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Abstract
We address a nonlinear boundary homogenization problem associated to the deformations
of a block of an elastic material with small reaction regions periodically distributed along a
plane. We assume a nonlinear Winkler-Robin law which implies that a strong reaction takes
place in these reaction regions. Outside, on the plane, the surface is traction-free while the
rest of the surface is clamped to an absolutely rigid profile. When dealing with critical sizes
of the reaction regions, we show that, asymptotically, they behave as stuck regions, the ho-
mogenized boundary condition being a linear one with a new reaction term which contains
a capacity matrix depending on the macroscopic variable. This matrix is defined through the
solution of a parametric family of microscopic problems, the macroscopic variable being its
parameter. Among others, to show the convergence of the solutions, we develop techniques
that extend those both for nonlinear scalar problems and linear vector problems in the liter-
ature. We also address the extreme cases.

Keywords Nonlinear Winkler foundations · Boundary homogenization · Elasticity
operator · Capacity matrix · Critical relations

Mathematics Subject Classification 35B27 · 35J65 · 35J57 · 35B25 · 74B05 · 74Q20

1 Introduction

Rapidly alternating Winkler-Robin type boundary conditions appear naturally in foundation
models for many Civil Engineering constructions, where strong reactions concentrated in
small regions (“the springs”) may occur. These reactions may be represented by a nonlinear
monotonic vector function of the displacements. A homogenization process is required to
save numerical computations, and also, often, a linearization process is performed in order
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to simplify the model. However, the linearization may be wrong or it may not be justified
(cf. [20] to compare). In this paper, we justify both the averaged boundary conditions and the
linearization process for certain relations between the period, sizes of the reaction regions
and reaction coefficients.

As a matter of fact, boundary homogenization for linear elasticity systems has been
widely considered in the literature, let us mention [4, 12, 15–17, 19, 22, 23, 31, 32, 36,
39–41] and references therein. Winkler-Steklov type boundary conditions are addressed
in [15, 23] while linear Winkler-Robin boundary conditions with large parameters are in
[16, 17, 19, 21]. Among the previously mentioned papers there exist only a few addressing
critical sizes of the heterogeneities or reaction regions on the boundary giving rise to the
so-called strange terms in the homogenized boundary conditions (cf. [4, 17, 31] for grill
type foundations) and none of them address nonlinear boundary conditions as we do it here.

In this paper, we study the asymptotic behavior of the deformations of a non-
homogeneous elastic body which has very large surface reaction terms concentrated in
small regions (the reaction regions) periodically placed along a plane part of the surface.
The reaction terms are represented by a nonlinear vector function which depends on the
points where the reaction regions are placed and on the displacement vector, and also it
contains a very large reaction parameter β(ε).

We assume that the elastic material fills the domain Ω of the upper half space ℝ
3+, and

a part Σ of its surface lies on the plane {x3 = 0} and contains small regions T ε of “size”
rε , at a distance O(ε) between them (cf. Fig. 1), ε measures the period of the structure. The
boundary conditions are nonlinear, of Winkler-Robin type, on T ε . Outside, the surface Σ is
free of charges while the rest of the surface ∂Ω \Σ is assumed to be fixed. Here ε and rε are
two small parameters rε ≪ ε ≪ 1 while β(ε) tends to +∞ as ε → 0. Let us introduce the
limits that relate the three parameters:

lim
ε→0

rε

ε2
= r0, (1.1)

and

lim
ε→0

rεβ(ε) = +∞. (1.2)

It should be noted that the products rεε
−2, rεβ(ε) as well as r2

ε ε−2β(ε) have proven to
play an important role in the description of the limits of the linear models [16, 17] and the
scalar models in [18, 46]. For nonlinear Winkler-Robin boundary conditions we mention the
recent results in [20] for large sizes of the reaction regions and critical reactions, namely
rε ≫ ε2 and r2

ε ε−2β(ε) = O(1) which implies β(ε) ≪ (rε)
−1, and henceforth, a very differ-

ent situation from that in this paper, cf. (1.2) and (1.1). In [20] we proved that an averaged
surface reaction term of the same type of the original one is asymptotically imposed. How-
ever, in the case here considered, where we have a very large reaction β(ε) ≫ (rε)

−1, cf.
(1.2), and rε = O(ε2), cf. (1.1), the study of the nonlinear model here considered requires a
different treatment and a thorough analysis due to the strong contrast induced by the large
reaction. For r0 > 0, the case β(ε) = O(rε)

−1 somehow makes a threshold where the ho-
mogenized model changes from linear to nonlinear, this process being the object of actual
development. In this paper, we show that the nature of the homogenized boundary conditions
are different from those in the original problem. Let us explain this in further detail.

The homogenization problem being (2.11), we provide a general framework for nonlin-
ear reaction terms β(ε)M(x,uε) to show the convergence of solutions uε , as ε → 0 (cf.
(2.7)-(2.10) and Remark 2), towards the solution u0 of a homogenized problem. In the case
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where r0 > 0 the homogenized boundary condition is a linear Winkler-Robin one. Further
specifying, it contains the so-called the strange term

r0𝒞(x̂)u0,

cf. (3.10), and links stresses and displacements, the elastic coefficients of this “averaged
spring” being given by a matrix, 𝒞(x̂), the so-called capacity matrix which depends on the
macroscopic variable, but which is defined through the solution of a family of microscopic
problems in the unbounded half-space, with the macroscopic variable x̂ ∈ Σ as its parameter
(cf. (3.5) and (3.1)). The limit problem coincides with that obtained for the case of alternat-
ing boundary conditions of Dirichlet and Neumann type in [4, 31] and also in the case where
the reaction term is linear, cf. (7.5), [16, 17]. The study in [4, 31] dealt with a homogeneous
and isotropic media which means that the capacity matrix is constant, and also, it deals with
different boundary conditions. In our case, asymptotically, at the microscopic level the me-
dia is homogeneous, but it depends on the position of the reaction regions. It behaves as
if the material were stuck on these reaction regions. Due to this strong interaction between
macroscopic and microscopic scale, the periodicity becomes necessary to obtain the strange
term (cf. Remark 2). This case r0 > 0 is referred to as a critical size, since the behavior of
the solutions asymptotically becomes somehow “extreme” when r0 = 0 or r0 = +∞, being
a Neumann condition or a Dirichlet one asymptotically imposed over the whole region Σ.

It should be emphasized that the nonlinear Winkler-Robin law here used has appeared
in the literature in very different models for porous media (cf. [11]) or rough walls (cf.
[20, 50]) but always with sizes of heterogeneities of the same order of magnitude as the
period. Also note that this law might be replaced by others arising in many contact problems
(cf. e.g., [2, 25, 44]) with the suitable modifications in the treatment and the homogenized
boundary conditions, cf. also Remark 4. See, e.g., [4, 43, 50] and references therein for
the homogenization of Signorini type conditions outside critical size ranges. Also, we refer
to [37, 38] for the introduction of other capacity matrices in very different problems of
elasticity.

Let us mention that, in homogenization problems, strange terms in the partial differen-
tial equation or on boundary/transmission conditions, as well as related terminology, were
introduced in the literature many years ago, cf. [8, 33, 48] for the Laplacian, [1] for Stokes
equations, [31] for the elasticity operator, [24] for semilinear boundary conditions in perfo-
rated media, and [5, 6, 9, 10] for different settings involving non periodic media; the list not
being exhaustive.

Finally, we describe the structure of the paper. Section 2 contains the description of the
geometry, the setting of the homogenization problem and some a priori estimates which are
necessary for our asymptotic analysis. Section 3 contains the main results (cf. Theorems
3.1-3.3) including the homogenized problems and the parametric family of local problems
necessary to describe the strange term when r0 > 0, the parameter of this family being the
macroscopic variable. It also contains the correct setting of these problems in the suitable
Sobolev spaces. The preliminary results for the proofs are in Sect. 4. In Sect. 5, we obtain
homogenized and local problems using matched asymptotic expansions. Sections 6 and 7
are devoted to the proof of the convergence stated in Theorems 3.1-3.3, where the emphasis
is placed on the nonlinear term β(ε)M(x,uε) (cf. Theorems 6.1 and 6.2), avoiding the repe-
tition of the linear case but also preserving self-containment of the paper. Also we note that
we avoid using variational inequalities as used to be the case when dealing with semilinear
boundary conditions (cf. [18, 20]). In particular, it should be emphasized that the technique
applies to scalar problems and linear problems for the elasticity system (see Remark 3), but
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new convergence measures and comparison results have been developed for the treatment of
this nonlinear model (cf. [16–19, 46] to compare). Finally, note that stronger convergence
results follow when r0 = 0 and r0 = +∞, which, for completeness, are addressed in Sect. 7.

2 The Setting of the Problem

Let Ω be an open bounded domain of ℝ3 situated in the upper half-space ℝ
3+ = {x ∈ ℝ

3 :
x3 > 0}, with a Lipschitz boundary ∂Ω. Let ∂Ω be ∂Ω = ΓΩ ∪ Σ where Σ ≠ ∅ is the part
of the boundary in contact with the plane {x3 = 0} and ΓΩ the rest. Let T denote an open
bounded domain of the plane {x3 = 0} with a Lipschitz boundary. Without any restriction,
we can assume that both Σ and T contain the origin of coordinates.

Let ε be a small parameter, i.e., ε ≪ 1. Let rε be an order function such that rε ≪ ε.
For k = (k1, k2) ∈ ℤ

2, we denote by ˜︁xε
k the point of the plane {x3 = 0} with coordinates

˜︁xε
k = (k1ε, k2ε,0), and by T ε

˜︁xk
the homothetic domain of T of ratio rε after translation to the

point ˜︁xε
k :

T ε
˜︁xk

=˜︁xε
k + rεT .

