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Abstract
Perovskites are a class of crystals of chemical formula ABX3 that can be visualized as a network of BX6

octahedra connected by the vertices, with the A-cation sitting in the interstices between octahedra. These
crystals have an ideal cubic structure that often deforms into lower symmetry structures. The most common
deformation, is the one in which the BX6 octahedra rotate. The main focus of this work is the analysis
of these rotations. In order to do this, a model based on Ginzburg-Landau theory is developed to study
the highly anharmonic potential energy surface of perovskites undergoing octahedral rotations. The model,
rooted in symmetry and group theory, is complemented by first-principles calculations of the potential
energy and relaxed atomic structures for three representative compounds: NaTaO3, LaAlO3, and SrTiO3.
To characterize the stability of different octahedral rotations, the contributions of individual energy surface
coefficients are systematically analyzed. By combining the theoretical model with numerical results, this
study provides an explanation for the prevalence of the Pnma tilt system in perovskites and offers insight
into the critical role played by A-site cation displacements in stabilizing specific structural phases.

Key words: Perovskite, octahedral rotation, first-principles, symmetry

Resumen
Las perovskitas son un tipo de cristal de formula qúımica ABX3 que se pueden visualizar como una red
de octaedros BX6 conectados por los vértices, con el cation A en el intersticio entre los octaedros. Estos
cristales tienen una estructura ideal cúbica que comunmente se deforma en estructuras de menor simetŕıa.
La deformación más común son las rotaciones de los octaedros BX6. El objetivo principal de este trabajo
es el análisis de estas rotaciones. Para hacer esto, se ha desarrollado un modelo basado en la teoŕıa de
Ginzburg-Landau para estudiar la superficie de enerǵıa potencial altamente anarmónica de perovskitas
sometidas a rotaciones octaédricas. El modelo, fundamentado en la simetŕıa y la teoŕıa de grupos, se
complementa con cálculos de primeros principios de la enerǵıa potencial y las estructuras atómicas relajadas
para tres compuestos representativos: NaTaO3, LaAlO3 y SrTiO3. Para caracterizar la estabilidad de las
diferentes rotaciones de los octaedros, se analizan sistemáticamente las contribuciones de los coeficientes
individuales de la superficie de enerǵıa. Al combinar el modelo teórico con los resultados numéricos, este
estudio proporciona una explicación de la prevalencia del sistema de rotación Pnma en perovskitas y ofrece
una visión sobre el papel cŕıtico que juegan los desplazamientos del catión A en la estabilización de fases
estructurales espećıficas.

Palabras clave: Perovskita, rotación octaédrica, primeros principios, simetŕıa
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Chapter 1

Introduction

In modern material physics, perovskites are one of the most studied materials due to their wide range of
properties and applications [1–5]. Perovskites are a class of materials that have a specific crystal structure
and chemical composition. They are characterized by their ABX3 chemical formula, where A and B are
cations and X is an anion. This apparently simple chemical formula hides a rich variety of structures and
properties that make perovskites interesting for a wide range of applications.

The main interest and variety of properties of perovskites comes from the fact that their ideal structure is
a high-symmetry cubic structure that can easily distort into a wide variety of lower symmetry structures.
Depending on the distortion and the initial electronic structure, the deformed perovskites can exhibit many
different properties such as ferroelectricity [1], piezoelectricity [2], superconductivity [3],ferro or antiferro
magnetism [4] or photocatalytic activity [5]. These properties make perovskites interesting for a wide range
of applications such as sensors, actuators, solar cells, batteries or catalysts [6].

It is due to the wide range of properties that technologies using perovskites are constantly being developed.
For example, hybrid organic-inorganic perovskites such as CH3NH3PbI3 are being studied for their potential
use in solar cells [6]. In fact, this hybrid perovskite has shown to have an efficiency of 26.7-34.6% in power
conversion [7].

As the macroscopic properties of perovskites change depending on the crystal structure, it is important to
understand how the crystal structure of perovskites can change and the way external perturbations influence
this structure. The main goal of this work is to develop a symmetry-based model to study the stability of
different perovskite structures under a typical distortion usually called octahedral rotation or tilting. Then,
ab initio or first principle methods are used to obtain reliable numerical data to compare to the model.

1.1 The perovskite structure and practical applications

Perovskite crystals have a ABX3 chemical formula where A and B are cations and X is an anion which in
the case of the three crystals studied in this work, is oxygen.

Perovskites have an ideal cubic structure that belongs to the Pm3̄m space group. In this structure, the
B-cations are located at the corners of the cube that forms the unit cell, the A-cations are located at the
center of the cube and the X-cation are located in the middle of the edges of the cube. This structure is
shown in Fig. 1.1.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: This figure shows the cubic Pm3̄m configuration of a typical ABX3 perovskite. The figure is
obtained using the software VESTA [8]. The red spheres represent the X-ions, the brown ones the B-ions
and the yellow one the A-ion. The figure in the left is the visualization of the octahedra while the figure on
the right is the visualization of the unit cell.

Despite the ideal structure being a high-symmetry cubic structure, perovskites often undergo distortions
to lower symmetry structures due to a combination of their chemical compositions [9] and/or physical
conditions, such as temperature or pressure [10]. There are three typical ways in which perovskites can
distort: A or B ion displacement, octahedral deformation and octahedral tiltings [11]. Despite being three
distinct distortions that lower the symmetry, they are not mutually exclusive and can occur simultaneously
in the same crystal although this is not overly common.

A or B ion displacement is the phenomena where the A and B cations are displaced off-center from
their ideal positions in the crystal structure (i.e. their positions in the high symmetry cubic phase). This
displacement can be caused by different factors, such as chemical preference for less, but stronger bonds
or physical, like the application of an external electric field. The displacement of the cations can lead to a
distortion of the crystal structure and a change in the properties of the perovskite. Most remarkably, the
displacement of the cations can lead to the formation of a dipole moment in the crystal and ferroelectricity.
Some notable examples of perovskites that exhibit ion displacement and ferroelectricity are BaTiO3 [12],
PbTiO3 [1] and KNbO3 [13]. An example of the B-ion displacement is shown in Figure 1.2.

Figure 1.2: This figure shows the B-ion displacement, in green, in BaTiO3 perovskites. The electric dipole
would be oriented along the vertical axis of the image. This figure is taken from [14].

Octahedral deformation is the phenomenon where the octahedra are distorted either by changes in the
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B-X bond lengths or by variations in the X-B-X bond angles. These distortions can significantly affect the
properties of perovskites, such as the band gap or the dielectric constant. In some systems, such deformations
arise from the cooperative Jahn-Teller effect (cJT), where orbital degeneracy of B-site cations such as Cu2+

in KCuF3 leads to collective distortions of adjacent octahedra throughout the lattice [15]. Examples of
perovskites that display this kind of deformations are KCuF3 [15] or La1−xSrxMnO3 [16]. Although this
work does not focus on such mechanisms, they illustrate how structural effects can couple to electronic
degrees of freedom in perovskites. An example of the octahedral deformations can be seen in Figure 1.3.

Figure 1.3: This figure shows the octahedral deformation and the cooperative Jahn-Teller effect in perovskites
such as KCuF3. This figure is taken from [17].

Octahedral rotations are the phenomena where the BX6 octahedra tilt around the X, Y and Z axes of
the ideal cubic structure. The tilting of the octahedra can lead to a distortion of the crystal structure and
a change in the properties of the perovskite such as their magnetic behavior [18]. Some notable examples of
perovskites that exhibit octahedral tiltings are LaAlO3 [19] or CaTiO3 [20]. This type of distortions are the
main focus of this work and will be further explained in Section 1.2. An example of the octahedral rotations
can be seen in Figure 1.4.

Figure 1.4: Representation of the octahedral tiltings in LaAlO3 using VESTA [8]
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1.2 Octahedral tiltings

Among the three kinds of distortions perovskites can have, tiltings are the most common and the richest in
terms of properties. The earliest observations of octahedral tiltings go back to H.D.Megaw [21]. However, it
was A.M.Glazer [22] who first classified the different types of octahedral tiltings in perovskites. In his work,
Glazer classified the octahedral tiltings in perovskites in two different categories depending on the direction
of rotation of the next octahedra along the axis of rotation. Glazer proposed that a triplet a∗b∗c∗ is enough
to describe all the tiltings of perovskites. The letters represent the amount of rotation along the [100], [010]
or [001] directions of the Pm3̄m cubic structure and the superscript ∗ indicates whether the rotation of the
next octahedra is in the same direction (+), in the opposite direction (-) or if theres no rotation at all in
that direction (0) (see Fig. 1.5 for the difference between in-phase (+) and out-of-phase (-) tiltings).

Figure 1.5: Representation of the octahedral tiltings in-phase c+a0a0 in the right figure and out-of-phase
c−a0a0 in the left figure. In this work, in-phase tiltings refer to those tiltings where two octahedron, adjacent
along the axis of rotation, rotate in the same direction (both clockwise or both anti clockwise). On the other
hand, out-of-phase tiltings refer to those tiltings where to octahedron, adjacent along the axis of rotation,
rotate in opposite directions. In both of this cases the rotations are the same in magnitude for all octahedra
along the axis of rotation. The in-phase rotations have a symmetry corresponding to the M point in the
reciprocal lattice and the out-of-phase rotations to the R point [23,24].

Glazer’s classification of the octahedral tiltings allowed him to obtain a list of 23 tilt systems. Later, P.M.
Woodward [23] proved that 6 of those configurations cannot be obtained without octahedral distortions. In
that same paper [23], Woodward systematically mapped Glazers tilt systems to specific space groups and
studied how these distortions affect the positions of the atoms. His work provided a thorough classification
of the different tilt systems, particularly by tabulating the different Wyckoff positions of the atoms in the
different tilt systems. This classification is still used today and is the basis for the study of octahedral
tiltings in perovskites.

In parallel to Woodward, Howard and Stokes [24] developed a complementary approach using group theo-
retical arguments to classify the different octahedral tiltings in perovskites further reducing Glazer’s 23 tilt
system list to 15 (see Fig. 1.6).
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Figure 1.6: This figure shows all 15 tilt systems studied by Howard and Stokes [24]. Each box contains
the information about each tilt-system both in Glazers notation and with the respective space-group below.
The table is organized in a way where each row adds one more degree of freedom to the tiltings. The
lines represent the group-subgroup relation between the tilt-systems and a dashed line represents that the
corresponding phase transition is required by Landau theory to be first order [24]

In their work, Howard and Stokes introduce the order parameter η = (η1, ..., η6) in order to describe Glazer’s
tilt systems in a more mathematical way. In this work, they consider a basis for a vector space formed by
the basic tilt systems

B = {(c+a0a0), (a0c+a0), (a0a0c+), (c−a0a0), (a0c−a0), (a0a0c−)} = {φ1, ..., φ6} (1.1)

Now, the order parameter η = (η1, ..., η6) is a 6-tuple where the component ηi is proportional to the angle
associated to the basis function φi. This way, a tilt system such as a+b−c− can be written as η = (a000bc).
Despite the change from Gazier’s notation to the order parameter notation being subtle, the new way of
writing the tilt systems allows for the use of group theory and representation theory to study the different
tilt systems. In fact, given a certain symmetry operator ĝ with matrix representation D(g) = {D(g)ij}, the
symmetry operation over the tilt system can be written as a simple matrix multiplication:

ĝη = D(g)η =

D(g)11 · · · D(g)16
...

. . .
...

D(g)61 · · · D(g)66


η1

...
η6

 (1.2)

This way, by taking all the symmetry operations of the high symmetry cubic structure, the symmetry
operations of a given tilt system η can be obtained by keeping the operations that satisfy the condition
ĝη = η. In fact, this approach not only allows to obtain the space group symmetry of a given tilt system,
but also allows to obtain the group subgroup relations between the different tilt systems as shown in Fig.
1.6.

Despite this not being the main focus of the work, it is worth mentioning the model proposed by V.M.
Goldschmidt [25] in 1926. In his work, Goldschmidt proposes a tolerance factor that depends on the ionic
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radii of the A and B cations and the X anion in order to determine whether a given perovskite will have
octahedral tiltings or not. This tolerance factor is defined as:

t =
rA + rX√
2(rB + rX)

(1.3)

Where rA, rB and rX are the ionic radii of the A, B and X cations respectively. If Goldschmidt’s factor is near
in value to one, the perovskite is expected to be stable in the cubic configuration. However, if the tolerance
factor is different to one then the perovskite will tend to distort. In particular, if t < 1 then octahedral
rotations are expected to stabilize the system. Goldschmidt’s tolerance factor is usually considered a useful
tool to predict whether a given perovskite will have octahedral tiltings or not. However, it is not sustained
on rigorous foundations and it produces many erroneous predictions.

Despite many phases being posible (see Fig. 1.6), Pnma is by far the most common tilt system [26] and is
known as the structure ReO3.

1.3 Chosen perovskites

In order to study real systems, three distinct perovskite systems have been chosen for this work. The choice
of the systems is based on the fact that all three systems have different stable tilt systems. These compounds
are NaTaO3, LaAlO3 and SrTiO3. A brief description of each of the chosen perovskites is given below.

