
plane. On the other hand, a “p-polarized”
wave will refer to those where the ampli-
tude rests parallel to the incidence plane.
Other notations might include using the
symbol ∥ for p-polarized waves and ⊥
for s-polarized ones.

Following the same derivation as before, we arrive at

?G sin�8
E8

=
?G sin�C
EC

, or

=8 sin�8 = =C sin�C . (2.52)

Eq. 2.52 is known as Snell’s law of refraction (Fig. 2.11), or simply as
Snell’s law, which indicates that the change in angle due to refraction
between the transmitted and incident beams is going to be caused by the
difference in refractive indexes of the two media.

2.4.4 Amplitude of the magnetic field in a boundary:
Fresnel’s equations

The phase is not the only parameter that must coincide for waves ®�8 , ®�A
and ®�C at a point (?G , ?H , ?I) in the surface between two media; their

amplitudes ®�0,8 , ®�0,A , and ®�0,C must be the same as well.

Let the plane (G, I) be the incidence plane, defined as the plane that
contains the unitary propagation vector of the incident wave, :̂8 , and
the normal to the boundary’s surface. Let (G, H) be the plane parallel to
the surface. We have derived in Sec. 2.2.3 that the electromagnetic field
travels as a transverse wave, meaning that if the propagation is parallel to
:̂8 , then the amplitude of ®�8 (and ®�8) must be perpendicular to it. We will
now consider two special cases of transverse electromagnetic waves19:
®�0,8 is parallel to the incidence plane (( ®�0,8)?), and ®�0,8 is perpendicular

to the incidence plane (( ®�0,8)B)
Any vector can be decomposed into two perpendicular components
that, when added, result in the original vector. Consequently, we can
decompose the amplitude of ®�8 in any two components we want, as long
as they form a vector base. By selecting a coordinate base such that one
component is parallel to the propagation direction, another contained
in the incidence plane, and a third one parallel to the incidence plane’s
normal, the following derivations are applicable regardless of the plane
that contains the amplitude of the field.

Let ®�8 be an incident field with amplitude ®�0,8 , incidence angle �8 and
phase !(®A, C)8 , given by

®�8 = (�G,8 , �H,8 , �I,8)4−8!(®A,C)8 =
=

(−(�0,8)? cos�8 , (�0,8)B , (�0,8)? sin�8
)
4−8!(®A,C)8 ,

(2.53)

where the sub-index 8 refers to the incident wave or medium, and the
sub-indexes G, H, and I to each component of the amplitude of ®�. We
know that the electric and magnetic fields are proportional through Eq.
2.31, which, with � = 1, leads to the following magnetic field intensity:

®�8 = (�G,8 , �H,8 , �I,8)4−8!(®A,C)8 =
=

(−(�0,8)B cos�8 , − (�0,8)? , (�0,8)B sin�8
) √

&8 4
−8!(®A,C)8 .

(2.54)

In the case where there are no surface currents, we know that the
components of ®� and ®� that are tangential to the surface must be
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conserved (Eqs. 2.42 and 2.43). Then, the G and H components of the
field, tangent to the surface defined by the plane (G, H), must obey:

�G,8 + �G,A = �G,C ,
�H,8 + �H,A = �H,C ,
�G,8 + �G,A = �G,C , and

�H,8 + �H,A = �H,C .

(2.55)

By substituting 2.53 and 2.54 in equations 2.55 and considering the phase
conservation !8 = !A = !C , the reflection law �8 = �A , and the fact that
the incident and reflected wave are on the same medium (&8 = &A), we
obtain the following:[

(�0,8)? + (�0,A)?
]

cos�8 = (�0,C)? cos�C ,

(�0,8)B + (�0,A)B = (�0,C)B ,

[(�0,8)B + (�0,A)B] cos�8
√
&8 = (�0,C)B cos�C

√
&C , and[

(�0,8)? + (�0,A)?
] √

&8 = (�0,C)?
√
&C .

We know by equations 2.28 and 2.30 that the ®� and ®� fields are propor-
tional to each other through E and that ®� is also related to ®� through �,
which we are assuming to be � = 1 for the case of non-magnetic media.
Taking this information into account allows us to rewrite the previous
equations in terms of the parallel and perpendicular components of the
®�, leading to the following relationships:

AB =

(
�0,A

�0,8

)
B

=
=8 cos�8 − =C cos�C
=8 cos�8 + =C cos�C

,

A? =

(
�0,A

�0,8

)
?

=
=C cos�8 − =8 cos�C
=C cos�8 + =C cos�8

, and
(2.56)

CB =

(
�0,C

�0,8

)
B

=
2=8 cos�8

=8 cos�8 + =C cos�C
,

C? =

(
�0,C

�0,8

)
?

=
2=8 cos�8

=C cos�8 + =C cos�8
.

(2.57)

The previous equations are known as the Fresnel equations, and they
denote the amplitude of the electric field that is kept by each component
(parallel to the incidence plane ?, or perpendicular to it B) of the reflected
(AB,? , Eqs. 2.56) and transmitted (CB,? , Eqs. 2.57) waves. While the reflec-
tion amplitudes are constricted to the range [−1, 1], the transmission
amplitudes are always in the range [0, 1] due to �8 being restricted to the
range of (0, 90) degrees.

There are several points of interest we can analyze in the amplitudes of
the transmitted and reflected waves. For example, when =8 < =C , Fresnel’s
equations behave as depicted in Fig. 2.12. The shape of C? and CB is very
similar, going from a maximum transmittance at low incidence angles
(perpendicular to the surface) to completely disappearing at higher
angles of incidence (parallel to the surface). Analogously, the reflection
amplitudes A? and AB have similar shapes, going from a maximum to a
minimum, but AB is always negative, while A? exists with positive values.
A negative reflection amplitude indicates that the reflected field is flipped
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Figure 2.12: Value of the amplitude co-
efficients given by Fresnel’s equations
in terms of the angle of incidence with
=8 = 1 and =C = 1.5.

20 Having an incident wave and no trans-
mitted or reflected waves would violate
the energy conservation principle. In re-
ality, there are additional factors that
need to be taken into account, as we will
explore in the next section.
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Figure 2.13: Value of the amplitude co-
efficients given by Fresnel’s equations
in terms of the angle of incidence with
=8 = 1.5 and =C = 1. Note that, for this re-
fractive index configuration, there is no
transmitted wave, and the reflected wave
is present for a reduced set of incidence
angles.

with respect to the incident one, i.e., a phase change of � is introduced
in ®�A . The point where A? goes from positive to negative is known as
Brewster’s angle (��). At this angle, only the AB amplitude exists, which
means that even if the incident field is unpolarized, i.e., its amplitude is
randomly oriented, the reflected field’s amplitude will be polarized in
the plane perpendicular to the surface. This phenomenon can be used to
generate polarized light from unpolarized sources.

Now, let us consider the case where =8 > =C (Fig. 2.13). We see that there
is no transmitted wave to the second medium, so all of the amplitude
is kept in the first one. This case is denoted as total internal reflection
or TIR, which again has a Brewster angle (�′

�
) where the reflected wave

has only a perpendicular component. In contrast to the previous case,
now there is a set of angles at which the reflectance amplitude is zero20.
This angle is known as the critical angle (�2) and can be obtained directly
from Snell’s law (Eq. 2.52) when �C = 90◦.

All four equations are reduced to their simplest form when the incidence
is normal to the surface (�8 = 0). In such cases

A?(�8 = 0) = −AB(�8 = 0) = =C − =8
=C + =8

, and (2.58)

C?(�8 = 0) = CB(�8 = 0) = 2=8
=C + =8

. (2.59)

2.4.5 Reflectance and Transmittance

We have seen before that the power deposition per unit area is defined
as the irradiance (Eq. 2.37), which was derived from the definition of
Poynting’s vector (Eq.2.33). By recalling what was said when deriving its
equation, ®( represents the amount of energy that leaves the volume +
through surface � and, as a consequence, � must be the irradiance on a
surface perpendicular to ®(. This definition applies in the case of normal
incidence, but the irradiance will be modified according to the angle of
incidence �8 . Taking all of this into account, we can define the reflectance
' as the ratio of energies deposited in an area � between the incident
and reflected wave as

' =
�A� cos�A
�8� cos�8

=
�A
�8

, (2.60)

where we have used the reflection law (Eq. 2.51) to remove the angular
dependency. If we consider the definition of � (Eq. 2.37), ' becomes

'?,B =
2&A(�0,A)2?,B
2&8(�0,8)2?,B

=

(
�0,A

�0,8

)2

?,B

= A2
?,B , (2.61)

which means that the amount of reflected energy can be directly obtained
from Fresnel’s reflected amplitudes (Eqs. 2.56). By following the same
rationale for the transmittance), defined as the ratio of energies deposited
in an area � between the incident and transmitted waves, we reach

)?,B =
(�C)?,B� cos�C

(�8)?,B� cos�8
=
=C cos�C
=8 cos�8

(
�0,C

�0,8

)2

?,B

=
=C cos�C
=8 cos�8

C2?,B . (2.62)
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Figure 2.14: Reflectance (blue) and trans-
mittance (red) of the B and ? waves as a
function of the incidence angle �8 when
=8 = 1 and =C = 1.5.

21 We refer to section 4.6.3 of reference
[2] for the full derivation.

22 ℂ indicates the set of complex num-
bers.

Note that the previous equation is not directly proportional to Fresnel’s
transmission amplitudes (Eq. 2.57), nor directly proportional to the ratio
of irradiances �C/�8 , but instead, we need to consider the incidence angle
�8 . The equations of the reflectance (Eqs. 2.60 and 2.61) and transmittance
(Eq. 2.62) yield values between [0, 1] that slightly vary between the ? and
B waves (Fig. 2.14). Reflectance is low for low incidence angles, which
coincides with the fact that at normal incidence, most of the light is
transmitted (Fig. 2.12), and the opposite occurs for higher incidence
angles. In Fig. 2.14, it is also visible Brewster’s angle ��, corresponding to
the angle at which '? = 0, leading to the reflected wave being constricted
to the B plane. We additionally see that ' and ) are complementary;
when one increases, the other decreases and vice versa. Although not
proven here, it can be easily shown21 that

'? + )? = 1 , and

'B + )B = 1 .

Finally, in the case of normal incidence (�8 = 0), the reflectance and
transmittance equations are reduced to:

' = '? = 'B =

(
=C − =8
=C + =8

)2

=
�A
�8

, and

) = )? = )B =
4=C=8

(=C + =8)2
=
�C
�8

.

(2.63)

2.4.6 Evanescent waves and Attenuation

Let us recall Snell’s law of refraction (Eq. 2.52) that relates the orientation
of the incident (�8) and transmitted (�C) waves, given the refractive
indexes of the media in which the waves are traveling. Specifically, the
transmitted angle can be derived as

sin�C =
=C
=8

sin�C .

Now, this equation poses an interesting case when =C > =8 , given that
there is a set of incidence angles that would lead to a complex-valued22

�C
∃ =C > =1 such that sin�C > 1 =⇒ �C ∈ ℂ ,

which occurs when the incidence angle �8 is greater than the critical
angle �2 given by

sin�2 =
=C
=8

.

According to Fresnel’s equations 2.56 and 2.57, when �8 > �2 , there
would not be any reflected or transmitted wave (see Fig. 2.13). Since we
know energy must be conserved, this cannot be entirely true. It is not
that, over the critical angle, the electromagnetic field disappears, but,
instead, what Fresnel’s equations indicate is that there is no longer an
energy flow across the boundary, i.e., that goes from the first medium to
the second medium. That does not mean that there is no magnetic field
in the second medium. To evaluate the field, we need to go back to the
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x

y

z

Figure 2.15: Drawing of the main propa-
gation directions of a wave that incides
in a medium 2 with a refractive index
smaller than that of the medium it origi-
nates from. Part of the wave (evanescent
wave) travels along the boundary with-
out ever entering the second medium.

phase of ®� and, particularly, to the effect a complex transmitted angle has
on ®�. Let ®� be a complex-valued field with a phase that is a function of
position and time !(®A, C), with angular frequency $ and position vector
®:, so that

®� = ®�04
−8!( ®A,C) , with !(®A, C) = $

(
®: · ®A − C

)
. (2.64)

In section 2.4.3 we have seen that the unitary propagation vector of the
transmitted field, ®�C , is :̂C = (sin�C , 0,− cos�C), which would lead to a
phase for the transmitted wave given by

!C(®A, C) = $

(
G sin�C
EC

− I cos�C
EC

− C
)

(2.65)

We can write sin�C and cos�C in terms of �8 by using Snell’s law (Eq. 2.52)

and the trigonometric identity cos2 � = ±
√

1 − sin2 � = ±8
√

sin2 � − 1,
leading to

sin�C =
=8 sin�8
=C

, and

cos�C = ±8

√(
=8 sin�8
=C

)2

− 1 .

Applying these expressions to the phase in Eq. 2.65 would lead to an
exponent of the field in Eq. 2.64 given by

4−8! = exp


−8$ ©­

«
G=8 sin�8
=CEC

∓ 8I

EC

√(
=8 sin�8
=C

)2

− 1 − Cª®
¬


=

= exp

[
−8$

(
G=8 sin�8
=CEC

− C
)]

exp
©­
«
∓$I

EC

√(
=8 sin�8
=C

)2

− 1
ª®
¬
=

= 4$4−8 5 (G,C)4± 5 (I) ,
(2.66)

This exponent contains two position-dependent terms and one time-
dependent term. For the position-dependent terms, there is a part of the
field on the Ĝ and Î directions (Fig. 2.15). The first position-dependent
term (Ĝ), when combined with the general expression of the field (Eq.
2.64), leads to a wave that travels along the surface of the boundary
(parallel to Ĝ) without ever entering it. The rest of the energy enters
the second medium (Î), even if the angle is complex, as an exponential
alteration of the amplitude ®�0,C . The term on Î has two signs, but we must
keep only the negative one. Otherwise, having a positive exponent would
lead to an infinitely increasing amplitude, which would not have any
physical meaning. We can re-write the exponent (Eq. 2.66) in terms of its
two components as
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4−8! = 4−8!(G,C) + 4−�I ,

and the transmitted field would be

®�C = ®�0,C 4
−�I4−8!(G,C) , (2.67)

where we have defined

� =
$

EC

√(
=8 sin�8
=C

)2

− 1 =
2�=C
�0

√(
=8 sin�8
=C

)2

− 1 , (2.68)

with �0 being the wavelength of the wave in vacuum. The parameter
� is known as the attenuation coefficient, given that it represents the
exponential decay light suffers when entering a medium with a higher
refractive index than the surrounding media.

Recalling Fresnel’s transmission amplitude again (Eqs. 2.57), when =8 >
=C , there is no transmitted amplitude through the boundary to the second
medium, and the resulting transmittance (Eq. 2.62) would be zero. We
have seen in this section that this definition is incomplete, given that
there is no wave transmitted to the second medium, but a part of the
amplitude does travel within it, up to a penetration depth defined by

� =
1

�
. (2.69)

We must remember that we have obtained the coefficients CB,? (AB,?) from
the definition of the transmittance (reflectance), ) ('), and not the other
way around. Most real use-case measurements are performed from air
(=8 = 1) to a sample (=8 > 1), which would qualify for the =C > =8 scenario.
In such real cases, given an incident irradiance �8 , a measured reflected
irradiance �A , and/or a measured transmitted irradiance �C , we will use
the more generally applied definition of reflectance and transmittance

' =
�A
�8

, and (2.70)

) =
�C
�8

, (2.71)

unless indicated otherwise.

2.5 Light-matter interaction in dispersive,
discontinuous media

This section examines how light interacts with non-uniform biological
tissues with complex internal structures, such as skin or muscle. We
will explore how these tissues can absorb and scatter light and how the
refractive index changes when the medium is dispersive. As before, this
section is a comprehensive summary of the reference textbooks [1] and
[2], except when indicated otherwise.
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23 Remember the electron charge is neg-
ative: @4 = −e = −1.60217 × 10−19�.

2.5.1 Dispersion and the complex refractive index

Until now, we have only derived magnitudes from Maxwell’s equations,
which hold in continuous media, where & and � are constant. Nonethe-
less, we have also mentioned that all these magnitudes are wavelength
(i.e., frequency) dependent. The term dispersion refers to the frequency
dependence of the refractive index, and, to understand it, we must ex-
plore what happens when a medium is not continuous but instead made
of molecules.

We know (see Sec. 2.2.1) that a field ®� applied to a material will move
the charges of the material according to its electric polarization ®% (Eq.
2.20). We also know that ®� fields can be described as oscillating fields
with frequency $, where $ is given by the wavelength. If the charges
in the media were massless, the alignment between ®% and ®� would
be instantaneous, independently of the frequency state of ®�. However,
charges have mass and are often not free to move throughout the material
but are bound to molecular clouds. In any case, masses have inertia,
which is the resistance the mass poses to moving. Depending on the
frequency of ®�, the response of the charges might be faster or slower
according to their inertia.

Let us consider first a single electron with charge @4 and mass <4 inside
a material. Given an oscillating field with magnitude �(C) = �0 cos $C,
the force this electron suffers is given by Eq. 2.1

�� = @4�0 cos $C

Considering the second Newton law, the movement equation of this
electron is given by the force balance

<4
32G

3C2
= @4�0 cos $C − <4$

2
0G − <4�

3G

3C
, (2.72)

where the breakdown of the different terms is as follows:

▶ <4(32G/3C2): total force applied on the electron given by the mass
times the acceleration of the charge.

▶ @4�0 cos $C: force applied by the electric field on the charge �4 .
▶ <4$

2
0G: restoring force of a simple harmonic oscillator (� = −k�G),

where the harmonic motion comes from the opposition to the
oscillatory electric field, given by the resonance frequency $0.

▶ <4�(3G/3C): damping term that represents the speed reduction of
the electron due to collisions with the material’s lattice, given a
damping constant �.

When the damping constant � = 0, Eq. 2.72 accepts a solution such as

G =
@4

<4

1

$2
0 − $2

�(C) (2.73)

which easily lets us see that the relationship between $0 and $ will
dictate the movement of the electron. Specifically, if the field’s frequency
is smaller than $0, the electron will move against23 the field. In contrast,
over the resonance frequency, the electron will align with ®�.
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24 We refer to section 3.5.1 of reference
[2] and 2.2.3 of reference [1] for the full
derivation.

The magnitude of the electric polarization % can be evaluated as a sum
of the dipole moments ?3 of the set of moving charges that have a

displacement G due to the field ®�(C). If the set of charges is given by
N equal charges per unit volume that move according to Eq. 2.73, the
electric polarization magnitude would be

| | ®% | | = % = @4G# .

By making use of this equation in the relationship between ®% and ®� (Eq.
2.20), we can conclude that the electric permittivity of the medium is

& = &0 +
%(C)
�(C) = &0 + #

@2
4

<4

1

$2
0 − $2

,

and its associated refractive index (with � = 1) is

=($) = &

&0
= 1 + @2

4

&0<4

#

$2
0 − $2

. (2.74)

Eq. 2.74 is known as the dispersion relationship, which describes the
frequency-dependence of the refractive index. If, instead of N charges per
volume unit, we consider N molecules per volume unit, each molecule
would have " associated oscillators with their own natural frequency
and transition probability 5 , leading to

=($) = &

&0
= 1 + @2

4

&0<4
#

"∑
9=1

59

$2
0, 9

− $2
. (2.75)

In the case where � ≠ 0, the solution of Eq. 2.72 is such that we must
add the term 8�9$ to the denominator of Eq. 2.75. Finally, by also
considering that the charges are affected by the neighboring fields created
by other proximal charges, it can be shown24, the dispersion relationship
becomes

=2 − 1

=2 + 2
=

#@2
4

3&0<4

"∑
9=1

59

$2
0, 9

− $2 + 8�9$
.

2.5.2 Propagation effects of the complex refractive index

We have just seen that the refractive index is a complex number. As such,
it will have a real (=) and a complex (�) component, given by

=̃ = = + 8� .

If we consider a harmonic field as a solution of the wave equation, given
by

®� = ®�0(G, H)4 8(:I−$,C) ,
we can substitute the complex refractive index in the wavenumber
: = $=̃2−1, leading to

®� = ®�0(G, H)4 8$(
=
E I−$,C)4−$

�
2 I . (2.76)

This equation is very similar to Eq. 2.67, where again there is an expo-
nentially decaying term that travels along the propagation direction of
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25 ℎ = 6.626068 × 10−34 <
2:6
B

26 This section will not consider light
polarization and, therefore, all deriva-
tions, figures, and equations described
here apply to unpolarized light or to the
average of all polarization states only.

𝑝1
𝑝2

Figure 2.16: Example of the interaction
of two solid particles (scatterers). In this
case, the maximum (geometric) cross-
section (red) occurs when the two par-
ticles are tangentially touching. If one
of those particles is a photon, the cross-
section depicted here would be reduced
to the geometric cross-section of one scat-
terer.

the wave. We have previously introduced the attenuation coefficient (Eq.
2.68) when derived from Snell’s law in continuous media, with constant
& and �. An alternative definition comes from Eq. 2.76 when considering
the dispersion given by the value


 =
2$�

2
. (2.77)

Since the irradiance � of a field is proportional to the square of the
field (Eq. 2.37), we can consider an incident harmonic field upon some
boundary ®�8= with irradiance �0 ∝ || ®�8= | |2. After entering the media, the
energy of the field will decay according to the attenuation given by 
,
and the resulting irradiance at a point I from the boundary will be

�(I) = �04
−
I ,

where, again, the penetration depth will be given by I = 1/
. Equation
2.5.2 is one of the key relationships used daily in the optical imaging
domain, and we will derive it again from a different point of view in the
following sections.

2.5.3 Scattering

Until this point, we have not considered the particle formalism of light; we
have only treated it as an electromagnetic wave. However, if we briefly do,
we can recall that light is made out of photons with an associated energy
E= ℎ 5 = ℎ2/�, where ℎ is Planck’s constant25, 5 is the photon’s energy
and � its wavelength. When a photon enters a medium, it encounters
its atoms and molecules and interacts with them, leading to a change of
direction of E. The term scattering refers to the redirection of the energy
to a different orientation than the incident one [2].

Let �0 [�B−1<−2] be the irradiance of an incident field26. Let the field have
a propagation direction B̂ with respect to the particle to interact with
(scatterer). When the photons that compose the field reach the scatterer,
part of the photons will be redirected, carrying with them a power %B
[�B−1]. Then, the scattering cross-section is defined as

�B(B̂) =
%B
�0

[<2] . (2.78)

The scattering cross-section has units of area since it represents the
cross-sectional area the scatterer must have to interact with the incoming
photons.

To better understand the scattering cross-section, we can consider a
macroscopic example. Imagine that you have two basketballs that you
want to make collide. You initially try to launch them at each other from
opposite directions. However, you also want them to collide inside a
standing hula hoop. To do so, the hula hoop must be big enough so
that both balls can collide. If your aim is good enough, you might be
able to make them collide in the exact center of the hoop, in which case
the size of the hoop could be the exact size of the basketballs. Just to
be safe, you also want to consider the case where they barely touch,
and, for that situation, your hoop will need to be twice the size of the
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27 Note that the term interaction does
not necessarily mean collision. In general,
particles will have some charge, which
might interact with the photons in the
electromagnetic field even before reach-
ing the scatterer. As a result, the photons
can (and will) be deflected at a certain
distance from the scattering center, situ-
ated in the center of the scatterer. Then,
the scattering cross-section of interaction
between two particles marks the area
within which their paths must cross to
interact, which will generally be greater
than their geometrical size.

28 For the complete derivation, see sec-
tion 13.5 of reference [1].

basketballs. In this example, the size of the hoop represents the scattering
cross-section of the elastic collision of two identical particles (basketballs)
(Fig. 2.16). When the particles are not identical, you can think about
the hoop stretching or shrinking to accommodate them both, and when
one of the particles is a photon, the scattering cross-section reduces
in this example to the geometrical size of the scatterer27. Generally
speaking, the relationship between the scattering cross-section (�B) and
the geometrical cross-section of the scatterer (�6) is denoted through its
scattering efficiency (&B), defined as

�B = &(�6 . (2.79)

Now, in a more realistic scenario, the scattered radiation will not be a
perfectly collimated beam of photons going in a particular direction but
instead will have a specific angular distribution. Let B̂′ be the direction
of the scattered photons with respect to the scatterer. To calculate the
angular distribution, we can consider the differential cross-section

3�B
3Ω

(B̂ , B̂′) ,

where 3Ω is the solid angle of the cone that originates on the scatterer
and follows the orientation of B̂′. If we consider a spherical particle so
that

�B(B̂) = �B ,

then, the differential cross section will only be a function of the angle
between the unitary vectors B̂ and B̂′,

3�B
3Ω

(B̂ , B̂′) = 3�B
3Ω

(B̂ · B̂′) = 3�B
3Ω

cos�B ,

where �B is the scattering angle between B̂ and B̂′. The bulk response
of a material with many identical scatterers distributed according to a
density � is defined by the scattering coefficient given by

�B = ��B . (2.80)

This equation represents scattering probability. The more scatterers per
volume unit (�) or the higher the scattering cross-section, the higher the
probability of a scattering event. Therefore, we can define the length that
photons can traverse before being scattered as the scattering mean free
path, given by

;B =
1

�B
. (2.81)

We have posed the scattering cross-section (Eq. 2.78) as, essentially, an
energy balance between the input irradiance and the scattered power by
a particle, which then can be considered in differential cross-sections for
mathematical derivations. Although the mathematical derivation of the
cross-section from the electromagnetic field and Maxwell’s equations
is out of the scope of this thesis, there are some approximations and
conclusions worth noting in terms of the size of the scatterer28, which
will be introduced in the next paragraphs.
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Figure 2.17: Value of the angular compo-
nent of the differential scattering cross-
section (Eq. 2.82), (1 + cos2 �B )�−4, with
0 ≪ �, for multiple wavelengths, for
a fixed 0. As the wavelength increases
with respect to the particle, the scattered
intensity is smaller. �B = 0◦ represents
forward scattering, i.e., when the inci-
dent wave and the scattered radiation
are parallel, and �( = 180◦ is backward
scattering, i.e., when the scattered radia-
tion is opposed to the incident field.

29 See appendix 2A of reference [5] for
the full derivation.

Rayleigh scattering When the scatterer is much smaller than the
wavelength of the electromagnetic field, the angular distribution of
the scattered radiation corresponds to that of a dipole. This occurs due
to the charges of the scatterer being re-aligned with the slowly vibrating
field surrounding it [3]. Given a scatterer of radius 0 ≪ �, with refractive
index =B , embedded in a medium with refractive index =< , the differential
scattering cross-section can be approximated by

3�B
3Ω

= 8�4=4
<

(
=2
B − =2

<

=2
B + 2=2

<

)2
06

�4

(
1 + cos2 �B

)
(2.82)

which leads to the intensity of the scattered light (�B) to be proportional
to the wavelength as �B ∝ �−4 [1], with an angular distribution mainly
parallel to the incident radiation (Fig. 2.17). This approximation is known
as Rayleigh scattering and can be applied when 2�0/� ≪ 1, or 0 ≪ � [1,
3, 4].

It can be shown [5] that the scattering efficiency in regions where the
Rayleigh approximation is valid reduces to

&B =
32

27

(
2�=<
�

)4 ���� =B=< − 1

����
2

. (2.83)

Mie scattering The general theory of light scattering by spherical parti-
cles is described by Mie scattering. Gustav Mie derived this theory in 1908
[6] when he rigorously described the diffraction of a plane monochro-
matic wave by a homogeneous sphere embedded in a homogeneous
medium [1]. Following the expression of the electromagnetic field in this
scenario leads to the general expression of the scattering efficiency for
spherical particles, given by

&B =
�B
�02

=
2

:204

∞∑
;=1

(2; + 1) (|0; |2 + |1; |2
)
, (2.84)

where the parameters 0; and 1; are expressions derived from combina-
tions of Bessel’s and Hankel’s functions [5]. With this definition of the
scattering efficiency, it can be shown 29 that the spatial distribution of �
and � is restricted to the amplitude functions (1(�) and (2(�)

(1(�) =
∞∑
;=1

2; + 1

;(; + 1)

[
0;
%; ,1(cos�)

sin�
+ 1;

3

3�
%; ,1(cos�)

]
, and

(2(�) =
∞∑
;=1

2; + 1

;(; + 1)

[
1;
%; ,1(cos�)

sin�
+ 0;

3

3�
%; ,1(cos�)

]
,

so that the angular component of the intensity the field carries is given
by

�"84 =
|(1(�)|2 + |(2(�)|2

2
, (2.85)

through Legendre’s polynomials %; ,< .

Mie theory, while powerful, involves complex mathematical expressions
that can make direct interpretation of equations like Eq. 2.85 challenging.
Fortunately, the significance of Mie’s theory has led to the development
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Figure 2.18: Value of the angular compo-
nent of the scattered intensity (Eq. 2.85),
with 0 ∼ �, for multiple wavelengths, for
a fixed 0. As the wavelength increases
with respect to the particle, the scattered
intensity is smaller, just like in Rayleigh’s
approximation. However, now there is a
distinct change of shape in terms of the
relationship between the radius of the
particle 0 and the wavelength �. �B = 0◦

represents forward scattering, i.e., when
the incident wave and the scattered ra-
diation are parallel, and �( = 180◦ is
backward scattering, i.e., when the scat-
tered radiation is opposed to the incident
field.

30 Photon-absorber.

of numerous software libraries that facilitate its application and visual-
ization. Using Scott Prahl’s miepython library [7] allows us to represent
the angular dependence of the intensity (Fig. 2.18). We can immediately
see that the longer wavelengths produce radiation diagrams similar to
that of Rayleigh’s theory (Fig. 2.17), corresponding to 0 ≪ �, but the
approximation breaks down when the wavelength is comparable to the
radius of the spherical particle. In this case, the scattered intensity is
greater in magnitude, but it is also distributed differently. For the shorter
wavelengths, the scattering contribution points forward, i.e., parallel to
the incident electromagnetic field.

Scattering anisotropy The relationship between the particle’s radius 

and the wavelength � impacts the shape of the radiation diagram, as we
have seen with Mie’s expressions. The scattering anisotropy 6 describes
this shape change and is defined as the average of the cosine of the angle,
6 = ⟨cos�⟩. Nonetheless, both &B and 6 can also be defined through the
amplitude functions as

&B =
1

:202

∫ �

0

(|(1(�)|2 + |(2(�)|2
)

sin�3� , and

6 = ⟨cos�⟩ = 1

&B :202

∫ �

0

(|(1(�)|2 + |(2(�)|2
)

cos� sin�3� .

(2.86)

Given that (1(�) and (2(�) are the orthogonal amplitudes of the scat-
tered field, Eqs. 2.86 can be experimentally obtained by measuring the
intensity of each component, |(1(�)|2 and |(2(�)|2, in terms of the relative
orientation of the incident and scattered fields, �.

The value of 6 is practical to quickly determine the scattering orientation,
with 6 = 0 indicating a Rayleigh-like radiation diagram, 6 = 1 indicating
forward scattering, and 6 = −1 indicating backward scattering.

2.5.4 Absorption

Following the derivations of the previous section, we can rethink the
concept of absorption in terms of particle interactions. In this case, given
an incident field with irradiance �0 orientated parallel to B̂ that reaches a
particle to interact with (absorber), part of the power will be absorbed
(%01B) by the electronic, vibrational or rotational transitions of the particle,
leading to an absorption cross section defined as

�0 =
%01B
�0

[<2] . (2.87)

Again, this cross-section represents the area within two particles30 must be
so that the partial or total energy of the field is absorbed. The bulk response
of a material with many identical absorbers distributed according to the
numerical particle density � is defined by the absorption coefficient

�0 = ��0 . (2.88)

This definition of the absorption coefficient in terms of particles (Eq. 2.88)
complements the expression we have seen before for this parameter under
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31 While commonly known as the
Beer–Lambert Law, this principle de-
scribing the attenuation of light through
a medium has a contested naming his-
tory. Although attributed to August Beer
and Johann Heinrich Lambert, Pierre
Bouguer’s earlier work arguably estab-
lishes his contribution, leading some to
advocate for the inclusion of his name,
effectively renaming equation 2.89 as
the Bouguer-Beer-Lambert law. In 1729,
Bouguer first linked light attenuation to
its distance traveled in the atmosphere
[8]. Lambert formalized its mathemat-
ical formulation in 1760, which led to
an exponential relationship [9]. Finally,
around 100 years later, Beer further re-
fined the understanding of light atten-
uation by exploring the relationship be-
tween absorption and the thickness of a
colored solution for a given concentra-
tion, but did not include in his mathemat-
ical descriptions the molar concentration
nor the concept of absorbance [10, 11]. It
shows how complex scientific discovery
can be, with contributions sometimes
getting lost or overlooked.

the name of attenuation coefficient (Eqs. 2.77). In effect, the absorption
coefficient in a particle medium is defined as

3� = −�0 �3I ,

where 3I is the length differential in the direction of the light propagation.
By integrating both sides of the equation, we arrive at

�(I) = �04
−�0 I (2.89)

which, in the context of tissue optics, receives the name of the Beer-
Lambert31 law. This expression is similar to Eq. 2.5.2, which we derived
by considering the complex nature of the refractive index. Again, it
indicates an exponential decay of the light’s intensity as it penetrates into
a medium, but this expression now relates said decay to the density and
particle size of the medium. This new understanding of Eq. 2.89 opens
the door for a structural-focused analysis of light’s absorption inside a
sample, which will be different for the different chemical components
the sample may contain. The absorption coefficient can also be written in
terms of the absorption mean free path ;0 [cm−1], the molar extinction
coefficient �� [cm2mol−1] and the molar concentration of absorbers �
[cm−3mol or M] as

�0 =
1

;0
= ��� .

If we neglect the reflected intensity and consider only the part of the light
that enters the tissue �0, the transmitted intensity up to a point I inside
the sample is given by

) =
�(I)
�0

The part of the light that is not transmitted (i.e., scattered) by the sample’s
composition will be absorbed as it travels within it. Then, we can define
the absorbance (�) or optical density ($�) as [3, 12]

� = $� = ln

(
�0
�

)
= − ln()) = ���I . (2.90)

An alternative definition of the absorbance was used in earlier spectro-
scopic systems, which relied on the decimal logarithms as [3, 12]

� = $� = log10

(
�0
�

)
= − log10()) = ��I , (2.91)

by using the decaic molar extinction coefficient �, related to �� through

� = �� log10(e) .

This approximation is still being used, and some reference texts still
include the decaic molar extinction coefficient instead of the natural one.
Although both quantities are equivalent and differ only in one constant,
it must be explicitly stated if the natural (��) or decimal (�) logarithm is
being used for absorbance calculations to avoid confusion.

All of these magnitudes are wavelength-dependent. Keeping in mind
these expressions for the transmittance ) and absorbance � will help us
quickly determine the wavelengths of interest for chemical composition
identification inside the samples.
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2.5.5 Extinction

In general, light will suffer both scattering and absorption upon entering
a medium. The total extinction coefficient is then given by

�C = �0 + �B , (2.92)

which indicates the probability that a photon is scattered or absorbed
inside a medium [5]. The mean free path length

; =
1

�C
,

considers both effects to describe, on average, the path a photon travels
before being scattered or absorbed.

We have seen before that the intensity of the scattered radiation depends
on the relationship between the particle’s size and the photon’s wave-
length. On the other hand, not all wavelengths are equally absorbed by
the samples. Therefore, some approximations can be considered when
scattering is negligible to evaluate light decay in terms of only absorption
and vice-versa. This document will indicate when such approximations
take place.
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Figure 3.1: Evolution of the polarization
plane (orange) for a wave (blue) that
reaches a boundary between two media
(green) with different refractive indices.
The orientation of the electromagnetic
field is depicted on the lower left, with
the cross indicating that the arrows that
indicate the propagation direction are
looking at the reader.

1 Sometimes � is referred to as the prop-
agator, like in [3].
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The previous chapter introduced fundamental electromagnetic concepts
necessary for understanding the measurement techniques employed in
this thesis. However, a complete description of light propagation requires
considering not only its behavior along the direction of travel but also
the changes it undergoes in the plane perpendicular to it. As established,
electromagnetic waves are transverse, with field amplitudes oriented
perpendicular to the direction of propagation.

This chapter explores the concept of light polarization, which describes the
behavior of the electric field (�) and magnetic induction (�) amplitudes
in the plane perpendicular to the propagation direction (Fig. 3.1). Light
polarization is a valuable tool for assessing the structural periodicity of
tissues (e.g., collagen, muscle fibers, myelin), as the field amplitudes are
modulated by the structures they encounter.

The text contained in the following sections is a summary of what can
be found in multiple reference textbooks on electromagnetism and light
polarization, including those by Born and Wolf [1], Hecht [2], Goldstein
[3], or Gil and Ossikovsky [4], among others. As before, each reference
will be indicated when necessary. Readers familiar with this content may
skip to the next chapter.

3.1 Polarized light states

This section establishes the foundational concepts of light polarization, a
phenomenon characterized by the preferential orientation of light wave
oscillations. We will explore diverse polarization states, their mathemat-
ical representations, and the manipulation of polarized light through
various optical elements.

3.1.1 The polarization ellipse

We have seen in the previous chapter that Maxwell’s equations for
the electromagnetic field can be combined with the material equations
to arrive at the wave equation that electromagnetic fields fulfill. One
particular solution of interest in the wave equation (Eq. 2.26) is the case of
a harmonic plane wave, whose implications we have also explored in the
previous chapter. Let ®� be a time-dependent electric field propagating
in the Î direction, ®�(I, C). Its amplitude will be constrained to the -.
plane due to its transverse nature. Then, ®�(I, C) can be decomposed
in two orthogonal directions parallel to Ĝ and Ĥ, ®�G(I, C) and ®�H(I, C)
respectively, so that [1, 2]

®�(I, C) = ®�G(I, C) + ®�H(I, C) .

Each component can be expressed with the equation of a plane wave
with the time-dependent phase1 � = $C − :I and a different initial phase
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2 Note that we can arbitrarily depict the
calculations in this chapter at any I due to
the amplitudes being restricted to the-.
plane or planes parallel to it. We selected
I = 0 to simplify the expressions.

3 The complete derivations can be found
on Sec. 1.4.2 of reference [1] and Section
4.4 of reference [3].
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Figure 3.2: Polarization ellipse with its

relevant parameters indicated: ®� is the
instantaneous value of the electric field
vector. �0G and �0H are the maximum

amplitudes of each component of ®�. �,
�, �, and � are the tangency points be-
tween the ellipse and the rectangle. 0
and 1 are the lengths of the major and
minor axes of the ellipse, respectively. 

is the diagonal of the rectangle. Ψ is the
inclination of the ellipse. " is the elliptic-
ity angle. " is the point on the ellipse

that defines ®� with the coordinate origin.
Figure adapted from [5].

�G or �H . Considering these waves at I = 02 leads to

�G(C) = | | ®�G(C)| | = �0G(C) cos(� + �G) , and

�H(C) = | | ®�H(C)| | = �0H(C) cos(� + �H) ,
(3.1)

where �0G(C) and �0H(C) are the maximum amplitudes of the field parallel
to the directions Ĝ and Ĥ, respectively [3]. Although the previous equa-
tions depict time-dependent values, we will consider their instantaneous
values (for a specific C) unless indicated otherwise.

To evaluate the behavior of light in the -. plane, we must remove the
dependence on the propagator � from the cosines, which can be done by
making use of the cosine property cos(0+1) = cos(0) cos(1)−sin(0) sin(1).
Combining this identity with Eqs. 3.1 and squaring them yields

(
�G
�0G

sin �H −
�H

�0H
sin �G

)2

= cos2 � sin2(�H − �G) , and

(
�G
�0G

cos �H −
�H

�0H
cos �G

)2

= sin2 � sin2(�H − �G) ,

which, by adding them together, reduces to

�2
G

�2
0G

+
�2
H

�2
0H

− 2
�G
�0G

�H

�0H
cos(�H − �G) = sin2(�H − �G) . (3.2)

Equation 3.2 describes the movement of the ®�G and ®�H components of ®�
in the XY plane [3]. It describes an ellipse circumscribed in a rectangle
of sides 2�0G and 2�0H . This equation is referred to as the polarization
ellipse. Several magnitudes on this ellipse (Fig. 3.2) help interpret the
electromagnetic field’s behavior. Although we will not derive them here3,
we will introduce them here for completion.

As we will see in this section, the individual phases �H and �G are not
particularly useful by themselves to describe the polarization of light.
Instead, we will introduce the phase shift between both amplitudes

� = �H − �G , (3.3)

to help us interpret the path the electric field vector ®� follows on the -.
plane.

The polarization ellipse has a major axis 0 and a minor axis 1 that relate
to the amplitudes of the field through [5]

±01 = �0G�0H sin � , and

02 + 12
= �2

0G + �2
0H .

(3.4)

The relationship between 0 and 1 is described by the ellipticity angle ",
given by

tan " =
±1
0

, " ∈
[−�

4
,
�

4

]
. (3.5)

The angle of rotation Ψ of the ellipse indicates how parallel to the G axis
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4 See chapter 4 of reference [3] for the
complete derivations included in this
section

it is, and it relates to the amplitudes through

tan 2Ψ =
2�0G�0H

�2
0G�

2
0H

cos � , Ψ ∈ [0,�] . (3.6)

Finally, we introduce the auxiliary angle 
, which defines the diagonal
of the rectangle defined by 2�0G and 2�0H ,

tan 
 =
�0H

�0G
, 
 ∈

[
0,

�

2

]
(3.7)

which relates to the other angles via [5]

tan 2Ψ = tan 2
 cos � , and

tan 2" = sin 2
 sin � .
(3.8)

Points �, �, �, and � are the tangency points of the ellipse on the
rectangle that contains it. Their coordinates are given by solving equation
3.2 for �H and evaluating where its slope with respect to �G , 3�H/3�G , is
zero (points � and �) or infinite (points � and �), yielding

� = (�0G cos �, �0H) ,
� = (�0G , �0H cos �) ,
� = (−�0G cos �,−�0H) , and

� = (−�0G ,−�0H cos �) .

(3.9)

3.1.2 Totally polarized states

We have derived every equation we need to evaluate the specific polar-
ization states we will refer to throughout this thesis. We will do so by
analyzing particular values of the maximum amplitudes �0G and �0H ,
and the phase shift between both components, �, and evaluating how
they perform in the ellipse equation (Eq. 3.2)4.

Case 1: E0x = 0 or E0y = 0 When �0G = 0, the electric field is given by

®�(I, C) = ®�H(I, C) = �0H cos(� + �H)Ĥ ,

which means that the oscillations are restricted to the Ĥ direction. In this
case, we say that light is linearly polarized. We might refer to �0G = 0 as
light being vertically polarized or, in the analogous case, when �0H = 0,
as light being horizontally polarized.

Case 2: % = n0 with n ∈ ℕ In this case, cos � = (−1)= and sin � = 0,
which reduces the ellipse equation to

�G
�0G

− (−1)=
�H

�0H
= 0 ,

so that

�H = (−1)=
�0H

�0G
�G . (3.10)
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5 No optical element is perfect, so manu-
facturers tend to report the extinction ra-
tio | |�0G | |2/||�0H | |2 for linear polarizers.
The higher the extinction ratio, the bet-
ter the output linear polarization is. For
optical retarders (i.e., wave plates), the
value of � is usually indicated. It is worth
noting that polarization is wavelength-
dependent, and not all polarizers or wave
plates are valid at all wavelength ranges.

6 See chapter 4 of reference [3] for the
complete derivations included in this
section

The previous result is the equation of a line with slope +�0H/�0G when =
is even, or with slope −�0H/�0G when = is odd. In this case, we are still
referring to linearly polarized light.

Case 3: % = n0 with n ∈ ℕ and K0x = K0y Following from Eq. 3.10,
when we add the restriction of �0G = �0H , we arrive at

�H = (−1)=�G .

Here, light is linearly polarized at (−1)=45◦. We might refer to these
cases as diagonally polarized light. When = is even (i.e. � = 0, 2�, 4�...)
we will say that light is polarized at +45◦, whereas when = is odd
(� = �, 3�, 5�...), we might indistinctly use the terms of light polarized
at −45◦ or at +135◦.

Case 4: % = (2n + 1)0/2 with n ∈ ℕ When � is a multiple of �/2, the
polarization ellipse reduces to

�2
G

�2
0G

+
�2
H

�2
0H

= 1 ,

which is the general equation of an ellipse with its axes aligned with the
-. axes (Ψ = 0). This case represents elliptically polarized light. When
�0G > �0H , the major axis of the ellipse is parallel to Ĝ, while when
�0G < �0H , the major axis is aligned with Ĥ.

Case 5: % = (2n + 1)0/2 with n ∈ ℕ and K0x = K0y = K0 Following
from the previous equation, when the amplitudes are equal, the remaining
terms on the ellipse equation are now

�2
G + �2

H = �
2
0 ,

which is the equation of a circle with radius �0. This is the case of circularly
polarized light.

Every other combination of %, K0x and K0y In general, light coming
from regular samples will not cause perfectly linear or circularly polarized
light. Instead, the most common case experimentally encountered will
be of elliptically polarized light at an arbitrary angle with respect to
the -. axes. The only exception will come from the use of polarization
optics, which are optical elements designed to produce a specific type
of polarization, either by absorbing the amplitude of the field in one
particular direction (linear polarizers) or by delaying the two components
by an exact value of � (retarders).5

3.1.3 Handedness of Polarization

The previous sections described the instantaneous polarization state for
a fixed point in time. If we want to see its evolution, we can consider the
point " on the ellipse (Fig. 3.2) and what happens to its �H component
when time changes 6. Let �G = 0 and � = �H . If we take the time



3.2 The Jones formalism 75

7 See Sec. 8.13.2 of [2], Ch. 10 of [3], Sec.
10.4 of [4].

8 Note that, in this section, the field ®� is
always represented as a column matrix
according to the Jones formalism.

derivatives of �H and evaluate it at I = 0 and C = 0, we arrive at

3�H

3C
= −$�0H sin(�) ,

The �H derivative can be positive or negative in terms of �:

Case 1: dKy/dt > 0 If we are looking at the wave as if it was “coming
towards us ”, we would see the value of �H increase in time, and "

would move from right to left. In this case, we are describing left or
counter-clockwise polarized light. This occurs for values of � ∈ [�, 2�].

Case 2: dKy/dt < 0 Again, when the observer is looking straight on
at the wave, �H decreases in time, and " would move from left to right.
In this case, we describe right or clockwise polarized light. This occurs for
values of � ∈ [0,�].

3.2 The Jones formalism

The Jones formalism was introduced between 1941 and 1956 in eight
articles published by R. Clark Jones [6–13]. Since then, it has been
covered by every book7 on light polarization. The main characteristic
of this formalism is that it uses the complex notation of the field to
aid in calculating the polarized state of superposed totally polarized
waves. This basis makes it useful for the polarization analysis of lights in
interferometers.

3.2.1 Jones vectors

As mentioned, the Jones formalism starts with the complex notation of
the two components of the field

�G = �0G4
8� , and

�H = �0H4
8(�+�) ,

where we have set �G = 0, � = �H , and the propagator � = $C − :I.
The Jones formalism evaluates the superposition at a fixed point in time
and space, thus setting � = 0. If we write ®� as a column vector with the
previous expressions in mind, we arrive at [4]

®� =

(
�G
�H

)
=

(
�0G

�0H4
8�

)
, (3.11)

which receives the name Jones Vector, where each component has a
complex magnitude. Eq. 3.11 represents the general case for arbitrarily
aligned elliptically polarized light with arbitrary handedness.

The Jones vectors are frequently presented in their normalized form,
which uses the intensity of the field � = �2

0. Denoting the complex
conjugate as ∗, and the hermitian transpose as †, � is calculated as8
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9 See section 1.4 of reference [4] for the
complete derivations included in this
section.

� = �G�
∗
G + �H�∗

H =

(
�∗
G �∗

H

) (
�G
�H

)
= ®�† · ®� = �2

0 , (3.12)

The normalized form of the Jones vector, denoted by �̂, is found by setting

�2
0 = 1 or, alternatively,

√
�2

0G + �2
0H = 1.

One drawback of this formalism is that it can only be used to describe
totally polarized light states due to it not considering the evolution of �
over time. When light is not totally polarized (i.e., natural light, incoherent
superpositions, no fixed time-phase relationship), Jones’ formalism is
missing the time-dependent component that would explain the complete
behavior of the polarization state. As such, this formalism should be
used only when working with totally polarized sources.

We can go back to the pure polarization states (i.e., linear or circular) to
evaluate their Jones vectors in terms of the relationship between �0G , �0H ,
and �9.

Case 1: Linearly polarized light We have seen before four situations
that yield linearly polarized light:�H = 0 (horizontal polarization),�G = 0

(vertical polarization), � = =� with = ∈ ℕ (linear polarization) and � =

=� with = ∈ ℕ and �0G = �0H = �0 (diagonal polarization). We denote
the sub-indexes � for horizontal polarization,+ for vertical polarization,
� for ±45◦ diagonal polarization, and !8= for linear polarization. With
this notation, the vector for horizontally polarized light is

®�� =

(
�0G

0

)
or �̂� =

(
1

0

)
,

for vertically polarized light is

®�+ =

(
0

(−1)=�0H

)
or �̂+ =

(
0

1

)
,

for linear polarization is

®�!8= =

(
�0G

(−1)=�0H

)
or �̂!8= =

(
�0G

(−1)=
√

1 − �2
0G

)
,

and for diagonal polarization is

®�� =

(
�0

(−1)=�0

)
or �̂� =

1√
2

(
1

(−1)=
)
.

Case 2: Right-handed circularly polarized light To obtain circularly
polarized light, both �0G = �0H = �0 and � = (2= + 1)�/2 with = ∈ ℕ

must be true. For light to be right-handed (denoted by the sub-index '),
we know that � must be comprised in the [0,�] range or, in other words,
be in the first or second quadrants. Therefore, right-handed circularly
polarized light will occur for � = �/2, 5�/2, 9�/2... = (1+4=)�/2. In such cases,
4 8� = +8, leading to the Jones vector

®�' =

(
�0

8�0

)
or �̂' =

1√
2

(
1

8

)
.
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10 Coherent superposition refers in this
context to two polarization states that
have a constant phase relationship that
does not change over time and the same
wavelength. In that case, when the two
polarization states share a plane, their
coherent superposition can be found in
said plane.

Case 3: Left-handed circularly polarized light Following the rationale
of the previous case, left-handed (denoted by the sub-index !) circularly
polarized light must have a phase delay of � = 3�/2, 8�/2, 12�/2... = (3+4=)�/2,
with � in the third or four quadrants. Then, 4 8� = −8, leading to the Jones
vector for left-handed circular polarized light

®�! =
(
�0

−8�0

)
or �̂! =

1√
2

(
1

−8

)
.

3.2.2 Operations with Jones vectors

As with any other vectors, Jones vectors can be added. Indeed, Jones
vectors of two different polarization states, ®�1 and ®�2, can be analyzed in
terms of their coherent10 superposition at a point ®Awhen their polarization
ellipses lie on the same plane -.. Then, the resulting beam will be
described by the Jones vector [4]

®� = ®�1 + ®�2 .

Jones’ notation is helpful to keep the phases of ®�1,2 throughout calcula-
tions and to understand how polarization changes in the presence of two
or more beams.

The orthogonality of two Jones vectors can be checked by verifying the
relationship

®�†
1 · ®�2 = 0 .

When two Jones vectors are orthogonal, they can be used together as
a basis to define or generate any other polarization state. For example,
horizontal (HLP) and vertical (VLP) polarized states are orthogonal. In
that case, a HLP and a VLP beam with a specific phase delay can be used
to generate +45◦ polarized light (same phase), to generate −45◦ polarized
light (opposed phase �), or to generate circularly polarized light (phase
multiple of �/2) [4].

3.2.3 Jones matrices

The vector notation in polarization is useful to determine the state of the
polarized light after the incident field ®� passes through a medium. Let
®� be the incident field and ®�′ the field after interacting with a medium.
The medium will modify each component of ®�, �G , and �H by changing

the amplitudes and/or the phase delay �. The components of ®�′, �′
G and

�′
H will be combinations of �G and �H modified by different factors, 9GG ,
9GH , 9HG , and 9HH . The notation 9=< contains two sub-indices, where <
indicates the component of the incident field that is being modified (�G or
�H), and = is the component of the output field that is being interrogated
(�′
G or �′

H), leading to

�′
G = 9GG�G + 9GH�H , and

�′
H = 9HG�G + 9HH�H .
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This equation system can be written in matrix form

(
�′
G

�′
H

)
=

(
9GG 9GH
9HG 9HH

) (
�G
�H

)
,

or, analogously,
®�′ = � ®� ,

where we have introduced the matrix

� =

(
9GG 9GH
9HG 9HH

)
. (3.13)

The previous equation represents the Jones matrix of the medium, which
contains information about its optical characteristics. � is the transfer
matrix of the medium, which reads as the changes it makes on ®� to
produce ®�′. Like the Jones vectors, Jones matrices are complex-valued. In
principle, any 2 × 2 complex-valued matrix can be a Jones matrix [14].

3.3 The Stokes-Mueller formalism

Light oscillates at extremely high frequencies. In particular, for visible
light, the frequencies are in the range of $ ∼ 107rad, which makes
measuring the instantaneous polarization impossible with current tech-
nology. Instead, we can calculate the intensity of the polarization states
by averaging the polarization behavior over time.

3.3.1 The Stokes parameters

In general, the maximum amplitudes �0G and �0H , the phase shift �
and the amplitudes �G and �H all are time dependent. Adding this
information to the equation of the polarization ellipse yields [1]

�2
G(C)

�2
0G(C)

+
�2
H(C)

�2
0H(C)

− 2
�G(C)
�0G(C)

�H(C)
�0G(C)

cos � = sin2 � .

For monochromatic light, the maximum amplitudes and the phase shift
are constant in time, but �G(C) and �H(C) are still time-dependent due
to � (Eq. 3.1). If we were to place a detector to measure each of the
time-dependent magnitudes on the previous equation, the captured
values would be the time-averaged magnitudes, indicated by ⟨...⟩, over a
period of time ) much greater than the oscillation frequency of the field.
Given the time-average of two fields �8(C) and � 9(C), defined as [1]

⟨�8(C)� 9(C)⟩ = lim
)→∞

1

)

∫ )

0

�8(C)� 9(C)3C ,

the time-averaged polarization ellipse equation for monochromatic light
is given by

⟨�2
G(C)⟩
�2

0G

+
⟨�2

H(C)⟩
�2

0H

− 2
⟨�G(C)�H(C)⟩
�0G�0H

cos � = sin2 � . (3.14)
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11 See section 5.2 of reference [3] for the
full step-by-step derivation.

12 Although the Stokes vector shares ®(
as a symbol with Poynting’s vector, note
that the latter was written in terms of the
time average of the electromagnetic field.
Throughout the rest of this document,

we will reserve the notation ®( to refer to
the Stokes vector.

There are three time-averages in Eq. 3.14. We can obtain their expressions
by considering the definitions of �G(C) and �H(C) (Eqs. 3.1), which leads
to

1
2�

2
0G

�2
0G

+
1
2�

2
0H

�2
0H

− 2
1
2�0G�0H cos �

�0G�0H
cos � = sin2 � ,

which, removing the denominator by multiplying by 4�2
0G�

2
0H and group-

ing terms, reduces to 11

(�2
0G +�2

0H)2 −(�2
0G −�2

0H)2 −(2�0G�0H cos �)2 = (2�0G�0H sin �)2 . (3.15)

Each of the terms in the previous equations are the Stokes param-
eters, named after G. G. Stokes, who introduced them first in 1852
[15]. The Stokes parameters are usually written as a column vector
®(12. Two notations can be found in the literature: ®( = (� , &,*,+)) or
®( = ((0 , (1 , (2 , (3). We will use the latter. Each of the parameters refers
to the following terms of Eq. 3.15:

(0 = � = �2
0G + �2

0H ,

(1 = & = �2
0G − �2

0H ,

(2 = * = 2�0G�0H cos � , and

(3 = + = 2�0G�0H sin � ,

(3.16)

and so they fulfill the following relationship:

(2
0 = (2

1 + (2
2 + (2

3 . (3.17)

Considering that real measurements depend on the time-average of the
fields, it is necessary to consider the complex notation of the field

�G(C) = �0G4
8�G 4 8$C = �G4

8$C , and

�H(C) = �0H4
8�H 4 8$C = �H4

8$C ,

which enables the calculation of the Stokes parameters (Eqs. 3.16) as [3]

(0 = � = �G�
∗
G + �H�∗

H ,

(1 = & = �G�
∗
G − �H�∗

H ,

(2 = * = �G�
∗
H + �H�∗

G , and

(3 = + = 8(�G�∗
H − �H�∗

G) .

(3.18)

The interpretation of Stokes parameters can be easily understood by
remembering the relevant magnitudes of the polarization ellipse (Fig.
3.2) and their relation to the phase delay (Eqs. 3.4-3.7):

▶ (0 ∈ [0, 1] is the maximum intensity carried by the field.
▶ (1 ∈ [−1, 1] is the relationship between the intensity of horizontally

polarized light ((1 = 1) and vertically polarized light ((1 = −1)
▶ (2 ∈ [−1, 1] is the relationship between the intensity of light

polarized at +45◦ ((2 = 1) and at −45◦ ((2 = 1)
▶ (3 ∈ [−1, 1] is the intensity of circularly polarized light counter-

clockwise ((3 = 1) and clockwise ((3 = −1).

When light is not monochromatic, Eq. 3.15 and the Stokes parameters
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13 See section 5.3.6. of reference [3]

𝑆1 𝑆22Ψ Ԧ𝑆 2𝜒
𝑆3

Ԧ𝑆|𝑆3=0
Figure 3.3: Poincaré sphere of radius
(0 represented in the coordinate system
given by (1, (2 and (3. The orange dot
represents a polarized light state with

Stokes vector ®(. The azimuth angle is de-
fined between the projection on the plane

(1(2 of ®(, ®( |(3=0 and the (1 axis, and the
polar angle between the same projection

and the vector ®(. Figure adapted from
[5].

will be valid for very short time intervals [3]. However, Eq. 3.17 will no
longer be true and, instead, the inequality

(2
0 ≥ (2

1 + (2
2 + (2

3 (3.19)

holds [1, 3]. The degree of polarization of a wave is then defined as

�$% =

√
(2

1
+ (2

2 + (2
3

(0
≤ 1 , (3.20)

which can only be 1 for totally polarized (monochromatic) light.

3.3.2 The Poincaré sphere

It can be shown that the Stokes parameters can also be written in terms
of magnitudes of the polarization ellipse as13 [3]:

(0 = �2
0G + �2

0H ,

(1 = (0 cos 2" cos 2Ψ ,

(2 = (0 cos 2" sin 2Ψ , and

(3 = (0 sin 2" .

(3.21)

If we normalize these equations by dividing them by (0, they behave as
a spherical coordinate system of azimuth

! = 2Ψ ,

and polar angle
' = 90◦ − 2" .

Polarized light can be represented in this coordinate system. Any polar-
ized light state with a Stokes vector ®( can be represented as a point in
the sphere of radius (0 given by Eq. 3.17, which receives the name of
Poincaré sphere (Fig. 3.3).

A polarized light state will be represented as points on the surface of
the sphere of radius (0 for totally polarized light (Eq. 3.17) or inside
the sphere for partially polarized light (Eq. 3.19). All linearly polarized
states collapse to the (1(2 plane ((3 = 0), while elliptically polarized ones
will be out of said plane ((3 ≠ 0). States on the northern hemisphere of
the ellipse are left-polarized ((3 > 0) and, on the southern hemisphere,
right-polarized ((3 < 0). Circularly polarized states are found on the
poles of the sphere, directly over the (3 axis. Horizontally and vertically
polarized states sit on the (1 axis ((2 = 0) and, ±45◦ polarized ones, on
the (2 axis ((1 = 0).

3.3.3 Mueller matrices

As with Jones vectors, any Stokes vector ®( corresponding to one polarized
light state will change after interacting with a medium, leading to a
different Stokes vector ®(′. The medium can and will act over the incident
vector by changing its amplitudes and phase delay and, possibly, induce
some loss of coherence that will depolarize part of the original ®(. The
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effect the medium induces over ®( is modeled through the system of
equations given by the set of 16 real coefficients {"8 9}8 , 9=1,...,16 ∈ ℝ, where
[3]

©­­­
«

(′0
(′

1

(′2
(′3

ª®®®
¬
=

©­­­
«

"11 "12 "13 "14

"21 "22 "23 "24

"31 "32 "33 "34

"41 "42 "43 "44

ª®®®
¬
©­­­
«

(0

(1

(2

(3

ª®®®
¬
,

" =

©­­­
«

"11 "12 "13 "14

"21 "22 "23 "24

"31 "32 "33 "34

"41 "42 "43 "44

ª®®®
¬
= "11

©­­­
«

<11 <12 <13 <14

<21 <22 <23 <24

<31 <32 <33 <34

<41 <42 <43 <44

ª®®®
¬
.

(3.22)

The intermediate matrix, " (Eq. 3.22), receives the name of Mueller
matrix, and it is a crucial element that describes all the polarization
properties of a sample, including its depolarization, retardance, or diat-
tenuation, as we will see in the following chapters [4]. In contrast with
Jones’s matrices, Mueller’s matrices are real and, thus, measurable. Matrix
" can often be depicted by normalizing every element to "11, which
depicts the total measured intensity. The normalized Mueller matrix will
be described with the lowercase coefficients {<8 9}8 , 9=1,...,16 ∈ ℝ (Eq. 3.22).
Another alternative representation lies in writing it as a block matrix
[4]

" = "11

(
1 ®�)

®% <3×3

)
. (3.23)

In the previous equation, vector ®% = (<21 , <31 , <41)) is the polarizance,
which indicates the ability of the medium to polarize a completely
unpolarized incident Stokes vector. Vector ®� = (<12 , <13 , <14)) is the di-
attenuation, which describes the preference of the medium for absorbing
one of the two perpendicular amplitudes (i.e., a linear polarizer). <3×3

represents the lower right 3 × 3 block of the Mueller matrices.

3.3.4 Physical realizability of a Mueller matrix

Not all 4 × 4 real-valued matrices are physically realizable Mueller
matrices ", meaning that a sample’s Mueller matrix must fulfill some
conditions to be associated with a "real" medium. First, the sample cannot
generate polarization states with a�$% > 1. A way to test this condition
is by evaluating the next two equations, namely the forward and reverse
passivity conditions (Eqs. 3.24) [16]

"11(1 + || ®� | |) ≤ 1 , and

"11(1 + || ®% | |) ≤ 1 .
(3.24)

The second condition involves constructing a related matrix, known
as the covariance matrix, and examining its properties. The covariance
matrix, denoted as �("), is derived from the elements of the Mueller
matrix, ", using the following formula:

� =
1

4

4∑
8 , 9=1

"8:�8 ⊗ �9 , (3.25)
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14 Throughout this thesis, we will re-
fer to linear diattenuators as diattenuators
for simplicity unless indicated otherwise.
Both elliptical and circular diattenuators
exist, which describe the anisotropic ab-
sorption of perpendicular elliptically and
circularly polarized light states. Section
4.3 of reference [4] contains a complete
description of all types of diattenuators.

where �8 are the Pauli matrices and ⊗ represents the tensor product. Any
physically realizable Mueller matrix matrix has a covariance matrix where
its eigenvalues are all real and non-zero [17]. The set of two conditions
that a " must fulfill to be physically realizable receive the name of the
ensemble criterion [4].

3.4 Mueller matrices of relevant optical
elements

Biological samples with some polarimetric behavior often have Mueller
matrices with a non-straightforward interpretation. As such, several
methods will be introduced in subsequent sections to describe matrices"
in terms of equivalent, simpler materials, such as diattenuators, retarders,
and rotators. Therefore, it is necessary to introduce the basic polarimetric
behavior of these materials through their Mueller matrices.

3.4.1 Diattenuators

A linear diattenuator 14 is an optical element that attenuates the light
polarization component parallel to its absorption axis. In other words,
given a set of two orthogonal axes on the diattenuator, Ĝ� and Ĥ� ,
components polarized parallel to Ĝ� will get more attenuated than those
parallel to Ĥ� , or vice-versa [3]. Linear diattenuators are often referred
to as linear polarizers. The critical parameter of a diattenuator is then
its diattenuation, �, also called dichroism, that describes its anisotropic
intensity attenuation [4]. An ideal diattenuator does not affect the phase
of the field.