If there is no ambiguity, we shall write ˜︁xk instead of ˜︁xε
k , and T ε instead of T ε

˜︁xk
while ˜︁xε

k is
referred to as the center of T ε

˜︁xk
.

Let 𝒥 ε denote 𝒥 ε = {k ∈ ℤ
2 : T ε

˜︁xk
⊂ Σ}. Let also Nε denote the number of elements of

𝒥 ε:

Nε ≊
|Σ|
ε2

= O(ε−2). (2.1)

For brevity, we denote by
⋃︁

T ε the union of all the T ε contained in Σ, namely,

⋃︂

T ε ≡
⋃︂

k∈𝒥 ε

T ε
˜︁xk

.

Also, in what follows x = (x1, x2, x3) denotes the usual coordinates of the Cartesian co-
ordinate system, while by x̂ = (x1, x2) we refer to the two first components of x ∈ ℝ

3. In
addition, for the sake of completeness, we introduce the so-called microscopic variable

y = x −˜︁xk

rε

, (2.2)

which transforms each region T ε
˜︁xk

into the unit region T , k ∈ 𝒥 ε (cf. Fig. 1).
The geometrical configuration in the plane is analogous to that in [34, 46, 48] for scalar

problems and that in [4, 17, 23, 31] for the elasticity system; cf. also further references in
these papers.

For i, j, k, l = 1,2,3, we denote by aijkl(x) the elastic coefficients of the material, which
are assumed to be globally Lipschitz functions defined in Ω and satisfy the standard sym-
metry and coercivity properties (cf., e.g., [42])

aijkl(x) = ajikl(x) = aklij (x), i, j, k, l = 1,2,3, ∀x ∈ Ω, (2.3)

and

∃α1 > 0 : aijkl(x)ξij ξkl ≥ α1ξij ξij , ∀matrix ξ : ξij = ξji, i, j = 1,2,3, ∀x ∈ Ω. (2.4)
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For a given displacement vector u(x) = (u1(x), u2(x), u3(x)) we use the standard notations
for stress and strain tensors, σ(u) = (σij (u))i,j=1,2,3 and e(u) = (eij (u))i,j=1,2,3, related by
Hooke’s law

σij (u) = aijkl(x)ekl(u), (2.5)

where

ekl(u) = 1

2

(︁∂uk

∂xl

+ ∂ul

∂xk

)︁

. (2.6)

Above, and in what follows, we use the convention of summation over repeated indexes.
As for the reaction terms, let us introduce a vector function

M(x̂,u) = (M1(x̂, u),M2(x̂, u),M3(x̂, u)),

with components Mi(x̂, u) ≡ Mi(x1, x2, u1, u2, u3), Mi ∈ C(Σ ×ℝ
3), i = 1,2,3, satisfying

Mi(x̂,0) = 0, ∀x̂ ∈ Σ, i = 1,2,3, (2.7)

the strong monotonicity condition in the u variable

(Mi(x̂, u) − Mi(x̂, v))(ui − vi) ≥ K(ui − vi)
2 ≡ K|u − v|2, ∀x̂ ∈ Σ, u,v ∈ ℝ

3, (2.8)

and the globally Lipschitz condition in x and u variables

|Mi(x̂, u) − Mi(x̂
′, v)| ≤ Li(|x̂ − x̂ ′| + |u − v|), ∀x̂, x̂ ′ ∈ Σ, u,v ∈ ℝ

3, (2.9)

i = 1,2,3, for certain positive constants K , L1, L2 and L3. The last condition being a
particular case when δ = 0 of the most general one

|Mi(x̂, u) − Mi(x̂
′, v)| ≤ Li(|x̂ − x̂ ′| + |u − v| + |u − v|1+δ), ∀x̂, x̂ ′ ∈ Σ, u,v ∈ℝ

3,

(2.10)
and δ ∈ [0,2]. Note that (2.9) holds with further smoothness of M , cf. (7.4); see Remarks 2
and 3 in this connection.

For f = (f1, f2, f3) ∈ (L2(Ω))3 let us consider the problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂σ ε
ij

∂xj

= fi in Ω,

uε = 0 on ΓΩ ,

σ ε
i3 = 0 on Σ \ ⋃︁

T ε,

σ ε
i3 − β(ε)Mi(x,uε) = 0 on

⋃︁

T ε ,

i = 1,2,3. (2.11)

Above, uε = (uε
1, u

ε
2, u

ε
3) denotes the displacement vector, and on account of (2.5), (2.6) we

have denoted by

σ ε
ij ≡ σij (u

ε) = aijklekl(u
ε).

The Robin/Winkler coefficient of reaction (reaction parameter, in short) β(ε) arising in the
equations on T ε is a positive parameter that converges towards +∞: β(ε) ≫ r−1

ε , cf. (1.2).
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The problem (2.11) may represent a model associated to the interaction of a block of
an elastic material with the soil via a series of small “springs” with a nonlinear Winkler
law σ ε

i3 = −β(ε)Mi(x,uε). Outside these springs, the reaction regions
⋃︁

T ε , the surface is
free of forces, cf., [17] for linear-Winkler springs, [3] for scalar models in the framework of
variational inequalities and [18] for a nonlinear scalar model.

For fixed ε > 0, the weak formulation of problem (2.11) reads: find uε ∈ V, satisfying
∫︂

Ω

σij (u
ε)eij (v) dx + β(ε)

∫︂

⋃︁

T ε

Mi(x̂, uε)vi dx̂ =
∫︂

Ω

fivi dx, ∀v ∈ V, (2.12)

where V denotes the space completion of {ϕ ∈ (C1(Ω))3 : ϕ = 0 on ΓΩ} with the norm
generated by the scalar product

(u, v)V =
∫︂

Ω

eij (u)eij (v) dx . (2.13)

On account of (2.3) and (2.4), the first integral on the left hand side of (2.12) defines
a bilinear, symmetric continuous and coercive form on V ⊂ (L2(Ω))3. As for the second
integral, on account of (2.8), we can write

β(ε)

∫︂

⋃︁

T ε

(uε
i )

2 dx̂ ≤ Cβ(ε)

∫︂

⋃︁

T ε

Mi(x̂, uε)uε
i dx̂. (2.14)

Here and in what follows C denotes a positive constant independent of ε.
The existence and uniqueness of solution of (2.11) is obtained from properties (2.7), (2.8)

and (2.10), that allows to write the problem in terms of a variational inequality for a coercive
and monotonic hemicontinuous operator on V (cf., e.g., Theorems 8.2-8.4 in Sections II.8.2
and II.8.3 of [30] for a general abstract framework and [20] for applications to this model).
So that we can state the following result

Theorem 2.1 For fixed ε > 0, there is a unique solution uε ∈ V of the integral identity (2.12).
In addition the sequence {uε}ε satisfies

∥uε∥V ≤ C and β(ε)

∫︂

⋃︁

T ε

(uε
i )

2 dx̂ ≤ C. (2.15)

As a consequence of the uniform bound (2.15), for any sequence, we can extract a sub-
sequence, still denoted by ε, such that

uε −→ u0 in (H 1(Ω))3 − weak, as ε → 0, (2.16)

for some u0 ∈ V.
The aim of this work is to identify u0 with the unique solution of a homogenized problem

which depends on r0 = 0, r0 = +∞ or r0 > 0 in (1.1).

3 Homogenized Problems and Main Results

In order to make the reading of the paper easier, in this section, we state the three homog-
enized problems which depend on the different relations between the parameters, cf. (1.1)
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Fig. 1 The geometrical configurations for macroscopic and microscopic variables

and (1.2). We also introduce the parametric family of microscopic problems, the so-called
local problems (3.1), that allow us to describe the strange term in the homogenized problem.
Finally, we state the main results of the paper cf. Theorems 3.1-3.3. We obtain microscopic
and homogenized problems in Sect. 5, by using the technique of matched asymptotic expan-
sions, while in Sects. 6-7 we use these local problems to show the convergence.

3.1 The Parametric Family of Local Problems

Let us introduce the x̂-dependent local problems

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂σ x̂
ij,y(W

l,x̂ )

∂yj

= 0 in ℝ
3+,

σ x̂
i3,y(W

l,x̂ ) = 0 on {y3 = 0} \ T ,

W l,x̂ (y) = el on T ,

W l,x̂ (y) −→ 0 as |y| → ∞, y3 > 0,

i = 1,2,3, (3.1)

where y = (y1, y2, y3) denotes an auxiliary variable in ℝ
3, el stands for the unit vector in

the yl-direction, while l = 1,2,3, and the upper index x̂ is a parameter which refers to the
elastic homogeneous media with freezing coefficients at x̂. Namely,

σ x̂
ij,y(V ) = aijkl(x̂)ekl,y(V ), (3.2)

where the lower index y denotes the variable of derivation.
The variable y is referred to as the local variable; its connection with the macroscopic

variable x is given by the change (2.2). Hence, since we need to distinguish between differ-
entiation in x and y, in what follows, lower indexes x or y in the components of the stress
and strain tensors mean the variable for derivation.

