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Resumen

Los centros de procesamiento de datos son infraestructuras críticas no solo para la provisión
de servicios científicos y tecnológicos, sino también para el desarrollo de la sociedad actual,
potenciado por la transformación digital a nivel global. A medida que estas infraestructuras
crecen en tamaño y complejidad, impulsadas por una demanda cada vez mayor, resulta
imprescindible contar con sistemas de monitorización que supervisen su rendimiento, eficiencia
y sostenibilidad. En este contexto, el Trabajo de Fin de Máster tiene como objetivo el diseño,
desarrollo y despliegue de una plataforma de monitorización escalable, modular y extensible
para el centro de procesamiento de datos del Instituto de Física de Cantabria (IFCA-CSIC-UC),
basada íntegramente en herramientas de código abierto.

La nueva plataforma sustituye al sistema previo incorporando una arquitectura moderna,
eficiente y adaptable, diseñada para facilitar el mantenimiento, reducir los costes operativos
y permitir la integración sencilla de nuevas fuentes de datos. Su diseño modular y escalable
se adapta de manera óptima a entornos de computación heterogéneos, caracterizados por una
gran variedad de equipamiento y tecnologías. La solución permite monitorizar en tiempo real el
estado y utilización de máquinas físicas y virtuales, dispositivos de red, y software de gestión de
la infraestructura, como los servicios cloud basados en OpenStack. Asimismo, permite realizar un
seguimiento exhaustivo del consumo energético global de la instalación, así como a niveles más
detallados, como racks, servidores, componentes específicos de losmismos omáquinas virtuales.
A partir de estos datos, se calculan en tiempo real métricas e indicadores clave que permiten
mejorar la eficiencia energética en las diferentes escalas medidas, además de ser utilizadas en
este caso específico para proyectos europeos como GreenDIGIT y AI4EOSC, así como en otras
iniciativas relacionadas con el impacto ambiental, como el plan de sostenibilidad del CSIC.

Tras su implementación y despliegue, la plataforma ha mejorado significativamente su eficiencia
operativa, reemplazando el sistema anterior con una solución más escalable y flexible, que
abarca más sistemas y equipamiento, ofreciendo una visión más detallada de la utilización,
capacidad y disponibilidad de la infraestructura. A futuro, se planea expandir la plataforma
con nuevos servicios e integrar capacidades para calcular el impacto ambiental en operación,
consolidándola como una herramienta fundamental para apoyar la toma de decisiones y una
gestión más sostenible del centro de procesamiento de datos.
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Abstract

Data processing centers are critical infrastructures not only for the provision of scientific
and technological services, but also for the development of today’s society, powered by the
global digital transformation. As these infrastructures grow in size and complexity, driven
by an ever-increasing demand, it is essential to have monitoring systems that oversee their
performance, efficiency and sustainability. In this context, the objective of this work is the design,
implementation and deployment of a scalable, modular and extensible monitoring platform for
the data processing center at the Institute of Physics of Cantabria (IFCA-CSIC-UC), based entirely
on open-source tools.

The new platform replaces the previous system with a modern, efficient and adaptable
architecture designed to facilitate maintenance, reduce operating costs and allow easy
integration of new data sources. Its modular and scalable design is optimally suited to
heterogeneous computing environments, characterized by a wide variety of equipment and
technologies. The solution enables real-time monitoring of the status and usage of physical and
virtual machines, network devices, and key infrastructure management software, such as the
cloud services based on OpenStack. It also allows exhaustive monitoring of the overall energy
consumption of the installation, as well as at more detailed levels, such as racks, servers, specific
components or virtual machines. From this data, key metrics and indicators are calculated in real
time to improve energy efficiency at all scales that are measured and also used in this specific
case for European projects such as GreenDIGIT and AI4EOSC, as well as in other initiatives related
to environmental impact, such as the CSIC’s sustainability plan.

Upon implementation and deployment, the platform significantly improved its operational
efficiency, replacing the previous system with a more scalable and flexible solution that covers
more systems and equipment, offering a more detailed view of infrastructure usage, capacity
and availability. In the future, there are plans to expand the platform with new services and
integrate capabilities to calculate the environmental impact in operation, consolidating it as a
fundamental tool to support decision-making and a more sustainable management of the data
processing center.
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CHAPTER 1

Introduction

1.1 Motivation

The Institute of Physics of Cantabria (IFCA) is a joint center between the Spanish National
Research Council (CSIC) and the University of Cantabria (UC), focused on basic science research.
To this end, it has its in-house datacenter that offers various computing services, including
HPC, Grid, Cloud and Artificial Intelligence to users and researchers both nationally and
internationally [1]. This infrastructure is managed by the Institute’s Computing Service.

Bearing this in mind, the use of a monitoring system is essential due to the infrastructure’s
criticality and complexity. Its heterogeneous nature, layered architecture and high user demand
require continuous oversight to ensure performance, resource efficiency and fault detection.
Real-time monitoring is crucial to detect bottlenecks and prevent failures that could impact
research activities, making it indispensable for maintaining stability, reliability and efficiency.

Currently, there is a monitoring system in place, consisting of multiple agents running on
the machines, InfluxDBv1 as the time-series database, which has been deprecated [2], and
Grafana for visualizing system metrics. The database update introduced changes, including
the migration of the primary query language from InfluxQL to Flux, a complex language that
requires a complete overhaul of the queries in the dashboards to fully leverage its performance.
Moreover, it appears that Flux will be deprecated in the next version, possibly due to its poor
adoption [3]. Even after the update, the system still struggled with scalability, making it difficult
to use and maintain. Therefore, a redesign of the system is proposed in this work, with a focus
on reevaluating technologies and avoiding third-party solutions that tend to be overly complex
or fail to meet all specific needs. Additionally, the emerging energy monitoring requirements
outlined below are challenging to integrate into existing datacenter observability software.

On the one hand, a particularly relevant aspect of regulations and emerging initiatives within
this sector is the focus on energy monitoring, aimed at assessing its impact and implementing
countermeasures. For instance, the European Commission’s Data Centres in Europe – Reporting
Scheme [4], outlines the requirement for reporting on the energy performance and sustainability
of datacenters within the European Union. Additionally, observing and reporting energy usage
is a strategic interest for one of the lines of action described in the Sustainability Plan from CSIC
(2024-2026) [5], which promotes the responsible and efficient usage of energy and water within
the Information and Communication Technology sector, aiming to raise awareness about the
environmental impact of computing RIs. Moreover, the document emphasizes that monitoring
and measurement systems in this context have not yet been implemented, and that they are a
critical component to support the actions that need to be taken to mitigate the environmental
impact of Unique Science and Technology Infrastructures (ICTS).

On the other hand, there is a need for certain European projects in which the Advanced Computing
and e-Science Group is involved, in incorporating data regarding electrical energy consumption.
Starting with GreenDIGIT (Greener Future Digital Research Infrastructures), the focus is on obtaining
metrics from research infrastructures (RIs) to develop solutions that promote more sustainable
and efficient computing. Secondly, AI4EOSC (Artificial Intelligence for the European Open Science
Cloud) aims to measure the energy consumption and environmental impact of the platform being
developed, while raising awareness among users about these factors.

1
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1.2 Objectives

The leading purpose of this project is to build a scalable, extendable and modular observability
platform for datacenters, focused on IFCA facilities, based on open-source existing projects,
services and tools, to oversee the usage, power consumption and availability of its resources and
key services, ensuring its adaptability to future needs and the integration of new data sources.

To achieve this, the project will design and develop a modular framework with multiple entry
points for integrating new monitorable data producers, so that once a new source is connected
through a defined entry point, acting as an agent for monitoring, the processes and tools for
data processing, management, storage and visualization of these metrics are already settled.

Additionally, the project aims to replace and simplify the current monitoring platform, which is
based on an outdated open-source software stack made up deprecated versions of the collectd
and node-exporter agents, InfluxDBv1 and Grafana, to better adapt to the evolving needs of
IFCA Computing Service technicians, for whom the platform should be intuitive, useful, clear
and user-friendly. The new platform must minimize maintenance and operational costs, as well
as simplifying the integration of new monitoreable assets, ensuring that the system operates
autonomously without requiring additional infrastructure for its upkeep. Moreover, the platform
seeks to optimize the usage of resources it consumes, including processing, networking and
storage, while generating the least possible overhead on the datacenter.

In accordance with the goal of enhancing monitoring capabilities, the project drives the
upgrading of the technologies used and the operational model by adopting a more flexible and
resilient architecture. Delivering as a cloud-based Monitoring as a Service (MaaS) functionality
but on-premises, with particular emphasis on data privacy and avoiding reliance on third-party
solutions. Moreover, the platform will act as a technological enabler for obtaining key metrics,
such as Power Usage Effectiveness (PUE) or site carbon footprint and will support other relevant
projects and initiatives already in place.