Let �G and �H be the amplitudes of an incident beam parallel to the
axes Ĝ� and Ĥ� of the diattenuator, respectively. Let �′

G and �′
H be the

amplitudes transmitted after the interaction with the diattenuator parallel
to the axes Ĝ� and Ĥ� , respectively. Let ?G and ?H be the transmittance
of the diattenuator along the axes Ĝ� and Ĥ� , respectively.

By the definition of transmittance, the amplitudes of the field before and
after the diattenuator are

�′
G = ?G�G , and

�′
H = ?H�H .

Knowing that the Stokes vectors before (®() and after (®(′), the diattenuator
are related through its Mueller matrix ("�), and applying the definition
of the Stokes vector (Eqs. 3.18), leads to a matrix given by [3]

"� =

©­­­
«

?2
G + ?2

H ?2
G − ?2

H 0 0

?2
G − ?2

H ?2
G + ?2

H 0 0

0 0 2?G?H 0

0 0 0 2?G?H

ª®®®
¬
. (3.26)
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Parameters of a diattenuator

The diattenuator matrix (Eq. 3.26) can also be represented as a block
matrix. Let {"�,89}, 8 , 9 ∈ [1, 4] be the elements of "� . Then, its block
matrix representation is given by

"� = "�,11

(
1 ®�)

®� <�

)
, (3.27)

where we have introduced the following quantities by considering that
"� is a symmetric matrix:

▶ "�,11 =
1
2 (?2

G + ?2
H) is the maximum transmittance of the diattenu-

ator.
▶ ®� is the column vector given by ®�) =

1
"�,11

("�,21 , "�,31 , "�,41),
also known as the diattenuation vector.

▶ <� is the lower right 3 × 3 block of "� after dividing it by "11,
whose expression can be calculated as

<� =

(√
1 − || ®� | |2

)
I3 +

(
1 −

√
1 − || ®� | |2

)
�̂�̂) , (3.28)

where I3 is the 3× 3 identity matrix and �̂ is the unitary diattenua-
tion vector, �̂ = | | ®� | |−1 ®�.

Any diattenuator matrix is completely defined by "11 and ®�. Any
diattenuator, i.e., not only linear ones, has a diattenuation vector defined
as

®� =
©­
«
�1

�2

�3

ª®
¬
=

1

"�,11

©­
«
"�,21

"�,31

"�,41

ª®
¬
,

whose definition can be used to calculate the total diattenuation �, the
linear diattenuation �! and the circular diattenuation �� as

� = | | ®� | | =
√
�2

1
+ �2

2 + �2
3 ,

�! =

√
�2

1
+ �2

2 , and

�� = | |�3 | | .

(3.29)

Linear diattenuators will have �� = 0, circular diattenuators will have
�! = 0 and elliptical diattenuators will be defined by �! ≠ 0 and
�� ≠ 0.

Linear polarizers

The matrix of a linear diattenuator describes the behavior of commonly
used optical elements. For example, an ideal linear polarizer has trans-
mission only along one of the two axes and completely absorbs the field
along the other. A horizontal linear polarizer is defined by ?G = 1 and
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?H = 0, so its Mueller matrix is

"�% =
1

2

©­­­
«

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

ª®®®
¬
. (3.30)

Analogously, a vertical linear polarizer given by ?G = 0 and ?H = 1 has a
Mueller matrix defined by

"+% =
1

2

©­­­
«

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

ª®®®
¬
. (3.31)

In general, we can define ?2 = ?2
G + ?2

H to describe a linear polarizer with
its transmission axis aligned at an angle � with respect to the G axis (i.e.,
Ĝ� = Ĝ cos �) as [3]

"!% =
?2

2

©­­­
«

1 cos 2� 0 0

cos 2� 1 0 0

0 0 sin 2� 0

0 0 0 sin 2�

ª®®®
¬

(3.32)

where its maximum transmittance is given by

?2

2
=
?2
G + ?2

H

2
.

Ideal linear polarizers will have a maximum transmittance of 1/2. How-
ever, real linear polarizers do not have complete transmission and com-
plete absorption along their perpendicular axis. Let us say that a real
linear polarizer has a transmittance along its transmission axis of ?2

C and
?2
4 along its extinction axis. Manufacturers often specify the extinction

ratio (�') of their linear polarizers, which is usually written as

�' = 1 :
?2
C

?2
4

. (3.33)

The �' specifies how close to an ideal one a linear polarizer is. For
example, a linear polarizer with �' = 1 : 10000 will have a Mueller
matrix much closer to that of an ideal linear polarizer than one with
�' = 1 : 100.

Neutral density filters

Diattenuation is the anisotropic absorption of two perpendicularly polar-
ized beams. Still, the general matrix of a diattenuator (Eq. 3.26) can also
be applied when the absorption is isotropic, i.e., when ?G = ?H = ?. In
such case, the matrix takes the shape [3]

"#� = ?2
©­­­
«

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®
¬
. (3.34)
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15 Throughout this book, we will refer to
linear retarders as retarders for simplicity
unless indicated otherwise. Other names
are used in the literature, such as phase
shifters, wave plates, or phase compensators.
[3]. Both elliptical and circular retarders
exist, which describe the applied phase
shift of perpendicular elliptically and
circularly polarized light states. Section
4.2 of reference [4] contains a complete
description of all types of retarders.

The matrix represented in Eq. 3.34 describes mathematically a homoge-
neous transmittance regardless of the orientation of the optical element
without affecting the polarization state otherwise. In reality, this matrix
characterizes neutral density filters, which are used in optical setups to
lower the intensity of a beam without changing the polarization state.

The intensity of the outgoing beam �′ with respect to the incident one �
is given by

�′ = ?2� ,

and the corresponding Stokes vectors, ®(′ and ®(, are related as

®(′ = ?2 ®( .

3.4.2 Retarders

A linear retarder15 is an optical element that shifts the phase of two
orthogonally polarized light states by a factor of ). In other words, given
a set of two orthogonal axes on the retarder, Ĝ' and Ĥ' components
polarized parallel to Ĝ' (fast axis) will gain an additional phase +)/2,
while those parallel to Ĥ' (slow axis) will be changed by a phase factor of
−)/2 [3]. Ideal retarders do not affect the intensity of the field. Following
on the derivations of Sec. 3.4.1, a linear retarder will relate the incident
and outgoing field amplitudes as

�′
G = 4+8)/2�G , and

�′
H = 4−8)/2�H ,

leading to a Mueller matrix "' defined by

"' =

©­­­
«

1 0 0 0

0 1 0 0

0 0 cos ) sin )
0 0 − sin ) cos )

ª®®®
¬
. (3.35)

Parameters of a retarder

As before, the general expression for a retarder (Eq. 3.35) can be rewritten
as a block matrix

"' =

(
1 ®0)
®0 <'

)

with the aid of the following quantities:

▶ ®0 is the column vector given by ®0) = (0, 0, 0).
▶ <' is the lower right 3 × 3 block of "'.

The absolute retardance ' is obtainable through specific calculations on
"'. For now, we will introduce the absolute retardance ', defined as

' = cos−1

(
trace("')

2
− 1

)
∈ [0,�] , (3.36)

but additional derivations related to the retardance will be discussed in
the following sections.



86 3 Light polarization

Quarter-wave plates

A case of particular interest is when the introduced phase shift of a
retarder is ) = �/2. This type of retarder is known as a quarter-wave
plate because each of the two field components is modified by ±�/4:

�′
G = 4+8�/4�G , and

�′
H = 4−8�/4�H .

The Mueller matrix of a quarter-wave plate with its fast axis parallel to
the G axis is given by

"&,% =

©­­­
«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

ª®®®
¬
. (3.37)

If the incident light is linearly polarized at ±45◦ with respect to the fast
axis of the waveplate,

®(±45 =

©­­­
«

1

0

±1

0 ,

ª®®®
¬

then, the output light state is given by

®(′±45 = "&,%
®(±45 =

©­­­
«

1

0

0

∓1

ª®®®
¬
= ®(!' ,

which indicates that a quarter-wave plate with its fast axis oriented
at±45◦ with respect to the horizontal can transform the incident linearly
polarized light ®(±45 into left-handed or right-handed circularly polarized
light ®(!'.

3.4.3 Rotators

So far, the specific cases of diattenuators and retarders we have seen
have been optical elements aligned with some particular orientations
with respect to the components of the field. However, a straightforward
way of transforming them into diattenuators or retarders at any specific
orientation is by considering a rotation matrix ' given by

"'>C(�) =
©­­­
«

1 0 0 0

0 cos 2� sin 2� 0

0 − sin 2� cos 2� 0

0 0 0 1

ª®®®
¬
, (3.38)

where the rotation angle of the optical element with respect to the G axis
is given by �. The rotation of any optical element with a matrix " is then
given by [3]

" = "'>C(−2�)""'>C(2�) (3.39)
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16 See reference [3] for the complete
derivations

Rotated linear polarizer

Following on the expression of the general linear polarizer (Eq. 3.32),
the matrix of a rotated, ideal (� = 0◦) linear polarizer ("!%,'>C), with
transmission ?, is derived by Eq. 3.39 [3]

"!%,'>C = "'>C(−2�)"!%"'>C(2�) ,

so that

"!%,'>C =
?2

2

©­­­
«

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

ª®®®
¬
. (3.40)

Rotated quarter-wave plates

Following the same derivations as before, the general Mueller matrix of
a quarter-wave plate (Eq. 3.37) rotated by an angle � with respect to the
G axis, "&,%,'>C , is given by

"&,%,'>C = "'>C(−2�)"&,%"'>C(2�) ,

so that

"&,%,'>C =

©­­­
«

1 0 0 0

0 cos2 2� sin 2� cos 2� − sin 2�
0 sin 2� cos 2� sin2 2� cos 2�
0 sin 2� − cos 2� 0

ª®®®
¬
. (3.41)

3.4.4 Depolarizers

Depolarizers are optical elements that turn polarized light into depolar-
ized light. If an incident state is totally polarized, the components of its
Stokes vector ®( fulfill (2

0 = (2
1
+(2

2 +(2
3. A total depolarizer will transform

the said vector into ®(′ where its components relate to those of ®( through
(′0 = (0, and (′2

1
+ (′22 + (′23 = 0. In other words, an ideal depolarizer has

a Mueller matrix, "Δ given by [3]

"Δ =

©­­­
«

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª®®®
¬
. (3.42)

If the depolarizer is not ideal, it is possible that (2
0 > (′2

1
+ (′22 + (′23 > 0.

Experimentally, one often can encounter four different cases16.

Case 1: The depolarizer is isotropic The depolarizer is not ideal, but it
has the same effect on (1, (2, and (3. Then, its Mueller matrix is given
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by:

"Δ =

©­­­
«

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª®®®
¬
, (3.43)

where 0 < 0 < 1 is the factor by which the components of ®( are
modified.

Case 2: The depolarizer is not isotropic The depolarizer is not ideal
and does not have the same effect on (1, (2, and (3. Then, its Mueller
matrix is given by:

"Δ =

©­­­
«

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 2

ª®®®
¬
, (3.44)

where 0 < 0 < 1, 0 < 1 < 1, and 0 < 2 < 1 are the factors by which (1,
(2 and (3 are modified, respectively.

Case 3: The depolarizer is isotropic and reflecting The depolarizer
is not ideal, but it has the same effect on (1, (2, and (3, except for an
additional reflection of (2 and (3. Then, its Mueller matrix is given by:

"Δ =

©­­­
«

1 0 0 0

0 0 0 0

0 0 −0 0

0 0 0 −0

ª®®®
¬
, (3.45)

where 0 < 0 < 1 is the factor by which the components of ®( are
modified.

Case 4: The depolarizer is reflecting but not isotropic The depolarizer
is not ideal, does not have the same effect on (1, (2, and (3, and reflects
(2 and (3. Then, its Mueller matrix is given by:

"Δ =

©­­­
«

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −2

ª®®®
¬
, (3.46)

where 0 < 0 < 1, 0 < 1 < 1, and 0 < 2 < 1 are the factors by which (1,
(2 and (3 are modified, respectively.

Parameters of a depolarizer

The key parameter of a depolarizer its the total depolarization Δ, defined
by the diagonal of "Δ as [18]

Δ = 1 − trace("Δ) − 1

3
∈ [0, 1] . (3.47)
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Additional derivations related to depolarization will be derived in the
following sections.

3.5 Mueller matrix decomposition methods

Mueller matrices provide a complete description of how a material or
system affects polarized light. Still, their interpretation can be difficult
due to the mixed effects of retardance, diattenuation, and depolarization.
Various decomposition methods have been developed to extract the
fundamental optical properties of the samples, i.e., their retardance,
diattenuation, and depolarization, by understanding the samples as a
mixture of known elements. This section explores the most common
techniques for interpreting and decomposing Mueller matrices. While
some decomposition methods have unique solutions, others provide
partial interpretation subject to the chosen order of matrix equivalents
selected for decomposing the matrix of the sample.

Although the contents described below are extracted from Mieites et al.
[19], the original theory was first defined by many different authors. As
such, each original article or book will be mentioned when necessary.

3.5.1 Matrix invariants

Metrics like indices of polarimetric purity (IPPs) and anisotropy coeffi-
cients provide valuable quantitative measures of a medium’s depolarizing
and anisotropic behavior, respectively. Since these are not decompositions
per se, these magnitudes can be considered invariants.

Indices of polarimetric purity

The indices of polarimetric purity are derived from the covariance matrix
�(") defined in Eq. 3.25. Let the set of four eigenvalues of �("),
{�8}8=0,...,3, with �̂1 ≥ �̂2 ≥ �̂3 ≥ �̂4 ≥ 0, and �̂8 = �8/trace(�). Then,
the indices of polarimetric purity are defined as [20, 21]

%1 = �̂1 − �̂2 ,

%2 = �̂1 + �̂2 − 2�̂3 , and

%3 = 4 − �̂2 ,

(3.48)

and the degree of polarimetric purity is

%Δ =

√
1

3

(
2%2

1
+ 2

3
%2

2 + 1

3
%2

3

)
. (3.49)

The IPPs depict the degree of polarization the sample maintains so that
0 ≤ %1 ≤ %2 ≤ %3 ≤ 1, with 1 being a totally polarizing sample and 0 a
totally depolarizing one.

The characteristic decomposition, which is out of the scope of this
book, transforms the Mueller matrix into a sum of four matrices, one of
which is pure (non-depolarizing), the second is a non-pure equiprobable
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17 See Gil and Ossikovski [22], section
6.3 for a full derivation of the IPPs and
their interpretation.

mixture of two pure matrices, the third one is a non-pure equiprobable
mixture of three matrices, and the fourth one depicts an ideal depolarizer
[22]. Without diving into details17, the IPPs represent the portion of
the medium that behaves as each of the matrices in the characteristic
decomposition. Specifically:

▶ %1 represents the portion of the medium that behaves as a pure
matrix,

▶ %2 − %1 is the portion of the medium that behaves as a non-pure
mixture of two pure matrices, and

▶ %3 − %2 is the portion of the medium that behaves as a non-pure
mixture of three pure matrices. In other words, %3 represents the
part of the medium that is not a perfect depolarizer.

Anisotropy

The anisotropy of the sample can also be evaluated directly from the
experimental Mueller matrices through the anisotropy coefficients. Given
the 3 × 3 sub-matrix of ", <3×3 (see Eq. 3.23), we can introduce vectors
[23]:

®: = 1√
3
(:1 , :2 , :3)) , ®A = (A1 , A2 , A3)) , ®@ = (@1 , @2 , @3)) , (3.50)

where

<3×3 =
©­
«
:1 A3 A2
@3 :2 A1
@2 @1 :3

ª®
¬
. (3.51)

An auxiliary quantity is then defined as

Σ = 3(1 − || ®: | |2) + 2 ®�) ®% − 2®A ) ®@ .

By making use again of the block structure of the matrices (Eq. 3.23),
the linear (
!) and circular (
�) anisotropy coefficients are derived from

combinations of vectors ®:, ®A, ®@, ®% and ®�, so that


! =

√
(�1 + %1)2 + (A1 − @1)2 + (�2 + %2)2 + (A2 − @2)2

Σ
, and


� =

√
(�3 + %3)2 + (A3 − @3)2

Σ
,

(3.52)

and the total anisotropy of the sample is derived as

%
 =

√

2
!
+ 
2

�
≤ %Δ ≤ 1 . (3.53)

Due to their definition, the degree of anisotropy of a sample can not
exceed its polarimetric purity since the anisotropy can only be calculated
where there is polarized light. As a consequence, depolarizing samples
(low %Δ) will have low anisotropy, but low anisotropy does not imply
low polarimetric purity [19].
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18 Typically, the matrices " are first
normalized by their first element, "̂ =

" · "[1, 1]−1, before applying any de-
composition method.

19 Several steps can be simplified when
matrices are singular, as explained in
Sec. 8 of reference [18] and Sec. 8.2.2 of
reference [22].

3.5.2 Forward polar decomposition

As previously mentioned, decomposition methods help understand the
experimental Mueller matrices by extracting fundamental optical prop-
erties like retardance, diattenuation, and depolarization. While various
techniques exist, the Lu-Chipman decomposition [18], also known as
the forward polar decomposition, remains widely used, particularly for
biological tissues like brain tissue, due to its straightforward interpreta-
tion.

The forward polar decomposition assumes that the polarization effects of
any sample can be represented by a sequential combination of depolar-
ization (Δ) and retardance ('). It rewrites any arbitrary matrix "18 as a
product of the pure matrices "Δ (ideal depolarizer), "' (ideal retarder),
and "� (ideal diattenuator), according to

" =

(
1 ®�)

®% <

)
= "Δ% ·"' ·"� . (3.54)

Matrices "' and "� represent pure retarders and diattenuators and
have a block form according to what was described in Sec. 3.4 so that

"' =

(
1 ®0)
®0 <'

)
, and "� =

(
1 ®�)

®� <�

)
. (3.55)

However, the depolarizer in this decomposition form,"Δ? , does not keep
the diagonal form of Eq. 3.42. Instead, its block form has the shape

"Δ% =

(
1 ®0)
®%Δ% <Δ%

)
. (3.56)

In other words, the forward polar decomposition does not consider a
pure depolarizer, but instead a depolarizer with polarizance.

The typical pipeline of the forward polar decomposition involves the
following steps19, as defined in the literature [18, 22]. Starting with
matrices

1. Normalize the experimental Mueller matrix " by its first element:
" → "/"[1, 1].

2. Identify its polarizance ®%, its diattenuation ®�, and its lower block
< by evaluating its block form (Eq. 3.54).

3. Construct the diattenuator matrix "� from its diattenuation ®�
and its lower block <� (Eq. 3.28) by evaluating its block form (Eq.
3.55).

4. Find the polarizance of the depolarizer, ®%Δ% , as

®%Δ% =
®% − < ®�

sin2

√
1 − || ®� | |2

5. Find the matrix"Δ%"' from Eq. 3.54 as" 5 ≔ "Δ%"' = ""−1
�

.
6. Keep the lower 3 × 3 block of " 5 , < 5 .
7. Calculate matrix < as < = < 5<

)
5
.
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8. Find the set of eigenvalues {�}8=1,2,3 of <, with �1 ≥ �2 ≥ �3 ≥ 0.
9. Find the set of (column) eigenvectors { ®E8}8=1,2,3 of <, associated

with each of its eigenvalues.
10. Construct matrix<'2 from the eigenvectors of< as<'2 = (®E1 , ®E2 , ®E3).
11. Calculate the quantity & from matrix " as

& =
det(")
|det(")| .

12. Construct the lower 3 × 3 block of the depolarizer matrix, <Δ% , as

<Δ% = <'2(�1 ,�2 , ��3)<)
'2

13. Build the depolarizer matrix, "Δ% , from <Δ% and ®%Δ% , from its
block form (Eq. 3.56).

14. Construct the lower 3 × 3 block of the retarder matrix, <', as

<' = <−1
Δ%< 5

15. Build the retarder matrix, "', from its block form (Eq. 3.55).

Once matrix " is decomposed according to the product in Eq. 3.54 and
the steps mentioned above, the magnitudes of the pure equivalents, Δ,
', and � (see Sec. 3.4), are derived as:

Δ = 1 − |trace("Δ%) − 1|
3

∈ [0, 1] ,

' = cos−1

(
trace("')

2
− 1

)
∈ [0,�] , and

� = | | ®� | | = | |("�(1, 0), "�(2, 0), "�(3, 0))) | | ∈ [0, 1] .

(3.57)

We have seen in Sec. 3.4 that a material’s response will depend on the
alignment between its optical axis, given by the orientation of the polar-
ization ellipse Ψ, and the polarization axes. To recover the orientation of
the optical axis, i.e., of the polarization ellipse, Ghosh et al. [24] propose
modeling the retarder, defined by "' , as a combination of an arbitrarily
oriented linear retarder with matrix "!', and a circular retarder "� .
Given the initial orientation of the optical axis of "!' Ψ = � (see fig.
3.2), its phase delay ()), and the phase delay of the optical rotation 
 the
retarder "' can be further decomposed as

"' = "!' ·"� , with

"!' =

(
1 ®0)
®0 <!'

)
,

<!' =

©­
«

cos2(2�) + sin2(2�) cos()) sin(2�) cos(2�)(1 − cos(�)) − sin(2�) sin(�)
sin(2�) cos(2�)(1 − cos())) sin2(2�) + cos2(2�) cos()) cos(2�) sin())

sin(2�) sin()) − cos(2�) sin()) cos())
ª®
¬
,

and "� =

©­­­
«

1 0 0 0

0 cos(2
) sin(2
) 0

0 − sin(2
) cos(2
) 0

0 0 0 1

ª®®®
¬
.
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Then, the orientation of the optical axis can be recovered as:

� =
1

2
tan−1

(
"!'(4, 2) −"!'(2, 4)
"!'(3, 4) −"!'(4, 3)

)
. (3.58)

3.5.3 Symmetric decomposition

The forward decomposition selects a specific order for the equivalent de-
polarizer, retarder, and diattenuator matrices. Since matrix multiplication
is not commutative, altering this order yields different sets of equivalent
matrices. Specifically, "Δ resulting from the polar decomposition can
contain non-zero off-diagonal elements, indicating the presence of polar-
izance or diattenuation even if it represents the matrix of a depolarizer.
To address these limitations, R. Ossikovski [25] has proposed a five-layer
serial model with two retarders as follows

" = "�2"'2"Δ3"
)
'1"�1 . (3.59)

This model utilizes two retarders ("'1 and "'2) and two diattenuators
("�1 and "�2) to ensure that the depolarizer obtained with this de-
composition is purely diagonal ("Δ3), given that the product matrices
" 92 = "�2"'2 and " 91 = ")

'1
"�1 represent non-depolarizing (pure)

components [25].

The (non-normalized) diagonal depolarizer is represented by

"Δ3 =

©­­­
«

30 0 0 0

0 31 0 0

0 0 32 0

0 0 0 33

ª®®®
¬
, (3.60)

and, for it to be obtained, the Mueller matrix " must be diagonalizable.
Let � = diag(1,−1,−1,−1). Then, the applicability of the symmetric
decomposition can be verified by checking if matrix # , defined as

# = �")�" , (3.61)

is diagonalizable [25].

If the symmetric decomposition can be applied, the diattenuators can
be found by deriving vectors ®B�1 = (1, ®�1)) and ®B�2 = (1, ®�2)) . These
vectors, which are related to the diattenuation vectors of "�1 and "�2,
respectively, can be found by the eigenvalue-eigenvector equations [25]

(")�"�)®B�1 = ( ®30)2®B�1 , and

("�")�)®B�2 = ( ®30)2®B�2 .
(3.62)

Then, the diattenuator matrices are recovered from the components of
®B�1 and ®B�2 by constructing it according to its block expression (Eq.
3.27) and its lower 3 × 3 block (Eq. 3.28). At this point, verifying that the
inequalities �1,2 ≤ 1 hold is necessary.

The next steps involve applying singular value decomposition (SVD) to
the matrix

"′
= "−1

�2""−1
�1 = "'2"Δ3"

)
'1 (3.63)
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20 Additional criteria can be established
here to always derive the same "'1 and
"'2 by minimizing the retardance (see
[22, 25, 26]), in this book we will only
consider the total retardance matrix "'

for ease of interpretation.

to retrieve "'2, "Δ3 and "'1, where each component of the SVD is
each of the matrices.

Using the SVD has drawbacks, given that its results are invariant to
some permutations and sign changes [22]. This implies that the SVD can
introduce an artificial circular retardance in "'1 and "'2. If the retarder
matrices are physically realizable, (det"'1 = det"'2 = +1), one can use
instead the total retardance matrix

"' = "'1"
)
'2 , (3.64)

since it is not affected by permutations nor sign changes in the way that
"'1 and "'2 are [25, 26] 20.

3.5.4 Differential decomposition

While convenient, the assumption of complete uniformity along the
optical path often fails to capture the real behavior of macroscopic samples.
The differential decomposition [27, 28] addresses this by considering a
differential Mueller matrix, <(I), for each infinitesimal element of the
optical path length (3I). This differential matrix relates to the overall
Mueller matrix, "(I), through

3"(I)
3I

= <(I)"(I) . (3.65)

In the simplified scenario where < is independent of I, Equation 3.65
admits a solution expressed in terms of the matrix logarithm (assuming
I = 1), as

< = ln(") . (3.66)

Even in the general case where < depends on I, a matrix logarithm,
! = ln("), can be defined and analyzed analogously to < to evaluate
the polarization properties of the medium [27, 28].

Again, this decomposition uses the Minkowski metric matrix � =

diag(1,−1,−1,−1). Then, the concept of G-transpose of an arbitrary
matrix � is defined as

�� = ��)� , (3.67)

and the concepts of G-symmetry and G-antisymmetry are respectively
fulfilled when

�� = � , and

�� = −� .
(3.68)

The differential decomposition focuses then on the separation of the
matrix logarithm ! in terms of its G-symmetric (!D) and G-antisymmetric
(!<) parts, given by

! = ln(") = !< + !D =
1

2
(! − �!)�) + 1

2
(! + �!)�) . (3.69)
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The !< component encodes the spectroscopic properties of ", including
linear and circular retardance and diattenuation. More precisely, !<
represents the spatial or temporal average of these properties, as shown
in [29], given by

!< =

©­­­
«

0 −!�� −!�45 ��

−!�� 0 �� !�45

−!�45 −�� 0 −!��
�� −!�45 !�� 0

ª®®®
¬
, (3.70)

Here, !� and !� denote linear retardance and diattenuation, �� and ��
represent circular retardance and diattenuation. The subscripts 45 and �
indicate the orientation of the linear properties with respect to the +45◦

and horizontal axes, respectively. In contrast, the !D component contains
the information to calculate the average variances (|Δ!� |2, |Δ!45 |2, |Δ� |2)
and covariances (Δ!�Δ!∗45

, Δ!�Δ�∗, Δ!45Δ�
∗) of these properties [19,

22].

The differential decomposition assumes that a Mueller matrix, ", can
be constructed from an infinite series of infinitesimal matrices, <. Con-
sequently, each differential matrix, < (or its matrix logarithm !), must
possess individual physical meaning. This condition can be verified
by assessing the positive semi-definiteness of the reduced coherency
matrix, which is related to the G-symmetric component of < (or !) [19].
A comprehensive formulation of this verification process is provided in
[30].

The differential model is particularly well-suited for analyzing thin
samples in transmission configurations, where the optical path length is
often the thickness of the sample. In other scenarios, precisely determining
the optical path might not be possible. However, this model has also been
applied to backscattering configurations, demonstrating its versatility in
diverse optical setups [31].
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This chapter explores the optical imaging technologies that are central
to this thesis. As mentioned in the introduction, these non-invasive
techniques offer unique advantages for studying muscular dystrophies,
providing detailed chemical and structural information without requiring
extensive sample preparation. We will examine the principles and ap-
plications of each method, highlighting their specific strengths and how
they can contribute to a comprehensive understanding of the biological
samples.

Specifically, Chapter 4 will focus on the following optical methods: Optical
Coherence Tomography (OCT), Spatial Frequency Domain Imaging
(SFDI), Hyperspectral Imaging (HSI), Polarization-Sensitive OCT (PS-
OCT), and Mueller Matrix Imaging. Each technique will be described in
detail, outlining its theoretical background, implementation, and data
analysis procedures. By combining the information gathered from these
imaging modalities, we aim to achieve a multifaceted perspective on any
sample in general and specifically on muscular dystrophy samples.

4.1 Optical Coherence Tomography (OCT)

Optical Coherence Tomography OCT is an interferometry-based imaging
technique that uses low-coherence light to capture micrometer-resolution
images of biological tissues. First introduced in the 1990s by James G.
Fujimoto’s group at MIT [1], OCT is often called optical ultrasound. Just as
ultrasound utilizes sound waves to generate images based on their echoes,
OCT employs light waves, specifically from a laser source, to reconstruct
the internal structure of a sample by measuring the delay of backscattered
light. This approach allows for non-invasive, cross-sectional visualization
of tissue micro-structures without any sample preparation required.

OCT offers a valuable compromise between the high resolution of optical
microscopy and the deep penetration of ultrasound. While ultrasound
can image deep into tissues but lacks the resolution to see fine details,
optical microscopy provides excellent detail but can only penetrate a short
distance. OCT finds a balance, capturing micrometer-scale resolution
while achieving millimeter-level penetration [2]. This capability makes
OCT ideal for visualizing tissue structures at depths where both fine
detail and penetration depth are essential.

4.1.1 Fundamentals

OCT uses low-coherence interferometry to construct three-dimensional
images of the internal structure of the samples. As such, we will revise
both concepts, interference and coherence, here to contextualize this
technique. This section contains a summary of the most relevant steps
for OCT specifically, as described in Principles of Optics [3].



102 4 Optical imaging technologies

1 We refer to Section 7.2 of reference [3]
for the full derivation.
2 Note that, according to Eq. 4.3, if
two co-propagating waves (i.e., �01,I =

�02,I = 0) are perpendicularly polarized
(i.e.,�01,H = �02,G = 0), their interference
term is zero and the total intensity is their
added individual intensities. This is also
the case for unpolarized light, where
� = �1 + �2 and �1,2 = 0 [3].

Interference of two monochromatic waves

Let us consider two monochromatic waves that overlap at a point in

space, ®�8 with {8}1,2. Each wave travels with a propagation ®:8®A and a
frequency $. We will also consider an initial phase shift between the
waves, so each has an additional phase )8 . Both waves are then defined
as

®�1(®A, C) = ®�1 = R

[
®�01(C)4−8( ®:1 ·®A−$C+)1)

]
, and

®�2(®A, C) = ®�1 = R

[
®�02(C)4−8( ®:2 ·®A−$C+)2)

]
,

(4.1)

where R[·] describes the real part of the field, given by R[®0] = 1
2 [®0 + ®0∗],

with ∗ denoting the complex conjugate [3]. We will also consider in this
section the three-dimensional nature of the amplitudes given by

®�08(C) = (�08 ,G(C), �08 ,H(C), �08 ,I(C)) .

The total field at the point in space where the two fields overlap is given
by

®�(®A, C) = ®�1(®A, C) + ®�2(®A, C) .

According to what was introduced in chapter 2 (Eq. 2.37), the irradiance
carried by the superposition of these fields at this point in space will be
proportional to their added time average [3], as [3]

� ∝ ⟨®�2⟩ = ⟨ ®�2
1 + ®�2

2 + 2 ®�1
®�2⟩ = ⟨ ®�1⟩ + ⟨ ®�2⟩ + ⟨ ®�1

®�2⟩ .

If we drop the proportionality and focus only on the squared fields, the
intensity at the point in space where two fields overlap is given by

� = �1 + �2 + �12 , with

�1 = ⟨ ®�2
1⟩ = ⟨ ®�1 · ®�∗

1⟩ ,

�2 = ⟨ ®�2
2⟩ = ⟨ ®�2 · ®�∗

2⟩ , and

�12 = 2⟨ ®�1 · ®�2⟩ .

(4.2)

Let us evaluate the term �12, denoted interference term [3], to see how
different configurations of ®�1,2 affect the total intensity �. According to
the fields in Eqs. 4.1, and given their relative phase difference &, it can be
shown1 the interference term is2

�12 = 2⟨ ®�1 · ®�2⟩ =
1

2
(�01,G�02,G + �01,H�02,H + �01,I�02,I) cos & . (4.3)

For simplicity, let us now consider the case of two linearly polarized
waves along the G direction so that �01,H = �02,H = �01,I = �02,I = 0, that
are propagating along the I-direction. In this case, the total intensity is
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I1 + I2 + 2 I1I2

Figure 4.1: Total intensity for two parallel,
linearly polarized waves along the G axis,
with �2 = 4�1, in terms of their relative
phase delay, &.
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Figure 4.2: Schematics of a Michelson
interferometer as depicted in [3]. A light
source (() produces light rays (1) that
reach a beam splitter (�(). Part of the
intensity (2) bounces in a mirror ("1)
in one of the arms of the interferome-
ter. The other part (3) continues forward,
passes through a compensation plate (�)
with the same thickness and refractive
index of �(, and reaches another mirror
"2. Both beams recombine at the back
of �( and travel parallel until they reach
a collimation lens !, which focalizes the
interference pattern in the plane that
contains % and is parallel to "1. "′

2
rep-

resents the image of "2 when mirrored
around the back of �( .

�1 =
1

2
�2

01,G ,

�2 =
1

2
�2

02,G ,

�12 = �01,G�02,G cos & and

� = �1 + �2 + 2
√
�1�2 cos & .

(4.4)

The maxima and minima of this function correspond to those of cos & (Fig.
4.1). We can introduce the difference in the optical path length between
both waves, Δ!, so the phase delay & is

& =
2�

�0
Δ! , (4.5)

where�0 is the central wavelength of the fields. In case they are monochro-
matic, �0 = �.

As a result, the interference pattern created in �12 is directly related to
the difference in the optical path that each wave travels. Any relative
optical path difference change will manifest as a different interference
pattern. This phenomenon is crucial to understanding how an OCT
system functions.

The Michelson interferometer

At the core of every OCT, the system is an interferometer, which is usually
configured according to a Michelson interferometer [4] (Fig. 4.2).

This configuration is formed by two possible optical paths. One contains
the source ((), a mirror ("1), and the plane that contains point % and is
parallel to "1 (i.e., interference plane). The other arm contains (, another
mirror ("2), and ends in the interference plane as well. Both paths are
connected via a beam splitter (�() and a compensation plate (�). When
a field (1) exits the source and reaches the beam splitter, it divides into
two fields (2 and 3). Ideally, both fields will carry the same intensity.
Then, field 2 goes through the first optical path, reaches mirror "1,
bounces back to the beam splitter, traverses it again, and exits on its other
side after having passed through the beam splitter three times. Field 3

continues forward through the beam splitter, then through plaque �,
bounces on mirror "2, passes through plaque �, reaches the back of
the beam splitter, and reflects down. Since 3 passes only through the
beam splitter once, the compensation plate has the same thickness and
refractive index, so the delay the beam splitter introduces does not affect
the interference pattern.

If the distance between mirror "2 and the beam splitter and between
mirror "1 and the beam splitter is not the same, there will be a difference
in the optical path length that causes an interference pattern between
2 and 3 when the lens makes them converge at the same point %. If we
consider the image of "2 using the back of the beam splitter ("′

2) as
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3 These systems are known as Time-
Domain OCT systems (TD-OCT), but are
rarely used nowadays due to their low
speeds caused by having moving parts.

a reference, we see that the optical path length difference will be the
distance between "1 and "′

2. Then, the phase delay will be

& =
2�

�0
("1 , "

′
2) ,

where (�, �) indicates the Euclidean distance between � and �. The
consequent interference pattern will have a frequency given by Δ!.
Therefore, by capturing the interference pattern, we can reconstruct the
intensity that originates at a distance of Δ!.

Early OCT systems3 were based on this same principle. One of the mirrors
was replaced by the sample itself in the sample arm of the interferometer,
while the other was attached to a moving stage in the reference arm. The
interference plane was fixed on the detector, so the only possible measure
of interference was when both arms had the same length. If, for example,
one moved the reference mirror so that its optical path matched the
surface of the sample, what the OCT capture would be the profilometry
of the sample, but by lengthening the reference arm, one could capture
the interference pattern coming from inside the sample.

Coherence

In reality, there is no perfectly monochromatic light, meaning that in-
terference is not always visible in experiments dedicated to observing
the characteristic interference fringe patterns. If the path length of the
interferometer is increased enough, the fringes eventually disappear.
Born and Wolf provide an intuitive example in section 7.5.8 of their book
[3] in terms of wave trains. A monochromatic source is not one continuous
field but is made up of randomly and continuously produced finite wave
trains instead of infinite ones. By the time one wave train enters the
interferometer, if the phase delay it induces is greater than its (finite)
length, by the time beam 3 reaches point % (see Fig. 4.2), beam 2 is still in
the other arm. As a consequence, no interference is observed at %.

The formal definition of this phenomenon is also described in the same
section [3] but has been included below for completeness. This definition
focuses on evaluating what occurs at point %. Once a wave train reaches
%, the measured intensity will change for some period of time ). We will
introduce this time-dependent field change, or disturbance, as �(C). By
doing so, we can analyze �(C) in terms of its Fourier integral,

�(C) =
∫ ∞

−∞
5 (�)4−2�8�C3� ,

or, in terms of its Fourier transform 5 (�),

5 (�) =
∫ ∞

−∞
�(C)42�8�C3C .

By observing over some time, a total of # wave trains will have reached
the detector, each of them at a time C= , so the total detected field will be

+ =

#∑
==1

�(C − C=) .
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 [a.u.]

I [
a.

u.
]

a)

 [a.u.]

I [
a.

u.
]

b)

 [a.u.]

I [
a.

u.
]

c)

 [a.u.]

I [
a.

u.
]

d)

Figure 4.4: (a) Four different intensity pat-
terns corresponding with interference
caused by scattering at four points inside
the sample. The coherence properties of
the waves give the shape of the envelope
of each pattern. As the points get closer
(b-d), their frequency range gets wider,
and the points are no longer indepen-
dently identifiable.

The intensity recorded over a period of 2) is calculated as the integral of
the total field. However, real measurement periods will be much longer
than the average duration of each wave train, so integrating over 2) is
equivalent to doing an infinite integral. As a result, the total intensity is
given by [3]

� =
1

2)

∫ ∞

−∞
|+ |23C = #

)

∫ ∞

−∞
| 5 (�)|23� . (4.6)

To arrive at the interference intensity pattern, we will next consider a
disturbance given by train waves of duration ΔC, which corresponds to a
unique frequency �0, so that [3]

�(C) = 504
−2�8�0C , if |C | ≤ ΔC

2

and its Fourier transform, which represents the intensity captured at
point % (Eq. 4.6), is [3]

5 (�) = 50ΔC

[
sin (�ΔC(� − �0))
(�ΔC(� − �0))

]
(4.7)

The elements between brackets in Eq. 4.7 represent a sinc function, and
the associated intensity pattern will have a sinc squared function as a
principal element (Eq. 4.6). This function has a maximum value at �0 (Fig.
4.7) and then quickly fades out as the frequency moves away from it.

The measured intensity, i.e., the integral of the squared sinc, will essen-
tially correspond to those frequencies around the central �0 so that the
Fourier spectrum is contained within the frequency range given by [3]

Δ� = � − �0 ∼ 1

ΔC
.

The frequency range Δ� and the average train wave duration ΔC satisfy
the inequality ΔCΔ� ≥ (4�)−1, we can also relate them through the
following expression [3]

Δ; = 2ΔC ∼ 2

Δ�

�2
0

Δ�
. (4.8)

In Eq. 4.8, we have included the central wavelength of the source�0, which
corresponds to the average wavelength of all wave trains the source emits,
and also its bandwidth Δ� as a measurement of the wavelength-spread
of the source.

Eq. 4.8 represents the crucial physical magnitudes that OCT systems are
based on, namely the coherence time ΔC and coherence length Δ;. These
magnitudes represent the maximum duration or length, respectively,
that the wave trains the source emits. If the delay introduced by the
interferometer, Δ!, is greater than the coherence length of the light, Δ;,
the first part of the wave train will exit the interferometer at least ΔC
before the other; in other words, they will not coincide in the same place
at the same time, so there will be no interference detected.

Additionally, the detected interference pattern will be restricted to a
specific region of the Fourier spectrum, meaning its interference will not
be infinite, as suggested by Eq. 4.4. Therefore, the coherence length is
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directly related to the minimum distance (i.e., the resolution) an OCT
system will be able to measure. For the OCT to distinguish two points
of the sample, � and �, separated by ΔI, their distance must be at least
Δ;. Otherwise, the interference created by reflecting or scattering off �
and the one created by reflecting off � will overlap in the detector. This
effect is illustrated in Fig. 4.4. In Fig. 4.4 (a), four interference patterns
as produced by four different points of the sample (�, �, �, and �)
are captured at various regions of the Fourier frequency spectrum, i.e.,
they reach the detector at different times. Even though the four intensity
patterns are different, their envelope is the same since it is regulated
by the width of the sinc function related to the coherence properties
of the source. If points �, �, �, and � are closer to each other (Fig.
4.4, b-d), there is a minimum distance between points required so that
the individual patterns are still discernible. Otherwise, their respective
frequency ranges will be larger, so the signals would mix, and the points
will no longer be distinguishable in the OCT images.

4.1.2 OCT notation

Before moving on to the description of the OCT we used in this thesis, it
is worth briefly introducing the notation used in OCT imaging.

OCT devices generally perform single-point measurements on a sample.
Variations in the sample’s internal structure along the measurement’s
direction will yield different reflectance and backscattering responses,
creating a specific intensity pattern dictated by the sample’s structure.
Changes in material (i.e., in refractive index) through the sample will often
translate into high recorded intensities corresponding to the boundary
between materials, according to the Fresnel coefficients (see Chapter 2).

A single-point measurement will correspond to a one-dimensional in-
tensity curve (�) versus depth values after transforming the frequencies
into time and later into depth (I). Such one-dimensional measurements
receive the name of A-scan (�(I)) or axial scan [5]. At the end of the
interferometer, a motorized component usually enables the redirection of
the source light. This component allows for the combination of adjacent
A-scans, providing a two-dimensional image of G- or H-displacement
and depth, where the color is provided by the intensity �. This two-
dimensional images are named B-scans (�(G, I) or �(H, I)). Finally, the
concatenation of B-scans generates three-dimensional cubes, named
C-scans, where the data has three spatial dimensions and the values
correspond to those of the intensity (�(G, H, I)).

Other types of scans include T-scans, which are obtained by fixing a depth
value, I = constant, to produce �(G, H) data, and M-scans, which are
obtained by concatenating A-scans obtained over time (C), as if recording
a video of A-scans, to produce �(I, C) data.

Although it is not a type of scan since it involves data processing, the
maximum intensity projection, or MIP, is often used to compress the I
axis in data visualizations. Let �(G, H, I) be the C-scan. Then, the MIP is
calculated as the maximum along the I− direction of the data, according
to

MIP(G, H) = max|I �(G, H, I) . (4.9)
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Figure 4.5: Representation of an OCT measurement of a 3D-printed hand. (a) A-scan in the center of the sample. (b) B-scan obtained by
fixing H as a constant in the center of the hand. (c) B-scan obtained by fixing G as a constant in the center of the hand, perpendicularly to
(b). (d) T-scan obtained by fixing I as a constant in the center of the hand, perpendicularly to (b) and (c). (e) MIP calculated according to
Eq. 4.9. (f) C-scan. The yellow arrow is the G axis, the magenta is the H axis, and the cyan is the I axis. The C-scan occupied a volume of
(10 × 10 × 3) mm3.

4 The M-scan is not shown as this is a
stationary sample, so � ≠ �(C).

Fig. 4.5 shows the different visualizations mentioned in this section4.
Note that since the coordinate origin is at the top left corner of the
C-scan (Fig. 4.5,f), the A-scans are defined from the top to the bottom
of the data cube. As such, the flat region at the beginning of the A-
scan corresponds to the air on the top of the sample. When the source
reaches the sample’s surface, the first refractive index change appears,
and a prominent intensity peak is recorded due to Fresnel’s reflectance.
After this first surface, the light decays exponentially (or linearly when
represented logarithmically), indicating a uniform sample interior.

4.1.3 Instrumentation

The OCT system used in this thesis is the commercial device TEL221PS
(Thorlabs) [6]. This base unit uses a Superluminescent Diode (SLED) with
a central wavelength of �0 = 1300nm and a bandwidth of Δ� = 135nm.
The resolution along the I direction (ΔI) is calculated by considering the
minimum width of the Gaussian beam the source outputs. As such, Eq.
4.8 becomes

ΔI =
Δ;

=
=

1

=

2ln(2)
�

�2
0

Δ�
, (4.10)

where = is the refractive index of the sample and ln the natural logarithm.
In the air (= = 1), the optical depth resolution is ΔI = 5.5�<, while in
water (= = 1.33) becomes ΔI = 4.2�<.

The maximum penetration depth of this device is

3I =
3.6 mm
=

, (4.11)

where, again, the refractive index will influence the maximum penetration.
In the air, 3I = 3.6 mm, while in water, it becomes 3I = 2.6 mm.

The system’s speed can be modified to capture between 5.5 kHz and
76 kHz, meaning even at the lowest speeds, this device can capture
over 5000 A-scans per second. The high speed comes from the system’s
configuration. Its capture mode is not based on time-domain OCT, but
instead on Spectral-domain OCT (SD-OCT). In this configuration, the
detector is a spectrometer, and the A-scan is reconstructed from the
Fourier transform of the spectrum, as indicated in previous sections
[6].
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The source is then coupled to a volume-optics Michelson interferometer
(OCTP-1300PS/M, Thorlabs) [7], designed for wavelengths of 1300 or
1325 nm. Our OCT device has three interchangeable lenses that can be
attached to the interferometer (OCT-LK2, OCT-LK3, OCT-LK4, Thorlabs)
[8–10], but for this book we used the OCT-LK3 lens since it provided a
good trade-off between the optical lateral resolution (ΔG> ,ΔH>)

ΔG> ,ΔH> = 13 �< ,

the lateral field of view (FOVG,H)

FOVG,H = 10 × 10 mm2 , (4.12)

and the effective focal length (EFL)

EFL = 36 mm. (4.13)

Notice that we mentioned the optical lateral resolution instead of the
lateral resolution. The reason is that this OCT system can be configured
to digitally increase the number of pixels along the G and H spatial
dimensions by moving the galvanometer motor that controls the source’s
position. Specifically, the digital lateral resolution (ΔG3 ,ΔH3) is given in
terms of the maximum lateral field of view in each direction and the
pixel number along G or H (?G,H), so that

ΔG3 ,ΔH3 =
�$+G,H

?G,H
=

10 mm
?G,H

.

The greater the number of pixels, the higher the digital resolution.
However, when ?G,H is such that the digital resolution is higher than the
optical resolution, ΔG3 ,ΔH3 < ΔG> ,ΔH> , the system will not be obtaining
new information, but instead, it will be oversampling the same point
while increasing the file size. For this reason, we will keep the system’s
configuration so thatΔG3 ,ΔH3 = ΔG> ,ΔH> = ΔG ,ΔH or, in other words,

�G, H = 13
�<

?G,H
. (4.14)

Oversampling can be helpful to increase the light captured at each point
and improve the signal-to-noise ratio (SNR). However, the complete
10 × 10 × 3.6/= mm3 data cubes our system produces, at the optical
resolution of ΔG, H = 13 �</?G,H and ΔI = 5 �</?I , occupy between 2
Gb and 10 Gb each, in terms of the imaging mode selected. The size of
the datasets is also something to consider when configuring an OCT
measurement.

4.1.4 Optical properties

The principal optical property obtained with conventional OCT imaging
is the attenuation or extinction coefficient �C , representing the combined
effect of the absorption �0 and scattering �B of the sample. As we have
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introduced in Eq. 2.92 on Chapter 2,

�C = �0 + �B .

The detected photocurrent on an OCT system, 82(G, H, I), contains the
intensity changes due to the effects of the system, ((G, H, I), and the
sample’s behavior, �(G, H, I)

82(G, H, I) ∝ ((G, H, I) · �(G, H, I) . (4.15)

We know that the sample will behave according to the Beer-Lambert law
(Eq. 2.89)

�(G, H, I) = �0(G, H)4−2�C I . (4.16)

In the context of OCT imaging, �0(G, H) is the intensity at the sample’s
surface, i.e., the intensity given by the sample’s profilometry. A factor
of 2 is introduced in the exponential to account for the double pass the
light has in the interferometer. Going first towards the sample and then
returning to the detector, the light will be attenuated twice as much as if
it had just gone through the sample once.

Following the previous paragraphs, this section will explore multiple
ways of obtaining the attenuation coefficient.

Following the Beer-Lambert law

The fastest way to obtain the attenuation of the sample is by taking each
A-scan and fitting it to Eq. 4.16 so that

82(G, H, I) = 0(G, H) · �0(G, H) · 4−2�C I .

The term 0(G, H) is introduced to remove the proportionality from Eq.
4.15. It compensates for any factor that might reduce the intensity and
is not due to the sample’s attenuation, like specular reflections on its
surface.

However, OCT intensity values are high, in the order of 109, which
might harm optimization methods based on reducing the error through
gradient descent. Instead, logarithms are often taken in Eq. 4.16, so that

ln[82(G, H, I)] = ln[�(G, H, I)] = �(G, H) + ln[�0(G, H)] − 2�CI . (4.17)

The Beer-Lambert law, as described above, has two main limitations in
OCT imaging:

1. It is described for homogeneous media.
2. It does not consider the intensity variations along depth caused by

the system (((I)).
3. It holds only for the single-scattering region (�CI ≤ 3) [11].

By following this approach for non-homogeneous media (i.e., samples
with layers, holes, heterogeneous composition...), the attenuation coeffi-
cient �C will not be precisely calculated, and the higher the heterogeneity,
the higher the fitting error will be.
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5 The RMSE is used to compare the
model’s results with the experimental
data since they share the same units.

1000 0 1000 2000
Distance from focus z [µm]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 in
te

ns
ity

 [a
.u

.]

Data
Fit:
 z =459 ± 19 µm
 r =13.78 ± 0.29 µm
 RMSE=0.105

Figure 4.6: PSF of the OCT-LK3 lens. The
I' was obtained by fitting the experi-
mental data to Eq. 4.20, A0 by calculating
it from IA according to Eq. 4.21, and the
RMSE by using its definition (Eq. 4.19).

Two common ways of characterizing the error are using the mean squared
error (MSE) or the root mean squared error5 (RMSE), defined as follows.
Let {H8}8=0,...,# be a set of real data points and { Ĥ8}8=0,...,# their theoretical
values as derived from a model. Then, the mean squared error (MSE) of
the model is

MSE =

#∑
8=0

(H8 − Ĥ8)2 , (4.18)

and its root mean squared error is

RMSE =
√

MSE . (4.19)

Although high MSE or RMSE values indicate a poor fitting result, in the
case of OCT, they can be used as a measurement of the heterogeneity
of the sample. In other words, these magnitudes can determine how
uniform the tissue is on the inside, even if its attenuation is not accurately
derived.

Adding the point spread function

There are several approaches to consider the effects of the system, ((I),
on the Beer-Lambert model. The first one is to consider the change point
spread function (PSF) of the system so that the detected photocurrent
is

82(G, H, I) = PSF(I) · �(G, H, I) .

The PSF of the system is a measurement of the maximum diameter of
the beam along the I direction or, in other words, of how concentrated
the light is. The lower the PSF, the higher the intensity counts measured
are. The PSF of a Gaussian beam of the lens is defined as [12]

PSF(I) B ℎ(I) = 1(
I
IA

)2

+ 1

, (4.20)

where IA is the Rayleigh distance of the beam, defined as

IA = 

2�=A2

0

�
, (4.21)

with 
 = 1 for specular reflections, 
 = 2 for diffuse reflections, and A0
being the diameter of the spot at the focal distance of the lens.

As indicated by E. Real in his work [13], the PSF can be measured by
setting an inclined mirror under the OCT lens with the measurement
point being at the focal distance. Then, by adjusting the interferometer
length to displace the focal distance, the intensity reflected off the mirror
will go down. This procedure was followed to obtain the PSF of the
OCT-LK3 lens (Fig. 4.6). IA = 456 ± 19 �< was obtained by fitting the
experimental data to Eq. 4.20, A0 = 13.78 ± 0.29 by applying I' in 4.21,
and the root mean squared error (RMSE) by using Eq. 4.19.
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Finally, the detected photocurrent considering the PSF is

82(G, H, I) = 0(G, H) · �0(I, H) · 4−2�C I(
I
IA

)2

+ 1

. (4.22)

Using a reference material

Although the PSF function is symmetric (Eq. 4.20), the experimental
data is not (Fig. 4.6). As the distance from the focus increases, the system
receives less intensity. This effect is known as the intensity Roll-Off, which
is linked to the digitization errors of the Fourier transform. [13].

One way to consider all of the effects of the source (((G, H, I)) is by
introducing a reference sample in the measurement pipeline. This method,
described by L. Scolaro et al. in their 2012 article [11], is described below
for completion.

We have already introduced that the detected photocurrent of any
measurement (82(G, H, I)) is given by the effects of the system (((G, H, I))
and those of the sample (�(G, H, I)), so that

82(G, H, I) ∝ ((G, H, I) · �(G, H, I) .

Similarly, for a reference sample with magnitudes indicated by the
subscript ref, its detected photocurrent will be

82A4 5 (G, H, I) ∝ ((G, H, I) · �A4 5 (G, H, I) .

Since the properties of the system are the same for both measurements,
it is possible to remove their influence by using the relationship between
both samples as(

82(G, H, I)
82
A4 5

(G, H, I)

)
∝

(
�0(G, H)

�0,A4 5 (G, H)

)
4−2I(�C−�C ,A4 5 ) ,

or, applying logarithms to both sides of the equation,

ln

[
82(G, H, I)
82
A4 5

(G, H, I)

]
= �(G, H) + ln

[
�0(G, H)

�0,A4 5 (G, H)

]
− 2I(�C − �C ,A4 5 ) . (4.23)

In this thesis, we used the Polybead Microspheres (07307-15) [14]. Ac-
cording to Mie’s theory, its reference attenuation coefficient is

�C ,A4 5 = 8.1134 mm−1 . (4.24)

Considering the heterogeneity of the sample

Having prior knowledge of all the inhomogeneities a sample has inside
it is a complex task, so there will always be some error in using the
conventional Beer-Lambert as a base to obtain the attenuation coefficient.
Vermeer et al. proposed a depth-resolved method to find the attenuation
coefficient throughout the depth of the sample instead of transforming
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the whole A-scan into a single attenuation value [15]. By doing so,
global inhomogeneities are assumed to be locally homogeneous, so the
differences between the sample layers are considered. Their model, which
is also derived from Beer-Lambert, is defined as

�C(G, H, I) =
1

2ΔI
;>6

(
1 + �(G, H, I)∑?I

8=I+1
�(G, H, 8)

)
≈ �(G, H, I)

2ΔI
∑?I
8=I+1

�(G, H, 8)
,

(4.25)
where ΔI is the axial resolution and ?I the number of pixels in the I
direction.

Although this method is useful to determine local attenuation, the
attenuation estimate worsens as the depth increases. This occurs due to
the denominator of Eq. 4.25. As 8 grows, the fewer pixels considered in
the denominator lead to an artificial increment of �C , and the noise in
these last pixels is greater due to the reduced SNR given by the roll-off.
To compensate for these factors, Li et al. [16] propose a correction of
expression 4.25 that considers the noisier last pixels of the data cube. The
modified expression is

�C(G, H, I) =
�(G, H, I)

2ΔI
∑?I
8=I+1

�(G, H, 8)

(
1 − exp

[
−2ΔI

?I∑
8=I+1

�C(G, H, 8)
])

.

(4.26)
Equation 4.26 contains the attenuation coefficient in the exponent as well,
but not for the same I value; in other words, the attenuation coefficient
at a depth I depends on the coefficients below it. The equation is then
solved through backwards recursion. The authors propose starting by
taking the last 100�< of the A-scan first, located after considering the
noise-floor level of the OCT data and the surface of the sample, and fit
them with the conventional Beer-Lambert model (Eq. 4.17) to use that
as the basal attenuation value to obtain �C(G, H, I), starting at 8 = ?I and
ending at 8 = 1.

4.2 Polarization-Sensitive Optical
Coherence Tomography (PS-OCT)

Polarization-sensitive optical coherence tomography (PS-OCT) is an
extension of OCT that provides it with the additional capability of
measuring the polarization state of light backscattered from biological
tissues. By producing the interference with polarized light, the PS-OCT
system can be used to obtain the phase retardance that the sample
induces.

4.2.1 Fundamentals

The Michelson interferometer of the OCT system used in this thesis
contains one quarter-wave plate in each of its arms. This allows the user
to select a specific polarization state to illuminate the sample. Given that
there might not be prior knowledge of the orientation of the optical axes
for some samples, the system is configured to illuminate with circularly
polarized light with a Stokes vector ®(B to illuminate all directions evenly.
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Then, upon interaction with the sample, the vector is transformed to
®(, which, in general, will depict elliptically polarized light. Given the
Mueller matrix of the sample, ®", then the system is configured so that

®( = " · ®(B =
©­­­
«

<11 <12 <13 <14

<21 <22 <23 <24

<31 <32 <33 <34

<41 <42 <43 <44

ª®®®
¬
®(0 .

Although other authors have devised Mueller-OCT imaging systems
[17–19], the commercial system used in this thesis does not have this
functionality since it would require adapting the wave plates to illuminate
the sample with enough states ®(B to solve the 16 parameters in". Instead,
the TEL221PS measures the Stokes parameters of the light backscattered
by the sample.

4.2.2 Optical properties

According to the manufacturer’s manuals, the TEL221PS can construct
the complex reflectances A0 and A1 from the Fourier transform of the
interference patterns detected in two detectors. The detectors are config-
ured to measure perpendicularly polarized light states. Then, the system
reconstructs the Stokes vectors as

(0 = � = A1 · A∗1 + A0 · A∗0 ,

(1 = & = A1 · A∗1 − A0 · A∗0 ,

(2 = * = 2R(A1 · A∗0) , and

(3 = + = −2I(A1 · A∗0) .

(4.27)

Comparison with Eqs. 3.18 indicates that what the system is measuring is
the complex amplitudes of the field in the G and H axes, so that A1 ≔ �G
and A0 ≔ �H .

Since A0 and A1 are three-dimensional in PS-OCT, so will be each Stokes
parameter. Evaluating their stability along the penetration depth I can
serve to explore the changes in anisotropy a sample might have. For
example, a layered structure with even layers can have uniform three-
dimensional Stokes vectors, while uneven layers would lead to sections
with distinct Stokes parameters. Aside from ®( itself, other relevant optical
properties can be obtained from Eqs. 4.27, which will be derived in the
following sections.

Orientation of the optical axis

Remembering the definition of the Stokes parameters in terms of the
polarization ellipse (Eqs. 3.16), (1 and (2 can be used to obtain the
orientation of the ellipse, i.e., of the optical axis Ψ, as

Ψ =
1

2
tan−1

(
(2

(1

)
∈

[−�
2
,
�

2

]
. (4.28)
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Many programming languages include the function atan2(numerator,

denominator) to correctly determine the arctangent by considering the
signs of its arguments.

Auxiliary angle 


Remembering the definition of the auxiliary angle from the polarization
ellipse (Eq. 3.7), it represents the diagonal of the rectangle described by
�0G and �0H . Given the data structure our system captures, the angle can
be calculated from the complex reflectances as


 = tan−1

(
A0
A1

)
∈

[
0,

�

2

]
. (4.29)

This magnitude represents the proportion of the intensity measured by
each detector, i.e., in each polarization state [20].

Degree of polarization uniformity (DOPU)

We have seen before that the Stokes parameters can be used to calculate
the degree of polarization of a polarized light state (see Eq. 3.20). However,
since OCT is an interferometric technique, only the totally polarized light
((2

0 = (2
1
+ (2

2 + (2
3) will create an interference pattern. Since the system

illuminates with totally polarized light, the depolarized light fraction
will have an interference term that averages to zero

�12 = 0 for unpolarized light.

Remembering that the depth information comes from the phase of the inter-
ference pattern and not from its intensity, the gathered three-dimensional
data by the OCT system will represent the fraction of totally polarized
light.

This implies that the degree of polarization (DOP) is DOP = 1 for all
measurements. The degree of polarization uniformity (DOPU) is often
used as an alternative depolarization measurement [19]. It is calculated by
finding the local, three-dimensional average of the Stokes parameters,

DOPU =

√
⟨(1⟩2

:
+ ⟨(2⟩2

:
+ ⟨(3⟩2

:
∈ [0, 1] , (4.30)

where ⟨·⟩: represents the spatial average in a neighborhood defined by
a kernel : and the Stokes parameters can be taken as is or normalized
with respect to (0. Then, in regions with high DOPU, the sample can
be considered non-depolarizing due to the stability of Stokes vectors.
Analogously, in regions with low DOPU, the sample can be considered
depolarizing due to the random orientation of the Stokes parameters.

Birefringence

Anisotropic samples tend to have two different refractive indexes, =1 and
=2, where one affects the light propagating along the anisotropic axis,
and the other affects the light propagating perpendicularly to it. The
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6 Although the Stokes vectors mea-
sured with OCT are three-dimensional,
this method considers only their depth-
behavior. As such, only the parameter
(I) is kept on the functions described in
this section.

difference between these two refractive indexes is known as birefringence
(Δ=)

Δ= = =1 − =2 . (4.31)

So far, we have only introduced the optical properties of the polarized
light that can be obtained from PS-OCT measurements. However, the
birefringence is a property of the sample that can also be obtained with
PS-OCT devices, and that is a good indicator of sample anisotropy, given
that isotropic samples are non-birefringent (Δ= = 0).

Chin et al. introduced a method to calculate the birefringence of samples
using PS-OCT imaging. The method, wholly described in their article
[21], is included below for completion.

Let (̂(I) = ((1/(0 , (2/(0 , (3/(0)) be the depth-dependent6 Stokes vector
measured for a sample. Let (̂A4 5 be the Stokes vectors on the surface of
the sample located at I = 0 so that (̂A4 5 = (̂(I = 0). The angle between
these vectors, )A(I), is given by their dot product as

cos()A(I)) = ˆ(A4 5 · (̂(I) ≔ �8=(I) .

This product that will change along depth can be interpreted as an
amplitude modulation, �(I), and a phase change in I, )2(I), so that

ˆ(A4 5 · (̂(I) ≔ �8=(I) = �(I) cos()2(I)) .

To remove the amplitude modulation and consider only the phase, the
quadrature component of �8=(I), defined as �@D03(I), can be calculated
through its Hilbert transform as

�@D03(I) = H[�8=(I)] = �(I) sin()2(I)) ,

where H[·] indicates the Hilbert transform. Then, the demodulated phase
is the angle between �8=(I) and �@D03(I), given by

)2(I) = ∠ |�8=(I) + 8�@D03(I)| .

Phase )2(I) will be wrapped, meaning it will oscillate between 0 and 2�.
The method requires having the total accumulated phase up to depth I,
so instead, the discrete, unwrapped phase )D(I) is calculated as

)D(I) =
∑
8

= 1I)2(8) − )2(8 − 1) . (4.32)

The result of Eq. 4.32 will be monotonically increasing by definition. If
the sample is uniform, the slope of )D(I), �D, can be calculated to finally
derive the birefringence of the sample as

�= =
=�D�0

2�
(4.33)

where = is the bulk refractive index of the sample, �D the slope of )D(I),
and �0 the central wavelength.

As we will see in the following chapters, this method is advantageous
for distinguishing completely isotropic samples from samples with some
degree of anisotropy.
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7 We refer to the comprehensive
overview of HSI and MSI configura-
tions as described in the Ph.D. thesis
by A. Pardo Franco [27], J. A. Guitérrez-
Gutiérrez [28], and P. B. García-Allende
[29].

4.3 Hyperspectral imaging (HSI)

Hyperspectral imaging (HSI) originated as a combination of optical
spectroscopy and remote sensing. Optical spectroscopy provides the
foundation for detecting the unique spectral fingerprints of each material.
By analyzing light reflected from or transmitted through a sample in
terms of its wavelength response, spectroscopy reveals detailed infor-
mation about its composition and properties [22]. Conventional optical
spectrometers analyze the light that emerges from a single point at a time.
Although helpful, in heterogeneous samples such as biological ones,
point-wise measurements can be lengthy and sometimes impracticable.
One research area where point-wise spectroscopy was not possible was
earth observation. As a result, researchers in the field of remote sensing in
the early 80s [23, 24] started to use and devise systems that could obtain
spectral data in each pixel of an image, which, at the time, were referred
to as imaging spectrometers. Nowadays, these imaging spectrometers
receive the name of multispectral (MSI, between 4 and 20 wavelengths)
or hyperspectral (more than 20 wavelengths) imaging systems.