It should be emphasized that, in (3.1), the macroscopic variable x̂ ∈ Σ, becomes a pa-
rameter arising in the stress tensor (3.2), and we have a parametric family of local problems
(3.1) whose solutions satisfy the equilibrium equations for a homogeneous media filling the
half-space ℝ3+. The proof of the existence and uniqueness of the solution of (3.1) in suitable
functional spaces follows the scheme in [31] and [16] for an isotropic media and [17] for the
anisotropic media. For the sake of completeness, we outline here below the main results.
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Let 𝒟(ℝ3+) be the space of functions that are restrictions to ℝ3+ of the elements of
𝒟(ℝ3), and let 𝒟T (ℝ3+) be the space of functions of 𝒟(ℝ3+) such that they vanish in a
neighborhood of T . Let us define the functional spaces 𝒲 and 𝒲0 as the completion of
(𝒟(ℝ3+))3 and (𝒟T (ℝ3+))3 respectively, with the norm

(︂
3

∑︂

i,j=1

⃦

⃦

⃦eij,y(U)

⃦

⃦

⃦

2

L2(ℝ3+)

)︂1/2
. (3.3)

Due to Korn’s inequality in bounded Lipschitz domains, the continuous embedding of 𝒲0

into (H 1
loc(ℝ

3+))3 holds, and the elements U of 𝒲0 have null traces on T and satisfy
eij,y(U) ∈ L2(ℝ3+), i, j = 1,2,3. We refer to, e.g., [26, 27, 37] for further definitions and
properties of spaces 𝒲 and 𝒲0 involving (3.3).

For each l = 1,2,3, we take a function Ψl ∈ (𝒟(ℝ3+))3 such that Ψl = el in a neighbor-
hood of T . Then, there is a unique solution Wl,x̂ ∈ Ψl +𝒲0 satisfying

∫︂

ℝ3+

σ x̂
ij,y(W

l,x̂ )eij,y(V )dy = 0 ∀V ∈ 𝒲0. (3.4)

This is a weak formulation of problem (3.1)1-(3.1)3 and the representation of the solution
(4.3) (cf. also (4.6)) provides its precise behavior at infinity in (3.1)3.

Also, σi3(W
l,x̂ )

⃓

⃓

y3=0
is a distribution having a compact support contained in T and be-

longs to H−1/2(T ). Hence, it makes sense to define the matrix 𝒞 = (𝒞il)i,l=1,2,3 as

𝒞il(x̂) = −⟨︁

σ x̂
i3,y(W

l,x̂),1
⟩︁

H−1/2(T )×H 1/2(T )
, (3.5)

which is referred to us the capacity matrix.
Applying the Green formula in (3.1), for any V ∈ (𝒟(ℝ3+))3, we can write

∫︂

ℝ3+

σ x̂
pj,y(W

l,x̂ )epj,y(V )dy = ⟨︁ − σ x̂
p3,y(W

l,x̂ ),Vi

⟩︁

H−1/2(T )×H 1/2(T )
, (3.6)

and, by density, it holds for any V ∈ 𝒲 . Consequently, taking V = Wp,x̂ in (3.6) we have
the representation for the components of the matrix 𝒞:

∫︂

ℝ3+

σ x̂
pj,y(W

l,x̂)epj,y(W
i,x̂ ) dy = −⟨︁

σ x̂
p3,y(W

l,x̂ ), ei
p

⟩︁

H−1/2(T )×H 1/2(T )
= 𝒞il (x̂), (3.7)

which proves useful in the following sections.

3.2 The Homogenized Problems

For the critical size r0 > 0, we introduce the homogenized problem

−∂σij,x(u
0)

∂xj

= fi in Ω, i = 1,2,3, (3.8)

u0
i = 0 on ΓΩ, i = 1,2,3, (3.9)

σi3,x(u
0) − r0𝒞ij (x̂)u0

j = 0 on Σ, i = 1,2,3, (3.10)
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with the strange term r0𝒞ij (x̂)u0
j containing the capacity matrix 𝒞(x̂) defined by (3.5) or,

equivalently, by (3.7). Therefore, the correct setting of problem (3.8)-(3.10) is linked to that
of the corresponding x̂-dependent family of microscopic problems (3.1) as well as to the
properties of their solutions. Note that (3.10) is a linear Winkler-Robin boundary condition
on Σ which does not depend on the function M .

Indeed, the variational formulation of problem (3.8), (3.9), (3.10), reads:
find u0 ∈ V satisfying

∫︂

Ω

σij,x(u
0)eij,x(v) dx + r0

∫︂

Σ

𝒞ij (x̂)u0
i vj dx̂ =

∫︂

Ω

fivi dx, ∀v ∈ V. (3.11)

The properties of the matrix 𝒞 in (3.5), cf. Proposition 4.2, along with the Poincaré and
Korn’s inequalities on V, imply the existence and uniqueness of solution of (3.11).

For the extreme cases where r0 = 0 the homogenized problem is the mixed boundary
value problem defined by (3.8), (3.9) and

σi3,x(u
0) = 0 on Σ, i = 1,2,3. (3.12)

Its variational formulation is
∫︂

Ω

σij,x(u
0)eij,x(v) dx =

∫︂

Ω

fivi dx, ∀v ∈ V, (3.13)

whose existence and uniqueness of solution in V is well known on account of the Poincaré
and Korn’s inequalities on V.

Similarly, for the extreme case where r0 = +∞ the homogenized problem is the Dirichlet
problem defined by (3.8) and

u0 = 0 on ∂Ω, (3.14)

which has a variational formulation
∫︂

Ω

σij,x(u
0)eij,x(v) dx =

∫︂

Ω

fivi dx, ∀v ∈ (H 1
0 (Ω))3, (3.15)

and a unique solution in (H 1
0 (Ω))3. Note that the variational formulations (3.11), (3.13) and

(3.15) are written in terms of bilinear, continuous, and coercive forms on a couple of Hilbert
spaces with a compact and dense embedding V ⊂ H and therefore classical in the literature
(cf., e.g., [42, 47] as regards the elasticity framework for these formulations).

Theorem 3.1 Let r0 ≥ 0 in (1.1) and let M satisfy (2.7)-(2.9). Then, the solution uε of (2.12)
converges in (H 1(Ω))3-weak, as ε → 0, towards the solution u0 of (3.11).

Theorem 3.2 For r0 = 0 in (1.1) and M satisfying (2.7), (2.8) and (2.10), the solution uε of
(2.12) converges in (H 1(Ω))3, as ε → 0, towards the solution u0 of (3.13).

Theorem 3.3 For r0 = +∞ in (1.1) and M satisfying (2.7), (2.8) and (2.10), the solution uε

of (2.12) converges in (H 1
0 (Ω))3, as ε → 0, towards the solution u0 of (3.15).
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4 Preliminary Results

For the sake of completeness, we state here the necessary results for the proofs of Theorems
3.1-3.3 in Sects. 6-7.

Boundedness and dependence on the parameter x̂ ∈ Σ: r0 ≥ 0.
The following results deal with the correct setting of the homogenized and local problems

as well as the continuous dependence of Wl,x̂ and 𝒞(x̂) on the macroscopic variable x̂ ∈ Σ.
In their statements C denotes a positive constant independent of x̂.

Proposition 4.1 For l = 1,2,3, the solution Wl,x̂ of (3.6) depends continuously on x̂ ∈ Σ in
the topology of 𝒲 . In addition, for l, p, i, j = 1,2,3, the functions

ˆ︁x ↦→
∫︂

ℝ3+

eij,y(W
l,x̂)eij,y(W

p,x̂)dy and ˆ︁x ↦→ ⟨︁

σ x̂
p3,y(W

l,x̂), ei
p

⟩︁

H−1/2(T )×H 1/2(T )

also depend continuously on x̂ ∈ Σ, and the bounds

3
∑︂

i,j=1

⃦

⃦eij,y(W
l,x̂ )

⃦

⃦

L2(ℝ3+)
≤ C,

⃓

⃓

⃓

⟨︁

σ x̂
p3,y(W

l,x̂ ), ei
p

⟩︁

H−1/2(T )×H 1/2(T )

⃓

⃓

⃓ ≤ C (4.1)

and
⃦

⃦

⃦σ x̂
p3,y(W

l,x̂)

⃦

⃦

⃦

H−1/2(T )
≤ C (4.2)

hod true ∀x̂ ∈ Σ.

Proposition 4.2 For each fixed x̂ ∈ Σ, 𝒞(x̂) defined by (3.5) is a symmetric and positive
definite matrix. In addition, its entries depend continuously on x̂ ∈ Σ.

The proofs of Propositions 4.1 and 4.2 can be found in Sect. 7 of [17].
Related to solutions of x̂-dependent problems (3.1) we state the following results:

Theorem 4.3 For each x̂ ∈ Σ and l = 1,2,3, the solution Wl,x̂ ∈ Ψl +𝒲0 of problem (3.4)
can be represented in terms of the Green matrix-function Gx̂

ij as follows

W
l,x̂
i (y1, y2, y3) = ⟨︁

σ
l,x̂
j , Gx̂

ij (y1 − ·, y2 − ·, y3)
⟩︁

H−1/2(T )×H 1/2(T )
, (4.3)

where σ l,x̂ is defined by

σ l,x̂ = (σ
l,x̂
1 , σ

l,x̂
2 , σ

l,x̂
3 ) := (σ x̂

13,y(W
l,x̂ ), σ x̂

23,y(W
l,x̂), σ x̂

33,y(W
l,x̂ )),

and Gx̂ = (Gx̂
ij )i,j=1,2,3 is a symmetric tensor which depends on the elastic moduli aijkp(x̂)

of the media and admits the representation

Gx̂(y) = |y|−1 Φx̂(ω) for y ∈ℝ
3+ and ω ∈ S2+ := {y ∈ℝ

3+ : |y| = 1}, (4.4)

where Φx̂ is a symmetric matrix whose elements are smooth functions on the unit semi-
sphere in ℝ

3+, S2+. In addition, Φx̂ depends continuously on the parameter x̂ ∈ Σ, in such a
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way that for i, j = 1,2,3,

max
x̂∈Σ,ω∈S2+

|Φx̂
ij (ω)| ≤ C and max

x̂∈Σ,ω∈S2+

⃓

⃓

⃓∇ωΦx̂
ij (ω)

⃓

⃓ ≤ C, (4.5)

where ∇ω is the gradient-operator on the sphere, and C a certain constant.

