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Abstract
Let q be a power of a prime p,Fq be the finite fieldwith q elements, andFq [x1, . . . , xn]
be the ring of polynomials in n variables over Fq . The construction and study of local
permutation polynomials of Fq [x1, . . . , xn] is recently increasing interest among the
experts. In this work, we study local permutation polynomials of maximum degree
n(q − 2) defined over the prime finite field Fp. In particular, we explicitly construct
families of such polynomials when p ≥ 5 and n ≤ p − 1; and for any q of the form
q = ppr when r ≥ 1 and p ≥ 3.

Keywords Permutation polynomials · Local permutation polynomials · Finite
Fields · Multivariate polynomials ring

Mathematics Subject Classification 11T06 · 11T22

1 Introduction

Let q be a power of prime p, Fq be the finite field with q elements and F
n
q denote the

cartesian product of n copies of Fq , for any integer n ≥ 1. Also let us use the notation
x = (x1, . . . , xn) and xi = (x1, . . . , xi−1, xi+1, . . . xn). The ring of polynomials in
n variables over Fq will be denoted by Fq [x]. It is well known that any map from
F
n
q to Fq can be uniquely represented as f ∈ Fq [x] such that degxi ( f ) < q for all
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i = 1, . . . , n, where degxi ( f ) is the degree of f as a polynomial in the variable xi with
coefficients in the polynomial ring Fq [xi ], see [7]. Throughout this paper, we identify
all functions F

n
q → Fq with such polynomials, and every polynomial, will be of

degree degxi ( f ) < q, unless otherwise specified. As a consequence, any polynomial
f (x1, . . . , xn) has degree at most n(q − 1).
A polynomial f ∈ Fq [x] is called a local permutation polynomial (or LPP) if for

each i , 1 ≤ i ≤ n, the polynomial f (a1, . . . , ai−1, xi , ai+1, . . . , an) is a permutation
polynomial in Fq [xi ], for all choices of ai ∈ F

n−1
q .

Mullen [9, 10] gave necessary and sufficient conditions for polynomials in two and
three variables to be local permutations polynomials over a prime field Fp. These
conditions are expressed in terms of the coefficients of the polynomial.

On the other hand, any LPP has degrees at most n(q − 2), see Proposition 1 in
[3]. Diestelkamp, Hartke and Kenney [2] proved that this bound is sharp for n = 2
variables, see also [3] for a short proof of this fact. Recent results about degree bounds
for n local permutation polynomials defining a permutation of F

n
q are presented in

[1, 4] which proved the existence of LPP of maximum degree over Fq [x1 . . . , xn] for
any q > 3 and any n ≥ 1. However, it is still an open problem to know whether
there are LPP of maximum degree on Fq [x1, . . . , xn] defined over the prime field
Fp. Giving others families of LPP of maximum degree and providing applications to
Latin hypercubes is an interesting problem, see [2, 6, 8] for the relation between Latin
Squares and LPP of maximum degree 2(q − 2).

The main contribution in this paper is to show general constructions of local per-
mutation polynomials of maximum degree for all n defined over Fp. We can get the
result for a large proportion of cases, but not all. Concretely, two of the main results
are the following.

Theorem 1 Let p ≥ 5 be a prime number and n < p − 1 a positive integer. There
exists an LPP in Fq [x1, . . . , xn] defined over Fp of maximum degree for every q = pr .
Moreover if r ≥ 2, then the result is also true for n = p − 1.

Theorem 2 Let q = ppr > 3 for p ≥ 3 prime and r ≥ 1 integer. There exists an LPP
f (x1, . . . , xn) ∈ Fq [x1, . . . , xn] of maximum degree n(q − 2) defined over Fp.

2 Proof of the Theorem 1

We need the following result proved in [3, 4].

Theorem 3 Let f ∈ Fq [x1, . . . , xn] be a non constant polynomial.

1. If f = g(x1, . . . , xm) + h(xm+1, . . . , xn), 1 ≤ m < n, then f is LPP ⇐⇒ g
and h are local permutation polynomials.

2. Let g(z) ∈ Fq [z] be permutation polynomial. Then f is a (local) permutation
polynomial ⇐⇒ g( f (x1, . . . , xn) is a (local) permutation polynomial.

3. Let h1(x1), . . . , hn(xn) be permutation polynomials. Then f is (local) permutation
polynomial ⇐⇒ f (h1(x1), . . . , hn(xn)) is (local) permutation polynomial.