HSI and MSI devices have been proven useful in the field of biological
imaging, too, due to their easily interpretable results and the lack of
sample preparation required [25, 26]. Although there are many possible
configurations for an HSI device 7, as was mentioned in Chapter 1, here
we will focus on the description of the used HSI systems.

4.3.1 Fundamentals

HSI systems capture the light emitted by a source after passing through
the sample. The spectral content of the light changes as some wavelengths
get absorbed by the sample’s different chemical components. Since,
typically, HSI devices are illuminated from the same side the light is
collected, these devices often work in the reflection configuration. Due to
a mixture of reflection and backscattering, the light enters the sample,
travels within it for a bit, and returns to the sensor. This phenomenon,
known as diffuse reflectance, will be discussed in the following sections.

Diffuse reflectance

When light encounters a medium, part of it will be reflected, according
to Fresnel’s equations, without ever entering it. This type of reflection,
which only contains information about the initial field, is known as
specular or mirror-like reflections, in analogy to what a mirror does to a
field. For HSI systems to capture the spectral information of the sample,
the light has to enter it. Once it does, it will be scattered and redirected
within the sample, but also backward. While the light scatters, some of
it will travel along the first few centimeters and, at some point, exit the
sample from the top to be captured by the sensor. Since light is emitted
to the sample and captured from the same side, this is still considered
reflection but receives the name of diffuse reflectance. The term diffuse
refers to the randomization of the optical path within the sample due to
scattering.



4.3 Hyperspectral imaging (HSI) 117

The fraction of light that will be recovered by the camera ('3) will be the
one that is not absorbed by the sample. Then, the absorption coefficient
in terms of the wavelength �0(�) is going to dictate how much light is
absorbed in a path length differential �!, according to [30]

�0(�) = − 1

'3(�)
�'3(�)
�!(�) ,

which can be rewritten as

'3(�) = 4−�0 (�)!(�) ∈ [0, 1] . (4.34)

The different chemical components that absorb the light are known
as chromophores. Given a concentration of chromophore (in mol·L−1 or
M), and a molar extinction coefficient �(�) in (cm−1·M−1), the total
absorption coefficient can also be described in terms of a combination of
# chromophores as [30]

�0(�) = ln(10)
#∑
8=1

�8�8(�) .

4.3.2 Instrumentation

Spectroscopic imaging systems can be considered color cameras that
capture many more color channels instead of the red-green-blue (RGB)
conventional ones. A traditional color camera achieves color by adding
RGB wavelength filters on top of each pixel on the sensor according
to a Bayer pattern. The HSI cameras used in this work, which have
been thoroughly described elsewhere [27, 28, 31], are comprised of three
fundamental elements: a lens, a camera, and a spectrograph. Although the
lens and the camera are key elements to define the spatial resolution and
field-of-view of the system, the core of the HSI device is the spectrograph
which decomposes the light captured by the lens after passing through a
slit into the corresponding spectra. Each point on the slit will create a
spectrum that is recorded in one column of the camera’s sensor. Then,
a rotating mirror module is situated in front of the lens to perform
line-scanning of the sample and capture all its spectral information.

Two systems were used throughout this thesis: one in the visible-near
infrared (VISNIR) and another in the short-wave infrared (SWIR) wave-
length range. The VISNIR captures the spectrum between 400 and 1000
nm, while the SWIR is restricted from 1000 to 1700 nm. Due to the size
of the samples, a macro lens was used in both systems. The spatial
resolution for the devices, which have the same lens, is approximately
100 �</px with the zoom settings selected. The spectral resolution was
3 and 5 nm for the VISNIR and SWIR devices, respectively.

Experimental derivation of the reflectance

Ideally, the samples would be illuminated with a collimated source
of perfect white light. Then, the captured spectra will differ from the
unity only at those wavelengths being absorbed by the sample. However,
experimentally available light sources do not have a flat spectrum, which
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means that it is necessary to remove the combined effect of the spectrum
of the source and the spectral response of the system, �0(�), from the one
of the sample, �B(�), so that the diffuse reflectance can be derived as

'3(�) =
�B(�)
�0(�)

.

To find �0(�), a reference sample is used (Spectralon). This sample has
known optical properties [32] and an almost perfect, spectrally flat
reflectance. Therefore, Spectralon measurements are equivalent to �0
measurements.

Additionally, if the samples are not in a perfectly dark environment,
spurious illumination can enter the sensor and affect the measurements.
To remove it, a dark measurement (�3(�)) with the source off can be done
to correct the reflectance as

'3(�) =
�B(�) − �3(�)
�0(�) − �3(�)

. (4.35)

If the detector has some baseline noise, �16 , it can also be removed from
the samples as

'3(�) =
�B(�) − �16
�0(�) − �16

. (4.36)

The baseline noise is implicitly removed in Eq. 4.35 through �3(�) since
it is present in all intensity measurements.

Finally, although discouraged, measuring the light source and the sample
at different exposure times is possible to speed up the measurement
process. If �B is the exposure time of the sample and �0 is the exposure
time of the light source, the reflectance can be corrected by multiplying it
by the factor of �B/�0. Acquiring images at multiple exposure times and
correcting the measured reflectance is one of the most straightforward
methods to perform high dynamic range imaging, allowing for well-
exposed highlights and shadows [33]. Although, in theory, this factor can
account for the difference in '3, there are sources of detector noise that
originate due to an increased photon count, which will be less noticeable
in the measurements of the light source due to their shorter exposure
time. This could lead to quantification errors that affect the areas of low
SNR in the samples.

4.3.3 Optical properties

We have seen that HSI systems can be used to determine the absorption
coefficient from the reflectance (Eq. 4.34). If the attenuation coefficients
of the individual components of the sample, �0,8 , are known, then the
coefficient can be rewritten in terms of the volume fraction of each
component -8 ,

�0(�) =
#∑
81

-8�0,8(�) . (4.37)

Then, this can be combined with the expression of the reflectance as

'3(�) = 4
−!(�)∑#

81
-8�0,8 (�) , (4.38)
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Figure 4.7: Reference attenuation coefficients (�0 [cm−1]) in terms of the wavelength (� [nm]) of the most common biological chromophores.
The data of Schenkman et al. [34], originally depicted in optical density, has been transformed to attenuation by matching the optical
path so that the hemoglobin peaks coincide with those of Jacques [30]. Data adapted from [30, 34–38].

which, by taking logarithms, can be rewritten as

OD(�) = − ln('3(�)) = !(�)
#∑
81

-8�0,8(�) . (4.39)

Experimental measurements calculated according to Eq. 4.35 or 4.36 can
then be fitted to Eq. 4.39 to obtain the volume fraction of each chemical
component in the sample. Most times, having the pure spectra of all
the chromophores of a sample is not possible due to the complexity of
the sample or the lack of spectral libraries, which can be considered in
the previous equations by adding wavelength-dependent bias terms.
Additionally, the value − ln('3(�)) has been renamed to OD, which
stands for optical density, a parameter often reported in the literature
instead of the reflectance.

Reference spectra

This thesis focuses on the analysis of biological samples and, specifically,
of muscle tissue. Bulk muscle, as we have discussed before, is comprised
of fiber bundles that include collagen and elastin, which get substituted
by water (edema) or fat in dystrophic samples. The oxygen reserve of
muscles is myoglobin, a molecule very similar to hemoglobin, that stays in
the muscle cells themselves. Myoglobin takes the form of oxymyoglobin
when carrying oxygen, while deoxymyoglobin is the form it takes once it
deposits the oxygen. Muscles also include metmyoglobin, which cannot
bind oxygen due to its molecules being already oxidized. All these
components, along with the basic biological chromophores, have a
distinct spectral fingerprint (Fig. 4.7).

The spectral differences in the absorption coefficients of the chromophores
will allow us to find their presence in the samples by considering their
spectral shape when fitting them to the optical density (Eq. 4.39).
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Influence of scattering

So far, we have only discussed absorption when we know that samples
will also scatter light. In the near-infrared or short-wave infrared, the
scattering can be dismissed since we have seen before that scattering
happens when the wavelength is comparable or in the range of the
scatterer size (see Sec. 2.5.3).

In the visible range, however, scattering will have a fingerprint, which
should decay as the wavelength increases and its presence is less notice-
able. Returning to Fig. 4.7, we see that both eumelanin and pheomelanin,
which are two known highly scattering substances [30], follow this
pattern.

One of the earliest methods developed to deal with absorption and
scattering at the same time was proposed by Kubelka and Munk in 1931
to explore the spectral properties of pigments [39]. This method treats
the sample as a semi-infinite medium and makes the assumption explicit
by renaming the reflectance as '∞. Then, the reflectance can be related
to the scattering and absorption coefficients as

(1 − '∞)2
2'∞

=
�0
�′
B
, (4.40)

where the absorption coefficient can be expressed in terms of the compo-
nent mixture model (Eq. 4.37). This expression uses the reduced scattering
coefficient (�′

B) instead of the conventional scattering coefficient (�B). Both
are related through the anisotropy coefficient 6, which indicates that the
reduced version of the coefficient accounts for the anisotropic behavior
of the scattering pattern according to

�′
B = �B(1 − 6) . (4.41)

The equation proposed by Kubelka and Munk is in terms of the quotient
of the attenuation and scattering coefficients. Similarly, Jacques [40]
derived a semi-empirical equation based on Monte Carlo simulations,
given by

'3 = exp


−7

3
(
1 + �′B

�0

)

, (4.42)

which also contains a similar term to represent the scattering and absorp-
tion contributions.

Krishnaswamy et al. introduced the scattered amplitude � ∈ [0, 1] and
the scattering power 1 ∈ [0,+∞) to define the detected reflectance when
no absorption is present and the only light decay is due to scattering [41].
Then, the diffuse reflectance can be fitted to an exponential law as

'3(�) = � · �−1 . (4.43)

If the main chromophore is blood, the authors also provide the combina-
tion of the scattering influence with the absorption due to the hemoglobin
products, as

'3(�) = � · �−1exp [−! · 2 (3 · ��1$2 + (1 − 3)��1)] , (4.44)
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where ! is the optical path length, 2 is a parameter related to the total
blood concentration, 3 is the fraction of oxyhemoglobin (HbO2) and (1−3)
the fraction of hemoglobin.

Jacques [30] proposes approximating the scattering coefficient by using
two empirically derived equations. The simplest one is

�′
B = 0

(
�

500(=<)

)−1
, (4.45)

which is similar to the proposal of Krishnaswamy et al. with an additional
normalization so that the quotient �/500 is dimensionless. Although the
resulting � and 1 would not be exactly the same between the two models,
both represent the same information, with � containing the units and 1
the scattering power.

In the same article, Jacques [30] proposes a second model, given by

�′
B = �

(
5'0H

(
�

500

)−4

+ (1 − 5'0H)
(
�

500

)−1)
. (4.46)

This model considers the different scattering distribution due to Mie and
Rayleigh scattering, being 5'0H the fraction of light that follows Rayleigh
scattering.

The scattering correction can, and should, be applied to regions of
the spectrum with high scattering (i.e., visible range) so that the final
reflectance is approximated as a combination with the Beer-Lambert
reflectance

'3(�) = �′
B(�)4−!(�)�0 (�) , (4.47)

or, in terms of the optical density, as

$�(�) = − ln('3(�)) = '3(�) = − ln(�′
B) − !(�)�0(�) . (4.48)

4.4 Spatial Frequency Domain Imaging (SFDI)

We have just seen that HSI is an imaging method that will be affected by
scattering and absorption simultaneously. OCT is not affected by absorp-
tion as much since it measures backscattered light, and the wavelengths
in the infrared are typically chosen so that the main tissue chromophores
will not absorb them. Nonetheless, neither imaging modality can decou-
ple the effects of scattering and absorption.

Spatial Frequency Domain Imaging (SFDI) was born as the frequency
counterpart to diffuse optical spectroscopy to decouple the influence of
the scattering and absorption effects of the samples [42]. The method
works by illuminating the sample with structured light, specifically by
projecting fringe patterns onto the sample. The different frequencies
encode information about the reflectance at different depths of the
sample, and the higher the frequency, the lower the penetration of the
frequency-modulated component of the light source is [43] (Fig. 4.8).
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8 We refer to the work of Cuccia et al.
[43, 44], and of Gioux et al. [45]

4.4.1 Fundamentals

SFDI is based on probing the Modulation Transfer Function (MTF),
i.e., in obtaining the frequency response of the sample. The diffuse
reflectance measured will change when the sample is illuminated with
fringe patterns of different frequencies. Then, the resulting MTF can be
related to the absorption and scattering coefficients of the sample [44].

Diffusion approximation

The diffusion equation dictates how light propagates inside a sample.
As such, the diffuse reflectance '3(�, 5 ) captured at different spatial
frequencies� is derived from the diffusion equation. Although a complete
derivation of the diffusion equation is out of the scope of this book8,
here we will summarize the fundamental steps to understand SFDI. The
following theory described in this section was obtained from Cuccia et al.
[43].

To begin, it is necessary to introduce some magnitudes that will help to
simplify the equations, such as the transport coefficient

�CA = �0 + �′
B , (4.49)

and the effective coefficient

�4 5 5 =
√

3�0�CA . (4.50)

The transport coefficient represents the total light loss as the equivalent
to the extinction coefficient �C , but considering the reduced scattering
coefficient. Finally, the effective coefficient indicates the local absorption
and redirection of light in a medium.

The albedo 0′ must be introduced as well, defined as

0′ =
�′
B

�CA
, (4.51)

which represents the fraction of light that is scattered out of the total.

d0 d1

Figure 4.8: Simulation of the maximum penetration depth of the modulated component of light in terms of the spatial frequency. On the
left, a high spatial frequency enters up to a depth 30, while the lower frequency on the right reaches a depth 31, which is almost twice as
deep as 30. Notice that, below 31, the sample is the same color, suggesting that the non-modulated component of the light source reaches
the same depth inside the sample. Image adapted from [27].



4.4 Spatial Frequency Domain Imaging (SFDI) 123

9 Note that �4 5 5 and �4 5 5 = �−1
4 5 5

are

exclusively sample-dependent. However,
as some light gets absorbed or scattered,
the conditions at a specific depth I are
different than at the surface of the sample,
yielding a modification of �4 5 5 and �4 5 5
due to the modulation.

Given a total illumination @0(I) modulated by two cosines, one in the x
direction with frequency 5G = :G(2�)−1 and another in the y direction
with frequency 5H = :H(2�)−1, the modulation is defined as

@(G, H, I) = @0(I) cos(:GG + 
) cos(:HH + �) . (4.52)

The penetration depth of the modulated light in Eq. 4.52 is given by

�4 5 5 (:G , :H)′ =
1

�′
4 5 5

(:G , :H)
=

1√
�2
4 5 5

+ :2
G + :2

H

, (4.53)

where the mark ′ has been included to indicate the frequency dependence
of �′

4 5 5
and �′

4 5 5
9.

It can be shown [43] that given a proportionality constant

� =
1 − '4 5 5

2(1 + '4 5 5 )
, (4.54)

with an empirically derived effective reflectance of

'4 5 5 ≈ 0.0636= + 0.668 + 0.710

=
− 1.440

=2
,

the frequency-dependent diffuse reflectance, as calculated from the
diffusion approximation, is derived as

'3(�, :G , :H) =
3�0′(

�′
4 5 5

�CA
+ 1

) (
�′
4 5 5

�CA
+ 3�

) . (4.55)

The reflectance in Eq. 4.55 changes in terms of the modulation frequency,
so, for a set of optical properties, the frequency-dependent '3 repre-
sents the diffuse MTF of the sample, which changes as the frequency
increases.

This version of the diffuse reflectance is essentially modified by the
quotient �′

4 5 5
�−1
CA . As indicated in [43], this magnitude reduces to

�′
4 5 5

�CA
=

{√
3(1 − 0′) if :G = :H = 0

:G+:H
�CA

if :G , :H ≫ �4 5 5
.

The first case indicates that reflectance will only be modified by the
albedo when there is no frequency modulation or when the frequencies
are very slowly varying. On the other hand, for the high-frequency range,
'3 becomes proportional to �4 5 5 . In this regime, the penetration �′

4 5 5
is

very low (Eq. 4.53), so most light will not have the time to be absorbed
and the reflectance will be originated by the scattering of the sample.

Working outside of the diffusion approximation

The diffusion approximation holds when �′
B ≫ �0 [43]. Outside of this

range, alternative methods must be applied to obtain the theoretical
diffuse reflectance. One typically used alternative is based on Monte
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Figure 4.9: Measurement of the projec-
tor’s illumination spectrum. The three
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Carlo simulations. One can obtain the theoretical diffuse reflectance by
simulating the random walk of the photons inside a sample governed
by an absorption and a scattering coefficient. However, the number of
photons necessary on each pixel to simulate a spatially-modulated light
source would be very high.

Instead, a point source can be used. Simulating a point source would
yield the point spread function (PSF), which is the Fourier transform of
the MTF. Let � be the distance traveled by the photons, and '3(�) be the
Fourier transform of '3(:), with : being an arbitrary spatial frequency.
Let �0(:A) be the zero-order Bessel function of the first kind. Then, the
relationship between '3(�) and '3(:) is given by

'3(:) = 2�

∫
� · �0(:�) · '3(�)3� ,

or, by binning the distance � into # finite intervals Δ�,

'3(:) = 2�
#∑
8=1

�8 · �0(:�8) · '3(�8)Δ�8 . (4.56)

4.4.2 Instrumentation

The SFDI equipment used in this thesis shares the detection path with
the HSI-VISNIR system, so the spatial and spectral resolution is the same
between both devices.

An angled projector is attached to the device as a light source that can
be modulated [27, 28, 46]. However, as most RGB projectors, the areas
of the spectrum that are not completely covered by the projector’s LEDs
have extremely low SNR or no signal at all. The results of SFDI presented
in this book are restricted to the areas of higher SNR, by finding the
peaks of the projector and selecting the spectral regions that have, at least,
80% of the intensity of the corresponding peak. The resulting ranges are
�A ∈ [621, 634] nm, �6 ∈ [507, 571] nm, and �1 ∈ [477, 460] nm for the
red, green, and blue channels, respectively.

Experimental derivation of the modulation transfer function

Similarly to what occurs in HSI, there are several steps involved in one
measurement of diffuse reflectance. Our system follows the protocol
introduced by Cuccia et al. [43], which is included in the following
paragraphs for completion.

We configured our system so that the source illumination ( is given by a
frequency ( 5G) modulation on the G direction over a maximum intensity
of (0, according to

(( 5G , 
8) =
(0

2
[1 +"0 cos(2� 5GG + 
8)] ,

where the phase 
8 is also variable.

When the system is configured to measure the diffuse reflectance of a
sample, the intensity is modeled as a combination of a constant (���) and
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an alternating signal (���), so that the total captured intensity is given by
[43]

� = ��� + ��� . (4.57)

In the case of 5G = 0, the intensity captured by the sensor will be identical
to what would be measured with a direct current (DC) light source. When
5G is non-zero, the captured intensity will be modulated by an amplitude
envelope "�� and a phase given by the cosine so that [43]

�(G, 5G , 
8) = "��(G, 5G) cos(2� 5GG + 
8) .

The aim is to find "�� and "�� , which define the MTF of the sample.
It is then necessary to capture measurements that can identify ��� and
��� individually.

The reason to leave 
8 as a variable phase is due to the necessity of
calculating"�� and"�� , which also helps illuminate the whole sample
equally. By changing the phase, the cosine is displaced by a known
magnitude, and the parts of the sample that fell in the dark stripes of
the pattern for phase 
0 will be illuminated for phase 
1. By setting the
phases as {
8}8=1,2,3 = {0, 2�/3, 4�/3} rad, the "��(G, 5G) is calculated
as

"��(G, 5G) =
√

2

3

[
(�(G, 5G , 
1) − �(G, 5G , 
2))2 +

(�(G, 5G , 
2) − �(G, 5G , 
3))2 +

(�(G, 5G , 
3) − �(G, 5G , 
1))2
]1/2

, (4.58)

and its DC counterpart as

"��(G) =
1

3

[
�(G, 5G = 0, 
1) + �(G, 5G = 0, 
2) + �(G, 5G = 0, 
3)

]
.

(4.59)

In SFDI measurements, as in the other imaging methods, the MTF of
the system must be considered since the "�� of the sample will be
influenced by it as

"��(G, 5G) = (0 ·")�BHBC4<(G, 5G) · '3(G, 5G) .

If we measure a reference phantom of known optical properties, its diffuse
reflectance can be predicted from the previously mentioned models, so
that its measurement will be

"��,A4 5 (G, 5G) = (0 ·")�BHBC4<(G, 5G) · '3,A4 5 ,?A43(G, 5G) .

As before, the experimental diffuse reflectance of the sample, '3, can
be derived by considering the ratio between the two measurements so
that

'3(G, 5G) =
"��(G, 5G)

"��,A4 5 (G, 5G)
'3,A4 5 ,?A43(G, 5G) . (4.60)
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Figure 4.10: Optical properties of Spec-
tralon as derived by Majaron and Žel [32]
in terms of the wavelength. (a) Absorp-
tion coefficient. (b) Reduced scattering
coefficient. The absorption coefficient of
Spectralon is 105 times less intense than
its scattering properties.

10 It is worth noting that the surfaces of
the samples explored in this thesis did
not have more than a couple of millime-
ters of variation. If the sample had varied
more, it would have been necessary to
increment the maximum height of the
Spectralon calibration.

In this thesis, we used a Spectralon disk of known optical properties
and thickness 2.66 ± 0.02 mm [46], which has known absorption and
scattering coefficients [32] (Fig. 4.10). Its properties have been taken to
derive its '3,A4 5 ,?A43(G, 5G) by using white Monte Carlo modeling [47, 48].
The result is saved in a lookup table (LUT) to speed up the retrieval of
the final '3 [46].

Influence of the background

The "�� and "�� are obtained from the intensity measurements of the
sample under structured light illumination, �(G, 5G , 
). For illumination,
we use a white-light projector with RGB LEDs. Usually, this type of
projector has a minimum intensity even when the projection is all
black. This value, present in all measurements, is also a DC component
superimposed on the measurements. As such, this spurious intensity
(�16) can be removed from the calculations by subtracting it from the
intensity of the sample (�((G, 5G)), as in HSI measurements, as

�(G, 5G) = �B(G, 5G) − �16 ,

and from the intensity of the reference, as

�A4 5 (G, 5G) = �0(G, 5G) − �16 .

Influence of the profilometry of the sample

SFDI obtains the optical properties from spatial modulations of a known
frequency. However, even if the known frequency is constant, the closer
the measurements are to the source, the higher the frequency will be.
Samples often have uneven surfaces that alter the initial modulation in
terms of their height. Then, the "�� will modified in function of the
height (ℎ) [45].

To obtain the modulation change with height, the Spectralon was set
at : = 9 known heights (ℎ:), from 0 to 0.8 cm in 0.1 cm increments10.
Then, the "�� of the Spectralon was obtained at the different heights,
"��,A4 5 ,: , as a function of ℎ:,A4 5 , so that [45]

"��,A4 5 ,: = 5 (ℎ:,A4 5 ) . (4.61)

This procedure served as a calibration for how the pattern is modified
at different heights when captured on Spectralon. Once this behavior is
known, the next step involves obtaining the profilometry of the sample
and combining it with "��,A4 5 ,: . By doing so, we will be simulating how
the Spectralon pattern would change if it had the exact profile of the
sample.

To obtain the profile of the sample, we applied phase-shifting profilometry
(PSP), which derives the surface by considering the change in frequency
of one of the ( 5G , 
8) pairs when the sample deforms it [49]. Then, given
the height profile of the sample ℎB , and the PSP-derived profilometry
function 5 (ℎB), the corrected "�� of the reference that contains the
height of the sample, "��,A4 5 ,2>AA42C43, is derived by interpolating the
function 5 (ℎ() to the points of 5 (ℎ:,A4 5 ). For that, the measurements
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performed to obtain 5 (ℎ:,A4 5 ) must at least contain the ℎ<8= = 0 and
ℎ<0G = ℎ<0G,B0<?;4 to avoid extrapolating.

Finally, the diffuse reflectance of the sample with all the corrections is
obtained as

'3(G, 5G) =
"��(G, 5G)

"��,A4 5 ,2>AA42C43(G, 5G)
'3,A4 5 ,?A43(G, 5B) (4.62)

4.4.3 Optical properties

The first way to obtain the optical properties in SFDI is by applying the
diffusion approximation (Eq. 4.55) to the experimental reflectance, to
obtain the attenuation �0 and reduced scattering coefficient �′

B , following
a similar pipeline to HSI imaging.

If the diffusion approximation does not hold, one can perform simulations.
By doing Monte Carlo simulation for a set of attenuation coefficients,
{�0}8=1,...,# and a set of reduced scattering coefficients {�′

B}8=1,...," , one
can obtain the corresponding reflectances '3(�) that can be transformed
to '3(:). Then, by comparison of the experimental '3(:) with the val-
ues obtained from the simulations, one can infer the attenuation and
scattering of the sample.

To extract the volume fractions of the individual chromophores, one can
then fit the attenuation to Eq. 4.37.

Regardless of the method of choice, SFDI is the only technique of the
ones explored in this book that is able to identify the contributions of
absorption and scattering individually.

At this point, it is worth remembering that all magnitudes obtained SFDI
are wavelength-dependent as well, and can be fully quantified since the
system used here is embedded in the HSI device.

4.5 Mueller Matrix Imaging (MMI)

Mueller Matrix Imaging (MMI) is a powerful optical technique that
provides a characterization of the polarization properties of a sample.
MMI measures the response of a sample by capturing its Mueller matrix
", which describes how the sample alters the polarization state of light
through effects like birefringence, diattenuation, and depolarization.
MMI is complementary to techniques like PS-OCT, which focuses on
measuring the polarization state of the backscattered light.

To understand MMI, the following sections focus on the fundamental
principles behind the technique, understanding the instrumentation
involved in acquiring Mueller matrices, extracting meaningful optical
properties from these matrices, and ensuring accurate measurements
through proper calibration procedures.
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Figure 4.11: Photograph and schematics
of MMI v1.0. (1) LED light source, (2)
LED collimator, (3) filter wheel, (4) linear
polarizer, (5) rotating mount with �/4
retarding film, (6) polarization camera,
(7) lens, and (8) sliding filter mount with
�/4 retarding film. The oblique detection
angle is approximately 7 degrees. Figure
reproduced from [50].

4.5.1 Fundamentals

As introduced before, MMI is used to obtain the wavelength-dependent
Mueller matrix of the sample, "(�). This is achieved by illuminating the
sample with a collection of at least four controlled polarized light states
®(8= and measuring the resulting Stokes vectors after interaction with the
sample, ®(>DC , according with Eq. 3.22.

An MMI system contains two essential parts: the polarization state genera-
tor (PSG) and the polarization state analyzer (PSA). The polarization state
generator corresponds to every optical element that is situated before the
sample (i.e., polarizers, waveplates, light sources...), and the polarization
state analyzer corresponds to all components situated after the sample (in
our case, the slider-mounted waveplate and polarized-sensor camera).

The collection of four polarized light states can be written in a matrix,
denoted the Polarization State Generator matrix,

"� =

(
®(8=,1 ®(8=,2 ®(8=,3 ®(8=,4

)
=

=

©­­­
«

(8=,0,1 (8=,0,2 (8=,0,3 (8=,0,4
(8=,1,1 (8=,1,2 (8=,1,3 (8=,1,4
(8=,2,1 (8=,2,2 (8=,2,3 (8=,2,4
(8=,3,1 (8=,3,2 (8=,3,3 (8=,3,4

ª®®®
¬
.

(4.63)

In the most straightforward configurations, the PSG matrix contains only
= = 4 states. However, an arbitrary number of illumination states can be
used, making matrix "� have a 4 × = shape.

The corresponding measured states are recorded and modified by the
rest of the optical path according to the matrix of the Polarization State
Analyzer given by

"� =

©­­­­
«

®(>DC,1
®(>DC,2
®(>DC,3
®(>DC,4

ª®®®®
¬
=

©­­­
«

(>DC,0,1 (>DC,1,1 (>DC,2,1 (>DC,3,1
(>DC,0,2 (>DC,1,2 (>DC,2,2 (>DC,3,2
(>DC,0,3 (>DC,1,3 (>DC,2,3 (>DC,3,3
(>DC,0,4 (>DC,1,4 (>DC,2,4 (>DC,3,4

ª®®®
¬
. (4.64)

As before, the simplest PSA matrix has < = 4 states and a shape of < × 4,
but < > 4 is possible if more states are detected.

Given a real Mueller matrix of a sample "(�) and the corresponding
measured matrix "̂(�), the relationship between them is given by

"̂(�) = "�(�)"(�)"�(�) , (4.65)

which is the MMI equation that describes how the polarization properties
of the system affect the measurements.

4.5.2 Instrumentation

The multispectral MMI systems employed in this thesis, designed and
constructed as part of this doctoral work, were configured for reflection-
based measurements as inspired by common MMI architectures [51, 52].
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Name �0 nm Δ� [nm]
Blue 450 40
Cyan 500 40
Green 550 40
Yellow 590 10

Red 650 40
Far red 680 10

Table 4.1: Central wavelength (�0) and
full-width half-maximum (Δ�) of the fil-
ters included in the wheel of MMI v1.0.

11 The measurements realized with MMI
v1.0 presented in this document were
performed at 46 cm with ≈ 120 �</?G
lateral resolution.
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Figure 4.12: Spectral response of the PSG
of MMI v2.0. (a) Quantum efficiency of
the PolarCam camera. (b) Spectral emis-
sion of the LED source. (c) Bandpass
transmission of the filters. (d) Combined
PSG response. The data represented in
this figure was obtained from the man-
uals of the manufacturers of the camera
(4D Technology), the light source (Thor-
labs), and the filters (Thorlabs).

A detailed description of the first version of the system can be found in
Mieites et al. [50], and it is reproduced here for completeness.

MMI v1.0

In the first version of the system (Fig. 4.11), a white light LED served as
the illumination source, with its spectral output restricted to the 450-680
nm range by using a rotating filter wheel equipped with six color filters
(Tab. 4.1).

The polarization state generation was built from a linear polarizer and
an achromatic quarter-wave plate within a motorized rotation mount
(PRM1/MZ8, Thorlabs). A polarimetric camera (PolarCam snapshot
micropolarizer camera, 4D Technology) paired with a wide-field lens
(NMV50M1, Navitar) was used for the polarization state analyzer. This
camera features an integrated array of micropolarizers oriented at four
different angles, allowing for the simultaneous capture of all linear polar-
ization components. To allow for the measurement of phase information,
an additional achromatic quarter-wave retarding film was incorporated
into a sliding filter mount (ELL6K, Thorlabs), which was inserted at
specific points in the measurement procedure. The spectral response of
the PSA is represented in Fig. 4.12.

The system contained a platform that allowed the sample to be raised to
perform measurements at a maximum working distance of 46 cm and a
minimum of 36 cm. The corresponding FoV ranged between 8 × 7 cm2

and 6 × 5 cm2, with a minimum lateral resolution of ≈ 120 �</?G and a
maximum of ≈ 90 �</?G, respectively11.

MMI v2.0

The second version of the system was built to provide incremental
upgrades over v1.0. The first change was the substitution of the filter
wheel and white LED source by a multi-LED light source (Nĳi, Bluebox
Optics). This change provided better coverage of the whole spectrum, now
between 390 and 780 nm, higher illumination power since the output
is not getting filtered, and better robustness due to eliminating one
moving part. The camera in v2.0 was changed to a different polarimetric
camera (PolarSens, Sony) due to availability. The corresponding spectral
characteristics of MMI v2.0 are represented in Fig. 4.13, and the spectral
information of the individual LEDs of the source in Tab. 4.2.

Since the new LED source adapts to a 5 << liquid light guide, a diffuser
was introduced at the end of the light guide and before the first polarizer
to randomize the polarization introduced by the positioning of the
fiber.

Additionally, the fixed horizontal linear polarizer incorporated in v1.0
was substituted by a polarizer on another rotating mount, allowing for
an extra degree of freedom on the polarization state generator.

Finally, all linear polarizers were substituted by the WP25M-VIS (Thorlabs,
rated between 420-700 nm, extinction ratio > 1:800) for their better
extinction ratio and broader spectral coverage, and all the waveplates were
substituted by the achromatic �/4 waveplate AQWP10M-580 (Thorlabs,
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Name �0 nm Δ� [nm]
UV 393 15

Royal Blue 446 23
Blue 471 21
Cyan 501 30
Green 546 71
Red 636 20

Far red 731 40

Table 4.2: Central wavelength (�0) and
full-width half-maximum (Δ�) of the
LEDs included in the source of MMI
v2.0.
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Figure 4.13: Spectral response of the PSG
of MMI v1.0. (a) Spectral sensitivity of the
PolarSens camera. (b) Spectral emission
of the LED source. (c) Combined PSG
response. The data represented in this
figure was obtained from the manuals of
the manufacturers of the camera (Sony)
and the light source (Bluebox Optics).

rated between 350-850 nm, average reflectance <1.0%) to unify all the
retarding elements of the system.

4.5.3 Calibration

In the context of MMI, calibration involves deriving the mathematical
expressions of the matrices of the PSA, "�, and of the PSG, "�, so
that the actual Mueller matrix of the sample, ", can be derived from
an experimental measurement, "̂ (see Eq. 4.65). To calibrate the de-
vices mentioned before, we applied the Eigenvalue Calibration Method
(ECM), described by Compain et al. [53]. This method is based on doing
sequential measurements of known polarizing samples (i.e., polarizers
and waveplates) to compare their experimental matrices "̂ with their
theoretical ones, ". Since the MMI v1.0 and v2.0 are wavelength-tunable,
a separate calibration was performed for each central wavelength of each
system. The method is valid for transmission and reflection systems.
The article provides a complete derivation of the solution and choice of
calibration samples, but the essential steps for completion are included
below.

Solution of the system

In their article, Compain et al. use uppercase letters to refer to theoretical
matrices and lowercase letters to refer to their experimental equivalent
[53]. Then, the ECM can be described as follows.

Let <� and <� be the experimental matrices of the PSA and PSG,
respectively. Let ℍ" be a mapping from the set of 4 × 4 real matrices
M4(ℝ) ito itself. Let " be a theoretical Mueller matrix from a calibration
sample corresponding to a real matrix measurement <. Let - be an
arbitrary theoretical matrix in the set of M4(ℝ). Then, the mapping ℍ"

acting over - is defined as [53]

ℍ" : M4(ℝ) −→ M4(ℝ)
- −→ "- − -(<�<�)−1(<�<<�) .

(4.66)

Then, for a well-defined set of calibration matrices ", "� is found as
the solution to the set of equations given by

"- − -(<�<�)−1(<�<<�) = 0 . (4.67)

To solve Eq. 4.67, it is useful to find a basis of M4(ℝ) to transform Eq.
4.67 into a vector equation. Let {68}8=1,...,16 ∈ M4(ℝ) be a basis of 16
real-valued 4 × 4 matrices. On this basis, a matrix - is transformed into
a 16-element vector ®- = (G1 , ..., G16) by

- =

16∑
8=1

G8 68 ,

and the mapping ℍ" is represented by a 16 × 16 matrix, �" , so that
solving Eq. 4.67 is equivalent to solving equation

�"
®- = 0 . (4.68)
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For a set of calibration samples with matrices {"8}8=1,...,� , there will
be a different mapping ℍ",8 for each "8 . Consequently, there will be a
different vectorized mapping �",8 for each "8 . Then, Eq. 4.68 can be
solved by solving

 ®- = 0 , (4.69)

 =
(
�",1 ... �",�

) ©­
«
�",1

...

�",�

ª®
¬
= �)

",1�",1+...+�)
",��",� . (4.70)

The solution to the calibration problem lies in the form of  in Eq. 4.70.
Due to the original definition of the mapping ℍ" , the solution of Eq. 4.69
is the vectorized form of the generator matrix, ®<�, which can be found
as the eigenvector corresponding to the smallest eigenvalue of  [53].

Calibration samples

The mapping ℍ" (Eq. 4.66) has two distinct elements. The first one, "- ,
is the product of a theoretical matrix of a calibration sample, ", by an arbi-
trary theoretical matrix, -. The second element, -(<�<�)−1(<�<<�),
considers two additional products. The product (<�<�) contains the
multiplication of the experimental matrices of the generator and the ana-
lyzer. If we compare it with Eq. 4.65, we see that this product corresponds
with one capture of the system without any sample in it, i.e., with one
measurement of air.

"̂��' = <��<� = <�<� ,

where we have substituted the theoretical matrices for the analyzer and
the generator, "� and "� , for their experimentally derived counterparts.
The second product of interest is (<�<<�), which corresponds to the
experimental measurement of the calibration sample of the theoretical
matrix ".

We can define the set of matrices {�8}8=1,...,� as

�8 = "−1
��'(<�<8<�) , (4.71)

so that the mapping ℍ" for each calibration sample 8 is rewritten as

ℍ",8 : M4(ℝ) −→ M4(ℝ)
- −→ "8- − -�8 .

Although defining �8 is not a requirement to solve the eigenvalue cal-
ibration method, it will be helpful to determine its step-by-step imple-
mentation.

The ECM can be performed with as few as two calibration samples if we
consider a measurement of air as one of the two. Solving it with more
samples is also possible, which increases the precision of the derived
calibration [53]. Here, we used four calibration samples:

1. Air: Corresponding theoretical matrix "��' = �.
2. Horizontal linear polarizer: Corresponding theoretical matrix
"�!% (Eq. 3.32), with a maximum transmittance ?�!% , and a
diattenuation ��!% with respect to the G axis of the system.
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12 At this point, it is convenient to check
that the corresponding retardance angle
is positive. Otherwise, the eigenvalues
are most likely flipped.

3. Vertical linear polarizer: Corresponding theoretical matrix "+!%

(Eq. 3.32), with a maximum transmittance ?+!% , and a diattenuation
�+!% with respect to the G axis of the system.

4. Quarter wave plate aligned at 30◦ with respect to the G axis: Cor-
responding theoretical matrix "&,% (obtained from the product
of a diattenuator Eq. 3.32 and a retarder 3.35), with a maximum
transmittance ?&,% , retardance )&,% , diattenuation �&,% .

Even as calibration samples, the chosen ones are not ideal samples, so
their transmittance, diattenuation, and retardance must be taken into
account for the construction of their theoretical matrices. Nonetheless,
all those values can be obtained from their experimental measurements,
particularly from the eigenvalues of their �8 matrix equivalent. Let
{�8}8=1,...,4 be the (real or complex) eigenvalues of �8 , that are sorted in
an ascending manner (�1 < �2 < �3 < �4), first by their magnitude and
then by their complex part, so that all real eigenvalues are first. Then,
the properties of the non-ideal calibration samples can be obtained as
follows [53].

Case 1: the calibration sample is a horizontal linear polarizer Here,
the four eigenvalues are real. The diattenuation angle �, which indicates
the orientation of the polarizer with respect to the horizontal axis, is
calculated as

��!% =
�

2
− arctan

(
�4

�1

)
,

and the transmittance as

?�!% =
2�4

1 + cos(2��!%)
.

Case 2: the calibration sample is a vertical linear polarizer Here, the
four eigenvalues are real as well. The diattenuation angle �, is calculated
as

�+!% = arctan

(
�4

�1

)
,

and the transmittance as

?+!% =
2�4

1 + cos(2�+!%)
.

Notice that there is a rotation in � between the horizontal and vertical
polarizers.

Case 3: the calibration sample is a rotated quarter wave plate Here,
the corresponding � matrix, �&,% , contains two real and two complex
eigenvalues. Its theoretical matrix, "&,% , is constructed as if the sample
was not rotated since its rotation is introduced later. If the two complex
eigenvalues are �2 < �3

12, then the retardance is obtained as the angle
between them

) = ∠(�3 , �2) . (4.72)
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The diattenuation the waveplate might have is calculated from the two
real eigenvalues, �1 < �4, as

�&,% = arctan

(√
�4

�1

)
,

and its transmittance as

?&,% =
2�1

1 + cos(2�&,%)
.

ECM implementation

To experimentally implement the ECM, the following steps were fol-
lowed:

1. Measurement of the calibration samples with theoretical matrices
"��' = <�<�, "�!% , "+!% , "&,% and experimental matrices
<��' = "��', <�!% , <+!% , <&,% .

2. Calculation of the inverse of the air measurement, "−1
��'

.
3. Construction of the �8 matrices (Eq. 4.71) for each calibration

sample.
4. Construction of the theoretical matrix for the polarizers and the

waveplates ("�!% , "+!% , "&,%) by considering their transmit-
tance, diattenuation, and retardance as indicated in the previous
section.

5. Rotation of the"&,% by using a rotation matrix at angle�,"'>C(�)
(Eq. 3.38).

6. Construction of the vectorized mapping �",8 , for each calibration
matrix 8, using the Kroenecker product (⊗), the 4×4 identity matrix,
and the conjugate transpose (†), as

�",8 = � ⊗ "8 − �†
8 ⊗ � .

7. Construction of matrix  (Eq. 4.70) with the three mappings. Note
that, at this point,  ≡  (�).

8. Find <� by calculating all eigenvalues and eigenvectors of  for
all possible values of �. The actual <� will be the eigenvector
corresponding to the smallest eigenvalue of  , which will appear
when the angle � coincides with the real orientation of the quarter
wave plate, which in this book was set to 30◦.

9. Find <� by using the air measurement, <� = "��'<
−1
�

.

4.5.4 Calibration error estimation

In the previous sections, we have indistinctly used the real matrices of the
generator and the analyzer, <� and <�, and their theoretical matrices,
"� and "�. If the matrices were exactly the same, and there were no
experimental uncertainties, the smallest eigenvalue of  (Eq. 4.70), which
we use to solve for <�, will be zero. Since experimental uncertainties
exist, the ECM provides an easy way to estimate the calibration error by
looking at how far from zero the smallest eigenvalue of  is [53]. If �16
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13 This derivation was recently demon-
strated by Montes-Gonzalez et al. in a
study that, at the time of writing this
thesis, has been accepted for publication
and is awaiting public availability [54].

Figure 4.14: Possible polarization states
(grey) and generated polarization states
(red) by MMI v1.0. �# = 3.63.

Figure 4.15: Possible polarization states
(grey) and generated polarization states
(red) by MMI v2.0. �# =

√
3 ≈ 1.73.

Figure 4.16: Front view of the states gen-
erated in MMI v2.0.

is the smallest eigenvalue, and �15 the second smallest eigenvalue of  ,
then the calibration error can be estimated as

&��" =
�16

�15
≪ 1 . (4.73)

4.5.5 Effect of a non-square PSA

By having a polarimetric camera with four distinct linear polarizers on
its sensor and a two-position slider (one position containing a quarter
wave plate and the other position being left empty), the total number of
states in the PSA matrix is eight, leading to an 8 × 4 matrix. By selecting
only four states for the polarization state generator so that its matrix "�

is 4 × 4, all the previous derivations are independent of the dimensions
of "� and the Moore-Penrose pseudo-inverse can be used on the air
measurements to obtain matrices �8 13.

The ECM can be extended to work with non-square PSA and PSG
matrices, as proposed by Rosales et al. [55]. Although worth mentioning,
this method, along with other calibration methods, will not be discussed
here as they were not used in this work.

4.5.6 System conditioning

Characterizing the theoretical PSG and PSA matrices is helpful in under-
standing the performance of the constructed MMI system. Specifically,
the states of the PSG and the PSA must be chosen so that the matrices
are as far from singular matrices as possible since singular matrices are
non-invertible. The condition number of a matrix indicates how sensitive
it is to perturbations. For example, some measurement conditions with an
MMI system can yield noisier measurements, which might give similar,
but slightly different, PSA and PSG matrices than with varying conditions
of measurement. The theoretical matrices of the PSA and, especially, of
the PSG must be such that their condition number is low so that their
experimental measurements are less affected by noise. This number, ob-
tained as the quotient between the largest and smallest singular values of
a matrix, is a measurement of how evenly spaced the vectors in the matrix
are; the more independent from each other, the smaller the condition
number.

For the PSG matrix, "� , its ideal condition number (�#) that minimizes
the influence of noise [56] is

√
3. In the case of MMI v1.0, a condition

number so low was not achievable due to the PSG having only one degree
of freedom: the orientation angle (�) of the rotating wave plate. In that
case the optimal PSG, chosen with the lowest �# possible, is [57]
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yielding a conditioning number of �# = 3.63. The Stokes vectors gener-
ated by MMI v1.0 according to the previous PSG matrix are represented
in Fig. 4.14.
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Figure 4.17: Top-down view of the states
generated in MMI v2.0.

The MMI v2.0 has an additional degree of freedom: the orientation angle
�′ of the linear polarizer. This system is a complete polarimeter, meaning
it can generate any polarization state. Its optimal matrix is given by [56]

"� =

©­­­
«

"�!%(� = −85.13◦)"&,%(� = −67.5◦)
"�!%(� = −4.87◦)"&,%(� = −22.5◦)
"�!%(� = 4.87◦)"&,%(� = 22.5◦)
"�!%(� = 85.13◦)"&,%(� = 67.5◦)

ª®®®
¬

)

=

©­­­
«

1 1 1 1

1/
√

3 −1/
√

3 −1/
√

3 1/
√

3

1/
√

3 1/
√

3 −1/
√

3 −1/
√

3

1/
√

3 −1/
√

3 1/
√

3 −1/
√

3

ª®®®
¬
,

which provides the ideal condition number of �# =
√

3 ≈ 1.73. The
states generated by the system, represented in Figs. 4.15, 4.16, and 4.17
form a regular tetrahedron on Poincaré’s sphere, which is the volume
that can be constructed with four states that maximize its intersection
with the sphere.

4.5.7 Optical properties

The multispectral MMI systems derived for this thesis are able to obtain
the wavelength-dependent Mueller matrix of the samples,"(�). Once the
system is calibrated for each wavelength and the matrices are derived, any
decomposition method (see Sec. 3.5) can be applied to link the properties
of the matrices with the polarimetric properties of the samples, i.e., to their
diattenuation, retardance, or depolarization. The decomposition method
applied will be specified for each sample throughout this document.
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1 The number 50 is arbitrary. Our system
captures 1024 I values, and the sample
is always positioned as close as possible
to I = 0. Given that biological samples
have significant absorption at 1300 nm,
the wavelength used by the OCT system,
the bottom 50 pixels are always empty,
meaning no sample data is going to be
influencing the air and low-SNR areas
segmentation.
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This chapter aims to summarize all of the analysis techniques applied to
the measurements taken in this thesis. Some methods, like those based
on image or signal processing, are universally applicable to all systems,
as the data can be treated arbitrarily. Others are based on understanding
the optical properties probed by each system and getting the most out of
them. Most of the latter were already described in the previous chapter
as mathematical models representing the optical properties of interest in
each case. Still, any additional data treatment is described in the following
sections.

5.1 Signal detection in OCT

The optical models in OCT imaging often describe the behavior of light
once it enters the sample. Nonetheless, OCT captures a three-dimensional
data cube that contains the sample within it. Consequently, it is necessary
to locate the surface of the sample in the data cube so that the models
are evaluated only in regions where the sample is.

As light travels from the top to the bottom of the cube, it gets absorbed
and scattered by the sample. Regardless of the maximum theoretical
penetration of OCT systems, if the sample extinguishes all of the light, the
system is not going to be able to measure anything beyond the maximum
optical path. Areas beyond this point will not have enough SNR to be
measured.

This section describes the methods used to detect the sample’s surface
and those used to limit the calculations to high SNR areas only.

5.1.1 Air thresholding and Low SNR detection

The first step of sample segmentation involves removing the influence of
air. Given that the samples treated in this book were fairly absorbent, the
bottom of the OCT data cube was always empty, aside from the speckle
noise characteristic of OCT imaging. The air shares the same properties,
but it is not always visible in the same areas since some samples might
have uneven surfaces that leave air in some regions of the OCT cube but
not in others. The simplest way to remove air from the data cube is by
thresholding.

Let �(G, H, I) be the intensity in one OCT data cube. Let I be the di-
mensions representing height in the data cube, with I ∈ [0, /<0G]. Let
�1(G, H, I<0G − 50 : I<0G) be the slice of �(G, H, I) that represents the back-
ground noise, evaluated at the I slice given by bottom 50 I values in the
data cube, after all light is absorbed by the sample1. Then, the intensity
of the sample �B(G, H, I) can be separated from that of air �08A(G, H, I) by
setting to zero all those intensity values below the threshold given by

Th = mean(�1(G, H, I<0G − 50 : I<0G)) . (5.1)
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2 Note that this way of finding the sur-
face is finding the position of the MIP
(Eq. 4.9).
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Figure 5.1: Example of fit of the calibrated
OCT data before denoising.
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Figure 5.2: Example of fit of the cali-
brated OCT data after denoising with a
Gaussian filter with � = 1.

5.1.2 Surface detection

Given an intensity �(G, H, I), the associated surface intensity, �B(G, H), is
two-dimensional. Since light comes from air into the sample, the most
significant refractive index change occurs at the surface of the sample,
yielding a high-intensity peak (see the representation of an A-scan in
Fig. 4.5). Then, the most straightforward way of identifying the surface
is by searching for the position (argument) of the maxima along the I
direction2,

�B(G, H) = argmaxI(�(G, H, I)) . (5.2)

Biological samples often come fresh or fixed in liquid solutions to avoid
their degradation. This liquid can act as a refractive index matching
liquid in OCT measurements, meaning the intensity peak is no longer
as sharp as for dry, solid samples. Then, applying Eq. 5.2 for surface
detection may yield imprecise results. However, there are methods to
mitigate this imprecision.

Here, we opted for a multi-step process to find the surface:

1. Find a first estimate of the surface as Eq. 5.2.
2. Soften the intensity with a three-dimensional Gaussian filter with

� = 2 to remove abrupt changes in intensity caused by specular
reflections or noise.

3. Threshold the Air, as indicated in the previous sub-section, in the
softened version of the intensity.

4. Duplicate the intensity between the threshold limit and the surface.
If the first surface is well detected, the values on top of it, even if
duplicated, should be orders of magnitude below the OCT first peak.
If that is not the case, then the surface is updated by re-detecting
the maximum intensity in this range.

5. Finally, the surface is softened with a two-dimensional morpholog-
ical disk of radius 2 to minimize the effect of specular reflections.

5.2 OCT denoising

Any method of noise removal can be applied to OCT data in any com-
bination of dimensions. In this work, the data is fitted to models along
the I (depth) dimension, so the aim is to minimize the noise along this
direction without compromising the detail in the data.

The fitting attenuation data calibrated with a reference phantom is
especially sensitive to noise (Eq. 4.23). Since the intensity of the data can
be much less than that of the phantom, the calibrated data often has
values much smaller than one. When transforming it to logarithmic data,
the signal and the noise get enhanced equally (Fig. 5.1) and, as a result,
the data passed to the least squares-based fitting algorithms can yield
high MSE (or RMSE).

To avoid potential artifacts from filtering along the depth axis, which
could be problematic in samples with multiple layers, all OCT 3D data
was laterally smoothed. This was achieved using a 2D Gaussian filter
applied to each B-scan (a cross-sectional image at a constant depth). The
filter employed a 3D kernel with �3� = (� = 1, � = 1, 0), effectively
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smoothing only in the lateral dimensions (x and y). The rationale was
to assume signal continuity between neighboring A-scans to reduce
noise while preserving the relative intensity of each pixel within its local
context. With this approach, the RMSE is approximately reduced in half
(Fig. 5.2).

5.3 Spectral data compression for visualization

Spectral data derived from HSI systems is, as OCT data, three-dimensional.
However, instead of having three spatial dimensions like the latter, HSI
has one spectral and two spatial dimensions. To visualize the data in
two-dimensional images, it is necessary to compress the spectral dimen-
sion in a way that preserves the spectral contents of the sample. As in
OCT, the mean or max (spectral) intensity can be used for compression,
as well as fitting the data to relevant optical properties. However, there is
a method exclusive to visualize HSI-VISNIR data, which is to transform
it into a color image of the sample.

5.3.1 Color reconstruction in HSI

HSI captures and processes information across the electromagnetic
spectrum, going beyond the three color channels of conventional RGB
cameras. While traditional RGB cameras combine three color channels
in specific ways to produce color, HSI utilizes color matching functions
(CMFs) to achieve this. CMFs describe the sensitivity of the human eye
to different wavelengths of light, which indicates how a human would
receive the spectral data to translate it into -./ tristimulus values,
defined by the International Commission of Illumination (CIE), which
can then be translated into various color spaces like RGB for display [1,
2].

The -./ tristimulus values are calculated from the CMFs, G, H, and I,
which approximate the response of an observer for the red, green, and
blue wavelengths. Then, given some light, reflected or emitted, defined
by a spectrum )(�), the tristimulus values are calculated as [3, 4]

- =  
=∑
8=1

)(�8)G(�8)Δ� ,

. =  
=∑
8=1

)(�8)H(�8)Δ� , and

/ =  
=∑
8=1

)(�8)I(�8)Δ� ,

(5.3)

where Δ� represents the spectral resolution. The constant  , when the
light comes from a reflectance spectrum, is defined in terms of the green
CMF (H(�)) due to it being the better representation of the stimulus-
response of the human eye [4]. In such case, given a source with a
spectrum defined by ((�), the constant is obtained as

 =
100∑#

8=1
((�8)H(�8)Δ�

.
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Once the -./ values are obtained, any color space transformation can
be applied through the corresponding transfer matrix. In this case, we
used the RGB color space for representation, which relates to the -./
color space through [4].
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5.3.2 Color encoding for visualization

Visualizing multiple optical properties in a single image can be achieved
by mapping each property to a dimension of a color space, such as
Hue, Saturation, and Value, the components of the HSV color space.
This approach is particularly useful when the optical properties are
co-registered, either through simultaneous measurement or manual
alignment. HSV offers an advantage over RGB by separating color (Hue)
from intensity (Value), allowing for independent control of how each
optical property is represented [5].

Hue, typically represented as a cyclic value (0-360 degrees or 0-1), can
lead to visual confusion due to the cyclical nature of red hues. To address
this, we restrict the Hue values to a range of 0.2 to 1.0, effectively creating
a “rainbow” colormap that spans from green to red. This truncated
range avoids the red-orange-yellow portion of the spectrum, preventing
potential misinterpretations while retaining red values at the higher end
for the representation of a specific feature. Critically, this modified HSV
to RGB conversion remains valid, ensuring compatibility with standard
visualization tools [6].

To create a combined HSV image, each of the three desired optical
properties is assigned to one of the HSV components (H, S, or V). Since
HSV values range from 0 to 1, all measurement data must be normalized
to this range. For datasets with multiple samples, we scale each sample’s
data individually to a range between 0 and 1 using the dataset’s overall
minimum and maximum values. This global scaling ensures consistency
across all samples and allows for a single, unified legend.

However, simply scaling data to 0-1 does not guarantee optimal HSV
visualization. Outliers in one sample can compress the dynamic range
of other samples, making color distinctions difficult. To compensate,
we employ a non-linear rescaling based on the dataset’s cumulative
distribution function. This global equalization expands compressed
ranges while respecting the overall data distribution, improving color
differentiation, and enabling the use of a single HSV legend for all
samples. This method complements the general principle that the human
eye is more sensitive to luminance variations than color changes for
discerning textural information, influencing our parameter assignments
[7].

In this work, we assigned birefringence, a clinically relevant property
for distinguishing between control and pathological samples, to Hue
(H). Control samples are visualized in green, while pathological samples
appear in red. Other parameters, such as the sample’s profilometry
and its attenuation, which exhibit strong spatial variations, are mapped
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Figure 5.3: Example of the initial po-
sitioning of the photon (red circles) in
the simulation. The position of the pho-
ton is given by the vector ®A?ℎ , whose
coordinates are updated as the simula-
tion continues. The space is divided into
radial (blue circles) and angular (grey
lines) bins so that the final location of the
absorbed photons inside the sample is
known.

to Saturation (S) and Value (V) [6]. This allows us to represent these
properties as variations in color intensity or brightness, respectively,
leveraging the eye’s sensitivity to luminance for textural analysis.

5.4 Monte Carlo simulations for optical
properties derivations

In the previous chapter, it was briefly mentioned that Monte Carlo
simulations can be used to derive the optical properties of the sample.
A look-up table can be created by simulating multiple combinations of
attenuation and scattering, which will yield various reflectance values.
Then, given a measured reflectance, the corresponding optical properties
are found through the look-up table. The main advantage of using
simulations instead of models to derive the optical properties of biological
tissue is that most reflectance models do not consider the influence of
multiple scattering, which occurs at the deeper regions of the sample.
The only assumption simulations make is about the internal structure
of the sample, which, in most cases, can be considered homogeneous.
This section will briefly explain the steps of the Monte Carlo Multi-Layer
simulation method applied in this work. The Monte Carlo theory for the
simulation of the optical properties of samples is thoroughly described
in the references [8–10], but is included in the following section for
completeness.

5.4.1 Monte Carlo Multi-Layer

CUDAMCML [11], which is a GPU-accelerated version of the Monte
Carlo model for Multi-Layered tissues (MCML) [8], was used in this
work to simulate the optical properties of the samples. Although this
method considers the option to include multiple sample layers, given
a known thickness and refractive index, it is also possible to consider
only one semi-infinite layer. In this case, we chose the latter since the
muscle samples are not expected to have multiple layers. This Monte
Carlo method, as introduced by Wang et al. [8], is a multiple-step process
that involves launching a photon and simulating its optical path in terms
of a given absorption and scattering. The optical path of a single photon
will resemble a random walk, so it is necessary to simulate a high number
of photons to estimate the optical path of the average photon correctly.
The simulation space is divided into bins to save the absorbed photons
(Fig. 5.3).

Photon launch

In the Monte Carlo method, an initial amount of photons is launched
with a certain spatial distribution. The number of photons launched
represents the incident intensity. Then, the photons will be scattered
and absorbed according to the optical properties set for the simulation.
This gives different amounts of transmitted, absorbed, and reflected
photons, which can be detected at the end of the simulation to calculate
the transmittance, absorbance, and reflectance.
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3 Named directional cosines because
they indicate where does the photon po-
sition vector “point” to.

4 Note that the actual involvement of the
scattering coefficient in the simulation is
included in the weight depletion caused
by the absorption as indicated in the
previous section.

5 |2I | > 0.99999 [8]

Photon position and orientation

The instantaneous position and orientation of the photon packet are
defined as follows Let ®A?ℎ = (G?ℎ , H?ℎ , I?ℎ) be the coordinates of one
photon, and the boundary between air and sample be set at I = 0. Then,
the directional cosines3 are given by 2G = ®A?ℎ · Ĝ, 2H = ®A?ℎ · Ĥ, and
2I = ®A?ℎ · Î, defined between the photon’s position ®A?ℎ and the unitary
vectors of the coordinate system set on the air-sample interface (Ĝ, Ĥ and
Î).

Absorption

If a photon packet was sent, the absorption given by �0 would cause a
number of the photons in the packet to be absorbed. Instead, since the
simulations are done with a photon at a time, absorption is considered
as an absorbed weight of each photon. To implement it, each photon is
assigned an initial weight, . By dividing the simulation space into bins,
some of the weight of the photon, given by Δ, =, ·�0/�C , is deposited
into the destination bin. After the absorption event, the weight of the
photon is updated as, →, − Δ, .

Scattering

Scattering, while given by �B4, is simulated as a random reorientation of
the direction cosines based on the anisotropy coefficient, 6. Specifically,
given a random variable �, and a deflection angle � ∈ [0,�) that sym-
bolizes the reorientation of the photon packet, the magnitude cos� is
updated as

cos� =




1
26

(
1 + 62 −

[
1−62

1−6+26�

2
] )

if 6 ≠ 0

2� − 1 otherwise
.

The angle that defines the azimuth, Ψ ∈ [0, 2�], is also randomly esti-
mated as

Ψ = 2�� .

Finally, the direction cosines are updated as [8]

2G →
sin�√
1 − 22

I

(2G2I cosΨ − 2H sinΨ) + 2G cos� ,

2H →
sin�√
1 − 22

I

(2H2I cosΨ − 2G sinΨ) + 2H cos� , and

2I → − sin� cosΨ

√
1 − 22

I + 2I cos� .

To avoid numerical errors, when the angle of the new direction of the
photon packet is near the surface’s normal5, then the direction cosines
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6 This expression is derived from the
sampling of the probability distribution
for a photon’s free path. See reference
[10] for details
7 If multiple layers are being considered
(which here is not the case), the distance
to the layer-layer boundary should be cal-
culated as well, and the Reflection and
Transmission properties must be calcu-
lated according to Fresnel’s equations.
Then, part of the simulation continues in
the same layer as an internally reflected
weight, while some continues as a trans-
mitted weight in the new layer.

can be approximated as

2G → sin� cosΦ ,

2H → sin� sinΦ , and

2I → SIGN(2I) cos� .

Photon death

The simulation is halted when the photons are considered dead. There
are two cases when the photon is terminated: (1) if the photon exits the
medium through the surface situated at I = 0, and (2) if its weight is
too small after being moved to a new position. In the second case, the
weight of the photon (,) is evaluated with respect to a threshold (i.e.,
,Cℎ = 0.0001 from an initial weight of, = 1). The threshold represents
the probability of the photon surviving when having a small weight. If
its weight is below the threshold, a random variable � is sampled and, if
its value is smaller than,Cℎ , then the photon continues with 1/,Cℎ the
weight (, →,/,Cℎ). Otherwise, the photon is terminated. This way
of terminating the photons, known as the roulette, means that there is
a high chance that their simulation will not continue if their weight is
small, but if they do continue, their weight must be increased to conserve
the total weight introduced in the simulation.

Monte Carlo pipeline

Then, the steps followed to simulate the optical properties, according to
Wang et al. [8], are, for each photon, the following:

1. Launch a single photon inside the medium at ®A?ℎ = (0, 0, 0) with
directional cosines 2G = 0, 2H = 0 and 2I = −1.

2. Sample a random variable � to get the step size B the photon is
going to move to next, in terms of the extinction coefficient6, as
B = − ln(�)�−1

C .
3. Calculate the distance to the air-sample boundary 317.

a) If the photon crosses the surface, i.e., if the step size is larger
than the distance to the air-sample boundary (31�−1

C ≤ B),
then the photon is saved in the bin over the sample’s surface
as a diffusely reflected photon, and its simulation terminates.

b) If the photon does not cross the surface, it is moved to the next
position, given by B/�C . Then, the path is updated as B → 0,
and the absorption and scattering are calculated as described
above at a new position.

4. Find if the photon is dead to determine if it crossed the boundary.
5. If the photon is not dead, evaluate its weight with respect to the

threshold.

a) If the photon does not survive the roulette, its weight is set to
zero in the corresponding final bin and added to the absorbed
energy.

b) If the photon survives the roulette, the process goes back to
step 2 and repeats until the photon is terminated.

6. Repeat steps 1 to 5 until all the photons are simulated.
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Figure 5.4: Random walk of 105 photons
simulated for a semi-infinite sample with
�0 = 12<−1, �B = 1002<−1, 6 = 0.9 and
= = 1.4. Notice the forward shaped photon
distribution due to the high anisotropy
coefficient.

Figure 5.5: Diffuse reflectance ('3) LUT
created by simulating 200 × 150 pairs of
�0 × �B with 6 = 0.9 and = = 1.4. The
white line represents all of the (�0 , �B )
pairs that yield a reflectance of '3 = 0.13
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Figure 5.6: Reflectance as a top-down
view of the total exited photons out of
the 105 photons simulated for a semi-
infinite sample with �0 = 102<−1, �B =
1002<−1, 6 = 0.9 and = = 1.4.

8 This value is commonly used in the
literature for many biological tissues.

9 Assuming a point source.

5.4.2 MCML-derived reflectance

A wide range of optical properties must be simulated to use the LUT
for every biological sample. As a first approach, we chose attenuation
values of �0 ∈ [0.001, 10], with a step of 0.05, and scattering values of
�B ∈ [0.01, 500], with a step of 50. This created a 200 × 150 LUT which,
due to the high number of simulations, was limited to 1000 photons per
simulation.

The simulation space was considered to be one single semi-infinite layer
that was binned in the G, H, and I spatial dimensions to save the results.
The refractive index needs to be considered as well to find Fresnel’s
reflectance and transmittance contributions at the boundaries. Jacques
provided a comprehensive list of refractive indexes, attenuation, and
scattering properties of biological samples based on the compilation of
multiple scientific articles [12]. Most biological samples have a refractive
index (=) between 1.33 and 1.51, which increases with the diminution of
water content. In this case, the refractive index was set at8 = = 1.4 as in
other works focused on mice muscles [13]. Similarly, a value of 6 = 0.9

was used due to it being often selected for muscles [13].