Corollary 4.4 There is a positive constant C independent of x̂, such that for y ∈ ℝ
3+ and

|y| > 2RT , while T falls into the disc of radius RT , we have

|Wl,x̂
i (y)| ≤ C

1

|y| and

⃓

⃓

⃓

⃓

⃓

∂W
l,x̂
i

∂yp

(y)

⃓

⃓

⃓

⃓

⃓

≤ C
1

|y|2 , i,p = 1,2,3. (4.6)

The proofs of Theorem 4.3 and Corollary 4.4 have been performed in [17].
Since, at the microscopic level the medium is homogeneous, in the case of an original

macroscopic isotropic media, Gx̂ in (4.4) has an explicit representation in terms of homo-
geneous functions of y, and of the Lamé constants λ(x̂), μ(x̂). For ease of reading, we
introduce here the definition of Gx̂ , the so-called Green’s tensor for the equilibrium equa-
tions of a semi-infinite isotropic and homogeneous medium, see Section I.8 of [29]. Indeed,
when (2.5) reads

σij,x(u) = λ(x)δij ekk,x(u) + 2μ(x)eij,x(u),

the components of the stress tensor arising in (3.1), cf. (3.2), are

σ x̂
ij,y(U) = λ(x̂)δij ekk,y(U) + 2μ(x̂)eij,y(U),

and the components of Gx̂ in terms of Young’s modulus and Poisson’s ratio, E(x̂) and ς(x̂),
are given by:

Gx̂
11(ξ) = g(x̂)

(︃

2(1 − ς(x̂))ρ + ξ3

ρ(ρ + ξ3)
+ ξ 2

1 (2ρ(ς(x̂)ρ + ξ3) + ξ 2
3 )

ρ3(ρ + ξ3)2

)︃

,

Gx̂
22(ξ) = g(x̂)

(︃

2(1 − ς(x̂))ρ + ξ3

ρ(ρ + ξ3)
+ ξ 2

2 (2ρ(ς(x̂)ρ + ξ3) + ξ 2
3 )

ρ3(ρ + ξ3)2

)︃

,

Gx̂
12(ξ) = g(x̂)

(︃

ξ1ξ2(2ρ(ς(x̂)ρ + ξ3) + ξ 2
3 )

ρ3(ρ + ξ3)2

)︃

, Gx̂
13(ξ) = g(x̂)

(︃

ξ1ξ3

ρ3
− (1 − 2ς(x̂))ξ1

ρ(ρ + ξ3)

)︃

,

Gx̂
23(ξ) = g(x̂)

(︃

ξ2ξ3

ρ3
− (1 − 2ς(x̂))ξ2

ρ(ρ + ξ3)

)︃

, Gx̂
33(ξ) = g(x̂)

(︃

ξ 2
3

ρ3
+ 2(1 − ς(x̂))

ρ

)︃

where

g(x̂) = 1 + ς(x̂)

2πE(x̂)
, ρ =

√︂

ξ 2
1 + ξ 2

2 + ξ 2
3 , ξ = (ξ1, ξ2, ξ3) ∈ℝ

3+, Gx̂
ij = Gx̂

ji,

while we recall

λ(x̂) = E(x̂)ς(x̂)

(1 + ς(x̂))(1 − 2ς(x̂))
and μ(x̂) = E(x̂)

2(1 + ς(x̂))
.
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See [31] in connection with these formulas and the proof of Theorem 4.3 and Corollary 4.4
in the case of a homogeneous and isotropic original media.

For the anisotropic media, cf. (3.2), we note that Φx̂ in (4.4) is an analog of the Kelvin
tensor in the whole space ℝ

3 constructed from the analogues to Boussinesq and Cerruti ten-
sors realizing actions of concentrated forces on the edge half-plane. Since the half-space is a
cone with generator the semi-sphere, the representation (4.3) is supported by general results
in [35]. We note that explicit formulas for the Green matrix-function and accompanying ten-
sors are known in the case of isotropy (cf. the above formulas) and, for their existence and
main properties in anisotropic media, we refer to Sects. 2 and 5 of [35] where more general
boundary value problems for elliptic systems in conical domains are considered. See also
[17] for further related references and proofs of the structure (4.4) and (4.5).

The boundary layer functions.
Below, using the solutions of (3.1), we introduce some functions which prove to be es-

sential to define the test functions for obtaining the convergence of the solution of (2.12)
towards that of the homogenized problem (3.11), when r0 ≥ 0.

First, let us consider φ ∈ C∞[0,1], 0 ≤ φ ≤ 1, φ = 1 in [0,1/8] and Supp(φ) ⊂ [0,1/4].
We define the function

φε(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 for x ∈
⋃︂

k∈𝒥 ε

B+
(︂

˜︁xk, rε + ε

8

)︂

,

φ
(︂ |x −˜︁xk| − rε

ε

)︂

for x ∈ 𝒞ε,+
˜︁xk

, k ∈ 𝒥 ε

0 for x ∈ Ω \
⋃︂

k∈𝒥 ε

B+
(︂

˜︁xk, rε + ε

4

)︂

.

(4.7)

where 𝒥 ε = {k ∈ ℤ
2 : T ε

˜︁xk
⊂ Σ}, B+(˜︁xk, r) = B(˜︁xk, r) ∩ {x3 > 0} is the half-ball of radius r

centered at the point ˜︁xk, and 𝒞ε,+
˜︁xk

the half-annulus:

𝒞ε,+
˜︁xk

= B+
(︂

˜︁xk, rε + ε

4

)︂

\ B+
(︂

˜︁xk, rε + ε

8

)︂

. (4.8)

For l = 1,2,3, and k ∈ 𝒥 ε , we construct the functions ˜︁Wl,k,ε(x) and ˜︁Wl,ε(x) using the
solutions Wl,˜︁xk of the local problems (3.1), as follows:

˜︁Wl,k,ε(x) = el − Wl,˜︁xk

(︃

x −˜︁xk

rε

)︃

φε(x) for x ∈ B+
(︂

˜︁xk, rε + ε

4

)︂

. (4.9)

Now, we extend it by el in Ω \ ⋃︁

k∈𝒥 ε B+ (︁

˜︁xk, rε + ε
4

)︁

and, finally, we set

˜︁Wl,ε(x) =

⎧

⎪

⎨

⎪

⎩

˜︁Wl,k,ε(x) for x ∈ B+ (︁

˜︁xk, rε + ε
4

)︁

, k ∈ 𝒥 ε,

el for x ∈ Ω \
⋃︂

k∈𝒥 ε

B+
(︂

˜︁xk, rε + ε

4

)︂

.
(4.10)

Proposition 4.5 For x ∈ 𝒞ε,+
˜︁xk

, and ε sufficiently small, the inequalities

⃓

⃓

⃓

⃓

∂φε

∂xj

(x)

⃓

⃓

⃓

⃓

≤ C
1

ε
, j = 1,2,3, (4.11)

⃓

⃓

⃓W
l,˜︁xk
i

(︂x −˜︁xk

rε

)︂⃓

⃓

⃓ ≤ C
rε

ε
,

⃓

⃓

⃓

⃓

⃓

∂W
l,˜︁xk
i

∂xj

(︂x −˜︁xk

rε

)︂

⃓

⃓

⃓

⃓

⃓

≤ C
rε

ε2
, i, j, l = 1,2,3, (4.12)
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and

⃓

⃓ ˜︁W
l,k,ε
i (x)

⃓

⃓ ≤ C
rε

ε
,

⃓

⃓

⃓

⃓

⃓

∂ ˜︁W
l,k,ε
i

∂xj

(x)

⃓

⃓

⃓

⃓

⃓

≤ C
rε

ε2
, i, j, l = 1,2,3, (4.13)

are satisfied, C being a constant independent of ˜︁xk and ε.
In addition, for l, p = 1,2,3, we have

∥ ˜︁Wl,ε∥(H 1(Ω))3 ≤ C and ˜︁Wl,ε ε→0−−−−−−→ el weakly in (H 1(Ω))3 (4.14)

and

lim
ε→0

∫︂

Ω1

σij,x( ˜︁Wl,ε)eij,x( ˜︁Wp,ε)Φdx = r0

∫︂

Σ1

Φ(x̂)

∫︂

ℝ3+

σ x̂
ij,y(W

l,x̂ )eij,y(W
p,x̂)dy dx̂

= r0

∫︂

Σ1

𝒞pl(x̂)Φ(x̂) dx̂,
(4.15)

where Φ ∈ C(Ω1) and Ω1 is any open domain, Ω1 ⊆ Ω, with Σ1 := ∂Ω1 ∩ Σ ≠ ∅.

See Propositions 3 and 4 of [17] for the proof of Proposition 4.5.
The case where r0 = +∞.
We state a necessary result to prove the convergence when r0 = +∞ whose proof has

been performed in Sect. 5 of [20].

Theorem 4.6 Let us assume r0 = +∞ in (1.1) and properties (2.7), (2.8) and (2.10) for M .
For ϕ ∈ (C1(Ω))3 and v ∈ (H 1(Ω))3,

⃓

⃓

⃓

ε2

r2
ε

∫︂

⋃︁

T ε

Mi(x,ϕ)vi dx̂ − |T |
∫︂

Σ

Mi(x,ϕ)vi dx̂

⃓

⃓

⃓ ≤ C
(︂

ε1/2 + ε

r
1/2
ε

)︂

∥v∥(H 1(Ω))3 , (4.16)

where C is a constant independent of ε and v.

5 Matched Asymptotic Expansions

Throughout this section we provide the main steps to obtain, by means of matched asymp-
totic expansions, the homogenized problems introduced in Sect. 3.