1.3 Methodology

For the successful implementation of the project, it was necessary to select an execution and
development methodology that would allow for flexible adaptation to emerging needs and
ensure continuous delivery of functionalities. In this context, an incremental and iterative
methodology was chosen. This methodology allows for the progressive integration of new
features or improvements as needs are identified throughout the project, whether due to client
demands [6] or own discoveries regarding previously unmonitored systems.

As new needs arise, a waterfall development model is applied, which involves sequential phases.
The corresponding user stories are generated, which describe the required functionalities [7].
Based on these user stories, new requirements are drafted and incorporated into the Software
Requirements Specification (SRS) document. Subsequently, all the necessary components are
integrated into the architecture diagrams and the functionality is implemented and deployed.
This mixed approach facilitates continuous delivery, as each iteration is completed with the
release of new operational features, allowing the project to evolve in constant progression.

The incremental methodology is complemented with agile techniques, enabling a flexible and
adaptive development process. Close collaboration with stakeholders and constant feedback are
key elements to ensure that the final product meets the client’s expectations and needs [8].

Project management is organized using a Kanban board, a tool that allows tasks to be structured
and prioritized according to their progress, ensuring that tasks are completed successfully.



CHAPTER 2

Background and Technologies

This chapter presents the context in which the monitoring platform is implemented. It explains,
from a monitoring perspective, both the fundamental concepts of a mainstream datacenter
environment and the site-specific characteristics of the IFCA facilities, illustrated in Figure 2.1,
which are essential for understanding the approach and requirements outlined in this report.
Finally, the major technologies used for its development are described in detail.

2.1 Data Processing Centers Landscape: Infrastructure and Services

A data processing center, or datacenter, is a physical facility used to house high-performance
computer systems that are interconnected through a high-speed network, alongside large
storage systems and other computer infrastructure. These resources are utilized by organizations
to collect, process, store and deliver large amounts of data [9]. Organizations often rely heavily
on the applications, services and data contained within these centers, making them critical
assets. This dependency means that their proper functioning is essential and therefore, it must
be precisely monitored to ensure continuous operation and minimize potential disruptions.

Effective datacenter monitoring addresses this need by continuously tracking both operational
metrics and environmental conditions using specialized tools and sensors. It also involves
collecting data concerning the health of key components such as servers, storage devices,
networking equipment and supporting infrastructure like power supply and cooling systems.
Critical factors like uptime, performance, temperature, humidity and power usage are monitored,
triggering alerts when any of these parameters deviate from predefined thresholds [10].

Figure 2.1: Data Processing Center at the Institute of Physics of Cantabria (IFCA) [1]
(Images created using generative artificial intelligence based on real photographs)

Additionally, in a research center like IFCA, having these monitoring systems in place within
their own computing infrastructure allows for the capture of massive amounts of data on the
operation of these systems. This data can then be analyzed to study their performance and
develop customized solutions to improve their efficiency and reliability.

To gain a deeper understanding of how effective monitoring should be carried out, it is essential
to first examine the core systems that make up a datacenter. At the hardware infrastructure
level, these systems can be broadly categorized into two primary building blocks: Information
Technology (IT) and Non-IT infrastructure, each contributing significantly to overall functionality.

3
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2.1.1 IT Infrastructure

The computational or IT infrastructure consists of essential components that support workload
execution, data processing, and communication, including servers, networking devices, and
storage systems. These elements are standardized in form factor and usually stacked in rows
within racks, optimizing space efficiency, cooling, and ease of maintenance [11].

2.1.1.1 Computing Equipment

A server is a high-performance computing system designed to provide services, process data
and manage networked resources. Unlike consumer-grade computers, servers are optimized
for reliability, scalability and continuous operation [9]. Their hardware composition typically
includesmultiple multi-core processors, each with its own dedicatedmainmemory bank (DRAM),
allowing for efficient parallel processing. Servers also feature multiple high-speed network
interface cards (NICs) for data throughput and often specialized accelerators such as graphics
processing units (GPUs) for intensive computing tasks. In terms of storage, servers are commonly
equipped withmultiple high-capacity and high-speed disks, often configured in redundant arrays
(e.g., RAID), to support both performance and data reliability requirements.

To further enhance uptime and manageability, servers are also equipped with redundant fans
and power supply units (PSUs) to ensure continued operation in case of hardware failure [9].
Furthermore, each server usually carries a management controller called the Baseboard
Management Controller (BMC). The basic functions include monitoring of various hardware
sensors, managing various hardware and software alerts, booting up and shutting down the
server and providing remote management capabilities [11].

Servers come in various formats, such as rack-mounted, chassis-mounted, and blade servers,
each with its unique design and characteristics. Rack-mounted servers are the most common
in datacenters, designed to fit into standard 19-inch-wide racks, which can occupy anywhere
from a single rack unit (1U) to multiple units, depending on its hardware configuration.
Chassis-mounted servers are installed in a shared frame that occupies several rack units. Each
node is often half the width of a standard server, so two can fit side by side in one rack unit. They
also share parts like power supply units, which saves space and improve efficiency. Lastly, blade
servers are even more compact, with multiple server blades housed in a single chassis, sharing
PSUs, fans, backplane interconnect, and management infrastructure [11]. When monitoring
server performance, health or energy consumption, it is important to account for the common
elements shared by these server types to avoid reporting duplicated values and ensure accurate
performance tracking across different server formats.

Taking this definition of a server into account, server monitoring is the process of continuously
observing system resources, such as CPU usage, memory utilization, disk operations, network
traffic or GPU usage, to ensure optimal operation and uptime. It specifically oversees the health
and performance of both physical servers and hosted virtual machines (VMs), generating alerts
and notifications for issues such as hardware failure or resource saturation [10]. It is also relevant
to track power consumption at multiple levels to ensure optimal energy usage.

At IFCA, virtualization is a cornerstone of the computing infrastructure, with most of user-facing
computing services running on virtualized environments powered by KVM-QEMU virtualization
stack, where KVM acts as the hypervisor and QEMU provides hardware emulation. This approach
enables efficient resource allocation, scalability and flexibility by deploying virtual machines on
top of physical host servers. Consequently, monitoringmust cover not only the physical hardware
but also the virtual machines themselves, tracking their performance and resource usage to
ensure reliability and service continuity.
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From an administrative perspective, the computing infrastructure at IFCA is divided into two
main types of machines: Datacenter hosts and user cloud machines. Datacenter hosts include
physical servers and statically defined virtual machines, which are not dynamically provisioned
and provide persistent management services. Cloud machines, on the other hand, are virtual
instances created dynamically using a cloud orchestration platform, in this case OpenStack. This
distinction influences how monitoring and management are approached. Host machines are
typically organized using naming conventions based on hardware models, while cloud machines
are grouped by OpenStack projects, each assigned a unique Virtual Local Area Network (VLAN).
This network-based organization allows for easier implementation of access policies and filtering
rules for the monitoring platform, without relying on machine names or metadata.

2.1.1.2 Network Equipment

The network infrastructure of a datacenter includes essential components such as multilayer
switches, firewalls, routers and load balancers, which ensure device interconnection, security
and performance. These devices typically have a management interface that provides features
for monitoring their performance. The network is typically organized in a hierarchical topology,
with top-of-rack switches handling internal rack connections and core switches managing
inter-rack communication for scalability and redundancy [9]. At IFCA, Ethernet technology is
the standard for general connectivity, while Infiniband is used for High Performance Computing
(HPC) applications due to its low latency and high-speed data transfer capabilities [11].

Network monitoring is the process of continuously observing a datacenter network’s
performance, health and availability to help identify bottlenecks, performance degradation and
potential security breaches within the network. It specifically oversees devices such as switches,
routers, firewalls and load balancers, as well as overall network traffic and throughput [10].
As datacenter monitoring involves monitoring distributed systems, it is necessary to use the
network itself for this purpose. A separate management network is used, which includes its
own management switches [11]. This network connects to the management network interface
of each server’s BMC and to the management interface of each switch.

2.1.1.3 Storage Equipment

Storage in datacenters can be categorized into twomain types: Private storage, local to individual
computing tasks, and shared storage, which forms part of the global state in distributed
workloads [9]. Private storage typically resides on local disks, is managed by a single process
and lacks replication. In contrast, shared storage must be durable, resilient and accessible to
many clients simultaneously, requiring a more complex and distributed storage infrastructure.

Physically, storage systems may be integrated with servers or provided through specialized
units. High-performance storage is often housed in dedicated “storage towers” that abstract
the underlying hardware complexity and provide seamless remote access. Alternatively, storage
may be deployed in modular units commonly known as “storage bricks” or enclosures, either
placed within rack slots or directly attached to servers [11]. In all scenarios, high-speed network
connectivity is essential to ensure efficient data access.