For each pair (�0 , �B), the total number of photons9 will have an internal
spatial distribution similar to what is shown in Fig. 5.4, with more or
less penetration depth in terms of absorption and scattering properties.
Notice that even if the penetration depth of the photons is in the range of
millimeters, the actual optical path length they follow is much longer,
sometimes even exiting the sample after traveling through all of it
before exiting through the top surface. This highlights the limitation
that the analytical models often have since the estimation of the optical
path length is hindered by the erratic photon movement, which is also
wavelength-dependent.

The reflectance is obtained by calculating the ratio of the photons that
exit the surface (i.e., those that are not absorbed) to the total simulated
photons. The reflectance for the whole 200× 150 LUT is shown in Fig. 5.5.
The relationship between '3 , �0 , and �B is non-linear and ill-conditioned,
in the sense that there is more than one (�0 , �B) pair that yields a similar
reflectance value. For example, the white line in Fig. 5.5 represents all the
pairs that cause a reflectance of 0.13, considering a maximum deviation
of 0.0001. Although the LUT has some noise due to the small number of
photons per simulation and, like any analytical model, has limitations,
it is still helpful to determine the behavior of the reflectance in terms
of scattering and attenuation. In general, the higher the attenuation,
the lower the reflectance due to the sample absorbing more photons.
Similarly, the higher the scattering, the higher the reflectance due to most
photons exiting the sample without penetrating deep into the sample. In
the regions of high albedo (�′

B >> �0), the reflectance varies slowly with
scattering changes but falls rapidly if the attenuation increases, while in
the regions of low albedo (�′

B << �0), absorption dominates the diffuse
reflectance and little to no energy is reflected.
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Figure 5.7: Monte Carlo modeling of the
optical properties of Spectralon at ten
spatial frequencies in terms of the wave-
length. [14].

10 Reference material used to calibrate
HSI and SFDI measurements, introduced
in the previous chapter.
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Figure 5.8: Comparison with the results
of the Monte Carlo simulations with the
diffusion approximation (Eq. 4.55).
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Figure 5.9: Frequency-transformed LUT
used for the samples.

5.4.3 Reflectance at different spatial frequencies

The previous chapter introduced that the simulation of a point source
can be transformed into the frequency response of a sample through a
transform that involves the Bessel functions (see Eq. 4.56). To do so, it is
necessary to obtain from the simulations the spatial distribution of the
diffuse reflectance in terms of the GH distance to the point source (Fig.
5.6), given by � =

√
G2 + H2, so that '3 ≔ '3(�). Then, the reflectance in

terms of the spatial frequency is found using Eq. 4.56. The results from
the simulations for the Spectralon10 in terms of the spatial frequency
and wavelength is shown in Fig. 5.7. In this case, and in general, the
lower the spatial frequency, the higher the captured reflectance. For this
material, each wavelength has only one distinct pair (�0 , �B) (see Fig.
4.10), yielding one distinct value of '3 for each wavelength :.

When comparing the (wavelength-averaged) diffuse reflectance derived
from the simulations and the diffusion approximation (Eq. 4.55), we see
that given the properties of the Spectralon, the diffusion approximation
mostly coincides with the simulations (Fig. 5.8). Only for very low
spatial frequencies does the approximation slightly overestimate the
reflectance.

As before, for each spatial frequency, the diffuse reflectance is undeter-
mined due to there being multiple combinations of �0 and �B that yield
the same value. However, the real optical properties of the samples can
be found by measuring more than one spatial frequency since the �0 −�B
surfaces at the different frequencies are not parallel (Fig. 5.9), solving the
indeterminacy.

5.5 Machine learning

Machine learning is a powerful tool for understanding complex informa-
tion, especially when dealing with high-dimensional datasets. It can be
applied to classify data according to their clinical category based on their
optical properties or to reduce their dimensionality and make datasets
easier to handle. Machine learning encompasses many different types of
algorithms ranging from something very simple, like linear regression, to
something as complex as deep neural networks. This section will provide
a brief overview of the machine learning methods used in this work and
highlight their key concepts and use cases.

5.5.1 Supervised and unsupervised machine learning

In machine learning, tasks are categorized as either supervised or un-
supervised, depending on the availability of labeled data. Supervised
methods use a set of labeled data points to train algorithms to predict
some property of new, unlabeled data. This approach requires prior
knowledge of the training data and enough labeled examples for the
algorithm to learn the relationships between features and classes [15].
On the other hand, unsupervised methods aim to discover inherent
groupings within data without prior knowledge of class labels. These
algorithms analyze the relationships between data points based on their
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characteristics, forming clusters of points that share similar features. The
choice between supervised and unsupervised classification depends on
the specific application, the availability of labeled data, and the overall
goal of the analysis.

5.5.2 Dimension reduction methods

Although we have already discussed some ways of compressing spectral
data to two dimensions for visualization, other dimension reduction
techniques can be generally applied to any dataset characterized by a
specific set of features. These methods, which are usually unsupervised,
search for particular metrics that can represent the behavior of the data in
the original space to project the points onto a dimension-reduced space.
Thus, they remove unnecessary information like noise while keeping the
main relationships between features.

Principal component analysis

Principal Component Analysis (PCA) is a linear transformation technique
used to reduce the dimensionality of complex datasets. It identifies
the most important patterns and relationships within the data and
represents them using a new set of independent variables called principal
components.

PCA analyzes the variance of the data. The first principal component
is derived so that the projection of the data onto it represents the most
variance in the dataset. Subsequent components are orthogonal to the
previous ones and capture decreasing amounts of variance. The original
data points are then projected onto these new components, resulting in a
lower-dimensional representation [16].

Dimensionality reduction with PCA involves selecting a subset of prin-
cipal components that adequately represent the data. This selection is
typically based on the cumulative variance explained by the components.
For example, one might choose the number of components that capture
95% or 99% of the total variance. However, it is also possible to decide
the number of components in terms of a desired output size, for example,
for 2D representation purposes [16].

t-Distributed stochastic neighbor embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique
often used for visualizing high-dimensional data by mapping similar
objects to nearby points in a lower-dimensional space while focusing on
preserving local structures.

The algorithm begins by converting Euclidean distances between high-
dimensional points ({G=} ∈ ℝ# ) into conditional probabilities that
represent their similarity [17]. These probabilities reflect the likelihood
of G8 ∈ {G=} choosing G 9 ∈ {G=} as a neighbor. Corresponding points
H8 , H9 ∈ {H<}, with {H<} ∈ ℝ" (" < #) are then created in the lower-
dimensional space, and their distances are defined by similar conditional
probabilities to those in the original space.
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11 See the section 5.5.3 for more details
on the K-Nearest Neighbors method.

12 A dataset used to train the algorithms
based on its features, which means ob-
taining the parameters that define said al-
gorithms. In optical imaging, this dataset
may be comprised of attenuation, scat-
tering or absorption values of some sam-
ples.

13 Here we refer to test data as the valida-
tion dataset, which is different from the
training dataset in that the algorithms
have never seen any feature of the test
dataset when obtaining their defining pa-
rameters. Splitting the data into train and
test requires not having any overlapping
information. For example, if many spec-
tra from different specimens are used,
it is strictly necessary to verify that the
spectra in the train and test dataset come
from different specimens so that the algo-
rithms do not learn based on the specific
specimen but on the spectral features.

t-SNE optimizes the low-dimensional mapping by minimizing the
difference between the probability distributions in the high and low-
dimensional spaces, meaning it would search for a dimension-reduced
space that optimizes the similarity between the probabilities before and
after reduction [17]. This process reveals clusters and patterns based on
data similarity. Perplexity is a key parameter of t-SNE that is related to
the number of considered neighbors, which influences the results and
needs careful consideration.

Isometric Feature Mapping

Isometric Feature Mapping (Isomap) is a non-linear dimensionality
reduction technique that aims to preserve the global structure of data
by focusing on geodesic distances, which represent the shortest paths
between two points along a curved surface (manifold). The idea is similar
to that of t-SNE, which consists of preserving the distance between points.
Still, instead of basing the algorithm on conditional probabilities, it is
based on searching for the underlying graph structure that globally
connects all data points [18].

The algorithm starts by constructing a neighborhood graph, where the
number of neighbors can be determined using K-Nearest Neighbors11

or prior knowledge. This graph approximates the underlying manifold
of the data, i.e., its spatial distribution. Next, Isomap estimates geodesic
distances between all pairs of points using shortest-path algorithms and,
finally, it applies scaling to this distance matrix to embed the data into a
lower-dimensional space while preserving the geodesic distances [18].

The key advantages of Isomap are its ability to capture the global structure
of the data and its global optimization approach. However, it can be
sensitive to "shortcuts" between clusters and computationally expensive

for high-dimensional data.

5.5.3 Classification

Data is often acquired with the aim of classifying it, whether it is done

through supervised or unsupervised methods. The following sections

discuss some of the possible classification techniques that have been

applied in this book.

K-Nearest Neighbors classification

K-Nearest Neighbors (KNN) is a supervised classification method that

divides the data into different classes by evaluating the class of its

neighbors. The process starts by finding the distance between one data

point and all points in the dataset. Given the class of a pre-defined

number of neighbors ( # ), KNN assigns a class to the data point based

on the most numerous class among its nearest neighbors [19].

This method depends heavily on the selection of  # . If  # is low, the
algorithm memorizes the training dataset12 and is not able to generalize
when test data13 are used, leading to very accurate results when training,
but poor when testing. When the number of neighbors is too high, KNN
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14 Examples of this behavior are de-
picted in Ch. 8.

can stabilize if the classes are well defined or even start failing for the
training dataset if there is too much overlap between classes. Furthermore,
the higher the number of neighbors, the slower the algorithm is since it
needs to check more neighbors for each data point. The optimal number
of neighbors can be optimized based on the accuracy of the algorithm
on the test dataset to ensure it generalizes as best as it can, although
this recursive process makes training the algorithm a time-consuming
process due to it needing to evaluate every possibility [20].

K-means clustering

K-means clustering is an unsupervised method that creates classes (i.e.,
clusters) by grouping the data according to the similarity of its features. It
starts by initializing the centroids of the clusters in random positions and
dividing the data into the pre-defined number of clusters  � according
to the distance between the points and the nearest centroid. Then, the
centroids are recalculated as the mean of the data points assigned to the
cluster, and the dataset is divided again according to the new centroids.
This process is repeated until the position of the clusters does not change
[21].

K-means is also heavily conditioned by the number of clusters  � , but
often, this number will be something of interest, like the number of
clinical categories in a dataset (i.e., healthy vs. diseased). Nonetheless,
since the method searches for similarities between features and does
not use any prior knowledge of the data, it might separate the points in
clusters that are not clinically relevant14, so the clearer the distinction
between clusters according to one feature, the better K-means clustering
will perform.

Multi-layer perceptron

A Multi-Layer Perceptron (MLP) is the simplest of the neural network
architectures. It often consists of a series of fully connected hidden
layers that move the data introduced through the input layer up to the
output layer (feed-forward). The data that reaches a layer is multiplied
by a weight and added to a bias. The weights and biases of each neuron,
which generate linear combinations of the inputs, are randomly initialized
and optimized by minimizing a loss function, which, when used for
classification, is often the error between the expected and real labels
of the data [22]. Activation functions are used between layers to add
non-linearities to the possible data combinations after applying the
corresponding weights and biases. Here, we used Rectified linear units
(ReLU) as the activation function, which returns the maximum between
the neuron’s output and 0 [23–25].

The larger the network, the more complex the problem it approximates
can be. However, larger networks are also prone to overfitting, as they
have more capacity to memorize training data but can not extrapolate
the results to validation data. In this document, we will specify the
configuration of each network when evaluating the results to see how it
influences them.
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Autoencoders

Unlike the previous methods, which directly evaluate the data fed into
them, autoencoders are neural networks designed to learn compressed
representations of data. They consist of an encoder that scales down
the original features to a small-dimensional set of latent features and
a decoder that reconstructs the original input from this latent set [26].
This configuration forces the autoencoder to learn the most important
features of the data and combine them so that the most information is
kept. Autoencoders are used for various tasks, including dimensionality
reduction, denoising data, and anomaly detection, by learning the un-
derlying structure and patterns within the data [27, 28]. Here, our use
of autoencoders focused on classifying the data but also allowed us to
create a dimension-reduced version of the acquired datasets.

Supervised Autoencoders A Supervised Autoencoder (SAE) is a type
of autoencoder that combines unsupervised learning (reconstruction)
with supervised learning (classification) [29]. There are four main parts
to a Supervised Autoencoder:

▶ Encoder: The encoder compresses the input data (G) into a lower-
dimensional latent representation (I). This is achieved by sequen-
tially reducing the number of neurons in each layer of the encoder.
The first layer has an input with the number of neurons given by
the number of features of G, while the last layer has I outputs.

▶ Decoder: The decoder reconstructs the input data (Ĝ) from the
latent representation (I). Inversely to the encoder, the decoder is
created by incrementing the number of neurons in each layer. Its
first layer has I inputs, and its last layer has as many neurons
as G has features. Although there are no restrictions between the
structure of the encoder and the decoder, the decoder is typically
the same network as the encoder but inverted.

▶ Bottleneck: The bottleneck is the layer between the encoder and the
decoder where the latent representation (compression) occurs. It is
given by the number of neurons I, and the smaller this number,
the larger the compression applied to the data.

▶ Classifier: A separate branch is used to classify the data using the
latent representation (I) as an input to predict the class labels (Ĥ).

The SAE is trained by minimizing two loss functions at the same time: a
reconstruction loss that measures the difference between the inputs and
the reconstructed data (G and Ĝ), and a classification loss that measures
the difference between the actual and predicted labels (H and Ĥ). The
loss function for classification was cross-entropy, which is often used
for multi-class classification problems since it measures the difference
between two probability distributions [30]. The larger the cross-entropy,
the worse the classification is. For the reconstruction, we minimized the
mean squared error between G and Ĝ [30].

By minimizing both loss functions at the same time, the SAE is forced to
generate a latent space that can reconstruct the data well and that clusters
the labeled data points while minimizing the overlap between clusters.

Conventional parameters, like the choice of activation function or loss
functions, the size of the dataset, or the training epochs, will influence the
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reconstruction and classification results. Still, the critical parameter in a
SAE is the size of the bottleneck since it limits the space the autoencoder
can generate to provide its best performance. In this book, we tested
bottleneck sizes of 2, 3, and 4 neurons. The proposed SAE was also
trained with dropout, a technique that randomly deactivates a fraction
of neurons in a layer during each training iteration. Dropout prevents
the network from relying too heavily on any single neuron and forces it
to learn more generalizable features to reduce overfitting.

5.6 Validation and explainability

Validation is a critical step of any machine learning method since it
can tell how well an algorithm performs in a given dataset, but also
how well it will behave upon encountering new data. Some methods
are very straightforward to evaluate, while the interpretation of others
might be more cumbersome. Currently, validating the methods, while
still necessary, is being complemented with explainable AI (XAI) metrics
that do not only tell how an algorithm performs, but also why it behaves
as it does. This section provides information on some validation and
explainability methods used in this work.

5.6.1 Accuracy

It is generally accepted that accuracy is a good marker of how a classifier
performs due to it being an easily interpretable metric that can be applied
universally to any classifier. Let G be a data point that has a class H assigned
to it. Based on its training, an algorithm will provide a prediction for the
class of G, defined as Ĥ. Given # data points, accuracy increases by 1/#
when the prediction is correct (Ĥ = H) and by 0 when the prediction is not
correct (Ĥ ≠ H). In the end, accuracy can be understood as the percentage
of data points correctly classified by the algorithm.

Supervised algorithms are directly or indirectly trained to maximize the
accuracy they provide, but accuracy should also always be evaluated
based on new data to interpret how well an algorithm generalizes its
classification performance.

5.6.2 Cross-validation

Although accuracy is a good general metric for interpreting a classifier’s
performance, it depends on how the data is split between the train and
test datasets. If, for example, the test dataset contains many outliers,
the test accuracy will be low, but this does not mean that the classifier
cannot generalize well. Cross-validation aims to reduce these types of
ambiguities by testing the algorithm with multiple test datasets.

The main idea of cross-validation is to divide the available data into
multiple subsets, often referred to as folds. The algorithm is trained on
some of these folds and then tested on the remaining fold. This process
is repeated, with each fold taking a turn as the test set. The results from
all the test folds are then averaged to give a more robust estimate of the
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model’s performance than a single train-test split would provide. This
helps assess how well the model generalizes to new data.

There are many types of cross-validation. Some examples are k-fold cross-
validation, which divides the data into a pre-defined number of folds;
leave-one-out cross-validation, which uses a single data point to test the
model at each fold; or leave-one-group-out cross-validation, which can test
the data of one group (i.e., one patient) each time. Here, we use the latter
to avoid the algorithms from focusing on the features of one specific
sample instead of the common features between all samples with the
same clinical category.

5.6.3 XAI: Feature importance

Assessing feature importance goes a step beyond the previously men-
tioned methods. Instead of evaluating the overall performance of the
algorithm, feature performance metrics analyze which features of a
dataset are the most useful for a classifier to distinguish between the
desired categories. In other words, evaluating feature performance gives
information about what is important and what is not for a specific task.

Currently, evaluating feature importance falls under the umbrella of
explainability or explainable AI. This broad term encompasses any
analysis that assists in interpreting data, models, or features [31]. Here,
we focus on the latter, given that one of the objectives of this thesis is
to identify which optical property, or which combination of them, best
distinguishes between healthy and dystrophic muscle.

To evaluate feature importance, we opted for the random permutations
method because it is universally applicable given that it is based on the
accuracy metric [32]. Conceptually, the random permutations method
is simple and can be illustrated through an example. Let us say that we
have some data points of healthy and diseased samples characterized by
two features: height and density. Then, we train a classifier to distinguish
between healthy and diseased based on the two features, and we obtain
a good result (i.e., 90% accuracy for the test dataset). To find out what is
influencing our classifier more between the two features, we apply the
random permutations method by randomly shuffling the height data
and leaving the density as is. If height is important for the classification,
the shuffled data must decrease the accuracy, given that we are removing
the relationship between clinical category and height. We repeat the
random shuffling a number of times and calculate, on average, how much
the accuracy decreases when shuffling the height. Then, the process is
repeated with the density. If, for a given feature, the average accuracy
decreases, then the feature is important for classification and should be
kept; if it remains the same, the feature does not add any information
for classification and can be removed; finally, if the average accuracy
increases after randomly permuting the data, it means that the feature
adds noise that hinders classification and must be removed.

In this work, the decrease in average accuracy through random permuta-
tions will be used to evaluate the feature importance of those features
used in each classification task.
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Part IV

Results and discussion





1 If no letter is written next to the sample
ID number, it means that the sample is a
quadriceps.

Figure 6.1: Control samples of MD1 after
defrosting.

Figure 6.2: Leg of sample 742 of LD be-
fore defrosting. The left leg’s quadriceps
is included in MD2.
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6.1 Samples description

Most of the measurement and analysis of the samples, especially at the
early stages of this work, focused on OCT and PS-OCT measurements.
As such, the sample dataset analyzed with these techniques is the most
complete out of all the imaging modalities. The datasets are described in
this section, but all imaging modalities will refer to these datasets when
indicated.

All samples analyzed in this work are from 
-sarcoglican deficit model
mice. Sarcoglycans, which connect the cell membrane to the cytoskeleton,
help maintain internal muscle stability. Alterations in the sarcoglycans
can lead to Limb-girdle muscular dystrophy (LGMD) or Myofibrillar
myopathies (MFM) (see Ch. 1).

Two muscle datasets and one whole legs dataset are used in this book,
all originating from and validated by Hospital de la Santa Creu I Sant
Pau and by the John Walton Muscular Dystrophy Research Centre. The
samples are identified as control samples, coming from wild-type (WT)
mice, while the dystrophic ones have the knock-out (KO) identification.
Samples are identified with a number related to the mouse from which
they came. If two samples share the same number, it means they come
from the same animal. The letter that accompanies the muscles, when
present1, indicates the muscle that the sample is (C: quadriceps, TR:
triceps, B: biceps, D: diaphragm, or GC: gastrocnemius). Any other letter
indicates that more than one quadriceps was measured for the same
mouse.

The first dataset is composed of 17 samples (Fig. 6.1), of which 4 are
muscle samples of WT and 13 KO mice, executed at different ages. The
ages of the controls was not considered in this dataset. Most samples were
quadriceps, with the exception of those of the one-month-old (KO-1mo)
mouse. The complete description is in table 6.1. This dataset receives the
name of Muscle Dataset 1 or MD1.

The second dataset contains 26 samples of only quadriceps, with a total
of 13 WT and 13 KO samples. The samples in this dataset have varying
ages, coming from mice executed at 3, 7, 8, 9, 11 or 12 months old. The
complete description is in table 6.2. This dataset receives the name of
Muscle Dataset 2 or MD2.

Additional whole-leg samples were received and measured (Fig. 6.2), but
due to their different nature, they are considered and analyzed as their
own dataset. The Leg Dataset (LD), comprised of one of the whole legs of
mice 814, 895, and 896, see Tab. 6.2) where measured after retracting the
skin to expose the muscle and other tissues like fat and leg fasciae.

The samples were received frozen in dry ice and fixed to a cork base
of 2.2 cm in diameter, and their size ranged between 3 mm to up to 1
cm (Fig. 6.1). The samples were kept at -50 ◦ until they were measured.
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Table 6.1: Samples description for the dataset MD1. The number is an indicator of the animal, meaning that the same number in the
sample ID indicates that the sample comes from the same mouse. In KO-1mo, all samples were from the same mouse, and the letters
indicate the sample type, i.e., the muscle group they come from. In KO-3mo, two quadriceps were received from the same mouse,
identified with different letters. In parentheses, � indicates Female, " indicates Male, and the suffixes <> and H> are month-old and
year-old, respectively.

Controls
(WT)

Dystrophic,
1 month old
(KO-1mo)

Dystrophic,
3 month old
(KO-3mo)

Dystrophic,
6 month old
(KO-6mo)

Samples 4 5 5 3

Sample type Quadriceps

Quadriceps (C),
Triceps (TR),
Biceps (B),
Diaphragm (D),
Gastrocnemius (GC)

Quadriceps Quadriceps

Sample ID SM, 636, 638, 639
731-TR, 731-B,
731-C, 731-D,
731-GC

774-A, 774-B,
878, 883, 885, 886

809, 810, 811

2 Note that the vertical axis on Fig. 6.3
(a) is in logarithmic scale, so that the
Beer-Lambert law is transformed as line
log(�0) − 2�II log 4.

For defrosting, first, they were changed to a -18 ◦ freezer for one hour,
followed by storing them in the refrigerator at +3 ◦. Then, they were

Table 6.2: Samples description for the dataset MD2. The whole leg samples in LD (814, 895, 896) come from the mice with the same
number in dataset MD2.

Controls (WT) Dystrophic (KO)
Samples 13 13
Sample type Quadriceps Quadriceps

Sample ID

520 (F, 1yo), 536 (M, 10mo), 540 (M, 11mo),
548 (M, 11mo), 595 (M, 8mo), 805(M, 3mo),
808 (M, 3mo), 814 (M, 11mo), 861 (M, 3mo),
862 (M, 3mo), 863 (M, 3mo), 895 (M, 1yo),
896 (M, 1yo)

531 (M, 10mo), 534 (F, 10mo), 545(M, 10mo)
564 (M, 9mo), 565 (M, 9mo), 578 (F, 8mo),
581 (F, 8mo), 621 (M, 7mo), 628 (F, 7mo),
741 (M, 1yo), 742 (M, 1yo), 867 (F, 3mo),
870 (F, 3mo)

taken out of the fridge to rest one additional hour at ambient temperature
before measurement. For the samples in dataset MD1, all samples were
measured on the same day, meaning that some stayed refrigerated for
longer than others. In contrast, samples in the remaining datasets were
measured on different days to minimize the variance in the storage
conditions between samples.

6.2 Overview of the measurements

It is helpful to explore the raw OCT data to aid in the interpretation of
the following sections. Here, one healthy sample of the first dataset, MD1,
was used to represent the general behavior of any healthy sample.

In general, the average A-scan (Fig. 6.3, a) has a sharp peak right on the
surface of the sample due to a combination of Fresnel reflection at the
surface and the existence of specular reflections that saturate the detector.
The latter appear on regions of the sample that are perpendicular to the
beam, where the reflection is maximized, and often in low-scattering areas,
like water deposits. After the peak, the exponential decay follows the
Beer-Lambert law (Eq. 4.16)2. As the light goes past the single-scattering
region, the Beer-Lambert law approximation is no longer valid, and light
is scattered and absorbed faster.



6.2 Overview of the measurements 161

0 1 2
Depth inside the sample [mm]

100

101

102

103

104

105

106

I [
a.

u.
]

a) b) c)

Figure 6.3: Detail on the data for the control sample 636 of MD1. (a) Average A-scan (solid line) and standard deviation (shaded area) of
the sample. (b) Central B-scan of the sample with its surface detected in blue. (c) MIP with the B-scan of (b) marked in red and the area
chosen for the average and standard deviation in (a) marked in green.
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Figure 6.4: Average A-scan and standard
deviation of the samples in dataset MD1,
colored by sample (a) and by sample state
(b). The data has been normalized to the
intensity peak.

The intensity decay inside the sample is not homogeneous (Fig. 6.3, b).
There are denser areas that extinguish the light closer to the surface than
others. Consequently, deeper regions in the sample have fewer A-scans
with intensity higher than the noise floor, so the standard deviation
increases with the penetration depth (Fig. 6.3, a).

The MIP is the OCT equivalent to a regular grayscale camera image - it
shows the sample as viewed from above. This representation is helpful
in determining different regions in the sample. Surface features, like
the hairs visible in Fig. 6.3, (c), hinder the proposed surface detection
algorithm enough to cause a mismatch between the real and the calculated
surface of a sample of a few pixels. However, this mismatch never goes
beyond the single scattering region, leaving enough pixels to fit the
A-scans to the models. Additionally, artifacts are visible in the detected
surface where there is no sample or where its intensity is very low (Fig.
6.3, b). Still, those areas are not considered for calculations after selecting
the region of interest of each sample since they are barely visible in the
MIP.

Some samples had higher first reflection intensity peaks than others (Fig
6.4). Since the attenuation coefficient �I is derived from the intensity of
the A-scans as the slope of the logarithmic version of the Beer-Lambert
law, only data inside the sample, i.e., beyond the peak, must be considered.
Experimentally, the first reflection peak was within the first 5 px (≈ 13
�<) of the A-scan, so the fit to the single-scattering region was done
from the first 10 px (≈ 25 �<) and up to 250 px (≈ 250 �<), where the
single scattering dominates [1].

Additionally, some samples have higher variances in their A-scans that
start earlier in the sample, particularly those with initially lower intensities.
Without considering the initial peaks, each sample has different slopes,
meaning that each sample will provide a different attenuation value. The
healthy samples (WT in Fig. 6.4, b) had similar average slopes, while
more inter-sample variation is observed in the dystrophic ones (KO in
Fig. 6.4, b). The following regions provide further details on this topic.
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Figure 6.5: Average A-scan and standard
deviation of the control sample 636 in
dataset MD1 calibrated with the refer-
ence phantom. The non-calibrated inten-
sity is shown in Fig. 4.4, (a).
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Figure 6.6: Example of one A-scan in
the control sample 636 (black) with the
result predicted by the model (Eq. 4.23).
The fit region is selected to be located
inside the single-scattering region.
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Figure 6.7: Attenuation �C (a) and its
uncertainty (b) for sample 636 predicted
by the model (Eq. 4.23).

6.3 Introduction of the calibration phantom

To find the attenuation, the intensity of the samples was calibrated against
a phantom with known properties, as explained in Chapter 4. The initial
light decay model for the logarithmic intensity of a sample, ln(�B), with
attenuation coefficient �C is given by the Beer-Lambert law (Eq. 4.17)

ln(�B) ∝ −2�C/ .

The calibration of the intensity involves dividing the sample’s intensity, �B ,
by the intensity of a reference phantom, �A4 5 , with reference attenuation
coefficient �C ,A4 5 so that the Beer-Lambert law is modified as

ln

(
�B
�A4 5

)
∝ −2I(�C − �C ,A4 5 ) .

This second equation can now have positive values in regions where the
attenuation of the phantom is higher than that of the sample (Fig. 6.5).
The resulting calibrated logarithmic data showcases a much more linear
behavior than its non-calibrated counterpart (Fig. 4.4), meaning that a
significant part of the apparent initial deviations from the Beer-Lambert
model come from the loss of sensitivity of the system along the I axis,
instead of from the sample. The introduction of the calibration phantom
mitigates these deviations.

6.4 Attenuation

Following the previous section, the samples were calibrated with the
measurements from a controlled phantom to obtain the attenuation �I ,
the proportionality parameter �, and the MSE via least squares fitting.
The uncertainty of the parameters was obtained from the covariance
matrix as well.

Fig. 6.6 shows the fit result on one of the control samples. The fit region
was chosen inside the single scattering region given, approximately by
I ≤ 250�< [1]. After calibrating the sample, the single scattering region
manifests itself as a linear portion of the calibrated A-scan. Once the
system starts detecting less signal, either because it is getting extinguished
by the sample or because it is too deep in the sample, the linear region
disappears just outside the single scattering area. Having a positive slope
on the calibrated data is an indicator of the attenuation coefficient of the
sample being smaller than that of the reference phantom.

The resulting attenuation is, in general, not homogeneous across the
sample, even if its uncertainty is (Fig. 6.7). Areas with high attenuation
in this image correspond to the areas with less light penetration in the
B-scan shown in Fig. 6.3. This showcases the existence of variations
in attenuation and scattering inside the sample, i.e., of structural and
chemical changes that can be taking place. Kylen et al. [2] explored the
attenuation coefficient in healthy mice muscle samples and revealed that,
even in this ideal case, the attenuation coefficient as obtained with OCT
imaging is subject to spatial variations, given the orientation change in
the myofibers of the muscle. Regardless of the orientation of the sample
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3 Dataset MD2 has the same number of
samples in each class and the data points
have been randomly sampled from each
muscle so that all have the same number
of values.
4 Note that this classifier was not trained
to be used as a classifier, i.e., no measures
have been taken to avoid data leakage be-
tween samples and no cross-validation
has been considered. This classification
aimed to provide a separation threshold
between the wild-type and knock-out
categories as there is significant overlap
between distributions to compare it di-
rectly with the bibliography.

in the system, the myofibers are not arranged in “layers” and, therefore,
there is no orientation to set the muscle in that has the myofibers running
perfectly perpendicular to the OCT beam. The attenuation of all samples
in datasets MD1 and MD2 is represented in figures 6.8 and 6.9.

Kylen et al. [2] also analyzed dystrophic mice samples in their work from
a different mouse model, the mdx mouse model, which introduces a
mutation in the DMD gene. The OCT attenuation results after choosing
known areas in their samples with and without necrotic lesions revealed
that non-necrotic regions (i.e., intact myofibers) had an average of �C =
3.7 ± 1.1 mm-1. In contrast, necrotic areas showed attenuation of �C =
10 ± 0.07 mm-1. The threshold that separates the attenuation of necrotic
and non-necrotic fibers is 7.5 mm-1 [2].

The majority of the data points of the control samples in dataset MD1
have attenuation values below the necrotic fiber threshold (Fig. 6.10, a).
However, most of the KO samples are below the threshold as well, with
the exception of those from the 1-month-old KO mouse (731). Interestingly,
these younger dystrophic samples have data above the threshold while
being different muscles, which indicates a whole-body distribution of the
muscular disruption. Similar results are obtained for the dataset MD2 (Fig.
6.11), but better separation is achieved between the overall distribution for
wild-type and knock-out samples (Fig. 6.11, c). The fact that all samples
in dataset MD2 are the same type of sample (quadriceps) and that the
classes are balanced3 might contribute to the better separability than for
MD1. Training an SVM to obtain the threshold between classes yielded a
necrotic threshold of �C = 5.22<<−1, with significant overlap between
classes (60% accuracy4).

The difference in attenuation with respect to the threshold provided by
Kylen et al. could be due to the samples in the 
-sarcoglycan deficient
mice exhibiting a lower degree of necrosis than expected or compared to
Duchenne’s model samples. This suggests that the disease progression
or the severity of muscle damage in this particular model might be less
pronounced. Additionally, the threshold the authors provide is based on
small regions of interest taken in healthy and necrotic muscle areas of
treadmill-exercised DMD model mice and validated by evaluating the
attenuation over and below the threshold for different samples using
H&E as a gold standard. Here, the regions depicted are much bigger in
size, with the samples ranging from 3 to 8 mm laterally, so a significant
part of the variance may come from different levels of deterioration
within the same muscle. There could be areas in the samples with
various compositions and structures, i.e., fatty infiltrations or edema, that
contribute to the overall spread of attenuation values in each sample.

Now, let us focus on some specific samples that showcase variation at
different stages of the disease. For example, let us take the WT sample
SM, the KO-3mo 774-A and the KO-6mo 810.

The healthy sample (SM), shown in the first row of Fig. 6.12, had an
interesting region in the center with lower attenuation (Fig. 6.12, b) that
its surroundings. Upon evaluation of the reference RGB image, the OCT
system takes to help position the samples, it was seen that this control
sample had a fatty protuberance right where the attenuation was detected
as lower by the model that uses the reference phantom (Eq. 4.23, a).
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639 (WT) 731-TR (K0) 731-B (K0)
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Figure 6.8: Attenuation of all samples in dataset MD1. The first four are the control (WT) samples (SM, 636, 638, 639), and the rest are
dystrophic (KO) samples. Best viewed in pdf.
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Figure 6.9: Attenuation of all samples in dataset MD2. The first 13 samples are control (WT) samples, while the rest are dystrophic (KO)
ones. Best viewed in pdf.
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Figure 6.10: Attenuation boxplots (a) and distributions (b and c) of the samples in MD1. The data is colored by sample (a and b) or by
sample state (c). The dotted vertical line separates wild-type samples (left) from knock-out ones (right). The depicted necrotic threshold
has been obtained from Kylen et al. [2] to compare it with our results (�C = 7.5<<−1).
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Figure 6.11: Attenuation boxplots (a) and distributions (b and c) of the samples in MD1. The data is colored by sample (a and b) or by
sample state (c). The dotted vertical line separates wild-type samples (left) from knock-out ones (right). The depicted necrotic threshold
has been obtained from Kylen et al. [2] to compare it with our results (�C = 7.5<<−1).

The KO samples, shown in the next two rows of the same figure (Fig.
6.12), also have areas with contrasting attenuation values.

To better understand the tissue changes, column (c) in Fig. 6.12 shows the
(log-scaled) B-scan that passes through the different attenuation areas in
the sample. Light extinction in the fatty region of the WT sample (first
row in Fig. 6.12) seems higher than in the surrounding muscle, meaning
that it appears that light reaches more profound points in the latter. This
penetration change appears to be confirmed by the localized attenuation
(Eq. 4.26) shown in the fourth column of Fig. 6.12, where regions with
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Figure 6.12: Reference RGB image (a), attenuation derived from the phantom-calibrated data (b), B-scans (c), and localized attenuation
derived from the raw data (d). The first row is the WT sample SM, followed by the KO-3mo 774-A in the second row, and the KO-6mo
810 in the last row. The B-scans in (c) and (d) are marked by a red, dotted horizontal line in the RGB image. The localized attenuation
maximum (d) was three orders of magnitude smaller (≈ 10−3 mm−1) than the cumulative effect seen in the second column (b). The
arrows point to sub-structures highlighted by (d) on the corresponding regions in (c).

shallower light penetration show higher localized attenuation than others.
Even though the localized attenuation was as low as 10−4 mm−1 due to
the small penetration depths considered in each step of the calculations,
it helped enhance structures that are barely visible in the corresponding
B-scan, like the very subtle intensity changes indicated by the white
arrows in 6.12.

Other easily located changes in the intensity are also highlighted by the
localized attenuation. In sample 774-A, the darker area visible in the en-
face attenuation image shows a line underneath it in the B-scan. This line,
which marks where two muscular regions with different fiber orientations
overlap, has a localized attenuation as high as the surface of the sample
itself, meaning that this interface is affecting the light extinction as much
as a refractive index change from air into the sample.

Evaluating the samples by using multiple models helps interpret their
structure. The darker areas that are marked as less attenuating by the
phantom-calibrated model are distinguished as more attenuating by
the localized attenuation model. The main differentiating factor is the
penetration depth considered by each model. While the former (Eq.
4.23) considers all the information within the single-scattering region,
which translates to approximately 80 px from the surface of the sample,
the localized model (Eq. 4.26) does not have this limitation. This is
especially notable in the areas where the highest intensity is not right
at the surface of the sample but slightly beneath it, which indicates that
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5 As mentioned in earlier chapters, the
OCT system used for these experiments
works at 1300 nm.

a)

b)

c)

d)

Figure 6.13: Reference RGB image (a),
phantom-calibrated attenuation (b), B-
scan (c) and localized attenuation (d)
of the KO-3mo sample 885. The B-scan
shown in (c) and (d) is marked as a red,
dashed horizontal line in (a) and (b).

the phantom-calibrated model might not be reaching the deeper areas of
the higher signal. Additionally, the phantom-calibrated model requires
surface detection, which is prone to artifacts due to specular reflections,
uneven surfaces, and liquid deposits in biological samples. In contrast,
the localized model starts at the limit of detection given by the noise floor
and is calculated up to the top of the OCT 3D cube, meaning that surface
detection is not required.

Although the localized model poses several advantages over the phantom-
calibrated one, we have seen in previous chapters that (1) scattering at
IR wavelengths5 is negligible with respect to the attenuation, and that
(2) the absorption of fat is one order of magnitude less than that of
water, collagen, and elastin, the main components of muscle (see Fig. 4.7).
These two facts suggest that the attenuation of the phantom-calibrated
model might be more accurate in terms of the value of the actual optical
properties of the samples than the localized model.

Regardless of the magnitude of the attenuation, both models are able
to detect the change in the backscattering properties due to the sam-
ple’s internal heterogeneity. Even if the data introduced to obtain the
attenuation maps is different (one is calibrated with the phantom and
the other is not), using both models together is the best way to gain a
deeper understanding of the samples. The phantom-calibrated model
points at the areas with different compositions and/or structures with
the sample as seen from above, which then can be taken as a slice in
the form of a B-scan and tinted with the localized attenuation model
to search for internal features as one would in histopathology slides,
providing a greatly contrasted image without needing to perform any
invasive procedure on the sample.

Finally, there was one sample that stood out of all of them due to its
complex attenuation pattern, which was the KO-3mo sample 885 from
dataset MD1 (Fig. 6.13). This sample had a dermal-like layer fused to its
surface that had significantly higher attenuation, as provided by both
models. Not only did the models agree on the muscle and this extra
layer, but the localized model behaved almost like a layer detection
algorithm, with the higher attenuation areas matching the thickness of
this additional tissue.

6.5 Stokes parameters

After evaluating the amplitude decay of light through the attenuation
coefficient, it is useful to explore what occurs with the phase through the
Stokes parameters. As a brief reminder, the Stokes parameters represent
the description of the light state polarization. Figure 6.14 shows the four
stokes parameters for the same control sample that was used to depict
the data captured by the OCT system (Fig. 6.3).

The first parameter, (0 (or �), corresponds to the intensity images depicted
in the previous section. The next two Stokes parameters, (1 and (2,
represent the ratio of horizontally to vertically polarized light and +45◦

to +135◦ polarized light, respectively. Finally, the last parameter (3

represents the amount of left and right polarized light.
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Figure 6.14: Stokes parameters of the B-scan shown in Fig. 6.3 of the WT sample 636 (MD1).(a) (0 = �, (b) (1 = &, (c) (2 = * , and (d)
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Figure 6.15: Cumulative phase )2 and
unwrapped phase )D as obtained from
the method proposed in [4] for the WT
sample in Fig. 6.14.

Every parameter other than the intensity shows a structure of periodical
variations in some regions of the samples. This kind of periodicity is
visible in anisotropic tissue like chordae tendinae [3], which indicates
the consistency in the orientation of the internal muscle fibers.

From these magnitudes, it is at this point understood that the internal
spatial variation of the Stokes parameters will yield different birefringence
values corresponding to varying levels of tissue anisotropy (i.e., tissue
organization) both between samples and inside each sample.

6.6 Birefringence

As introduced in the previous chapter, the phase obtained from the Stokes
vector can be used to derive the birefringence of the sample. Similarly to
the attenuation, the birefringence is obtained as en face maps by fitting
the data up to a specific depth in the sample. The method to derive the
birefringence [4] involves several steps, including finding the cumulative
phase between the Stokes vector at the surface of the sample and the
vector at some depth I (Fig. 6.15, a). This phase ()2) grows periodically
from −� to � and then has a discontinuity in the form of a jump to
the next −� to � period. By unwrapping the phase to obtain )D (Fig.
6.14, b), the phase is transformed into a monotonically growing slope.
Notice that even beyond the single-scattering limit, which approximates
80 pixels deep in the sample, the phase is detectable up to the point
where there is no signal. To perform the linear fitting required to obtain
the birefringence, only the first two periods are considered to avoid the
deeper, noisier phase due to the loss of SNR. In the regions where the
tissue anisotropy is high, less than one period is often detectable, so in
those cases, the signal is considered up to the noise floor. The resulting
birefringence of all samples in datasets MD1 and MD2 is represented
in figures 6.16 and 6.17, respectively. Both images help visualize the
aforementioned spatial variation in the birefringence.

Yang et al. [5] explored the birefringence of dystrophic samples in the
same model that Kylen et al. used for the attenuation (mdx model). In
the work by Yang et al., following a similar protocol to that of Kylen et
al., the PS-OCT-derived birefringence in selected areas in their samples
with and without necrotic lesions revealed a birefringence threshold of
Δ= = 5 · 10−3 that separate necrotic and non-necrotic fibers, with healthy
samples showcasing values over the threshold, and necrotic regions
underneath it [6].
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Figure 6.16: Birefringence of all samples in dataset MD1. The first four are the control (WT) samples (SM, 636, 638, 639), and the rest are
dystrophic (KO) samples. Best viewed in pdf.
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Figure 6.17: Birefringence of all samples in dataset MD2. The first 13 samples are control (WT) samples, while the rest are dystrophic
(KO) ones. Best viewed in pdf.
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Figure 6.18: Birefringence boxplots (a) and distributions (b and c) of birefringence of the samples in MD1. The data is colored by sample
(a and b) or by sample state (c). The dotted vertical line separates wild-type samples (left) from knock-out ones (right). The depicted
necrotic threshold has been obtained from Yang et al. [5] (Δ= = 5 × 10−3) to compare it with our results.
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Figure 6.19: Birefringence boxplots (a) and distributions (b and c) of birefringence of the samples in MD1. The data is colored by sample
(a and b) or by sample state (c). The dotted vertical line separates wild-type samples (left) from knock-out ones (right). The depicted
necrotic threshold has been obtained from Yang et al. [5] (Δ= = 5 × 10−3) to compare it with our results.

As occurred for the attenuation, there is a high variation of birefringence
values between and inside each muscle. In the dataset MD1, all dystrophic
samples had birefringence values under the necrotic threshold, which
indicates a lower level of tissue anisotropy than for the healthy samples
(Fig. 6.18), even for those samples where the attenuation was over its
corresponding threshold. Similarly, for dataset MD2, the only samples
that surpassed the necrotic threshold were wild-type samples. However,
in the latter, and control samples had more values beneath the threshold
than MD1, which could be caused by the higher variability that comes
with having more samples or by using the the same type of sample
(quadriceps only in MD2).

Even so, these results suggest that birefringence can be a better marker
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of dystrophy than attenuation. The latter is affected by chemical changes
that can start occurring at a small enough scale to not be detectable with
OCT due to its resolution. However, these chemical changes will break
the perfect alignment in the microstructure of the fibrous muscle cells.
Even if the micro-structural changes are not individually visible by this
technology, a broken anisotropy will change the polarization properties
of light, which is detected through the change in birefringence.

The only KO sample in MD1 that had values over the threshold, and even
over the values of healthy samples, was sample 885, which, as we have
already seen, has a layer of epidermal-like tissue on its surface, which
skews the distribution towards higher values, while the muscle itself
is below the dystrophic threshold (Fig. 6.16). Additionally, the samples
that had the highest attenuation in MD1 (KO-1mo) also have the lowest
birefringence, which is a good indication that those samples, even being
the youngest of both datasets, are the ones with the highest presence
of diseased tissue. A possible explanation could be that the youngest
KO mouse has their muscle fibers break due to the disease, but also due
to their natural growing process that stabilizes as the mouse reaches a
more mature age. For DM2, only six samples reach the necrotic threshold
with their interquartile ranges (534, 548, 578, 595, 814, 862) (Fig. 6.19).
Their corresponding en face birefringence maps also showcase the high
variability across the muscles (Fig. 6.17). In dataset MD2, the only sample
that significantly reached the dystrophic threshold was sample 578 and,
in this case (Fig. 6.17), it is muscle tissue that provides the high value,
suggesting that even in dystrophic specimens, some variability may arise
between samples.

Birefringence maps are also valuable for showing muscle fiber direction-
ality. A great example is shown in Fig. 6.16 for sample 774-A. We have
seen in Fig. 6.12 a B-scan of this sample that shows how two different
layers of fibers overlap, running non-parallel from the top to the bottom
of the muscle. A different B-scan of the same sample is shown in Fig. 6.20.
Although the en face attenuation map also shows some degree of fiber
directionality, it is much more highlighted through the birefringence.
Furthermore, the localized attenuation and the birefringence both mark
the same central area as more necrotic than the rest of the sample, while
the en face map of attenuation does not, due to the limited penetration
depth considered to obtain it. In this case, the intensity is homogeneous
in the whole area considered for the phantom-calibrated model, but the
localized attenuation is modified due to considering the whole depth of
the sample. The birefringence is altered similarly since the phase delay
(or lack thereof) returning from the more profound points in the sample
will destroy the linear cumulative phase seen in the rest of the muscle,
indicating loss of sample structure.

6.7 Conclusions

This chapter explored the application of optical coherence tomography
(OCT) to characterize muscle tissue samples from a mouse model of 
-
sarcoglycan deficiency, a condition mimicking certain aspects of muscular
dystrophy. Two datasets, MD1 and MD2, were analyzed, comprising a
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a) b) c) d) e)

Figure 6.20: Reference RGB image (a), phantom-calibrated attenuation (b), B-scan (c), localized attenuation (d) of the KO-3mo sample
774-A, and birefringence (e). The B-scan shown in (c) and (d) is marked as a red, dashed horizontal line in (a), (b) and (e).

range of control and knockout samples. Initial analysis focused on OCT-
derived intensity, which showed a non-homogeneous light decay inside
the samples, indicating structural variations both within and between
samples. A phantom-calibrated light-decay model was employed to gen-
erate two-dimensional maps of attenuation (�C), focusing on the single
scattering region (25-250 �<). The attenuation maps revealed variations
in tissue density within individual samples, with strong overlap between
clinical categories for dataset MD1. Although some improvement was
observed in dataset MD2, neither demonstrated a clear separation be-
tween control and dystrophic samples based on bulk attenuation values.
Comparison with literature-derived necrotic thresholds in a Duchenne’s
muscular dystrophy model suggests that either the 
-sarcoglycan defi-
cient samples exhibit less necrosis or that analyzing bulk samples, as we
have done here, masks the subtle differences detectable in RoI-focused
experiments.

The 2D attenuation maps highlighted internal structures, which were
evaluated through cross-sectional B-scans and the subsequent appli-
cation of a localized attenuation model. The two attenuation models
showed some discrepancies: the phantom-calibrated model indicated
lower attenuation in denser regions, while the localized model showed
the opposite trend. This difference stems from the distinct calculation
methods, with the phantom-calibrated model averaging attenuation
over a larger depth range within the single-scattering regime, while the
localized model provides pixel-wise values. Despite this, the combined
information obtained through use of both models provided additional
insights. The 2D phantom-calibrated maps identified regions of inter-
est, which were then further analyzed with the localized model, which
enhanced the sub-surface structural variations.

Beyond intensity-based OCT, we also investigated the potential of
polarized-sensitive OCT. 2D birefringence maps were generated from
the phase delay data derived from the Stokes parameters. These maps,
while exhibiting significant inter- and intra-sample variability, seemed
a better alternative for distinguishing between healthy and dystrophic
samples. In dataset MD1, a clear separation was observed between the
two clinical categories, with healthy samples exhibiting birefringence
over the necrotic threshold reported in the literature, while dystrophic
samples were consistently below. Dataset MD2 showed more overlap,
which could originate from the number of samples per clinical state.
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While dataset MD2 had an equal number of samples for each category,
this was not the case for MD1, with the control category being under-
represented. The superior performance of birefringence in differentiating
dystrophic samples suggests that it is more sensitive to the changes
associated with the disease than attenuation. While chemical changes
might not be sufficient to alter attenuation significantly, the disruption of
fiber integrity in dystrophic samples appears to affect the phase delay,
leading to a decreased value of birefringence.

In summary, while attenuation measurements showed limited ability to
distinguish between healthy and dystrophic muscle samples, birefrin-
gence proved to be a more sensitive marker of disease-related changes,
likely reflecting the disruption of muscle fiber structure. Further studies
with a wider age range of animals are needed to establish the temporal
dynamics of these changes fully and to determine if there is a specific
developmental stage where attenuation may be a more useful biomarker
for this particular model of muscular dystrophy. However, as we will
demonstrate in subsequent chapters, the textural information contained
within the attenuation maps can be used to enhance the diagnostic
potential of OCT.
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In the previous chapter, we explored the mice muscles dataset from
the structural point of view. Even if the attenuation is linked to the
chemical composition, the working fundamentals of OCT imply that
the signal received comes mainly from the backscattering properties
of the sample. This chapter will focus first on the results provided by
hyperspectral imaging, which primarily informs about the chemical
composition of samples, and spatial frequency domain imaging, which
is the only methodology explored in this book that is able to decouple
the contribution of absorption and scattering.

Due to the incremental development of the application of these imaging
methodologies to the mice samples, only the second dataset (MD2) is
analyzed in this chapter.

7.1 HSI reflectance of mice samples

As before, the first step after measuring the samples is to evaluate their
average behavior. The reflectance measured with HSI systems has two
spatial dimensions and one spectral dimension. As with OCT, a helpful
way to visualize the samples is by averaging the data in the spectral
dimension (Fig. 7.1, a and b). The range below 430 nm and over 900 nm
in the VISNIR range was not considered due to the loss of signal caused
by the detector’s sensitivity. The noise increment below 950 nm and over
1650 nm in the SWIR range is also caused by the sensor’s limitations.

The VISNIR and SWIR devices are equipped with lenses that provide
similar spatial resolution across the two wavelength ranges. However,
given that the total absorption of the chromophores in the VISNIR is
slightly higher and that the scattering is orders of magnitude smaller in
the SWIR, the penetration depth at these wavelengths is much longer
than in the visible. The random walk of the photons inside the sample
causes a natural blurring of SWIR wavelengths, which is exaggerated even
more when averaging large spectral ranges, as in Fig. 7.1 (b). Although for
most samples, this does not pose an issue, with samples as small as the
mice muscles, which were less than 1 cm in their longest dimension, the
blurring is much more noticeable in the SWIR range than in the VISNIR
range.

The HSI-VISNIR system acts as a color camera with more than 200 color
channels. As such, the average spectrum shown in Fig. 7.1 (c) represents
a thorough description of the color of the sample. The higher reflectance
in the range between 600 and 800, as well as the low reflectance below
that, suggests that this sample had a dark red color. However, not only
the color can be determined from the VISNIR range, but also its origin as
well. The average spectrum has two almost overlapping valleys at 550
and 580 nm, which coincide with the absorption peaks of oxyhemoglobin
(see Fig. 4.7). This suggests that this element is the main one that gives
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the samples their color, possibly combined with deoxyhemoglobin or
with the multiple forms of myoglobin.

The HSI-SWIR range measurements are influenced by many chro-
mophores that are principal components of muscle tissue, such as
collagen, elastin, fat, and, especially, water. Water, which is completely
transparent in the visible range, is almost opaque in the infrared. Since
biological samples are mostly made out of water, the biological finger-
print becomes nearly a marker of the water content in the sample. Only
below 1250 nm and below 1000 nm does fat surpass the absorption of
water, and elastin and collagen dominate only between 1000 and 1100
nm. The rest of the SWIR spectrum is marked by the absorption of water,
making hydrated samples lose almost all diffuse reflectance over 1400
nm (Fig. 7.1, d).

The patterns observed for this sample are consistent for all samples
(Fig. 7.2, a and b). Depending on their chemical composition, their
chromophores affect the reflectance, providing higher or smaller values
for some samples. Still, the double hemoglobin peak is always present,
as well as the valleys caused by the water absorption peaks. Nonetheless,
an additional peak-valley combination at 930-975 nm is also influencing
the results in the NIR range. These two wavelengths correspond with the
peak and valley of lipids absorption at the same wavelengths, combined
with a growing absorption of water in the same range.

When considering the whole dataset into the control and dystrophic
classes (Fig. 7.2, c and d), we see that the spectral variation across
the different samples translates into a severe overlap between the two
categories. On average, the dystrophic dataset has a “flatter” response,
with higher reflectance values below 680 nm than the controls and lower
after that wavelength. The average control spectrum is slightly below the
dystrophic one in the SWIR range, but overall, both spectra are highly
similar in this range. In the following sections, we will see how this
overlap manifests itself in the results.
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Figure 7.2: VISNIR (a) and SWIR (b) diffuse reflectance average (solid line) and standard deviation (shaded area) for all samples in
dataset MD2. The average control and dystrophic spectra are shown for the two spectral ranges in (c) and (d). The top legend applies to
(a) and (b), and the bottom one to (c) and (d). Sample 531 has not been considered in the average spectrum.
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Only one sample in the whole dataset behaved differently from the rest:
sample 531. This sample overlapped with the others below 600 nm and
over 1400 nm, where the absorption of hemoglobin and water, respectively,
is higher. The next section will provide additional information about the
origin of this sample’s discrepancy.

7.2 Color reconstruction

The HSI-VISNIR data can be used to reconstruct a color image from the
hyperspectral data cube. The main advantage this color reconstruction
poses with respect to a conventional color photograph of the sample is
the exact coregister between the color image and the hyperspectral data.
The reconstruction is shown in Fig. 7.3.

Color reconstructions help better understand the high resolution of the
HSI system. Details such as muscle fibers (sample 520), damaged areas
(sample 808), and fatty deposits (sample 814) are clearly identifiable
thanks to this representation. The muscles ranged in color from dark
brown to clear pink, with some highly translucent areas. These variations,
as well as the multiple sample sizes and thicknesses, will affect the
diffuse reflectance. All samples were provided fixed to a cork base with a
clear fixing agent, with the only exception being sample 531, which was
embedded in a dark fixing agent.

The translucent nature of the samples causes light to go all the way
through them when the wavelength does not coincide with strong
absorption peaks. This means that the photons will interact with the cork
beneath the samples before returning to the sensor. The only sample
where that does not happen is, precisely, sample 531. The dark fixating
agent completely absorbs all photons that make it through the sample,
and the received ones are those that did not make it through, i.e., photons
that contain information only of the sample, without being affected by
the cork at all. The spectral discrepancies this sample showcased with the
rest of them suggest that the fixing agent influences the reflectance the
most between 650 and 1350 nm. On the other hand, the range between
650 and 1350 nm for sample 531 is also artificially attenuated by the same
agent, and its real diffuse reflectance could be over the actual measured
value. In any case, the real diffuse reflectance of the samples between
650 and 1350 nm is most likely between the values of sample 531 and the
values of the rest of the samples.

Fixing the samples for transport is a common practice to keep them from
getting damaged in transport and to coregister contiguous samples taken
from the same specimen. However, for samples as small and thin as the
mice muscles, where the VISNIR-SWIR photons can travel through them,
measuring the diffuse reflectance needs consideration of what is set
underneath the samples so as not to influence the measurements. Ideally,
the substrate should be something that (1) does not absorb and (2) does
not scatter so that the diffuse reflectance of the sample is left unchanged.
A substrate that better fulfills these conditions is a mirror. Although
measuring on mirrors is challenging due to the specular reflectance they
cause in areas where the sample does not cover them, closing the aperture
of the lenses helps diminish the spurious rays so that only the light that
travels perpendicularly to the surface of the mirror is captured.
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Figure 7.3: Color reconstruction from HSI-VISNIR data for all samples in dataset MD2.
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1 This quotient coincides with the local
slope of the iso-reflectance curve shown
in Fig. 5.5.

7.3 Scattering and absorption in HSI

Before, we introduced the albedo of a material, which is defined as how
much light it scatters out of what it extinguishes. In a medium with
absorption (�0) and reduced scattering (�′

B), it is defined as

0 =
�′
B

�′
B + �0

.

Some of the reflectance models that were introduced in previous chapters
estimate the reflectance in terms of the quotient1 # = �0/�′

B , which
relates to the albedo through

# =
1 − 0
0

or 0 =
1

1 + # .

When the sample does not have scattering, then 0 = 0 and # → ∞; when
the sample does not absorb, 0 = 1 and # = 0; when the absorption and
scattering are comparable, 0 = 0.5 and # = 1.

The models proposed by Kubelka and Munk [1] (Eq. 4.40) and Jacques
[2] (Eq. 4.42) were used to calculate the fraction �0/�′

B to compare it with
the results obtained from Monte Carlo simulations. The general behavior
is shown in Fig. 7.4.

All three methods show similar general trends in the ratio between
absorption and scattering as a function of wavelength, with peaks and
valleys occurring at roughly the same wavelengths. This suggests some
degree of agreement between the methods in capturing the fundamental
optical properties of the sample. The Monte Carlo simulations are close
to the empirical model provided by Jacques (Eq. 4.42), while the model
by Kubelka and Munk gives values of at least one order of magnitude
higher than Jacques’ and two orders of magnitude higher than the simu-
lations. The only regions where the Kubelka-Munk model approaches
the simulations are below 480 nm and over 1350 nm. We have seen before
that the latter corresponds to the high-absorption spectral region given
by the water content of the samples. On the lower end of the wavelength
spectrum, the absorption is mainly caused by the hemoglobin, combined
with a high scattering signal due to the melanin content below 480 nm.
The presence of highly absorbent chromophores reduces the SNR, and
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Figure 7.4: Comparison of the models proposed by Kubelka-Munk (Eq. 4.40) and Jacques (Eq. 4.42) with the derivation from Monte
Carlo simulations for sample 862 (MD2).



182 7 HSI and SFDI measurements of dystrophic mice muscles

2 With respect to the spectrum baseline

3 With an Intel Core i7 (10th Gen) and
64Gb of ram.

the sensitivity of the cameras decays from 1600 to 1700 nm and from 500
to 400 nm. The low signal detected in this range may contribute to the
discrepancies between models and the high standard deviation of the
simulations. However, the increased absorption of the samples avoids
the transmission of photons through them, which ensures that even if
the signal is low, it is not contaminated by the sample’s base and that the
overlap in standard deviation between models is a feature of the sample’s
modeling.

It is also worth noting that the hemoglobin peaks are similarly high-
lighted2 with the Kubelka-Munk model and with the simulation results,
but the slope between 1400 and 1600 nm caused by the high water
absorption peak is only visible in the simulation results.

Each model has its advantages and limitations. For example, the Monte
Carlo method is generally considered the most accurate since it im-
plicitly accounts for more complex light scattering behavior within the
material, but it can be computationally expensive. To create a 200×150
(�0 × �′

B) simulation map of the diffuse reflectance, only 1000 photons
were considered per simulation. Still, building the reflectance took over
48h3. The Kubelka-Munk method was developed to model semi-infinite,
homogeneous pigments. While the Monte Carlo method used in this
thesis also considers a semi-infinite sample, the Kubelka-Munk method
does not account for the existence of multiple scattering. Finally, the
model proposed by Jacques is an empirical equation that is often used for
biological materials, which was derived from Monte Carlo simulations.
However, it is still an approximation that is not intended to provide
an accurate description of the sample’s properties but to estimate its
behavior.

Regardless of the model selected to evaluate the samples, the discrepan-
cies between models and the regions where they overlap point to spectral
information to consider when fitting to the chromophores’ fingerprints.

7.3.1 Albedo

The albedo was calculated from the attenuation and scattering coeffi-
cients derived through the Monte Carlo simulations. Since the albedo is
wavelength-dependent, the results were evaluated between 500 and 600
nm (hemoglobin/myoglobin features) and between 1200 and 1350 nm
(water and fat peaks and valleys). The resulting calculations are shown
in Fig. 7.5.

Let us consider that the HSI systems receive only the fraction of light
that is not absorbed. Then, albedo can be interpreted as a measure of
the “total reflectivity” of the sample. In the VISNIR range, high albedo
would translate to brighter colors, while in the SWIR indicates high heat
re-emission.

All samples had high albedo in the two selected spectral ranges, higher
than 0.9 in most cases. In the SWIR range, the albedo was higher than in
the VISNIR, corresponding to the much lower absorption of fat and water
compared to the absorption of the hemoglobin (Fig. 7.5, a and b). As a
consequence, the “reflectivity” of the samples can be much higher in the
SWIR range. However, the higher spatial resolution of the HSI-VISNIR
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Figure 7.5: Albedo comparison for the muscle samples in dataset MD2: (a) results between 500 and 600 nm, (b) results between 1400 and
1500 nm, (c) density histograms corresponding to the boxplots in (a), (d) density histograms corresponding to the boxplots in (b). The
colors in (c) and (d) correspond to the samples in the boxplots grouped according to their clinical category. The dotted vertical line in the
boxplots separates the control (WT) samples on the left from the dystrophic ones (KO) on the right.

4 Both histograms in Fig. 7.5 (c) and (d)
have the same number of bins (100) be-
tween 0.9 and 1.
5 With respect to the median albedo.

system provides a higher number of pixels in this spectral range, leading
to smoother, better-defined albedo distributions4 (Fig. 7.5, c and d).

While some samples (520, 536, 565, 867...) had similar high/low albedo
behavior5 others had high SWIR and low VISNIR albedo (564, 621, 628,
863...). The former behavior suggests an overall higher reflectivity, while
the latter suggests a distinctly spectral response in both ranges due to a
different chemical composition. The only additional pattern observed
in the albedo distributions is the slightly lower albedo around the
hemoglobin peaks for some control samples. This suggests that control
samples showcase a marginally higher absorption than the dystrophic
ones, which could be an indicator of higher hemoglobin content in the
wild-type muscles.

Note that, depending on the model selected to calculate the albedo (Fig.
7.4), the results shown in this section will drastically vary.

7.4 Chromophores

The previous comparison of spectral models showcased that the albedo
shape is conserved across models, even if the absolute value changes.
The ranges below 650 nm and over 1350 nm have high absorption-to-
scattering ratios, meaning that the optical path length is shorter at these
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Figure 7.6: RMSE comparison between
the average diffuse reflectance when
using the hemoglobin and deoxyhe-
moglobin absorption coefficients as a
reference. The data is shown for sam-
ple 862 of dataset MD2. (a) RMSE when
fitting to the model of Krishnaswamy
et al. [3]. (b) RMSE when fitting to the
model proposed by Jacques [2]. (c) Av-
erage '3 spectral reconstruction by both
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of each spectral range is indicated as a
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6 The same behavior was observed for
all muscle samples.

wavelengths and that the light interacts only with the samples themselves.
Thus, this spectral range is optimal for chromophore estimation.

7.4.1 Model selection

First, we considered the comparison of the principal chromophore es-
timation models, as explained in Chapter 4, below 650 nm. Although
we have seen in the previous section that absorption dominates in this
spectral range, scattering is non-negligible and thus must be considered
in the calculations.

The parameters provided by fitting the reflectance data to the models
proposed by Krishnaswamy et al. [3] and Jacques [2] vary slightly in the
number of parameters. For the former, the model considered was Eq.
4.44 with an additional bias constant 9, given by

�′
B ≈ ��−1 , and

�0 ≈ 3 · ��1$2 + (1 − 3)��1 , so that

'3 ≈ 9 + �′
B 4

−!2�0 .

(7.1)

where the optical path length ! was obtained from the Monte Carlo
simulations. The model proposed by Jacques was similarly adapted by
the same additional bias constant 9, but using the scattering definition
that considers the Rayleigh scattering fraction (Eq. 4.46). The added
constant 9 represents a constant reflectance intensity shift, i.e., the effect
of non-diffuse phenomena like specular reflections.