4. The univariate permutation polynomial t(x) = x + ∑q−2
k=0 x

k ∈ Fq [x] permutes 1
and 0, and leave fixed any other element in Fq .
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5. If f is PP then f is linear if q = 2 and has degree at most n(q − 1) otherwise.
6. If f is a LPP then f is linear if q = 2 or q = 3, and has degree at most n(q − 2)

otherwise.

Proof of Theorem 1 Let S(x1, . . . , xn) = x1+· · ·+xn, then the polynomial F = t(x)◦
S(xq−2

1 , . . . , xq−2
n ) is an LPP by Theorem 3. Also, if k ≤ q − 2 and xk(q−2) ≡ xq−2

(mod xq − x), then xk(q−2) ≡ xq−2 (mod xq−1 − 1), but

xk(q−2) = x (k−1)(q−1)+q−1−k ≡ xq−1−k (mod xq−1 − 1),

so
xk(q−2) ≡ xq−1−k (mod xq − x), (1)

and xk(q−2) ≡ xq−2 (mod xq − x) can happen if and only if k = 1. We note that
F will have maximum degree n(q − 2) if and only if t(x) ◦ S(x1, · · · , xn) has the
monomial x1 · · · xn with nonzero coefficient. Now, for any 0 ≤ k ≤ q −2, Sk is a form
of degree k, so all the terms are of the form xa11 · · · xann with a1 +· · ·+an = k and this
contains the term a1 = a2 = · · · = an = 1 if and only if k = n. Then, in this case,
Sn = n!x1 · · · xn+ terms in less variables, so

F = n!xq−2
1 · · · xq−2

n + terms in less variables,

which proves the first part of the theorem.
Finally, note that in the case r ≥ 2, we can include the case n = p − 1, but for

r = 1 the sum in the definition of t only reaches to p − 2, so the case n = p − 1 is
not included. 
�

3 Proof of the Theorem 2

We first include the following result on how permutation polynomials behave under
addition. It is the core of the idea behind the proof of Theorem 2, included below.

Let s(x) = ∑q−2
k=0 x

k . As it is shown in [4], s(x) = t(x) − x , where t(x) is as in
Theorem 3.

Theorem 4 Let l(x) ∈ Fq [x] be any permutation polynomial such that l(0) = 0 and
l(1) = 1. Then, the polynomial h(x) = l(x) + s(x) is a PP.

Proof For any x �= 0, 1 we have s(x) = 0 and hence h(x) = l(x) permutes the
elements of Fq/{0, 1}. On the other hand h(0) = l(0) + s(0) = 1, while h(1) =
l(1) − 1 = 0. 
�
Remark 1 Note that whenever l(x) has degree smaller than q−2, then h(x) has degree
exactly q−2. Also in the case when degree of l(x) is q−2 but with leading coefficient
not −1.

With this in mind we prove Theorem 2 as follows. Applying the Lagrange inter-
polation formula in one variable, we write the polynomial f (x) ∈ Fq [x] as the linear
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combination

f (x) =
q−1∑

i=0

αi gi (x),

where {a0, . . . , aq−1} = Fq , f (ai ) = αi , and gi = gi (x) = 1 − (x − ai )q−1,
for i = 0, . . . , q − 1. The following lemma follows directly from the definition of
g0, . . . , gq−1.

Lemma 1 With the notation as above, the polynomial f (x) has degree q − 2 if and
only if

∑q−1
i=0 αi = 0 and

∑q−1
i=0 aiαi �= 0.

Now let q = ppr , for any r ≥ 1 and ζ be a root of the polynomial given by
z(x) = x p − x − 1 = ∏

c∈Fp
(x − c) − 1. It is well known that this polynomial is

irreducible over Fp, see [5]. Also, note that its p roots are ζ + i for i = 0, . . . , p − 1.
Hence we have constructed the algebraic extension

Fp[x]/z(x) 
 Fp(ζ ) 
 Fpp ⊂ Fq . (2)

Now, consider the polynomial given by

g(x) =
p−1∑

i=0

gi (x) ∈ Fq [x], (3)

corresponding to ai = 1
ζ+i , and αi = 1, for i = 0, . . . , p−1 and αi = 0 for any other

αi ∈ Fq . Then,
∑q−1

i=0 αi = 0. On the other hand, ai are the roots of the reciprocal
polynomial R(x) = x pz(1/x) = 1 − x p−1 − x p, and the sum of its roots is nothing
but the second biggest coefficient with negative sign, hence

q−1∑

i=0

aiαi =
p−1∑

i=0

1

ζ + i
= −1 �= 0.