Taking (2.15) into account we consider the asymptotic expansions for the displacement
vector uε :

Assume the outer expansion

uε(x) = u0(x) + rεu
1(x) · · · , in Ω ∩ {x3 > d} ∀d > 0, (5.1)

which in fact, is supposed to be valid for x “far” from regions the T ε
˜︁xk

, namely, at a distance
ρ ≫ rε from the centers ˜︁xk. Also, we assume the inner expansion in a neighborhood of each
reaction region T ε

˜︁xk

uε(y) = V 0(y) + rεV
1(y) · · · for y ∈ ℝ3+, (5.2)
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where variable y is given by (2.2) in a neighborhood of each center ˜︁xk, k ∈ 𝒥 ε , while by
rεu

1, rεV
1 and dots we denote regular terms in the asymptotic series containing higher order

functions of ε that we are not using in our asymptotic analysis.
By matching the inner and outer expansions for uε , at the first order, we have

lim
|y|→∞

V 0(y) = lim
x→˜︁xk

u0(x). (5.3)

By replacing (5.1) in (2.11) we obtain the equations for u0: (3.8), (3.9) and another
boundary condition on Σ to be determined again by matching outer and inner expansions. To
do it, let us determine V 0(y) in the inner expansion (5.2). We first obtain formal asymptotics
expansions for Mi(x,uε(x)), while i = 1,2,3, in a neighborhood of each region T ε

x̃k
. Under

the assumption of regularity for the function Mi , cf. (7.4), and of (5.2), we can write

Mi(x,uε(x)) = Mi(rεy +˜︁xk, uε(y)) = Mi(˜︁xk, V 0(y)) + rεM
1
i (y) + · · · , (5.4)

for a certain regular function M1
i .

Taking derivatives in (2.11) with respect to y, cf. (2.2), we replace (5.2) and (5.4) in
(2.11), and take into account the continuity of the elastic coefficients aijkl(x) and (5.3).
Then, we obtain that V 0 satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂σ k
ij,y(V

0)

∂yj

= 0 in ℝ
3+ ,

σ k
i3,y(V

0) = 0 on {y3 = 0} \ T ,

σ k
i3,y(V

0) − rεβ(ε)Mi(˜︁xk,V
0) = 0 on T ,

V 0(y) −→ u0(˜︁xk) as |y| → ∞, y3 > 0 .

i = 1,2,3. (5.5)

Above, and in what follows, for simplicity, we write the superscript k in the strain tensor
(3.2) when x̂ ≡˜︁xk, namely,

σ k
ij,y(V ) = aijkl(˜︁xk)ekl,y(V ). (5.6)

Since rεβ(ε) → +∞, then we get Mi(˜︁xk,V
0) ≈ 0 for i = 1,2,3, and consequently

Mi(˜︁xk,V
0)V 0

i ≈ 0, but properties (2.7) and (2.8) ensure that (V 0
i )2 ≈ 0.

Following the idea for linear problems in boundary homogenization (cf. [16, 17, 31]), we
assume the approach to V 0 as follows

V 0(y) ≈ u0
l (˜︁xk)(e

l − Wl(y)) ≡
3

∑︂

l=1

u0
l (˜︁xk)(e

l − Wl(y)), (5.7)

where, for l = 1,2,3, Wl(y) ≡ Wl,˜︁xk(y) is the solution of (cf. (5.5))

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂σ k
ij,y(W

l,˜︁xk)

∂yj

= 0 in ℝ
3+ ,

σ k
i3,y(W

l,˜︁xk) = 0 on {y3 = 0} \ T ,

W l,˜︁xk(y) = el on T ,

W l,˜︁xk(y) −→ 0 as |y| → ∞, y3 > 0 ,

i = 1,2,3. (5.8)
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Now, we note that writing ˜︁xk = x̂, (5.8) is (3.1).
In order to obtain the boundary condition on Σ for u0, we perform an integration by

parts over the equilibrium equations in coin-like domains, neglecting the stresses across the
lateral surface (cf., e.g., Sect. 3 in [14] for the technique). We define one of these domains
as follows. Let us consider Σ1 an open domain contained in Σ such that ∂Σ1 does not touch
any region T ε

˜︁xk
. Let δ(ε) be positive, rε ≪ δ(ε) ≪ 1. We consider the coin-like domain

Ω
δ(ε)
Σ1

= Ω ∩ (Σ1 × (0, δ(ε))). (5.9)

Let Γδ(ε) denote the lateral boundary of Ω
δ(ε)
Σ1

in such a way that

∂Ω
δ(ε)
Σ1

= Γδ(ε) ∪ Σ
δ(ε)

1 ∪ Σ1 (5.10)

where Σ
δ(ε)

1 denotes the set {x : (x1, x2,0) ∈ Σ1, x3 = δ(ε)}. On Σ
δ(ε)

1 , we are “far” from the
reaction regions T ε

˜︁xk
and (5.1) hold. “Near” each region T ε , we need to use the inner expan-

sion (5.2), which in terms of the macroscopic variable reads uε(x) = V 0
(︁

(x −˜︁xk)r
−1
ε

)︁+· · · .
In particular, on each reaction region T ε

˜︁xk
we have (cf. (2.2), (5.2) and (5.6))

σi3,x(u
ε) = σi3,x(V

0(y)) ≈ ai3kh(˜︁xk)
1

rε

ekh,y(V
0(y)) + · · · = 1

rε

σ k
i3,y(V

0(y)) + · · · (5.11)

Now, considering (2.11), we apply the Green formula over Ω
δ(ε)
Σ1

(cf. (5.9) and (5.10)) to
obtain

∫︂

Σ1∩⋃︁

T ε
˜︁xk

σi3,x(u
ε)dx̂ =

∫︂

Ω
δ(ε)
Σ1

fidx +
∫︂

Γδ(ε)

σij,x(u
ε)nj dΓδ +

∫︂

Σ
δ(ε)
1

σi3,x(u
ε)dx̂ , (5.12)

where n stands for the unit outer normal to Ω
δ(ε)
Σ1

along Γδ(ε). Then, using (5.1), (5.2), (5.11),
(5.7), performing the change of variable (2.2), considering that σ k

i3,y(W
l)
⃓

⃓{y3=0} is a distri-

bution of compact support on T , and taking limits in (5.12), as ε → 0, lead us to
∫︂

Σ1

σi3,x(u
0)dx̂ := lim

ε→0
rε

∑︂

˜︁xk∈Σ1

u0
l (˜︁xk)

⟨︁

σ k
i3,y(e

l − Wl) , 1
⟩︁

H−1/2(T )×H 1/2(T )

= lim
ε→0

∑︂

˜︁xk∈Σ1

rε𝒞il (˜︁xk)u
0
l (˜︁xk), (5.13)

where, Wl ≡ Wl,˜︁xk is the solution of (5.8) and 𝒞il are the components of a matrix 𝒞(︁

˜︁xk

)︁

de-
fined by (3.5). Under the hypothesis of smoothness of u0(x̂) and that of 𝒞(x̂) (cf. Proposition
4.2), and under the assumption that r0 > 0 in (1.1) we obtain that (5.13) reads

∫︂

Σ1

σi3,x(u
0)dx̂ = r0

∫︂

Σ1

𝒞il

(︁

x̂
)︁

u0
l (x̂) dx̂. (5.14)

Obviously, when r0 = 0, the limit (5.13) gives
∫︂

Σ1

σi3,x(u
0)dx̂ = 0. (5.15)
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Formulas (5.13) and (5.14) furnish the asymptotic behavior of the solution uε when r0 ≥
0. The reasoning above must be slightly modified in the case where r0 = +∞ as follows:
we multiply both sides of the equality in (5.12) by ε2r−1

ε . Since ε2r−1
ε → 0 as ε → 0, the

reasoning in (5.13)-(5.14) provides

0 = lim
ε→0

∑︂

˜︁xk∈Σ1

ε2
∫︂

T ε
˜︁xk

σ k
i3,y(V

0(y))dŷ =
∫︂

Σ1

𝒞il(x̂)u0
l (x̂) dx̂. (5.16)

Gathering all the possible values for r0, cf. (1.1), on account of the somewhat arbitrary
choice of Σ1 ⊂ Σ, from (5.14)-(5.16) we obtain the following boundary conditions on Σ to
be added to (3.8) and (3.9) in order to determine the first terms of the asymptotic expansions
(5.1), namely u0.

If r0 > 0, then we have (5.14). σi3,x(u
0) − r0𝒞e

il(x, u0)u0
l = 0 on Σ. This gives that u0 is

the solution of problem (3.8), (3.9), (3.10).
If or r0 = 0, then we have (5.15). This gives that u0 is the solution of problem (3.8), (3.9),

(3.12).
If r0 = +∞, then, u0 = 0 on Σ. This gives that u0 is the solution of problem (3.8), (3.9),

(3.14). Here, we have used (5.16) and hence that 𝒞ilu
0
l = 0 on Σ, for i = 1,2,3. Then, the

positive definite property for the matrix 𝒞il (cf. Proposition 4.2) gives (u0
l )

2 = 0 as above-
announced.

6 The Convergence when 𝒓0 ≥ 0

In this section, we prove Theorem 3.1. In order to do this, we first show two results of con-
vergence which are essential for the proofs. The fist one deals with precise estimates for the
solutions of (2.11) in spaces of traces which allows to pass to the limit in sums of products
of duality (for surface terms, cf. (6.18)). The second result deals with the construction of a
sequence ˜︁uε which somehow behaves as uε allowing us to pass to the limit but controlling
the discrepancies of ˜︁uε − uε . As a matter of fact, Theorem 6.1 extends the result of Proposi-
tion 5.2 in [18] (for scalar problems) to solutions of vector problems using less restrictions.
See Remark 1 in connection with Theorem 3.2.