The comparison between models is shown in Fig. 7.6 for one representative
sample. The Rayleigh scattering fraction tends to zero ( 5'0H < 10−3),
which coincides with both models providing similar RMSE values.
While the RMSE only exceeded 0.1 in areas with specular reflections,
areas with lower SNR (lower left on the sample) provided less noisy
results with Eq. 7.1. For all samples, the average spectrum reconstruction
with the respective average model parameters was highly similar as
well, especially in the area corresponding to the hemoglobin principal
features. The main spectral differences between models are near the
ends of the wavelength range used for fitting, where the simpler model
outperforms the one with the more complex scattering description. All
of the above indicates that the Mie scattering fraction is so much higher
than Rayleigh’s in this wavelength range that considering the complete
scattering approximation is not necessary6. Therefore, moving forward,
only the scattering approximation provided by Krishnaswamy et al. will
be discussed in this work.

The spectral range considered for the VISNIR data is mainly influenced
by the hemoglobin or myoglobin peaks. Oxygenated (HbO2) and de-
oxygenated (Hb) hemoglobin have nearly identical spectra to those of
oxygenated (MbO2) and deoxygenated (Mb) myoglobin. However, when
opting for myoglobin estimation in ex vivo samples, it is interesting to
consider the influence of metmyoglobin (MMb) as well since it represents
the part of myoglobin that is completely oxidized and can no longer trans-
port and release oxygen. A third chromophore was added to Eq. 7.1 so
that the attenuation could be represented through the three myoglobins
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Figure 7.7: RMSE comparison between
the average diffuse reflectance when us-
ing the myoglobin, the deoxymyoglobin,
and the metmyoglobin absorption coef-
ficients as a reference. The data is again
shown for sample 862 of dataset MD2.
(a) RMSE when fitting to the model of
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'3 spectral reconstruction by the model.

7 For almost all samples, the oxyhe-
moglobin content was almost always 1,
while the scattering power was mainly 0.
This made the corresponding boxplots
collapse to zero, so the average and stan-
dard deviation are represented instead
in Fig. 7.9.

as

�0 ≈
31

31 + 32 + 33
�"1+

32

31 + 32 + 33
�"1$2+

33

31 + 32 + 33
�""1 , (7.2)

where each of the 38 represents the fraction of one myoglobin type.

Again (Fig. 7.7), the RMSE and the average spectrum reconstruction with
the addition of the third chromophore mostly coincide with those of the
two previous models, most likely due to the spectral similarity between
hemoglobin and myoglobin, with the only exception being low SNR areas
and specular reflections. Consequently, the fraction of metmyoglobin
collapses to zero due to the constraint imposed on the 38 : they must add
up to one.

When fitting data to a multi-parametric equation, it is also relevant
to evaluate the uncertainty of the resulting parameters. In probability,
the uncertainty of a variable can be understood as the spread of the
distribution that represents it. In the context of fitting some data to a
model by minimizing a cost function, the uncertainty of a parameter
represents the range of possible values that the parameter can take to
provide the same result through the model. Then, the uncertainty of
the parameters can be derived through the diagonal of their covariance
matrix, which results from the fitting error minimization process [4].

Interestingly, in the three-myoglobins model, which provides reasonable
RMSE values and a fairly good spectral reconstruction, the uncertainty of
all fractions (38) is exceptionally high (Fig. 7.8). This suggests that there
is an almost infinite combination of parameters 38 that can reconstruct
extremely well the spectral data of the samples discussed here. The
source of the high uncertainty lies in the volume fractions for the three
myoglobins not being independent. Since the three fractions multiply
the three myoglobin absorption spectra, the minimization algorithm can
optimize two of them while collapsing the third with some arbitrary value.
That, combined with the reference myoglobins being similar between
them (with the exception of the oxymyoglobin peaks), suggests that
the choice of which two volume fractions are being optimized can be
almost arbitrary. Therefore, we will use the two-hemoglobin model (Eq.
7.1) to compare the results between samples since (1) hemoglobin and
myoglobin have very similar spectra, and the former is available in the
literature in a wider spectral range, and (2) adding a third chromophore
to the attenuation while keeping the restriction that the fraction of each
component can not be higher than the unity results in an under-defined
minimization algorithm.

7.4.2 Hemoglobin

All samples were fit to the simplest hemoglobin model described in Eq. 7.1
to obtain two key parameters: the oxyhemoglobin to deoxyhemoglobin
content (3), and the scattering power (1). The results are shown in Fig.
7.97.

The scattering power (Fig. 7.9, b) was, in most cases, zero or very close to
zero, meaning that the diffuse reflectance of the samples is well approxi-
mated by the absorption in the VISNIR range. Within the expression for
absorption (Fig. 7.9), the samples are well described by the absorption



186 7 HSI and SFDI measurements of dystrophic mice muscles

a) b) c)

d) e) f)

0.00

0.25

0.50

0.75

1.00

M
b 

co
nt

en
t (

d 1
)

0.00

0.25

0.50

0.75

1.00

M
bO

2 
co

nt
en

t (
d 2

)

0.00

0.25

0.50

0.75

1.00

M
M

b 
co

nt
en

t (
d 3

)

2.5

0.0

2.5

5.0

lo
g 1

0[
s(

d 1
)]

2.5

0.0

2.5

5.0

lo
g 1

0[
s(

d 2
)]

1.5

1.0

0.5

lo
g 1

0[
s(

d 3
)]

Figure 7.8: Deoxyoglobin (Mb, a), oxymyoglobin (MbO2, b) and metmyoglobin (MMb, c) estimated with the three myoglobin absorption
model represented in Eq. 7.2. The under-defined triple absorption model yields extremely high uncertainties (>106), which, for
visualization purposes, have been represented logarithmically in the bottom row (d-f).

of the oxyhemoglobin, consistent with the double oxyhemoglobin peak
that is always visible in the diffuse reflectance of all samples (Fig. 7.2).

Some samples, aside from sample 531, do not follow these trends. For
example, samples 814 and 862 have a noticeably lower average hemoglobin
content than the rest. Together with samples 741 and 808, these are the
only samples with below-average oxyhemoglobin content, primarily due
to their more significant variability. All four samples were bigger than
the average, suggesting that the bigger the sample, the easier it is to
find areas with hemoglobin content that have not yet been exposed to
oxygen.

At this point, we should recall something we have already seen, which
is that there is an infinite combination of scattering and absorption
coefficients that yield the same diffuse reflectance and that no model
based on a single '3 surface in the (�0 , �B , '3) space (see Fig. 5.5) can
totally determine the complex chemical response of biological samples.
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Figure 7.9: Average (solid points) and standard deviation (error bars) of the oxyhemoglobin fraction (a) and scattering power (b) for the
samples in dataset MD2. The dotted vertical line separates the control samples (left) from the dystrophic ones (right).
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8 1 cm tall circular Petri dishes with 6
cm diameter.

9 Other peaks were analyzed, as shown
in [5] that yield similar results.

It is worth mentioning that this does not undermine the usefulness
of the reflectance models. Many samples, especially those where only
absorption or scattering dominates, can be chemically interpreted through
hyperspectral images. Having only �0 or �B collapses the '3 surface to a
single line, which essentially eliminates the indetermination discussed
above.

These mice samples, nonetheless, have both non-negligible absorption
and scattering when considering the whole spectral range, even if scat-
tering can be discarded for specific wavelengths. Hence, the albedo, or
simply the ratio between absorption and scattering, are the best optical
properties to consider when analyzing data provided by HSI for a general
application case.

7.4.3 Muscle volume fraction in the SWIR range

Several chromophores could be considered relevant in the SWIR range.
For example, the content of fat in the muscle’s volume is often used as a
marker for muscular dystrophy. In MRI, this is quantified by evaluating
the ratio of water to fat content since fat is hydrophobic and water is only
present in muscle tissue. However, in optical imaging and, especially at
the longer wavelengths, water is an extremely good absorber. Then, the
best areas to quantify water content would be those that have less signal,
making chromophore quantification a complicated task. Additionally,
collagen, elastin, and hemoglobin, which are principal components of
muscle tissue, also have a non-negligible absorption in the SWIR range, so
those chromophores should be considered too. Since the volume fractions
are not independent of each other, as we have just seen, quantification by
using the absorption mixture model will yield results that are biased by
the relationship between the volume fractions.

Instead, an experiment based on tissue phantoms was used to determine
the fat-to-muscle content [5]. Five mixtures of chicken breast and pork
lard were prepared by combining them in different amounts. All five
phantoms were kept in identical containers 8 so that the volume of the
phantom would not affect the results. The volume fraction of fat and
muscle of each phantom is detailed in Tab. 7.1, and the resulting SWIR
spectra in Fig. 7.10.

The key spectral differences between the phantoms lie at 970, 1000, 1250,
and 1500 nm. All those wavelengths coincide either with fat or water
peaks or valleys (see Fig. 4.7). Water has a higher absorption coefficient
than fat, so those phantoms that are dominated by muscle content have
less reflectance than those whose main component is fat.

Given that the relationship between some of the peaks changes with the
fat and muscle content, a ratio can be established between peaks to act as
a calibration curve that can infer the muscle volume fraction of a sample.
Particularly, the peaks considered for the ratio ( ) 9 were those at 1211
and 1327 nm, so that

 =
'3(� = 1211=<)
'3(� = 1327=<) . (7.3)
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Figure 7.10: Average (solid line) and standard deviation (shaded areas) SWIR spectra of the muscle-fat phantoms detailed in Tab. 7.1.
Image adapted from [5].

Chicken
breast

(%)

Pork
lard
(%)

P1 100 0
P2 71.01 28.99
P3 46.16 53.84
P4 22.14 77.86
P5 0 100

Table 7.1: Muscle (chicken breast) and fat
(pork lard) content in each phantom. The
volume fractions were calculated from
the measured mass by using a density for
the muscle of �< = 1.06 g/mL and for
the fat of � 5 = 0.92 g/mL. The densities
were obtained from [6]. Data obtained
from [5].
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Figure 7.11: Boxplots and fourth-order
polynomial of the peak ratio  calcu-
lated to derive the muscle volume frac-
tion from SWIR measurements.

The reflectance ratio  was then re-scaled so that the medians of the
boxplots coincided with the 0-1 range by using the minimum value of
 = 0.067 and the maximum of  = 1.7.

Finally, the muscle volume fraction can be obtained as a function of the
peak ratio, 5 ( ), by fitting  to a polynomial. Since the relationship
between  and the muscle volume fraction was nonlinear and contained
an inflection point, we chose a fourth-order polynomial. The value of
 for the phantoms and the resulting polynomial fit are shown in Fig.
7.11.

All the data inside the interquartile range of the boxplots was used to
derive the coefficients of the polynomial. The final parameters were

0 = (−230.0 ± 8.4) · 10−5 ,

1 = (428.2 ± 1.4) · 10−3 ,

2 = (3710.0 ± 7.2) · 10−3 ,

3 = (−496.8 ± 1.2) · 10−2 , and

4 = (1829.7 ± 6.0) · 10−3 , with

5 ( ) = 0 + 1 + 2 2 + 3 3 + 4 4 .

The polynomial was then used to infer the muscle volume fraction in the
mice samples. The average reflectance of the samples is shown in Fig.
7.12, and the corresponding muscle fraction results are shown in Fig. 7.13.
Several things are noticeable in the images of the peak ratios. First of
all, there is some variability in the average value of  between samples,
with most having values over 0.9, indicating high muscle content. The
exceptions are samples 536, 548, 565, and 581, which appear to have
an extremely low muscle fraction. The cause lies in the small size of
these samples. Instead of a whole muscle, samples 536, 548, 565, and
581 were thin muscle slices that caused light to bleed into the cork base,
which increased the diffuse reflectance. Sample 520 is between the whole
muscle size and the small muscle slices, which causes its muscle fraction
to be between both ranges as well.
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Figure 7.12: Average diffuse reflectance in the SWIR range for samples in dataset DM2.
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Figure 7.13: Muscle volume fraction obtained from the fourth-order fit polynomial to the peak ratio  
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Figure 7.14: Variations of the diffuse re-
flectance caused by refractive index (a),
reduced scattering (b) or absorption (c)
changes, represented through diffusion
approximation (Eq. 4.55). Lighter col-
ors indicate higher values of the vari-
able, darker colors lower values, and the
black curve was calculated with = = 1.38,
�′B = 10 <<−1, and �0 = 0.1 <<−1,
which are typical values found in biolog-
ical tissues. Figure adapted from [7].

There are areas with low muscle volume fractions that coincide with
specular reflections. We have seen before (Fig. 7.10) that the higher the
water content, the lower the reflected intensity, so the specular reflections
appearing as “high fat” is just an indication of their high reflectance.
Interestingly, the lower reflectance end does not cause artifacts the same
way specular reflections do. Sample 531 had a poor signal due to the dark
fixing agent absorbing most of the light. Still, the polynomial fit is able to
distinguish the muscle from the specular reflections, even if the map is
noisier than for the rest of the samples

While most samples had homogeneous maps, some others showcased
particularly interesting results. Samples 870 and, specifically, 814 show
localized low muscle content areas that are too big to be specular reflec-
tions. In the RGB image (see Fig. 7.3), sample 870 shows a yellower, more
translucent area where the low-muscle region is highlighted. On the other
hand, sample 814 was mostly uniform, with the exception of some fat
inclusions that correspond to the low-muscle maps. Both samples were
big (≈ 6 − 7 mm) when compared with the samples in the dataset. Given
that the phantoms were even thicker (≈ 1 cm), using the polynomial
model might be more suitable for bigger samples, where light is not
interacting with the surrounding media.

While additional phantoms with more complex compositions or future
modifications to the phantom-derived polynomial model might provide
better results, the current model shows promise in noninvasive muscle
quantification of dystrophic samples. It allows for subsequent analysis of
the same samples without interfering with the results provided by other
imaging methods.

7.5 SFDI reflectance of mice samples

In the previous sections, we have seen that HSI can determine the albedo,
i.e., the “reflectivity” of a sample, but not the independent contributions
from absorption and scattering. SFDI can decouple absorption and
scattering by measuring the diffuse reflectance coming from at least
two different spatial frequencies. Then, by comparison with the Monte
Carlo-derived LUT (see Fig. 5.9), we obtain the value of �0 and �′

B .

The control sample 814 from dataset MD2 was chosen to exemplify the
type of data captured with SFDI due to the muscle/fat content that was
made evident in the previous section. All samples in dataset MD2 were
measured at ten spatial frequencies. We have seen in chapter 4 through
the diffusion approximation that the higher the spatial frequency, the
shallower the penetration of the modulated component of the light source
is, which corresponds to a reflectance decay (Fig. 7.14). The expected
reflectance decay at higher frequencies is observed both in the sample
and the reference Spectralon (Fig. 7.15).

At this point, it is helpful to explore this idea further to better understand
the fundamentals of SFDI through a real sample. We know, because
we have seen it experimentally and through simulations, that higher
frequencies penetrate less inside the samples. This can be understood by
revisiting the diffusion approximation. We have represented the diffuse
reflectance according to the diffusion approximation for multiple ranges
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Figure 7.15: From left to right: sample intensity (�, top row) and projected illumination (�'4 5 , bottom row) for sample 814 of dataset MD2
with the increased spatial frequency. The images correspond to the wavelength-averaged intensity measured for the first spatial phase
(
 = 0 rad).
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Figure 7.16: Profilometry obtained by
applying phase-shift profilometry [9]
with 5 = 0.15<<−1. Notice how the
higher wavelengths, where penetration
is higher, cause a blurring of the spa-
tial frequencies that is interpreted as a
marginally smaller height.

of values (Fig. 7.14). An increment of refractive index (a) causes the diffuse
reflectance to drop, as the larger mismatch with air will yield stronger
Fresnel reflections that leave less light to enter the tissue and diffusely
reflect. The scattering coefficient alters the rate of diffuse reflectance
decay with the frequency, meaning that higher scattering materials
allow for the modulated component of light to be detectable at higher
spatial frequencies. This is expected since samples with high scattering
increase the chances of the photons being immediately scattered away
at the surface or near the surface of the sample and captured by the
sensor. Additionally, the higher the spatial frequency, the stronger the
diffuse reflectance is affected by variations in the scattering coefficient. The
absorption coefficient behaves almost in the opposite way, barely affecting
higher frequencies but strongly altering lower frequencies. Samples with
a higher absorption coefficient will have less diffuse reflectance as more
photons get absorbed, but the effect is less noticeable at high frequencies.
Cuccia et al. [8] put this as homogeneous turbid samples behaving like
“low-pass filters”, meaning that biological samples favor the penetration
of the frequency-modulated component of the illumination at lower
frequencies, yielding higher reflectance values.

The mice samples have a fast drop of diffuse reflectance on the first few
frequencies, which indicates that their behavior is most likely dominated
by low scattering, but variations in absorption are also non-negligible at
these frequencies. The different tissues within each sample have different
frequency responses. Notice how, for example, the projected shadows
are more noticeable in the muscle tissue than over the fatty deposit on
the center of the sample (see 0.44 <<−1 in Fig. 7.15), and tissue contrast
is better at lower frequencies.

Figure 7.16 showcases the profilometry results obtained using phase-shift
profilometry with the projected frequency of 0.15 <<−1. Notably, the
results exhibit a consistent trend: a slight decrease in the captured height
as the wavelength increases. This decrease is attributed to the increased
penetration depth at longer wavelengths. As light penetrates deeper into
the sample, it undergoes more scattering events, leading to a blurring of
the spatial frequencies. This blurring effect is interpreted as a marginally
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Figure 7.17: From left to right: (wavelength) averaged ('3(G, H), top row) and (spatially) averaged sample diffuse reflectance ('3(�),
bottom row) for sample 814 of dataset MD2 with the increased spatial frequency. The missing parts of the spectra in the bottom row are
due to the non-considered regions of low SNR given by the valleys in the projector’s emission spectrum.

smaller height in the profilometry measurements.

It is important to note that the variability observed in the measured height
across different wavelengths is primarily due to the non-flat nature of the
samples themselves. Biological samples have inherent surface variations,
especially at this small scale, that contribute to the spread of the measured
values. Nonetheless, the measured heights closely align with the actual
heights of the samples.

Figure 7.17 shows the spatially resolved ('3(G, H), top row) and spectrally
averaged ('3(�), bottom row) diffuse reflectance sample 814 across
various spatial frequencies and wavelengths.

The diffuse reflectance is almost immediately lost, even at low spatial
frequencies, something that is particularly noticeable at the longer wave-
lengths. This loss is consistent with the principle that the modulated
component of higher spatial frequencies penetrates less deeply, leading to
a weaker diffuse reflectance signal. The further noise increment at higher
frequencies due to the lower SNR causes artifacts at all wavelengths.

The reflectance increases with wavelength, corresponding to the reddish
color of the sample, but this distinct wavelength response is quickly lost
as the frequency increases, which reflects the wavelength-dependent
absorption and scattering properties of the tissue. Furthermore, one of
the hemoglobin absorption peaks falls within the high signal-to-noise
area of the green LED, while the other lies outside this range. In the next
section, we will see how this translates into the absorption and scattering
properties of the samples in dataset MD2.

7.6 Optical properties in SFDI and HSI

SFDI was used to obtain the absorption and scattering for all samples,
following the methodology explained in Ch. 4. The maps of �0 and �′

B

can be identified by using data captured at multiple spatial frequencies.
The results for sample 814 are shown in Fig. 7.18.
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Figure 7.18: Attenuation (a, b, c) and reduced scattering coefficient (d, e, f) for the control sample 814 of dataset MD2. The data was
wavelength-averaged in the blue (a, d), green (b, e), and red (c, f) wavelength ranges, corresponding to the high SNR peaks of the LED
projector. The top color bar is shared between the attenuation images, while the bottom one is shared between the scattering images.

Several things stand out immediately in the �0 and �′
B images. For

example, the absorption decays as the wavelength increases, which is
expected given that the samples are reddish, meaning that they absorb
more blue than red light. However, the fatty regions in sample 814 are
less absorbing than the surrounding muscle, consistent with their overall
whiter and more translucent color. Furthermore, the two main lipidic
lobes (top left and bottom left of the sample) do not behave equally; the
top one appears to be consistently less absorbent than the bottom one,
suggesting a higher fat content at the top of the sample. The orientation
of the sample may also affect how the attenuation in the lipidic areas is
detected. For example, the upper lobe is situated sideways with respect
to the camera, while the bottom one is viewed from the top. Given the
sideways orientation of the upper lobe, there is no muscle underneath it.
At the same time, that is not the case on the bottom lobe, which could be
incrementing its attenuation, especially at shorter wavelengths, due to
the light interaction with multiple tissue types.

Although the sample’s scattering response is very similar across all
wavelengths, it does not exactly follow a descending trend. Specifically,
it appears to be slightly lower in the green color range. This could
occur because the hemoglobin peaks present in the sample are the main
agents in light extinction at this wavelength, the reduced SNR at these
wavelengths may be influencing the results. The fatty lobes are also
viewed in the scattering images as higher scattering areas. Interestingly,
the bottom lobe appears to have a slightly higher scattering signal than
the top one. The photons that enter the sample in this area will also
encounter the boundary between fat and muscle so that their Fresnel
normal reflectance at this boundary will also contribute to the scattering
signal, possibly causing the scattering increment at this position.

The specular reflections on the sample (see Fig. 7.17) cause high-scattering
artifacts, visible in the bottom row of the figure, that translate to areas
with low absorption on the top row. Additionally, artifacts due to shadows
at some wavelengths appear as horizontal lines. These are caused by
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Figure 7.19: Spatially averaged attenuation (a) and reduced scattering coefficient (b) and comparison of the quotient �0/�′B between the
SFDI- and HSI- derived data for sample 814 of dataset MD2. The results of HSI have been calculated using the Monte Carlo method.

the cumulative nature of the phase shift profilometry method stretching
the shadows from left to right. Since these artifacts are of a few lines in
width, they can be removed by any simple spatial filtering method.

At this point, we can compare the value of # = �0/�′
B with the results

obtained with conventional hyperspectral imaging. The results for the
same sample are shown in Fig. 7.19. Even though the first hemoglobin peak
is subtly detectable in SFDI measurements, the absorption/scattering
ratio is much flatter and almost one order of magnitude higher when
measured with SFDI than with HSI. The placement of the reference
Spectralon on the measurements can be the cause of this discrepancy.
For HSI, the Spectralon is placed leveled with the top of the sample to
avoid finding areas with reflectance higher than one due to the sample
being “closer” to the light source than the Spectralon. However, for
SFDI, the Spectralon is placed leveled with the base of the sample, as
it is then modified according to the profilometry of the sample. This
leads to different reference measurements between systems, which yields
different reflectance signals and, in turn, different optical properties.

Another possible cause for this difference is the time it takes to measure
the samples. On average, one whole muscle measurement took 2.9
minutes in the HSI-VISNIR system that also contains the projector to
perform SFDI. Each SFDI frequency requires three measurements, one
for each phase, totaling 8.75 minutes per frequency. Given that we
measured ten frequencies, the total duration of the SFDI measurements
was approximately one and a half hours.

The projector does not emit heat, so no chemical changes are expected
to occur in the samples during this time. However, their air exposure
causes water to evaporate, leading to the samples shrinking in size, which
would modify their scattering signal. Since the measurements are taken
by increasing the frequency each time, the lower frequencies would be
unaffected by the drying, and this change would not be detectable at
higher frequencies due to their low penetration in the sample and overall
low signal (Fig. 7.17). The samples are re-hydrated in a saline solution
between measurement techniques but not during the measurements so
as to not influence the results. Even with this re-hydration, the samples
reach the HSI measurements with much less water content than at the
beginning, leading to higher scattering than in SFDI and the overall
reduction in �0/�′

B detectable in Fig. 7.19.
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Figure 7.20: Ratio �0/�′B for SFDI (a, b, c) and HSI (d, e, f) data for the control sample 814 of dataset MD2. The data was wavelength-
averaged in the blue (a, d), green (b, e), and red (c, f) wavelength ranges, corresponding to the high SNR peaks of the LED projector. The
top color bar is shared between the SFDI images, while the bottom one is shared between the HSI images.

10 For example, the mice muscles could
be measured using a frequency up to 0.22
<<−1, which would reduce the measure-
ment time by 75%.

a)

b)

c)

Figure 7.21: Simulated change in the de-
tected sample shape due to a different
orientation of the light source. (a): White
light illuminating the sample from the
top, (b) yellow light illuminating the sam-
ple from the left, (c) combined effect of
both light sources. Note how areas that
are visible in (a) disappear due to the
shadows in (b) and vice-versa.

This effect is critical when measuring biological samples ex vivo, which
is why current SFDI systems are opting for measuring a low number of
frequencies or for performing single-snapshot optical properties mea-
surements [10–13]. Regardless, both alternatives require prior knowledge
of the frequency response of the samples to know what is the maximum
frequency and what is an adequate number of them to measure so that
the samples can be properly characterized. Therefore, two conclusions
can be extracted from this experiment: (1) the mice muscle samples
dry quickly, and long measurement durations should be avoided10, and
(2) the subsequent HSI measurements can be affected by an artificially
reduced water amount.

The drying of the samples is not the only cause influencing the comparison.
We can see in Fig. 7.20 that the shape of the samples is different as viewed
by both imaging methods. If this were only due to the samples shrinking
as they lose water we would have seen, essentially, the same shape in
SFDI images (Fig. 7.20, a-c) than in HSI ones (Fig. 7.20, e-g), but smaller
in the latter. Although some landmarks do appear to be closer together
in HSI, like the lipidic regions, some areas seem to have different overall
shapes, like those at the bottom and the left of the samples.

The sample and the camera remain static between measurements, so the
only source for the apparent slightly different shape is the light source.
While the projector is in line with the camera, the halogen lamp used
for HSI measurements is situated on the same plane as the projector
but rotated 90º with respect to it. This difference in the light source
positioning causes shading in different regions of the sample, leading
to a different image of the sample in the detector for each measurement
method. This effect is illustrated in Fig. 7.21, where a simulated shape is
captured by the same camera when illuminated with a white light from
the top and a yellow light from the left. When illuminated from the left,
the rightmost areas of the sample are not visible due to the shadows cast
by its higher regions. The opposite is also true when illuminated from
the top, with areas on the bottom of the image being completely in the
dark. This occurs in HSI and SFDI, too, leading to changes in SNR even
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though the sample and camera remain in the same place. Aside from that,
the position of the specular reflections changes too, leading to the darker
patch in the center of Fig 7.20 e-g, which impedes the measurement of
the ratio between absorption and scattering between both lipidic regions.
Aside from that, both systems seem to be in good agreement with the
relationship between fat and muscle, with fat being consistently lower in
the absorption/scattering ratio images.

7.6.1 Scattering and absorption

As shown in the previous section, the key advantage of SFDI as an
imaging technique lies in its ability to decouple absorption from scattering.
Therefore, we can compare the optical response of the samples (Figs. 7.22
and 7.23 for absorption and scattering, respectively).

Initially, no clear separation is seen in the absorption properties of
the samples when comparing healthy and dystrophic samples, as both
categories have samples with low and high absorption at all wavelength
ranges (Fig. 7.22). This corresponds with the peak-valley-peak nature of
the histograms viewed in the green (Fig. 7.22, e) and red (Fig. 7.22, f) color
ranges that originates from the dispersion in absorption values. As the
wavelength moves towards smaller values the absorption increases, as
expected from samples that had red hues. However, the effect in this color
range is not properly quantified by our Monte Carlo simulations, as there
are some control samples (814 and 861, Fig. 7.22, a) and some dystrophic
ones (621, 628, 741, 742, 867, 870, Fig. 7.22, a) that saturate for the blue
wavelengths to the maximum possible value. This limitation comes from
the range chosen to simulate the optical properties, which was limited
to 20 cm-1 as this is known to be over the hemoglobin absorption at this
spectral range (Fig. 4.7), which is the strongest absorbing chromophore
in biological tissues [2]. Still, this was not enough to encompass the
complexity of the mouse samples, and the Monte Carlo LUT must be
completed with more simulations to quantify the absorption in the blue
range properly. Even with that limitation, we see that the relative tendency
between the samples is maintained at the different spectral ranges, so
we can infer that samples that had high absorption in red and green will
behave similarly in blue, suggesting an overall increase in chromophore
density in those samples. The overall median absorption value varies
between 12 mm-1 and 17 mm-1 between spectral ranges, which is also
consistent with the variation observed for each individual sample.

For the scattering (Fig. 7.23), most samples are close to the median
of the dataset at the three spectral ranges, suggesting that the tissue
organization is fairly similar for all samples, at least at the scale given
by the spatial resolution of the SFDI system. Some control samples
have larger scattering, which sways the distributions towards higher
values than the dystrophic ones. Still, most data collapses to values
of approximately 12-15 cm-1, depending on the spectral range, which
coincides with the values provided in the literature for muscle [14] and,
specifically, mouse muscle [15].
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Figure 7.22: Absorption coefficient comparison for the muscle samples in dataset MD2 for the high-SNR areas of the projector in the blue
(a, d), green (b, e) and red (c, f) color ranges. The colors in d-f correspond to the samples in the boxplots grouped according to their
clinical category. The dotted vertical line in the boxplots separates the control (WT) samples on the left from the dystrophic ones (KO) on
the right.

7.6.2 Albedo

As with HSI-derived data, we can calculate the albedo with SFDI mea-
surements to compare its response between different samples. The corre-
sponding data is shown in Fig. 7.24.

Even if the individual absorption and scattering distributions overlap
significantly, the subtleties of each coefficient appear to compensate for
the other to provide better separation between clinical categories in the
albedo distributions, which have a much larger dynamic range than their
HSI counterparts. When considering the whole boxplots, all samples
keep their relative behavior throughout the spectrum, meaning that high
albedo samples will be high in the entire spectral range, while low albedo
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Figure 7.23: Scattering coefficient comparison for the muscle samples in dataset MD2 for the high-SNR areas of the projector in the blue
(a, d), green (b, e) and red (c, f) color ranges. The colors in d-f correspond to the samples in the boxplots grouped according to their
clinical category. The vertical line in the boxplots separates the control (WT) samples on the left from the dystrophic ones (KO) on the
right.

samples will stay low, with only slight changes to their distribution
spread.

Although there is high inter-sample variability, healthy samples have,
overall, lower albedo than dystrophic ones, suggesting darker samples
at the three wavelength ranges. We have seen before that fat content is
a disease marker, given that muscular dystrophies tend to cause fatty
substitution of muscular tissue. We have also seen that fat is lighter (i.e.,
less absorbing) and whiter (more scattering) than muscle, which means
that fatty tissue has a higher albedo than muscle tissue (threshold in
0 = 0.5, 0 = 0.55 and 0 = 0.6 for the blue, green, and red wavelength
ranges, respectively). Therefore, the high-albedo results obtained in most
dystrophic samples may be caused by fatty infiltrations that are too small



200 7 HSI and SFDI measurements of dystrophic mice muscles

520 536 540 548 595 805 808 814 861 862 863 895 896 531 534 545 564 565 578 581 621 628 741 742 867 870
0.25

0.50

0.75

1.00

a 
(

[4
47

,4
60

] n
m

) a)

Dataset median

520 536 540 548 595 805 808 814 861 862 863 895 896 531 534 545 564 565 578 581 621 628 741 742 867 870
0.25

0.50

0.75

1.00

a 
(

[5
07

,5
71

] n
m

) b)

Dataset median

520 536 540 548 595 805 808 814 861 862 863 895 896 531 534 545 564 565 578 581 621 628 741 742 867 870

0.4

0.6

0.8

1.0

a 
(

[6
21

,6
34

] n
m

) c)

Dataset median

0.4 0.6 0.8 1.0
a ( [447, 460] nm)

0

1

2

3

D
en

si
ty

d)
Control (WT)
Dystrophic (KO)

0.4 0.6 0.8 1.0
a ( [507, 571] nm)

0

1

2

3

D
en

si
ty

e)
Control (WT)
Dystrophic (KO)

0.4 0.6 0.8 1.0
a ( [621, 634] nm)

0

1

2

3

D
en

si
ty

f)
Control (WT)
Dystrophic (KO)

Figure 7.24: Albedo comparison for the muscle samples in dataset MD2 for the high-SNR areas of the projector in the blue (a, d), green
(b, e) and red (c, f) color ranges. The colors in d-f correspond to the samples in the boxplots grouped according to their clinical category.
The vertical line in the boxplots separates the control (WT) samples on the left from the dystrophic ones (KO) on the right.

to be individually resolved by the SFDI system but big enough to cause
changes in the perceived albedo. Further research is needed to validate
this hypothesis by quantifying the fat content in histology images.

7.7 Conclusions

This chapter analyzed the application of hyperspectral imaging (HSI)
and spatial frequency domain imaging (SFDI) to characterize muscle
tissue samples from dataset MD2, focusing on the chemical changes
associated with 
-sarcoglycan deficiency. Initial analysis of average re-
flectance spectra in the visible-near infrared (VISNIR) and short-wave
infrared (SWIR) ranges revealed distinct spectral characteristics. VISNIR
spectra exhibited higher reflectance above 600 nm, consistent with the
reddish color of the samples, and characteristic hemoglobin/myoglobin
absorption valleys around 550 and 580 nm. SWIR spectra, while influ-
enced by chromophores like collagen, elastin, and fat, were primarily
dominated by water absorption. The measurement of the thin muscle
samples proved to be challenging in the low-absorption ranges of both
VISNIR and SWIR, which allowed light to penetrate to the underlying
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substrate, distorting spectral measurements in certain regions. These
affected regions were excluded from further analysis.

Three different models – Monte Carlo simulations, an empirical approx-
imation, and the theoretical Kubelka-Munk method – were compared
for their ability to estimate the ratio of absorption to scattering. While
each model relies on distinct assumptions, all three exhibited similar
spectral trends in high SNR regions, differing primarily in baseline off-
set. This consistency suggests that each model can effectively capture
the spatial distribution of chromophores. The Monte Carlo-based ap-
proach, being the most general approach due to its inherent consideration
of multiple scattering, was chosen for subsequent albedo calculations.
Comparison of albedo between sample categories revealed similar, high
albedo values in both spectral ranges, with no clear distinction between
control and knockout samples. However, slightly lower albedo in the
hemoglobin-dominated spectral range in some control samples hinted at
potentially higher hemoglobin content. Chromophore estimation using
a two-hemoglobin model revealed that most samples exhibited near
100% oxyhemoglobin content, with deviations observed only in the four
largest samples. This observation suggests that a larger sample volume
facilitates the detection of areas with hemoglobin not fully exposed to
oxygen. Given the limitations of separating absorption and scattering in
these samples, albedo or average reflectance were deemed more suitable
metrics for further analysis.

In the SWIR range, a phantom-based experiment was conducted to
estimate fat content, a key marker of muscular dystrophy. A model
based on the reflectance ratio between two relevant fat-water peaks,
similar to those applied in MRI for dystrophy diagnosis, successfully
identified areas with low muscle content in samples exhibiting fatty
inclusions, demonstrating the potential of this approach for detecting fatty
replacement in dystrophic muscle tissue. However, further refinement
and testing with phantoms of varying thicknesses are necessary to address
challenges posed by thinner samples where light penetration extends
beyond the sample boundaries. Our current work focuses on refining
this metric by using silicone phantoms of known optical properties and
thicknesses placed on different substrates to evaluate and decouple their
spectral influence from that of the phantoms [16].

SFDI reflectance measurements were also performed, focusing on the
red-green-blue color peaks to avoid low SNR regions in the LED projector
output. The rapid decay of reflectance with increasing spatial frequency
(beyond 0.22 mm-1) suggests low scattering in the samples. This infor-
mation could be used to optimize measurement protocols and minimize
sample drying during long SFDI sessions. SFDI also highlighted the fatty
regions previously identified through HSI-SWIR as less absorbing and
more scattering than surrounding tissue, which is consistent with the
expected optical behavior of fat. A comparison of absorption/scattering
ratios derived from HSI and SFDI revealed a significant discrepancy,
with HSI-derived ratios being an order of magnitude lower than their
SFDI counterparts. This difference is likely attributable to the different
placement of the reference Spectralon during measurements. Addition-
ally, variations in illumination paths between the two systems, combined
with potential sample drying between HSI and SFDI acquisitions, pose
challenges for direct comparison.
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Decoupling absorption and scattering parameters across the dataset
revealed overlapping distributions between sample categories. In the
red range, half of the dystrophic samples exhibited absorption above the
dataset median, while control samples mostly remained below, suggest-
ing higher red light absorption in dystrophic samples. In the blue range,
where hemoglobin dominates, and beyond 600 nm, where fat and water
content increase, the observed trends suggest potential fat accumulation
in dystrophic samples. Scattering was more homogeneous, with dys-
trophic samples tending towards slightly lower values. However, both
categories exhibited inter-sample variability, consistent with variations
in sample shape and preparation. Analysis of albedo, however, revealed
a separation between groups better than what was observed with HSI
alone. Dystrophic samples exhibited consistently higher albedo, indica-
tive of greater overall reflectivity and further supporting the hypothesis
of increased fat content.
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Figure 8.1: Leg 814 before (a) and after
(b) skin removal. Legs 895 (c) and 896
(d) after skin removal. The red arrow in
(b) points to exposed healthy muscle, the
green one points to fatty deposits, and
the black ones point to freeze-damaged
muscle.

1 Note that “clear fixing agent” refers in
this chapter to the glue that was used
to fix the muscle biopsies to the cork for
transportation. The samples themselves
were received frozen, without any fixa-
tion.
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The remaining standalone imaging technique explored in this work is
multispectral Mueller Matrix Imaging (MMI). The main advantage of
this technology is its ability to decouple the polarization properties of the
light from those of the sample, providing a direct characterization of the
different tissue types. Since the MMI system is configured in reflectance
mode for the measurement of thick biological samples, the used wave-
length will affect how the polarization properties manifest themselves,
given the changes in optical path caused by different absorption and
scattering properties. Therefore, the addition of the multispectral light
source will aid in inferring the chemical/structural causes of polarization
changes.

This imaging method was implemented at the final stages of this thesis
when all muscle samples had already been measured and moved into
long-term storage. Thus, the three remaining whole control legs were
used for this exploratory work (dataset LD). Additionally, the MMI
system v2.0 (see Ch. 4) had not had all the upgrades implemented at
the time due to production delays in some of the required components,
so the states of the Polarization State Generator (PSG) are those of the
v1.0, but the light source used was that of the v2.0, which provides better
spectral coverage and adds one additional wavelength with respect to
v1.0.

The next sections will follow the same development of Mieites et al. [1]
applied this time to the mouse legs, starting with an overview of the
measurements, followed by the direct properties that can be obtained
from the Mueller matrices and, finally, by the results derived from the
matrix decomposition methods and machine learning techniques.

8.1 Sample preparation and dataset description

The samples were defrosted according to the protocol indicated for the
mice quadriceps (Ch. 6). Then, the skin was removed for the three legs
(Fig. 8.1), and, finally, the samples were re-hydrated with saline solution
to minimize water evaporation between measurements.

It is worth noting that the apparent aspect of the three skin-off legs was
strikingly different, even if the three samples corresponded with male,
wild-type 11 and 12-month-old mice. Specifically, there were regions with
exposed fat and muscle visible in the three samples. Still, all of them
contained a white, anisotropic structure that was different between them
and that is not observed in skin-off specimens when the samples are
freshly excised [2, 3]. The muscle samples did not contain the same kind
of structure since they were fixed to the cork completely covered by the
clear fixing agent1 that cleared off the muscle samples after defrosting. We
believe that those white structures are actually parts of the muscle groups
that did not freeze properly on the legs, which were not protected by the
fixing agent in the same way the muscle samples were. As a consequence,
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Damaged Muscle
Healthy Muscle
Fat

Figure 8.2: Top to bottom: Intensity ("11)
images captured by the MMI system of
legs 814, 895, and 896 from dataset LD.
The labeled areas included healthy mus-
cle, freeze-damaged muscle, and fat.

2 see the block expression of the Mueller
matrices in Eq. 3.23.

the water crystals in those regions ended up breaking the micro-structure
of the muscles, increasing the scattering to the point where the samples
appeared completely white. This hypothesis is compatible with the
defects observed in incorrectly frozen muscle samples: when muscles are
properly frozen, their structure, as observed in histological sections, is
homogeneous, while frozen-damaged muscle breaks apart at multiple
levels of muscular organization [4]. It would also explain why the regions
were different between the three samples, as the parts of the legs that
were not affected by this phenomenon were those that were covered by
hair, which is known to be a thermal insulator.

The anatomical landmarks of a mouse leg guided the identification of
different regions of interest in the dissection images. These included
regions of healthy muscle, damaged muscle, and fat, all labeled based on
their macroscopic appearances (Fig. 8.2).

8.2 Mueller matrices

The analysis of the acquired Mueller matrices showed that they were
predominantly diagonal across all samples and wavelengths (Fig. 8.3),
with both the normalized components <8 9 , where 8 , 9 ∈ [1, 4], and
the first non-normalized element "11 forming a diagonal matrix. This
polarimetric behavior suggests that the mouse leg tissues primarily
depolarize light. However, faint non-zero elements are also shown outside
of the diagonal, particularly in the polarizance vector2.

An analysis of the physical realizability of the Mueller matrices was
conducted to validate the measurements (see Sec. 3.3.4). A tolerance of
C>; = 10−5 [1] was employed in evaluating these conditions to account
for numerical inaccuracies and noise in the measurements.

By evaluating the ensemble criterion, we obtained either physically
realizable or non-realizable areas in each sample at each wavelength (Fig.
8.4). These non-realizable regions were associated with areas exhibiting
specular reflections. In our previous work [1], we have seen that the
edges of the sample, where water can accumulate, regions with very low
SNR or reflections caused by elements surrounding the sample can also
introduce areas of no physical realizability.

8.2.1 Indices of polarimetric purity and anisotropy
coefficients

To further investigate the polarimetric properties of the mouse leg tissues,
the indices of polarimetric purity (IPPs) (Eq. 3.48) and the degree of
polarimetric purity (Eq. 3.49) were derived for each sample. As depicted
in Figure 8.5, the polarimetric purity generally decreased with increasing
wavelength, although a slight increase was observed at 546 nm, similar
to our previous findings [1]. This wavelength-dependent decrease in
polarimetric purity can be attributed to the increased scattering and
longer optical paths associated with longer wavelengths, which leads to
an increment in depolarization. The polarimetric purity shown satisfies
the inequality 1 > %3 > %2 > %1 > 0, and some regions of the samples
have high %3 values, suggesting that the samples are non-pure but that
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Figure 8.3: Mueller matrix of the whole-leg samples 814 (left), 895 (center), and 896 (right) of dataset LD. The non-normalized first
element of the matrix, "11, is represented in Fig. 8.2 with the regions of interest on top, while the rest of the coefficients, <8 9 (8 , 9 ∈ [1, 4])
shown in this image are normalized to "11. The colormaps have been adjusted to the range (-0.5, 0.5) for visualization purposes.
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Figure 8.4: Ensemble criterion applied to sample 814 from dataset LD at the seven available wavelengths. Areas where the ensemble
criterion is fulfilled are represented in green, while red represents where the matrices are not physically realizable.

3 When not considering the specular re-
flections

some of their areas are further away from being a perfect depolarizer,
as indicated by the off-diagonal elements of the matrices. Furthermore,
the analysis revealed variations in polarimetric purity across different
tissue types. For instance, the areas labeled as fatty tissue and damaged
muscle (Fig. 8.2) exhibited lower polarimetric purity compared to healthy
muscle tissue, consistent with their higher scattering [5] and consequent
depolarization.

Regarding the anisotropy, the overall observed total anisotropy was
low for the three samples (%
<0.15) in the three tissue types (Fig. 8.6).
Nonetheless, some interesting patterns have been observed. For example,
the linear and circular anisotropy values are in similar ranges3. While
the whole surface of the legs appears to have similar levels of linear
anisotropy, only healthy muscle tissue has circular anisotropy. Although
anisotropy values are low and further histological verification is needed,
this result is particularly interesting when comparing freeze-damaged
and healthy muscle since it suggests that the damage induced by the
faster freezing of some muscle areas is enough to break some micro-
structural chirality but not the larger linear anisotropy of the muscle fiber
bundles. Finally, unlike what was observed in brain [1], the anisotropy
coefficients appear stable throughout the whole wavelength range, with
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the exception of the linear anisotropy at 501 nm, which causes an overall
decrease in the total anisotropy at the same wavelength, suggesting the
presence of chromophores that are not present in brain tissue.
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Figure 8.5: Indices %1, %2, %3 and degree of polarimetric purity %Δ represented at all seven wavelengths for sample 814 of dataset LD.
The colormaps have been adjusted to exclude all values below the 1st and over the 99th percentiles of each magnitude.
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) represented at all seven wavelengths for sample 814 of
dataset LD. The colormaps have been adjusted to exclude all values below the 1st and over the 99th percentiles of each magnitude.



8.3 Matrix decomposition methods 209

4 Matrix of an ideal mirror reflection.

8.3 Matrix decomposition methods

8.3.1 Forward polar decomposition

Since the measurements were performed in a reflectance configuration,
a common approach is to multiply the matrices by the diagonal matrix
3806(1, 1,−1,−1)4 so that the same reference frame is used for the light
beams illuminating and exiting the sample [6, 7]. This transformation is
applied due to the Lu-Chipman decomposition assuming that the sign
of the eigenvalues calculated during the derivation of "Δ% and "' (see
Sec. 3.5) is the same for the three eigenvalues, which is not always the
case and leads to depolarization and retardance matrices that do not
correspond with the sample [6, 8]. By applying this transformation on
the Mueller matrix of the sample, the polar decomposition can be used
by only modifying the derivation of <Δ% and <' , only if the determinant
of <Δ% is negative, to calculate them using the SVD, as in the symmetric
decomposition [6, 9].

After applying forward polar decomposition, the total depolarization (Δ),
retardance ('), and diattenuation (�) were computed for the three mouse
legs. Figure 8.7 illustrates representative images of these polarimetric
parameters for a lateral view of one leg. To enhance visualization, the
color scales have been adjusted to encompass 99% of the data, clipping
extreme values. This results in the following ranges: Δ ∈[0.3,0.98], ' ∈[0,
2.5], and � ∈[7 × 10−6,0.01]. Diattenuation values are presented on a
logarithmic scale to enhance contrast.

Depolarization effectively differentiates healthy muscle from damaged
muscle or fat, consistent with the whiter appearance of the last two,
which indicates higher scattering. Furthermore, depolarization generally
increases with wavelength, likely due to the increased optical path length
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Figure 8.7: Depolarization (Δ), retardance ('), and diattenuation (D) of the skin-off leg 814 from dataset LD, from 393 nm to 731 nm.
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at greater penetration depths, which further randomizes polarization, but
muscle is still highlighted as the least depolarizing element of the sample.
At the central wavelengths (446 - 546 nm), depolarization appears mostly
unchanged. It is only below that range that more detail is appreciable
due to the shorter penetration depth, while the longer wavelengths blur
the differences between tissue.

Retardance remains relatively consistent across wavelengths, with a
very slight increase observed at 501 nm near the damaged muscle ar-
eas. This stability is expected due to the anisotropic nature of skeletal
muscle. However, the measured retardance values are low, suggesting
two possibilities: (1) the microstructure of the sample has degraded, sup-
pressing detectable retardance, or (2) the small internal structures within
the mouse muscle result in photons traversing multiple muscle groups
with varying orientations, effectively averaging the overall retardance to
near-zero.

Diattenuation exhibits an interesting behavior. Like retardance, diattenu-
ation is initially low but decreases with wavelength instead of remaining
constant. Most of the incident light is depolarized by the sample, espe-
cially in damaged muscle or fat and at long wavelengths. Given that the
initial diattenuation is low, the longer path length could be influencing
the loss of diattenuation in a way that is more apparent than in the retar-
dance images. Notably, diattenuation highlights healthy muscle areas,
suggesting that there is a diattenuating component to the arrangement
of the muscle fibers. Diattenuation also highlights textures more than
depolarization or retardance, suggesting that the diattenuation data
might represent the uppermost layers of the tissue, where the light has
not been completely depolarized yet.

This behavior is consistent across all samples: depolarization primarily
differentiates healthy muscle from other tissues and increases with
wavelength; retardance remains stable; and diattenuation, while low, is
able to pick up on complex tissue anatomy. Shorter wavelengths generally
offer better image detail due to shallower light penetration and lesser
blurring.

The consistency observed between the three samples allowed for the
grouping of their results according to the identified labels (Fig. 8.8). As
indicated before, the diattenuation decreases consistently for all sample
types with the incrementing wavelength and shows low values overall
while being slightly higher for healthy muscle samples. Something similar
occurs for the retardance, which showcases low values for the three tissue
types. Interestingly, the retardance between healthy (a) and damaged
(b) muscle was very similar and lower than that of fatty tissues (c).
Although fat has no structural elements that should indicate the presence
of retardance in the tissue, the small size of the mouse legs implies
that light that enters or exits the sample through the lipidic areas is
going to interact with muscle tissue and tendons as well, so the received
retardance signal on the fat is most likely due to the underlying muscle
tissue, tendons or fasciae. This would also explain why the retardance
average is so separated from its median on fatty regions, meaning that
there is more variance in the distribution than for muscle tissue. The
principal magnitude that separates healthy muscle tissue from the rest is,
as indicated before, depolarization, with values ranging from 0.0 to 0.1,
while damaged muscle remains over 0.65 and fat over 0.7. This suggests
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5 The circular counterparts of'! and�!
were negligible and thus not considered
in the analysis.

that the best marker of healthy muscle is low depolarization values,
which, combined with higher diattenuation, indicates a high level of
tissue structure that is able to maintain the polarimetric properties of the
incident light.

8.3.2 Differential decomposition

A significant drawback of serial decomposition methods, such as the
forward and reverse polar decompositions, is their inherent order de-
pendence. The sequential arrangement of the depolarizer, retarder, and
diattenuator matrices influences the resulting individual matrix elements.
Different orders produce different sets of equivalent matrices, leading to
ambiguities in the extracted polarization parameters. This is addressed
by the symmetric decomposition method, but it still reduces the sample
to a sequence of five optical elements.

The differential decomposition aims to overcome these limitations by
interpreting the sample as an infinite number of infinitesimal optical
elements. The method involves calculating the matrix logarithm (see
Sec. 3.5), which, similarly as before, is often obtained by previously
multiplying the Mueller matrix of the sample by the mirror reflection
matrix since the matrix logarithm of a Mueller matrix captured with a
reflectance system does not often exist [10].

Once the matrix logarithm ! was obtained, the linear retardance '! and
diattenuation �! were derived as5

'! =
1√
2

√
(!4,3 − !3,4)2 + (!2,4 − !4,2)2 , and (8.1)
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�! =
1√
2

√
(−!1,2 − !2,1)2 + (−!1,3 − !3,1)2 . (8.2)

The resulting maps of retardance and diattenuation are shown in Fig. 8.9.

As occurred with the forward polar decomposition, the diattenuation
obtained through the differential decomposition highlights textural
details of the sample, but its value is overall low and non-discriminative
between tissues. On the retardance maps, however, some interesting
changes are visible in the non-healthy muscle areas. Specifically, the
retardance seems to be higher in regions where the frozen-damaged
muscle is more visible. The difference between the results provided with
the polar decomposition and the differential decomposition lies in the
fundamentals of each decomposition method: if the sample is described
as a discrete (polar decomposition) set of matrices, the matrices in the set
are going to be different from a sample that is defined as a continuum
set of matrices (differential decomposition).

Pardo et al. [10] also analyzed the wide-field properties of skeletal muscle
with the differential decomposition, using a multispectral system that
measures at 420, 455, 460, and 780 nm. In their work, using a pork fillet
as a sample, the depolarization increased with the wavelength for all
tissue types, similar to what is observed for the mice samples through
the degree of polarimetric purity (Fig. 8.5). The diattenuation values
the authors report also coincide with what we observe for the mice
samples (Fig. 8.9): values below 0.1, which are slightly higher in healthy
skeletal muscle regions, especially at low wavelengths. Finally, the work
by Pardo et al. describes the retardance of the sample being higher in
connective tissue and muscle, followed by skin, and finally fat having
the lowest retardance signal. We could then infer that the mice samples
showing higher retardance in this region is not necessarily due to the
damaged muscle but to the connective tissue present below it since the
high retardance is observed in the muscle areas closer to the knee for
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the three samples, where most leg tendons coincide. The authors also
report retardance values below 0.6, and they show an increase with the
wavelength, as we have also seen before in brain tissue, possibly due to
the longer penetration of the photons accumulating more retardance on
their way out of the sample [1, 10].

It is worth noting that the retardance increase with wavelength observed
in these samples is very subtle for both decomposition methods. In
contrast, for lamb brain, we observed a more significant increase [1],
with a relative increase similar to what Pardo et al. report on their
work for porcine skeletal muscle [10]. However, Bonaventura et al. [11]
and Carlson et al. [12] report a decrease of the retardance with the
increasing wavelength when analyzing fixed ferret brains. Although
fixation does affect the polarization properties of the samples, as Gros et
al. demonstrated [13], and that all these samples and systems are different,
it is also possible that the size of the anatomical structures analyzed is
affecting the results. The lamb and porcine experiments have a fairly big
size (≈2-6 cm thickness) when compared with the ferret and mice ones
(< 1 cm thickness), so photons of the same wavelength are much more
likely to stay in the same anatomical structure in the former than in the
latter. As a consequence, measurements of ferret or mice samples are
much more likely to cause polarization averaging as the photons travel
from one anatomical structure (i.e., muscle, bone, fat) to the next one,
effectively increasing the depolarization and reducing the retardance
and the diattenuation.

8.4 Importance of the Mueller matrix elements

Mueller Matrix Imaging is a measurement technology that obtains
a significant number of parameters, especially when combined with
multispectral capabilities. Each parameter informs about a different
polarization property of the sample. Still, unlike the other techniques we
have seen in this thesis, those properties have a complex interpretation
which may vary depending on the decomposition method selected. It
is then necessary when analyzing Mueller data to compare multiple
decomposition methods and validate the system and the measurements
with the use of reference samples.

All of the above raises the question of “is it necessary to capture and
derive all the polarimetric properties of the sample, or can we instead
use a subset of those properties?”. The answer to that question will
depend on the problem at hand. If the experiments aim to characterize
the polarimetric properties of the sample, then the more data captured
and the more decomposition methods utilized, the better. However, if the
experiments aim to detect one type of tissue, then we can focus our efforts
on optimizing the methodology to detect that type of tissue properly. If
optimized, Mueller polarimetry can be stripped of its complexity and
used instead to find only those matrix elements that help solve each
problem.

In this section, we will explore some classification methods to understand
the important matrix elements that distinguish the healthy muscle areas
from the rest of the samples in the mouse legs. The dataset used for
the classification was balanced by random sampling so that the same
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Figure 8.10: Average confusion matri-
ces for the train and test datasets after
performing leave-one-group-out cross-
validation with a KNN classifier with
 = 5 neighbors.

number of data points were taken for each label (Fig. 8.2) and each
sample. A total of 22125 pixels were taken for each label and sample.
The features introduced to the dataset were all the normalized Mueller
matrix elements but the first one ("1,1) at the seven wavelengths.

8.4.1 K-nearest neighbors supervised classification

Following our previous work [1], we started by classifying the data
using K-Nearest Neighbors classification (KNN). The key parameter is
the number of neighbors to use, which, in this case, was optimized by
choosing the number of neighbors that maximized the accuracy for the
test dataset after leave-one-sample-out cross-validation. The final number
of neighbors was  # = 5, similar to the value of  # = 8 we obtained for a
different dataset with different features when considering all wavelengths
[1]. Then, the data was classified through KNN and validated using leave-
one-group-out cross-validation. This method ensures that all of the data
points of one of the samples (groups) are selected as the test dataset
while the others remain in the training dataset, and no crossing of the
data occurs between training and testing. The average confusion matrices
for the train and test datasets are shown in Fig. 8.10.

Overall, a 98.9% accuracy was obtained for the training dataset while, for
the test dataset, the KNN classifier achieved a 79.8% accuracy. However,
the per-class accuracy is variable depending on the class. When training,
the damaged muscle was the easiest class for the model to accurately
determine with a 99.6% accuracy, followed closely by the healthy muscle
with 98.7%. On the other hand, while the accuracy of the damaged
muscle detection dropped only to 95.8% on the test dataset, the healthy
muscle detection dropped up to 80.7%, which is more than a 15%
decrease. This suggests that while the frozen-damaged muscle has fairly
uniform polarimetric properties across samples, the healthy muscle has
a polarimetric signature that is more difficult to identify correctly. This
is consistent with the damaged muscle being governed by scattering,
which suggests that depolarization is enough to detect it adequately.
At the same time, other components might need to be checked when
classifying the data in order to segment healthy muscle. Interestingly, the
most complex category for the model to properly identify was fat, with
an accuracy of 95.9% in the training dataset and only 61.9% in the test
dataset. Furthermore, the classifier often classified fat in the test data as
damaged muscle, which also suggests that depolarization is the main
tissue identifier the classifier is looking for since damaged muscle and fat
had similar depolarization properties. Anatomically, fat often presents
itself on top of muscle tissue, so the accuracy decrease in the test dataset
might arise from polarization data containing information about the fat
but also about the underlying muscle, which might be too subtle for the
KNN classifier to identify fat properly.

To verify these arguments, we then derived the importance of each feature
in the Mueller matrix as viewed by the KNN classifier. As mentioned
before, this method focuses on one estimator that summarizes the perfor-
mance of the classifier (i.e., accuracy) and evaluates the importance of
each feature in the dataset through changes in the performance metric.
By randomizing the entries in one feature at a time, if the feature is
important for the classifier, the performance metric must drop after the
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Figure 8.12: Average confusion matri-
ces for the train and test datasets after
performing leave-one-group-out cross-
validation with a KNN classifier with
 = 23 neighbors. The data consid-
ered for classification were the elements
"(2, 2) and "(3, 3)

feature is randomized. Analogously, if the feature is not important or
if it is too noisy, the performance metric must stay unchanged or even
improve after randomizing the feature. The results are shown in Fig.
8.11.

As expected, the most important features for classification are indeed the
diagonals of the matrices, which, since the matrices obtained are mostly
diagonal, indicates that depolarization is the main discriminant feature
between these tissue types, as observed in our previous work [1]. This also
explains why the diagonal elements of the matrix at 393 nm are the most
important, given that shorter wavelengths penetrate less into the tissue,
avoiding mixing polarimetric signals from different tissues, which makes
this depolarization more useful than at longer wavelengths. However
not all elements in the diagonal are equally important for classification.
In particular, the last element of the diagonal is less important than
the rest, which indicates that all tissue types affect circularly polarized
light in a way that is less discriminant than the effect they have on
linearly polarized light. Finally, the second most important wavelength
for classification is 501 nm, which corresponds with the slight increment
in retardance we observed through the Lu-Chipman decomposition (Fig.
8.8). It has been seen before [10, 14] that the absorption of hemoglobin
(or myoglobin in this case) might affect the polarization properties by
decreasing the depolarization, i.e., the light that is absorbed by the
chromophores is not captured as depolarized light. However, in this
experiment, we observe a plateau in depolarization at 501 nm, which
corresponds with a valley in oxy- and deoxyhemoglobin (or myoglobin),
but also a peak in metmyoglobin (Fig. 4.7), suggesting that the presence
of metmyoglobin might aid in correct muscle classification.

Building and validating a multispectral Mueller imaging system can be
an arduous task, and we have just seen that not all features are needed
to provide fairly good classification results. In scenarios where system
complexity should be reduced to the minimum possible, such as surgical
vision or real-time imaging, achieving full Mueller polarimetry might
not be an option. Instead, a system can be built to obtain a subset of the
Mueller elements for a specific task based on the features that are most
important for said task. Here, we simulated such a system by repeating
the KNN classification using only the elements "(2, 2) and "(3, 3) of
the multispectral Mueller matrices, reducing the number of features from
105 to 14. The resulting confusion matrices are shown in Fig. 8.12.
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a) b) c) d) e) f)

Figure 8.13: Classification of healthy muscle (red), frozen-damaged muscle (purple) and fat (yellow) with a KNN classifier ( # = 5
neighbors). The reference labeled data (a, c, e) is shown next to the output of the model (b, d, f).

Although we optimized the number of neighbors again ( # = 23)
to use only the linear elements of the diagonal of the matrices, the
average accuracy decreased by 2% when going from 105 to 14 features.
This accuracy loss is due to the feature-reduced classifier worsening its
prediction for the frozen-damaged muscle (-12.6% accuracy). However,
this decrease is compensated on average by the slightly better performance
at detecting fat (+6.3% accuracy) and healthy muscle (+1% accuracy). If the
task for this classifier were to detect healthy areas of muscle, this suggests
that reducing the number of features does not alter but improves the
classification performance by removing data related to the other classes.
In other words, the polarimetric signal of the muscle lies in the linear
elements of the diagonal, which enables the development of partial 3×3
multispectral polarimeters for this task, which are systems that only
require linear polarizers, can be calibrated following the same methods
detailed in this work and provide faster acquisition and interpretation of
the results [15].

Finally, the output of the classifier trained with all features is shown in
Fig. 8.13. At this point, it is worth noting that not all labeled pixels were
used for classification since the dataset was balanced to include the same
number of pixels per sample and per class. Still, the classifier does a
good job at detecting the healthy and damaged muscle areas, even in
regions around the knee where there is a greater mixture between tissue
types. The noisier areas correspond to fatty tissue, as expected, given the
decrease in accuracy observed in the test dataset for this category.

8.4.2 K-means unsupervised clustering

To evaluate the results of this classifier, we compared it with the output
of an unsupervised clustering method: K-means. This method assesses
the similarity of the data points provided by arranging them into  �
different clusters. The results are shown in Fig. 8.14. We evaluated using
two to four different clusters, given that only three labels have been
identified. Although the data introduced in the clustering method is
labeled, K-means does not access it. Instead, it assigns a cluster to each
data point by searching for the  � centroids that maximize cluster
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a) n=2 clustersb) n=3 clustersc) n=4 clustersd)

Figure 8.14: Clustering of the data points
in sample 814 from dataset Mice leg
dataset (see Tab. 6.2) (LD) obtained with
K-means with 2-4 clusters. The class as-
signment (color) to each cluster is ran-
domized, but each color still represents
a separate cluster.

separation. Therefore, the classes assigned to each cluster are random,
which is the reason why the class number changes for each class when
more clusters are added to the method.

When using two clusters, K-means is still able to separate the area we
labeled as healthy muscle from the rest of the image, suggesting that,
even when unsupervised, there are enough polarimetric differences
between the muscle and everything else to determine its margins. When
incrementing the number of clusters, K-means is not able to separate
the other two types of labeled tissue. Instead, it assigns more clusters to
the boundary between the healthy muscle and the surrounding tissues.
Although this potentially highlights where one tissue transitions into
the next, the unsupervised K-means method was less reliable and more
swayed by the specular reflections than the supervised K-neighbors
classifier.

8.5 Classification through feature extraction
with a supervised autoencoder

Both classifier types described in the previous section are based on
finding distinctive features among the ones introduced with the aim of
maximizing the separation between classes, regardless of whether the
method is supervised or unsupervised. We have also seen that not all
features are equally important, so compressing the data before classifying
may improve the results.

To test this, we used a supervised autoencoder (SAE, see Ch. 5), which
is a type of neural network that is optimized with two objectives: (1)
to provide data compression possible while reconstructing the data as
good as possible while (2) considering the classes of the data points to
generate the compression algorithm. This way, the data represented in
the compressed space is clustered in terms of the class each point belongs
to while maximizing the separation between classes and ensuring data
reconstruction. The bottleneck of the autoencoder represents the smallest
layer in the network and is the layer that provides the compressed
representation of the data.
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Figure 8.15: Average confusion matrices
for the test dataset after performing leave-
one-group-out cross-validation with a
SAE, using/ = 2 (a),/ = 3 (b) and/ = 4
(c) bottleneck neurons. D.M.: Damaged
muscle; H.M.: Healthy muscle; F.: Fat.

8.5.1 Classification

We implemented three different networks characterized by a different
number of bottleneck neurons: / = 2, 3 and 4. The number of epochs
used for training was 400, with a batch size of 32. No overfitting was
observed within the 400 epochs, and the test dataset accuracy was stable
for all folds from 200 epochs onward. As before, the dataset comprised
the elements of the wavelength-dependent Mueller matrices as features
(excluding "11), and leave-one-group-out cross-validation was used to
evaluate the results. The confusion matrices for the test dataset are shown
in Fig. 8.15 and the corresponding pixel-wise classification in Fig. 8.16.