So, deg(g(x)) = q − 2 by Lemma 1. We show now that g(x) ∈ Fp[x]. In fact, we
can give the following explicit expression for g(x).

Lemma 2 Let q = ppr and g(x) the polynomial defined in (3). Then,

g(x) = xq − x

x p + x p−1 − 1
x p−2. (4)

In particular g(x) ∈ Fp[x].
Proof First note that since z(x) is irreducible over Fp, we have that its reciprocal
polynomial R(x) = x pz(1/x) = x p + x p−1 − 1 is also irreducible over Fp. So, by
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Lemma 2.13 of [7] R(x)|xq − x, so the right hand side is indeed a polynomial in
Fp[x]. Now, for any α ∈ Fq we have

xq − x = (x − α)q − (x − α), (5)

since translation permutes the elements in Fq . Now, consider p(x) = xq−x
x−α

. Recall
that α is a root of xq − x and hence (x − α) | (xq − x), then p(x) ∈ Fq [x]. By (5) we
have

p(x) = (x − α)q−1 − 1,

and hence p(α) = −1. On the other hand, for any root α of R(x) we have

x p + x p−1 − 1 = (x − α)p + α p + x p−1 − α p−1 + α p−1 − 1

= (x − α)p + x p−1 − α p−1

= (x − α)

⎛

⎝(x − α)p−1 +
p−2∑

i=0

xiα p−2−i

⎞

⎠ .

Taking P(x) = x p+x p−1−1
x−α

, we get P(α) = −α p−2. Then

xq − x

x p + x p−1 − 1
x p−2

∣
∣
∣
∣
α

= x p−2 p(x)

P(x)

∣
∣
∣
∣
α

= 1.

But

xq − x

x p + x p−1 − 1
x p−2

∣
∣
∣
∣
β

= 0,

for any β ∈ Fq not a root of R(x), since it is a root of the numerator, but not of
the denominator. Hence, both polynomials g(x) and xq−x

x p+x p−1−1
x p−2 have the same

values for every a ∈ Fq and have the same degree, less than q, so they must be equal.

�

Remark 2 It is worth to note that simply by looking at the values that g(x) get on Fq

it is straightforward to get the congruence

g(x) ≡ (1 − R(x))(1 − R(x)q−1) (mod xq − x),

since if R(x) = 0 the values on the left hand side is 1 and if R(x) �= 0 the value is 0,
as in g(x).

Now consider the polynomial

f (x1, . . . , xn) =
n∏

i=1

g(xi ) +
n∑

i=1

xq−2
i .
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We clearly have deg( f (x)) = n(q − 2), so it remains to prove that it is an LPP over
Fq [x1, . . . , xn]. Note that, since it is symmetric we only need to prove that for any
(c2, . . . , cn) the polynomial

F(x) = f (x, c2, . . . , cn),

is a permutation polynomial in Fq . For convenience, denote Z = {a0, . . . , ap−1}.
Now, if ci /∈ Z for some 2 ≤ i ≤ n, then g(ci ) = 0 and F(x) = xq−2 + C ,
which is a permutation polynomial over Fq . Otherwise, if ci ∈ Z for all 2 ≤ i ≤ n,
then F(x) = g(x) + xq−2 + C . If x /∈ Z , then F(x) = xq−2 + C , if x ∈ Z , then
F(x) = xq−2+C+1. Now, if we take two distinct elements x, y inFq \Z , then clearly
F(x) �= F(y), and the same happens if {x, y} ⊂ Z . So, suppose x ∈ Z and y ∈ Fq \Z ,
then F(x) = xq−2 + C + 1, while F(y) = yq−2 + C but then if F(y) = F( 1

ζ+i )

for i = 0, 1, . . . , p − 1, we have that yq−2 =
(

1
ζ+i

)q−2 + 1 = ζ + i + 1, which

is impossible since then y = 1
ζ+i+1 ∈ Z , and concluding the proof for extensions of

Fpp .
Recall that our objective is to find LPP over Fq defined over the prime field. In this

sense, it is important to note that this result is complementary to what we got in [4].
There, the following result was obtained.