Storage monitoring refers to the continuous oversight of these resources to maintain
performance, manage capacity and ensure data integrity [10]. For distributed storage systems,
monitoring is typically performed both at the machine level, tracking the physical hosts
exporting the drives and at the service level, supervising the distributed software components
that manage and expose storage to clients, as further detailed in Section 2.1.3.
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2.1.2 Non-IT Infrastructure

On the other hand, the supporting infrastructure ensures that the computational systems operate
within safe and stable environmental conditions. This includes various subsystems which are
essential for maintaining the stability and efficiency of the datacenter.

2.1.2.1 Cooling Systems

Cooling is one of the primary subsystems that helps maintain the proper operating temperature
for the IT equipment. At IFCA site, cooling is achieved through both free cooling and chillers.
Free cooling utilizes external air during colder weather conditions to cool the servers without
using additional energy, while chillers provide cooling during hotter periods, ensuring a stable
temperature environment for the sensitive hardware.

2.1.2.2 Power Distribution Systems

Power supply is another crucial element of the datacenter infrastructure, which this work
primarily focuses on. The power distribution system at IFCA facility follows an alternating
current (AC) architecture [9], where three-phase AC high-voltage power enters the facility and
is distributed through various circuits to different parts of the datacenter as shown in Figure 2.2.
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Figure 2.2: IFCA’s Datacenter AC Power Distribution Architecture

There are four incoming 400V three-phase AC lines: Two (A1/B1) supply unmaintained power,
feeding the load directly, while the other two (A2/B2) provide maintained power. The maintained
lines are connected to uninterruptible power supply (UPS) units and a service bypass switch,
which enables direct power supply during UPS maintenance [12]. The service bypass operates
as an external selector between direct utility power and UPS-processed power. Within the UPS,
an internal static bypass allows input AC to feed the output directly under normal conditions,
improving efficiency without interrupting battery charging, which continues via a parallel AC/DC
converter path. In case of a power outage, the batteries supply DC that is converted back to
AC for the load. Regardless of the path, the output feeds the maintained power circuits. Both
maintained and unmaintained power sources supply themultiple power distribution units (PDUs)
installed in each rack. The PDUs distribute 230V single-phase AC power to the two redundant
power supply units (PSUs) of servers, switches, and other equipment, where it is finally converted
into low-voltage DC (12V, 5V and 3.3V) to power the internal electronic components.

Power monitoring is the tracking and analysis of electrical power usage, distribution and
efficiency to help identify areas of high energy consumption and potential imbalances, allowing
for optimized power usage and proactive measures against outages. It uses power meters and
sensors to track power consumption of individual IT devices, specific power components, entire
racks and cabinets, computer rooms and the overall datacenter facility meter [10].

Taking all of this into account, a comprehensive inventory of the IFCA’s datacenter hardware
equipment, including detailed specifications of each system, is provided in Appendix A.
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2.1.3 Software Infrastructure

To gain a more comprehensive view of the datacenter’s status, the services that manage it can be
monitored, as they will provide crucial information about performance and operational health.
In this context, the scope of the services to be monitored within this project is specifically
focused on OpenStack, as it is the core service responsible for managing and orchestrating
most of the resources within the datacenter environment. Given its critical role in resource
allocation, provisioning and overall infrastructure management, it is essential to closely monitor
its performance and operational health.

2.1.3.1 OpenStack

OpenStack is an open-source project offering a set of software components that provide common
services for cloud computing infrastructures [13]. It controls large pools of compute, storage
and networking resources, all managed through APIs, which employs standard authentication
mechanisms. Client-side tools and libraries are available for interaction, along with a dashboard
that lets administrators control services and users provision resources via a web interface.

OpenStack is broken up into services, allowing cloud administrators to plug or play components
based on needs. In addition to standard Infrastructure as a Service (IaaS), additional modules offer
orchestration, fault management, and service management to ensure high availability. As of this
work, the following components are used in the IFCA’s datacenter to support the institute’s cloud
computing service:

• Keystone: A service that handles client authentication, service discovery and multi-tenant
authorization across the platform, via an API. It serves as the first point of interaction
for users, granting access to other services after authentication. Keystone also manages
identity resources such as projects, which represent ownership units, and domains, which
act as containers for projects, users and groups, ensuring a unique namespace for each.

• Nova: This service provisions compute instances, including virtual machines, bare metal
servers, and provide support for system containers. It operates through a collection of
daemons (agents) running on Linux servers to deliver these services. It also supports the
use of flavors, which define the resource allocation for instances.

• Neutron: It delivers Networking as a Service (NaaS) through an API that lets users configure
network connectivity and addressing in the cloud. Neutron manages virtual networks,
switches, subnets, ports, and routers in a software defined networks (SDNs) way, enabling
communication between interface devices (e.g., vNICs) managed by other services (Nova).

• Glance: The Image service allows users to upload and access data assets intended for use
with other services. Glance image services include discovering, registering and retrieving
virtual machines (VMs) images. It provides a RESTful API for querying VM image metadata.

• Cinder: Is the OpenStack Block Storage service that provides block storage volumes to
virtual machines. It virtualizes block storage management and offers a self-service API, to
request and consume resources without needing to know the details of the device.

• Placement: Originally part of Nova, now functions as an independent component, to track
resource inventories and usage through an HTTP API, supporting the management and
allocation of resources across multiple OpenStack compute services. It tracks resource
consumption through predefined classes, such as virtual CPUs, memory and disk space.

• Horizon: It is the official implementation of OpenStack’s Dashboard, offering a web-based
user interface for different services, simplifying administrative tasks and user interactions.
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2.1.3.2 Other Services

In addition to OpenStack, other services of significant importance that are also relevant for
monitoring include Slurm, which is widely used for job scheduling and resource management in
High Performance Computing (HPC) environments. Furthermore, the distributed storage systems
Ceph and GPFS are also crucial components within the datacenter. Monitoring these systems will
contribute to maintaining optimal functionality and addressing any potential issues proactively.
However, it is important to highlight that while these services are considered in the design of
the platform, their implementation is not included within the scope of this work.

2.2 Monitoring Tools and Technologies

The different tools and technologies that compose the observability platform are described
below. They are classified in several areas, depending on the stage of the monitoring process in
which they are used.

2.2.1 Data Collection

This stage focuses on retrieving rawmetrics and telemetry data directly frommonitored systems,
services, hardware components and sensors. The tools used for this purpose, typically agents,
are deployed close to the data sources to ensure high accuracy in data acquisition.

2.2.1.1 Collectd

Collectd [14] is an open-source plug-in based Linux daemon for collecting periodically system
and application performance metrics. Metrics are gathered from a variety of sources, including
the operating system, applications, log files and external devices. The collected data is stored or
made accessible via the network. These statistics can be used to forecast future system demand,
identify performance bottlenecks and monitor systems. Collectd is being used on v5.12.0.

The main reasons for its choice are due to its metrics export model and its main features. First,
it works following a push-based model, which allows each agent to send metrics autonomously
to a monitoring server, without the need to configure anything on the monitoring server for
each agent deployed. This is a differential factor to some alternatives such as node-exporter
for Prometheus, which follows a pull-based model, so it is necessary to configure on the server
each of the target agent URL to scrape them. This in a large deployment, with hundreds, even
thousands of servers, as is the case in a datacenter, is not very scalable without the help of
discovery services that automate this process. That is why this option was discarded.

In addition, its most relevant features are that it is written in C language for performance and
portability. At the same time, it includes optimizations to handle hundreds of thousands of
metrics. The daemon comes with over 100 built-in plugins, ranging from standard cases, such
as system metrics, to highly specialized and advanced topics focused on specific technologies or
devices. It provides powerful networking features and is extensible in numerous ways. Last but
not least, it is actively developed and supported and well documented.

2.2.1.2 NVIDIA Data Center GPU Manager

NVIDIA DCGM [15] is an open-source suite of tools for managing and monitoring NVIDIA
datacenter GPUs in cluster environments. It includes active health monitoring, comprehensive
diagnostics, system alerts and governance policies including power and clock management.
Version 4.0 is currently being used for this project.
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Figure 2.3: NVIDIA DCGM Operation Schema [15]

The service is supported by Linux operating
systems on x86-64, ARM and POWER (ppc64le)
platforms. The installation packages include
libraries, binaries and source code examples
for interacting with the APIs.

A diagram of the typical deployment of the
tools is shown in Figure 2.3. The service,
named in the figure as “DC GPU Manager”,
communicates directly with the GPU driver.
This last one can monitor the hardware at a
low level and with a very fine grain of detail,
at the compute kernel level. The service
exposes monitored metrics and configuration
commands through an API.