NaTaO3 adopts an orthorhombic structure with space group Pnma and a tilt system a+b−b− at low
temperatures [27]. This configuration persists up to above 803K where it undergoes a change in the tilt
system and takes the phase Cmcm with a tilt system a0b+c−. This phase persists up to 897K where it
undergoes a transition to the phase P4/mbm with tilt system a0a0c+ [27]. NaTaO3 shows a promising
photocatalytic activity for water splitting [28]. It has been chosen for this work because it is represents the
most frequent rotation pattern displaying Pnma symmetry. It also displays large octahedral tiltings what
makes it easier to study.

LaAlO3 adopts a rhombohedral structure with space group R3̄c and a tilt system a−a−a− at room temper-
ature. This configuration persists up to 798K where the phase becomes cubic with space group Pm3̄m and
a tilt system a0a0a0 [29]. LaAlO3 is dielectric and has applications as a thermoluminescent or photolumi-
nescent material [30]. One of the reasons why this compound has been chosen is because it has a negative
frequency in the phonon dispersion diagram for the point R of the reciprocal lattice [31]. This means that
only the in-phase tiltings are unstable at low temperatures (see Fig. 1.5).

SrTiO3 adopts a tetragonal structure with space group I4/mcm and a tilt system a0a0c− at low tempera-
tures. This configuration persists up to 105K where it undergoes a structural phase transition to the cubic
phase with space group Pm3̄m and a tilt system a0a0a0 [32]. Some relevant properties of SrTiO3 are its
usefulness as a semiconductor, its thermoelectric properties [33] and its incipient ferroelectricity [34].

These properties not only make the three chosen perovskites interesting due to their variety in tilt systems,
but also due to their different applications in the field of materials science.

1.4 Objectives

The main objective of this work is to model the minimum energy surface of a perovskite involving octahedral
tiltings with the help of symmetry and group theory. This approach has been used in the past to classify
the different tilt systems in perovskites [23,24]. However, there exist no systematic studies where these kind
of arguments have been used to study the stability of the different phases.
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If we assumed the possibility of finding a tilt system to be just dependent on the number of configurations,
all tilt systems should be equally probable or at least they should follow some kind of distribution based on
the group-subgroup relations. However, this is not the case in real systems. In fact, there is one tilt system
that is the most stable for the majority of perovskites, the Pnma or a+b−b− [26]. The main goal of this
work is to lay the foundations of a model that explains why some tilt systems are more stable than others.
This model will be based on the symmetry of the different tilt systems and the group-subgroup relations
between them.

To address this problem, from a quantitative perspective, we base our approach on Ginzburg-Landau theory
[35]. This theory is a phenomenological theory that describes the behavior of systems near a phase transition.
The Ginzburg-Landau theory is used to study the stability of the different tilt systems and to obtain a
quantitative measure of their stability.

In this case, the system’s electronic energy is expanded in terms of the different rotations and distortions.
This expansion allows to obtain an approximate expression for the energy as a multivariate polynomial. The
coefficients of this polynomial are obtained using first principle methods. The stability of the different tilt
systems is then studied by analyzing the minimum energy for each phase and comparing it to the others.
This shows some relations between the polynomial coefficients that show the importance of the different
coefficients in the stability of the different tilt systems.

In order to determine the exact values of the coefficients of the polynomial, first principle methods are
used. These methods are based only on the solution of the Schrödinger equation and they do not use
any experimental data. This allows to study systems that cannot be studied experimentally. In fact, first
principle methods make it posible to study systems that are not stable in the laboratory or that are not
easy to synthesize.

Based on this, the objectives of this work can be summarized as follows:

� Develop a Ginzburg-Landau type model to study the general electronic energy surface of per-
ovskites.

� Using the model, determine the relative stability of the different tilt systems in perovskites
and find a general origin for said stabilities.

� Gain a further understanding of the model using real perovskites by first principle methods.

Achieving these objectives will not only provide a better understanding of the stability of the different tilt
systems in perovskites, but also lay the foundations for a theory that can be used to study other materials
with similar properties.

1.5 Structure of the work

This work is divided into four distinct chapters. In the first chapter, the introduction, we have provided a
brief overview of the perovskite structure and the different types of distortions that can occur in perovskites.
It also introduces the three chosen perovskites and the objectives of the work.

The second chapter of the work is the explanation of the computational methods used (see Chapter 2). Here,
the theoretical background and approximations needed to understand the computational methods used in
this work are explained. The section is divided into two parts; the first one explains the first principle
methods used and the second part explains the specific tools and programs used in this work.

The third chapter is the main part of the work (see Chapter 3). In this section, the results are shown and
discussed. The section is divided into two parts. First, the theoretical energy model for the perovskites is
introduced and derived. The second part of the section is dedicated to further understanding the model
using data from first principle simulations.



8 CHAPTER 1. INTRODUCTION

Finally (see Chapter 4), to conclude the work, a summary of the results is given and the conclusions are
presented. In this section, future work is also proposed in order to further understand the stability of the
different tilt systems in perovskites.



Chapter 2

Computational methods

This chapter gives a detailed explanation of the theoretical background needed to understand the compu-
tational methods used in this work, as well as a description of the specific tools and programs used.

2.1 First principle methods

The goal of this work is to study the molecular structure and properties of perovskites. To do this, one must
solve the Schrödinger equation for the system given by:

ĤΨ({r⃗}, {R⃗}, t) = EΨ({r⃗}, {R⃗}, t) (2.1)

This equation is, in general, unsolvable analytically and thus numerical methods are required. This section
introduces the concepts and approximations needed to solve the Schrödinger equation numerically. The
methods used in this work are called first principle methods (or ab initio methods) which are methods
independent from any experimental data other than fundamental physical constants and, can be used to
study systems in conditions that cannot otherwise be studied experimentally.

This is a heavily theoretical section and, for most of the methods introduced here, some of the details on
the proofs are omitted as they are not the main focus of the work. The more detailed explanations can be
found in the books [36] and [37] which are the main bibliography for the section.

2.1.1 Hamiltonian

The Hamiltonian operator is the operator that describes the total energy of a system and it is defined
in its most general form as the sum of the kinetic and potential energy operators. This operators differ
depending on the studied system and the approximations made. The objective of this work is to study the
molecular structure of perovskites and thus two initial approximations can be made to simplify the terms
of the Hamiltonian. The first initial approximation is neglecting the relativistic effects as the relativistic
corrections only account for a small fraction of the total energy, especially in the case of light elements.
The second initial approximation is considering that the electrons and nuclei only interact through the
electrostatic potential, as the strong, weak and gravitational forces are negligible in the molecular scale.

With these initial approximations, the total Hamiltonian operator is a sum of different contributions corre-
sponding to both electrons and nuclei. Supposing that the system consists of n electrons and N nuclei, the
position of all the electrons is written as {r⃗} = {r⃗1, r⃗2, ..., r⃗n} and the position of all the nuclei is written as
{R⃗} = {R⃗1, R⃗2, ..., R⃗N}. The total Hamiltonian operator is thus written as:

9
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Ĥ({r⃗}, {R⃗}) = T̂n + T̂e + V̂ee + V̂nn + V̂en (2.2)

Where T̂n and T̂e represent the kinetic energy of nuclei and electrons respectively and can be written in
terms of the atomic masses Mα and the mass of the electron m as:

T̂n = −
N∑

α=1

ℏ2

2Mα
∇2

R⃗α
(2.3)

T̂e = −
n∑

i=1

ℏ2

2m
∇2

r⃗i
(2.4)

The terms V̂ee, V̂nn and V̂en represent the electron-electron repulsion, nuclei-nuclei repulsion and electron-
nuclei attraction respectively. These can be written in terms of the electron charge e, the atomic numbers
Zα and the vacuum permittivity ε0 as1:

V̂ee =
1

2

1

4πϵ0

∑
i ̸=j

e2

|r⃗i − r⃗j |
(2.5)

V̂nn =
1

2

1

4πϵ0

∑
α̸=β

ZαZβe
2∣∣∣R⃗α − R⃗β

∣∣∣ (2.6)

V̂en = −1

2

1

4πϵ0

∑
i,α

Zαe
2∣∣∣r⃗i − R⃗α

∣∣∣ (2.7)

It is interesting to note that since the Hamiltonian is time independent the wave functions that describes
the system can be written as:

Ψ({r⃗}, {R⃗}, t) = Ψ({r⃗}, {R⃗})e−iEℏ t (2.8)

Where Ψ({r⃗}, {R⃗}) is an eigenfunction of the Hamiltonian and can be determined as a solution to the time
independent Schrödinger equation:

ĤΨ({r⃗}, {R⃗}) = EΨ({r⃗}, {R⃗}) (2.9)

The system described by this last equation is a many-body system and thus an analytical solution can only be
obtained for the two body system (i.e. the hydrogen atom). Considering even the simplest molecules makes
the analytical solution impossible and thus numerical methods are needed to solve the time independent
Schrödinger equation. These methods are explained in the following sections.

1The factor of 1
2
is included to avoid double counting
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2.1.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is one of the most basic approximations used in quantum chemistry
in order to obtain numerical solutions to the time independent Schrödinger equation (2.9). This approach
approximates the problem in a way where the nuclear and electronic motions are solved separately2. More-
over, this method solves the problem by solving a smaller electronic problem for each nuclear configuration
vastly reducing the computational cost required to solve the Schrödinger equation.

Before making any approximations, the time independent Schrödinger equation has to be rewritten in a way
that the electronic and nuclear contributions are separated. This separated expression takes the form:

Ĥ({r⃗}, {R⃗}) = T̂n + Ĥe (2.10)

Where Ĥe({r⃗}, {R⃗}) = T̂e+ V̂ee+ V̂nn+ V̂en is the electronic Hamiltonian that only depends on the electronic
and nuclear positions and not the nuclear momentum. With this in mind, the electronic wave functions are
defined as the eigenstates of the electronic Hamiltonian for each fixed nuclear configuration:

Ĥe({r⃗}, {R⃗})Ψ(i)
e ({r⃗}; {R⃗}) = E(i)

e ({R⃗})Ψ(i)
e ({r⃗}; {R⃗}) (2.11)

Where Ψ
(i)
e ({r⃗}; {R⃗}) denotes that the eigenfunction depends explicitly on electronic positions and para-

metrically in nuclear positions [37]. The electronic energy of the state i is defined as the following integral
over all electronic positions and for a given nuclear configuration:

E(i)
e ({R⃗}) =

〈
Ψ(i)

e

∣∣∣Ĥe

∣∣∣Ψ(i)
e

〉
(2.12)

As the electronic wave functions form a base over the electronic coordinates, the total wave function can
be written as an expansion over the electronic states where the coefficients are functions of the nuclear
positions [36]. These coefficients are called nuclear wave functions. The total wave function can thus be
written in terms of the nuclear and electronic wave functions as:

Ψ({r⃗}, {R⃗}) =
∑
i

χ(i)
n ({R⃗})Ψ(i)

e ({r⃗}; {R⃗}) (2.13)

Substituting the expressions (2.10) and (2.13) in the equation (2.9), operating taking into account the
definitions of the terms of the Hamiltonian and multiplying the equation by the complex conjugate of the

wave function in the state j, (Ψ
(j)
e )∗, the following equation is obtained:

T̂nχ
(j)
n + E(j)

e χ(j)
n +

∑
i

〈
Ψ(j)

e

∣∣∣T̂n

∣∣∣Ψ(i)
e

〉
χ(i)
n = Eχ(j)

n (2.14)

Until this point, no approximations have been made and everything is exact. The Born-Oppenheimer
approximation states that as the velocity of the nuclei is much smaller than the velocity of the electrons, the
electronic wave function instantly adjusts to the nuclear motion. This condition can be expressed in therms
of the nuclear momentum operator as:

P̂n

∣∣∣Ψ(i)
e

〉
= 0 ⇒ T̂n

∣∣∣Ψ(i)
e

〉
= 0 (2.15)

2The fact that the motions are solved separately does not mean they are decoupled. The electronic motion is still affected
by the nuclear motion and vice versa.
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Applying the Born-Oppenheimer approximation to the equation (2.14) the following equation is obtained:

(T̂n + E(j)
e ({R⃗}))χ(j)

n ({R⃗}) = Eχ(j)
n ({R⃗}) (2.16)

Where the term E
(j)
e ({R⃗}) acts as a potential energy for the nuclear motion. This term is called the adiabatic

potential energy surface (APES).

As a direct consequence of the approximation, the nuclear wave functions depend only on a single electronic
state3. This is the reason why this approximation is only valid when the electronic states are well separated
in energy. If the electronic states are close in energy the real system might be inclined to mix the electronic
states and thus the Born-Oppenheimer approximation is not valid.

2.1.3 Hartree-Fock method

The Hartree-Fock or self consistent field method is a variational method used to solve the electronic
Schrödinger equation. This method is based on the assumption that the electronic wave function can
be written in terms of the individual one electron wave functions. These one electron wave functions take
the form:

|φi(r⃗)⟩ = |ϕi(r⃗)⟩ ⊗ |χi⟩ (2.17)

Where |ϕi(r⃗)⟩ is the spatial part of the wave function and |χi⟩ is the spin part of the wave function. The
wave functions that take the form of the equation (2.17) are called molecular orbitals.