Theorem 5 Let q be such that (b, q − 1) = 1 for some 1 < b < p − 1. Then, for any
n ≥ 1 there is an LPP over Fq [x1, . . . , xn] of maximum degree n(q − 2) and defined
over Fp.

As was noted in [4], Theorem 5 does not cover every q, in particular for any q = pr

where r is a multiple of ϕ(p − 2)!, since in this case by Euler’s Theorem we have
pϕ(p−2)! ≡ 1 (mod (p − 2)!), and there is no b verifying the condition. On the other
hand, the above theorem covers many cases. For example if p ≡ 2 (mod 3), any
extension of degree odd is included with b = 3, since p2m+1 ≡ 2 (mod 3). In fact,
we see that for any p there are infinitelymany q = pr for which there is 1 < b < p−1
such that (b, q − 1) = 1. This is the content of the following result.

Lemma 3 For any prime number p, and integer b coprime with p − 1, there exist
infinitely many r ≥ 1 such that (b, pr − 1) = 1.

Proof Let b = pal with p � l. For anym ∈ N, take rm = mϕ(l). Then (b, prm+1−1) =
(l, prm+1−1). Now, we will show that (prm+1−1, l) = 1. Note that prm ≡ 1 (mod l)
and (b, p − 1) = 1 by hypothesis and we have l| (prm − 1) and (p(p − 1), l) = 1.
Moreover, we have

prm+1 − 1 =
(
prm+1 − prm

)
+ (

prm − 1
) = prm (p − 1) + (

prm − 1
)
.

Consequently,

(
prm+1 − 1, l

)
=

(
(prm+1 − 1) − (prm − 1), l

)
= (

prm (p − 1), l
) = 1,
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which is the desired result. 
�
The examples given by Lemma 3 give extensions of Fp of degree mϕ(l) + 1

for any integer m ≥ 1. Since this condition is not included in Theorem 2, we note
that it complements Theorem 5, and get more examples of extensions with LPP’s of
maximum degree defined over the prime field. But the combination of Theorems 5
and 2 still does not encompass all cases. Observe that ϕ(p − 2)! is a multiple of ϕ(l)
for any l < p − 1, so this case is still open.

Once we have gotten an LPP over Fq [x1, . . . , xn], we would be tempted to use this
same polynomial for subextension of Fq , so we could get the result in every extension
of Fp. We do have the following.

Lemma 4 Let f ∈ Fq [x1, . . . , xn] an LPP with coefficients in Fq0 for some q0 such
that Fq0 ⊂ Fq . Then, f ∈ Fq0 [x1, . . . , xn] is an LPP.

Proof The result follows since the polynomial sends elements in Fq0 to Fq0 . 
�
However, the main obstruction would be to keep the maximal degree. In the case
of Theorem 2 the degree of the polynomial drops dramatically, when considering
subextensions.

Lemma 5 Let q = ppr for some integer r ≥ 1 and g(x) be the polynomial defined
in (4). Let g0(x) ≡ g(x) (mod (xq0 − x)) of degree smaller that q0, for q0 | q. Then
g0(x) = 0, for any q0 = pl with l|r not a multiple of p.
Proof Observe that since Fq0 ⊂ Fq , (xq0 − x) | (xq − x) and since p � l we have
gcd(xq0 − x, x p + x p−1 − 1) = 1. In particular

g(x) = (xq0 − x)H(x),

and hence g0(x) = 0. Note that it is clear from the definition of g(x) since the
polynomial vanishes at any point in Fq , except the root of R(x), which are not in Fq0
since p � l. In particular, it vanishes at any element of Fq0 . 
�

4 On the Degree of LPP

In paper [4] we tried another strategy to build local permutation polynomials of max-
imum degree, by composing with the transposition t(x) defined in Theorem 3. The
advantage is that those polynomials would be defined over the prime field Fp by defi-
nition. However, composition becomes really complicated very quickly, and we could
only prove it for polynomials in 4 variables, and made the following conjecture in
general

conjecture 1 Let t(x) ∈ Fq [x] be the transposition defined as in Theorem 1, and
consider the polynomials

f1 = x1

fi = fi (x1, . . . , xi ) = t( fi−1(x1, . . . , xi−1)
q−2 + xq−2

i ) = t( f q−2
i−1 + xq−2

i ).
(6)
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Then fn(x1, . . . , xn) is an LPP of degree n(q − 2) when q = pr > 3 and p �= 2.