2.2.1.3 Intelligent Platform Management Interface (IPMI)

Intelligent Platform Management Interface (IPMI) is a set of specifications that provide a
standardized interface for a hardware-level subsystem that offers remote platform management
services [16]. In this context, it encompasses themonitoring of hardware systems in servers, such
as system temperatures, voltages, fans and power supply units [17], among other subsystems,
as shown in the diagram in Figure 2.4.
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Figure 2.4: IPMI Block Diagram [17]

The specification is led by Intel [17] and
was first published on September 16, 1998.
It is supported by almost all the major
IT infrastructure providers, including Cisco,
Dell, IBM, Hewlett Packard Enterprise, Lenovo,
Fujitsu and Intel itself, to name a few.
Although IPMI is a standard specification,
each manufacturer has its own platform
implementation, meaning that the Baseboard
Management Controller (BMC)may not always
monitor the same hardware components,
depending on the server manufacturer.

A key feature is the platform’s independence from the CPU, boot firmware (BIOS or UEFI) and
operating system. As a result, platform management functions remain available even when the
server is off, as long as at least one power supply is connected and receiving power.

2.2.1.4 Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) is a TCP/IP application layer protocol for
managing devices on IP networks [18]. It is based on a set of operations that offer the possibility
to read and modify the configuration of the device, relying on SNMP configuration objects. This
makes it one of the most commonly used technologies when it comes to network monitoring.

The information and configuration in each network device are stored in hierarchical databases
called the Management Information Bases (MIBs), which consists of managed objects that
provide insight into the device’s performance, status and configuration. These objects can be
either scalar (single instance) or tabular (multiple instances grouped) [19]. To identify each of
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them, Object Identifiers (OIDs) are used, providing unique addresses across the entire hierarchy
that allow the system to access specific objects on a device.

While devices may implement various MIBs, they all support a standard one: MIB-II [18], defined
in RFC1213 [20], which provides general TCP/IP management information. These MIBs are
managed by an agent that handles incoming requests using the protocol’s operations. This
enables network monitoring tools to query the device, gather performance metrics and modify
configurations when needed. This project uses the second version of the protocol.

2.2.1.5 Running Average Power Limit (RAPL)

Running Average Power Limit (RAPL) is a feature on Intel/AMD x86 CPUs, manufactured after
2012, that allows to set limits on power used by the CPU and other nearby components [21]. It
also allows, as feedback, to report accumulated energy consumption of various system-on-chip
(SoC) power domains, at very fine granularity and a high sampling rate [22]. RAPL energy data
is exposed to the platform via host-software-accessible model-specific registers (MSRs).
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Figure 2.5: Socket Power Domains
supported by RAPL [22]

RAPL supports multiple hierarchical power domains, each
representing a physically meaningful region for power
management, as shown in Figure 2.5. They are defined as:

• Package (PKG): Measures total socket energy
consumption, including cores, integrated graphics and
uncore components, such as last level caches.

• Power Plane 0 (PP0): Measures energy usage of overall
the processor cores on the socket.

• Power Plane 1 (PP1): Tracks energy consumption of
processor graphics (GPU) on desktop models.

• DRAM: Monitors energy usage of DRAM DIMMs
connected to the socket integrated memory controller.

• PSys: Oversees thermal and power management of the
entire SoC, including package domain, System Agent,
Platform Controller Hub (PCH) and eDRAM.

For multi-socket server systems, each socket reports its own RAPL values independently [22].

2.2.1.6 Scaphandre

Scaphandre [21] is an open-source monitoring agent, dedicated to energy and power
consumption metrics developed by Hubblo. Its purpose is to help measuring and thus
understanding tech services energy consumption patterns. Scaphandre is being used for this
project on its latest release: v1.0.2.

This agent uses RAPL registers to obtain energy measurements. The reason for using this agent
instead of directly reading the registers is because measuring power consumption in tech service
infrastructures is challenging, as it requires physical devices and custom-built data pipelines to
collect useful metrics. Moreover, these methods only provide host-level power consumption
data, lacking fine-grained insights into applications or processes. This challenge is even greater
in virtualized or cloud computing environments. By using this agent, energy measurements for
virtual machines are provided, as they are QEMU-KVM processes on host machines.
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Another relevant feature of this agent is that it has been designed and implemented as optimally,
light and clean as possible so that it does not produce any overhead to the system, leading to
higher system utilization, resulting in higher energy consumption [21].

2.2.1.7 OpenStack Exporter for Prometheus

OpenStack Exporter [23] is an open-source monitoring agent designed to collect and expose
data from OpenStack services in a format compatible with Prometheus. It interacts directly with
the existing APIs of various components to gather relevant metrics1. In this project, OpenStack
Exporter is utilized in its latest available version, 1.7.0.

2.2.2 Data Processing

The following tools are responsible for gathering metrics from agents, devices, or sensors,
processing them according to the platform’s needs to ensure data consistency and readiness
for further handling. Besides, during this process, the metrics are standardized to simplify
integration, establishing agreements on type and unit conversion. Finally, when routed to the
storage backend, all metrics are converted to a common format aligned with OpenTSDB notation.

2.2.2.1 Telegraf

Telegraf [24] is an open-source, plug-in-driven powerful server agent for collecting and reporting
time series data. Written in Go and compiled as a standalone binary, it can be executed on
any system with no external dependencies. Telegraf also contains in-memory metric buffers to
maintain data collection if the downstream database is temporarily unavailable. Version 1.28.3
is currently being used for this project.

In addition to the features already mentioned, this technology was selected for its versatility as
the main entry point for metrics, offering over 300 plug-ins that cover from IoT data collection
to system telemetry. It supports flexible parsing and serialization of various input data formats
and can serialize data into systems like InfluxDB or Prometheus.

Figure 2.6: Telegraf Components [24]

As shown in Figure 2.6, Telegraf is composed of 4 types of modules, each with functionality and
purpose within the metrics collection, routing and delivery process:

1OpenStack API Documentation: https://docs.openstack.org/api-quick-start/

https://docs.openstack.org/api-quick-start/
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• Input plug-ins: Collect metrics from communication protocols, services and third-party
APIs. For this platform, the two types of input modules are a socket listener that receives
metrics in collectd format and an SNMP collector that queries SNMP agents to gather
network-related metrics.

• Process plug-ins: Transform, decorate and filter metrics before they are sent, sanitizing
data as it arrives. In general, it classifies metrics by input labels and generates new ones,
which serve as the primary mechanism to route metrics between plug-ins.

• Aggregate plug-ins: Create combined metrics, such as the average mean, minimum and
maximum from the metrics that have collected and processed. The operations performed
include scaling, unit conversion and derive additional metrics.

• Output plug-ins: Write data to a variety of datastores, services and message queues. For
this proposal, a Prometheus server will be used, as explained in Section 2.2.3.1.

2.2.2.2 Home Assistant

Home Assistant [25] is an open-source home automation software designed for controlling
devices, such as sensors, lights, switches, plugs, cameras and other smart home components. It
emphasizes local control and data privacy, allowing users to manage their automation systems
without relying on cloud services. With a highly customizable and extensible architecture, Home
Assistant supports a wide range of integrations with third-party devices and platforms, enabling
seamless automation andmonitoring. Specifically, Home Assistant Container is used over Docker,
a standalone container-based installation of Home Assistant Core, on version 2024.11.3, as it
allows for easy deployment and management of Home Assistant in an isolated environment.

2.2.3 Data Storage

The following stack of tools has the function of offering a high performance, widely available,
large capacity, easily scalable and long-term storage system for the metrics collected through
the different agents and aggregators available on the platform.

2.2.3.1 Prometheus

Prometheus [26] is an open-source, community-driven monitoring solution that collects metrics
from monitored targets by scraping HTTP endpoints. These endpoints are often referred to
as “exporters” when the component exposing the metrics runs in a separate process from the
monitored target itself.

Prometheus stores its metrics as time series data, where each metric is a float64 value, recorded
with a millisecond-precision timestamp, along with optional key-value pairs known as labels.
Every time series is uniquely identified by its metric name and optional labels [26]. This metric
format is based on OpenTSDB notation. Version 2.48.0.rc.1 is currently being used.

Prometheus provides a functional query language called PromQL (Prometheus Query Language)
that lets the user select and aggregate time series data in real time. It supports a wide range
of operations, including mathematical expressions, statistical functions and temporal queries,
enabling complex analysis and visualization of metrics across various dimensions.

By default, Prometheus stores the collected metrics for 15 days. Although the retention period
can be extended by modifying configuration parameters, Prometheus is not designed to store
and manage such a large amount of data on its own.
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2.2.3.2 Grafana Mimir

Grafana Mimir [27] is an open-source, horizontally scalable, highly available, multi-tenant time
series database (TSDB) for long-term storage for Prometheus, adding extended metric retention
capabilities to the platform. Version 2.14.0 is currently being used for this project.