The SAE provided a cross-validated accuracy of 79.7%, 79.4%, and 80.0%
with / = 2, / = 3, and / = 4 neurons in the bottleneck, respectively. The
size of the bottleneck, within the ones explored, does not seem to impact
the results strongly, with the most significant improvement being a 2%
increase in fat detection between 2 and 3 neurons.

When evaluating the global results of the SAE, it does not provide
improved nor worsened results when compared with the KNN classifier.
However, the per-class accuracy does show differences between both
classifiers. Specifically, the SAE shows between a 5% and 6% decline in
accuracy when classifying the damaged muscle but, at the same time,
shows between an 8-9% increase in accuracy when identifying the healthy
muscle. The pixels identified as fat have approximately the same accuracy
for both classifiers, but the SAE does not always confuse fat with damaged
muscle. Instead, it provides almost the same probability for choosing a
pixel as damaged or healthy muscle when fat is not properly identified.

These results show how, even when two methods provide similar global
results, one may be better than others at specific tasks. In this case, since
the objective is to separate the areas of healthy muscle from the rest,
using a SAE can be a better approach than using a KNN classifier.

The output of the SAE and KNN classifier is very similar (Figs. 8.13 and
8.16), but the former’s are significantly less noisy, especially in the fatty
regions. While both classifiers coincide in the bigger areas, the SAE is
able to pick up subtle regions, like the fatty area situated on top of the

a) b) c) d) e) f)

Figure 8.16: Classification of healthy muscle (red), frozen-damaged muscle (purple) and fat (yellow) with a SAE classifier (/ = 2 neurons
in bottleneck). The reference labeled data (a, c, e) is shown next to the output of the model (b, d, f).
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6 (16-1)×7 Mueller matrix elements, con-
sidering the 7 wavelengths and removing
the intensity ("11) from each matrix.

7 The latent space has as many dimen-
sions as the bottleneck has neurons.

knee labeled in Fig. 8.16 (a), which is completely overlooked by the KNN
algorithm, as well as the non-labeled muscle region below it, which is
also better defined with the autoencoder. Other examples like these are
visible in the center of Fig. 8.16 (d) and below the main muscle area
in Fig. 8.16 (f), where small regions of unlabeled data are identified as
muscle tissue, suggesting that this method is able to infer the dominant
component in a specific area.

8.5.2 Data compression

A notable characteristic of autoencoders is the implicit data compression
that occurs in the bottleneck. In this case, the data, which has 105 input
features6, is compressed to two when the bottleneck has only two neurons.
This means that the multispectral Mueller matrix data, which initially
required 105 images to visualize it, can now be represented with only
two images that contain all the polarimetric and colorimetric data.

To do so, the input features are passed through the encoder and reach the
bottleneck, where they get projected onto a two-dimensional latent space7

through a transformation that has been optimized to separate data from
the different classes. For this dataset (Fig. 8.17), the transformation kept
all the data points for the damaged muscle very close to the coordinate
origin and later on focused on separating the two other classes as well
as possible. The region where the three classes overlap leads to the
off-diagonal elements of the confusion matrices represented in Fig. 8.15,
where the more overlap between classes, the worse the accuracy will
be.

When represented as figures data, the bottleneck can be viewed in as
many images as it has neurons (Fig. 8.19). This kind of representation
effectively rearranges the information on the polarimetric properties
of the sample to provide two images where tissue differentiation is
maximum. While the second neuron (/1) highlights only the muscle,
the first neuron (/0) provides a representation comparable to the output
of the classifier (Fig. 8.16, b), aiding in tissue identification even before
classifying the data.

The compression provided by the SAE is not lossless. In fact, this method
also focuses on constructing the compressing encoder by keeping the
most important data for classification. The autoencoder first compresses
the data (G) to generate the latent space transformation (I). The data on

Figure 8.17: Representation of the la-
beled data points in the dimensionality-
reduced space created in the 2-neuron
bottleneck (a) and zoom in the central
section (b). The wavelength-dependent
Mueller matrix data (105 elements total)
is compressed into only two dimensions
that properly separate the three classes.
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Figure 8.18: Comparison of the input
data (G) at 501 nm with the SAE-
reconstructed data (Ĝ) using the com-
pressed features contained in the two-
dimensional bottleneck (I). Their abso-
lute difference |G − Ĝ | is depicted to the
right.
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the latent space is used to classify each pixel into a different class (Ĥ) by
minimizing the classification error through comparison with the real
labeling (H). At the same time, the second branch of the autoencoder
decodes the data in the latent space (I) so that the decoded data (Ĝ)
resembles the input data (G) as much as possible. In the same way we
used the accuracy to evaluate how well the SAE classifies the data, we can
indirectly quantify which feature is the most important for classification
by evaluating the reconstruction error between the decoded data (Ĝ) and
the input (G). One example is shown in Fig. 8.18.

Overall, the absolute difference between the original data and the re-
construction was approximately 0.1 for all features, which is 5% of the
whole data range considered in Mueller imaging ("(8 , 9) ∈ [−1, 1]), a
value on the range of calibration accuracy [1]. The decoder is also able to
reconstruct the spatial distributions of the polarimetric properties since
it provides a mostly depolarizing (diagonal) Mueller matrix where the
muscle tissue is less depolarizing than fat or damaged muscle, as we
have seen before. This suggests that the compression generated by the
encoder, even when reducing a large number of features (105), is enough
to keep the basic polarimetric properties of the tissue.

Although the absolute difference between G and Ĝ is slightly larger on
the diagonal, it is worth noting that the off-diagonal elements have
values between 0 and 0.05. Even if these numbers seem low at first, the
off-diagonal elements of these Mueller matrices, in particular, are very
close to zero (< 0.01 in most cases). This means that, relative to the value
of the inputs, the autoencoder does a much better job at reconstructing
the data in the diagonal of the matrix than out of it. Given that this
high absolute difference in the off-diagonal elements still allowed for

Figure 8.19: On the left, a representation
is shown containing the seven multispec-
tral Mueller matrices of sample 814. On
the right, the two images represent each
neuron of a two-dimensional bottleneck.

393 nm 446 nm 471 nm 501 nm Bottleneck Z0 Bottleneck Z1

546 nm 636 nm 731 nm
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a) b) c) d) e) f)

Figure 8.20: Classification comparison between KNN ( # = 5 neighbors) and SAE (I = 2 neurons). The reference labeled data (a, c, e) is
shown next to the absolute classification difference between the two models (b, d, f). Areas where the models coincide are shown in
black. Areas where fat is being confused with damaged muscle are shown in light yellow. Areas where healthy muscle is being confused
with fat or damaged muscle are shown in purple. The samples are 814 (a,b), 895 (c,d), and 896 (e,f).

a good classification, we can conclude that the off-diagonal elements
are not the main ones contributing to the classification results. Instead,
coinciding with the KNN classifier, the diagonals are the main sources
of information for tissue identification in this dataset when using a
supervised autoencoder.

8.5.3 Tissue margins

The two supervised methods we trained - the KNN classifier and the
supervised autoencoder - both provided similar classification maps
on the tissue. However, there were discrepancies between the outputs
provided by both methods. If we assume that any classifier is going to
perform worse where there is a mixture of tissues, then we can find the
frontiers between tissue types, i.e., the margins, by focusing on the areas
where the classifiers do not coincide.

The absolute classification difference provided by both classifiers was
calculated. The results are shown in Fig 8.20. As we have seen in the
previous section, the SAE is able to correctly identify some areas that
the KNN classifier is not, like the fat close to the knee in Fig. 8.20
(a). This leads to the difference between classifiers highlighting this
area as a potential mixture of damaged muscle and fat, something that
occurs too in the same area of sample 896 (Fig. 8.20, f). Although both
supervised classifiers mostly coincide in the healthy muscle classification,
the extension of said areas is not exactly the same. As such, the difference
between them outlines the margins of healthy muscle areas with regions
of potential healthy muscle-fat and healthy muscle-damaged muscle
mixtures.

8.6 Conclusions

This chapter explored the application of multispectral Mueller Matrix
Imaging (MMI) to characterize mouse leg tissue samples (dataset LD).
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Sample preparation involved defrosting, skin removal, and rehydration.
Striking visual differences were observed between the three legs despite
being from age-matched wild-type mice. White, anisotropic structures,
likely indicative of freeze-damaged muscle due to improper freezing,
were present in varying degrees. We identified several regions of interest
for the subsequent analysis, including healthy muscle, freeze-damaged
muscle, and fat.

The analysis of the acquired Mueller matrices revealed predominantly
diagonal structures across all samples and wavelengths, suggesting dom-
inant depolarization. Faint off-diagonal elements were also observed,
particularly in the polarizance vector. Specular reflections and other
measurement artifacts were detected as regions with non-physical re-
alizability, while the rest of the areas in the samples were physically
realizable.

Next, we calculated the indices of polarimetric purity and the degree
of polarimetric purity. Polarimetric purity generally decreased with
increasing wavelength, likely due to the longer path length of the photons
inside the samples. Fatty tissue and damaged muscle exhibited lower
polarimetric purity compared to healthy muscle. The total anisotropy
was low across all samples and tissue types, with faint variations in linear
and circular anisotropy.

To obtain the polarimetric properties of the tissue, we started by applying
the forward polar decomposition to derive depolarization (Δ), retardance
('), and diattenuation (�). Depolarization effectively distinguished
healthy muscle from damaged muscle and fat, and increased with
wavelength. Retardance remained relatively stable, while diattenuation,
although low, highlighted healthy muscle areas. Shorter wavelengths
provided better image detail, consistent with the reduced penetration
length inside the tissue. The boxplots of these parameters across tissue
types confirmed the trends, with low depolarization being the primary
marker of healthy muscle.

The differential decomposition was also applied to calculate linear retar-
dance ('!) and diattenuation (�!). Again, the diattenuation highlighted
textural details but was not strongly discriminative, but retardance ap-
peared higher in damaged muscle areas, potentially due to underlying
connective tissue. A comparison with literature values for skeletal muscle
revealed similarities in diattenuation and depolarization trends, while
differences in retardance trends could originate from variations in sample
volume and tissue structure.

MMI obtains a large amount of data, so tissue classification was per-
formed to evaluate the importance of the importance of individual
Mueller matrix elements for the detection of healthy muscle to assess
if a reduced Mueller dataset can be used for the same task. K-nearest
neighbors (KNN) supervised classification achieved 79.8% accuracy in
leave-one-group-out cross-validation. Feature importance analysis re-
vealed that diagonal elements, particularly at shorter wavelengths, were
the most relevant for this task, indicating depolarization as the primary
discriminant. A simplified classifier using only the multispectral "22 and
"33 achieved comparable accuracy, suggesting the feasibility of partial
Mueller polarimetry for the specific task of detecting healthy muscle
in a complex tissue environment, which would minimize the cost and
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measurement duration for clinical applications. K-means unsupervised
clustering was also performed, but it was less reliable for the same task
than the supervised KNN classifier, suggesting the need for supervised
methods for this task.

Finally, a supervised autoencoder (SAE) was employed for feature extrac-
tion and classification. The SAE achieved similar accuracy to KNN but
with improved per-class performance, particularly for healthy muscles.
The inherent data compression within the SAE bottleneck allowed for
the representation of the multispectral Mueller matrix data with only
two images, aiding in tissue identification through the two-dimensional
images. An analysis of the reconstruction error highlighted the impor-
tance of diagonal matrix elements for classification, which was consistent
with previous findings. The comparison of the output of the SAE and
KNN classifiers highlighted areas of potential tissue mixture, particularly
around the manually identified RoIs of healthy muscle, indicating that
MMI can also be used for margin detection tasks.
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The previous chapters focused on obtaining the optical properties derived
from each imaging method to provide an in-depth discussion of how
each property can be used for muscular dystrophy evaluation on its own.
Each imaging method was chosen based on the information about the
sample they provided (i.e., structural/chemical) so that their outputs
could be evaluated together to allow for a deeper understanding of the
pathology.

This chapter will show the results obtained by combining the optical prop-
erties derived from the previous ones through two different approaches:
statistical and visualization-based. While the statistical approach can be
taken in any dataset, integrating data for visualization purposes poses
various challenges that will be discussed in the following sections.

9.1 Visualization of co-registered images

This section presents the results of the multi-modal visualization ap-
proach to co-registered optical property maps derived from murine
muscle samples following our previous work [1]. Here, the results pre-
sented are those of dataset MD1 and MD2, where both attenuation
(�C) and birefringence (Δ=) were acquired using OCT and PS-OCT, re-
spectively. As we have seen in Ch. 6, these optical properties provide
complementary information about tissue structure and composition,
with �C reflecting light scattering and potential changes in cell size and
morphology, while Δ= is sensitive to tissue anisotropy and the presence
of ordered structures. Given the importance of both structural and compo-
sitional information in understanding muscular dystrophy progression,
we employed a color-based visualization approach to integrate and simul-
taneously display these co-registered parameters. The transformation is
based on assigning an optical property to each component of the HSV
color space to transform three independent maps into a single image.

9.1.1 Assignment of optical properties

The main objective of the proposed color transformation is to create one
image that conveys as much information about a sample as possible, but
also that aids in the identification of healthy or diseased areas. Between
attenuation and birefringence, we have seen that birefringence provides
better separability between the two tissue classes than attenuation, while
the latter shows better-defined morphological structures. This suggests
that the better disease biomarker is Δ=, which we will assign to the
color (hue, H) in the HSV representation. High birefringence values are
assigned to greener colors, while low birefringence ones are assigned
to redder colors, corresponding with the healthy/diseased categories,
respectively.
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Figure 9.1: Optical properties used for
the multi-parametric HSV representa-
tion, exemplified in sample 814 of dataset
MD2. From top to bottom: attenuation
(�C ), birefringence (Δ=) and normalized
profilometry of the sample.

Attenuation is assigned to the value (V), where dark and bright colors
indicate low and high attenuation, respectively. Since the value of �C
does not vary significantly between samples, this will essentially provide
the texture of the images, which, as we have mentioned before, is better
visualized in intensity variations [2].

In order for the three components to be independent, as they would in a
conventional color image represented in the HSV space, the parameter
chosen to represent saturation (S) can not be related to the attenuation
or the birefringence of the sample. Therefore, we choose the normalized
profilometry of the sample. This way, high points in the sample will
appear as highly saturated colors, while lower ones will show as grayish
ones. If the sample does not have abrupt height changes, the whole
surface will have similarly saturated colors. The three maps that will be
combined in a single HSV image are exemplified in Fig. 9.1 [1].

9.1.2 Effects of histogram equalization

Although the birefringence values of the samples are contained in a small
region of all possible values, most samples have areas with specular
reflections or other impurities whose birefringence is much higher than
in the sample. This causes the dynamic range of the birefringence to be
compressed in the lower-valued side, which translates into a small color
variation when assigned to hue.

We used histogram equalization to enhance the contrast in birefringence
values so that they are not linearly translated into hue values. Instead,
the assignment is done according to the Δ= cumulative distribution
function so that the small dynamic range is stretched throughout more
hue (�) values, and the higher parts of the birefringence distribution
are compressed to a small color variation. To maintain color consistency
across the dataset, the Δ= → � assignment is done according to the
distribution of the whole dataset and, later on, applied to each sample
individually (Fig. 9.2). This implies that the individual histograms of the
samples are not equalized, but their contrast is still stretched to fill the
whole range (Fig. 9.2, d).

Notice that, even after equalizing the dataset’sΔ=, the histogram does not
fill the 0-1 range (Fig. 9.2, b). This range was chosen due to the hue being
a cyclic magnitude, meaning low and high hue values are represented by
the same color, which is something to avoid when the assigned optical
property (i.e., birefringence) is not cyclic and low and high values must
be represented by different colors.
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Figure 9.2: Effect on the min-max scaled birefringence histograms before and after equalization for (a, b) the whole dataset and (c, d)
sample 814, represented in 9.1.
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Figure 9.3: Resulting HSV image repre-
sentation of attenuation, birefringence
and profilometry for sample 814 of
dataset MD2: (a) min-max normal-
ized birefringence (hue), (b) histogram-
equalized hue, (c) color reconstruction
without equalization and (d) color recon-
struction with histogram-equalized hue.
The color legend is shown in (e) for max-
imum saturation.

9.1.3 HSV representation of multi-parametric data

The color transformation for sample 814 of dataset MD2 is represented in
Fig. 9.3. The hue before and after equalization is shown in images 9.3 (a)
and (b), which correspond to the histograms represented in Fig. 9.2, (c)
and (d). The contrast enhancement between low and high birefringence
areas is immediately visible, but highΔ= values appear as darker� values
after equalization. The equalized hue was inverted before combining it
with the saturation and value so that high birefringence, which is the
marker of healthy samples, is represented in green, which is the color
represented by low � values in the HSV color space. Thus, the color
legend for all samples is unique and is represented in Fig. 9.3 (e). Notice
that the horizontal axis of the legend is not linearly spaced, i.e. the higher
the birefringence the less color separation between birefringence values,
so that values over 0.005 are represented by cyan/green colors, and
values below 0.005 are depicted in blue/magenta/red. That way, more
than half of the possible colors correspond with different degrees of
disease (Δ= < 0.005), and healthy tissue is always represented in greener
colors.

The effect on the sample before and after equalization is also immediate.
Without equalization, the color representation of the image collapses to a
pinkish-red hue, while, after equalizing, values with high birefringence
are represented in green. Combining the �C with Δ= allows us to see the
texture associated with this high birefringence, which disappears in the
low birefringence areas of fatty tissue, corroborating that birefringence is
higher in regions of well-organized, anisotropic tissue.

This behavior is also observed across all samples of both datasets. In
dataset MD1 (Fig. 9.4), the four control samples are the ones with larger
healthy areas depicted as highly-textured green regions but also contain
some impurities corresponding with fatty inclusions or less anisotropic
tissue areas. On the other hand, the most damaged samples in the
dataset (mouse 731) are viewed as bright red, randomly organized tissue,
indicating its clinical state. Interestingly, the mouse’s 731 diaphragm
(sample 731-D) had the highest normalized height variation, which
causes the out-of-focus areas to be less saturated than the well-focused
tissue, which also makes them less distracting to the end user, allowing
us to focus our attention in the regions that are properly measured.
The remaining samples have a mixture of very damaged and slightly
damaged tissue, represented as colorful images with no green areas.

Dataset MD2 (Fig. 9.5) showed two distinct birefringence distributions
for healthy and diseased samples that overlapped slightly more than
those of dataset MD1. This greater overlap translates into a less evident
color distinction between control and dystrophic samples. Although
the majority of green, highly-birefringent tissue is shown in wild-type
samples, some knock-out ones, like sample 578, have a non-negligible
high-birefringence component, suggesting that some mice resist better
the effects of the disease. As before, some samples had fat inclusions
that are viewed as reddish, non-isotropic areas. The most evident one
is sample 814, which we have already discussed, but also the knock-out
sample 742, which contained a small translucent bump on its lower
left area, which is immediately detectable as an almost-circular color
change
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636 (WT) 638 (WT) 639 (WT)

SM (WT) 731-B (K0) 731-C (K0)

731-D (K0) 731-GC (K0) 731-TR (K0)

774-A (K0) 774-B (K0) 809 (K0)

810 (K0) 811 (K0) 878 (K0)
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Figure 9.4: Color transformation of all samples in dataset MD1 according to their birefringence (hue), profilometry (saturation) and
attenuation (value). The first four are the control (WT) samples (SM, 636, 638, 639), and the rest are dystrophic (KO) samples. Best viewed
in pdf.
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520 (WT) 536 (WT) 540 (WT) 548 (WT)

595 (WT) 805 (WT) 808 (WT) 814 (WT)

861 (WT) 862 (WT) 863 (WT) 895 (WT)

896 (WT) 531 (K0) 534 (K0) 545 (K0)

564 (K0) 565 (K0) 578 (K0) 581 (K0)

621 (K0) 628 (K0) 741 (K0) 742 (K0)

867 (K0) 870 (K0)

Figure 9.5: Color transformation of all samples in dataset MD2 according to their birefringence (hue), profilometry (saturation) and
attenuation (value). The first 13 samples are control (WT) samples, while the rest are dystrophic (KO) ones. Best viewed in pdf.
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Figure 9.6: Three-dimensional represen-
tation of sample 814 colored according
to its HSV transformation. Best viewed
in PDF.

in the HSV representation which, upon further inspection, also shows a
textural change with respect to the surrounding tissue.

Some samples, like the 536 (WT), 540 (WT), 545 (KO), 565 (KO), and
628 (KO) were fixed to the cork based with their cross-section facing the
system, either perfectly perpendicular or at a slight angle, which explains
why those samples, even the control one, have such low birefringence
values. Additionally, the multi-parametric representation shows a lumpy
texture in those samples, corresponding with the cross-section of the
fiber bundles in the muscles, which is not visible in other samples where
the tissue was placed on its side, resulting in fibrous, directional textures
in the images.

An adequate sample placement is crucial when evaluating ex-vivo tissue.
Birefringence is caused by the phase delay the waves gain when traveling
through anisotropic tissues. When the cross-section of the muscle fibers
is placed perpendicular to the system, the fibers run parallel to the
propagation direction of the wave, so the phase of the wave remains
unchanged due to both axes of the field experiencing identical tissue
structures. Therefore, samples must be placed on their side when the
aim is to measure the birefringence of the tissue.

This orientation issue is generally irrelevant for in-vivo measurements
because muscles and tendons are naturally anchored at their ends. This
anatomical constraint means that when measuring birefringence in-vivo,
the only option is almost always measuring it laterally (across the fibers)
[3]. Therefore, the “correct” orientation for birefringence measurement
is automatically taken care of by the natural structure of this type of
tissue.

Finally, the profilometry of the sample did not significantly affect the
images aside from in very irregular samples, corresponding with our
previous findings [1]. However, the normalized height maps extracted
from the OCT images can also be used to create three-dimensional
representations of the samples, as depicted in Fig. 9.6. This additional
representation provides an even deeper understanding of the sample
since not only the disease marker (color) and sample anisotropy (texture)
is depicted, but it also allows for the identification of sample impurities
and their relative size compared to the rest of the sample.

The HSV encoding of multiple independent parameters presented in
this section and our previous work [1] is extremely useful to create color
images that can be interpreted from various points of view, but its use
is restricted to a single scenario: the represented properties must be
perfectly aligned. In OCT-derived measurements, this is an easy task,
given that all the represented properties are automatically taken in the
same area and derived from different Stokes vectors. However, when the
data is taken from multiple systems, additional efforts must be taken
to ensure image co-registration. The HSV encoding was also applied to
human aortic samples, which, since they are too big for the OCT system,
are imaged using a bi-dimensional grid that frames the region being
imaged in each OCT sample [1]. Then, the sample with the grid still firmly
placed on top of it is taken to the HSI device to measure its hyperspectral
image. Finally, the images from both systems are aligned using the grid,
and the resolution is matched through interpolation. This method was
not available at the time of the muscle dataset measurements. Thus, the
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HSV method was only applied to OCT data, but further iterations of this
experiment could include a smaller grid to be used with these ex-vivo
small samples and combine data from multiple systems together.

9.2 Statistical analysis of the dataset

Throughout this book, we have seen how several optical properties
obtained with multiple imaging systems can be used to describe the
behavior of healthy and dystrophic mice samples. Each system has its
strengths and challenges and evaluates the data from one point of view,
but as we have discussed in the previous section, to compare the images
pixel-wise directly requires the 2-dimensional optical property maps to
be co-registered. Since that is not the case, we sampled the same number
of data points from each muscle to evaluate their behavior statistically.
This section aims to distinguish between healthy and dystrophic samples
by ranking the optical properties according to how well they classify
the samples, but also to see if their combination can improve the results
provided by only the best magnitude.

9.2.1 Dataset description

The complete optical properties dataset of samples in MD2 is depicted in
Fig. 9.7. Each row represents a different optical property, namely:

▶ (a) Attenuation coefficient (�C) at � =1300 nm, in mm-1 (OCT).
▶ (a) Birefringence (Δ=) at � =1300 nm (OCT).
▶ (b) Average reflectance ('+ ), within the spectral range defined by

� <600 nm (HSI-VISNIR).
▶ (c) Average reflectance ('(), within the spectral range defined by

� >1300 nm (HSI-SWIR).
▶ (d) Absorption coefficient (�0(red)), within the spectral range de-

fined by 621< � <634 nm, in cm-1 (SFDI).
▶ (e) Absorption coefficient (�0(green)), within the spectral range

defined by 507< � <571 nm, in cm-1 (SFDI).
▶ (f) Absorption coefficient (�0(blue)), within the spectral range

defined by 447< � <460 nm, in cm-1 (SFDI).
▶ (g) Reduced scattering coefficient (�′

B(red)), within the spectral
range defined by 621< � <634 nm, in cm-1 (SFDI).

▶ (h) Reduced scattering coefficient (�′
B(green)), within the spectral

range defined by 507< � <571 nm, in cm-1 (SFDI).
▶ (i) Reduced scattering coefficient (�′

B(blue)), within the spectral
range defined by 447< � <460 nm, in cm-1 (SFDI).

The first two columns represent the data introduced through figures in the
previous chapters, where we show the different distributions according
to the clinical category (first column) or for each specific sample (second
column). The next two columns divide the same distributions according
to the sex of the mouse (third column) and their age (fourth column). The
key difference between the first and the last two columns is that, for the
former, the dataset contains the same number of data points for control
and dystrophic samples but also for each mouse. However, the data on
the sex and age of the mice is not balanced throughout the samples.
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Figure 9.7: Complete optical properties of dataset MD2. Each optical property (rows) has been sampled so that the dataset contains the
same number of points for each one, as well as for each sample. The data is depicted, from left to right, (column 1) according to the
clinical category of the samples (red: WT, green: WT), (column 2) for each sample, (column 3) according to the sex of the mouse (male:
blue, female: pink), and (column 4) according to the age of the mouse (bluer: younger, yellower: older).
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1 Which could originate from the dif-
ferent number of data points in each
distribution.
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Figure 9.8: (a) Average and (b) individual
behavior of the optical properties, sorted
by decreasing standardized magnitude
for the control samples (green). The op-
posite average tendency is observed for
the dystrophic samples (red), although
inter-sample variations cause significant
overlap between the distributions.

2 From now on, we will refer to the opti-
cal properties as Features (of the dataset),
unless explicitly specified otherwise.

This means, for example, that most data corresponded with male mice
instead of females and that some ages were more common than others in
the dataset. Balancing the dataset according to these last two categories
was not possible, as it would have required removing too much data for
the resulting distributions to represent the behavior of the whole dataset
properly.

Still, it is interesting to evaluate the distributions according to these two
extra categories. For example, we see that the distributions represented
according to the sex of the mouse are completely overlapping. Even if
some magnitudes, like the average reflectance in the SWIR range (row
d) or the absorption and scattering coefficients (rows e, f, h and i) are
not perfectly equal1, the dynamic range of the distributions is always
the same suggesting that, once the disease is active, the muscular decay
is similar in male and female specimens. Similar results are obtained
when separating the data according to the age of the mice but with a
wider spread between age ranges. As each mouse grows, the stage of
the disease appears to be different but not necessarily predictable. As
some age brackets contain very few samples, it is challenging to establish
the stage of the disease according to these optical properties, as the
age-sorted distributions might not be able to represent the inter-sample
variations present due to the small number of muscles of each age in the
dataset.

By looking at Fig. 9.7 we see that some magnitudes separate the data
between wild-type and knock-out samples better than others. Although
most distributions are non-gaussian due to the influence of each sample,
we calculated the average and standard deviation of each optical property2

clinical category. As each feature (G) is within its own range of values,
we standardized them by removing their average (�) and dividing them
by their standard deviation (�), so that their standardized version (GB) is
defined as

GB =
G − �

�
.

This centers the distributions around zero and establishes their standard
deviation to one so that comparatives can be made about the information
provided by each feature. After standardization, we represented each
feature, sorted by decreasing value for the control samples (Fig. 9.8, a).

We see that, on average, the healthy samples have higher absorption and
birefringence, comparable reflectance over 1300 nm and scattering in the
visible range, and lower attenuation coefficient at 1300 nm and reflectance
below 600 nm than dystrophic samples. Considering what we have seen
throughout the previous chapters, this combination of optical properties
suggests that, on average, healthy samples have higher dominating
chromophore concentrations in the visible range, which, in the case
of biological tissue, coincides with higher hemoglobin or myoglobin
content. The structural trends hinted by the scattering coefficient in the
visible range and the attenuation coefficient at 1300 nm showcase that, at
the longest wavelengths, scattering is higher for the dystrophic samples.
Generally speaking, larger particles cause more scattering, which could
be an indicator of the dystrophic samples having more fat than muscle
[4], again supported by the higher birefringence in healthy samples.
However, there is several overlaps between both distributions, especially
when considering the results of all samples 9.8, b), which poses several
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challenges for the separability.

9.2.2 Dataset statistics and separability

The next step involved calculating the average and standard deviation of
all optical properties for both categories, as well as the Fisher ratio. The
Fisher ratio is a measure of linear separability between two classes. If
only two classes are considered, with averages �1 and �2, and standard
deviations �1 and �2, Fisher’s Discriminant Ratio (FDR) is defined as

��' =
(�1 − �2)2
�2

1
+ �2

2

,

which is essentially the distance between the two distributions weighted
by their mutual overlap [5]. For example, two overlapping Gaussian
distributions (�1 = �2 = �, �1 = �2) would have an ��' = 0, while
two equal Gaussian distributions with their peaks separated at least
one standard deviation (�1 = �2 = �, �1 − �2 = �) would have an
��' = 1/2.

We also performed the two-sided Kolmogorov–Smirnov test (KS test),
which tests the null hypothesis that two distributions are identical based
on the distance between their cumulative distribution functions. In
the same example as before, the KS test for two overlapping Gaussian
distributions is close to zero, while two non-overlapping distributions
would yield a value closer to one. This method poses the advantage
of being applicable to any empirical distribution. It is better suited for
distributions with more than one peak like the ones observed for the
dataset MD2 caused by the inter-sample variations [6].

The results of the previous statistical metrics are shown in table 9.1.
Although the KS test could not reject the null hypothesis, the value of its
statistic is still useful to compare the separability given by the different
magnitudes. Interestingly, the feature with the best linear separability,
according to the FDR, was the absorption coefficient in the red color
range, followed by the same magnitude in the green color range. Both
features have almost twice as much separability as the next one, which
is the average reflectance below 600 nm, again closely related to the
previous two. Interestingly, Fisher’s ratio and the Kolmogorov-Smirnov
test sort the first four features with more separability in the same order,

Table 9.1: Average (�), standard deviation (�), Fisher’s discriminant ratio (FDR) and Kolmogorov-Smirnov statistic (KS test), for the
control (WT) and dystrophic (KO) samples, according to their optical features. The table is sorted by descending KS test.

�1(,)) �2( $) �1(,)) �2( $) FDR KS test
�0 (red) 0.300 -0.300 0.947 0.961 0.198 0.256
�0 (green) 0.287 -0.287 0.906 1.007 0.180 0.239
'+ (� < 600 nm) -0.185 0.185 0.974 0.992 0.071 0.202
�0 (blue) 0.182 -0.182 0.906 1.055 0.068 0.165
Δ= 0.075 -0.075 1.006 0.988 0.011 0.157
�C (� = 1300 nm) -0.150 0.150 0.902 1.068 0.046 0.137
�′
B (blue) -0.080 0.080 1.007 0.986 0.013 0.126
'( (� > 1300 nm) 0.054 -0.054 1.025 0.971 0.006 0.088
�′
B (red) -0.007 0.007 0.911 1.081 0.000 0.073

�′
B (green) 0.041 -0.041 1.160 0.807 0.003 0.039
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FDR KS test
Isomap (1) 0.2916 0.2991
PCA (1) 0.2144 0.2746
t-SNE (1) 0.1014 0.2393
t-SNE (2) 0.1278 0.2185
PCA (2) 0.086 0.2109
Isomap (2) 0.0175 0.1616

Table 9.2: Distribution separability for
each dimension (1,2) of the data pro-
jected onto the reduced two-dimensional
spaces created by PCA, t-SNE and
Isomap, corresponding to the data in
Fig. 9.9 and 9.10. The data is sorted by
descending value of the KS test.

but the KS test highlights the birefringence as the fifth one, which is
consistent with what we have observed in previous chapters, while the
FDR indicates that the OCT-derived attenuation is the next feature with
best separability. This shows the main limitation of the FDR: as it only
compares the average of the distributions and their standard deviations,
using it for non-symmetrical functions can sway its predictions. Still, both
metrics coincide in that the worse separability is given by the average
reflectance over 1300 nm, and the scattering coefficient in the red and
green (FDR) or green and red (KS test) ranges. Since most SFDI systems
do not have hyperspectral capabilities, these results indicate that using
a SFDI device operating in the blue wavelength range may provide the
best absorption/scattering results to differentiate between healthy and
dystrophic mice samples.

9.2.3 Dimension reduction

The separability of the distributions is swayed by the actual properties of
the samples and by the outliers. Dimension reduction can aid in removing
unnecessary information while keeping the defining features of the
classes intact. Here, we tested PCA, t-SNE and Isomap as three dimension
reduction alternatives with the aim of evaluating the separability again,
but in a two-dimensional space instead of the original ten-dimensional
space.

Although the 2D maps given by each method are visually different (Fig.
9.9), the behavior observed is similar regardless of the method applied.
These methods aim to separate the data according to different metrics
blindly, and the three of them have regions in their respective spaces
where only healthy or dystrophic data points are found. This suggests
that there is some separability among the statistical overlap, even if it is
minimal.

Again, when representing the data color-coded according to their sex,
we see a more significant overlap, as well as when identifying the data
according to their age, suggesting that these two factors are not biasing
the optical properties derived in this thesis.

We have indicated throughout all the results chapters that there is some
variation between samples. The three tested blind dimension reduction
methods pick up on these variations and separate the different samples
in the 2D projections. This is evident in the case of t-SNE, as its neighbors-
based approach tends to create clusters with each sample first and then
organize the clusters according to their clinical category. Similar results
are also obtained with PCA and Isomap but with more overlap between
samples as well.

If we separate the data according to each dimension, like for the 10-feature
dataset, we can assess the overlap between distributions again, but in the
reduced spaces created by the three mappings. Although the dimension
reduction methods are able to transform the distributions into smoother
functions by effectively “sorting” the data coming from different samples,
there is still significant overlap between the control and dystrophic
categories (Fig. 9.10). This becomes evident when evaluating Fisher’s
discriminant ratio and the statistic of the Kolmogorov-Smirnov test, as
the values are within the same ranges as for the complete dataset.
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Figure 9.9: Dimension-reduced optical properties dataset for the samples in MD2 with PCA (first column), t-SNE (second column) and
Isomap (third column), labeled by sample type (first row), sample sex (second row), sample ID (third row) and sample age (fourth row).

The first dimension of Isomap and PCA do provide better separability
than the best acquired by a single feature of the complete dataset, with a
10% improvement achieved with an 80% reduction of the dataset. This
improvement suggests that there is some noise that both Isomap and
PCA are able to remove and that there exists a mapping that combines the
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Figure 9.10: Dimension-reduced optical properties dataset for the samples in MD2 with PCA, t-SNE and Isomap labeled by sample type
(WT: green, KO: red). Each image corresponds to a different dimension of the data represented in Fig. 9.9.
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data in a way that can improve separability. Nonetheless, the dimension-
reduced spaces lack interpretability, so in this case, we will still consider
the 10-feature dataset, as the improvement with dimension reduction is
not enough to justify the high compression performed by these methods
in a dataset with few features like the one used here. However, these
metrics must be considered when working with higher-dimensional data,
as a 10% improvement in those cases can be significant with enough
features.

9.2.4 Classification

The previous sections have shown that (1) optical properties alone can
provide some separability when analyzing healthy and dystrophic mice
samples and that (2) there exists a space on which the properties can be
projected that improves separability. This raises the question of how a
classifier performs on this data.

To answer it, we trained a fully connected feed-forward neural network
(Multi-Layer Perceptron, MLP). The tested network architectures included
one or two hidden layers, with the number of neurons varying between
10, 50, 100, and 200 per layer.

Two samples were kept for testing the performance, one of each category
(WT and KO), and the remaining 24 were used for training. The perfor-
mance was tested through the average accuracy after cross-validation
by changing the samples used for testing each fold, with a total of 13
folds. At this point, we must recall that we will consider the entirety of
the samples instead of specific regions of interest, and that they are not
spatially homogeneous, which will pose challenges when classifying the
data.

10-feature dataset classification

The first network (50 neurons, one hidden layer) trained over the ten
features depicted in Fig. 9.7 provided 80.0% average accuracy for the
test dataset after 13-fold cross-validation. However, the parameters the
network learns are not enough to generalize to the test data, which, on
average, had an accuracy of 50.2%. Considering we are training two
classes only, an accuracy of 50% implies that the network is not learning
features that can characterize the data according to their clinical category
but instead is overfitting to the training data. Modifying the number of
neurons or layers did not seem to improve the results of the test dataset.

On each fold, there were two samples to test: one control (WT) and one
dystrophic (KO). Therefore, upon evaluation of the average results, we
focused on the output of each sample to search for the origin of this
low accuracy. In Fig. 9.11 we see that the accuracy of the test samples is
heavily fold-dependent, meaning that some samples had good results
with over 90% accuracy; for others, the network was not able to decide
(50% accuracy), and for some, the prediction was completely wrong (10%
accuracy).

We have seen before that, on average, there are features able to differentiate
between the two clinical categories (Fig. 9.8), so even if the inter-sample
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Figure 9.11: Confusion matrices derived from classifying the data with an MLP by using all the optical properties. The first element
corresponds to the average confusion matrices for the train data after considering all folds. The remaining matrices correspond to the test
data per fold.

variation is high, the networks should be able to pick up on those
tendencies when evaluating individual samples. One reason why that
might not be happening here is the random sampling. As we need to
balance the classes to avoid biasing the MLP towards one class or one
sample, we decided to randomly sample values for each feature and
sample until the same number of pixels are considered. However, by
doing random sampling on one feature, i.e., on the attenuation data,
there is no guarantee that the randomly sampled points on other features,
like the HSI reflectance, are the same. This requires co-registration of
images from different devices, which can be achieved by adding fiducial
markings for proper sample orientation and measurement analysis across
systems. Given that the samples are non-homogeneous, we might be
sampling points from fatty areas in one feature and from muscle areas in
a different feature, leading to tendencies that do not match even for the
same sample.

Classification by optical imaging method

To test whether random sampling mixes areas of the same sample between
different features, we focused on repeating the classification process by
creating individual datasets for each imaging system. That way, even if
we take a random sample for each muscle to balance the dataset according
to the number of pixels of each muscle, we will keep the sampled pixels
co-registered between the different features, as the two-dimensional
optical property maps taken with one system have the same resolution
and spatial distribution.

The new datasets have the following features:

▶ OCT/PS-OCT: attenuation (�C) and birefringence (Δ=).
▶ HSI-VISNIR: average reflectance below 600 nm ('+ ), and re-

flectance values at 536, 563, and 576 nm, corresponding to the
peaks of hemoglobin/oxyhemoglobin.

▶ HSI-SWIR: average reflectance over 1300 nm ('() and reflectance
values at 927, 970, 1121, and 1327 nm, corresponding to the peaks
of water and lipids.

▶ SFDI (RGB): average absorption (�0) and reduced scattering coeffi-
cient (�′

B) at the red, green, and blue color ranges.
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3 Sensitivity (Sens): out of all pixels in
the control (WT) category, how many are
correctly identified as control. Specificity
(Spec): out of all pixels in the dystrophic
(KO) category, how many are correctly
identified as dystrophic. False negative
rate (FNR): out of all pixels in the control
category, how are many are incorrectly
identified as dystrophic (1-Spec). False
positive rate (FPR): out of all pixels in
the dystrophic category, how many are
incorrectly identified as control (1-Sens).

4 The network’s architecture was vali-
dated by using it to successfully classify
MNIST [7] with 100% accuracy in the test
data and 98.2% accuracy in the test data,
with over 97% accuracy in all ten classes.
The MLP trained for 50 epochs used for
HSI-SWIR still provided over 98% ac-
curacy in the test data for the MNIST
dataset.

To further evaluate their behavior, aside from the average cross-validated
accuracy, we also considered their sensitivity3, specificity, false positive
rate, and false negative rate of each network. The results are depicted in
Tab. 9.3, and Figs. 9.12, 9.13, 9.14, and 9.15.

The models were trained with the same network architecture (200 neurons,
one hidden layer, 20% dropout, but still yielded different and interesting
results4. For example, while the 10-feature dataset trained MLP provided
the best train results, it did not generalize as its accuracy corresponded
to random guessing (50%). This was not the case, for example, for the
networks trained with only OCT or SFDI data, which achieved around
60% accuracy. The SFDI-trained MLP provided a 60.3% sensitivity, but
the OCT-trained one had slightly more specificity. Still, the specificity
improvement of the OCT-MLP with respect to the SFDI-MLP was only
0.2%, which suggests that the data gathered by SFDI might be better
rounded out to identify both WT and KO samples. OCT provides better
estimates for KO data but tends to create more false negatives, meaning
that healthy samples might be identified as dystrophic.

Table 9.3: Classification results for the different optical properties datasets, for the samples in MD2, separated by train and test data. Acc:
Accuracy. Sens: Sensitivity, true positive rate. Spec: Specificity, true negative rate. FNR: False negative rate. FPR: false positive rate. Green
marks the best result for each column, and red marks the worst. Full dataset indicates the MLP trained with the 10 features with random
sampling. The remaining datasets are separated by imaging system. *The HSI-SWIR network had to be trained only 50 epochs due to it
being prone to overfitting.

Ac. train Sens (train) Spec (train) FNR(train) FPR (train)
Full dataset 80.0% 79.9% 80.0% 20.1% 20.0%
OCT/PS-OCT 61.9% 56.2% 67.7% 43.8% 32.3%
HSI-VNIR 67.0% 64.3% 69.7% 35.7% 30.3%
HSI-SWIR* 56.1% 61.1% 51.1% 38.9% 48.9%
SFDI (RGB) 77.0% 73.5% 80.5% 26.5% 19.5%

Acc test Sens (test) Spec (test) FNR (test) FPR (test)
Full dataset 50.2% 46.7% 53.7% 53.3% 46.3%
OCT/PS-OCT 58.0% 52.3% 63.6% 47.7% 36.4%
HSI-VNIR 55.6% 52.9% 58.3% 47.1% 41.7%
HSI-SWIR* 39.1% 49.2% 29.1% 50.8% 70.9%
SFDI (RGB) 61.9% 60.3% 63.4% 39.7% 36.6%
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Figure 9.12: Confusion matrices derived from classifying the data with an MLP by using only the OCT/PS-OCT dataset.
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Figure 9.13: Confusion matrices derived from classifying the data with an MLP by using only the HSI-VNIR dataset.
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Figure 9.14: Confusion matrices derived from classifying the data with an MLP by using only the HSI-SWIR dataset.
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Figure 9.15: Confusion matrices derived from classifying the data with an MLP by using only the SFDI (RGB) dataset.

If any of these optical techniques were to be used to provide a first
estimate of the clinical state of the samples before, for example, doing
more invasive analyses, higher false negatives would mean sending more
samples to be tested but will not pose any other issue. On the other hand,
relying only on these techniques to diagnose them would cause more
than 30% of the samples to be incorrectly identified as healthy.

We must consider the possible sources of the high accuracy variation
observed between folds. The confusion matrices of all methods still
showed significant variations for each MLP trained on single-optical-
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system data, suggesting that the improvements gained by removing the
random sampling between features are not enough to remove the inter-
sample variations completely. Additionally, the best possible networks
are going to perform as well as the statistical data distributions allow
them to, meaning that if there is a high overlap between the control and
dystrophic categories in a set of features, the accuracy will represent the
amount of data that does not overlap. We see this effect in Tab. 9.3 when
comparing the train and test results. In SFDI data, there was less overlap
than that of OCT data, which implies that the MLP learns to separate
better the training dataset for the former than for the latter, leading to
higher train accuracy and a larger gap between train and test accuracy.
Although this could be a sign of overfitting, training the SFDI-MLP with
a smaller number of neurons caused the accuracy of both sets to drop,
suggesting that the networks are not overfitting but, instead, learning the
maximum separability they can. Similarly, incrementing the number of
neurons in the OCT-MLP did not improve the accuracy on the training or
testing datasets significantly, consistent with the overlap of OCT/PS-OCT
distributions for the control and dystrophic samples.

Consistent with our findings in previous chapters, the approximately
40%-50% accuracy shown in the test data for the HSI networks suggests
that the data considered in these cases does not have enough separability
between the control and dystrophic groups to identify each whole sample
successfully. Further research is needed to decouple the influence of the
samples’ substrate from the HSI measurements so that only the spectral
data related to the disease is captured in these cases.

9.3 Conclusions

This chapter explored the combination of optical imaging data from
different modalities, specifically focusing on OCT, PS-OCT, HSI, and SFDI,
to enhance the understanding of muscular dystrophy progression. Two
main approaches were investigated: visualization-based and statistical
analysis.

The visualization approach involved using a color-mapping technique to
create two-dimensional disease maps based on multiple optical parame-
ters. Specifically, optical properties like attenuation, birefringence, and
profilometry are assigned to different components of the HSV color space.
The results from murine muscle samples demonstrated the effectiveness
of this technique in highlighting key differences between healthy and
dystrophic tissues, particularly in visualizing variations in birefringence
and tissue organization. The inclusion of profilometry data further com-
plemented the visualization by providing a three-dimensional variation
of the two-dimensional maps.

To quantify the separability between healthy and dystrophic samples, a
statistical analysis was performed on a dataset combining various optical
properties, including attenuation, birefringence, reflectance, absorption,
and scattering. Statistical metrics, including Fisher’s discriminant ratio
and the Kolmogorov-Smirnov test, were employed to assess the dis-
criminatory power of each optical property. While individual properties
showed some degree of separability, the combination of multiple proper-
ties through dimensionality reduction techniques like PCA, t-SNE, and
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Isomap led to a slightly improved discrimination between healthy and
dystrophic samples. Still, the overlap between distributions is significant,
likely due to inter-sample variations. This suggests a need for larger
sample sizes to achieve higher statistical significance.

A classification analysis using an MLP assessed the separability of healthy
and dystrophic muscle samples based on their optical properties. The
initial approach consisted of training on a 10-feature dataset, combining
all optical modalities, which yielded poor generalization, likely due to
random sampling inconsistencies across modalities. The subsequent clas-
sification experiments used modality-specific datasets to ensure feature
co-registration. While the 10-feature training achieved the highest train-
ing accuracy, it generalized poorly, achieving random-guessing accuracy
on the test set. Conversely, modality-specific training, particularly with
SFDI and OCT/PS-OCT, improved test accuracy, though with varying
sensitivity and specificity. These results suggest that while multi-modal
data is promising, current random sampling introduces hindering incon-
sistencies. On the other hand, differences between train and test accuracy,
especially for SFDI, suggest the network learns the maximum possible
separability limited by the inherent distribution overlap between sample
groups.

Nevertheless, combining data from different modalities allows for a
noninvasive and comprehensive analysis and discussion of chemical and
structural tissue properties. This could be valuable in guiding the selection
of samples for further, more invasive, traditional analysis techniques.
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Grade Cells in Field
0 <1

0.5 1-5
1+ 6-15
2+ 16-25
3+ 26-50
4+ >50

Table 10.1: Uveitis grading according to
the SUN guidelines [2].

1 Most commonly, ImageJ, an image pro-
cessing and analysis program in Java.
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Part IV of this thesis detailed the analysis of dystrophic mice muscles
using optical imaging technologies. However, the application of these
techniques extends far beyond this specific dataset. A key advantage of
optical imaging is its non-invasive nature, a crucial factor when working
with scarce or delicate samples. Just as with the rare muscle tissues studied
in Part IV, preserving the integrity of art and archaeological artifacts is
imperative. Similarly, in clinical settings, non-invasive techniques are
essential for both patient safety and maintaining efficient workflows.

Optical imaging offers the potential to revolutionize various medical
procedures and laboratory analyses. In surgery, this could involve pro-
viding surgeons with enhanced real-time visualization of tissues, aiding
in the identification of anatomical structures. Beyond the operating room,
optical imaging can automate time-consuming laboratory tasks, such as
cell counting on microscopy slides or analyzing tissue samples for disease
markers, increasing both efficiency and accuracy in diagnostics.

This chapter explores how the optical imaging methods we developed in
Part IV were adapted and refined through their application in diverse
fields, including heritage conservation, bioengineering, ophthalmology,
and brain anatomy. The results presented here highlight the versatility
and broad potential of these techniques, particularly in their ability to
improve both efficiency and accuracy across a range of applications.

10.1 Ophthalmology

Uveitis is the manifestation of inflammatory diseases through the appear-
ance of cells, or cell aggregates, suspended in the anterior chamber of the
eye [1]. It is a sight-threatening condition that can lead to vision loss if
left untreated. In clinical practice, one of the standard parameters used to
quantify the degree of uveitis is based on using a 1 mm × 1 mm slit lamp
to manually illuminate the eye and count the number of hyperreflective
particles observed in the beam. Due to the nature of the method, inter-
observer variability exists due to the subjectivity of the evaluators. To
facilitate quantification and reduce such variability, the Standardization
of Uveitis Nomenclature (SUN) [2] method proposes grading into six
levels based on the number of particles (Tab. 10.1). However, the number
of cells increases with the disease grade, allowing for more variability in
the cell count as the disease worsens.

Current efforts in cell quantification methods in uveitis patients utilize
OCT system scans for cell detection and extraction of other metrics.
OCT is ideal for the analysis of the eye, given that the lenses in the
eye do not absorb the infrared light used in OCT the same way other
biological tissues do, allowing for deeper scanning. The OCT-uveitis
studies are based on comparing the number of particles detected on
specific B-scans using image analysis software1. The use of image analysis
software has the advantage of being able to implement the desired cell
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counting techniques straightforwardly. Still, oftentimes, it also has the
disadvantage of having to adjust the analysis to the characteristics of
each specific OCT image. The most commonly used validation methods
rely on comparing the results provided by automated cell-counting
techniques with the SUN grade [2, 3], or directly with the manual cell
count performed on the OCT B-scans [4, 5].

In this work, we proposed an automatic counting method that does not
require user input, and that is able to generalize enough to extract the
number of particles, regardless of the characteristics of the OCT image
[6]. The proposed method detects cellular aggregates in the anterior
chamber of the eye based on the statistics of the intensity values detected
in regions with and without cellular aggregates, thus saving analysis
time, avoiding user assistance, and eliminating subjectivity.

10.1.1 System specifications

This study utilized Optical Coherence Tomography (OCT) scans of the
anterior chamber of the eye to perform automatic, unsupervised counting
of hyperreflective particles.

The specific device used was a Spectralis OCT (Heidelberg Engineering
Co., Heidelberg, Germany). This device is known for its high resolution
and image quality, which are crucial for accurate particle identification.
The Spectralis OCT operates at a wavelength of 870 nm and offers a lateral
resolution of 21.68 �</pixel and an axial resolution of 3.87 �</pixel.
These specifications ensure that the OCT images have sufficient detail to
resolve small particles or cell aggregates within the anterior chamber.

10.1.2 Data collection

The method described here was applied to 27 eyes from 16 patients, of
which 16 eyes presented with hyperreflective particles and 11 served
as controls. The inclusion of a control group is essential to establish a
baseline and validate the accuracy of the automated counting method.
The measurements were acquired by trained ophthalmologists in their
clinical practice within the Ophthalmology Department of the Hospital
Marqués de Valdecilla (HUMV), with the authorization of the Clinical
Research Ethics Committee of Cantabria2.

10.1.3 Image segmentation and automated particle count

An automated method was developed and employed to perform the cell
count. This method involves scanning the entire aqueous humor area of
the OCT scan to identify and label distinct groups of connected pixels,
which, in this case, represent cellular aggregates.

However, before applying the cell count method, it is crucial to segment
and binarize the image effectively. Segmentation is used to identify the
cornea and divide the image into three regions: air, cornea, and aqueous
humor. On the other hand, binarization converts the grayscale OCT image
into a black-and-white image to isolate the particles of interest from the
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a)

b)

c)

e)

Figure 10.1: Step-by-step cornea segmen-
tation: (a) raw B-scan, (b) histogram-
equalized B-scan, (c) edge detection by
morphological operations and (d) seg-
mented air (brown), cornea (purple) and
anterior chamber (green)

interferometric background noise, making them easier to identify and
quantify.

A multi-step process was used for cornea segmentation. All OCT images
suffer from roll-off, so even in ideal B-scans, the regions of the cornea
that are closer to the OCT’s lens will have a higher intensity than those
further away from it (Fig. 10.1, a). Since all the methods applied in this
work were intensity-based, it is necessary to unify the brightness and
contrast in the cornea to segment it properly. Histogram equalization
was used for this task. This method enhances the contrast in an image by
finding the Cumulative Distribution Function (CDF) of the histogram
and modifying it so that the resulting CDF is a uniform, monotonously
growing function (Fig. 10.1, b). Then, the image is well described by two
intensity distributions: the one that represents the cornea and the one
that represents the noise. This allows for the use of Otsu thresholding
[7], which is an automatic method based on finding the optimal value
that separates the two intensity distributions by evaluating all possible
threshold options and choosing the one that maximizes the variance
between the datasets at each side of the threshold [7]. Finally, the threshold
is applied to binarize the image, and simple morphological edge detection
is used by subtracting the binary image from its dilated version (Fig. 10.1,
c). The image is then separated into three areas according to the number
of pixels in each one, where the biggest one is the anterior chamber of
the eye, followed by the cornea and, finally, by the air (Fig. 10.1, d).

A second binarization process is applied to the data in the anterior
chamber to segment the cell aggregates and distinguish them from the
background speckle noise inherent in OCT images. Speckle in OCT
images follows a specific distribution. In regions with only speckle, the
average intensity value and the standard deviation have certain maximum
values. However, in the presence of cellular aggregates, these values
change. Cellular aggregates exhibit a much higher average intensity than
speckle noise, and their presence also causes an increase in the local
standard deviation within their neighborhood.

To implement the cell-detection binarization method, the average in-
tensity values and standard deviations are calculated within 3×3 pixel
neighborhoods throughout the previously segmented air and aqueous hu-
mor regions. This neighborhood size is chosen to minimize any alteration
to the size of the detected cellular aggregates after binarization.

The maximum value reached by the mean-standard deviation pair in
regions with only speckle (air) defines the threshold value used for
binarization. Any pixel in the aqueous humor region with an intensity
value exceeding this threshold is attributed solely to cellular aggregates.

10.1.4 Main findings

The automatic particle counting method was compared to the median
of the manual counting performed by 17 observers on OCT images
(Fig. 10.2). A good correlation was found between the two methods
(R2=0.88, N=26 B-scans evaluated by 17 observers, Fig. 10.3), with greater
inter-observer variability observed in images with a higher number of
particles. This variability highlights the inherent challenges in manual
cell counting, as factors like image quality, speckle pattern, and even
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Figure 10.2: Particles detected by manual counting them in the B-scan images by 17 observers. Each marker represents one observer. The
control samples are depicted in green, while the pathological ones are shown in red. Note how the average is swayed by the extremes of
the distribution while the median, especially on the control samples, remains closer to where more data points are.
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Figure 10.3: Comparison between the
manual count performed by 17 observers
and the resulting automated count ob-
tained by applying the proposed method.
The linear model, corresponding with
H = −0.18 + 1.05G provided an R2 value
of 0.88, indicating a good performance
by the proposed model. The same control
and pathological data points represented
in Fig. 10.2 are shown in this figure in
green and red, respectively, and the mark-
ers represent each of the observers.

the viewing conditions can influence observer perception and lead to
discrepancies in the reported cell counts.

It is important to highlight that, in this study, a relatively large number of
observers (17) were employed for manual cell counting, which included
OCT experts and non-trained observers, which is often not the case in
similar studies that establish the same gold standard. For instance, the
study by Baghdasaryan et al. [5] establishes the gold standard relying on
a single uveitis expert for manual quantification. This reliance on a single
observer potentially introduces bias and limits the generalization of their
findings when evaluated by a regular ophthalmologist, who may not be
as proficient in identifying subtle signs of uveitis, potentially leading to
delayed or inaccurate diagnoses.

A key advantage of our proposed method is that the parameters are
not modified for individual B-scans; they are applied universally to all
analyzed OCT images. This standardized approach avoids user bias and
subjectivity, ensuring consistency in particle quantification across all
samples.

Additionally, the algorithm demonstrated that it can accurately detect
the presence of cell aggregates by grouping the data into two: control
and disease. The classification showcased high precision (0.93), negative
predictive value (0.72), accuracy (0.85), specificity (0.88), and sensitivity
(0.82) in differentiating between healthy and pathological eyes, suggesting
its potential as a valuable tool for initial uveitis screening and minimizing
the early false negative cases.

Finally, it is worth noting that the automated analysis of the entire
anterior chamber volume, rather than just a single B-scan, could provide
a more comprehensive assessment of cellular infiltration. Future research
should explore the use of C-scans and 3D analysis to enhance further the
accuracy and clinical utility of automated uveitis assessment.
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10.2 Archaeology

This second study focused on analyzing a prehistoric quartz blade
(scraper), employing OCT as a primary, non-invasive imaging technique.
The ability of OCT to reveal subsurface structures without compromis-
ing the artifact’s delicate integrity made it an ideal starting point for
a multi-methodological approach to analysis. Unlike other techniques
commonly used on cultural heritage pieces, such as UV-luminiscence,
laser-induced breakdown spectroscopy, X-ray diffraction, Raman spec-
troscopy, or hyperspectral imaging, OCT could precisely locate features
within the artifact’s depth without causing damage nor needing to extract
sample. This allowed OCT data to guide subsequent analyses, potentially
enhancing the effectiveness of these techniques.

This research builds upon previous successes in applying OCT to the
analysis of paintings and ceramics, extending its use to the examination
of prehistoric stone tools. The translucent nature of the quartz blade
made it particularly well-suited for OCT imaging, as the light could
penetrate the material and highlight subsurface features and differentiate
those from the superficial deposits. This allowed for the identification of
elements like fibers and spots based on their unique scattering signals,
which contrasted with the surrounding quartz attenuation.

10.2.1 Sample description

Here, we examined a prehistoric quartz scraper containing residue that,
potentially, could come from a handle. The piece was found in a cave,
at a level dated to be 70000 years old, which would indicate that the
population that created it was Neanderthal. If the residue was from a
handle, it would indicate a high level of development of this Neanderthal
tribe. The residue consisted of fibers of unknown origin (animal or
vegetable) and dark spots presumed to be iron oxide. To determine the
nature of the fibers, their attenuation coefficient and intensity decay
profiles were compared with those of known plant (urtica dioica stalk) and
animal (bison bonasus tendon) samples. These samples were selected for
their historical relevance to the location and period to which the quartz
knife is thought to belong.

10.2.2 OCT system

The analysis employed the same OCT system used in the rest of this
document (TEL221PS from Thorlabs) to generate high-resolution 3D
images of the knife and its residue. As mentioned earlier, this system,
equipped with a 1300 nm laser source, provided a depth resolution
of 5.5 �< in air and a lateral resolution of 13 �<. While the system
has polarization-sensitive capabilities, these were not utilized in this
study due to the lack of significant polarimetric behavior observed in the
materials. Therefore, the analysis focused on intensity-based data only.
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3 In this case, by using wavelet trans-
forms.

10.2.3 Preprocessing

The objective of this work was to obtain the morphological and optical
properties of the two residue types found on the quartz scrapers: the
dark spots and the fibers. For that, the preprocessing of the acquired
data involved two main blocks: profilometry of the sample’s surface and
labeling of the two residue types.

As for the mice muscles, the first step in the profilometry is air removal and
surface detection, which was performed according to the steps described
in Ch. 5. Then, denoising was performed by using Block-Matching and
3D Filtering (BM3D) [8]. BM3D is an image-denoising algorithm that
exploits the similarity between patches within an image to reduce noise
while preserving detail. It groups similar 2D image patches into 3D
stacks, applies a collaborative filter in the transform domain, and then
aggregates the denoised patches back into the image. In the context of a
3D OCT cube, BM3D denoising operates by selecting a 2D patch from a
single B-scan and identifying similar patches within neighboring B-scans.
These patches are grouped into a 3D stack, transformed into a domain
where noise and signal are more easily separated3, and then filtered to
reduce noise. The denoised 3D stack is then projected back to the original
2D patch, and this process is repeated for all patches across all B-scans
in the OCT cube. This approach leverages the inherent redundancy
within the OCT data to effectively reduce noise while preserving critical
structural details.

Finally, to enhance the visualization of surface features and aid in the
morphological measurements, topographic hill shading was applied
to the OCT data. This technique involves calculating the derivatives
of the surface in two directions (x and y), and simulating the effect of
illuminating the surface with light from different angles [9]. This creates
a visual representation of the surface topography with enhanced contrast
and depth perception, making subtle variations in surface texture and
structure more apparent.

The analysis involved labeling two distinct types of residue observed
on the prehistoric quartz knife. The first type, characterized by thin,
fiber-like structures, was labeled manually due to the limited number
and intricate nature of these features. In contrast, the second type of
residue, consisting of larger, more distinct spots, was labeled using an
automated process.

The automated labeling process for the spot-like residue involved a
multi-faceted approach. First, a 3D features cube was built by stacking
images, where the first layer is the surface of the sample, and the second
layer is the topographic hill-shaded version of it. The remaining twenty
layers are twenty slices of the �I(I) cube calculated with Vermeer’s model
(Eq. 4.25), from its surface to 100 pixels below it. Aside from the surface
structures and the attenuation cube, a selection of textural features are
calculated with the Hessian matrix output for each of the layers in the
attenuation cube. Let 6(�) be a Gaussian kernel with standard deviation
�. Let �8(G, H) be the intensity value for the pixel (G, H) of a layer 8. The
textural features for each layer 8 are calculated as a Hessian matrix
�8(G, H, �) given by [10]:
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Figure 10.4: Classification via random forest classifier. First, the features cube to analyze is built based on the surface, the hill-shaded
surface, the attenuation, and the Hessian features of the attenuation. Then, for each pixel, a group of features is obtained and passed to
the random forest classifier. While the structure of the features in each tree is set by training with the labeled data, the features that are
missing are dropped at random to avoid biases. The final decision for each pixel is made with the overall vote of the forest.

�8(G, H, �) =
[
�008 �018

�108 �118

]
=

[
!GG(G, H, �)8 !GH(G, H, �)8
!HG(G, H, �)8 !HH(G, H�)8

]
(10.1)

where !<=(G, H, �)8 is the second derivative across a direction <= of a
gaussian blurred version of �8(G, H), given by:

!<=(G, H, �)8 =
%2

%<%=
6(�) ⊛ �8(G, H) (10.2)

The completed feature cube was then passed to an automated labeling
process that employed a Random Forest classifier [11] to label the spot-like
residue. This machine learning technique constructs multiple decision
trees, each trained on a random subset of the features extracted from the
OCT data cube (Fig. 10.4). Some trees utilized all available features, while
others had randomly missing features or truncated areas, introducing
diversity into the model. Each tree independently classified a pixel based
on its available features, and the final label was determined through a
majority vote among all trees in the forest.

10.2.4 Main findings

The manual and automated labeling processes resulted in the datasets
shown Fig. 10.5. An analysis of the length and width of the identified
residues revealed significant variability in both fibers and spots. While
the fibers showed significant variability in length, their width remained
relatively consistent with few exceptions. Conversely, the spots exhibited
greater variability in width but less so in length. These observations
suggest that the spots may have originated from a paste-like substance
that fragmented into thicker but irregular pieces, while the fibers were
mostly intact, having been cut only lengthwise. This difference in size
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Figure 10.6: Boxplots of the curvature of the fibers. The numbering and color coincide with what is shown in Fig. 10.5.

Figure 10.5: Obtained labels for the
fibers (top) through manual labeling and
for the spots (bottom) via automated
random-forest labeling. Each label has a
color and a number associated to it that
is used throughout the graphs in this
results section.

distribution could indicate distinct formation or deposition processes for
the two residue types.

Further investigation into the properties of the fibers involved analyzing
their curvature radius as an indicator of their flexibility (Fig. 10.6). This
analysis revealed an average curvature radius of around 1 mm, suggesting
that the fibers were mostly unbent. However, some fibers exhibited small
curvature radii without any signs of breakage, indicating a high degree
of flexibility, which could aid in identifying their origin.