In order to explain Pauli’s exclusion principle, a suitable expression for the wave function in terms of the
one electron wave functions must be antisymmetric with respect to the permutation of two electrons. This
antisymmetry is achieved by writing the wave function as a Slater determinant of the one electron wave
functions:

Ψ(r⃗1, r⃗2, ..., r⃗n) =
1√
n!

∣∣∣∣∣∣∣∣∣
φ1(r⃗1) φ2(r⃗1) · · · φn(r⃗1)
φ1(r⃗2) φ2(r⃗2) · · · φn(r⃗2)

...
...

. . .
...

φ1(r⃗n) φ2(r⃗n) · · · φn(r⃗n)

∣∣∣∣∣∣∣∣∣ (2.18)

With the introduction of the Slater determinant it is easy to see how if two identical wave functions are
introduced (φi = φj), then the total wave function is zero, verifying Pauli’s exclusion principle.

For the obtention of the Hartree-Fock equations, it is useful to rearrange the electronic Hamiltonian in a
way where different terms have different electron indices. The electronic Hamiltonian can thus be written
as:

Ĥe = Vnn +
n∑

i=1

ĥi +
1

2

n∑
i=1

n∑
j=1

ĝij (2.19)

Where the operators ĥi and ĝij are defined as:

ĥi = −1

2
∇2

i −
∑
α

Zα

|r⃗i − R⃗α|
(2.20)

3This is because the mixed term in the equation (2.14) is neglected.
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ĝij =
1

|r⃗i − r⃗j |
(2.21)

With some straightforward but lengthy calculations [36], the expected value of the electronic Hamiltonian
in the state described by the Slater determinant can be written as:

E = V̂nn +
n∑

i=1

ĥi +
1

2

n∑
i=1

n∑
j=1

(Jij −Kij) (2.22)

Where the terms Jij and Kij are called the Coulomb and Exchange elements and can be written in terms
of the Coulomb and Exchange operators as the integrals ⟨ϕj |Ĵi|ϕj⟩ and ⟨ϕj |K̂i|ϕj⟩. These operators are
defined by:

Ĵi |φj(r⃗t)⟩ = ⟨φj(r⃗k)|ĝkt|φj(r⃗k)⟩ |φj(r⃗t)⟩ (2.23)

K̂i |φj(r⃗t)⟩ = ⟨φi(r⃗k)|ĝkt|ϕj(r⃗k)⟩ |φi(r⃗t)⟩ (2.24)

The next step is to determine the configuration of molecular orbitals that makes the energy of the system
stationary. This problem has the added constraint that the molecular orbitals must remain orthonormal
and normalized. The solution to this constrained optimization problem can be found by means of Lagrange
Multipliers [36]. This type of process yields a set of n one body equations out of the initial n body single
equation. These equations are the Hartree-Fock equations and are written in terms of the Fock operator F̂i

as:

F̂iφi(r⃗) = ϵiφi(r⃗) (2.25)

Where the Fock operator is defined as:

F̂i = ĥi +
n∑

j=1

(
Ĵj − K̂j

)
= −1

2
∇2

i −
∑
α

Zα

|r⃗i − R⃗α|
+

n∑
j=1

(
Ĵj − K̂j

)
(2.26)

This operator acts as a one electron Hamiltonian where the potential energy is given as an average of all the
individual Coulomb potentials generated by all electrons. This is why a specific one electron wave function
can only be obtained if all the other one electron wave functions are known and thus the Hartree-Fock
equations are solved self-consistently, hence the name self-consistent field (SCF) method.

2.1.4 Density Functional Theory

The Density Functional Theory (DFT) is a method used to solve the electronic Schrödinger equation by
means of the electron density instead of the wave function. This method is based on the Hohenberg-
Kohn theorems [38] and the Kohn-Sham equations [39]. The first Hohenberg-Kohn theorem states that
“the electron density in fact uniquely determines the Hamilton operator and thus all properties of the
system” [40] and the second Hohenberg-Kohn theorem states that “the functional that delivers the ground
state energy of the system, delivers the lowest energy if and only if the input density is the true ground
state density” [40]. In other words, the ground state energy of a system can be determined by minimizing
the energy functional with respect to the electron density. This approach allows the ground state energy to
be determined without the need of the wave function and needing only the electron density which depends
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on three spacial coordinates regardless of the number of electrons. The main obstacle this method faces is
the determination of the energy functional which is unknown and must be approximated.

Within the framework of the Born-Oppenheimer approximation, the energy functional in terms of the
electronic density can be written as:

E[ρ] = T [ρ] + Eee[ρ] + Ene[ρ] (2.27)

Where T [ρ] is the kinetic energy of the electrons, Eee[ρ] is the electron-electron repulsion energy and Ene[ρ]
is the electron-nuclei attraction energy. Furthermore, using the Hartree-Fock approximation, the electron-
electron repulsion energy can be separated in a Coulomb and an Exchange term as:

E[ρ] = T [ρ] + J [ρ] +K[ρ] + Ene[ρ] (2.28)

The electron-nuclei attraction term and the Coulomb term can be written in terms of the electron density
using classical electrostatics as:

Ene[ρ] = −
∑
α

∫
Zαρ(r⃗)

|r⃗ − R⃗α|
dr⃗ (2.29)

J [ρ] =
1

2

∫ ∫
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ (2.30)

Thus, the problem of DFT is reduced to finding the right Exchange and kinetic energy functionals. The first
approach to this problem was made by Thomas [41] and Fermi [42] who proposed a functional for the kinetic
energy of the electrons. This functional is called the Thomas-Fermi functional. This functional neglected
the Exchange term and proposed a non-interacting uniform electron gas model in order to obtain the kinetic
energy of the electrons. Later, Bloch [43] and Dirac [44] proposed a functional for the Exchange term. The
results calculated from those functionals however had errors of 15 − 50% and failed to predict bonding at
all [36].

The modern DFT was developed by Kohn and Sham [39] who proposed a new method to compute the
kinetic energy functional, which is the term that affects the results the most. The Kohn-Sham method
consists on computing the kinetic energy as a term from a non interacting electron gas plus a correlation
term that accounts for the difference between the non interacting electron gas and the real system as well
as all the non classical effects.

Since the exact wave functions of a non interacting electron gas are Slater determinants [40], a non interacting
reference system can be set up where a local potential VS(r⃗) is introduced:

ĤS = −1

2

∑
i

∇2
i +

∑
i

VS(r⃗i) (2.31)

Since the Hamiltonian does not have electron-electron interaction terms, the wave functions of this system
are Slater determinants and following a similar process as in the previous section a set of one electron
equations can be obtained. These equations are called the Kohn-Sham equations and are written as:

ĥKSφi(r⃗) = ϵiφi(r⃗) (2.32)
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Where the functions {φi} are called the Khon-Sham orbitals and ĥKS is the Khon-Sham operator defined
as:

ĥKS = −1

2
∇2

i + VS(r⃗i) (2.33)

The connection from this system to the real system is made by setting the electron density of the real system
equal to the electron density of the non interacting reference system. This is shown in the following equation
(where the spin states are also taken into account):

ρS(r⃗) =

n∑
i

∑
s

|φi(r⃗, s)|2 = ρ0(r⃗) (2.34)

Considering this reference change, the energy functional can be written as:

E[ρ] = TS [ρ] + Eee[ρ] + Ene[ρ] + Exc[ρ] (2.35)

Where TS [ρ] is the kinetic energy of the non interacting reference system, and Exc[ρ] is term that accounts
for the difference between the ideal and real kinetic energies as well as for the non classical effects. This last
term is defined as:

Exc[ρ] = (T [ρ]− TS [ρ]) + (Eee[ρ]− J [ρ]) (2.36)

Where the first parenthesis can be considered as the kinetic correlation energy while the second contains
both exchange and potential correlation energy. If the exact form of the functional Exc[ρ] was known,
DFT would be an exact method. Since the term Exc and thus the potential VS are unknown, solving the
constrained optimization problem it can be obtained that the potential VS has the form:

VS(r⃗) =

∫
ρ(r⃗2)

r12
dr⃗2 +

δExc

δρ
−

M∑
α

Zα

r1α
(2.37)

Which is written in terms of the functional derivative of the unknown Exc. The only unknown term is this
last derivative but the exchange coefficient has a small effect over the ground energy making this method
effective despite not being exact. In practice, a certain effective potential has to be given of the form
(2.37). From this point, the Kohn-Sham orbitals can be calculated through the equation (2.32). Lastly, the
electronic density can be calculated using the Kohn-Sham orbitals using the relation (2.34) and this density
can be used to calculate the ground energy thanks to the equation (2.35).

2.2 Simulation programs: CRYSTAL & VESTA

For the numerical simulations and the interpretation of the geometries two programs have been used: CRYS-
TAL [45] and VESTA [8].

CRYSTAL is a program that implements all the approximations considered in Section 2.1 and allows to
calculate the minimum energy configuration of a system as well as the atomic positions (amongst other
things that are not used in this work).

The program uses localized Gaussian basis to describe the electronic wave functions. For this work, the
program has been used to calculate the minimum energy configuration of the perovskites from a particular
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space group. To do this, the program uses an iterative process, based on DFT, to find the minimum energy
configuration of a given system. The iterative process stops when the steps in electronic density, force and
atomic displacement are below a certain threshold. Then, the program outputs the minimum energy per
unit cell, the atomic positions of the optimal configuration and more information about the system and the
process that is not used in this work.

For the particular case of this work, the B1WC density functional has been used as it is the most suitable
functional for the study of octahedral rotations in perovskites [46]. The numerical calculations performed
by the program need to discretize the reciprocal space. In this work, an 8-8-8 sampling has been used. This
means that the each axis of the reciprocal space has been discretized in 8 points.

In order to use the program, the user must input a file where the initial atomic positions, the initial lattice
constant and the Gaussian basis are defined. The user also has to specify which functional to use and the
sampling of the reciprocal space.

On the other hand, VESTA is a program used to visualize the atomic structures and positions of the
systems. In this work, once the optimal configurations for the perovskites are obtained, the geometries
are visualized using VESTA. This program allows to determine inter atomic distances, angles and other
geometric properties of the system. It also allows to visualize the crystal structure in a 3D environment and
to export the structure in different formats.

In order to use VESTA, the user must input the atomic positions, the lattice constants and the space group
of the system. The program then visualizes the structure in a 3D environment and allows to manipulate
the structure to visualize it from different angles.



Chapter 3

Results and Discussion

In this chapter the theoretical and computational results of the work are explained. First, a theoretical model
is proposed as a way to understand the complex energy landscape in perovskite crystals. The parameters
in this model are rigorously calculated using first-principle methods. The second part of this chapter is
dedicated to the obtention and interpretation of the parameters from the numerical simulations. Finally,
using the results from the numerical simulations, the model is used to stablish relations between the values
of the parameters and the stable phases of the crystal.

Figure 3.1: This figure shows the cubic Pm3̄m configuration of the perovskite. The figure is obtained using
the software VESTA [8]. The red spheres represent the X-ions, the brown ones the B-ions and the yellow
one the A-ion. A set of coordinates can be defined in this configuration where the X, Y and Z axises go
along the lines formed by the B-ions.

The structure of this chapter and the logic behind the procedure followed here is given next:

- Following typical schemes in-phase transitions in molecular and condensed matter physics [35, 47] our
starting point will be a high-symmetry phase. Perovskites of formula ABX3 have an undistorted, cubic
high-symmetry phase that belongs to the Pm3̄m space group (see Fig. 3.1). This is at the top of the
octahedral rotation table provided by Howard and Stokes [24] and represented in Fig.3.2. This diagram is
the base for the whole analysis carried in this work.

- We will consider the Pm-3m cubic phase with lowest energy. Studying the vibrations associated to this

17
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structure one can find that some normal modes, that usually would be connected with the phonons of the
crystal, display a negative force constant, i.e. the cubic phase represents an unstable equilibrium. Thus, these
modes correspond with distortions that, if followed, would reduce the energy below the Pm-3m structure.
The most important of these distortions are the octahedral rotations of BX6 complexes and Fig. 3.2 offers
a map of the different phases that are produced by these instabilities.

- With the help of symmetry (group theory) we will produce a model energy surface with the goal of
determining which combination of modes more strongly stabilize the system. A strong emphasis will be
placed on the anharmonic coupling that exists between the modes and we will find that in most cases the
phases predicted by Howard and Stokes (Fig. 3.2) involve distortion modes that are not necessarily the
octahedral rotations. These modes that deform the octahedra or that involve displacements of the A-ions in
a perovskite. We will assess, in Subsection 3.3.2 and Section 3.4, the importance of the different distortions
and find the important role that some of them (A-ions motion) have in stabilizing the system.

Figure 3.2: This table completes Howard’s table (Ref. [24], Fig. 1.6) by adding the movement of the A-ion.
The phases in red represent those phases where A is able to move. The indices below Gazier’s numbers
represent the possible movements of the ion in different directions. This table has been made by using the
information about the A-ion in Woodward’s paper [23].