Mimir has microservices-based architecture. The system has multiple horizontally scalable
microservices that can run separately and in parallel. Thesemicroservices are called components
and are available through a single binary. The architecture is shown in Figure 2.7. It is divided
into two backend paths: The write and the read path.

Figure 2.7: Grafana Mimir Main Components [27]

Its architecture ensures efficient data
ingestion, storage and querying. Ingesters
store incoming metrics, keeping them in
memory and a write-ahead log (WAL) for
recovery. Periodically, metrics are written to
disk as TSDB blocks, uploaded to long-term
storage and temporarily kept locally for
quick access. To prevent data loss, the WAL
should be on persistent disks. By default,
each time series is replicated across three
ingesters, with the Compactor merging blocks
and removing duplicates to reduce storage.
Queries enter through the query-frontend,
which splits long-range queries and checks the cache. Cached results are returned instantly,
while others are queued. Queriers pull queries, fetch data from store-gateways and ingesters,
execute them and return results to the frontend for aggregation before sending them to the
client. If used, the query-scheduler manages the queue instead of the frontend.

Some similar solution and commonly used is Thanos2. It has the same purpose but is oriented
to be deployed following a microservices architecture application on a Kubernetes cluster. This
alternative was not pursued because it increased the level of deployment complexity in excess
for our platform, as it does not need to be deployed in a clustered environment for now. However,
Grafana Mimir offers this possibility to obtain and guarantee the maximum system scalability
possible, if required in the future.

2.2.4 Data Visualization

The last step of the pipeline of the monitoring platform is to show in an organized, concise, clear
and visual way, the different metrics collected, with the objective of informing, controlling the
systems and supporting decision-making with frequently updated real data. This is achieved by
using the following software product.

2.2.4.1 Grafana

Grafana [28] is an open-source software that enables querying, visualizing, alerting and
exploring metrics, logs and traces across different storage systems. Its data source plugins
support connections to a wide range of platforms, including time series databases like
Prometheus and CloudWatch, logging tools such as Loki and Elasticsearch, relational and NoSQL
databases like PostgreSQL and InfluxDB, as well as CI/CD systems like GitHub and Jenkins.

2Thanos: Open source, highly available Prometheus setup with long term storage capabilities: https://thanos.io/

https://thanos.io/
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Grafana OSS provides powerful capabilities for building dynamic dashboards with detailed
graphs, visualizations and alert rules. It also supports integration with multiple authentication
systems via Single Sign-On (SSO) and Lightweight Directory Access Protocol (LDAP), making it
suitable for secure, large-scale deployments with multiple users, centralized access control and
collaborative dashboard management. In this platform, version 11.2.0 is used.

2.2.5 Other

Finally, we describe other technologies and tools that are not directly related to any stage of
the monitoring process, although they have been used to build and manage the platform, i.e.
deployment in the IFCA’s datacenter.

2.2.5.1 Python

Although the platform is primarily built upon pre-existing software components, some
programming has been necessary to address specific requirements. The custom codebase
is written in either Python or Starlark3, a Python dialect commonly used as a configuration
language. Python is mainly employed to develop custom plug-ins for collectd, such as modules
for reading the RAPL interface. On the other hand, Starlark is used within Telegraf to define
custom rules for metrics processing [29]. The Python version used may vary across agents
depending on the local environment, but in general, Python 3.8 is themost commonly deployed.

2.2.5.2 Puppet

Puppet [30] is an open-source configuration management tool that automates the process of
managing infrastructure. It allows system administrators to define the desired state of systems
and ensures configurations are consistently applied across servers. Using a declarative language,
Puppet enables users to specify resources such as packages, services and files, along with their
required states. The files that define these configurations are called manifests.

Operating in a client-server model, Puppet uses a central master to manage configurations and
send them to agents running on managed nodes. These agents periodically check in with
the master to receive and apply updates. Puppet is highly extensible, supporting a variety of
operating systems and platforms and integrates with monitoring, logging and orchestration
tools, helping IT teams automate tasks, enforce policies and maintain consistency across
complex infrastructures. Puppet is utilized in its version 6.28.0.

2.2.5.3 Bash Scripting

Bash scripting, which is a command-line shell scripting language commonly used in Unix-like
systems, enables the creation of automation scripts for deploying platform agents onto specific
areas of the infrastructure, where Puppet does not manage the automatic deployment process.

2.2.5.4 Git

The project has been developed using a version control system synchronized with a remote
repository in gitlab.ifca.es. Different types of files of the project are being hosted there: The
platform architecture and its modeling diagrams, the deployed services configuration files, the
source code of the different custom plug-ins used, several Grafana’s dashboards templates.

3Starlark Language: https://github.com/bazelbuild/starlark

https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit
https://github.com/bazelbuild/starlark


CHAPTER 3

Requirements Specification

The requirements specification phase is a fundamental step in software development, as it
lays the foundation for building a system that aligns with its intended purpose and ensures
a smooth development process. This chapter outlines the platform and details the requirements
identification and analysis process. Through user stories, key functionalities and constraints
were identified and refined into a formal specification, which serves as a clear and consistent
reference for the software design and implementation.

3.1 Platform Overview

Figure 3.1:
Platform Logo

The monitoring platform provides a comprehensive solution for tracking
and analyzing key infrastructure metrics within the datacenter. It integrates
data collection from diverse sources, enabling real-time insights and
long-term analysis to support operational efficiency, resource optimization
and sustainability goals.

3.1.1 Key Features

The platform offers a range of capabilities to monitor, analyze and optimize datacenter
operations. These features provide in-depth visibility across multiple areas:

• Machines statistics: Monitors the status and availability of machines, tracking CPU and
GPU usage, network interfaces bandwidth, main and GPU memory usage, swap and disk
usage to ensure optimal performance and detect potential failures.

• Network performance: Tracks network switches and interfaces utilization and availability,
ensuring real-time visibility into link status, bandwidth and error rates.

• OpenStack services state: Provides insights into the status and performance of core
OpenStack services like Keystone, Nova, Neutron, Glance and Placement.

• Power consumption tracking: Measures power usage at different levels of detail, from the
whole datacenter power distribution grid to individual assets, such as chillers or machines,
specific components like CPUs or GPUs and even virtual machines.

• Energy efficiency metrics: Computes indicators like Power Usage Effectiveness (PUE) across
different scopes, providing actionable insights to enhance energy efficiency.

The platform’s modular design ensures scalability and extensibility, allowing for seamless
integration of new services and sensors as infrastructure evolves. Its data-driven approach
empowers administrators to proactively manage resources, minimize downtime and improve
the overall sustainability of the datacenter.

3.2 Requirements Identification and Analysis

To undertake a more detailed analysis of the software requirements, the different metrics to be
incorporated and the challenges associated with the observability platform, several collaborative
meetings were held with stakeholders. Among them were system administrators from IFCA’s

15



16 3.3. SOFTWARE REQUIREMENTS SPECIFICATION

Computing Service, who are responsible for managing the infrastructure and providing computing
services to researchers. In addition, members of the Advanced Computing and e-Science Group
who contributed to the development of the energy consumption and environmental impact
reporting capabilities of the AI4EOSC project, as well as those overseeing the collection of
infrastructure metrics for the GreenDIGIT project, also attended. The results of these discussions
were captured in user stories, which provided a structured way of documenting the identified
needs and functionalities.

User stories are a technique in agile development to define system requirements from the user’s
perspective, focusing on the value the software will deliver. They involve three essential aspects:
A Card with a concise description of the requirement, a Conversation to refine acceptance criteria
through collaboration between the development team and the product owner and a Confirmation
where the product owner ensures the requirements are correctly understood. This process
promotes clarity, collaboration and flexibility throughout development [31, 7]. The complete
set of user stories cards is attached in Appendix B. Based on these, the Software Requirements
Specification (SRS) is extracted as described below.

3.3 Software Requirements Specification

3.3.1 Functional Requirements

The functional requirements describe specific functions of the system or its behaviors in response
to certain inputs, defining what the software must do to fulfill its purposes [32]. It specifies
expected outcomes, interactions and system responses, ensuring that the software meets user
needs and operational goals. Table 3.1 lists the complete set of functional requirements for the
monitoring platform.

Table 3.1: Functional Requirements

ID: Description:

FR-01 The platform must collect and store statistics for each machine operating system,
including hostname for identification, host status, uptime, CPU usage, memory usage,
swap usage, disk usage, network activity and logged-in users.