Optical properties

For the comparison of optical properties, three distinct regions were
chosen: inside the skeleton of a fiber, inside a spot far from the fiber, and
inside the quartz scraper far from the fiber (Fig. 10.7). The attenuation
coefficient of the three materials was then derived according to the Beer-
Lambert law (Eq. 4.16), which resulted in three distinct curves. In the
case of having only quartz (Fig. 10.7, i), the simplest behavior is shown:
there is an intensity peak at the surface of the quartz, followed by an
exponential decay according with Beer-Lambert. Inside the spot (Fig.
10.7, h), the same behavior is present but twice, once for each interface:
air-spot and spot-quartz. For the fiber (Fig. 10.7, g), the intensity peak is
2.5-3 times less intense when comparing it with the other materials.

Fitting the data to the Beer-Lambert law (Fig. 10.7, g, h, i), provides the
attenuation coefficient of each material in units of ?G−1. To convert those
units to physical magnitudes, we assumed that our quartz crystal has a
refractive index similar to that of (8$2 [12, 13], =@D0ACI = 1.4469.

With that information, the obtained attenuation coefficient of light for
the quartz is:

�I = (0.577 ± 0.048)?G−1
= (0.167 ± 0.014)�<−1

For the spots, we assumed that our material was mainly comprised of
iron oxide (II or III), which has a refractive index of =B?>CB = 2.2385 [14].
Therefore, its attenuation coefficient is:

�I = (0.776 ± 0.036)?G−1
= (0.224 ± 0.010)�<−1

We did not repeat this calculation for the fiber since we were not able to
identify its refractive index, so the ?G−1 attenuation coefficient obtained
is:

�I = (0.168 ± 0.011)?G−1 (10.3)

The exponential decay of the historically relevant vegetable (urtica dioica
stalk) and animal (bison bonasus tendon) samples is shown in Fig. 10.8.
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Figure 10.7: Comparison between the intensity decay in three regions: (a, d, g) inside a slice of the skeleton of the fiber, (b, e, h) inside
a spot in a region far from the fiber, and (c, f, i) outside the fibers and spots. The B-scans (d, e, f) are generated by concatenating the
information in the regions shown in the first row. The surface is leveled prior to showing the A-scans and averaging them (g, h, i). The
mosaic-like patterns are caused by concatenating the B-scans inside the blue circles to show them as unified, wider B-scans before
surface leveling. The solid colored line on figures (g), (h), and (i) represents the average (�) A-scan for each sample type, the shaded
area represents one standard deviation (�) from the average, and the black dotted line is the result of fitting the average A-scan to an
exponential decay.

4 Fibers 5 and 8 were not analyzed and
are not represented in Fig. 10.9 since they
were completely on top of the metallic
spots, leaving 16 fibers for the analysis.

The animal sample has a less regular depth profile than the vegetable
one (Fig. 10.8), and it is more similar to the profile of the analyzed fiber.
The obtained attenuation coefficient for the animal sample reflects that
behavior. It sits within the experimental uncertainty of the value of the
analyzed fiber, unlike the coefficient obtained for the vegetable sample.

�I,E4 64C01;4 = (0.1864 ± 0.0096)?G−1

�I,0=8<0; = (0.163 ± 0.015)?G−1

�I, 5 814A = (0.168 ± 0.011)?G−1

To evaluate the repeatability of this first result, we derived the attenuation
coefficient for all fibers and compared those values with the vegetable
and animal measurements (Fig. 10.9).4 Contrary to the behavior of fiber
number 1, the overall average of the fibers

�I,0E4A064 = (0.2245 ± 0.0034)?G−1
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Figure 10.8: Comparison between the exponential decay in a vegetable sample (a) and an animal sample (b).
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Figure 10.9: Attenuation coefficient of all fibers compared to those of the vegetable and animal samples. The solid lines to the left (a)
indicate the average attenuation coefficient of each fiber (black), of the vegetable sample (green), and of the animal sample (red). The blue
line represents the overall average of all fibers. The shaded colors indicate the uncertainty of the represented attenuation coefficients. The
average values of each fiber are indicated as a color scale over the average OCT intensity image (b).

is closer to the vegetable value than to the animal one and greater than
both of them, with 8 fibers closer to the vegetable sample and 8 to the
animal sample. To ensure that the highest values are not biasing the
average, we also calculated the median of the attenuation coefficient of
the fibers, yielding a value of

�I,<4380= = (0.182 ± 0.011)?G−1

which, again, points to the vegetable sample as a possible origin for the
fibers.
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10.3 Neuroscience

Polarization imaging, particularly Mueller Matrix Imaging (MMI), has
emerged as a valuable tool in medical imaging due to its ability to
discern structural changes in tissues by analyzing their anisotropy [15].
MMI captures all inherent polarization properties of a sample, enabling
comprehensive characterization of tissue properties [16]. In brain imaging,
MMI has shown promise in various applications, including the study of
white matter tract orientation [17–20], Alzheimer’s disease progression
[21], and tumor detection [22].

However, the field of brain tissue polarimetry exhibits significant het-
erogeneity in experimental approaches, sample types, imaging systems,
and analysis methods. This variation poses challenges in comparing
findings across studies and determining optimal imaging parameters.
This work [23] aimed to address this gap by providing a detailed analysis
of the polarimetric properties of healthy whole brain specimens and
their sub-structures using multispectral MMI, building upon preliminary
findings [24]. The goal is to establish a comprehensive dataset that can
serve as a reference for future research and clinical applications in brain
imaging.

10.3.1 Ex-vivo brain samples

This study utilized twenty regions from six fresh lamb brains, section-
ing thirteen samples for visualization of specific areas like the brain
stem and diencephalon, while seven remained intact (Fig. 10.10). Four
macro-regions were identified: the brain hemisphere, basal ganglia/di-
encephalon, brain stem, and cerebellum. Specific white matter (WM) and
grey matter (GM) regions were labeled based on macroscopic appearance
and anatomical landmarks, referencing existing literature [25, 26].

10.3.2 Optical system and measurement procedure

The system employed was the multispectral MMI, v1.0, described in
Ch. 4. As a brief reminder, the reflection configuration MMI system [23]
features a collimated white LED light source filtered between 450-680
nm using a rotating filter wheel. The Polarization State Generator (PSG)
consists of a linear polarizer and a �/4 retarder in a motorized mount. A
polarimetric camera with a wide-field lens served as the detector. The
Polarization State Analyzer (PSA) comprised the camera and a sliding
filter mount with another �/4 retarder in one of its positions.

Measurements were taken at six wavelengths (450, 500, 550, 590, 650, and
680 nm), with exposure times adjusted for each measurement. Each mea-
surement involved capturing 32 images to derive the Mueller matrix. A
total of 3840 images were captured, yielding 120 Mueller matrices. Mueller
matrices were calibrated using the Eigenvalue Calibration Method (ECM)
[27] to determine PSA and PSG matrices, with an average calibration
error of 6.3%.
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10.3.3 Mueller matrix data analysis

Following the same pipeline presented in Ch. 8, the normalized Mueller
matrix elements, <8 9 , were analyzed, along with the first element, "11.
The ensemble criterion [28] was used to assess the physical realizability
of the matrices [29, 30]. The Indices of Polarimetric Purity and the degree
of polarimetric purity were also calculated [31, 32]. Finally, the linear
and circular anisotropy coefficients, and the overall degree of anisotropy
were also determined.

Three decomposition methods were applied to evaluate the polarization
properties of the samples:

▶ Forward Polar Decomposition (Lu-Chipman): used to separate
depolarization (Δ), retardance ('), and diattenuation (�), as well
as the orientation of the optical axis (�).

▶ Symmetric Decomposition: used to derive depolarization (Δ), re-
tardance ('), and diattenuation (�1, �2), without the matrix ar-
rangement requirements of the polar decomposition.

▶ Differential Decomposition: used to analyze the matrix logarithm
! to obtain linear and circular retardance and diattenuation and
their variances and covariances.

The same classification method that was presented for the mice samples
(Ch. 8) was previously applied to the acquired brain dataset. K-Nearest
Neighbors classification was used to distinguish between GM and WM,
with 6-fold cross-validation. To evaluate the influence of the Mueller
properties in the results, feature importance was assessed via random

a) b) c) d) e)

f) g) h) i) j)

k) l) m) n) o)

p) q) r) s) t)

Grey matter
White matter
Vessels
Corticospinal tracts
Cerebellar peduncle
Trochlear nerve
Optic chiasm
Periacqueductal GM
Superior colliculus
Inferior colliculus
Area postrema
Brain stem nuclei
Basal ganglia
Pineal gland
Claustrum
Third ventricle

Figure 10.10: Labels identified on the 20 measurements taken of lamb brain in multiple regions: brain stem (a), lateral (b, c) and medial
(e-g) views of cerebella, frontal basal ganglia sections (h), lateral (i, j), medial (k, l) and sectional (m) views of left hemispheres, pineal
region (n) and lateral (o-q), medial (r, s) and sectional (t) views of right hemispheres. Figure and caption reproduced from [23].
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permutations [11] and Sequential Forward (SFFS) and Backward (SBFS)
Floating Selection [33–38].

10.3.4 Main findings

The measured Mueller matrices, ", were predominantly diagonal for
all samples and wavelengths, indicating a strong depolarizing effect of
brain tissue, similarly to what was observed for the mice samples. This
observation was consistent across all wavelengths, with finer details
observed at shorter wavelengths due to reduced optical path lengths and
associated blurring.

Analysis of the physical realizability of the Mueller matrices using the
ensemble criterion revealed that certain regions, such as areas with
specular reflections, water accumulation, and lower signal, failed to meet
the criteria. These non-realizable regions were excluded from further
analysis to avoid artifacts.

Matrix decomposition methods

The Indices of Polarimetric Purity showed a general trend of decreasing
polarimetric purity with increasing wavelength, which is consistent
with the expected increase in depolarization due to longer optical paths
at longer wavelengths. White matter exhibited lower purity than grey
matter, suggesting more depolarization in the former, that would be tied
to the higher scattering that gives it its whiter appearance.

The anisotropy coefficients revealed that linear anisotropy dominated
over circular anisotropy, suggesting the presence of linear retardance or
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Figure 10.11: Depolarization (a), retardance (b), and diattenuation (c) of a lateral view of one left hemisphere, from 450 nm to 680 nm.
The white arrows indicate white matter presence, the red ones point to some vessels, and the yellow one to sub-cortical structures. D has
been represented logarithmically. The data has been clipped to Δ ∈ [0.31, 0.94], ' ∈ [0.052, 0.93], � ∈ [2.5 × 10-3, 0.33] for visualization
purposes. Figure and caption reproduced from [23].
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diattenuation. However, the overall degree of anisotropy was low in all
images and brain structures.

The forward polar decomposition showed that depolarization increased
with wavelength and was higher in WM than in GM (Fig. 10.11). Re-
tardance also increased slightly with wavelength and was useful for
visualizing blood vessels. Diattenuation was generally low, with more
detail observed at shorter wavelengths, but did not seem relevant for
grey/white matter distinction.

The symmetric decomposition yielded similar results for depolarization
and retardance, with the latter showing greater resistance to noise
at longer wavelengths compared to the forward polar decomposition.
Diattenuation values remained negligible in this representation as well.

Finally, the differential decomposition did not reveal clear patterns
of diattenuation or retardance, highlighting the complex polarimetric
behavior of brain tissue dominated by depolarization. However, a slight
decrease in depolarization at 550 nm was observed, consistent with
findings from other decomposition methods.

Grey and white matter identification

The analysis of grey matter and white matter focused on evaluating the
ability of depolarization, retardance, and diattenuation to differentiate
between these tissue types. A balanced dataset was created by randomly
sampling GM pixels to match the number of WM pixels.

Depolarization showed the most distinct behavior, increasing with wave-
length for both grey and white matter, with the latter exhibiting consis-
tently higher values (Fig. 10.12). The greatest separation between both
tissue types was observed at 450 nm. Retardance also increased with
wavelength for both tissue types, again with high retardance areas point-
ing to white matter structures. Diattenuation remained negligible across
all wavelengths, showing a significant overlap between grey and white
matter.

Statistical analysis using the Mann-Whitney U test confirmed that all
three polarization properties had distinct distributions for grey and
white matter across the analyzed wavelengths. K-Nearest Neighbors
classification models were trained to distinguish between both sample
types, using both single-wavelength and multiple-wavelength features.

Models using shorter wavelengths (<590 nm) achieved higher accuracy
in classifying the samples. Feature importance analysis revealed that
depolarization was the primary discriminating factor, particularly at
shorter wavelengths, as occurred with the mice muscles.

The models that incorporated multiple wavelengths outperformed single-
wavelength models, achieving 97% accuracy. This suggests that multi-
spectral information enhances the ability to distinguish between grey and
white matter, potentially by capturing subtle variations in depolarization
across different wavelengths. Sequential floating selection methods were
used to identify optimal features for classification, confirming the im-
portance of depolarization at shorter wavelengths. Classifying with only
the three most significant multi-wavelength features provided a 95%
accuracy, which, even if it is smaller than using the whole multispectral
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Figure 10.12: Depolarization Δ, retardance ', and diattenuation � for Grey (GM) and White (WM) matter, sorted by wavelength. The
two-sided Mann-Whitney U test indicated p-values of p < 10-5 (*****) for all pairs GM-WM. The average of each distribution is indicated
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matrices, is high enough to justify focusing only on those features for
future experiments. The success of the multi-wavelength models with
respect to the single-wavelength ones underscores the value of multi-
spectral MMI in providing richer data for tissue classification compared
to single-wavelength approaches.

10.3.5 Analysis by brain region

The results were further analyzed by grouping the data according to
specific brain regions:

Brain hemispheres In the brain hemispheres, both depolarization and
retardance increased with increasing wavelength for all tissue types.
Blood vessels exhibited polarization properties overlapping with both
grey matter and white matter. Other structures, such as the basal ganglia
and optic chiasm, showed values between those of grey matter and white
matter. Diattenuation remained low for all hemispheric tissues.

Cerebellum Analysis of the cerebellum revealed similar trends for
depolarization, retardance, and diattenuation as observed in the hemi-
spheres. The cerebellar peduncle, a white matter structure, exhibited
higher depolarization values than the surrounding white matter.
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Brain stem The brain stem region showed a complex combination
of grey matter and white matter, with some structures exhibiting po-
larization properties closer to grey matter and others closer to white
matter. Notably, the brain stem grey matter and white matter had wider
interquartile ranges for depolarization and retardance compared to other
brain stem structures.

Overall, these findings highlight the variation in polarization properties
across different brain regions and tissue types. The observed trends for
depolarization and retardance are consistent with the general behavior
of these parameters with respect to wavelength and tissue composition.
The low diattenuation values across all regions suggest that it may not
be a primary discriminator of tissue types in this context.

10.3.6 Discussion

This study focused on analyzing the polarization properties of healthy
brain tissue using multispectral Mueller Matrix Imaging in fresh, whole
animal specimens. The choice of fresh samples aimed to provide a realistic
representation of tissue properties closer to an in vivo scenario, while the
use of whole specimens allowed for a comprehensive analysis of various
brain regions and their sub-structures [23].

The multispectral analysis revealed that depolarization was the primary
differentiating factor between grey matter and white matter, with white
matter exhibiting higher depolarization values across all wavelengths
[23]. This finding is consistent with previous studies [17, 18, 39] and is
attributed to the denser composition and lower absorption of white matter.
The experiment performed here also showed a decrease in depolarization
at 550 nm, likely due to hemoglobin absorption, suggesting multispectral
Mueller Matrix Imaging as a sensitive tool to assess cerebral blood volume
and oxygenation [23].

The importance of depolarization in tissue classification was further
emphasized by the superior performance of multi-wavelength KNN
models, which achieved higher accuracy than single-wavelength models.
This highlights the value of multispectral information in capturing subtle
variations in polarization properties across different wavelengths [23].

Comparison with previous studies using fixed brain tissue [40] revealed
differences in retardance values, emphasizing the potential impact of
tissue fixation and animal model variability on polarization properties.
Furthermore, the wavelength used also influences the visualization of
different brain structures, given that shorter wavelengths are ideal for re-
solving finer details, while longer wavelengths enhance the visualization
of deeper structures [23].

Retardance can also be explored as a marker of tissue anisotropy, partic-
ularly in differentiating between different types of white matter tracts.
However, measurements at longer wavelengths can be inaccurate due to
depolarization and calibration errors, making them difficult to acquire
[23].
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10.4 Bioengineering

Cardiac fibrosis, a pathological condition characterized by excessive
extracellular matrix protein deposition, is a significant contributor to
heart disease progression and adverse outcomes. While initially a pro-
tective mechanism after myocardial damage, persistent fibrosis leads
to increased stiffness and impaired cardiac function. Current therapies
for cardiac fibrosis are limited, hampered by the lack of suitable human
cardiac models. Animal models, while valuable, do not fully recapitu-
late human disease [41]. Engineered heart models, such as Engineered
Connective Tissue (ECT) models, offer a promising alternative. ECT
models, composed of cardiac fibroblasts embedded in collagen hydro-
gels, mimic the 3D architecture of the fibrotic environment. This study
utilized Engineered Connective Tissue models to investigate the effects
of an anti-fibrotic drug, CTPR390, on the mechanical, biochemical, and
structural characteristics of fibroblasts and of the extracellular matrix
[41].

A key aspect of understanding the efficacy of anti-fibrotic therapies lies
in the detailed analysis of the engineered connective tissue’s structure,
including collagen fiber alignment and organization. Therefore, this study
aimed to employ Polarization-Sensitive Optical Coherence Tomography
(PS-OCT) to visualize and quantify changes in collagen structure and
fibroblast behavior within the ECT model following treatment with
CTPR390.

10.4.1 Engineered connective tissue samples

Engineered connective tissue models were generated using adult human
left ventricular cardiac fibroblasts. Following established protocols, a col-
lagen type I solution was mixed with DMEM, neutralized, and combined
with human cardiac fibroblasts [41]. The resulting cell-collagen mixture
was cast in 48-well plates with flexible poles and allowed to condense.
The ECTs were cultured for 13 days. Fibrosis was induced using TGF�1,
and the anti-fibrotic treatment consisted of CTPR390 [41].

10.4.2 Polarization-Sensitive OCT analysis

PS-OCT was used to image the ECT samples using the device described in
previous chapters. With it, we measured the parallel and perpendicular
components of the electric field, which were used to calculate Stokes
parameters. The angle of polarization was also derived from these
parameters (Fig. 10.13). Following the methods described in Ch. 4, we
derived the attenuation coefficient (�I) with the phantom-calibrated
method. Then, Kernel Density Estimation (KDE) [42] was employed to
analyze the two-dimensional distributions of the samples in the U-�I
plane, and to calculate the overlap between the distributions of the
control, TGB� and CTPR ECTs. The overlap was estimated by deriving
the intersection-over-union of the 60% of the data in each distribution.
We also analyzed the evolution of the xy-averaged Stokes parameter
U along depth (0-100 �<) to characterize tissue organization and fiber
alignment inside the samples [41].
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Figure 10.13: Schematic illustration of the Angle of Polarization (AoP) calculation with the analysis pipeline to obtain the angle of
polarization using the PS-OCT system. From left to right, the first block indicates the captured values as complex magnitudes. The
second block shows the procedure to calculate the parallel (�0) and perpendicular (�1) intensities of the electric field. The third block
shows the calculation of the Stokes parameters (�, &,* , +). The fourth block indicates the calculation of the Angle of Polarization using
Stokes’ second and third components (* , &). The final data are median filtered with a disk of diameter 3 as a kernel to remove speckle
noise. Figure and caption adapted from [41].

10.4.3 Main findings

PS-OCT was applied to three experimental groups: Control, TGF�1
(fibrosis induction), and CTPR390 (anti-fibrotic treatment), with one
sample on each category. PS-OCT imaging proved to be a useful non-
invasive method to generate three-dimensional images of the ECTs.
The subsequent analysis focused on characterizing tissue compactness
(through the attenuation coefficient) and the degree of fiber alignment
(through the Stokes parameters) within the ECTs [41]. The main results
related to PS-OCT are depicted in Fig. 10.14.

Initially, no difference was seen between the three ECT models in the
three-dimensional maps (Fig. 10.14, a). However, these allow for a better
understanding of the structural features of the sample than with the
information given only by the en face maps. Similarly, the two-dimensional
attenuation maps were not able to detect differences between the samples,
suggesting a similar arrangement of cell sizes inside the three samples
[41].

As the attenuation maps were derived by considering the first 100
�< of the sample, we derived the Stokes parameters up to the same
depth for consistency. Then, we contrasted the information given by the
Stokes parameters with that of the attenuation coefficient and found
that comparing the parameter * with �C (Fig. 10.14, b) showed three
different distinct patterns when comparing the control sample with the
fibrotic and treated one. Specifically, the corresponding dispersion maps
generated showed a higher degree of similarity in compactness between
the Control and CTPR390-treated ECTs (64.5% overlap) compared to
both Control/TGF�1 (56.9%) and CTPR390/TGF�1 (40.7%) comparisons.
This suggests that CTPR390 treatment can cause the ECT to return to a
fiber density closer to that observed in the healthy control samples [41].

Further analysis of the Angle of Polarization at a depth of 100 �< hinted
at differences in fiber orientation between the three samples. The TGF�1-
treated ECT exhibits a predominance of highly structured fibers aligned
at angles below 60◦. In other words, the TGF�1-treated ECT tends to align
itself with the contraction axis of the ECT, potentially over-stiffening the
sample. In contrast, the CTPR390 treatment reverted this effect, with
the angle of polarization distribution in this ECT resembling that of the
Control, specifically showing a reduction in the number of fibers oriented
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at angles above 120◦ [41]. Polarized light imaging measurements also
corroborated these findings [41].

Finally, since the Stokes parameters are also three-dimensional, we
evaluated the rate of change of the xy-averaged Stokes parameter *
along the depth (0-100 �<). A linear relationship between U and z was
observed for the three samples, with a different evolution rate (slope) for
the three ECTs. On average, the rate of change of* was faster through
the layers for the TGF�1, suggesting that the more random distribution
of cellular orientation viewed in the angle of polarization in the Control
and CTPR390-treated ECTs leads to smaller variations in the Stokes
parameters, on average [41].

Figure 10.14: (a) Representative images (bright field image, en face view, side views, and 3D rendering) of an ECT using PS-OCT. The
white scale bar indicates 1.3 mm. (b) Three panels showing the correlative behavior observed within one standard deviation the Stokes U
and the attenuation coefficient distributions, assuming a refractive index of n=1.38, typical of biological samples, evaluated up to the
first 100 micrometers. (c) Representative ECT images of the angle of polarization (AoP) orientation aligned with the fibers within the
ECT using the same color-coding as in panel (d). (d) Bar graph illustrating the quantification of areas with the same percentage of AoP
aligned. AoP color code: blue (0◦ - 60◦), green (60◦ - 120◦), and orange (120◦ - 180◦). (e) Evolution along depth (z) of the xy-averaged
Stokes U parameter (a.u.) among the Control, TGF�1, and CTPR390 groups within the initial 100 �< from the surface of the ECT. The
behavior can be approximated by lines with the following equations: Control Y = (-554.8e-04 ± 8.0e-04) + (-129.8e-05 ± 5.7e-05) X; TGF�1
Y = (-525.7e-04 ± 8.1e-04) + (-362.1e-05 ± 5.8e-05) X; CTPR390 Y = (-431.9e-04 ± 8.0e-04) + (-138.3e-05 ± 5.7e-05) X. Figure and caption
adapted from [41].
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10.5 Conclusions

This chapter provided an overview of how the optical imaging techniques
discussed in this book, were successfully applied across diverse fields,
including ophthalmology, archaeology, neuroscience, and bioengineering.
Each application demonstrated the versatility and potential of these
non-invasive methods in addressing research questions and improving
practices in various domains.

In ophthalmology, an automated cell-counting method using OCT was
developed to enhance the quantification of uveitis, offering a more
objective and efficient approach compared to manual counting, with
the aim of improving diagnostic accuracy and standardizing uveitis
assessment. The archaeological study showcased the use of OCT in
analyzing a prehistoric quartz scraper, highlighting subsurface features
and residues without damaging the artifact. This non-invasive approach
allowed for the identification and characterization of different residue
types. The neuroscience section explored the application of multispectral
MMI in brain imaging, providing a detailed analysis of the polarimetric
properties of healthy brain tissue. This research aimed to contribute to
a better understanding of brain structure and function, with potential
implications for the diagnosis and monitoring of neurological conditions.
Finally, the bioengineering application demonstrated the use of PSOCT
in analyzing Engineered Connective Tissue models for cardiac fibrosis
research. This technique allowed for the visualization and quantification
of changes in collagen structure and fibroblast behavior following anti-
fibrotic treatment, offering a valuable tool for evaluating the efficacy of
new therapies.

Overall, the noninvasive and nondestructive nature of optical imaging,
along with its high resolution and ability to provide both structural
and functional information made these technologies powerful tools
for research and clinical applications. Future developments in optical
imaging promise to further expand its capabilities and impact across
various disciplines.
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Final remarks





Final remarks

This doctoral thesis aimed to answer one specific question: can optical
imaging methodologies aid in the diagnosis of muscular dystrophies?
The concept of “aid in diagnosis” is broad, and in the context of this thesis,
it ranges from enhancing visualization of samples to optical imaging
providing optical biomarkers of disease. The main drawback that all these
technologies have in common is their reduced penetration depth inside
tissues, which makes them difficult to implement in vivo for the follow-
up of patients, thus limiting the existing research of optical methods in
dystrophy diagnosis. However, medicine goes beyond bedside practices.
Whether it is through different situations where the tissue of a patient
might be exposed (i.e., surgery) or through animal models that are being
developed to test the effectiveness of various drugs, optical technologies
can aid in this field by providing additional or alternative information
that, in many cases, can be obtained in real-time without interfering with
the gold-standard analysis often performed on dystrophic tissues. In
such cases, optical imaging can be introduced in the laboratory pipelines
to provide an estimate of which samples should be analyzed first, to
indicate which are more uniform, or to guide region-of-interest sampling
for methodologies that are not able to analyze bulk tissue in the way that
optical imaging is able to.

Answering this research question was not straightforward, and involved
evaluating the samples from different points of view with as many tech-
nologies as possible in a first-of-its-kind comprehensive analysis of the
optical properties of dystrophic mice samples. Specifically, we focused on
the use of optical coherence tomography (OCT) and polarization-sensitive
OCT (PS-OCT) to evaluate the structural changes of the samples at the
micrometric scale. We accompanied those results with hyperspectral
imaging (HSI) and spatial frequency domain imaging (SFDI) to infer the
chemical and structural changes that might be taking place in the samples.
Finally, we used multispectral Mueller imaging (MMI) to deduce if the
polarimetric properties of the samples can be used to detect areas of
non-damaged muscle tissue. To conclude, we also evaluated whether the
combination of optical properties can provide a better disease estimate
than the individual information provided by each system separately.

The following sections include the main findings provided by each
imaging system, as well as the future research lines associated with each
of them.

Intensity and polarization-sensitive OCT OCT and PS-OCT analysis
revealed that birefringence, a measure of tissue anisotropy derived
from the phase delay experienced by light as it travels through the
muscle fibers, is a more sensitive marker of muscular dystrophy-related
changes than attenuation, which primarily reflects light scattering. This
difference in sensitivity likely stems from the disruption of muscle fiber
structure characteristic of muscular dystrophy. While this disruption
significantly affects the organization and anisotropy of the tissue, leading
to alterations in birefringence, it may not substantially alter the overall
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light scattering properties, as measured by attenuation. This finding
establishes birefringence derived from PS-OCT as a promising optical
property for assessing muscle health and disease progression in a non-
invasive and label-free manner.

Future work should focus on longitudinal studies to track birefrin-
gence changes over time in muscular dystrophy samples, correlating
these changes with disease progression and sample metadata (i.e., age,
sex...). Comparative studies across different types and stages of muscular
dystrophy are needed to determine the specificity and sensitivity of
birefringence as a diagnostic marker. The comparison of the observed
birefringence alterations with histological analysis is crucial to assess the
validity of this marker, considering not only a small region of the samples
but the whole sample, if possible. Finally, validation in larger cohorts
and potentially in human samples or in vivo studies will be crucial to
confirm the clinical utility of PS-OCT-derived birefringence.

Hyperspectral and spatial frequency domain imaging HSI analy-
sis revealed distinct spectral characteristics in the visible-near infrared
(VISNIR) and short-wave infrared (SWIR) ranges, with VISNIR spectra
highlighting hemoglobin/myoglobin absorption and SWIR spectra dom-
inated by water and fat absorption. While challenges were encountered
in measuring thin muscle samples due to light penetration to the un-
derlying substrate, the analysis of the data allowed for the estimation of
chromophore content and the identification of potential fatty inclusions
in dystrophic muscle tissue. The use of albedo, or average reflectance,
was deemed a suitable metric for further analysis in this context, as it was
able to identify control samples as containing more hemoglobin than the
dystrophic ones, consistent with the higher fat content on the latter. SFDI
measurements further corroborated the findings of HSI, particularly in
highlighting fatty regions as less absorbing and more scattering than
surrounding tissue. Analysis of absorption and scattering properties
revealed trends suggestive of fat accumulation in dystrophic samples.
Notably, SFDI-derived albedo measurements showed a clearer separation
between healthy and dystrophic samples than HSI alone, with dystrophic
samples exhibiting higher albedo, indicative of greater overall reflectivity
and further supporting the hypothesis of increased fat content.

Future research should refine HSI measurement techniques to analyze
thin muscle samples better and avoid substrate interference. Validating
the initial findings by studying a larger group of healthy and dystrophic
muscle samples is essential. To confirm the accuracy of HSI and SFDI,
as with OCT-derived data, their results need to be compared with
traditional histological analysis. In this case, the direct application of
these techniques is not as straightforward as for OCT, as more validation
is needed before moving on to human samples or in vivo experiments.

Multispectral Mueller matrix imaging MMI analysis of mouse leg
tissue samples showed that depolarization, a measure of the scattering-
induced loss of polarization information, is a key parameter for dis-
tinguishing healthy muscle from frozen-damaged muscle and fat. The
analysis of polarimetric purity indices supported this finding, as did
the application of polar decomposition techniques and the results of
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supervised classification using K-Nearest Neighbors. Notably, a simpli-
fied classifier using only the second and third multispectral elements
of the diagonals of the matrices achieved comparable accuracy to the
full Mueller matrix analysis, suggesting the potential for partial Mueller
polarimetry in muscle tissue characterization. Additionally, applying a
supervised autoencoder to detect healthy tissue further confirmed the
importance of depolarization for tissue classification and enabled efficient
feature extraction and data compression, facilitating the identification of
healthy muscle regions within a complex tissue environment.

The next steps using MMI should explore the role of depolarization in
identifying different tissue types, particularly healthy and dystrophic
muscle, and fat. Further investigation into polarimetric purity indices and
polar decomposition techniques will help solidify the findings discussed
in this thesis. Given the comparable accuracy of a simplified classifier
using only specific elements of the Mueller matrix, exploring the potential
of partial Mueller polarimetry for muscle tissue characterization is crucial
for performing fast in vivo measurements of the samples and simplifying
the system’s configuration.

Multimodal data analysis Combining data from different optical imag-
ing modalities, including OCT, PS-OCT, HSI, and SFDI, offered a richer,
more comprehensive analysis of muscle tissue. A visualization approach
using a color-mapping technique effectively highlighted key differences
between healthy and dystrophic tissues, particularly in visualizing varia-
tions in birefringence and tissue organization. Statistical analysis demon-
strated that while individual optical properties showed some separability,
combining them through dimensionality reduction techniques led to
slightly improved discrimination. Classification using a fully connected
feed-forward neural network, however, revealed limitations in leveraging
the combined dataset due to high inter-sample variability. This suggests
that the random sampling approach used to combine optical features
from different systems may have inadvertently introduced noise by
matching disparate regions within the same sample through the various
optical properties. Still, treating each imaging modality as an indepen-
dent source of information with its own set of optical features yielded
equal or superior performance compared to combining all features into a
single dataset. This suggests that a more targeted approach, where each
modality contributes its unique strengths to the analysis, may be more
effective for classifying dystrophic samples. This finding opens exciting
possibilities for developing specialized devices tailored to specific optical
modalities, potentially leading to more accurate and targeted diagnostic
tools. Furthermore, while the combined dataset may not be ideal for clas-
sification in its current form, it has enabled a comprehensive discussion
of the data, considering both the chemical and structural aspects of the
samples, which could inform future research directions and analytical
approaches.

The next actions required for an improved multimodal analysis involve
developing a co-register system so that the same samples can be measured
with multiple devices while keeping the labeling consistent between
measurements. This way, there will be no need for random sampling,
which would allow for a real combination of all optical systems and a
better interpretation of the results from a physicochemical standpoint.
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Additional contributions The versatility of the optical imaging tech-
niques employed in this research is underscored by their successful
application across diverse fields, including ophthalmology, archaeology,
neuroscience, and bioengineering. These techniques have enabled ad-
vancements such as automated cell counting in uveitis, non-destructive
analysis of archaeological artifacts, detailed brain tissue characteriza-
tion, and the evaluation of anti-fibrotic treatments in engineered cardiac
tissue. The non-invasive and high-resolution nature of these optical meth-
ods, coupled with their ability to provide both structural and functional
information, highlights their broad potential across various disciplines.

This book has demonstrated the significant potential of optical imaging
techniques in advancing our understanding and assessment of muscular
dystrophy. Improvements need to be considered to fully optimize these
technologies for the task of identifying muscular dystrophies, mainly
through an increase in the number of samples used to derive the optical
parameters of each category and avoid the effect of inter-sample variations.
Still, the ability to probe both structural and chemical properties of muscle
tissue non-invasively offers valuable insights into disease progression
and treatment response and can be used quantitatively to complement
conventional diagnostic and analytic methods that can not be used as
regularly due to their invasive nature.

While this research has focused primarily on ex vivo analysis, future
efforts should explore the translation of these techniques to in vivo
applications, potentially through the development of minimally invasive
probes or endoscopic imaging systems, or continuing with in vivo animal
models where light penetration is not as big of an issue. In their current
state, all the optical methods presented in this thesis can and have
already been used in surgical environments with minimal adaptations,
but their use in the clinics remains a challenge. Specifically, out of the
four technologies explored, OCT is the most straightforward one to be
adapted to in vivo applications by using needle probes to reach the
muscle without the need for biopsies.

Additionally, expanding the investigation to a wider range of muscular
dystrophy models and incorporating longitudinal studies will be crucial
for establishing the clinical utility of these optical biomarkers. Once
validated, the datasets and the algorithms created during this thesis will
be stored in open-access repositories. Ultimately, the continued develop-
ment and refinement of optical imaging technologies hold great promise
for improving the diagnosis and monitoring of muscular dystrophies,
paving the way for better patient outcomes.



Resumen Global en Castellano





Resumen global en castellano

En este capítulo se incluye una visión general de los temas y contribucio-
nes discutidos a lo largo de esta tesis. La distribución de este capítulo
es similar al seguido en el documento principal, comenzando por una
breve introducción cuyo enfoque reside en establecer la motivación de
este trabajo y los objetivos principales de esta tesis. A continuación, se
incluye una breve explicación de las técnicas de imagen aplicadas du-
rante este trabajo, así como los resultados principales obtenidos del uso
de cada técnica de forma individual, pero también de su combinación.
Finalmente, se incluye una sección con trabajos adicionales realizados en
función de métodos derivados del objetivo principal de la tesis, seguido
de una breve explicación futuras líneas de trabajo.

Introducción y motivación del trabajo

Las distrofias musculares (MD) son un grupo de enfermedades genéticas
hereditarias que causan debilidad y degeneración muscular progresivas,
impactando significativamente las capacidades físicas y la calidad de
vida [1]. Estas enfermedades, aunque raras (con una prevalencia, por
ejemplo, de 6 en 100.000 hombres para la más común [1]), afectan a
individuos, a menudo con un inicio temprano (5-30 años), y frecuente-
mente involucran complicaciones cardíacas [2]. Más allá de los desafíos
físicos, las distrofias musculares conllevan cargas emocionales, sociales
y económicas, incluyendo la pérdida de independencia, el aislamiento
social y un coste médico elevado. El diagnóstico temprano es funda-
mental para maximizar los beneficios de los tratamientos disponibles
pero los métodos de diagnóstico actuales, como las biopsias musculares,
son invasivos y tienen limitaciones. Esto hace necesaria la creación de
herramientas de diagnóstico no invasivas y accesibles.

Esta tesis doctoral explora el potencial de las tecnologías de imagen
óptica para abordar esta necesidad. Centrándose en un conjunto de datos
único de tejido muscular esquelético ex vivo de ratones (tanto sanos
como con distrofia), esta tesis evalúa cuatro técnicas de imagen óptica
específicas: Tomografía de Coherencia Óptica en Intensidad (OCT) y
Sensible a la Polarización (PS-OCT), Imagen Hiperespectral (HSI) en los
rangos espectrales del visible/infrarrojo cercano (VISNIR) e infrarrojo de
onda corta (SWIR), Imagen en el Dominio de las Frecuencias Espaciales
(SFDI) e Imagen de Mueller Multiespectral (MMI). Cada técnica ofrece
información única sobre la estructura, composición y función del tejido
muscular. El objetivo principal de esta tesis es evaluar la viabilidad y
eficacia de estas técnicas, individualmente y en su combinación, para
caracterizar la patología muscular en la distrofia muscular.

Al estudiar y combinar estas técnicas, se pretende desarrollar un enfoque
integral para evaluar la salud muscular, visualizar los cambios estruc-
turales y de composición, y extraer parámetros ópticos como posibles
biomarcadores de la enfermedad. Además, se presenta una metodología
para integrar los datos de diferentes técnicas, creando visualizaciones
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Figura 11.15: Esquema de un interferó-
metro de Michelson adaptado de [3]. Una
fuente de luz (() produce rayos (1) que
llegan a un divisor de haz (�(). Parte de
la intensidad (2) se dirige hacia un espejo
de referencia ("1). La otra parte atravie-
sa una placa de compensación �, que
cuenta con el mismo grosor e índice de
refracción que el divisor de haz, antes de
alcanzar un segundo espejo "2.Ambos
haces se recombinan en la sección trase-
ra del divisor y viajan de forma paralela
hasta alcanzar una lente de colimación
(!), la cual focaliza el patrón de interfe-
rencia en el plano que contiene% y que es
paralelo a "1. "′

2
representa la imagen

de "2 duplicada en torno la cara trasera
del divisor de haz.

5 El término scattering describe el re-
direccionamiento de la luz cuando ésta
interacciona con las partículas de un me-
dio. En este capítulo se utiliza el término
en inglés para evitar confusión con otros
términos similares.

combinadas y realizando análisis estadísticos para evaluar las correlacio-
nes entre los parámetros. Finalmente, se evalúan técnicas de aprendizaje
automático para mejorar las capacidades de diagnóstico.

Técnicas de imagen óptica y métodos de análisis

Tomografía de coherencia óptica (OCT)

OCT es una técnica de imagen basada en fenómenos de baja coherencia
para reconstruir la estructura interna de una muestra. Esta técnica está
basada en los principios de interferometría, donde la combinación de
dos ondas de luz puede amplificar o disminuir la señal combinada en
base a su diferencia de fase. El elemento central de un sistema OCT es,
típicamente, un interferómetro de Michelson (Fig. 11.15), el cual divide
un haz de luz en dos caminos donde uno se dirige hacia la muestra y
el otro a un brazo de referencia de longitud fija. A través de analizar el
patrón de interferencia de los dos haces cuando se recombinan se puede
obtener una medida de la estructura interna de las muestras.

La propiedad óptica principal obtenida con OCT es el coeficiente de
atenuación (�C), el cual representa el efecto combinado de la absorción de
la luz (�0) y scattering5 (�B) de una muestra. Las diferencias en coeficiente
de atenuación permiten identificar variaciones en la estructura interna
de las muestras, las cuales pueden ser indicadores de distrofia. En esta
tesis se han considerado varios métodos para calcular el coeficiente de
atenuación, incluyendo:

1. La ley de Beer-Lambert [4-6]: Modela la atenuación de la luz al
atravesar un medio turbio como una función decayente exponencial
en términos de la distancia recorrida en el medio (profundidad de
penetración), I.

2. La función de dispersión de punto (PSF): Considera el efecto de
la óptica incluida en el equipo OCT en los cambios de intensidad
medidos.

3. Método del material de referencia (phantom): Utiliza una muestra
de referencia conocida para calibrar las medidas a través de una
versión modificada de la ley de Beer-Lambert. ([7])

4. Atenuación localizada: Calcula la atenuación en cada punto de la
muestra a través de considerar incrementos locales.

OCT sensible a la polarización (PS-OCT)

La modalidad alternativa de OCT sensible a la polarización (PS-OCT)
utiliza una versión modificada del interferómetro de Michelson al cual
se le introducen láminas retardadoras en cada brazo para seleccionar el
estado de polarización con el que se ilumina la muestra. Eso permite no
solo capturar la intensidad de scattering recibida, si no también la fase
de la onda medida.

El sistema PS-OCT reconstruye la reflectancia compleja a partir de los
patrones de interferencia detectados. Esas reflectancias se utilizan para
calcular los parámetros del vector de Stokes, los cuales proporcionan
información acerca del estado de polarización de la luz.
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A partir de los vectores de Stokes se pueden obtener ciertos parámetros
de polarización relevantes, como la orientación del eje óptico o la uni-
formidad del grado de polarización. Sin embargo, el más importante y
utilizado en esta tesis es la birrefringencia de la muestra. La birrefrin-
gencia mide la diferencia entre los índices de refracción de una muestra
anisotrópica a lo largo de sus dos ejes. El método descrito por Chin et al.
[8] permite calcular la birrefringencia en base al cambio de fase del vector
de Stokes con la profundidad de penetración de la luz en la muestra.Una
birrefringencia alta indica un alto grado de anisotropía entre los dos
índices de refracción, mientras que una muestra isótropa no presenta
birrefringencia. De esta manera se pretende separar los músculos sanos,
altamente anisotrópicos, de los músculos dañados por distrofia.

Imagen hiperespectral (HSI)

Los sistemas de imagen hiperespectral (HSI) capturan la luz emitida por
una fuente después de atravesar un medio y reflejarse en él de forma
difusa. El contenido espectral de la fuente de luz cambia en base a las
propiedades de la muestra.

La reflectancia difusa se produce cuando la luz entra la muestra, sufre
scattering en su interior y sale de la muestra para ser capturada por
el sensor. La cantidad de luz recogida está relacionada con la absor-
ción de cada componente de la muestra. Una forma de interpretar el
funcionamiento de un sistema HSI es considerarlo como una cámara
de color avanzada que, en lugar de tres canales de color, cuenta con
cientos de ellos. Fundamentalmente, consisten en una lente y una cámara
acoplados a un espectrógrafo, el cual descompone la luz capturada en
sus componentes espectrales.

En la práctica, la reflectancia medida necesita ser corregida debido a
factores como el espectro no uniforme de la fuente de luz, la introducción
de fuentes de luz no controladas en el sistema (reflexiones) o el ruido del
detector. Esto involucra utilizar una muestra de referencia (Spectralon) y
realizar medidas de corrección de ruido.

HSI se puede utilizar para estimar las fracciones de volumen de diferen-
tes componentes químicos a través de modelos físicos que consideran
la absorción y scattering de las muestras bajo ciertas suposiciones. La
mayoría de modelos se basan en obtener la absorción como la suma de
absorciones de componentes individuales. Estos componentes, denomi-
nados cromóforos, se obtienen a partir de medidas puras de los mismos.
Algunos cromóforos típicos de tejidos biológicos son la hemoglobina,
mioglobina, lípidos, elastina, colágeno o agua, entre otros (Fig. 11.16).
Utilizando HSI se pretende relacionar el contenido de dichos compo-
nentes con marcadores clínicos de distrofia como la cantidad de grasa o
músculo en las muestras.

En este libro se comparan varios modelos que consideran los efectos del
scattering de formas diferentes:

1. Modelo de Kubelka-Munk [9]: Estima el scattering asumiendo que
la muestra se puede tratar como un medio semi-infinito. Original-
mente, este modelo se definió para estimar la absorción y scattering
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Figura 11.16: Coeficientes de atenuación (�0 [cm−1]) de los cromóforos de referencia más comunes en función de la longitud de onda (�
[nm]). Los datos de Schenkman et al. [12], originalmente definidos en función de la densidad óptica, han sido transformados a atenuación
por medio de la comparación del camino óptico para hacer que los picos coincidan con los defindos por Jacques [13]. Datos adaptados de
[12-17].

de pigmentos en polvo, las cuales cuentan con un alto coeficiente
de scattering.

2. Aproximación empírica de Jacques [10]: Considera el efecto de
absorción y scattering a través de una aproximación empírica del
comportamiento observado en simulaciones de Monte Carlo.

3. Simulaciones de Monte Carlo: Se deriva la relación entre absorción y
scattering a partir de una tabla obtenida de múltiples simulaciones
de Monte Carlo.

4. Modelo de Krishnaswamy et al. [11]: Estima la influencia del scatte-
ring como una relación decreciente exponencial con la longitud de
onda.

5. Modelo de Jacques [10]: Similar al anterior, pero separa las contri-
buciones de scattering de Mie y Rayleigh.

Imagen en el dominio de las frecuencias espaciales (SFDI)

La imagen en el dominio de las frecuencias espaciales (SFDI) es una
técnica óptica que, al contrario que HSI o OCT, puede desacoplar los
efectos de absorción y scattering de una muestra. Esto se consigue a
través de controlar el patrón de iluminación aplicado a las medidas,
específicamente a través de la proyección de patrones periódicos (en este
caso, bandas) de diferentes frecuencias.

De esta manera, SFDI se basa en analizar la función de transferencia de
modulación (MTF), la cual describe cómo un medio afecta a la modulación
de una fuente de luz en función de su frecuencia espacial (Fig. 11.17). La
reflectancia difusa medida a las distintas frecuencias se relaciona con la
absorción y el scattering, de forma independiente, a través de modelos
físicos o aproximaciones.

La ecuación de difusión se utiliza para modelar la propagación de la luz
en el interior de la muestra desacoplando las contribuciones de absorción
y scattering. Sin embargo, este modelo solamente es aplicable bajo ciertas
condiciones. Específicamente, la ecuación de difusión se utiliza cuando
el scattering es mucho mayor que la absorción (�′

B ≫ �0). Fuera de
ese rango deben usarse métodos alternativos como la obtención de las
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Figura 11.17: Simulación de la penetración de profundidad máxima de la porción modulada de una fuente de luz en función de la
frecuencia espacial. A la izquierda, una frecuencia espacial alta penetra hasta una profundidad 30, mientras que la frecuencia inferior
mostrada a la derecha alcanza una profundidad 31, mucho mayor que 30. Imagen adaptada de [18].

propiedades ópticas a través de simulaciones de Monte Carlo [19]. En
este caso se ha optado por la segunda opción dado que es la primera vez
que se analizan las muestras consideradas en esta tesis con SFDI. De esta
manera, los resultados obtenidos serán independientes de si se cumple
la aproximación de difusión o no.

La obtención experimental de la MTF se obtiene al capturar múltiples
imágenes de reflectancia difusa utilizando varias frecuencias y fases
espaciales. Al igual que en HSI, en SFDI es necesario compensar los efectos
de la fuente de la iluminación y del fondo de ruido para desacoplarlos
de aquellos procedentes de la muestra. Particularmente, la forma no
regular de la muestra deforma los patrones espaciales proyectados. Para
compensar este efecto se realiza una medida de perfilometría de la
muestra que permite eliminar la influencia de la deformación y obtener
de forma precisa las propiedades de absorción y scattering de la muestra.
En este caso, el equipo SFDI utilizado comparte dispositivo con el equipo
HSI, lo que permite evaluar la dependencia de las propiedades ópticas
con la longitud de onda utilizada.

Imagen de Mueller multiespectral (MMI)

La imagen de matriz de Mueller (MMI) es una técnica óptica utilizada para
caracterizar las propiedades de polarización de una muestra por medio
de cómo ésta altera el estado de polarización de la luz incidente. Con
MMI se puede obtener información sobre efectos como la birrefringencia,
la diatenuación o la despolarización de la muestra.

Los equipos MMI consisten en dos componentes principales:

▶ Generador de estados de polarización (PSG): Genera un conjunto de
estados de luz polarizada controlados para iluminar la muestra. Está
compuesto por la fuente de iluminación y la óptica de polarización
necesaria.

▶ Analizador de estados de polarización (PSA): Mide la polarización
del estado de la luz después de interaccionar con la muestra.
Contiene óptica de polarización adicional y el detector.

La matriz de Mueller, que describe las propiedades de polarización de la
muestra, se obtiene tras analizar cómo la muestra transforma los estados
de polarización generados en los detectados. Dado que el PSA y el PSG
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6 En adelante, datasets

cuentan con sus propias matrices conocidas, la matriz de la muestra se
desacopla de las del sistema por medio de cálculos matriciales.

En esta tesis se han desarrollado dos versiones de un sistema de imagen de
Mueller. La primera versión (MMI v1.0) utiliza una fuente de iluminación
LED con una rueda de filtros para seleccionar distintas longitudes de
onda. El PSG contiene un polarizador fijo y una lámina retardadora
orientable para generar los estados de polarización. El PSA está formado
por una cámara polarimétrica y una lámina retardadora que se introduce
o no en el camino óptico en las distintas medidas. La segunda versión
(MMI v2.0) consiste en una mejora del anterior a través de modificaciones
del PSG. La fuente de LED blanca y la rueda de filtros se sustituyen por
una fuente de múltiples LED sintonizable. Además, el polarizador ha
sido introducido en una montura orientable para mayor flexibilidad a la
hora de generar los estados de polarización.

La calibración de los sistemas MMI es crucial para obtener medidas
precias. En esta tesis se utiliza el método de calibración de los valores
propios (ECM) para determinar las matrices del PSA y PSG, las cuales son
utilizadas a continuación para extraer la matriz de Mueller de la muestra
a partir de los datos medidos [20]. Este proceso involucra la medida
de muestras conocidas (aire, polarizadores, láminas retardadoras) y la
comparación de las medidas experimentales con los valores teóricos de
cada una de ellas. Otro factor a considerar en el diseño de estos equipos
es el número de condicionamiento de las matrices del PSG y PSA. Este
número se utiliza como un indicador de la sensibilidad de dichas matrices
al ruido, y su origen reside en el espacio que ocupan los estados generados
y medidos dentro de la esfera de Poincaré. La esfera de Poincaré es una
representación tridimensional de los estados de polarización posibles y,
con cuatro estados, el número de condicionamiento ideal es

√
3, el cual se

corresponde con el tetraedro regular que maximiza el espacio que ocupa
en la esfera.

Una vez obtenida la matriz de Mueller se aplicaron varios métodos de
descomposición matricial para extraer propiedades ópticas específicas
de la muestras, como la despolarización, la diatenuación y el retardo.
Al igual que con PS-OCT, estas métricas se relacionan con el nivel de
organización estructural de los tejidos, pero también con sus propiedades
de scattering, lo que puede ayudar a identificar zonas de fibras musculares
sanas o dañadas tanto a través de organizaciones irregulares o cambios
de tamaños de centros de scattering.

Resultados principales

Comportamiento óptico de las muestras con OCT y
PS-OCT

El capítulo 6 explora la aplicación de OCT para la caracterización de
muestras de tejido muscular obtenidas de un modelo animal en ratón con
deficiencia de 
-sarcoglicano. Esta deficiencia se relaciona con ciertas
modalidades de distrofia muscular como la distrofia muscular de cadera
(LGMD) o las miopatías miofribilares (MFM). Se analizaron dos conjuntos
de datos6, MD1 y MD2, los cuales contenían un rango de muestras de
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control (WT) y distróficas (KO). Los primeros análisis se centraron en la
intensidad derivada de medidas OCT, la cual demostró un decaimiento
no homogéneo en el interior de las muestras, indicador de variaciones
estructurales en cada muestra pero también entre ellas.

El método del material de referencia se utilizó para generar mapas bidi-
mensionales de atenuación (�C), centrándonos en el análisis en la región
de scattering simple, que se aproxima a las 250 �< más superficiales de
los tejidos biológicos (Fig. 11.18, b). Los mapas de atenuación mostraron
alteraciones en la densidad de los tejidos para cada muestra con un
fuerte solapamiento de las distribuciones estadísticas de atenuación entre
muestras sanas y distróficas para el dataset MD1. A pesar de que se ha
obtenido una mejor separación en el dataset MD2, ningún dataset ha
proporcionado una separación clara entre categorías clínicas por medio
del análisis de atenuación de muestras volumétricas. Una comparación
con los valores obtenidos por otros grupos para el umbral de atenuación
entre tejido sano y necrótico en un modelo animal de distrofia muscular
de Duchenne sugiere que (1) o los modelos con déficit de 
-sarcoglicano
muestran menos necrosis que los de Duchenne, (2) o que el análisis
de todo el volumen de las muestras, en lugar de regiones específicas,
introducen una variabilidad que difumina el umbral de atenuación entre
los dos tipos de tejido.

Los mapas bidimensionales de atenuación señalaron zonas de variación
interna, las cuales fueron posteriormente evaluadas a través de la visua-
lización de secciones transversales (Fig. 11.18, c) y de la aplicación del
modelo de atenuación localizada (Fig. 11.18, d). Los dos modelos mos-
traron discrepancias: Mientras que el método del material de referencia
mostraba atenuación más baja en zonas densas, el modelo localizado
mostraba la tendencia opuesta. Esta diferencia surge de la forma de calcu-
lar la atenuación específica de cada método: mientras que el método del
material de referencia promedia la respuesta de los tejidos en un rango de
profundidad mayor, el modelo localizado muestra valores pixel a pixel.
A pesar de ello, la información combinada obtenida por medios modelos
proporcionó una comprensión mayor que utilizando solamente uno.
Específicamente el método del material de referencia identificó zonas de
interés con la muestra “vista desde arriba” que facilitó la selección de
cortes transversales específicos que evaluar en cada muestra, ayudando

a) b) c) d) e)

Figura 11.18: (a) Imagen en color de referencia, (b) mapa bidimensional de atenuación obtenido con el método del material de referencia
(b), (c) corte transversal de la muestra en la línea indicada en (a) y (b), (d) atenuación localizada en el corte transversal enseñado en (c) y
(e) mapa bidimensional de birrefringencia. La muestra mostrada en la imagen se corresponde con una muestra distrófica de tres meses
de edad.
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además a la identificación de estructuras sub-superficiales.

Además de las medidas de intensidad, en el mismo capítulo también
se exploró el potencial de PS-OCT para documentar las propiedades
de los tejidos sanos y distróficos. Para ello, se generaron mapas bidi-
mensionales de birrefringencia a partir del retardo de fase obtenido de
los parámetros de Stokes (Fig. 11.18, e). Estos mapas, aunque también
exhiben una variación inter- e intra-muestral significativa, proporciona-
ron una separabilidad entre controles y muestras distróficas mayor que
la proporcionada por la atenuación. En concreto, en el dataset MD1 se
observó una clara separación entre las dos categorías clínicas, donde
las muestras sanas proporcionaron consistentemente unos valores de
birrefringencia mayores que el umbral considerado en la bibliografía
entre tejido sano y necrótico, y donde las muestras distróficas se en-
contraron consistentemente debajo de ese umbral. El segundo dataset
(MD2) también mostraba una separación mayor de birrefringencia que
su análogo de atenuación, pero ligeramente inferior que para el dataset
MD1. La variación obtenida entre datasets puede tener su origen en la
cantidad de muestras. Mientras que el dataset MD1 contaba solamente
con cuatro muestras sanas, el dataset MD2 contenía el mismo número
de muestras sanas que distróficas (13 por categoría), lo cual indica que,
aunque con menor separabilidad, este dataset es más representativo
de la variación que se observaría en un caso real. En cualquier caso,
la mejora de los resultados utilizando birrefringencia que utilizando
atenuación indica que la variante PS-OCT es más sensible a los cambios
asociados con la enfermedad. A pesar de que las muestras distróficas
sufren cambios químicos, éstos pueden no ser lo suficientemente fuertes
como para manifestarse en cambios de atenuación pero si para alterar la
estructura muscular lo suficiente como para ser detectados a través de
una caída de birrefringencia.

En resumen, el análisis con OCT y PS-OCT demostró que estas técnicas
pueden ser sensibles a cambios estructurales para distinguir muestras sa-
nas de distróficas. Estudios adicionales con un rango de edades mayores
en los modelos animales podrían ayudar a determinar las dinámicas tem-
porales de los cambios en atenuación y birrefringencia con la evolución
de la enfermedad, pero también para determinar si existe una ventana
temporal óptima donde la necrosis se manifieste lo suficiente para poder
utilizar la atenuación como marcador clínico de distrofia en modelos de
déficit 
-sarcoglicano.

Análisis de absorción y scattering con HSI y SFDI

El capítulo 7 analizó la aplicación de HSI y SFDI para la caracterización
de las muestras del dataset MD2 con el objetivo de obtener información
acerca de los cambios químicos que ocurren en el modelo de deficiencia
de 
-sarcoglicano. Los análisis iniciales de los espectros de referencia
en el rango visible/infrarrojo cercano (VISNIR) e infrarrojo de onda
corta (SWIR) mostraron características espectrales específicas para estas
muestras. Los espectros VISNIR cuentan con una reflectancia mayor por
encima de los 600 nm, consistente con el color rojizo de las muestras,
además de que también contienen los picos y valles característicos de
la absorción de la hemoglobina o mioglobina entre 500 y 580 nm. Los
espectros SWIR, a pesar de estar influenciados por cromóforos como
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elastina y grasa, estaban principalmente dominados por la absorción
del agua. Las muestras, al proceder de modelos de ratón, son finas, lo
cual supone un desafío a la hora de medirlas con HSI. En concreto, las
regiones espectrales que no cuentan con absorción significativa permiten
el viaje de los fotones hasta atravesar toda la muestra, lo cual hace que la
base sobre la que se deposita las muestras altera la respuesta espectral
en dichos rangos. En concreto, para la determinación de los siguientes
análisis, se consideraron solamente los espectros, aproximadamente, por
debajo de los 600 nm y por encima de los 1300 nm, donde la absorción
de las muestras evita la influencia de la base.

En este análisis se probaron tres modelos que evalúan de forma diferente
la relación entre absorción y scattering: el modelo de Kubelka-Munk,
la aproximación empírica de Jacques y el cociente derivado de las si-
mulaciones de Monte Carlo. Aunque cada modelo se basa en diferentes
suposiciones, los tres mostraron tendencias similares en las regiones de
alta relación señal-ruido (SNR). A pesar de que cada uno proporcionó
una diferente relación absorción/scattering en cuanto a su valor abso-
luto, la consistencia espectral indica que los tres métodos son capaces
de detectar variaciones espaciales de cromóforos cualitativas en cada
muestra. El método de Monte Carlo está considerado generalmente como
la aproximación más utilizable, ya que considera implícitamente los
eventos de scattering múltiple, los cuales no son generalmente explicados
por los modelos más tradicionales. Por ello, el cociente entre absorción y
scattering y el cálculo del albedo se derivó a partir de las simulaciones.

La comparación del albedo entre las categorías clínicas mostró unos
resultados similarmente altos en ambos rangos espectrales, sin una
distinción clara entre las muestras sanas y las distróficas. Sin embargo, si
que se observó un albedo ligeramente inferior en algunas muestras de
control en el rango dominado por la hemoglobina, lo cual sugiere una
mayor concentración de este compuesto químico en las muestras sanas.
La estimación de la oxihemoglobina y desoxihemoglobina, utilizando el
método de suma de absorción de cromóforos, enseñó que casi el 100 % del
contenido total estimado de hemoglobina se corresponde con su forma
oxigenada, con desviaciones de este comportamiento solamente para las
muestras de mayor tamaño. Esta observación sugiere que un volumen de
muestra mayor facilita la detección de áreas de hemoglobina que no han
sido expuestas al oxígeno. Dadas las limitaciones existentes para separar
las contribuciones de la absorción y el scattering de las muestras con
la técnica HSI, se consideró para los siguientes análisis que los mejores
marcadores de las propiedades ópticas de las muestras son o el cociente
entre absorción y scattering, o el albedo, o directamente los espectros de
reflectancia o sus estimadores estadísticos.

En el rango SWIR se utilizó un experimento basado en mezclas de
materiales conocidas (phantoms). Específicamente, se hicieron varios
phantoms con diferentes cantidades de grasa y músculo, ya que en las
distrofias musculares el músculo se transforma en grasa con el tiempo.
Un modelo basado en la relación de reflectancias a dos longitudes de
onda relacionadas con el contenido de grasa y agua sirvió para estimar
zonas de grasa localizada en algunas de las muestras, demostrando el
potencial de este método para seguir la evolución de la transformación
del músculo en grasa en enfermedades musculares. Sin embargo, la
mayoría de las muestras de ratón cuentan con un muy pequeño volumen
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muestral, con lo que es necesario refinar el método de los phantoms
de mezclas conocidos por medio de evaluar diferentes volúmenes de
phantoms. Esto ayudará a estimar cuál es el grosor muestral necesario
para obtener una determinación de grasa precisa en el rango espectral
SWIR, donde los fotones recorren una mayor longitud en el interior de
las muestras.

A continuación se realizaron medidas de reflectancia difusa a varias
frecuencias espaciales con la técnica SFDI, donde los resultados se
centraron en los rangos de color rojo-verde-azul cercanos a los picos
de iluminación máxima del proyector utilizado. El decaimiento rápido
de la reflectancia con el aumento de la frecuencia espacial (hasta 0.22
mm-1) sugiere un bajo scattering de las muestras. Esta información puede
utilizarse para optimizar los protocolos de medida y minimizar el secado
de las muestras durante sesiones de medida SFDI. Además, SFDI también
señalaba a las regiones grasas previamente identificadas a partir de HSI-
SWIR como regiones de menos absorción y mayor scattering que el tejido
circundante. Una comparación de los cocientes absorción/scattering con
los obtenidos con HSI (Fig. 11.19) reveló una discrepancia significativa,
donde los derivados de HSI eran casi un orden de magnitud inferiores a
los obtenidos de SFDI. El posible origen de esta diferencia surge de la
colocación del material de referencia (Spectralon) utilizado para calibrar
los sistemas en función de su respuesta espacial durante las medidas;
mientras que en HSI se coloca alineado con la parte superior de la muestra
para evitar el cálculo de reflectancias mayores de la unidad, en SFDI se
sitúa alineado con la base y se utiliza la perfilometría para adaptar la
medida de referencia al volumen de la muestra. Además, la variación
existente en el camino óptico entre las medidas HSI y SFDI, combinado
con el secado de las muestras entre ambas medidas dan lugar a que las
comparaciones entre ellas, aunque factibles, no sean directas.

Desacoplar la absorción del scattering con SFDI mostró distribuciones
diferentes, pero solapadas, entre las categorías clínicas para los tres
rangos de color. En el rango del rojo, la mitad de las muestras distróficas
exhibió una absorción por encima de la media del dataset, mientras
que las muestras de control permanecieron, en general, por debajo.
En el rango azul, donde la hemoglobina domina la absorción, y por
encima de los 600 nm, donde la presencia espectral del agua y de la
grasa comienza a no ser despreciable, las tendencias observadas sugiere

Figura 11.19: Cociente �0/�′B obtenido
con SFDI (a, b, c) y HSI (d, e, f) para la
muestra de control 814 del dataset MD2.
Las imagenes mostradas se correspon-
den con promedios en longitud de onda
en el rango espectral del azul (a, d), verde
(b, e) y rojo (c, f), correspondiente con
los picos de alta SNR del proyector LED.
La barra de color superior cuantifica las
imágenes SFDI, mientras que la inferior
cuantifica las imágenes HSI.
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una potencial acumulación de grasa en las muestras distróficas. La
respuesta de scattering obtenida es más homogénea, donde las muestras
distróficas tienden hacia valores ligeramente más bajos. Sin embargo,
ambas categorías demostraron variabilidad inter-muestra, consistentes
con las diferentes formas y preparación muestral a la hora de fijar
los músculos a su sustrato. Finalmente, el análisis del albedo mostró
una separación entre las dos clases clínicas mejores que la obtenida
directamente de HSI. Las muestras distróficas dieron lugar a un albedo
consistentemente más alto, un indicador de reflectividad generalmente
más alta que apoya la hipótesis de un mayor contenido de grasa en estas
muestras, consistente con los cambios que las muestras sufren en estas
enfermedades.