Theorem 6.1 Let r0 ≥ 0 and M satisfy (2.7)-(2.9). Then, the solution uε of (2.12) verifies

3
∑︂

i=1

⎛

⎝

∑︂

˜︁xk

⃦

⃦

⃦uε
i

⃦

⃦

⃦

2

H 1/2(T ε
˜︁xk

)

⎞

⎠

1/2

≤ C
(︂

r2
ε + 1

β(ε)2

)︂1/2 ≤ Crε, (6.1)

with a certain constant C independent of ε.

Proof From the definition of the H 1/2-norm, for each component uε
i , while i = 1,2,3, we

write the left hand side of (6.1) as follows

𝔏ε :=
∑︂

˜︁xk

⃦

⃦

⃦uε
i

⃦

⃦

⃦

2

L2(T ε
˜︁xk

)
+

∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

|uε
i (x̂) − uε

i (x̂
′)|2

|x̂ − x̂ ′|3 dx̂dx̂ ′. (6.2)

For the first summation we have, cf. (2.15)

∑︂

˜︁xk

⃦

⃦

⃦uε
i

⃦

⃦

⃦

2

L2(T ε
˜︁xk

)
= 1

β(ε)

∫︂

⋃︁

T ε
˜︁xk

β(ε)(uε
i )

2dx̂ ≤ C
1

β(ε)
. (6.3)
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Let us analyze the second summation in (6.2). Using (2.8) we deduce the inequality

˜︁K(ui − vi)
2 ≤ (Mi(x,u) − Mi(x, v))2 ∀x ∈ Σ, u,v ∈ℝ

3, (6.4)

for some ˜︁K > 0. Indeed, let us consider a constant K̂ > (2K)−1, with K the constant arising
in (2.8), we write

K̂K(ui − vi)
2 ≤ K̂(Mi(x,u) − Mi(x, v))(ui − vi)

≤ K̂2(Mi(x,u) − Mi(x, v))2

2
+ (ui − vi)

2

2

and therefore (6.4) holds. This along with (2.9), leads us to the following chain of inequali-
ties

∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

|uε
i (x̂) − uε

i (x̂
′)|2

|x̂ − x̂ ′|3 dx̂dx̂ ′

≤ ˜︁C
∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

|Mi(x̂, uε(x̂)) − Mi(x̂, uε(x̂ ′))|2
|x̂ − x̂ ′|3 dx̂dx̂ ′

≤ 2˜︁C

∫︂

⋃︁

T ε
˜︁xk

∫︂

⋃︁

T ε
˜︁xk

|Mi(x̂, uε(x̂)) − Mi(x̂
′, uε(x̂ ′))|2

|x̂ − x̂ ′|3 dx̂dx̂ ′ + ˆ︁C
∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

1

|x̂ − x̂ ′|dx̂dx̂ ′

≤ 2˜︁C

⃦

⃦

⃦Mi(·, uε(·))
⃦

⃦

⃦

2

H 1/2(
⋃︁

T ε
˜︁xk

)
+ ˆ︁C

∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

1

|x̂ − x̂ ′|dx̂dx̂ ′ := 2˜︁C𝔏I
ε + ˆ︁C𝔏II

ε ,

where ˜︁C and ˆ︁C denote two constants independent of ε. Let us obtain suitable bounds for 𝔏I
ε

and 𝔏II
ε .

For the first term, we have

(︂

𝔏I
ε

)︂1/2 ≤ 1

β(ε)

⃦

⃦

⃦β(ε)χ⋃︁

T εMi(·, uε(·))
⃦

⃦

⃦

H 1/2(Σ)
= 1

β(ε)

⃦

⃦

⃦σi3(u
ε)

⃦

⃦

⃦

H−1/2(Σ)
≤ C

1

β(ε)
,

(6.5)
where χ⋃︁

T ε stands for the characteristic function of the set
⋃︁

k∈𝒥 ε T ε
˜︁xk

, and we have used
the equation on Σ in (2.12), cf. (2.11), the trace embedding theorem and (2.15).

As for the other term, on each T ε
˜︁xk

, we consider the function defined as

Uε,k(x̂ ′) =
∫︂

T ε
˜︁xk

1

|x̂ − x̂ ′|dx̂,

and apply the result in Section I.6.1 of [49] (cf. also Lemma 5 in Section I.2 of [28]) for
integrals of potential type to obtain

|Uε,k(x̂ ′)| ≤ C|T ε
˜︁xk

|1/3(rε)
1/3 ∀x̂ ′ ∈ T ε

˜︁xk
. (6.6)

Taking into account the volume of each T ε
˜︁xk

, (2.1) and r0 > 0 (1.1), we get

𝔏II
ε :=

∑︂

˜︁xk

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

1

|x̂ − x̂ ′|dx̂dx̂ ′ ≤ C(rε)
3ε−2 ≤ C(rε)

2. (6.7)
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It should be noted that, for the proofs above, we have used the fact χ⋃︁

T εMi(·, uε(·)) ∈
H 1/2(Σ). To see this, we can follow the same reasoning above. Indeed, without any restric-
tion we can proceed with Mi(·, uε(·)) and, from (2.7) and (2.9), we have

∫︂

Σ

|Mi(x̂, uε(x̂))|2 dx̂ +
∫︂

Σ

∫︂

Σ

|Mi(x̂, uε(x̂)) − Mi(x̂
′, uε(x̂ ′))|2

|x̂ − x̂ ′|3 dx̂dx̂ ′

≤ C

(︃∫︂

Σ

|uε(x̂)|2 dx̂ +
∫︂

Σ

∫︂

Σ

|uε(x̂) − uε(x̂ ′)|2
|x̂ − x̂ ′|3 dx̂dx̂ ′ +

∫︂

Σ

∫︂

Σ

1

|x̂ − x̂ ′|dx̂dx̂ ′
)︃

,

for a certain constant C. Since uε ∈ (H 1/2(Σ))3 and the last integral is finite (cf. e.g. Lemma
5 in Section I.2 of [28]), all the integrals above are finite and this implies Mi(·, uε(·)) ∈
H 1/2(Σ).

Finally, using (6.3), (6.5) and (6.7) in (6.2), we obtain the first estimate in (6.1), while
the second estimate holds due to (1.2). Consequently, the theorem is proved. □

Theorem 6.2 For any u0 ∈ V which is the weak limit in (H 1(Ω))3 of a subsequence uε , cf.
(2.16), we construct a sequence ˜︁uε ∈ V, such that

˜︁uε = 0 on
⋃︂

T ε, ˜︁uε ε→0−−−−−−→u0 weakly in (H 1(Ω))3, (6.8)

and, for any ϕ ∈ (C1(Ω))3 with ϕ = 0 on ΓΩ the following convergence occurs:

lim
ε→0

∫︂

Ω

σij,x(˜︁u
ε)eij,x( ˜︁Wl,ε)ϕl dx = r0

∫︂

Σ

𝒞ij (x̂)u0
i ϕj dx̂. (6.9)

In addition, under the assumptions (2.7)-(2.9), we have

lim
ε→0

∫︂

Ω

σij,x(˜︁u
ε − uε)eij,x( ˜︁Wl,ε)ϕl dx = 0. (6.10)

Proof The existence of a sequence ˜︁uε satisfying (6.8) and (6.9) has been shown in Theorem
7 of [17]: it follows for any converging sequence uε not necessarily solution of (2.11) (cf.
also [4, 45].) For completeness, we sketch here the main steps of the construction of such a
function and refer to Sects. 6 and 7 of [17] for further details. Then, using this function ˜︁uε

we provide a proof of (6.10) which is specific for the solution of (2.11) and for the nonlinear
reaction term M , and requires Theorem 6.1.

The construction of ˜︁uε satisfying (6.8)-(6.9).
Since σij,x( ˜︁Wl,ε) takes values different from zero only in a neighborhood of Σ, and

uε = 0 on ΓΩ, there is no loss of generality for the proof to assume that the domain Ω is a
polyhedron and the boundary ΓΩ can be written as a finite union of plane faces. For each
fixed h > 0, we consider a regular triangulation {△hq }ℳh

q=1 of the domain Ω composed of
tetrahedrons of diameter h (see, e.g., [7])

Ω =
ℳh
⋃︂

q=1

△hq .

Let uh denote the orthogonal projection of the element u ∈ H 1(Ω), with u = 0 on ΓΩ, on
the subspace 𝒴h of the continuous functions over Ω which are affine functions on each
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tetrahedron △hq and take the value 0 on ΓΩ. We set

˜︁uεh = uεh
l

˜︁Wl,ε. (6.11)

On account of the convergence of the coefficients of the polynomials on each △hq (that is,
the restriction of uεh to each △hq ), q = 1,2, . . . ,ℳh, and the convergence (4.14) for Wl,ε ,
as ε → 0, we get

˜︁uεh ε→0−−−−−−→u0h weakly in (H 1(Ω))3. (6.12)

Also, using interpolation operators for smooth functions (see, e.g., Ch. 4 in [7]) and a density
argument, the following convergence holds:

u0h → u0 in H 1(Ω), as h → 0. (6.13)

In addition, in the integral on the left hand side in (6.9) we can replace ˜︁uε by ˜︁uεh, namely,
∫︂

Ω

σij,x(˜︁u
εh)eij,x( ˜︁Wl,ε)ϕl dx (6.14)

and take limits first for ε → 0, to get

r0

∫︂

Σ

𝒞ij (x̂)u0h
i ϕj dx̂,

and then for h → 0, to get the integral on the right hand side of (6.9).
Finally, in the above framework (6.11)-(6.14), we apply a result on convergence for dou-

ble indexed subsequences, see, e.g., Corollary 1.18 in Section I.2 of [3], to extract a sequence
h(ε) → 0 as ε → 0 such that ˜︁uε := uεh(ε) satisfies the desired properties (6.8) and (6.9).