3.1 Modeling of energy surface using the symmetry of the system

This section explains the process followed to obtain the model that describes the energy surfaces
of perovskites. The electronic energy of a certain molecule or solid can be expressed as a function of the
nuclear positions. This function is called the potential energy surface and it is the main object of study
in this work. Knowing the form of the potential energy surface allows to compute the minimum energy
configuration of the system and thus the equilibrium geometry of the system (i.e. knowing the potential
energy surface allows to know all the stable configurations of the system). However, in general, the potential
energy surface is unknown and must be approximated. The energy surface of a system depends on 3N
coordinates where N is the number of atoms in the system. However, as mentioned in the introduction of
the chapter, when the cubic Pm3̄m phase is taken as a reference, we have found that the tilting modes are
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usually unstable and thus we need to follow them to stabilize the system. We have also found (see Subsection
3.2.2 and Section 3.4) that the A-ion displacements are also important. Thus we have 9 coordinates, 6 for
the octahedral rotations and 3 for the A-ion displacements. The main problem to solve now is to study the
general form of the energy surface.

By means of the Born-Oppenheimer approximation (see Subsection 2.1.2), the energy surface can be written
as:

E({R⃗}) = ⟨Ψ|Ĥe|Ψ⟩ (3.1)

However, in order to characterize the system by the octahedral tiltings and the A-ion movement, the energy
surface must be rewritten as a function of these new distortion coordinates {Qi}. This can be done taking
advantage of the fact that the energy surface can be expanded as a Taylor series around the unstable cubic
configuration where all of the coordinates are zero.

E({Qi}) = E0 +
∑
i

⟨Ψ| ∂H
∂Qi

|Ψ⟩Qi +
1

2

∑
i,j

⟨Ψ| ∂2H

∂Qi∂Qj
|Ψ⟩QiQj + ... (3.2)

The integrals in this expression cannot be calculated analytically and thus must be approximated numer-
ically. This is why an approximation has to be made not only in order to compute the integrals but also
to stop the Taylor expansion at a certain order. Since the reference structure Pm3̄m is a critical point, all
forces are zero and therefore the linear terms in equation 3.2 must be zero. On top of that, by a symmetry
argument (see Subsection 3.1.1), it can be shown that all odd order terms in the Taylor expansion must also
be zero. Therefore, as the quadratic term is negative because the cubic phase is unstable, in order to study
the stabilization of the different phases at least the quartic term must be considered.

This Section is separated in two distinct parts:

1. Vanishing integrals using symmetry arguments: In this part the justification is given for the dif-
ferent methods used to prove that certain terms in Equation (3.2) vanish. This methods are explained
without specifying the system.

2. Obtaining the reduced energy surface: In this part the different methods explained in Subsection
3.1.1 are used to obtain the reduced energy surface of the system for the specific case of the perovskites.

3.1.1 Vanishing integrals using symmetry arguments

The problem now is to reduce the unknown integrals to a point where they can be calculated by means
of first principle simulations. To do this, the symmetry of the system must be taken into account. Three
different symmetry arguments have been used to prove wether a certain integral vanishes. All of them use
the known symmetry of the system in order to prove that an integral is zero. These methods are explained
in this section. In Section 3.1.2 they are used to obtain the target energy surface.

1. The first argument uses representation theory to prove whether the integrals are zero or not studying
the direct product of the irreducible representations of the different terms that appear in them. The formal
background of this method is explained in more detail in Ref. [48].

Given φ(i) and ϕ(i′) wave functions that transform as irreducible representations Γi and Γi′ respectively and
an operator O(j) that transforms as Γj , the following integral can be considered:

o =
〈
φ(i)

∣∣∣O(j)
∣∣∣ϕ(i′)

〉
(3.3)
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Suppose now that the states φ(i) and ϕ(i′) are non degenerate1. Then under the effect of a symmetry operator
R̂ to either wave function or to the operator O, they transform as:

R̂φ(i) = χ(i)(R) · φ(i) (3.4)

Where χ(i)(R) is the character of the representation Γi for the operator R̂, which is a scalar. Given an
arbitrary symmetry operator R̂, and taking into account that, as o is a scalar, then R̂o = o, by applying the
operator to both sides of equation (3.3), the following relation is obtained:

o = R̂o = R̂
〈
φ(i)

∣∣∣O(j)
∣∣∣ϕ(i′)

〉
=

〈
R̂φ(i)

∣∣∣R̂O(j)
∣∣∣R̂ϕ(i′)

〉
= χ(i)(R) · χ(j)(R) · χ(i′)(R) ·

〈
φ(i)

∣∣∣O(j)
∣∣∣ϕ(i′)

〉
(3.5)

Which can be rewritten to give:

o = χ(i)(R) · χ(j)(R) · χ(i′)(R) · o (3.6)

Therefore, as this is true for any symmetry operator R̂, it must hold that χ(i)(R)χ(j)(R)χ(i′)(R) = 1
regardless of the symmetry operator. This means that the direct product Γi ⊗ Γj ⊗ Γi′ must contain the
fully symmetrical representation Γ1 (sometimes written also as A1). Therefore, using the character table
and knowing which irreducible representation each term transforms as, some of the terms can be proven to
be zero.

In fact, it can be shown that, even in the integrals where the direct product contains the fully symmetric
representation, if the exact decomposition is known only the terms corresponding to the fully symmetric
representation are non zero. This is why on top of the character tables it is useful to consider the coupling
coefficient tables. Given a direct product Γi ⊗ Γj the coupling coefficient tables not only give what repre-
sentations this direct product spans but also the coefficients of each representation in the direct product,
the so called Clebsch-Gordan coefficients [49].

2. The second method is a particular case of the first one but it is worth mentioning as it can be easily
applied without the need of character tables. The fact that this method does not need the use of character
tables turns out to be very useful, as operating with character tables gets exponentially more complex the
more terms are involved. This method is particular to the context of this work and, unlike the previous
method, it is not completely general. This method uses the fact that the integrals in (3.2) are of the form:

E = ⟨Ψ| ∂kH

∂Qi1 · · · ∂Qin

|Ψ⟩ (3.7)

In this case, the product ΨΨ is completely symmetric and thus the integral, from a representation stand
point, only depends on the representations Γij of the coordinates Qij . Taking now into account that the
part of the representations Γij associated to translations of a direct lattice vector r⃗, as the most fundamental

symmetry operation in a solid, can be identified through the coordinates K⃗ij of a vector in the reciprocal
space, the character of the representation Γij always takes the form:

χ(ij) = eiK⃗ij
·r⃗ (3.8)

As a consequence of this, with an analogous reasoning to the one used in the previous method, the integral
3.7 can be written as

1This is always true within the reach of this work but might not always be the case.
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E = eir⃗·K⃗i1 · · · eir⃗·K⃗inE = eir⃗·(K⃗i1
+···+K⃗in )E (3.9)

Where the product of the characters is only one when K⃗i1+ · · ·+K⃗in corresponds to a point in the reciprocal
lattice (i.e. has integer coordinates). For example, if all the Qij transform as the reciprocal lattice vector

R⃗ = (12 ,
1
2 ,

1
2) then the integral is zero when an odd number of partial derivatives are taken. This is because

if n is odd then nR⃗ does not have integer coordinates and thus is not a point of the reciprocal lattice forcing
the integral to be zero.

3. The last method is another criterion that can be used without the need of character tables. This method
is based on the fact that by applying a symmetry operator to the energy surface, the function must not
change but the coordinates might change as a permutation of each other. This forces some of the terms
to be zero as the energy function must stay invariant and said terms change from one form to another.
This method, however, relies on having a geometrical understanding of the system and can be challenging
to apply in some cases. Despite this, as for the scope of this work the system and the distortions are well
known, this method can be easily applied.

To formalize the idea explained in the previous paragraph, let E(Q1, Q2, ..., Qn) be the energy surface of
the system and P a symmetry operator of the cubic phase. Then the symmetry operator P̂ transforms a
certain coordinate Qi into a new coordinate as the following transformation:

P̂ (Qi) = ±Qρ(i) (3.10)

Where ρ(i) is a permutation of the coordinates and the sign depends on the symmetry operator. The energy
surface must be invariant under this transformation and thus:

E(Q1, Q2, ..., Qn) = E(P̂ (Q1), P̂ (Q2), ..., P̂ (Qn)) = E(±Qρ(1),±Qρ(2), ...,±Qρ(n)) (3.11)

The simplest example of this method can be illustrated by supposing the symmetry operator P̂ that leaves
all coordinates but Q1 invariant and transforms Q1 7→ −Q1. Then, applying P to the energy surface it is
easy to see that all the terms that contain an odd power of Q1 must be zero as the energy surface must be
invariant under the transformation.

Another interesting example of the use of this method is considering the symmetry operator P̂ that trans-
forms Q1 7→ Q2 (and Q2 7→ Q1). This example illustrates the importance of the choice of the symmetry
operator. In this case, in general, one cannot infer anything about the terms being zero or not. Imagine
that the energy surface is given by:

E(Q1, Q2) = AQ2
1 +BQ2

2 + CQ1Q2 (3.12)

Then applying the symmetry operator P̂ the function stays invariant and thus nothing can be said about
the coefficients A, B and C. However, if the energy surface is given by:

E(Q1, Q2, Q3) = AQ2
1 +BQ2

2 + CQ2
3 +DQ1Q3 (3.13)

Applying the symmetry operator P̂ shows that the coefficient D must be zero. These two examples show
the importance of both choosing the right symmetry operator and applying it to the right energy surface.
This is the reason why this method is the most useful after applying one or both of the other methods as
the remaining energy surface is already somewhat reduced.
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3.1.2 Obtaining the reduced energy surface

In order to simplify and reduce the energy surface given by equation (3.2), the steps followed have been
the following; First, the problem has been split into three simpler problems. Supposing that the in-phase
tilting, out-of-phase tilting and A-ion movements are independent, three independent energy surfaces can
be obtained. Then, the full energy surface can be obtained by just taking into account the coupling between
these distortions.

A quick analysis of how the distortions behave with respect to the different symmetry operators of the
parent Oh group, show that both in-phase and out-of-phase tiltings transform as T2 and the A-ion movement
transforms as T1. Furthermore, C.J.Howard and H.T.Stokes have shown that the tiltings of the octahedra
have the representation M+

3 ⊗R+
4 where M+

3 represents the in-phase tiltings and R+
4 the out-of-phase tiltings

(see Ref. [24]). This means that the in-phase distortions are related to the M⃗ = (12 ,
1
2 , 0) reciprocal space

vector and the out-of-phase distortions to the vector R⃗ = (12 ,
1
2 ,

1
2).

At this point some differences appear for the obtention of both energy surfaces associated to M and R
phonon modes. For the out-of-phase tiltings, a similar argument as in Section 3.1.1 can be made to justify
that the coefficients of the cubic terms must also be zero as 3R⃗ = (32 ,

3
2 ,

3
2) is not a reciprocal lattice point.

However, for the in-phase tiltings as the reciprocal space vectors (12 ,
1
2 , 0), (

1
2 , 0,

1
2), (0,

1
2 ,

1
2) are all equivalent,

the cubic terms cannot be proven to be zero as the QxQyQz term could be non vanishing.

This term involves a product of an odd number of coordinates that would make the energy surface depend on
the particular sense (clockwise or anticlockwise) of rotation of the octahedra. We know that both directions
are equivalent so this difference is not realistic. To solve this problem, the following argument is used. Using
the coordinate system introduced in Fig. 3.1, consider the symmetry plane σ generated by the Z axis and
the axis in the XY plane that is at an angle of 45 degrees with the X axis see figure 3.3.

Figure 3.3: A representation of the Qx, Qy, Qz tiltings and how these transform with a specific symmetry
plane σ. The blue arrows represent the Qx tiltings, the green arrows the Qy tiltings and the red arrows the
Qz tiltings.

This symmetry operation transforms the coordinates as σ((Qx, Qy, Qz)) = (−Qy,−Qx,−Qz). Given a
natural number n ∈ N, let’s group all the terms of the energy surface that have combined powers of n as:

En =
∑

i+j+k=n

AijkQ
i
xQ

j
yQ

k
z (3.14)
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As illustrated in the examples given in Section 3.1.1, and assuming that no extra information is known
about the Aijk terms, applying the symmetry operator σ to a generic even and odd term gives:

σ(E2n) = E2n and σ(E2n+1) = −E2n+1.

Since the energy surface must be invariant under the symmetry operation σ, it must hold that E2n+1 = 0
as 0 = E − σ(E) =

∑
n∈NE2n+1 regardless of the coordinates {Qx, Qy, Qz}. This means that all the odd

terms in the energy surface must be zero.

Before continuing with the process a brief explanation of the notation used in the equations is given. The
coordinates Q+i and Q−i represent the in-phase and out-of-phase tiltings respectively where the i index
represents the spacial direction of the tilting. The coordinates Qai represent the A-ion movement in the i
direction. These coordinates are directly related to the octahedral rotations and to the A-ion displacements
and they are further discussed in Section 3.3.2 where the tilting coordinates Q±i are defined in Figure 3.8
and the A-ion coordinates are just the displacements of ion with respect to the cubic phase. However, for this
section, the only important thing is that the coordinates Q+i and Q−i transform as T2 and the coordinates
Qai transform as T1.