Respuesta polarimétrica de los tejidos obtenida con MMI

El capítulo 8 exploró la aplicación de la imagen de matriz de Mueller
multiespectral (MMI) para caracterizar el tejido muscular en patas com-
pletas de ratón (dataset LD). La preparación de las muestras involucró la
descongelación, la retirada de la piel y la rehidratación. Inmediatamente
tras la retirada de la piel se observaron diferencias visuales entre las
tres patas, a pesar de ser todas pertenecientes a ratones sanos de once o
doce meses de edad. En concreto, una serie de estructuras anisotrópicas
blancas cubrían diferentes regiones de las patas, cuyo origen puede ser un
daño de las muestras inducido por el proceso de congelación. Utilizamos
estas propiedades para identificar regiones de interés específicas, entre
las que se eligieron zonas dañadas por la congelación, zonas de músculo
sano y zonas con mayor cantidad de grasa.

Las matrices de Mueller adquiridas son predominantemente diagonales
a lo largo de todos los tipos de tejidos y longitudes de onda, lo que
sugiere una muestra principalmente despolarizante. También se observó
la existencia de elementos no diagonales débiles, particularmente en el
vector de polarizancia. Las reflexiones especulares y otros artefactos de
medida se detectaron en zonas consideradas no físicamente realizables
por los criterios de realizabilidad, con lo cual se excluyeron de los
siguientes análisis. Por otra parte, el resto de las regiones de interés son
físicamente realizables a todas las longitudes de onda.

A continuación se calcularon los índices de pureza polarimétrica y el
grado de pureza polarimétrica. La pureza obtenida es decreciente con
el aumento de la longitud de onda, consistente con el mayor camino
recorrido por los fotones en el interior de la muestra, el cual da lugar
a una mayor despolarización por el aumento de eventos de scattering.
El tejido graso y el dañado por congelación muestran menor pureza
polarimétrica que el músculo sano. La anisotropía total observada es
baja en todas las regiones y a todas las longitudes de onda, con leves
variaciones en anisotropía lineal y circular.

Para obtener las propiedades polarimétricas del tejido comenzamos por
la aplicación de la descomposición polar para derivar la despolarización
(Δ), el retardo (') y la diatenuación (�). La despolarización obtenida
es capaz de distinguir el músculo sano del músculo dañado y de la
grasa, y se observó una tendencia creciente con la longitud de onda. El
retardo se mantuvo relativamente estable mientras que la diatenuación,
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Figura 11.20: A la izquierda, represen-
tación de las siete matrices de Mueller
multiespectrales de la muestra 814. A la
derecha, las dos imágenes representan la
interpretación de esas matrices dada por
las dos neuronas del cuello de botella de
un autoencoder.

393 nm 446 nm 471 nm 501 nm Bottleneck Z0 Bottleneck Z1

546 nm 636 nm 731 nm

aunque débil, señalaba a zonas de músculo sano. Las longitudes de
onda más cortas proporcionan mejor detalle en las imágenes, lo cual es
esperado debido a la menor longitud óptica de penetración en el tejido.
Los diagramas de cajas de estos parámetros para los distintos tipos de
tejido confirman las tendencias observadas en las imágenes, donde una
inferior despolarización actúa como el marcador principal de músculo
sano.

La descomposición diferencial también se aplicó al cálculo del retardo ('!)
y diatenuación lineales (�!). De nuevo, la diatenuación señala diferencias
texturales en las muestras pero no es lo suficientemente discriminatoria
para identificar tipos de tejidos diferentes. En esta representación, el
retardo calculado es mayor en zonas de músculo dañado, potencialmente
debido al existente tejido conectivo presente por debajo de las zonas
dañadas. Una comparación con los valores obtenidos en la literatura
para músculo esquelético reveló resultados similares en las tendencias
de diatenuación y despolarización, pero también diferentes en retardo,
lo cual puede deberse a variaciones de volumen de muestra y estructuras
de tejido obtenidas en los distintos experimentos.

MMI obtiene una cantidad de datos (propiedades ópticas) significativa en
comparación con otras técnicas. Por ello se decidió realizar la clasificación
de los distintos tipos de tejidos no para distinguir el tejido sano del
dañado por congelación o de la grasa, si no para identificar los elementos
individuales de las matrices de Mueller que definen el músculo sano y
evaluar la posibilidad de utilizar un dataset de Mueller reducido para
la misma tarea. Para comenzar se realizó una clasificación por medio
del método de los K-vecinos más próximos (KNN), la cual proporcionó
una precisión promedio de 79.8 % tras considerar validación cruzada.
El análisis de importancia de características indicó que los elementos
diagonales de las matrices, particularmente a las longitudes de onda
más cortas, son las más relevantes para detectar el músculo sano. Un
clasificador simplificado que utiliza solamente los elementos multies-
pectrales "11 y "22 proporcionó una precisión comparable, sugiriendo
la posibilidad de utilizar polarimetría parcial de Mueller para la tarea
específica de la detección de musculo sano en un entorno complejo de
tejidos. El método no-supervisado de agrupamiento de los K-promedios
también señalaba al tejido sano pero con menor exactitud y repetitividad
que el método supervisado KNN, lo cual indica la necesidad de métodos
supervisados para esta tarea.

Finalmente, un codificador automático (autoencoder) supervisado (SAE) se



291

H - originala)

H - equalizedb)

HSV - originalc)

HSV - H equalizedd)

0.00.00360.00710.05
H = n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

V 
=

 
t [
m
m

1 ]

Color legende)

Figura 11.21: Representación resultante
en el espacio de color HSV de la atenua-
ción, birrefringencia y perfilometría para
la muestra 814 del dataset MD2: (a) bi-
rrefringencia normalizada (matiz, H), (b)
matiz ecualizado, (c) reconstrucción de
color en el espacio HSV sin ecualización
y (d) con ecualización. La leyenda de
color se muestra en (e) para la máxima
saturación.

utilizó para la extracción de las características principales y la clasificación
de tejidos simultánea. El SAE consiguió una precisión similar a KNN,
pero con un rendimiento mayor para cada clase de forma individual,
especialmente para músculos sanos. La compresión de datos inherente
que ocurre dentro del cuello de botella del SAE permitió representar la
información principal de las matrices de Mueller multiespectrales con
solamente dos imágenes (Fig. 11.20), señalando inmediatamente las zonas
de músculo sano. Un análisis del error de reconstrucción apuntó a los
elementos de la diagonal de las matrices como aquellos más importantes
para una correcta clasificación, de forma similar a lo obtenido con los
otros métodos. De la misma manera, una comparación de los resultados
de la clasificación entre SAE y KNN destacó áreas de discrepancias,
potencialmente dominadas por una mezcla de tejidos, indicando que
MMI también se puede explotar para tareas de detección de márgenes.

Combinación de propiedades ópticas

El capítulo 9 se centró en utilizar las propiedades ópticas derivadas de
las diferentes modalidades de imagen, específicamente en el uso de OCT,
PS-OCT, HSI y SFDI, para mejorar la comprensión de la evolución de
las distrofias musculares. Estas propiedades se evaluaron desde dos
aproximaciones diferentes: una basada en visualización y otra basada en
el análisis estadístico.

El análisis por visualización involucra utilizar una técnica de asignación
de color para crear mapas bidimensionales de enfermedad basados
en tres propiedades ópticas simultáneamente. Específicamente, la ate-
nuación, birrefringencia y perfilometría de las muestras se asignaron
a diferentes componentes del espacio de color matiz-saturación-valor
(HSV). Los resultados obtenidos de las muestras de ratón demostra-
ron la efectividad de esta técnica para destacar diferencias clave entre
muestras sanas y distróficas, particularmente al visualizar variaciones de
estructuración a través de la birrefringencia (Fig. 11.21). La inclusión de
la perfilometría ayudó a completar la visualización y sirvió para crear
mapas tridimensionales de variación de propiedades ópticas.

Para cuantificar la separabilidad entre las distribuciones de las propieda-
des ópticas obtenidas entre las muestras sanas y las distróficas con las
múltiples técnicas de imagen, se creó un dataset combinado con todas
ellas, incluyendo atenuación, birrefringencia, reflectancia, absorción y
scattering. Se utilizaron métricas estadísticas, como la relación discri-
minante de Fisher y el test de Kolmogorov-Smirnov, para evaluar el
poder discriminante de cada propiedad. Aunque individualmente las
propiedades mostraron cierto grado de separabilidad, su combinación
(Fig. 11.22), obtenida por métodos de reducción de dimensionalidad como
PCA, t-SNE y Isomap, dio lugar a una ligera mejoría en la separabilidad.
Sin embargo, el solapamiento entre las distribuciones es significativo,
posiblemente debido a la variación observada de éstas propiedades entre
muestras y en cada una de ellas.

Un análisis realizado por medio de una red neuronal (MLP) permitió
evaluar la separabilidad a partir de las propiedades ópticas. En primera
instancia, se utilizó el dataset generado con las diez propiedades ópticas
resultante de combinar todos los métodos de imagen. Los experimentos
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Figura 11.22: Comportamiento(a) pro-
medio e (b) individual de las propieda-
des ópticas, ordenadas decrecientemente
en función del valor promedio para las
muestras de control (verde). Se observa
la tendencia opuesta para lass muestras
distróficas (rojo), aunque la variación
intermuestral da lugar a un elevado so-
lapamiento entre ambas categorías.

de clasificación realizados con este dataset no eran capaces de generalizar,
posiblemente debido a que la falta de consistencia entre campo de visión
y resolución de cada tecnología obligó a realizar un muestreo aleatorio
de cada propiedad en las medidas, lo cual mezcla las inhomogeneidades
de cada propiedad óptica. Los siguientes experimentos se centraron en
la clasificación independiente de cada sistema de medida para asegurar
el corregistro entre las distintas propiedades. Al contrario que el dataset
global, las clasificaciones realizadas para cada modalidad proporcionaron
una mejoría en el dataset de test, especialmente con las propiedades
derivadas de SFDI y OCT/PS-OCT, con variaciones en sensibilidad y
especificidad. Estos resultados sugieren que aunque la combinación
mutlimodal es prometedora, los métodos actuales de muestreo generan
inconsistencias que dificultan la clasificación. Por el contrario, el aumento
de precisión obtenido al evaluar las técnicas de forma independiente
sugieren que, aunque el solapamiento es elevado, existe una ligera
separabilidad que los clasificadores son capaces de aprender.

Finalmente, aunque la combinación de datos de diferentes modalidades
en su estado actual no es la óptima para realizar clasificación de medidas,
su comportamiento conjunto apoya la discusión de las muestras desde
un punto de vista químico y estructural de forma no invasiva y no
destructiva, lo cual puede aprovecharse para hacer un primer filtrado de
las muestras antes de realizar experimentos cuantitativos.

Resultados adicionales en otros campos de aplicación

El capítulo 10 proporciona una visión general de cómo las técnicas de
imagen discutidas en este libro fueron aplicadas a otros campos de
investigación, incluyendo la oftalmología, la arqueología, la neurociencia
y la bioingeniería. Cada aplicación demuestra la versatilidad y potencial
de estos métodos no invasivos para apoyar o responder a diversas
preguntas de investigación o a mejorar protocolos en varios dominios.

En oftalmología se diseñó un método de segmentación conteo celular
automático utilizando OCT para mejorar la cuantificación de la uveítis,
ofreciendo una métrica objetiva y un protocolo eficiente comparado con
el conteo manual, con el fin de mejorar la precisión diagnóstica y de
estandarizar la evaluación de esta enfermedad. El estudio arqueológico
se centró en el uso de OCT para la evaluación de un raspador de cuarzo
prehistórico, donde se detectaron estructuras sub-superficiales y se
evaluaron los residuos depositados en la pieza sin dañarla. La sección
de neurociencia explora la aplicación de MMI en imágenes de cerebro,
proporcionando un análisis detallado de las propiedades polarimétricas
del tejido cerebral sano. Este experimento tiene como objetivo contribuir
a una comprensión mejor de las estructuras y funciones del cerebro,
con potenciales implicaciones para el diagnóstico y el monitorizado
de ciertas condiciones neurológicas. Finalmente, se demostró el uso de
PS-OCT en el ámbito de la bioingeniería para el análisis de modelos
de tejido conectivo para el estudio de la fibrosis cardiovascular. Estas
técnicas permitieron la visualización y cuantificación de cambios en las
estructuras fibrosas antes y después del tratamiento, para ayudar en la
evaluación de la eficacia de nuevas terapias.



293

En general, naturaleza la no-invasiva y no-destructiva de la imagen
óptica, en conjunto con su alta resolución y capacidad de proporcional
información estructural y funcional, convierte estas tecnologías en fuertes
herramientas para la investigación en general y en aplicaciones clínicas.

Conclusiones globales y líneas de trabajo futuras

El objetivo principal de esta tesis doctoral consistió en responder a una
pregunta específica: ¿pueden las técnicas de imagen óptica ayudar en
el diagnóstico de las distrofias musculares? El concepto de “ayudar en
el diagnóstico” es amplio y, en el contexto de este libro, comprende
desde una mejora en la visualización de las muestras hasta el uso de las
propiedades ópticas como marcadores de enfermedad. El inconveniente
principal que todas estas técnicas tienen en común es su reducida
capacidad de penetrar en los tejidos, lo cual dificulta su implementación
in vivo para el seguimiento de pacientes, lo cual limita los recursos
invertidos por la comunidad científica en la exploración de los métodos
ópticos para las distrofias musculares. Sin embargo, la medicina va más
allá de las clínicas. Ya sea a través de diferentes situaciones en las que
el tejido de un paciente podría estar expuesto (por ejemplo, cirugía) o
a través de modelos animales que se están desarrollando para probar
la eficacia de diversos fármacos, las tecnologías ópticas pueden ayudar
en este campo proporcionando información adicional o alternativa que,
en muchos casos, se puede obtener en tiempo real sin interferir con
el análisis de referencia que a menudo se realiza en tejidos distróficos.
En esos casos, la imagen óptica puede introducirse en las prácticas de
laboratorio habituales para proporcionar una estimación de qué muestras
deben analizarse primero, para indicar cuáles son más uniformes o para
guiar el muestreo de regiones de interés de específicas para metodologías
que no pueden evaluar todo el tejido disponible.

Responder a esta pregunta de investigación no fue sencillo e implicó eva-
luar las muestras desde diferentes puntos de vista con tantas tecnologías
como fuera posible en un análisis exhaustivo, pionero en su tipo, de las
propiedades ópticas de muestras de ratones distróficos. Específicamente,
nos centramos en el uso de la tomografía de coherencia óptica (OCT)
y la OCT sensible a la polarización (PS-OCT) para evaluar los cambios
estructurales de las muestras a escala micrométrica. Acompañamos esos
resultados con imágenes hiperespectrales (HSI) e imágenes de dominio
de frecuencia espacial (SFDI) para inferir los cambios químicos que po-
drían estar ocurriendo en las muestras. Finalmente, utilizamos imágenes
de Mueller multiespectrales (MMI) para deducir si las propiedades pola-
rimétricas de las muestras pueden utilizarse para detectar áreas de tejido
muscular no dañado. Para concluir, también evaluamos si la combinación
de propiedades ópticas es una mejor estimación de la enfermedad que la
información individual proporcionada por cada sistema.

Este libro ha demostrado el potencial significativo de las técnicas de
imagen óptica para avanzar en nuestra comprensión y evaluación de la
distrofia muscular. Se deben considerar mejoras para optimizar completa-
mente estas tecnologías para la tarea de identificar distrofias musculares,
principalmente a través de un incremento de muestras para derivar los
parámetros ópticos de cada categoría y evitar el efecto de las variaciones
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inter-muestrales. Aun así, la capacidad de sondear tanto las propiedades
estructurales como químicas del tejido muscular de forma no invasiva
ofrece información valiosa sobre la progresión de la enfermedad y la
respuesta al tratamiento, y puede utilizarse cuantitativamente para com-
plementar los métodos diagnósticos y analíticos convencionales que no se
pueden utilizar con tanta regularidad debido a su naturaleza invasiva.

Aunque esta investigación se ha centrado principalmente en el análisis
ex vivo, los esfuerzos futuros deberían explorar la traducción de estas
técnicas a aplicaciones in vivo, potencialmente a través del desarrollo de
sondas mínimamente invasivas o sistemas de imágenes endoscópicas, o
continuando con modelos animales in vivo donde la penetración de la luz
no es un problema tan significativo. Además, expandir la investigación
a una gama más amplia de modelos de distrofia muscular e incorporar
estudios longitudinales será crucial para establecer la utilidad clínica
de estos biomarcadores ópticos. En última instancia, el desarrollo y
perfeccionamiento continuo de las tecnologías de imagen óptica son
muy prometedores para mejorar el diagnóstico y el seguimiento de las
distrofias musculares, allanando el camino para mejores resultados para
los pacientes.
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Neste capítulo inclúese una visión xeral dos temas e das contribucións
discutidos ao longo desta tese. A distribución do capítulo e similar á
seguida no documento principal, comezando por unha breve introdución
cuxo enfoque reside en establecer a motivación deste traballo e os obxecti-
vos principais desta tese. A continuación inclúese unha breve explicación
das técnicas de imaxe aplicadas durante este traballo, seguido dunha
visión xeral dos métodos de análises utilizados. As seguintes seccións
discuten os resultados principais obtidos do uso de cada técnica de
xeito individual, pero tamén da súa combinación. Finalmente, inclúese
unha sección con traballos adicionais realizados en función de métodos
derivados do obxectivo principal da tese, seguido dunhas conclusións
globais e futuras liñas de traballo.

Introdución e motivación do traballo

As distrofias musculares (MD) son un grupo de enfermidades xenéticas
hereditarias que causan debilidade e dexeneración muscular progresivas,
impactando de xeito significativo as capacidades físicas e a calidade
de vida [1]. Estas enfermidades, aínda que raras (cunha prevalencia,
por exemplo, de 6 en 100.000 homes para a máis común [1]), afectan a
individuos, a miúdo cun inicio temperán (5-30 anos), e frecuentemente
involucran complicacións cardíacas [2]. Máis alá dos desafíos físicos, as
distrofias musculares supoñen cargas emocionais, sociais e económicas,
incluíndo a perda de independencia, o illamento social e un custo médico
elevado. O diagnóstico temperán é fundamental para maximizar os
beneficios dos tratamentos dispoñibles pero os métodos de diagnóstico
actuais, como as biopsias musculares, son invasivos e teñen limitacións.
Isto fai necesaria a creación de ferramentas de diagnóstico non invasivas
e accesibles.

Esta tese doutoral explora o potencial das tecnoloxías de imaxe óptica
para abordar esta necesidade. Centrándose nun conxunto de datos único
de tecido muscular esquelético ex vivo de ratos (tanto sans como con
distrofia), esta tese avalía catro técnicas de imaxe óptica específicas:
Tomografía de Coherencia Óptica en Intensidade (OCT) e Sensible á
Polarización (PS-OCT), Imaxe Hiperespectral (HSI) nos rangos espectrais
do visible/infravermello próximo (VISNIR) e infravermello de onda curta
(SWIR), Imaxe no Dominio das Frecuencias Espaciais (SFDI) e Imaxe de
Mueller Multiespectral (MMI). Cada técnica ofrece información única
sobre a estrutura, composición e función do tecido muscular. O obxectivo
principal desta tese é avaliar a viabilidade e eficacia destas técnicas,
individualmente e na súa combinación, para caracterizar a patoloxía
muscular na distrofia muscular.

Ao estudar e combinar estas técnicas, preténdese desenvolver un enfoque
integral para avaliar a saúde muscular, visualizar os cambios estruturais
e de composición, e extraer parámetros ópticos como posibles biomar-
cadores da enfermidade. Ademais, preséntase unha metodoloxía para
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Figura 12.23: Esquema dun interferóme-
tro de Michelson adaptado de [3]. Unha
fonte de luz (() produce raios (1) que
chegan a un divisor de feixe (�(). Parte
da intensidade (2) diríxese cara a un es-
pello de referencia ("1). A outra parte
atravesa unha placa de compensación
�, que conta co mesmo grosor e índice
de refracción que o divisor de feixe, an-
tes de alcanzar un segundo espello "2.
Ambos feixes se vólvense a combinar na
sección traseira do divisor e viaxan de
forma paralela ata alcanzar unha lente
de colimación (!), a cal focaliza o patrón
de interferencia no plano que contén %
e que é paralelo a "1. "′

2
representa a

imaxe de "2 duplicada en torno á cara
traseira do divisor de feixe.

7 O termo scattering describe a redirec-
ción da luz cando esta interactúa coas
partículas dun medio. Neste capítulo uti-
lízase o termo en inglés para evitar con-
fusión con outros termos similares.

integrar os datos de diferentes técnicas, creando visualizacións combina-
das e realizando análises estatísticas para avaliar as correlacións entre os
parámetros. Finalmente, avalíanse técnicas de aprendizaxe automática
para mellorar as capacidades de diagnóstico.

Técnicas de imaxe óptica e métodos de análise

Tomografía de coherencia óptica (OCT)

OCT é unha técnica de imaxe baseada en fenómenos de baixa coherencia
para reconstruír a estrutura interna dunha mostra. Esta técnica está
baseada nos principios de interferometría, onde a combinación de dúas
ondas de luz pode amplificar ou diminuír o sinal combinado en base á
súa diferenza de fase. O elemento central dun sistema OCT é, tipicamente,
un interferómetro de Michelson (Fig. 12.23), o cal divide un feixe de luz
en dous camiños onde un se dirixe cara á mostra e o outro a un brazo de
referencia de lonxitude fixa. A través de analizar o patrón de interferencia
dos dous feixes cando se volven a combinar pódese obter unha medida
da estrutura interna das mostras.

A propiedade óptica principal obtida con OCT é o coeficiente de atenua-
ción (�C), o cal representa o efecto combinado da absorción da luz (�0) e
scattering7 (�B) dunha mostra. As diferenzas en coeficiente de atenuación
permiten identificar variacións na estrutura interna das mostras, as cales
poden ser indicadores de distrofia. Nesta tese consideráronse varios
métodos para calcular o coeficiente de atenuación, incluíndo:

1. A lei de Beer-Lambert [4–6]: Modela a atenuación da luz ao atra-
vesar un medio turbio como unha función decadente exponencial
en termos da distancia percorrida no medio (profundidade de
penetración), z.

2. A función de dispersión de punto (PSF): Considera o efecto da óptica
incluída no equipo OCT nos cambios de intensidade medidos.

3. Método do material de referencia (phantom): Utiliza unha mostra
de referencia coñecida para calibrar as medidas a través dunha
versión modificada da lei de Beer-Lambert. ([7])

4. Atenuación localizada: Calcula a atenuación en cada punto da
mostra a través de considerar incrementos locais.

OCT sensible á polarización (PS-OCT)

A modalidade alternativa de OCT sensible á polarización (PS-OCT)
utiliza unha versión modificada do interferómetro de Michelson ao cal
se lle introducen láminas retardadoras en cada brazo para seleccionar
o estado de polarización co que se ilumina a mostra. Iso permite non
só capturar a intensidade de scattering recibida, senón tamén a fase da
onda medida.

O sistema PS-OCT reconstrúe a reflectancia complexa a partir dos patróns
de interferencia detectados. Esas reflectancias utilízanse para calcular
os parámetros do vector de Stokes, os cales proporcionan información
acerca do estado de polarización da luz.
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A partir dos vectores de Stokes pódense obter certos parámetros de
polarización relevantes, como a orientación do eixe óptico ou a unifor-
midade do grao de polarización. Non obstante, o máis importante e
utilizado nesta tese é a birrefrinxencia da mostra. A birrefrinxencia mide
a diferenza entre os índices de refracción dunha mostra anisótropa ao
longo dos seus dous eixes. O método descrito por Chin et al. [8] permite
calcular a birrefrinxencia en base ao cambio de fase do vector de Stokes
coa profundidade de penetración da luz na mostra. Unha birrefrinxencia
alta indica un alto grao de anisotropía entre os dous índices de refracción,
mentres que unha mostra isótropa non presenta birrefrinxencia. Desta
maneira preténdese separar os músculos sans, altamente anisótropos,
dos músculos danados por distrofia.

Imaxe hiperespectral (HSI)

Os sistemas de imaxe hiperespectral (HSI) capturan a luz emitida por
unha fonte despois de atravesar un medio e reflectirse nel de forma difusa.
O contido espectral da fonte de luz cambia en base ás propiedades da
mostra.

A reflectancia difusa prodúcese cando a luz entra na mostra, sofre
scattering no seu interior e sae da mostra para ser capturada polo sensor.
A cantidade de luz recollida está relacionada coa absorción de cada
compoñente da mostra. Unha forma de interpretar o funcionamento dun
sistema HSI é consideralo como unha cámara de cor avanzada que, en
lugar de tres canais de cor, conta con centos deles. Fundamentalmente,
consisten nunha lente e unha cámara acopladas a un espectrógrafo, o cal
descompón a luz capturada nos seus compoñentes espectrais.

Na práctica, a reflectancia medida necesita ser corrixida debido a factores
como o espectro non uniforme da fonte de luz, a introdución de fontes
de luz non controladas no sistema (reflexións) ou o ruído do detector.
Isto involucra utilizar unha mostra de referencia (Spectralon) e realizar
medidas de corrección de ruído.

HSI pódese utilizar para estimar as fraccións de volume de diferentes
compoñentes químicos a través de modelos físicos que consideran a
absorción e scattering das mostras baixo certas suposicións. A maioría
de modelos baséanse en obter a absorción como a suma de absorcións de
compoñentes individuais. Estes compoñentes, denominados cromóforos,
obtéñense a partir de medidas puras dos mesmos. Algúns cromóforos
típicos de tecidos biolóxicos son a hemoglobina, mioglobina, lípidos,
elastina, coláxeno ou auga, entre outros (Fig. 12.24). Utilizando HSI
preténdese relacionar o contido de ditos compoñentes con marcadores
clínicos de distrofia como a cantidade de graxa ou músculo nas mostras.

Neste libro compáranse varios modelos que consideran os efectos do
scattering de formas diferentes:

1. Modelo de Kubelka-Munk [9]: Estima o scattering asumindo que a
mostra pódese tratar como un medio semi-infinito. Orixinalmente,
este modelo definiuse para estimar a absorción e scattering de
pigmentos en po, os cales contan cun alto coeficiente de scattering.
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Figura 12.24: Coeficientes de atenuación (�0 [cm−1]) dos cromóforos de referencia máis comúns en función da lonxitude de onda (�
[nm]). Os datos de Schenkman et al. [12], orixinalmente definidos en función da densidade óptica, foron transformados a atenuación por
medio da comparación do camiño óptico para facer que os picos coincidan cos definidos por Jacques [13]. Datos adaptados de [12–17].

2. Aproximación empírica de Jacques [10]: Considera o efecto de
absorción e scattering a través dunha aproximación empírica do
comportamento observado en simulacións de Monte Carlo.

3. Simulacións de Monte Carlo: Derívase a relación entre absorción e
scattering a partir dunha táboa obtida de múltiples simulacións de
Monte Carlo.

4. Modelo de Krishnaswamy et al. [11]: Estima a influencia do scatte-
ring como unha relación decrecente exponencial coa lonxitude de
onda.

5. Modelo de Jacques [10]: Similar ao anterior, pero separa as contri-
bucións de scattering de Mie e Rayleigh.

Imaxe de Mueller multiespectral (MMI)

A imaxe de matriz de Mueller (MMI) é unha técnica óptica utilizada
para caracterizar as propiedades de polarización dunha mostra por
medio de como esta altera o estado de polarización da luz incidente. Con
MMI pódese obter información sobre efectos como a birrefrinxencia, a
diatenuación ou a despolarización da mostra.

Os equipos MMI consisten en dous compoñentes principais:

▶ Xerador de estados de polarización (PSG): Xera un conxunto de
estados de luz polarizada controlados para iluminar a mostra. Está
composto pola fonte de iluminación e a óptica de polarización
necesaria.

▶ Analizador de estados de polarización (PSA): Mide a polarización
do estado da luz despois de interactuar coa mostra. Contén óptica
de polarización adicional e o detector.

A matriz de Mueller, que describe as propiedades de polarización da
mostra, obtense tras analizar como a mostra transforma os estados de
polarización xerados nos detectados. Dado que o PSA e o PSG contan
coas súas propias matrices coñecidas, a matriz da mostra sepárase das
do sistema por medio de cálculos matriciais.
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8 En adiante, datasets

Nesta tese desenvolvéronse dúas versións dun sistema de imaxe de
Mueller. A primeira versión (MMI v1.0) utiliza unha fonte de iluminación
LED cunha roda de filtros para seleccionar distintas lonxitudes de onda.
O PSG contén un polarizador fixo e unha lámina retardadora orientable
para xerar os estados de polarización. O PSA está formado por unha
cámara polarimétrica e unha lámina retardadora que se introduce ou non
no camiño óptico nas distintas medidas. A segunda versión (MMI v2.0)
consiste nunha mellora do anterior a través de modificacións do PSG.
A fonte de LED branca e a roda de filtros substitúense por unha fonte
de múltiples LED sintonizable. Ademais, o polarizador foi introducido
nunha montura orientable para maior flexibilidade á hora de xerar os
estados de polarización.

A calibración dos sistemas MMI é crucial para obter medidas precisas.
Nesta tese utilízase o método de calibración dos valores propios (ECM)
para determinar as matrices do PSA e PSG, as cales son utilizadas a
continuación para extraer a matriz de Mueller da mostra a partir dos
datos medidos [18]. Este proceso involucra a medida de mostras coñecidas
(aire, polarizadores, láminas retardadoras) e a comparación das medidas
experimentais cos valores teóricos de cada unha delas. Outro factor a
considerar no deseño destes equipos é o número de condicionamento
das matrices do PSG e PSA. Este número utilízase como un indicador da
sensibilidade de ditas matrices ao ruído, e a súa orixe reside no espazo
que ocupan os estados xerados e medidos dentro da esfera de Poincaré. A
esfera de Poincaré é unha representación tridimensional dos estados de
polarización posibles e, con catro estados, o número de condicionamento
ideal é

√
3, o cal se corresponde co tetraedro regular que maximiza o

espazo que ocupa na esfera.

Unha vez obtida a matriz de Mueller aplicáronse varios métodos de
descomposición matricial para extraer propiedades ópticas específicas
das mostras, como a despolarización, a diatenuación e o retardo. Ao igual
que con PS-OCT, estas métricas relaciónanse co nivel de organización
estrutural dos tecidos, pero tamén coas súas propiedades de scattering, o
que pode axudar a identificar zonas de fibras musculares sans ou danadas
tanto a través de organizacións irregulares ou cambios de tamaños de
centros de scattering.

Resultados principais

Comportamento óptico das mostras con OCT e PS-OCT

O capítulo 6 explora a aplicación de OCT para a caracterización de mostras
de tecido muscular obtidas dun modelo animal en rato con deficiencia
de 
-sarcoglicano. Esta deficiencia relaciónase con certas modalidades
de distrofia muscular como a distrofia muscular de cadeira (LGMD)
ou as miopatías miofribilares (MFM). Analizáronse dous conxuntos de
datos8, MD1 e MD2, os cales contiñan un rango de mostras de control
(WT) e distróficas (Knock-out (referring to dystrophic mice) (KO)). As
primeiras análises centráronse na intensidade derivada de medidas OCT,
a cal demostrou un decaemento non homoxéneo no interior das mostras,
indicador de variacións estruturais en cada mostra pero tamén entre
elas.
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O método do material de referencia utilizouse para xerar mapas bidi-
mensionais de atenuación (�C), centrándonos na análise na rexión de
scattering simple, que se aproxima ás 250 �< máis superficiais dos
tecidos biolóxicos (Fig. 12.25, b). Os mapas de atenuación mostraron
alteracións na densidade dos tecidos para cada mostra cun forte solapa-
mento das distribucións estatísticas de atenuación entre mostras sas e
distróficas para o dataset MD1. A pesar de que se obtivo unha mellor
separación no dataset MD2, ningún dataset proporcionou unha separa-
ción clara entre categorías clínicas por medio da análise de atenuación de
mostras volumétricas. Unha comparación cos valores obtidos por outros
grupos para o limiar de atenuación entre tecido san e necrótico nun
modelo animal de distrofia muscular de Duchenne suxire que (1) ou os
modelos con déficit de 
-sarcoglicano mostran menos necrose que os de
Duchenne, (2) ou que a análise de todo o volume das mostras, en lugar
de rexións específicas, introducen unha variabilidade que esvae o limiar
de atenuación entre os dous tipos de tecido.

Os mapas bidimensionais de atenuación sinalaron zonas de variación
interna, as cales foron posteriormente avaliadas a través da visualiza-
ción de seccións transversais (Fig. 12.25, c) e da aplicación do modelo
de atenuación localizada (Fig. 12.25, d). Os dous modelos mostraron
discrepancias: Mentres que o método do material de referencia mostraba
atenuación máis baixa en zonas densas, o modelo localizado mostraba
a tendencia oposta. Esta diferenza xorde da forma de calcular a atenua-
ción específica de cada método: mentres que o método do material de
referencia acha a resposta media dos tecidos nun rango de profundidade
maior, o modelo localizado mostra valores píxel a píxel. A pesar diso,
a información combinada obtida por medios modelos proporcionou
unha comprensión maior que utilizando soamente un. Especificamente o
método do material de referencia identificou zonas de interese coa mostra
“vista desde arriba” que facilitou a selección de cortes transversais especí-
ficos que avaliar en cada mostra, axudando ademais á identificación de
estruturas sub-superficiais.

Ademais das medidas de intensidade, no mesmo capítulo tamén se
explorou o potencial de PS-OCT para documentar as propiedades dos
tecidos sans e distróficos. Para iso, xeráronse mapas bidimensionais de
birrefrinxencia a partir do retardo de fase obtido dos parámetros de Sto-
kes (Fig. 12.25, e). Estes mapas, aínda que tamén exhiben unha variación

a) b) c) d) e)

Figura 12.25: (a) Imaxe en cor de referencia, (b) mapa bidimensional de atenuación obtido co método do material de referencia (b),
(c) corte transversal da mostra na liña indicada en (a) e (b), (d) atenuación localizada no corte transversal ensinado en (c) e (e) mapa
bidimensional de birrefrinxencia. A mostra mostrada na imaxe correspóndese cunha mostra distrófica de tres meses de idade.
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inter- e intra-mostra significativa, proporcionaron unha separación entre
controis e mostras distróficas maior que a proporcionada pola atenua-
ción. En concreto, no dataset MD1 observouse unha clara separación
entre as dúas categorías clínicas, onde as mostras sas proporcionaron
consistentemente uns valores de birrefrinxencia maiores que o limiar
considerado na bibliografía entre tecido san e necrótico, e onde as mostras
distróficas se atoparon consistentemente debaixo dese limiar. O segundo
dataset (MD2) tamén mostraba unha separación maior de birrefrinxencia
que o seu análogo de atenuación, pero lixeiramente inferior que para o
dataset MD1. A variación obtida entre datasets pode ter a súa orixe na
cantidade de mostras. Mentres que o dataset MD1 contaba soamente con
catro mostras sas, o dataset MD2 contiña o mesmo número de mostras
sas que distróficas (13 por categoría), o cal indica que, aínda que con
menor separación, este dataset é máis representativo da variación que
se observaría nun caso real. En calquera caso, a mellora dos resultados
utilizando birrefrinxencia que utilizando atenuación indica que a varian-
te PS-OCT é máis sensible aos cambios asociados coa enfermidade. A
pesar de que as mostras distróficas sofren cambios químicos, estes poden
non ser o suficientemente fortes como para manifestarse en cambios de
atenuación pero si para alterar a estrutura muscular o suficiente como
para ser detectados a través dunha caída de birrefrinxencia.

En resumo, a análise con OCT e PS-OCT demostrou que estas técnicas
poden ser sensibles a cambios estruturais para distinguir mostras sas de
distróficas. Estudos adicionais cun rango de idades maiores nos modelos
animais poderían axudar a determinar as dinámicas temporais dos
cambios en atenuación e birrefrinxencia coa evolución da enfermidade,
pero tamén para determinar se existe unha xanela temporal óptima onde
a necrose se manifeste o suficiente para poder utilizar a atenuación como
marcador clínico de distrofia en modelos de déficit 
-sarcoglicano.

Análise de absorción e scattering con HSI e SFDI

O capítulo 7 analizou a aplicación de HSI e SFDI para a caracteriza-
ción das mostras do dataset MD2 co obxectivo de obter información
acerca dos cambios químicos que ocorren no modelo de deficiencia de

-sarcoglicano. As análises iniciais dos espectros de referencia no rango
visible/infravermello próximo (VISNIR) e infravermello de onda curta
(SWIR) mostraron características espectrais específicas para estas mostras.
Os espectros VISNIR contan cunha reflectancia maior por riba dos 600
nm, consistente coa cor avermellada das mostras, ademais de que tamén
conteñen os picos e vales característicos da absorción da hemoglobina
ou mioglobina entre 500 e 580 nm. Os espectros SWIR, a pesar de estar
influenciados por cromóforos como elastina e graxa, estaban principal-
mente dominados pola absorción da auga. As mostras, ao proceder de
modelos de rato, son finas, o cal supón un desafío á hora de medila con
HSI. En concreto, as rexións espectrais que non contan con absorción
significativa permiten a viaxe dos fotóns ata atravesar toda a mostra, o
cal fai que a base sobre a que se depositan as mostras altere a resposta
espectral en ditos rangos. En concreto, para a determinación das seguintes
análises, consideráronse soamente os espectros, aproximadamente, por
debaixo dos 600 nm e por riba dos 1300 nm, onde a absorción das mostras
evita a influencia da base.
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Neste análise probáronse tres modelos que avalían de forma diferente
a relación entre absorción e scattering: o modelo de Kubelka-Munk, a
aproximación empírica de Jacques e o cociente derivado das simula-
cións de Monte Carlo. Aínda que cada modelo baséase en diferentes
suposicións, os tres mostraron tendencias similares nas rexións de alta
relación sinal-ruído (SNR). A pesar de que cada un proporcionou unha
diferente relación absorción/scattering en canto ao seu valor absoluto, a
consistencia espectral indica que os tres métodos son capaces de detectar
variacións espaciais de cromóforos cualitativas en cada mostra. O méto-
do de Monte Carlo está considerado xeralmente como a aproximación
máis utilizable, xa que considera implicitamente os eventos de scattering
múltiple, os cales non son xeralmente explicados polos modelos máis
tradicionais. Por iso, o cociente entre absorción e scattering e o cálculo
do albedo derivouse a partir das simulacións.

A comparación do albedo entre as categorías clínicas mostrou uns resul-
tados igualmente altos en ambos rangos espectrais, sen unha distinción
clara entre as mostras sas e as distróficas. Non obstante, si que se observou
un albedo lixeiramente inferior nalgunhas mostras de control no rango
dominado pola hemoglobina, o cal suxire unha maior concentración
deste composto químico nas mostras sas. A estimación da oxihemoglo-
bina e desoxihemoglobina, utilizando o método de suma de absorción
de cromóforos, ensinou que case o 100 % do contido total estimado de
hemoglobina correspóndese coa súa forma osixenada, con desviacións
deste comportamento soamente para as mostras de maior tamaño. Esta
observación suxire que un volume de mostra maior facilita a detección
de áreas de hemoglobina que non foron expostas ao osíxeno. Dadas
as limitacións existentes para separar as contribucións da absorción e
o scattering das mostras coa técnica HSI, considerouse para as seguin-
tes análises que os mellores marcadores das propiedades ópticas das
mostras son ou o cociente entre absorción e scattering, ou o albedo, ou
directamente os espectros de reflectancia ou os seus valores de referencia
estatísticos.

No rango SWIR utilizouse un experimento baseado en mesturas de ma-
teriais coñecidas (phantoms). Especificamente, fixéronse varios phantoms
con diferentes cantidades de graxa e músculo, xa que nas distrofias
musculares o músculo transfórmase en graxa co tempo. Un modelo
baseado na relación de reflectancias a dúas lonxitudes de onda relacio-
nadas co contido de graxa e auga serviu para estimar zonas de graxa
localizada nalgunhas das mostras, demostrando o potencial deste méto-
do para seguir a evolución da transformación do músculo en graxa en
enfermidades musculares. Non obstante, a maioría das mostras de rato
contan cun moi pequeno volume de mostra, co que é necesario refinar
o método dos phantoms de mesturas coñecidas por medio de avaliar
diferentes volumes de phantoms. Isto axudará a estimar cal é o grosor
de mostra necesario para obter unha determinación de graxa precisa no
rango espectral SWIR, onde os fotóns percorren unha maior lonxitude
no interior das mostras.

A continuación realizáronse medidas de reflectancia difusa a varias
frecuencias espaciais coa técnica SFDI, onde os resultados se centraron
nos rangos de cor vermello-verde-azul próximos aos picos de iluminación
máxima do proxector utilizado. O decaemento rápido da reflectancia
co aumento da frecuencia espacial (ata 0.22 mm-1) suxire un baixo
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scattering das mostras. Esta información pódese utilizar para optimizar
os protocolos de medida e minimizar o secado das mostras durante
sesións de medida SFDI. Ademais, SFDI tamén sinalaba ás rexións graxas
previamente identificadas a partir de HSI-SWIR como rexións de menos
absorción e maior scattering que o tecido circundante. Unha comparación
dos cocientes absorción/scattering cos obtidos con HSI (Fig. 12.26) revelou
unha discrepancia significativa, onde os derivados de HSI eran case un
orde de magnitude inferiores aos obtidos de SFDI. A posible orixe desta
diferenza xorde da colocación do material de referencia (Spectralon)
utilizado para calibrar os sistemas en función da súa resposta espacial
durante as medidas; mentres que en HSI colócase aliñado coa parte
superior da mostra para evitar o cálculo de reflectancias maiores da
unidade, en SFDI sitúase aliñado coa base e utilízase a perfilometría
para adaptar a medida de referencia ao volume da mostra. Ademais,
a variación existente no camiño óptico entre as medidas HSI e SFDI,
combinado co secado das mostras entre ambas medidas dan lugar a que
as comparacións entre elas, aínda que factibles, non sexan directas.

A separación da absorción do scattering con SFDI mostrou distribucións
diferentes, pero solapadas, entre as categorías clínicas para os tres rangos
de cor. No rango do vermello, a metade das mostras distróficas exhibiu
unha absorción por riba da media do dataset, mentres que as mostras
de control permaneceron, en xeral, por debaixo. No rango azul, onde a
hemoglobina domina a absorción, e por riba dos 600 nm, onde a presenza
espectral da auga e da graxa comeza a non ser desprezable, as tendencias
observadas suxiren unha potencial acumulación de graxa nas mostras
distróficas. A resposta de scattering obtida é máis homoxénea, onde
as mostras distróficas tenden cara a valores lixeiramente máis baixos.
Non obstante, ambas categorías demostraron variabilidade inter-mostra,
consistentes coas diferentes formas e preparación das mostras á hora
de fixar os músculos ao seu substrato. Finalmente, a análise do albedo
mostrou unha separación entre as dúas clases clínicas mellores que
a obtida directamente de HSI. As mostras distróficas deron lugar a
un albedo consistentemente máis alto, un indicador de reflectividade
xeralmente máis alta que apoia a hipótese dun maior contido de graxa
nestas mostras, consistente cos cambios que as mostras sofren nestas
enfermidades.
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Figura 12.26: Cociente �0/�′B obtido con
SFDI (a, b, c) e HSI (d, e, f) para a mostra
de control 814 do dataset MD2. As imaxes
mostradas correspóndense con medias
en lonxitude de onda no rango espectral
do azul (a, d), verde (b, e) e vermello (c, f),
correspondente cos picos de alta SNR do
proxector LED. A barra de cor superior
cuantifica as imaxes SFDI, mentres que
a inferior cuantifica as imaxes HSI.
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Resposta polarimétrica dos tecidos obtida con MMI

O capítulo 8 explorou a aplicación da imaxe de matriz de Mueller multi-
espectral (MMI) para caracterizar o tecido muscular en patas completas
de rato (dataset LD). A preparación das mostras involucrou a desconxe-
lación, a retirada da pel e a rehidratación. Inmediatamente tras a retirada
da pel observáronse diferenzas visuais entre as tres patas, a pesar de
seren todas pertencentes a ratos sans de once ou doce meses de idade.
En concreto, unha serie de estruturas anisotrópicas brancas cubrían
diferentes rexións das patas, cuxa orixe pode ser un dano das mostras
inducido polo proceso de conxelación. Utilizamos estas propiedades
para identificar rexións de interese específicas, entre as que se elixiron
zonas danadas pola conxelación, zonas de músculo san e zonas con maior
cantidade de graxa.

As matrices de Mueller adquiridas son principalmente diagonais ao
longo de todos os tipos de tecidos e lonxitudes de onda, o que suxire
unha mostra principalmente despolarizante. Tamén se observou a exis-
tencia de elementos non diagonais débiles, particularmente no vector
de polarizancia. As reflexións especulares e outros artefactos de medida
detectáronse en zonas consideradas non fisicamente realizables polos
criterios de realizabilidade, co cal se excluíron das seguintes análises. Por
outra banda, o resto das rexións de interese son fisicamente realizables a
todas as lonxitudes de onda.

A continuación calculáronse os índices de pureza polarimétrica e o grao
de pureza polarimétrica. A pureza obtida é decrecente co aumento da
lonxitude de onda, consistente co maior camiño percorrido polos fotóns
no interior da mostra, o cal dá lugar a unha maior despolarización
polo aumento de eventos de scattering. O tecido graxo e o danado por
conxelación mostran menor pureza polarimétrica que o músculo san.
A anisotropía total observada é baixa en todas as rexións e a todas as
lonxitudes de onda, con leves variacións en anisotropía lineal e circular.

Para obter as propiedades polarimétricas do tecido comezamos pola
aplicación da descomposición polar para derivar a despolarización (Δ),
o retardo (') e a diatenuación (�). A despolarización obtida é capaz de
distinguir o músculo san do músculo danado e da graxa, e observouse
unha tendencia crecente coa lonxitude de onda. O retardo mantívose
relativamente estable mentres que a diatenuación, aínda que débil,
sinalaba a zonas de músculo san. As lonxitudes de onda máis curtas
proporcionan mellor detalle nas imaxes, o cal é esperado debido á menor
lonxitude óptica de penetración no tecido. Os diagramas de caixas destes
parámetros para os distintos tipos de tecido confirman as tendencias
observadas nas imaxes, onde unha inferior despolarización actúa como
o marcador principal de músculo san.

A descomposición diferencial tamén se aplicou ao cálculo do retardo ('!)
e diatenuación lineais (�!). De novo, a diatenuación sinala diferenzas de
textura nas mostras pero non é o suficientemente discriminatoria para
identificar tipos de tecidos diferentes. Nesta representación, o retardo
calculado é maior en zonas de músculo danado, potencialmente debido
ao existente tecido conectivo presente por debaixo das zonas danadas.
Unha comparación cos valores obtidos na literatura para músculo es-
quelético revelou resultados similares nas tendencias de diatenuación e
despolarización, pero tamén diferentes en retardo, o cal pode deberse
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Figura 12.27: Á esquerda, representación
das sete matrices de Mueller multiespec-
trais da mostra 814. Á dereita, as dúas
imaxes representan a interpretación de-
sas matrices dada polas dúas neuronas
do pescozo de botella dun autoencoder.

a variacións de volume de mostra e estruturas de tecido obtidas nos
distintos experimentos.

MMI obtén unha cantidade de datos (propiedades ópticas) significativa
en comparación con outras técnicas. Por iso decidiuse realizar a clasifica-
ción dos distintos tipos de tecidos non para distinguir o tecido san do
danado por conxelación ou da graxa, senón para identificar os elementos
individuais das matrices de Mueller que definen o músculo san e avaliar
a posibilidade de utilizar un dataset de Mueller reducido para a mesma
tarefa. Para comezar realizouse unha clasificación por medio do método
dos K-veciños máis próximos (KNN), a cal proporcionou unha precisión
media de 79.8 % tras considerar validación cruzada. A análise de impor-
tancia de características indicou que os elementos diagonais das matrices,
particularmente ás lonxitudes de onda máis curtas, son as máis relevantes
para detectar o músculo san. Un clasificador simplificado que utiliza
soamente os elementos multiespectrais "11 e "22 proporcionou unha
precisión comparable, suxerindo a posibilidade de utilizar polarimetría
parcial de Mueller para a tarefa específica da detección de músculo
san nun contorno complexo de tecidos. O método non-supervisado de
agrupamento das K-medias tamén sinalaba ao tecido san pero con menor
exactitude e repetitividade que o método supervisado KNN, o cal indica
a necesidade de métodos supervisados para esta tarefa.

Finalmente, un codificador automático (autoencoder) supervisado (SAE)
utilizouse para a extracción das características principais e a clasifica-
ción de tecidos simultánea. O SAE conseguiu unha precisión similar a
KNN, pero cun rendemento maior para cada clase de forma individual,
especialmente para músculos sans. A compresión de datos inherente que
ocorre dentro do pescozo de botella do SAE permitiu representar a infor-
mación principal das matrices de Mueller multiespectrais con soamente
dúas imaxes (Fig. 12.27), sinalando inmediatamente as zonas de músculo
san. Unha análise do erro de reconstrución apuntou aos elementos da
diagonal das matrices como aqueles máis importantes para unha correcta
clasificación, de forma similar ao obtido cos outros métodos. Da mesma
maneira, unha comparación dos resultados da clasificación entre SAE e
KNN destacou áreas de discrepancias, potencialmente dominadas por
unha mestura de tecidos, indicando que MMI tamén se pode explotar
para tarefas de detección de marxes.
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Figura 12.28: Representación resultante
no espazo de cor HSV da atenuación, bi-
rrefrinxencia e perfilometría para a mos-
tra 814 do dataset MD2: (a) birrefrinxen-
cia normalizada (matiz, H), (b) matiz
ecualizado, (c) reconstrución de cor no
espazo HSV sen ecualización e (d) con
ecualización. A lenda de cor móstrase en
(e) para a máxima saturación.

Combinación de propiedades ópticas

O capítulo 9 centrouse en utilizar as propiedades ópticas derivadas das
diferentes modalidades de imaxe, específicamente no uso de OCT, PS-
OCT, HSI e SFDI, para mellorar a comprensión da evolución das distrofias
musculares. Estas propiedades avaliáronse desde dúas aproximacións
diferentes: unha baseada en visualización e outra baseada na análise
estatística.

A análise por visualización involucra utilizar unha técnica de asignación
de cor para crear mapas bidimensionais de enfermidade baseados en tres
propiedades ópticas simultaneamente. Especificamente, a atenuación,
birrefrinxencia e perfilometría das mostras asignáronse a diferentes com-
poñentes do espazo de cor matiz-saturación-valor (HSV). Os resultados
obtidos das mostras de rato demostraron a efectividade desta técnica para
destacar diferenzas clave entre mostras sas e distróficas, particularmente
ao visualizar variacións de estruturación a través da birrefrinxencia (Fig.
12.28). A inclusión da perfilometría axudou a completar a visualización e
serviu para crear mapas tridimensionais de variación de propiedades
ópticas.

Para cuantificar a separabilidade entre as distribucións das propiedades
ópticas obtidas entre as mostras sas e as distróficas coas múltiples técni-
cas de imaxe, creouse un dataset combinado con todas elas, incluíndo
atenuación, birrefrinxencia, reflectancia, absorción e scattering. Utilizá-
ronse métricas estatísticas, como a relación discriminante de Fisher e
o test de Kolmogorov-Smirnov, para avaliar o poder discriminante de
cada propiedade. Aínda que individualmente as propiedades mostraron
certo grao de separabilidade, a súa combinación (Fig. 11.22), obtida por
métodos de redución de dimensionalidade como PCA, t-SNE e Isomap,
deu lugar a unha lixeira melloría na separabilidade. Non obstante, o
solapamento entre as distribucións é significativo, posiblemente debido
á variación observada destas propiedades entre mostras e en cada unha
delas.

Unha análise realizada por medio dunha rede neuronal (MLP) permitiu
avaliar a separabilidade a partir das propiedades ópticas. En primeira
instancia, utilizouse o dataset xerado coas dez propiedades ópticas re-
sultante de combinar todos os métodos de imaxe. Os experimentos de
clasificación realizados con este dataset non eran capaces de xeneralizar,
posiblemente debido a que a falta de consistencia entre campo de visión
e resolución de cada tecnoloxía obrigou a realizar un muestreo aleatorio
de cada propiedade nas medidas, o cal mestura as inhomoxeneidades
de cada propiedade óptica. Os seguintes experimentos centráronse na
clasificación independente de cada sistema de medida para asegurar o co-
rregistro entre as distintas propiedades. Ao contrario que o dataset global,
as clasificacións realizadas para cada modalidade proporcionaron unha
melloría no dataset de test, especialmente coas propiedades derivadas de
SFDI e OCT/PS-OCT, con variacións en sensibilidade e especificidade.
Estes resultados suxiren que aínda que a combinación mutlimodal é
prometedora, os métodos actuais de muestreo xeran inconsistencias
que dificultan a clasificación. Pola contra, o aumento de precisión ob-
tido ao avaliar as técnicas de forma independente suxiren que, aínda
que o solapamento é elevado, existe unha lixeira separabilidade que os
clasificadores son capaces de aprender.
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Figura 12.29: Comportamento (a) medio
e (b) individual das propiedades ópticas,
ordenadas decrecentemente en función
do valor promedio para as mostras de
control (verde). Obsérvase a tendencia
oposta para as mostras distróficas (ver-
mello), aínda que a variación intermues-
tral dá lugar a un elevado solapamento
entre ambas categorías.

Finalmente, aínda que a combinación de datos de diferentes modalidades
no seu estado actual non é a óptima para realizar clasificación de medidas,
o seu comportamento conxunto apoia a discusión das mostras desde
un punto de vista químico e estrutural de forma non invasiva e non
destrutiva, o cal pode aproveitarse para facer un primeiro filtrado das
mostras antes de realizar experimentos cuantitativos.

Resultados adicionais noutros campos de aplicación

O capítulo 10 proporciona unha visión xeral de como as técnicas de imaxe
discutidas neste libro foron aplicadas a outros campos de investigación,
incluíndo a oftalmoloxía, a arqueoloxía, a neurociencia e a bioenxeñaría.
Cada aplicación demostra a versatilidade e potencial destes métodos non
invasivos para apoiar ou responder a diversas preguntas de investigación
ou a mellorar protocolos en varios dominios.

En oftalmoloxía deseñouse un método de segmentación de reconto celular
automático utilizando OCT para mellorar a cuantificación da uveíte,
ofrecendo unha métrica obxectiva e un protocolo eficiente comparado
co reconto manual, co fin de mellorar a precisión diagnóstica e de
estandarizar a avaliación desta enfermidade. O estudo arqueolóxico
centrouse no uso de OCT para a avaliación dun raspador de cuarzo
prehistórico, onde se detectaron estruturas sub-superficiais e se avaliaron
os residuos depositados na peza sen danala. A sección de neurociencia
explora a aplicación de MMI en imaxes de cerebro, proporcionando unha
análise detallada das propiedades polarimétricas do tecido cerebral san.
Este experimento ten como obxectivo contribuír a unha comprensión
mellor das estruturas e funcións do cerebro, con potenciais implicacións
para o diagnóstico e o monitorizado de certas condicións neurolóxicas.
Finalmente, demostrouse o uso de PS-OCT no ámbito da bioenxeñaría
para a análise de modelos de tecido conectivo para o estudo da fibrose
cardiovascular. Estas técnicas permitiron a visualización e cuantificación
de cambios nas estruturas fibrosas antes e despois do tratamento, para
axudar na avaliación da eficacia de novas terapias.

En xeral, a natureza non invasiva e non destrutiva da imaxe óptica, en con-
xunto coa súa alta resolución e capacidade de proporcional información
estrutural e funcional, converte estas tecnoloxías en fortes ferramentas
para a investigación en xeral e en aplicacións clínicas.

Conclusións globais e liñas de traballo futuras

O obxectivo principal desta tese doutoral consistiu en responder a
unha pregunta específica: poden as técnicas de imaxe óptica axudar
no diagnóstico das distrofias musculares? O concepto de “axudar no
diagnóstico” é amplo e, no contexto deste libro, comprende desde unha
mellora na visualización das mostras ata o uso das propiedades ópticas
como marcadores de enfermidade. O inconveniente principal que todas
estas técnicas teñen en común é a súa reducida capacidade de penetrar nos
tecidos, o cal dificulta a súa implementación in vivo para o seguimento de
pacientes, o cal limita os recursos investidos pola comunidade científica
na exploración dos métodos ópticos para as distrofias musculares. Non
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obstante, a medicina vai máis alá das clínicas. Xa sexa a través de
diferentes situacións nas que o tecido dun paciente podería estar exposto
(por exemplo, cirurxía) ou a través de modelos animais que se están
desenvolvendo para probar a eficacia de diversos fármacos, as tecnoloxías
ópticas poden axudar neste campo proporcionando información adicional
ou alternativa que, en moitos casos, se pode obter en tempo real sen
interferir coa análise de referencia que a miúdo se realiza en tecidos
distróficos. Neses casos, a imaxe óptica pode introducirse nas prácticas de
laboratorio habituais para proporcionar unha estimación de que mostras
deben analizarse primeiro, para indicar cales son máis uniformes ou para
guiar a mostraxe de rexións de interese de específicas para metodoloxías
que non poden avaliar todo o tecido dispoñible.

Responder a esta pregunta de investigación non foi sinxelo e implicou
avaliar as mostras desde diferentes puntos de vista con tantas tecnoloxías
como fose posible nunha análise exhaustiva, pioneira no seu tipo, das
propiedades ópticas de mostras de ratos distróficos. Especificamente,
centrámonos no uso da tomografía de coherencia óptica (OCT) e a OCT
sensible á polarización (PS-OCT) para avaliar os cambios estruturais
das mostras a escala micrométrica. Acompañamos eses resultados con
imaxes hiperespectrales (HSI) e imaxes de dominio de frecuencia espacial
(SFDI) para inferir os cambios químicos que poderían estar ocorrendo
nas mostras. Finalmente, utilizamos imaxes de Mueller multiespectrais
(MMI) para deducir se as propiedades polarimétricas das mostras poden
utilizarse para detectar áreas de tecido muscular non danado. Para
concluír, tamén avaliamos se a combinación de propiedades ópticas é
unha mellor estimación da enfermidade que a información individual
proporcionada por cada sistema.

Este libro demostrou o potencial significativo das técnicas de imaxe óptica
para avanzar na nosa comprensión e avaliación da distrofia muscular.
Débense considerar melloras para optimizar completamente estas tecno-
loxías para a tarefa de identificar distrofias musculares, principalmente a
través dun incremento de mostras para derivar os parámetros ópticos de
cada categoría e evitar o efecto das variacións inter-mostras. Aínda así, a
capacidade de sondar tanto as propiedades estruturais como químicas
do tecido muscular de forma non invasiva ofrece información valiosa
sobre a progresión da enfermidade e a resposta ao tratamento, e pode uti-
lizarse cuantitativamente para complementar os métodos diagnósticos e
analíticos convencionais que non se poden utilizar con tanta regularidade
debido á súa natureza invasiva.

Aínda que esta investigación se centrou principalmente na análise ex
vivo, os esforzos futuros deberían explorar a tradución destas técnicas
a aplicacións in vivo, potencialmente a través do desenvolvemento de
sondas minimamente invasivas ou sistemas de imaxes endoscópicas, ou
continuando con modelos animais in vivo onde a penetración da luz
non é un problema tan significativo. Ademais, expandir a investigación a
unha gama máis ampla de modelos de distrofia muscular e incorporar
estudos lonxitudinais será crucial para establecer a utilidade clínica
destes biomarcadores ópticos. En última instancia, o desenvolvemento
e perfeccionamento continuo das tecnoloxías de imaxe óptica son moi
prometedores para mellorar o diagnóstico e o seguimento das distro-
fias musculares, allanando o camiño para mellores resultados para os
pacientes.
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Notation

The next list describes several symbols that are used within the body of the document.


 Angle that defines the diagonal of the rectangle that describes the polarization ellipse


!,� Linear and circular anisotropy coefficients

" Ellipticity angle of the polarization ellipse

Δ� Bandwidth

Δ= Birefringence

� Penetration depth (in the context of Ch. 2) or phase delay between components of the field amplitude
(in the context of Ch. 3)

�4 5 5 Penetration depth of the modulated light

& Electric permittivity of a medium (in the context of Ch. 2 and phase delay in a Michelson interferometer
(in the context of Ch. 4)

&0 Vacuum permittivity

"̂ Measured mueller matrix of a sample

� Complex part of the refractive index of a medium

� Wavelength

� Magnetic permeability of a medium

�0 Vacuum permeability

�0 Absorption coefficient

�B Scattering coefficient

�′
B Reduced scattering coefficient

�C Attenuation coefficient

�4 5 5 Effective coefficient

�CA Transport coefficient

$ Angular frequency of a harmonic field

) Phase of a harmonic field

Φ� Electric flux

Φ" Magnetic flux

Ψ Angle of rotation of the polarization ellipse



� Charge density

� Conductivity (in the context of Ch. 2)

�0 Absorption cross section

�6 Geometrical cross-section

�8 Pauli matrix

�B Scattering cross-section

� Time-dependent phase (in the context of Ch. 3

� Angle between the propagation vector and normal to a surface (in the context of Ch. 2) or rotation
angle of an optical element with respect to the G axis of the system (in the context of Ch. 3; see "')

=̃ Refractive index of a medium

� Decaic molar extinction coefficient

�� Molar extinction coefficient

!( ®A, C) Space-time dependent phase of a harmonic field

®� Magnetic induction

®3; Line differential

®3( Surface differential

®� Electric displacement (in the context of Ch. 2) or Diattenuation (in the context of Ch. 3)

®� Electric field

®�� Force applied by a magnetic field

®�� Force applied by an electric field

®� Magnetic field

®� Charge current density (in the context of Ch. 2) or Jones matrix (in the context of Ch. 3)

®: Propagation vector (in the context of Ch. 2)

®% Electric polarization (in the context of Ch. 2) or Polarizance (in the context of Ch. 3)

®( Poynting’s vector (in the context of Ch. 2) or Stokes vector (in the context of Ch. 3)

®E Speed

{<8 9} Components of the Mueller matrix

� Absorbance

0 Radius of a scatterer (in the context of Ch. 2)

� Molar concentration of absorbers



2 Speed of light in vacuum

�� Circular birefringence

�� Circular dichroism

3Ω Solid angle

6 Anisotropy coefficient

� Magnitude of the magnetic field (in the context of Ch. 2 or covariance matrix of a Mueller matrix (in
the context of Ch. 3)

ℎ Planck constant

� Irradiance (in the context of Ch. 2), intensity of the Stokes vector (in the context of Ch. 3) or total
intensity (in the remaining chapters)

�16 Measurement of the background intensity

9 Charge current

! Mueller matrix logarithm

; Mean free path length

!(�) Optical path length

;0 Absorption mean free path

!< , !D G-symmetric and G-Antisymmetric components of the matrix logarithm

;B Scattering mean free path

!� Linear birefringence

!� Linear dichroism

" Mueller matrix

"Δ Mueller matrix of a depolarizer

"� Mueller matrix of the polarization state analyzer

"� Mueller matrix of a diattenuator

<� Lower 3×3 block of the Mueller matrix of a diattenuator

"� Mueller matrix of the polarization state generator

"' Mueller matrix of a retarder

<' Lower 3×3 block of the Mueller matrix of a retarder

<3×3 Lower 3×3 block of a Mueller matrix

"Δ% Mueller matrix of a depolarizer with polarizance

"�� Modulated component of light



"�� Constant component of light

"�% Mueller matrix of a horizontal linear polarizer

"!% Mueller matrix of linear polarizer

"#� Mueller matrix of a neutral density filter

"'>C Mueller matrix of a rotator

"+% Mueller matrix of a vertical linear polarizer

= Real part of the refractive index of a medium

$� Optical density

?G , ?H Transmittance of a diattenuator along its G and H axes

%1,2,3 Indices of polarimetric purity

%
 Degree of polarimetric purity

%Δ Degree of polarimetric purity

& Total charge

@ Punctual charge

&B Scattering efficiency

' Reflectance

A Distance to a particle (in the context of Ch. 2)

'3 Diffuse reflectance

AB Fresnel amplitude coefficient for the s-polarized portion of the reflected wave

'4 5 5 Effective reflectance

AB,? Fresnel amplitude coefficients for the s- and p-polarized portions of the reflected wave

(0 (or �), (1 (or &), (2 (or*), (3 (or +) Components of the Stokes vector

) Transmittance

C Time

CB,? Fresnel amplitude coefficients for the s- and p-polarized portions of the transmitted wave

-8 Volume fraction of a chemical component

3+ Volume differential
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All models are wrong,
but some are useful.

GEORGE E. P. BOX
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