The proof of (6.10).
Let us denote by dε the difference dε := uε −˜︁uε which satisfies

dε ε→0−−−−−−→0 weakly in (H 1(Ω))3. (6.15)

Noting that

eij,x(ϕld
ε) = eij,x(d

ε)ϕl + 1

2

(︂ ∂ϕl

∂xj

dε
i + ∂ϕl

∂xi

dε
j

)︂

, (6.16)

and using (4.14) and (6.15), for the integral in (6.10) we can write

Iε :=
∫︂

Ω

σij,x(d
ε)eij,x( ˜︁Wl,ε)ϕl dx =

∫︂

Ω

σij,x(d
εϕl)eij,x( ˜︁Wl,ε)dx + oε(1),

where, here and in what follows oε(1) denotes a certain function satisfying oε(1) → 0, as
ε → 0.

Hence, using definitions (4.9) and (4.10), we show that

Iε =
∑︂

˜︁xk

∫︂

B+(˜︁xk,rε+ ε
4 )

σij,x(d
εϕl)eij,x(τxW

l,˜︁xkφε)dx + oε(1)
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=
∑︂

˜︁xk

∫︂

B+(˜︁xk,rε+ ε
4 )

σij,x(d
εϕlφ

ε)eij,x(τxW
l,˜︁xk)dx + oε(1),

where τx denotes the change y ↦→ x, cf. (2.2), and in the last term oε(1) we have gathered
the terms of the integrals in the half-annuli 𝒞ε,+

˜︁xk
, cf. (4.7)-(4.8), which are sums of

∑︂

˜︁xk

∫︂

𝒞ε,+
˜︁xk

σij,x(d
εϕl)τxW

l,˜︁xk
p

∂φε

∂xq

dx and
∑︂

˜︁xk

∫︂

𝒞ε,+
˜︁xk

aijkld
ε
pϕleij (τxW

l,˜︁xk
p )

∂φε

∂xq

dx,

for i, j,p, q, l, k = 1,2,3. Let us show that indeed, all these terms vanish in the limit as
ε → 0.

Using estimates (4.11), (4.12), (4.13) and (2.1), we prove that the first sums above are
bounded by

Cε−1∥dε∥V

3
∑︂

p=1

(︂
∑︂

˜︁xk

∫︂

𝒞ε,+
˜︁xk

|τxW
l,˜︁xk
p |2dx

)︂1/2 ≤ Cε1/2.

For the second sums, we use the same estimates above-written and get the bound

Cε−1
3

∑︂

p=1

(︂

∫︂

⋃︁𝒞ε,+
˜︁xk

(dε
p)2dx

)︂1
2
.

3
∑︂

i,j=1

(︂
∑︂

˜︁xk

∫︂

𝒞ε,+
˜︁xk

⃓

⃓eij,x(τxW
l,˜︁xk
p )

⃓

⃓

2
dx

)︂1
2

≤ C

3
∑︂

p=1

(︂

ε−1
∫︂

0<x3<ε

(dε
p)2dx

)︂1
2

Now, on account of the convergence (6.15) and the following convergence result

lim
ε→0

1

ε

∫︂

0<x3<ε

(dε
p)2dx = 0, p = 1,2,3, (6.17)

(see, e.g., Lemma 2.4 in [33]) we also get that the second sums above mentioned converge
towards zero.

All together, along with (2.5), (3.2) and (2.2), give

Iε =
∑︂

˜︁xk

∫︂

B+(˜︁xk,rε+ ε
4 )

σij,x(τxW
l,˜︁xk)eij,x(d

εϕlφ
ε)dx + oε(1)

= rε

∑︂

˜︁xk

∫︂

B+(0,1+ ε
4rε

)

σ
˜︁xk
ij,y(W

l,˜︁xk)eij,y(d
εϕlφ

ε)dy + oε(1),

where, to obtain the last oε(1), we have used the globally Lipschitz property of the elastic
coefficients, estimates (4.1) and (4.11) and convergences (6.15) and (6.17).
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Hence, since φε = 0 on ∂B+(˜︁xk, rε + ε
4 )∩ {x3 > 0}, φε = 1 on T ε

˜︁xk
, and ˜︁uε =0 on T ε

˜︁xk
and

Wl,˜︁xk satisfies (5.8), by applying the Green formula we get

|Iε| = rε

⃓

⃓

⃓

∑︂

˜︁xk

⟨︁

σ
˜︁xk
i3,y(W

l,˜︁xk) , τy(d
ε
i ϕl)

⟩︁

H−1/2(T )×H 1/2(T )

⃓

⃓

⃓ + oε(1)

≤ rε

∑︂

˜︁xk

⃦

⃦σ
˜︁xk
i3,y(W

l,˜︁xk)
⃦

⃦

H−1/2(T )

⃦

⃦τy(u
ε
i ϕl)

⃦

⃦

H 1/2(T )
+ oε(1). (6.18)

Using (4.2), the smoothness of ϕ, (6.6) for T ε
˜︁xk

≡ T and the definition of the H 1/2-morm,

⃦

⃦τyu
ε
i

⃦

⃦

2

H 1/2(T )
=

∫︂

T

|τyu
ε
i |2dŷ +

∫︂

T

∫︂

T

|uε
i (ŷ) − uε

i (ŷ
′)|2

|ŷ − ŷ ′|3 dŷdŷ ′, (6.19)

we derive the inequality

|Iε| ≤ Crεε
−1

3
∑︂

i=1

(︂
∑︂

˜︁xk

⃦

⃦

⃦τyu
ε
i

⃦

⃦

⃦

2

H 1/2(T )

)︂1/2 + oε(1).

Then, performing the change y ↦→ x in the integrals in (6.19), cf. (2.2), we write

⃦

⃦τyu
ε
i

⃦

⃦

2

H 1/2(T )
≤ 1

r2
ε

⃦

⃦uε
⃦

⃦

2

L2(T ε
˜︁xk

)
+ 1

rε

∫︂

T ε
˜︁xk

∫︂

T ε
˜︁xk

|uε
i (x̂) − uε

i (x̂
′)|2

|x̂ − x̂ ′|3 dx̂dx̂ ′

≤ 1

r2
ε

⃦

⃦uε
⃦

⃦

2

H 1/2(T ε
˜︁xk

)
.

Now, using this and the result in Theorem 6.1, we obtain

|Iε| ≤ Cε−1
3

∑︂

i=1

(︂
∑︂

˜︁xk

⃦

⃦

⃦uε
i

⃦

⃦

⃦

2

H 1/2(T ε
˜︁xk

)

)︂1/2 + oε(1) ≤ C
1

ε
rε + oε(1).

Since r0 > 0 in (1.1), we have that lim
ε→0

Iε = 0, and (6.10) holds. Thus, the theorem is proved.

□

6.1 Proof of Theorem 3.1

Let us show that the limit u0 in (2.16) is the solution of the homogenized problem (3.11)
In order to do it, for ϕ ∈ (C1(Ω))3, ϕ = 0 on ΓΩ, and ˜︁Wl,ε defined by (4.10), we consider

the vector function ϕl(x) ˜︁Wl,ε(x). On account of (4.14), we have that ϕl
˜︁Wl,ε → ϕ weakly in

(H 1(Ω))3, as ε → 0.
Then, we take the test function v = ϕl

˜︁Wl,ε in (2.12). Since it vanishes on
⋃︁

T ε , we have
∫︂

Ω

σij,x(u
ε)eij,x(ϕl

˜︁Wl,ε) dx =
∫︂

Ω

fiϕl
˜︁W

l,ε
i dx. (6.20)

Considering (6.16), where we replace dε by ˜︁Wl,ε , (4.14) and (2.16), the limit passage as
ε → 0 in (6.20) gives

∫︂

Ω

σij,x(u
0)eij,x(ϕ) dx −

∫︂

Ω

fiϕi dx = − lim
ε→0

∫︂

Ω

σij,x(u
ε)eij,x( ˜︁Wl,ε)ϕl dx. (6.21)



   64 Page 22 of 27 S.A. Nazarov, M.-E. Pérez-Martínez

Now, replacing in this last integral uε by the functions ˜︁uε constructed in Theorem 6.2,
and using (6.9) and (6.10) we obtain the chain of equalities

∫︂

Ω

σij,x(u
0)eij,x(ϕ) dx −

∫︂

Ω

fiϕi dx = − lim
ε→0

∫︂

Ω

σij,x(˜︁u
ε)eij,x( ˜︁Wl,ε)ϕl dx

= r0

∫︂

Σ

𝒞ij (x̂)u0
i ϕj dx̂. (6.22)

Indeed, to show (6.22), we write the left hand side of (6.21) as

lim
ε→0

∫︂

Ω

σij,x(u
ε)eij,x( ˜︁Wl,ε)ϕl dx = lim

ε→0

∫︂

Ω

σij,x(u
ε −˜︁uε)eij,x( ˜︁Wl,ε)ϕl dx

+ lim
ε→0

∫︂

Ω

σij,x(˜︁u
ε)eij,x( ˜︁Wl,ε)ϕl dx

and apply (6.10) to get the first equality in (6.22), and then (6.9) gives the last equality in
(6.22).

Consequently, we deduce that u0 satisfies

∫︂

Ω

σij,x(u
0)eij,x(ϕ) dx + r0

∫︂

Σ

𝒞ij (x̂)u0
i ϕj dx̂ =

∫︂

Ω

fiϕi dx ∀ϕ ∈ (C1(Ω))3, ϕ
⃓

⃓

ΓΩ
= 0.