Now that some of the terms have been proven to be zero, the next step is to get the exact reduced form
using the first method explained in Section 3.1.1. As discussed previously in this section, the in-phase
and out-of-phase tiltings have the representations M+

3 and R+
4 respectively and they both transform as

T2. Therefore, the second order terms are obtained just by analyzing the coupling coefficients of the direct
product T2 ⊗ T2 that span the completely symmetric representation. For the fourth order terms however,
the process is a bit more complex. The direct product T2 ⊗ T2 gives a combination T1 + T2 + A1 + E.
Now, the direct product of all of those terms by T2 must be calculated which will in terms give a certain
combination A1 + T1 + E + T2 + A2. Lastly, the product of all of those terms by T2 must be calculated
in order to determine the exact form of the terms contained in A1. However, this process can be slightly
simplified by noticing that the only term from T2 ⊗T2 ⊗T2 that gives A1 when multiplied by T2 is the term
T2. This means that only some of the calculations need to be done (see figure 3.4).

Figure 3.4: A schematic representation of the different irreducible representations that form the product
T2 ⊗ T2 ⊗ T2 ⊗ T2. The arrows in red are the only ones for which the coupling coefficients have to be
calculated.
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The process described here for the octahedral tiltings is the same for the A-ion movement. The only
difference is that the A-ion movement transforms as T1 and thus the direct product T1⊗T1 gives a different
combination of irreducible representations. The process is exactly the same and thus the final result is
similar to the one obtained for the octahedral tiltings. The three independent energy surfaces thus are:

E+ = E0 +K+(Q
2
+x +Q2

+y +Q2
+z) + I++(Q

4
+x +Q4

+y +Q4
+z) +H++(Q

2
+xQ

2
+y +Q2

+xQ
2
+z +Q2

+yQ
2
+z) (3.15)

E− = E0 +K−(Q
2
−x +Q2

−y +Q2
−z) + I−−(Q

4
−x +Q4

−y +Q4
−z) +H−−(Q

2
−xQ

2
−y +Q2

−xQ
2
−z +Q2

−yQ
2
−z) (3.16)

Ea = E0 +Ka(Q
2
ax +Q2

ay +Q2
az) + Iaa(Q

4
ax +Q4

ay +Q4
az) +Haa(Q

2
axQ

2
ay +Q2

axQ
2
az +Q2

ayQ
2
az) (3.17)

To study the mixing between in-phase and out-of-phase tiltings one must now take into account terms
involving the cross-coupling terms involving both Q+i and Q−i coordinates. The process is exactly the same
as before and thus the final result is similar to the one obtained for the purely in-phase or out-of-phase
octahedral tiltings. The only difference is that the in-phase and out-of-phase tiltings are now coupled. The
energy surface can be written as:

ET = E0+
∑
j=±

Kj(Q
2
jx+Q2

jy +Q2
jz)+

∑
j,k=±

Ijk(Q
2
jxQ

2
kx+Q2

jyQ
2
ky +Q2

jzQ
2
kz)+

∑
j,k=±

Hjk(Q
2
jxQ

2
ky +Q2

jxQ
2
kz +Q2

jyQ
2
kz) (3.18)

The coefficients are chosen in a way whereKj represents the quadratic terms, Ijk is the coefficient multiplying
the quartic terms where no spacial coordinates are mixed within the same term (for example Q2

+xQ
2
ax or

Q2
−yQ−y = Q4

−y). Lastly, Hjk is the coefficient multiplying the quartic terms where the spacial coordinates
are mixed (for example Q2

+xQ
2
+y or Q2

+yQ−z). Here, Ijk = Ikj and Hjk = Hkj . On top of that, since, by
hypothesis the same coordinate cannot have a + and − tilting at once the term I+− is zero as terms such
as Q2

+xQ
2
−x must be zero.

By using analogous arguments, the terms that mix the A-ion movement with the tiltings can be studied.
The only difference being that the A-ion movement transforms as T1 and thus the direct product T1 ⊗ T2

gives a different combination of irreducible representations. In this case, the process is exactly the same and
thus the final result is similar to the one obtained for the octahedral tiltings. The expression however, is
somewhat more complex and it is therefore useful to define the following notation:

∆jk({Qi}) = Q2
jxQ

2
kx +Q2

jyQ
2
ky +Q2

jzQ
2
kz (3.19)

Ξjk({Qi}) = Q2
jxQ

2
ky +Q2

jxQ
2
kz +Q2

jyQ
2
kx +Q2

jyQ
2
kz +Q2

jzQ
2
kx +Q2

jzQ
2
ky (3.20)

It is worth noting that the term ∆jk({Qi}) has the same form as the one following the Ijk coefficients in
the previous section. In fact, given that a coordinate cannot have two distinct tilting modes at once (i.e. if
Q+x ̸= 0 then Q−x = 0), the term Ξjk({Qi}) is also the same as the one that follows the Hjk coefficients in
the previous section. With this notation, the energy surface can be written as:

E = E0 +
∑
j

Kj(Q
2
jx +Q2

jy +Q2
jz) +

∑
j,k

Ijk∆jk({Qi}) +
∑
j,k

HjkΞjk({Qi}) (3.21)

Where the subindices now run over the set {+,−, a} and, as before, Ijk = Ikj and Hjk = Hkj . On top of
that, the term I+− is still zero. However, the movement of the A-ion can be in the same direction as one of
the tilting axis and thus the terms I+a or I−a can exist.
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3.2 Study of the energy parameters

Once the general form of the reduced energy surface is known, the next step is to interpret the physical
meaning of the different parameters as well as to obtain conditions on the values of the coefficients that if
met the lowest energy phase can be identified. Lastly, it is interesting to obtain the real values of some of
the parameters in order to understand the tendencies that occur in experimental systems.

This section is divided into two parts:

1. Physical interpretation of the parameters: In this part the physical meaning of the coefficients
in equation 3.21 is explained. The coefficients are interpreted in terms of the energy cost of a certain
distortion.

2. Conditions for the stable phase: In this part, relations between the coefficients are obtained and
the connection between these relations and the stable phases is explained.

3.2.1 Physical interpretation of the parameters

In order to understand the physical meaning behind the coefficients of the energy surface, it is easier to first
consider the simpler case of the octahedral tiltings described by the equation (3.18). However, regardless
on having the simpler case or the more complex one, the coefficients are associated to the energy cost of a
certain distortion. Keep in mind however that despite the word “cost” being used this value can be positive
or negative. If a given coefficient is large in absolute value, then the system will tend to avoid the distortion
associated to that coefficient if it is positive and will tend to favor the distortion if it is negative. However,
the values of the coefficients are not enough to determine the stable phase as the different modes are coupled
and thus the same distortion can multiply both positive and negative coefficients making the system tend
to a balance.

In order to understand the meaning of the coefficients in equation (3.18), it can be useful to rewrite the
equation as a function of (3.15) and (3.16). This makes it easier to unwrap the meaning of the coefficients.
The equation can be rewritten as:

ET ({Qi}) = −E0 + E+({Qi}) + E−({Qi}) +H+−(Q
2
+xQ

2
−y +Q2

+xQ
2
−z +Q2

+yQ
2
−z) (3.22)

This equation shows that the energy can be written as two independent functions, one associated to the
in-phase tiltings one associated with the out-of-phase tiltings while the H+− term is the energy cost of
having both in-phase and out-of-phase tiltings at the same time. This is a reasonable assumption as the
H+− term is the only one that couples both types of tiltings. In order to understand the meaning of the Kj ,
Ijj and Hjj terms, it is useful to study specific cases and analyze how the E+({Qi}) and E−({Qi}) simple
surfaces behave. Since the simple surfaces for in-phase and out-of-phase tiltings are the same, the next part
of the work focuses only on the in-phase surface. However the exact same methods can be applied for the
out-of-phase one. If the octahedra are tilted in only one axis, say the x axis, then the simple energy surface
is given by:

E+({Qi}) = E0 +K+(Q
2
+x) + I++(Q

4
+x) (3.23)

However, if tiltings along two or more axes are allowed, the energy surface takes the general form of equation
(3.15). Therefore, it can be deduced that the H++ term is associated to the energy cost of having more
than one in-phase tilting at the same time. Finally, since near the cubic phase (Qi = 0) the K terms are
the ones with the most influence, they can be interpreted as the responsables for having any tiltings at all.
Since the cubic phase is generally unstable, the K terms are expected to be negative. In fact, in Subsection
3.3.3, it will be seen that this is the case for most of our experimental systems (see Tab. 3.10). With this
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in mind, the I terms can be interpreted as the energy stabilization terms. This means that the I terms are
expected to be positive as they are the ones that stabilize the system (see figure 3.5).

Figure 3.5: A qualitative graph to visualize the importance of the I coefficients. The scale in this graph
is not accurate as it is intended to only portray the behavior of the function. The X axis represents the
distortion Q and the Y axis represents the energy E. Both the energy and the distortions are given in
arbitrary units.

One can now see the reason behind the labeling of the different coefficient by different letters.

� The K coefficients are called the force constants and they model the destabilization of the system
around the cubic phase.

� The I coefficients are the terms that model the stabilization of the system.

� The H coefficients are the ones that model the coupling between different tilting modes whether this
is between the same type of tilting or between the in-phase and out-of-phase tiltings.

When the A-ion is added to the system, see (3.21), the interpretation of the coefficients is a little bit different.
One could once again separate the equation into purely tilting terms and A-ion terms. The surface would
then be written as:

E({Qi}) = −2E0 + ET ({Qi}) + Ea({Qi}) + Ia+∆({Qi}) + Ia−∆({Qi}) +Ha+Ξ({Qi}) +Ha−Ξ({Qi}) (3.24)

The interpretation of the coefficients regarding the A-ion movement is the following:

� The Iaj coefficients correspond to the energy cost of moving the A-ion in the direction of the axis of
a tilting.

� The Haj coefficients are associated to the energy cost of moving the A-ion in a direction that is not
aligned with the tilting axis.

� The Ka, Iaa and Haa coefficients correspond to the destabilization, stabilization and the coupling
between the A-ion movements in the three different axes respectively.

3.2.2 Relations between the coefficients and phase diagrams

This subsection is dedicated to the interpretation of the model and the study on the importance of the
different coefficients in determining the most stable phase of the system. In this section, some conditions
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on the coefficients will be deduced that relate to the stability of the different phases. Later in Section 3.4,
these conditions will be compared with the results obtained from the numerical simulations.

Pure tiltings:

Similarly to the approach taken in Subsection 3.2.1, the relations between the coefficients can first be studied
supposing that the octahedra are only tilted with in-phase tiltings. Since the energy surfaces for the in-phase
and out-of-phase tiltings are the same, the analysis can be done for either of them and instantly extended
to the other. The subindices in the coefficients corresponding to the in-phase tiltings are dropped as it is
understood by context that this is the phase worked on. Consider now a simple case where H = 0. In this
case, the energy surface can be written as:

E = E0 +K(Q2
x +Q2

y +Q2
z) + I(Q4

x +Q4
y +Q4

z) = E0 + fx(Qx) + fy(Qy) + fz(Qz) (3.25)

Where the functions fi are given by:
fi(Qi) = K(Q2

i ) + I(Q4
i ) (3.26)

The minimum for the energy surface is then given by the three independent minima of one variable functions
fi (i = x, y, z) and since the coefficients are all the same, in the minimum configuration corresponds with
Qx = Qy = Qz. With this notation, it is possible to rewrite the energy surfaces in equations (3.15) and
(3.16) as:

E = E0 + fx(Qx) + fy(Qy) + fz(Qz) +H(Q2
xQ

2
y +Q2

xQ
2
z +Q2

yQ
2
z) (3.27)

This way of writing the functions gives an important idea about the distortions; No matter the number
of distortions, their magnitude will always be the same (i.e. the minimum involves rotations of the same
magnitude in 1, 2 or 3 axes). This holds because the term multiplying the H does not have a “preference”
for any of the coordinates and since neither do the fi functions, the system as a whole will not have a
preference for any of the coordinates. This means that if more than one distortion is present they will all
be of the same magnitude.

The problem now is to determine the relations between the K, I and H that dictate whether the system
stabilizes in one, two or three distortions. Before starting the rigorous analysis, some qualitative information
can be deduced from the known geometric shape of the energy surface. Just as in the R3 euclidean space,
the square of the distance to the origin of a certain distortion configuration can be given by:

d2 = Q2
x +Q2

y +Q2
z (3.28)

Which is exactly the term following the K coefficient. Now, noting that the distance to the 4th power takes
the form:

d4 = Q4
x +Q4

y +Q4
z + 2(Q2

xQ
2
y +Q2

xQ
2
z +Q2

yQ
2
z). (3.29)

Looking at the equations (3.15) and (3.16), it can be seen that when the condition H = 2I is satisfied, the
energy surface only depends on the distance to the origin as

E(d) = E0 +Kd2 + Id4. (3.30)

This means that, at this configuration, the system will have the same energy in a (a00) state with Qx = Q,
in a (aa0) state with Qx = Qy = Q/

√
2 or in a (aaa) state with Qx = Qy = Qz = Q/

√
3. This means that

exactly at this configuration of H = 2I, the system could be in either phase. This is thus a likely candidate
line that conditions phase stability. This reasoning also shows qualitatively that the effect of K over phase
stability is not important, as the term following K is always spherically symmetric (i.e. it only depends on
the distance).
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On top of this, by looking at equation (3.27), it can be inferred that if H < 0 then the system will tend
to present all three distortions at the same time and thus tend to stabilize in the (aaa) phase. However, if
H is positive and very large compared to the other coefficients, the system will tend to minimize the term
following H and thus will tend to have only one distortion at a time. The interesting question now is to
determine whether there is a certain combination of coefficients around H ∼ 2I where the (aa0) phase is
favored.