We should clarify that in the paper [4] we already proved that the polynomials fi ,
for i = 1, . . . , n, are LPP defined over Fp[x1, . . . , xn], so the claim of the conjecture
is only about the fact that these polynomials have maximal degree.

As we have already shown, (see [4]), the degree might vary completely even in the
easiest cases, and this section is to show how subtle could be the previous conjecture.
First, we need the following technical result.

Lemma 6 Let a, b integers and Sb(x1, . . . , xa) = (x1 + · · · + xa)b. Then

Sb(x1, . . . , xa) =
∑

α1+···+αa=b

cα1,...,αn

a∏

i=1

xαi
i ,

where cα1,...,αn = b!∏a
i=1 αi ! .

Proof It is straightforward. 
�
For any x ∈ R we denote [x] the integer part of x , i.e. the highest integer smaller

than or equal to x .

Proposition 6 Let q be a prime power of p. Any monomial of the form
∏a

i=1 x
αi
i with

{(α1, . . . , αa) : α1 + · · · + αa = b} does not appear in the sum Sb(x1, . . . , xa) ∈
Fq [x1, . . . , xa], if [logp b] > M, where M = max{[logp αi ] : i = 1, . . . , a}.

The proof is a direct consequence of the following lemma.

Lemma 7 For any integer n and real numbers x1, . . . , xn, we have

n∑

i=1

[xi ] ≤ [
n∑

i=1

xi ].

Proof Suppose xi = [xi ] + εi . Then,
∑

xi = ∑[xi ] + ∑
εi . There exist k ≥ 0 such

that k ≤ ∑
εi < k + 1, then

∑
[xi ] + k ≤

∑
xi <

∑
[xi ] + k + 1,

so
∑[xi ] ≤ ∑[xi ] + k = [∑ xi ].
Now we can prove Proposition 6 in the following way. Since the number of times

that a prime p divides m! is ∑
n≤[logp m]

[
m
pn

]
, the number of times that p divides

cα1,...,αn is exactly

N =
∑

n≤[logp b]

[
b

pn

]

−
a∑

i=1

∑

n≤[logp αi ]

[
αi

pn

]

,
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and by Lemma 7 we get

N =
∑

n≤[logp b]

[
b

pn

]

−
∑

n≤M

a∑

i=1

[
αi

pn

]

≥
∑

n≤[logp b]

[
b

pn

]

−
∑

n≤M

[∑a
i=1 αi

pn

]

=
∑

n≤[logp b]

[
b

pn

]

−
∑

n≤M

[
b

pn

]

> 0.


�
Corollary 1 With the above notation, for any b < q−1we have that deg(Sb(x

q−2
1 , . . . ,

xq−2
a )) < a(q − 2) if b �= a or b = a and a ≥ p. And deg(Sb(x

q−2
1 , . . . , xq−2

a )) =
a(q − 2) if b = a and a < p.

Proof We know from (1) that for any integer k ≤ q − 2, we have the congruence
xk(q−2) ≡ xq−k−1 (mod xq − x) if k �= 0. Now suppose that the monomial

∏a
i=1 x

αi
i

has r non zero exponents. Then
∑a

i=1 αi = ∑r
i=1 αi = b, and we see that r ≤

min{a, b}. Now,
a∏

i=1

xαi (q−2)
i ≡

r∏

i=1

xq−αi−1
i (mod

a∏

i=1

xqi − xi ),

and hence

deg

(
a∏

i=1

xαi (q−2)
i (mod xq − x)

)

= r(q − 1) −
r∑

i=1

αi = r(q − 1) − b.

If b < a, then r(q − 1) − b ≤ b(q − 2) < a(q − 2). On the other hand, if a < b, then
r(q−1)−b ≤ a(q−1)−b < a(q−2). Finally, if a = b, then r(q−1)−b < a(q−2)
unless r = a, and in this case αi = 1 for all i = 1, . . . , a, and hence c(1, . . . , 1) = a!,
which is 0 unless a ≤ p − 1. 
�

The previous result has a direct consequence.

Corollary 2 For any integer n > q−2, we have deg(t(xq−2
1 +· · ·+xq−2

n )) < n(q−2).

So, we can see how composition of t(x)with Sb does not preserve maximal degree.
It should be noted that the previous Corollary shows the subtle character of Conjecture
1 since in fact the structure of the polynomial t(Sb) is very similar to the construction in
Conjecture 1 trying to preserve the degree by separating the variables, and controlling
the degree of the composition, while being defined over the prime field.
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