By a density argument, the above equality holds for all ϕ ∈ V, and we conclude that u0 is
the unique solution of (3.11). Therefore, we have proved Theorem 3.1. □

Remark 1 Note that the proof of Theorem 3.1 holds when r0 = 0; that is, the term containing
the integral on Σ in (6.21) vanishes. Thus, for r0 = 0, u0 is the unique solution of (3.13).
Also we observe that, since the convergence (4.14) holds in the strong topology of (H 1(Ω))3

(cf. Proposition 3 in [17] when rεε
−2 → 0), taking limits directly in (6.20), we can avoid

using Theorems 6.1 and 6.2 for r0 = 0.

7 The Improved Convergence: 𝒓0 = 0 or 𝒓0 = +∞

In this section we show the strong convergence in (H 1(Ω))3 of the solutions of (2.11) when
the sizes of the reaction regions are very small (r0 = 0) or very large (r0 = +∞): that is,
Theorems 3.2 and 3.3.

Proof of Theorem 3.2 Repeating the proof of Theorem 3.1 for r0 = 0 (see Remark 1) implies
that the weak limit of uε , cf. (2.16), is given by the solution u0 of (3.13). Let us show that
the convergence takes place in (H 1(Ω))3. To do it, we use the lower semi-continuity of the
norm for the weak topology (cf., e.g., [4] and references therein).
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Indeed, we can write the chain of inequalities and equalities, respectively,

∫︂

Ω

σij (u
0)eij (u

0)dx ≤ lim inf
ε→0

∫︂

Ω

σij (u
ε)eij (u

ε)dx

≤ lim inf
ε→0

(︃∫︂

Ω

σij (u
ε)eij (u

ε) dx + β(ε)

∫︂

⋃︁

T ε

Mi(x̂, uε)uε
i dx̂

)︃

= lim
ε→0

∫︂

Ω

fiu
ε
i dx =

∫︂

Ω

fiu
0
i dx =

∫︂

Ω

σij (u
0)eij (u

0) dx,

(7.1)

where we have used the fact that
∫︂

Ω

σij (u)eij (u)dx,

defines a norm in V equivalent to that generated by (2.13) (cf. (2.5) and (2.4)), (2.7), (2.8),
(2.12) for v = uε , and (3.13). Consequently, the inequalities above convert into equalities
resulting in

lim
ε→0

∫︂

Ω

σij (u
ε)eij (u

ε) dx =
∫︂

Ω

σij (u
0)eij (u

0) dx.

Therefore, the convergence of uε in (H 1(Ω))3 holds true, and the result in Theorem 3.2 is
proved. □

Proof of Theorem 3.3 First, let us show that the limit u0 arising in (2.16) vanishes on Σ.
In order to do it, we use (4.16) for v = uε . This allows us to write

lim
ε→0

ε2

r2
ε

∫︂

⋃︁

T ε

Mi(x̂, ϕ)uε
i dx̂ = |T |

∫︂

Σ

Mi(x̂, ϕ)u0
i dx̂ ∀ϕ ∈ (C1(Ω))3, ϕ = 0 on ΓΩ. (7.2)

Using Cauchy-Schwarz inequality, the smoothness of ϕ and (2.1), for the integral on the left
hand side of (7.2) we also have

ε2

r2
ε

⃓

⃓

⃓

∫︂

⋃︁

T ε

Mi(x̂, ϕ)uε
i dx̂

⃓

⃓

⃓ ≤ ε2

r2
ε

rε

ε
(β(ε))−1/2

(︃

β(ε)

∫︂

⋃︁

T ε

(uε
i )

2 dx̂

)︃1/2

,

that converge towards zero because of (2.15), (1.1) for r0 = +∞ and (1.2). Therefore,

∫︂

Σ

Mi(x̂, ϕ)u0
i dx̂ = 0, ∀ϕ ∈ (C1(Ω))3, ϕ = 0 on ΓΩ.

Let us use (2.10), the fact that δ ∈ [0,2] and Hölder’s inequality, to get

⃓

⃓

⃓

∫︂

Σ

(Mi(x̂, ϕ) − Mi(x̂, v))u0
i dx̂

⃓

⃓

⃓ ≤ C

3
∑︂

i,j=1

∫︂

Σ

(︂

|ϕj − vj | + |ϕi − vj |1+δ
)︂

|u0
i |dx̂

≤ C

3
∑︂

i,j=1

(︂

∥u0
i ∥L2(Σ)∥ϕj − vj∥L2(Σ) + ∥ϕj − vj∥1+δ

L(1+δ)4/3(Σ)
∥u0

i ∥L4(Σ)

)︂

∀v ∈ V. (7.3)
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Thus, because of the continuous embedding H 1(Ω) ⊂ L4(Σ), taking limits as ϕ tends to v

in (H 1(Ω))3 gives

∫︂

Σ

Mi(x̂, v)u0
i dx̂ = 0, ∀v ∈ V.

Consequently, on account of (2.8), we can write

∫︂

Σ

(u0
i )

2 dx̂ ≤ C

∫︂

Σ

Mi(x̂, u0
i )u

0
i dx̂ = 0 =⇒ u0 = 0 on Σ.

Finally, since u0 ∈ (H 1(Ω))3 and vanishes on ΓΩ we claim that u0 ∈ (H 1
0 (Ω))3.

Next, let us show that u0 is the unique solution of (3.13). This follows taking v ∈
(H 1

0 (Ω))3 in (2.12), and passing to the limit as ε → 0: we see that u0 satisfies (3.13).
Now, the proof of the strong convergence in (H 1(Ω))3 follows taking into account the

equality (3.15) for v = u0 and rewriting the chain of equalities and inequalities (7.1) with
minor modifications.

This ends the proof of Theorem 3.3. □

Remark 2 It should be noted that conditions (2.7)-(2.10) provide a general framework for the
setting of the homogenization problem as well as for the convergence of solutions for many
limit values of the products rεε

−2, rεβ(ε) as well as r2
ε ε−2β(ε), even for scalar problems.

Let us mention that because of the surface integral in (2.12), δ ∈ [0,2] in (2.10) allows the
correct setting of the problem (2.11) (cf. (7.3)) but different less restrictive hypothesis and
functions could be accepted in this respect (cf. Remark 3 in [14] and references therein).
However, for certain limit values of these products, e.g., for r0 > 0, restrictions on δ could
be required to show convergence, like δ = 0 in (2.10) which becomes important to obtain
(6.1). As matter of fact, it allows the function Mi(·, uε(·)) to be in H 1/2(Σ), however proofs
may hold under other hypothesis that ensure this condition.

Note that (2.9) holds when we have a greater smoothness of M such as:

Mi ∈ C1(Σ ×ℝ) and
⃓

⃓

⃓

∂Mi

∂xj

(x,u)

⃓

⃓

⃓,

⃓

⃓

⃓

∂Mi

∂uj

(x,u)

⃓

⃓

⃓ ≤ Dij , ∀(x,u) ∈ Σ ×ℝ
3, (7.4)

i, j = 1,2,3, for certain positive constants Dij . Also, in practice Mi may depends only on
the displacement in the i-th direction Mi(x,u) ≡ Mi(x,ui), or even be independent of x,
satisfying further smoothness conditions (7.4) (cf., e.g., Sect. 3.3.1 in [44]). All this simpli-
fies computations.

As regards the strong monotonicity condition (2.8) with K > 0, it may also be weakened
taking K = 0 depending on the above mentioned limits; this is the case, in the framework
of the present paper, when r0 = 0.

As regards the periodicity condition, as outlined in Sect. 1, it becomes necessary when
r0 > 0 due, for instance, to the dependence of the strange term on the geometry of T , while
a certain non periodical distribution of the reaction regions can be allowed in the extreme
cases (cf. [20] and [21]).

Remark 3 In the linear case, the functions Mi read: Mi(x̂, u) ≡ Mij (x̂)uj , where
(Mij )i,j=1,2,3 is symmetric and positive definite 3 × 3-matrix:

∃α2 > 0 : Mij (x̂)ξiξj ≥ α2ξ
2
i , ∀ξ ∈ℝ

3, ∀x̂ ∈ Σ, (7.5)
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with components Mij globally Lipschitz functions on Σ. As a consequence, in this paper we
extend the results for the linear boundary conditions considered in [16, 17] to a nonlinear
framework.

Also, it should be emphasized that the homogenized problems here appearing coincide
with those obtained for the homogenization of linear Winkler-Robin boundary conditions,
see [16, 17], and, in the case of homogeneous and isotropic media, they also coincide with
those obtained for rapidly alternating boundary conditions of Dirichlet and Neumann type
in [4, 31]. This is due to the large reaction occurred on the reaction regions T ε which likely
stuck “asymptotically” these regions to the plane.

Remark 4 Notice that this is the first work in the literature that addresses the homogeniza-
tion of nonlinear Winkler-Robin conditions for the ratio of the reaction regions rε = O(ε2).
In particular, the very large reaction, cf. (1.2), allows a justification of the linearization pro-
cess, which was not guessed before this study (cf. [20] to compare with different ranges of
parameters). Conditions (2.7)-(2.10) for the nonlinear function M provide a general frame-
work for mathematical justifications, but the linearization process may hold without such
hypothesis, cf. [14] for different functions in a scalar problem. Also note that the nonlinear
law in (2.11) might be replaced by others arising in contact problems (cf., e.g., [25, 44]),
with the suitable modifications in the treatment and the homogenized boundary conditions:
see [4, 43, 50] and references therein for the homogenization of Signorini-type conditions
along planes outside critical size ranges; see [13] and references therein for a scalar model
in perforated media with nonlinear restrictions. Among others, the technique developed in
this paper for the elasticity system could be applied to different functions arising in [14] and
restrictions in [13], both of which consider scalar problems.
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