Once some intuition on the expected results is obtained, the next step is to study the system in a more
rigorous way. The first step is to obtain the extrema of the energy surface. This problem can be simplified
by the previously mentioned fact that the magnitude of all the distortions is the same. This means that
the extrema of the energy surface will only appear within the line with directing vector v1 = (1, 0, 0) if
the system is in the (a00) phase, within the line with directing vector v2 = (1, 1, 0) if the system is in the
(aa0) phase and within the line with directing vector v3 = (1, 1, 1) if the system is in the (aaa) phase. The
equation for the energy within these lines can be written as:

(a00) : E1 = E0 −KQ2
1 + IQ4

1

(aa0) : E2 = E0 − 2KQ2
2 + 2IQ4

2 +HQ4
2

(aaa) : E3 = E0 − 3KQ2
3 + 3IQ4

3 + 3HQ4
3

(3.31)

Where Ei represents the energy for the phase with i tiltings and Qi = Qx = Qy = Qz represents the general
coordinate of distortion corresponding to the directing vector vi. It is also worth noting that for the following
reasoning the letters K, I and H represent the magnitude of the coefficients so the minus sign for K has
been explicitly included in the definition of the energy. The coefficient I stabilizes the system and must
thus be positive and the coefficient H has been taken positive since it is known that when this is negative
the system favours the phase (aaa). In Subsection 3.3.3 it will be seen that the signs of the coefficients for
a real system in fact coincide with these. With this in mind, by taking the derivative of the energy with
respect to the coordinates Qi and setting it to zero, the coordinates at the extrema of the energy functions
can be obtained. It is worth noting that, as expected, the trivial maximum at Qi = 0 is present in all three
cases but this will be ignored. The nontrivial minimum coordinates and their corresponding energies are:

Q1 = ±
√

K

2I
⇒ E1 = −K2

4I

Q2 = ±
√

K

2I +H
⇒ E2 = − K2

2I +H

Q3 = ±
√

K

2I + 2H
⇒ E3 = − 3K2

4I + 4H

(3.32)

Studying now the conditions over the coefficients that must be satisfied in order for one phase to be favored
over the other (i.e. one energy to be lower than the other), it can be seen that the conditions are:

E1 < E2 ⇔ H > 2I

E2 < E3 ⇔ H > 2I

E1 < E3 ⇔ H > 2I

(3.33)

This is congruent with the previous qualitative reasoning as it shows that H = 2I is a line that determines
phase stability. Furthermore, by analyzing the energy favoured at both sides of the line H = 2I, it can be
seen that the (aaa) phase is favoured when H < 2I and the (a00) phase is favoured when H > 2I. However,
the most important result is that the (aa0) phase is never favoured (only exactly over the H = 2I line).
This means that the system will always tend to have either one or three distortions at the same time. See
figure 3.6 for a visual representation of the phase diagram.
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Figure 3.6: This figure shows the phase diagram obtained from the inequalities in equation (3.33). The
section in blue represents the systems that stabilize in the (a00) phase and the section in orange the systems
that stabilize in the (aaa) phase. The section in gray represents the section with a negative value for I
which is of no physical interest.

So far, the analysis has been done for pure tiltings only. However, real systems are more complex as they
can present A-ion movements as well as mixed tiltings. In the rest of the subsection, the analysis for pure
tiltings will be used as a base to analyze the coupled systems.

Mixed tiltings (Pnma):

A central part of this work is the analysis of the Pnma phase as this phase is the most common phase in
real systems. The approach used to analyze this phase can be generalized to other mixed tilt systems but
will be explained here in particular for Pnma.

The approach is simple, looking at Howard and Stokes’s table (see Fig. 3.2), there is two distinct “paths”
to Pnma from the cubic Rm3̄m phase:

(c0c0c0) → (a+c0c0) → (a+b−b−)

(c0c0c0) → (c0b−b−) → (a+b−b−)
(3.34)

The first transition within each path is the one already studied while the second one can be analyzed by
taking the energy of the first transition and adding the energy corresponding to adding two b− tiltings in
the first case or one a+ tilting in the second. Therefore, the energy surface for (a+b−b−) can be written as:

E1(a
+b−b−) = E(c0c0a+) + (2H+−Q

2
a − 2K−)Q

2
b + I−−Q

4
b

E2(a
+b−b−) = E(c0b−b−) + (2H+−Q

2
b −K+)Q

2
a + I++Q

4
a

(3.35)

Supposing that during the transition the distortion Qa stays constant in the first case and Qb stays constant
in the second, the energy can be understood as a polynomial in the variable Qb or Qa respectively. Note
that this is an approximation. For instance, for NaTaO3, both distortions change from P4/mbm to Pnma
and from Imma to Pnma (see Table 3.4).

Once the approximation is made, the energy for the (a+b−b−) is only lower than the energy for the parent
(c0c0a+) or (c0b−b−) phases if the following conditions are satisfied:

(a+c0c0) → (a+b−b−) : (2H+−Q
2
a − 2K−) < 0

(c0b−b−) → (a+b−b−) : (2H+−Q
2
b −K+) < 0

(3.36)

If the conditions are satisfied, then by setting the derivative of the energy with respect to Qa or Qb to zero,
the coordinates of the minimum can be obtained. By substituting the coordinates of the minimum, the
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difference in energy between the (a+b−b−) and the parent phases can be obtained and it is given by:

(a+c0c0) → (a+b−b−) :
(2H+−Q

2
a − 2K−)

2

4I−−

(c0b−b−) → (a+b−b−) :
(2H+−Q

2
b −K+)

2

4I++

(3.37)

Equations (3.36) and (3.37) show that the stability of the mixed tilting phase Pnma strongly depends on
H+− as the lower this term the more stable the phase is.

Movement of the A-ion:

The movement of the A-ion is restricted to some of the tilt systems (see Fig. 3.2). In fact, out of all the
pure tilt systems only the out-of-phase (aa0) tilting (i.e. Imma or (a0b−b−)) allows for the movement of the
A-ion. Since the movement of the A-ion gives more degrees of freedom to the system, it is expected that it
will lower the energy of the system. In fact in Subsection 3.3.3 it will be seen that the energy of the system
is lower when the A-ion movement is considered.

Taking this into account, since in the H = 2I line the system accepts (a00), (aa0) and (aaa), the addition
of the A-ion movement will allow for the stabilization of the out-of-phase (aa0) tilting. If the A-ion lowers
the energy of the system enough, for some values of the coefficients such that H ≈ 2I the system will still
stabilize in (aa0) despite the system not being exactly at the H = 2I, line. This can be understood as the
A-ion movement forcing a new region to appear in the phase diagram in Figure 3.6 where the (aa0) phase
is stable. This is shown in Figure 3.7.

Figure 3.7: This diagram shows how the diagram in Figure 3.6 changes when the movement of A is considered.
This is a qualitative phase diagram as the exact analytic expressions for the changes in-phase haven’t been
obtained. It is worth noting that when the movement of A is considered the phase space gets more complex
and higher dimensional, this figure is only a representation of what adding the extra complexity would do
to the existing model.

The main conclusions of this subsection can be summarized as follows:

� When only considering pure in-phase or out-of-phase tiltings, the line H = 2I determines the
phase stability of the system as shown in Figure 3.6.

� When considering mixed tiltings, the stability of the Pnma phase depends on the H+− coeffi-
cient as shown in equations (3.36) and (3.37).

� The movement of the A-ion allows for the stabilization of two tilting modes as seen in Figure
3.7.
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3.3 Results of the simulations and obtention of the parameters

This section is divided into three parts. First, the methodology used to extract the information from the
simulations is explained. This is done in Subsection 3.3.2. Then, in Subsection 3.3.2, the geometry of the
different phases is studied and the distortion coordinates are extracted. Finally, in Subsection 3.3.3, the
coefficients of the energy surface are obtained and analyzed.

3.3.1 Extracting results from the simulations

In this part of the work, the general process of obtaining the geometry and the parameters of the different
configurations is explained. This process is the same regardless of the chemical configuration of the system.

As noted in the introduction of this section, the first step is to identify the coordinates of the distorted
systems given by the tables in [23]. The tables in this paper show the spacial coordinates of the different
atoms in the primitive cell. For some of the atoms, one or more of the spacial coordinates are given as an
unknown variable approximated to a certain value. This means that these coordinates are the ones that
explain the distortion of the system and may vary depending on the chemical configuration.

In order to simulate the system using CRYSTAL [45], an approximate value is chosen for the unknown
coordinates and all the coordinates are introduced in the input file. Then, the space group symmetry is
inputted. The specification of the group ensures that all the iterative steps in the simulation are forced to
maintain the symmetry and thus, the output will be the configuration with the lowest energy within the
symmetry constraints. This holds because the forces acting on the system follow the same symmetries as
the system itself. Therefore, as the program simulates the evolution of the system by means of the forces
acting on it, the system will maintain the chosen symmetry at all times. For instance, if the Imma phase
is chosen, all the iterative steps will maintain the Imma symmetry. This means that the output will be the
configuration with the lowest energy within the Imma symmetry constraints.

The program outputs all the information of the final relaxed state of the crystal as well as some information
about the in between steps such as the energy or the geometry. In particular, the program outputs a set
of coordinates for the atoms in the least-energy configuration within the constraints. Unlike the input
coordinates, these are not given as a function of the unknown variables and these coordinates are adjusted
to the values that minimize the energy of the system. The output file also contains the minimum energy
of the system. The coordinates of the atoms are then introduced into the crystal visualization software
VESTA [8] in order to represent the system. This visualization software allows a precise and easy way to
measure the angles and distances between the atoms in the system. The angles and distances are then used
to calculate the parameters of the energy surface.

With a way to easily visualize the system, the next step is to choose a suitable set of distortion coordinates
that correctly measure the tiltings. To illustrate the choice of coordinates, the simpler case of the (a00)
is used. Remember that this phase is a simple tilting of the octahedra along the X axis (see Fig. 3.1
for the choice of coordinates). The X anions along the Y and Z axes are thus displaced within the line
of equidistance between the B cations. Here, it is natural to choose the displacement of the X anions as
the distortion coordinates as this distance is zero when no distortion is present and grows as the distortion
increases. To generalize this to the case with mixed tiltings, the distortion coordinate Qxi is defined as
the projection of the displacement of the X anion into the plane formed by the other two coordinates. A
geometric representation of this is shown in figure 3.8.
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Figure 3.8: This figure shows a representation of the election of the Qz coordinate. In the left figure one
can see the three dimensional structure of the crystal where the atoms in orange represent the B cations
and the atom in red represents the X anion. In the right figure the projection into the XY plane is shown.
In both figures the grey dotted circle represents the original position of the X anion in the cubic phase.

As it was introduced before, VESTA allows to measure the angles and distances between the atoms and
thus the distortion coordinates can be calculated by straightforward but somewhat lengthy trigonometric
equations. The measurement of the angles and distances are also used to justify the fact that the octahedral
deformations can be neglected (see Subsection 3.3.2). Given that each phase allows many possible distortions
(see Ref [23]) this often requires a detailed analysis of the particular geometry of the system to extract the
corresponding rotation angles and coordinates.

Once the distortion coordinates and the energy of the system are known for the minimum energy configura-
tion in each phase, the next step is to calculate the coefficients of the energy surface. To do this, a similar
approach to the one used in section 3.2.2 is used. This approach uses the fact that the energy surface is the
simplest when the system does not have any mixed “+” and “-” tiltings. This means that by studying the
system only in the P4/mbm, I4/mcm and Im3 phases (i.e. the (a+a0a0), (a+a+a0) and (a+a+a+) phases
respectively) the coefficients can be calculated by solving a simple linear system of equations. It is possible
to rewrite the energy surfaces given in equation (3.31) as:

EP4/mbm = E0 +K+(Q
2
+1) + I++(Q

4
+1)

EI4/mcm = E0 + 2K+(Q
2
+2) + 2I++(Q

4
+2) +H++(Q

4
+2)

EIm3 = E0 + 3K+(Q
2
+3) + 3I++(Q

4
+3) + 3H++(Q

4
+3)

(3.38)

where the {1, 2, 3} subindices in the coordinates indicate that the point of stabilization is different for the
different phases. Given that the coordinates Q+j , the energies Ei and the energy of the cubic phase E0 are
known quantities, the set of equations can be solved for the coefficients K+, I++ and H++. In fact, the
equations can be rewritten as:

 Q2
+1 Q4

+1 0
2Q2

+2 2Q4
+2 Q4

+2

3Q2
+3 3Q4

+3 3Q4
+3

 K+

I++

H++

 =

EP4/mbm − E0

EI4/mcm − E0

EIm3 − E0

 (3.39)

where the system of equations is now in the form Ax = b with a known matrix A and a known vector b.
This system of equations can be solved using the standard methods for solving linear systems. The solution
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of this system gives the coefficients K+, I++ and H++. The same process can be repeated for the out-of-
phase tiltings in order to obtain the coefficients K−, I−− and H−−. The only difference is that the phases
analyzed have to be the I4/mcm, Imma and R3c phases (i.e. the (a−a0a0), (a−a−a0) and (a−a−a−) phases
respectively). However, a problem arises when studying the Imma phase as this phase presents freedom of
movement in the A-ion. To solve this, the simulation is executed with the added constraint of the A-ion
being fixed in place. This yields a new Imma′ phase that does not depend on the movement of A. With
this method the set {K+,K−, I++, I−−, H++, H−−} of coefficients is obtained.