FR-02 The platform must continuously monitor the performance and link status of all
network switches, displaying key metrics such as the device’s uptime, CPU and
memory usage and temperature. Each switch must be identifiable by its name or
management IP.

FR-03 The platform must monitor and report on each network interface’s properties,
including identification data, configured link speed, interface type, link status,
bandwidth usage, aggregate link usage over time and packet error rate.

FR-04 The platform must monitor and report the utilization, memory usage and power
consumption of NVIDIA GPUs, identifying each device by its hostname and UUID.
Additionally, the platform should track the GPU temperature, if possible.

FR-05 The platform must automatically collect and store historical data from the Schneider
Electric sensors ecosystem, with immediate monitoring of any newly connected
sensors as soon as they are linked to the system.
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Table 3.1: Functional Requirements

ID: Description:

FR-06 The platform must provide real-time power consumption in watts for each
physical machine in the datacenter, using accurate sensors and methods to ensure
measurements reflect actual energy usage.

FR-07 Data regarding power consumption, in watts, of each virtual machine used to deploy
the AI4EOSC platform should be collected and stored.

FR-08 Energy efficiency metrics, such as PUE, must be calculated by the platform based on
the consumption data collected across all scopes.

FR-09 The platform must track and display the live status of each OpenStack service.

FR-10 For Keystone, the platform must allow the visualization of multiple projects relevant
information and their statuses, along with displaying a counter of registered users.

FR-11 For Nova, the platform must monitor the flavors and their characteristics, track the
resource usage by each project, display the administrative status of the VMs and
show the status of the hosts where the VMs are deployed.

FR-12 For Neutron, the platform must monitor the different networks and their
characteristics, track the usage of public floating IPs and subnets and display the
status of the network agents on the host machines.

FR-13 For Glance, the platform must monitor the size of each image and the overall size,
as well as display their properties, including status, visibility and owner.

FR-14 For Placement, the platform must display the total usage of central processing units
(CPUs), memory and storage, as well as usage per host.

FR-15 The status of all OpenStack service agents across the host machines should be
collected and stored, displaying the current status and tracking the evolution of each
agent over time.

FR-16 The platform must allow easy extension to monitor additional external critical
services for the management and operation of the infrastructure.

FR-17 The platform should support monitoring of local services deployed on individual
machines, such as proxies and databases.

FR-18 Metrics shall be presented in the most visually effective and comprehensible way,
utilizing multiple chart types to enhance clarity and ease of analysis.

FR-19 The dashboards shall support data visibility customization, enabling administrators
to filter metrics and adjust the time range according to their monitoring needs.

FR-20 Platform must ensure data visibility is restricted: VM metrics must be visible only to
the respective owner and computing service operators, while data from the entire
datacenter infrastructure should be accessible only to system administrators.
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3.3.2 Non-Functional Requirements

The non-functional requirements are system qualities that guide the architecture of the product
and often serve as design constraints. A widely used approach to define them is using the
product quality model, as defined in ISO/IEC 25010 standard [33]. This groups the Information
and Communication Technology (ICT) quality properties into eight characteristics: Functional
suitability, reliability, performance efficiency, usability, security, compatibility, maintainability
and portability. Each of them is composed of various related subcharacteristics. The following
table (3.2) shows the non-functional requirements, classified according to this quality model.

Table 3.2: Non-Functional Requirements

ID: Type: Description:

NFR-01 Security
Confidentiality

Access to the monitoring platform must be through an existing
Single Sign-On (SSO) authentication system using LDAP.

NFR-02 Maintainability
Analyzability

All the systems used for monitoring must have a log file to
supervise the status and detect errors in all the running services.

NFR-03 Portability
Installability

The agents and services must be deployed and configured using
a configuration and automation management tool: Puppet, if
possible. Otherwise, a shell script must be provided.

NFR-04 Compatibility
Interoperability

The platform must be able to monitor a heterogeneous
environment, consisting of machines with both Intel and AMD
CPUs, NVIDIA GPUs, as well as multiple switches brands.

NFR-05 Compatibility
Interoperability

The platform must be able to run on Linux operating systems,
specifically on distributions of the Debian and Red Hat families.

NFR-06 Compatibility
Interoperability

The monitoring platform agents must support deployment in
both virtualized and bare metal environments with minimal
configuration changes.

NFR-07 Performance
Time behavior

Data should be collected at intervals with a period of at least 30
seconds for infrastructure equipment and 5 minutes for services.

NFR-08 Reliability
Availability

The data collected must persist and be accessible through the
platform for a minimum period of 3 years.

NFR-09 Usability
Operability

The monitoring dashboard must provide real-time visualizations
of collected data, minimizing delays as much as possible.

NFR-10 Reliability
Fault Tolerance

The system must continue operating in a degraded mode if
one or more components fail, ensuring that critical monitoring
functionalities remain available.

NFR-11 Security
Confidentiality

All monitoring data must be stored entirely on site, ensuring no
external data storage or cloud-based dependencies.

NFR-12 Maintainability
Modifiability

All components of the monitoring platform must be based on
open-source software with active community support to ensure
long-term sustainability and adaptability.



CHAPTER 4

Design and Architecture

Design and architecture establish the foundation for building a scalable and maintainable
system. A well-structured software architecture, along with clear modeling diagrams, enhances
team communication, improves decision-making and helps identify potential risks throughout
the software development process. This chapter describes the modeling technique used and the
architecture designed for the monitoring platform for data processing centers.

4.1 Modeling Method: C4 Model

The C4 model is a streamlined graphical notation technique for modeling the architecture of
software systems. Created by Simon Brown between 2006 and 2011, it aims to modernize
software modeling techniques in alignment with modern software development trends and agile
methodologies [34]. It follows a hierarchical decomposition based on four levels of abstraction:

• Systems: It is the highest level of abstraction, representing an entity that delivers value
to its users, whether human or automated.

• Containers: Contexts or boundaries where code is executed, or data is stored. Containers
are essential for the functioning of the overall software system.

• Components: Logical groupings of related functionality encapsulated behind well-defined
interfaces. Unlike containers, components are not independently deployable.

• Classes: Highly detailed elements that can be easily transformed into code and data
structures. Normally either UML classes, interfaces or entity-relationship models are used.

Figure 4.1: C4 model infographics: Types of diagrams, scope, description, audience and usage [35]

A key advantage of this graphical modeling technique is its adaptability. It allows adjusting the
level of detail according to the audience, technical expertise and architectural needs. To achieve
this, it employs four hierarchical diagram types, as shown in Figure 4.1:
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• Context: Provides a high-level overview of how the software system interacts with external
entities, such as users, external systems and services. It helps to define system boundaries
and clarify its role within a larger ecosystem.

• Containers: Zooms into the system, displaying its high-level technical building blocks (e.g.,
applications, databases, APIs) and their interactions. It illustrates how different containers
communicate and what technologies they use.

• Components: Details the internal structure of a container, showing its constituent
components, their responsibilities and their interactions. This helps in understanding the
modular organization of the system and the dependencies between different components.

• Code: Represents the internal implementation details of a component, typically using
UML diagrams or similar notations. It provides a low-level view of classes, methods and
relationships to help developers understand and navigate the codebase.

4.2 Design of the Monitoring Platform for Datacenters

To model the monitoring platform, the collaborative diagramming tool IcePanel [35] was used.
This tool enables interactive, drag-and-drop diagram creation following the C4model principles.
The platformmodel is also available in the project repository1 in two formats: As domain-specific
language (DSL) code generated using Structurizr2, which follows a diagrams-as-code approach
and as the visual views generated by the tool itself.

4.2.1 Context Diagram

The datacenter environment consists of two major system groups and two user types, as
illustrated in Figure 4.2. The relationships among these entities from the monitoring platform’s
perspective are described below:

Figure 4.2: Monitoring Platform System Context Diagram

The services encompass both infrastructure management and user-facing computing services.
For this first approach to the project, only OpenStack is considered, though additional services
may be integrated in the future. The monitoring platform itself is part of this service stack.

1Platform architecture model: https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/tree/main/architecture
2Structurizr: https://structurizr.com/

https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/tree/main/architecture
https://structurizr.com/
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The datacenter infrastructure, where these aforementioned services are deployed, includes IT
equipment, ranging from physical servers to cloud-based virtual machines, as well as networking
equipment such as switches. Additionally, non-IT infrastructure is monitored via a Schneider
Electric sensor grid, which tracks energy consumption across various facility assets.

The platform has two main actors:

• System Administrators manage the computing services and infrastructure, using the platform
to monitor system health, track performance metrics and resolve any issues that arise.

• IFCA Users and Researchers oversee the status of their deployed resources, such as cloud
virtual machines, ensuring availability and optimal performance for computational tasks.

4.2.2 Container Diagrams

4.2.2.1 IFCA Computing Monitoring Toolkit Container Diagram

As shown in the platform’s container diagram (Figure 4.3), the system is composed of eight
containers, part of the main open-source software used to build the platform. Some of these
containers have been described in Section 2.2, so their main functions are straightforward.

Startingwith the less user-facing containers, these connect to the datacenter systems to ingest or
request metrics gathered by agents deployed within the infrastructure. In addition to collecting
this data, they also handle processing, filtering and labeling the metrics. Telegraf plays a dual
role by receiving the reported metrics from the machines and requesting specific metrics from
network switches. Home Assistant is responsible for obtaining data from the Schneider Electric
sensors, acting as an intermediary to ensure the smooth integration of electrical system data
into the monitoring framework. Prometheus scrapes metrics from various services monitored by
compatible agents, known as Exporters, such as those used with OpenStack. It also aggregates
metrics from Telegraf and Home Assistant, creating a centralized and unified metrics system.

This architecture uses a hybrid metrics intake model: A pull-type model via Prometheus for static
services and a push-type model via Telegraf and Home Assistant for dynamic systems. Indeed,
Telegraf and Home Assistant act as a static target for Prometheus. This hybrid architecture,
considering the wide cardinality of the different monitored systems, provides scalability and
compatibility in the data collection and delivery process using push-type agents and Telegraf
and the optimized backend for metrics management and storage using Prometheus and Mimir.

Continuing with the last-mentioned container, Grafana Mimir stores the time-series data
collected by Prometheus in a more efficient and compact way since Prometheus is not built for
long-term storage. Mimir saves this data in a container, either using an object storage system (S3
compatible) or a local/remote file system. Since there’s enough free disk space on the machine
where the platform will be deployed, it was decided to use the local file system storage option.
Thesemetrics are then accessed and displayed through Grafana, which queries Mimir for the data
and shows it on different dashboards with charts like timelines, stats, histograms and gauges.
Additionally, there is an SQLite database, which holds static system data that does not change
often and is not needed for long-term tracking. This database is manually updated. In practice,
it is used for filtering variables values in the dashboards.

Lastly, web access to Grafana is routed through a NGINX reverse proxy. This helps prevent
exposing specific service ports through the public IP, enhancing security by masking internal
services behind a single-entry point. It also allows for SSL termination, offloading the
encryption/decryption process from Grafana and ensuring secure communication over HTTPS.



22 4.2. DESIGN OF THE MONITORING PLATFORM FOR DATACENTERS

Figure 4.3: IFCA Computing Monitoring Toolkit Container Diagram

4.2.2.2 Machine Container Diagram

All the machines available in the datacenter have been instrumented with a series of agents for
monitoring, as shown in Figure 4.4. This setup is flexible, with the number of containers varying
based on the machine’s specific characteristics. Each machine runs a collectd daemon, which
collects performance metrics from the operating system, hardware components and services.
These metrics are then forwarded to Telegraf for processing. The most flexible containers,
which may or may not be present depending on the machine’s configuration, are as follows:
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If a machine has a GPU installed, it also includes NVIDIA’s monitoring service, NVIDIA Data
Center GPU Manager (NVIDIA DCGM), which communicates with the GPU driver via a proprietary
protocol. Collectd retrieves the metrics from this service as well.

Unlike virtualized environments, physical machines can directly monitor energy usage because
they have access to the underlying hardware. To measure this, a Scaphandre agent is installed
on the physical machines, which allows monitoring not only the overall energy consumption of
the machine but also the consumption associated with specific processes running on the host.
These metrics are also requested by the collectd agent from the Scaphandre agent.

Figure 4.4: Machine Container Diagram

4.2.2.3 OpenStack Container Diagram

The monitoring of all OpenStack components is done through an OpenStack Exporter, as shown
in Figure 4.5. This exporter acts as an intermediary agent that periodically makes requests to the
APIs of various OpenStack components (such as Nova, Neutron, and Cinder) to collect real-time
metrics about their performance and health. The gathered data is then transformed into the
OpenTSDB format, which is optimized for time-series storage. Once the data is processed, it is
exposed via HTTP endpoints, allowing a Prometheus server to pull the metrics.

Figure 4.5: OpenStack Container Diagram

4.2.2.4 Schneider Electric Sensors Container Diagram

The Schneider Electric sensor network follows a hub-and-spoke topology, consisting of multiple
sensors models, referred to as PowerTags, and a central communications hub, also known as
the gateway. As illustrated in Figure 4.6, the gateway interconnects these sensors and transmits
measurement data over a LAN network. Communication within the sensor network is handled
via the Modbus protocol, while the connection between the gateway and the LAN is established
using Modbus/TCP, which encapsulates Modbus messages within TCP/IP packets. These packets
can be interpreted by the Home Assistant instance.
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Figure 4.6: Schneider Electric Sensors Container Diagram

4.2.3 Components Diagrams

4.2.3.1 Grafana Components Diagram

The Grafana component diagram is straightforward, as it primarily illustrates the relationships
between the application and its data sources. As shown in Figure 4.7, Grafana uses two
connectors to interact with the main data sources of the platform. The first connector allows
Grafana to execute queries using PromQL, but it is important to note that, for performance
reasons, the queries are executed against Grafana Mimir rather than directly on Prometheus.
The second one enables Grafana to execute SQL queries to the SQLite database, which is used
for storing non-time-series data. These connectors are shown as components in the diagram
because they are plug-ins, offering flexibility and modularity to Grafana and enabling seamless
integration with future data sources.

Figure 4.7: Grafana Components Diagram

4.2.3.2 Grafana Mimir Components Diagram

Grafana Mimir, as previously explained in section 2.2.3.2, consists of six distinct components:
The Query-Frontend, the Querier, and the Store-Gateway, which together form the read path
and enable Grafana to retrieve metrics efficiently. The Distributor and Ingester components are
part of the write path; their primary function is to receive metrics samples from Prometheus
and persist them to disk. Finally, there is the Compactor, which optimizes the storage of
time-series data on disk. The relationships between these individual components are illustrated
in Figure 4.8.

Although the components and communication between them are already established and
implemented in the software itself, it is necessary to consider their function and relationship
within the system in order to configure and deploy each of them, according to the needs of
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the platform. This is, for example, to configure how many instances of each component exist to
have a high availability, how much is necessary to dimension the system to support massive data
ingestion, how to configure the data retention and the connection with the storage system and
so on. This is why these components are defined in the diagram, even though it is not necessary
to define them and their built-in relationships.

Figure 4.8: Grafana Mimir Components Diagram

4.2.3.3 Prometheus Components Diagram

Figure 4.9 shows the Prometheus components. These components are not functional blocks
of this software but represent the different configuration blocks necessary for it to work.
Specifically, these are called jobs and with a certain configuration, they are in charge of scraping
the different targets of the agents that expose the different metrics in OpenTSDB format over
the network.

Figure 4.9: Prometheus Components Diagram

There are six jobs in total: The three leftmost ones are responsible for obtaining the metrics of
each of the three Telegraf output streams, as shown in Figure 4.10. Then, there are two jobs that
scrape metrics from OpenStack and Home Assistant endpoints. Finally, there is a component
with a distinct function that handles sending the metrics to Grafana Mimir, a process known as
remote write in Prometheus terminology.
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4.2.3.4 Telegraf Components Diagram

Telegraf’s metrics processing pipeline consists of four stages: Input, processing, aggregation
and output. It processes data coming from both machines and network switches, with different
data flows depending on the source. On the one hand, it acts as a gateway for the metrics
sent by the collectd agents, while on the other hand, it uses an SNMP client to make requests
for various network switches. In addition, because there are several types of machines which
require different processing, there are two data flows whose source is the collectd agent. In all,
the three flows are represented in Figure 4.10.

Figure 4.10: Telegraf Components Diagram

Telegraf receives the metrics from collectd using a socket type input plug-in, with a network
open port listening. To distinguish between the two main groups of machines in the datacenter,
those managed by the computing service and those in cloud used directly by users, two different
ports are used. This plug-in tags the metrics based on their flow before passing them to the next
stage. At this point, the data flow diverges: For the datacenter host machines (named as IFCA
CPD in diagram), the name of the group is extracted from the hostname. In the case of user cloud
machines (named as IFCA Cloud in diagram), the VLAN number is taken from the hostname label.
This feature enables group machines by its VLANs number, in order to control access to VM data
to users. Subsequently, for both machine types, using the aggregation plug-in, derived metrics
are generated from the aggregation of other more basic metrics, for example the bandwidth of
the network interfaces, from the number of bytes (octets) that have been sent/received by the
network interface. Finally, these metrics are formatted following the OpenTSDB nomenclature
in the output plug-in, so that Prometheus can scrape them.