In order to obtain the H+− coefficient, a phase has to be chosen where both in-phase and out-of-phase
tiltings are present. In order to correctly account for this coupling we need to avoid accounting for the A-ion
movement. In this case, the energy surface can be simply written as:

E = E0 +K+(Q
2
+) +K−(Q

2
−) + I++(Q

4
+) + I−−(Q

4
−) +H++(Q

4
+) +H−−(Q

4
+) +H+−(Q

2
+Q

2
−) (3.40)

with the addition of some constants depending on the amount of “+” and “-” tiltings. The problem arises
when trying to find said phase as, according to Woodward [23], all of the phases that present both in-phase
and out-of-phase tiltings also present A-ion movement. And, as it will be shown in Subsection 3.3.2, the
quantitative study of the movement of the A-ion is beyond the scope of this work. However, thanks to
the software CRYSTAL, it is possible to fix in place the A-ion and simulate the system with this added
constraint. This process yields a set of coordinates and an energy for the system that differ from the ones
obtained when the A-ion is free to move and must be treated as a different phase. With this tool, the phase
Pnma′ has been chosen as the one with both in-phase and out-of-phase tiltings. The ′ next to Pnma is
written to clarify that this is the Pnma phase with the added constraint of fixed A-ions, same as in the case
of Imma′. The energy surface can be written as:

EPnma′ = E0 +K+(Q
2
+) + 2K−(Q

2
−) + I++(Q

4
+) + 2I−−(Q

4
−) +H−−(Q

4
−) +H+−(Q

2
+Q

2
−) (3.41)

where all the values and coefficients are known and the only unknown is H+−. This way one can simply
solve for H+− to obtain the last coefficient.

3.3.2 Numerical results of the simulations: geometry

The results of the simulations can be separated into two parts. The first part is the geometry of the stabilized
systems without taking into account the energy. Once the geometry is known, the second part is to obtain
the coefficients of the energy surface using the values of the geometry and the energies of the phases.

This section is dedicated to the geometry of the systems. First, the geometries of the octahedra are studied.
Once the geometries of the octahedra are known, the tilting coordinates are studied. This coordinates will
later be used to obtain the coefficients of the energy surface.

Octahedral deformations:

The following tables show the octahedral lengths and inner angles for the different phases studied for the
compounds NaTaO3, LaAlO3 and SrTiO3. The octahedral lengths are the distances between the B cation
and the X anions in the three different axes. The inner angle ϕz is defined as the smallest angle formed by
the X and Y axis. The same definition is used for the angles ϕx and ϕy (see Figure 3.9). These parameters
fully describe the octahedral deformations. If the octahedra are not deformed it is expected to obtain the
same length regardless of the direction and three angles of 90 degrees.
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Figure 3.9: This figure shows how the octahedral lengths Li and the inner angles ϕi are defined. The left
hand figure shows a 3D view of the octahedron while the right hand figure shows a view of the octahedron
from the Z axis. The orange ball represents the B cation and the red balls represent the X anions.

Before showing any numerical results, it is worth noting that the x, y and z labels are arbitrary and any
permutation of the labels is valid as long as it is coherent. This labels are used to distinguish the different
axes.

Table 3.1: Octahedral deformations for the different phases of NaTaO3

Octahedral lengths (Å) Inner angles

Phase Lx Ly Lz ϕx ϕy ϕz

P4/mbm 1.977 1.977 1.978 90.0 90.0 90.0
I4/mmm 1.978 1.978 1.978 89.7 90.0 89.7
Im3̄ 1.978 1.978 1.978 90.0 90.0 90.0

I4/mcm 1.978 1.978 1.978 89.9 90.0 89.9
Imma 1.979 1.979 1.976 89.2 89.7 89.7
R3̄c 1.978 1.978 1.978 89.4 89.4 89.4

Pnma 1.980 1.980 1.980 89.7 89.5 89.6

Table 3.2: Octahedral deformations for the different phases of LaAlO3

Octahedral lengths (Å) Inner angles

Phase Lx Ly Lz ϕx ϕy ϕz

P4/mbm 1.892 1.892 1.892 90.0 90.0 90.0
I4/mmm 1.892 1.892 1.892 90.0 90.0 90.0
Im3̄ 1.892 1.892 1.892 90.0 90.0 90.0

I4/mcm 1.902 1.902 1.902 89.9 90.0 89.9
Imma 1.903 1.904 1.904 89.3 89.9 89.9
R3̄c 1.904 1.904 1.904 89.5 89.5 89.5

Pnma 1.904 1.903 1.904 89.9 89.3 89.9
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Table 3.3: Octahedral deformations for the different phases of SrTiO3

Octahedral lengths (Å) Inner angles

Phase Lx Ly Lz ϕx ϕy ϕz

P4/mbm 1.945 1.945 1.946 90.0 90.0 90.0
I4/mmm 1.945 1.945 1.945 89.9 89.9 89.9
Im3̄ 1.945 1.945 1.945 90.0 90.0 90.0

I4/mcm 1.947 1.947 1.947 89.9 90.0 89.9
Imma 1.947 1.947 1.945 89.1 89.8 89.8
R3̄c 1.947 1.947 1.947 89.8 89.8 89.8

Pnma 1.947 1.946 1.947 89.9 89.7 89.9

The results in the tables 3.1, 3.2 and 3.3 show that the octahedral lengths are very similar for all three
directions. The biggest difference between octahedral lengths is of the order of 0.01 Å. The inner angles are
also very close to 90◦ with the biggest difference being 0.6◦. This means that the octahedral deformations
are indeed negligible compared to the tiltings. This can be interpreted as the octahedral bonds being very
strong and requiring a lot of energy to be deformed.

From this tables (see Tables 3.1, 3.2 and 3.3) one can conclude that, for NaTaO3, LaAlO3 and SrTiO3,
octahedral deformations are negligible compared to the tiltings.

Tilting coordinates:

The following tables show the distortion coordinates for the different phases of the compounds NaTaO3,
LaAlO3 and SrTiO3. The coordinates are given in units of Å. The coordinates are defined as the projection
of the displacement of the X anions from the position they would have in the cubic phase (see Figure 3.8).
Note that in these tables the Pnma phase is denoted as Pnma′ to clarify that this is the Pnma phase with
the A-ions fixed in place. The same notation is used to differentiate Imma (with freedom of movement in
A) from Imma′ (with the A-ion fixed).

Table 3.4: distortion coordinates of the different phases of the compound NaTaO3. The ′ symbol next to
some of the space groups indicates that this coordinates have been obtained for the system with the A-ion
fixed in the same place as for the cubic phase.

Phase Qx (Å) Qy (Å) Qz (Å)

P4/mbm 0.395 0.000 0.000
I4/mmm 0.294 0.294 0.000
Im3̄ 0.322 0.322 0.322

I4/mcm 0.399 0.000 0.000
Imma′ 0.289 0.289 0.000
R3̄c 0.124 0.124 0.124

Pnma′ 0.267 0.240 0.240
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Table 3.5: distortion coordinates of the different phases of the compound LaAlO3. The ′ symbol next to
some of the space groups indicates that this coordinates have been obtained for the system with the A-ion
fixed in the same place as for the cubic phase.

Phase Qx (Å) Qy (Å) Qz (Å)

P4/mbm 0.000 0.000 0.000
I4/mmm 0.000 0.000 0.000
Im3̄ 0.000 0.000 0.000

I4/mcm 0.210 0.000 0.000
Imma′ 0.261 0.261 0.000
R3̄c 0.129 0.129 0.129

Pnma′ 0.000 0.158 0.158

Table 3.6: distortion coordinates of the different phases of the compound SrTiO3. The ′ symbol next to
some of the space groups indicates that this coordinates have been obtained for the system with the A-ion
fixed in the same place as for the cubic phase.

Phase Qx (Å) Qy (Å) Qz (Å)

P4/mbm 0.065 0.000 0.000
I4/mmm 0.054 0.054 0.000
Im3̄ 0.043 0.043 0.043

I4/mcm 0.118 0.000 0.000
Imma′ 0.040 0.040 0.000
R3̄c 0.080 0.080 0.080

Pnma′ 0.001 0.090 0.090

A more in depth analysis of the results will be done in the next section. However, it is interesting to mention
that there is no “+” distortion for the compound LaAlO3. This is consistent with the fact that LaAlO3 has
a negative frequency in the phonon dispersion diagram for the point R of the reciprocal lattice [31].

The Tables 3.4, 3.5 and 3.6 show that the magnitude of the tiltings is much smaller for SrTiO3 than for
NaTaO3 and LaAlO3. This is consistent with the fact that, despite the low temperature stable phase of
SrTiO3 is the I4/mcm, the phase transition to the cubic phase Pm3̄m occurs at the low temperature of 105
K [32]. This means that the tiltings in SrTiO3 are small and near the cubic phase.

For the compound SrTiO3, the Pnma phase shows a very small displacement in the X direction (see Table
3.6), this indicates that Pnma is very close to the Imma phase.

Finally, it is worth noting that the values of the displacement coordinates are consistent with the tilt-systems
in Figure 3.2. This means that a tilt system such as a+a+a0 shows an equal displacement in two coordinates
and zero displacement in the third (i.e. Qx = Qy and Qz = 0).

Movement of the A-ion:

The last thing studied in this subsection is the movement of the A-ion. When the system shifts from the
cubic phase to the distorted phases, due to the loss in symmetry, the A-ion is free to move in one or more
directions. This movement allows the system to reach lower energy configurations. The movement of the
A-ion is determined by the symmetry of the system and therefore can only happen in certain-phases. The
phases where the A-ion is free to move are shown in Figure 3.2
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The qualitative analysis of the movement of the A-ion has been done following the same procedure as for the
tiltings. However, it has been found that the A-ion movement is more complex than expected as in-phase and
out-of-phase movements are present (see Fig. 3.10) and therefore three more coordinates would be needed
to fully describe the system being the total number of coordinates 12. These coordinates would correspond
to the in-phase and out-of-phase tiltings (6 coordinates) and the in-phase and out-of-phase movements of
the A-ion (6 coordinates). Due to the exponential growth of the complexity of the system, this work has
not been able to study the A-ion movement in depth and has been limited to the study of the tiltings.
However, a qualitative study of its importance has been done in the following subsection where the effects
of the movement of A have been studied in the results.

Figure 3.10: This figure shows the Pnma phase for the compound NaTaO3. Here, the A-ion (spheres in
yellow) show a displacement from their original positions. This displacement is a compound displacement
has an X and Y component and is an out-of-phase displacement as two neighbor ions show the same
displacement but in opposite directions.

The conclusions about the geometry of the systems are the following:

� The octahedral deformations are negligible compared to the tiltings. This can be interpreted as
the octahedral bonds being very strong and requiring a lot of energy to be deformed comparing to the
energy required by rotations.

� The distortion coordinates are consistent with the tilt-systems in Figure 3.2.

� The compound LaAlO3 does not present a “+” distortion which is consistent with Ref. [31].

� The compound SrTiO3 presents small tiltings which is consistent with Ref. [32].

� For SrTiO3, the Pnma phase seems to be very close to the Imma phase as the displacement
in the X direction is very small.

� The movement of the A-ion has been shown to be complex and therefore is only studied
qualitatively in this work.
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3.3.3 Numerical results of the simulations: energy and coefficients

In this section the results for the energy of the different phases are shown. The energies are given in units
of 10−4 eV per unit cell. The energies are given relative to the minimum energy of the system. This means
that the minimum energy is set to zero and all other energies are given relative to this value. The tables
show the energy for the different phases studied for the compounds NaTaO3, LaAlO3 and SrTiO3.

Table 3.7: Total energies per unit cell for different structural phases of NaTaO3. The Pnma phase is found
to be the most stable

Phase Tilt system Energy per unit cell/104 (eV) (E − Emin) (meV)

Pnma (a+b−b−) -1.21063890 0.0
Pnma′ (a+b−b−) -1.21063790 104.0
Imma (a0b−b−) -1.21063785 106.0
Im3̄ (a+a+a+) -1.21063765 128.0
R3̄m (a−a−a−) -1.21063760 134.0
Imma′ (a0b−b−) -1.21063740 151.5
I4mmm (a0b+b+) -1.21063735 156.5
I4/mcm (a0a0c−) -1.21063640 254.0
P4/mbm (a0a0c+) -1.21063610 281.5
Pm3̄m (a0a0a0) -1.21063010 882.5

Table 3.8: Total energies per unit cell for different structural phases of LaAlO3. The R3̄c phase is found to
be the most stable.

Phase Tilt system Energy per unit cell/104 (eV) (E − Emin) (meV)

R3̄c (a−a−a−) -1.35828320 0.0
Imma (a0b−b−) -1.35828300 18.5
Imma′ (a0b−b−) -1.35828300 18.5
Pnma (a+b−b−) -1.35828300 18.5
Pnma′ (a+b−b−) -1.35828300 18.5
I4mcm (a0a0c+) -1.35828280 39.0
P4mbm (a0a0c+) -1.35828135 185.5
Pm3̄m (a0a0a0) -1.35828135 185.5
I4mmm (a0b+b+) -1.35828135 186.0
Im3̄ (a−a−a−) -1.35828135 186.0
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Table 3.9: Total energies per unit cell for different structural phases of SrTiO3. The R3̄c phase is found to
be the most stable.

Phase Tilt system Energy per unit cell/104 (eV) (E − Emin) (meV)

R3̄c (a−a−a−) -3.00617430 0.0
Imma (a0b−b−) -3.00617415 10.5
Pnma′ (a+b−b−) -3.00617415 11.0
Imma′ (a0b−b−) -3.00617415 11.0
Pnma (a+b−b−) -3.00617415 11.5
I4mcm (a0a0c−) -3.00617415 12.0
P4mbm (a0a0c+) -3.00617400 29.5
Pm3̄m (a0a0a0) -3.00617395 35.0
Im3̄ (a+a+a+) -3.00617390 37.5
I4mmm (a0b+b+) -3.00617390 38.0

These tables show the minimum energy of the different phases. Unlike for the tables of the distortion
coordinates, these tables show the energy both for the phases with and without the A-ion movement despite
the fact that only the latter are used to obtain the coefficients of the energy surface. The reason for this is
that the phases with A-ion movement are used to validate the model and to obtain a more complete picture
of the system. It also shows that the phases where the A-ion is free to move are more stable than the phases
where the A-ion is fixed in place. This is expected as the A-ion movement allows the system to reach lower
energy configurations.

For NaTaO3 and LaTaO3 the lowest energy phase in the tables (see Tab. 3.7 and Tab. 3.8) corresponds to
experimental lowest energy phases being these Pnma and R3̄c respectively [27,29]. However, for SrTiO3 the
lowest energy phase in the tables (see Tab. 3.9) is R3̄c which is not the experimentally observed I4/mcm [32].
This is due to the fact that the simulations made give the minimum energy of the band and not the zero
point energy which depends on quantum effects. The zero point energy is given by

E0 = Emin +
1

2
ℏ
∑
i

ωi (3.42)

where ωi are the different frequencies of the phonon modes of the system and Emin is the minimum energy
of the system. In some cases (see Fig. 3.11), a system can have a lower minimum energy but a higher zero

point energy. In the case of SrTiO3, the I4/mcm phase has a zero point energy of E
I4/mcm
0 = 0.507 eV and

the R3̄c phase has a zero point energy of ER3̄c
0 = 0.523 eV.

Figure 3.11: This figure shows how it can be possible for a system to have a lower minimum energy but a
higher zero point energy. In this figure, the parabolas represent the energy band of each system and the
dashed lines the zero point energy. This figure is only qualitative.
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Once the energies and coordinates are known, equations (3.39) and (3.41) can be solved to obtain the
coefficients of the energy surface. The results of this process are shown in Table 3.10. Note however that if
a whole row in the matrix A in equation (3.39) is zero, the corresponding coefficients are not defined as the
matrix is singular. This is the case for the coefficients of the in-phase tiltings for LaAlO3. The reason for
this is that these compounds do not present in-phase tiltings in any of the phases studied. If the in-phase
coefficients cannot be calculated, then the mixed tiltings coefficient H+− cannot be calculated either as it
depends on the in-phase coefficients (see equation (3.41)).

Table 3.10: Values for the energy coefficients for the different materials. The K coefficients have units of
eV·Å−2 and the I and H coefficients of eV·Å−4. However, this units are dropped in this work for notation
simplicity.

In-phase tiltings “+” Out-of-phase tiltings “-” Mixed tiltings “+-”

Compound K+ I++ H++ K− I−− H−− H+−

NaTaO3 -0.695 1.975 2.355 -2.045 10.365 17.110 8.715
LaAlO3 - - - -0.490 3.615 3.620 -
SrTiO3 -0.485 83.565 203.765 -0.670 36.110 39.945 65297.350

A further discussion of the obtained coefficients and their physical meaning (as discussed in Subsection 3.2.2)
will be done in Section 3.4. However, a brief analysis of the coefficients can be done here.

As expected, all the force constants K+ and K− are negative. This means that the original cubic phase is
unstable. However, there is no coefficients for the in-phase tiltings for LaAlO3 as this compound does not
present in-phase tiltings (i.e. in that case the cubic phase is more stable than any in-phase tiltings).

As mentioned in Subsection 3.3.2, the tiltings for the compound SrTiO3 are small. This means that the
coefficients obtained for this compound are not as reliable as for the other ones as they are obtained from
the solutions to an almost singular linear system (see equation (3.39)). This is reflected in the values of
the coefficients which are much larger than for the other compounds. Because of this, it has been seen that
small changes in the distortion coordinates lead to large changes in the coefficients making these coefficients
not very reliable.

The conclusions about the numerical values for the energy and the coefficients are the following:

� The movement of the A-ion lowers the energy of the system.

� Since the in-phase tiltings for LaAlO3 are not present, a positive value for the coefficient K+ can
be assumed for LaAlO3 despite the fact that it cannot be calculated by the method used.

� Other than the in-phase distortions in LaAlO3, all the force coefficients are negative meaning that the
cubic phase is unstable.

� Systems with small tiltings lead to unreliable coefficients as the linear systems used to obtain
the coefficients are almost singular (see equation 3.39). This is the case for SrTiO3.

3.4 Validation of the model and interpretation of the results

This section is dedicated to the validation of the theoretical model proposed in Sections 3.1 and to the study
of whether the conditions proposed in Subsection 3.2.2 hold for the numerical results obtained in Subsection
3.3.3.
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In order to analyze systems with purely in-phase or out-of-phase tiltings, H and I coefficients must be taken
into account. More precisely, the conditions H > 2I or H < 2I must be studied. To do this, the values
H++/2I++ and H−−/2I−− are calculated for the in-phase and out-of-phase tiltings respectively. This way,
the pure phase stability of a compound is given by a single point (H++/2I++, H−−/2I−−). These points
are shown in Figure 3.12 for the three compounds studied in this work.

Figure 3.12: This figure shows the different regions for pure in-phase and out-of-phase stability. The three
perovskites studied are plotted as points of equation (H++/2I++, H−−/2I−−). For NaTaO3 this point is
(0.59, 0.83), for LaAlO3 the point is (1, 0.50) and for SrTiO3 (1.22, 0.55). The value ofH++/2I++ for LaAlO3

has been set to 1 in order to illustrate that it is not stable for the in-phase tiltings.

The pure tilting approximation is consistent with the numerical results for LaAlO3 and SrTiO3. For LaAlO3,
given the coefficients in Table 3.10, according to the relation in Subsection 3.2.2, the most stable phase is
R3̄c which is consistent with the numerical results in Table 3.8. For SrTiO3, according to the relation in
Subsection 3.2.2, the most stable phases are P4/mbm for in-phase tiltings and Im3̄ for out-of-phase tiltings
and in fact, these phases are the most stable ones in Table 3.9 for their corresponding pure tilting systems.

For NaTaO3 the model and the numerical results match for the in-phase tiltings as Im3̄ is the most stable
phase for the pure in-phase tiltings. However, for the out-of-phase tiltings, according to the pure tilting
approximation, the most stable phase is R3̄m. However, the numerical results show that the most stable
phase among the out-of-phase tiltings is Imma. This result is however consistent with the addition of the
A-ion movement (see Figure 3.7). In this case, 2I−− = 20.73 and H−− = 17.110 are sufficiently close in
value to allow the A-ion movement to stabilize the Imma phase.

Following the reasoning in Subsection 3.2.2, the stability of Pnma can now be analyzed. However, this
analysis will only be done for NATaO3. On one hand, since no pure in-phase tiltings are present in LaAlO3,
the stability of Pnma cannot be analyzed as it was analyzed in Subsection 3.2.2 since the process requires
the in-phase coefficients to be defined. On the other hand, SrTiO3 presents a large change in the distortion
coordinates between P4/mbm and Pnma being Qa = 0.065Å in a+c0c0 and Qa = 0.001Å in a+b−b− (see
Table 3.6). Therefore, the hypothesis that Qa and Qb must be similar from the parent phase to the Pnma
(see Subsection 3.2.2) phase does not hold for SrTiO3. On top of that, the coefficient H+− is very large for
SrTiO3 (see Table 3.10) which means that the mixed tiltings are not expected to be stable. In fact, when
looking at the energies in Table 3.9, and the distortion coordinates in Table 3.6, it can be seen that the
Pnma phase stabilizes in a Imma configuration with a very small Qa (Qa = 0.001Å).
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In order to analyze NaTaO3, the values of the relevant coefficients and distortions are given in Table 3.11.
The values for the quadratic coefficients are calculated using equation 3.36 and the values for Qa and Qb are
taken from Table 3.4. If the quadratic coefficient is negative, then the transition is energetically beneficial
to the system and the change in energy is calculated using equation 3.37.

Table 3.11: This table shows the values for quadratic coefficient from equation 3.36 (i.e. (2H+−Q
2
a − 2K−)

and (2H+−Q
2
b −K+)). If this value is negative then that transition is energetically beneficial to the system

and the change in energy is calculated (see equation 3.37). The values for Qa and Qb are the ones for Pnma
in Table 3.4, Qa = 0.267Åand Qb = 0.240Å

Transition Quadratic coefficient Change in energy (meV)

(a+c0c0) → (a+b−b−) -2.847 195.6
(c0b−b−) → (a+b−b−) 0.709 -

With these results, when subtracting the change in energy from the energy of the (a+c0c0) phase, the
obtained energy is still 85.9 meV higher than the energy of the Pnma phase (see Table 3.7). However, the
change in energy is large enough to be lower than the next lowest energy phase, Imma (see Table 3.7). This
means that the motion of the A-ion (not taken into account in the development in Subsection 3.2.2) is also
responsible for the lower energy of the Pnma phase.

To conclude this Subsection, the results discussed are summarized:

� The pure tilting approximation is consistent with the numerical results for LaAlO3 and
SrTiO3.

� The motion of the A-ion is responsible for the stabilization of the Imma phase in NaTaO3.

� A large value of H+− means that the mixed tiltings are not stable. This is the case for
SrTiO3.

� The study of mixed tiltings using equation (3.36) is consistent with the numerical results
for NaTaO3.

� The A-ion movement is in part responsible for the stabilization of the Pnma phase in
NaTaO3.
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Conclusions

In this work, a model based on Ginzburg-Landau theory has been developed using group theory and sym-
metry arguments to describe the electronic energy surface of perovskites undergoing octahedral rotations.
This model has been complemented with first-principle simulations to obtain the quantitative values for the
different parameters of the model for three distinct perovskites: NaTaO3, LaAlO3 and SrTiO3. The model
and the simulations have been used complementarily to gain an understanding on the terms that govern the
stability of different structural phases.

One of the main results of this work has been precisely understanding the relevant coefficients for the stability
of the different phases for the case of pure tiltings (only in-phase or out-of-phase) and understanding the
importance of the displacement of the A-ion in the stability of the phases. In fact, the movement of the
A-ion plays a key role in stabilizing the Pnma phase. This points in a new direction for the study of why
this phase is the most stable phase for many perovskites.

Moreover, the results demonstrate that a systematic approach based on Ginzburg-Landau theory and using
symmetry can be useful to study the stability of the different phases of the perovskites. In fact, the model
has been shown to be valid for the perovskites LaAlO3, SrTiO3 and NaTaO3.

The main results of this work can be summarized in the following points:

� The analytical model neglecting the A-ion movement has been shown to be valid for LaAlO3 and
SrTiO3 where the A-ion movements are negligible compared to the tiltings.

� A general understanding of the stability of the different phases has been obtained by analyzing the
coefficients of the energy surface.

� The A-ion movement has been shown to be relevant in the stability of the Pnma phase.

� The A-ion movement has been shown to be complex and intricate and some guidelines have been
proposed on how it should be studied.

To summarize, this work shows that a symmetry-based Ginzburg-Landau approach, complemented by ab
initio is a powerful tool to investigate the phase behavior of perovskites. The results obtained in this work
can be used as a starting point for further studies on the stability of the different phases of perovskites or
similar materials. In particular for perovskites, the importance of the A-ion movement has been shown to
be relevant in the stability of the Pnma phase and therefore it should be studied in more detail in future
works.

43
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The following future works are suggested:

� A more detailed study of the A-ion movement, taking into account the in-phase and out-of-phase
movements of the A-ion.

� A physical interpretation of the coefficients of the energy surface; how do they relate to the chemical
structure and the physical conditions such as temperature and pressure.

� A study of the stability of the Pnma phase. Now that the important terms for the stabilization of
this phase have been identified, is there a way to relate this terms with the chemical structure of the
perovskite? Is there a way to predict which perovskites will have a stable Pnma phase?

� Further validation of the model with more perovskites and different phases. The model has been shown
to be valid for the perovskites studied in this work, but it would be interesting to see if it holds for
other perovskites.

� A similar approach to the one used in this work could be used to study other materials with different
distortions.
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