Finally, the operating system of the network switches includes an SNMP agent, which can be
queried using Telegraf’s own prompt and the corresponding input plug-in. The obtained metrics
are processed through various transformations, such as type conversion and unit scaling, as
switches from different manufacturers may use different data type definitions. As well as for the
machine’s data flows, bandwidth metrics are derived from the interface’s octet counters, and the
processed metrics are then exposed as a Prometheus endpoint.

4.2.3.5 Collectd Components Diagram

The mode of operation of collectd is via plug-ins. Figure 4.11 illustrates the attached ones. By
default, the monitoring daemon includes a bunch of plug-ins for monitoring various operating
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system components. For simplicity, OS metrics are grouped into a single component in the
diagram, as all the targeted metrics are OS-related. However, they are implemented as multiple
built-in plug-ins. These metrics include CPU activity, memory, swap and disk usage, processes
statuses, network interfaces statistics, port usage and status, system uptime and logged-in users.

Another OS-related plug-in that is modeled as a separate component is the IPMI Plug-in, as
it is only relevant for physical machines. This plug-in retrieves information via IPMI from
various hardware sensors, such as power consumption. Communication is carried out through
an operating system library (OpenIPMI). Following the energy monitoring topic, there are two
additional plug-ins: The first one allows reading directly the records provided by the RAPL
interface to obtain other power consumption measurements, focusing only on the CPU and
memory. The second one enables reading the output generated by Scaphandre agent to obtain
the energy consumption of virtual machines hosted on the given host. More details about the
latter are provided in section 4.2.3.6.

Similarly to the last ones, by means of an external plug-in developed in Python, it is possible to
read the metrics gathered from the installed GPUs in the system, by the NVIDIA DCGM agent.

Figure 4.11: Collectd Components Diagram

In addition, an example of a service that is monitored locally from the serving machine, such as
a NGINX proxy, is included. From a plug-in within collectd, the statistics for this service can be
obtained and included as an additional set of metrics for the machine concerned. This can be
extended to cover further services, such as local databases, if required in the future.

Collectd daemon has an aggregation plug-in that allows metrics to be aggregated locally. This
is useful to aggregate statistics from all the network interfaces or from all the disks attached.
Finally, all metrics are sent via network to Telegraf, using the integrated network plug-in.

4.2.3.6 Scaphandre Components Diagram

Scaphandre, the energy consumption metrology agent, is made up of three high-level types
of components from a functional point of view: Sensors, the core and exporters, as shown in
Figure 4.12. First, the sensors are the component that reads from the RAPL interface exposed
through the Linux kernel. This kernel feature is called powercap/intel_rapl. This component
provides the accumulated energy consumption of each of the domains or hardware components
defined in the standard. These measurements are transferred to the central component, which is
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in charge of transforming the accumulated energy consumption (joules) into power consumption
(watts). Furthermore, this agent is deployed for the primary function of calculating the power
consumption of each KVM/QEMU virtual machine hosted on the server. Finally, all these metrics
can be reported in several formats. In our case, in the same format as practically as the rest of
the platform: OpenTSDB, using a Prometheus exporter, scraped by a collectd custom plug-in.

The reason why this exporter is scraped by collectd agent instead of the main platform
Prometheus instance, is because in this way, these metrics are tagged as other set of collectd
host metrics, so it can be also classified and processed likewise in Telegraf. So, it is easier to
introduce a new metric into the existing metric flow rather than create an additional parallel
metric flow between Scaphandre and Prometheus with a separate or replicated configuration
for classification.

Figure 4.12: Scaphandre Components Diagram

4.2.3.7 Home Assistant Components Diagram

The Home Assistant instance has 2 additional components on top of the factory’s preset ones
available by default in this software, as shown in Figure 4.13. The first one, EcoStruxure
PowerTag Link Gateway, is a custom integration that allows communication with the Schneider
Electric sensor hub. The second integration, available in the official Home Assistant’s catalog, is
Prometheus Integration, which allows to expose over the network, in an OpenTSDB format, all
the metrics available in this system to be scraped by a Prometheus server.

Figure 4.13: Home Assistant Components Diagram

The diagram in Figure 4.13 illustrates that one integration communicates with the other for
simplicity, ignoring the rest of the Home Assistant components. The metrics collected in the first
integration are passed through to be exposed by the second, as the internal operation of Home
Assistant is not relevant from the platform’s perspective, requiring no additional configuration
and treating it as a black box.

4.2.4 Code Diagrams

This is an optional level of detail and is usually available on demand in tools such as IDEs [34].
It should be interesting for more complex components, with the need to define their design at a
high-level of detail. In addition, as in this case the different systems used are already developed,
the low-level architecture is the own of each one.
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Implementation

This chapter covers the configuration of each service in the datacenter’s monitoring platform at
IFCA, detailing both backend services and distributed agents. It also highlights implementation
details and references the guides and documentation followed throughout the process.
Additionally, the chapter provides a comprehensive overview of the available metrics, along
with descriptions of the dashboards developed and the components that comprise them.

5.1 Computing Equipment Monitoring

5.1.1 Machines

5.1.1.1 Collectd Agent Installation and Basic Configuration

The installation of the collectd agent is straightforward for both major operating system families
present in the datacenter. By installing the package named “collectd”, the agent is promptly
prepared for use, with most built-in plugins included by default, although some may require
additional packages, typically following the naming convention “collectd-[pluginname]”.

The basic configuration involves setting the machine Hostname to uniquely identify the metrics.
For cloud instances, the VLAN number is also added to the Hostname label, as there is no other
label that could be created for this purpose. Later, the Telegraf Starlark Processing Plug-in will
split this label into two chunks and create the appropriate labels for further processing. Another
essential parameter that must be provided is the Interval, which defines the period between
samples. On our platform, based on the Software Requirements Specification, it is set to 30
seconds to ensure high-resolution metric collection suitable for detailed performance analysis.

Finally, logging functions are enabled to capture and store relevant system events and data,
ensuring that the process runs smoothly, and any issues can be easily tracked and diagnosed.

5.1.1.2 Collectd Plug-ins Configuration

The next step in configuring the collectd agent is to enable the desired plug-ins, which are
already specified in the architecture diagram in Figure 4.11. Each selected plug-in is configured
to fulfill particular requirements, and their individual settings are outlined below.

• cpu: This plug-in reports CPU usage metrics. It is configured to report by state (idle,
nice, interrupt, softirq, steal, system, user and wait) [36]. To prevent excessively
detailed data, it aggregates metrics at the processor level, or per host, given that most
machines have multiple sockets, instead of reporting per core. Additionally, it is configured
to report values as percentages rather than the default jiffies.

• load: This plug-in gathers the load metrics. These numbers give a rough overview over
the utilization of a machine. The system load is defined as the number of runnable tasks in
the run-queue and is provided by many operating systems as one-, five- and fifteen-minute
averages, representing short-, mid- and long-term load [14]. No configuration is needed.

• processes: Collects information about local system processes. No additional configuration
is needed, as it reports the number of processes in each state (blocked, paging, running,
sleeping, stopped and zombies) [36].

29



30 5.1. COMPUTING EQUIPMENT MONITORING

• memory: This plug-in report memory usage statistics. No further configuration is needed,
as it reports values in absolute units (i.e., bytes) by default and percentage values can be
computed later if required.

• swap: This plug-in collects information about used and available swap space. No
configuration needed. By default, the summary over all swap devices is reported only,
i.e. the globally used and available space over all devices measured in bytes.

• df: This plug-in is configured to report filesystem usage statistics, focusing exclusively
on local filesystems mounted directly on the host’s disks. This is achieved by applying
exclusion filters for network filesystems (e.g., GPFS, Ceph, rclone) and virtual or temporary
ones (e.g., Docker/Nomad/Kubernetes volumes, Snap images). It also reports inode usage.

• aggregation: This plug-in, as its name suggests, combines other statistics into compound
ones. It must be explicitly configured to define the desired aggregations. In this case, it is
set up to sum up df plug-in statistics grouped by host, providing overall values instead of
per-filesystem breakdowns.

• interface: Reports network traffic statistics, including the number of octets, packets and
errors for each interface or network device. This plugin requires extensive filtering because
multiple virtual network interfaces exist within a physical device. The goal is to include
only outward-facing interfaces to avoid counting traffic multiple times on both virtual and
physical interfaces. On IFCA’s hosts two network interfaces topologies are used for virtual
networking, as shown in Figure 5.1.

     VM1 eth0 tap1

     VM2 eth0 tap2

br0 eth0 Switch

Host

(a) Bridge Topology

eth0.2

eth0 SwitchServer

eth0.3

(b) VLAN Topology

Figure 5.1: Linux Interfaces Schemes for Virtual Networking [37]

The first provides connectivity from host to virtual machines using a Linux bridge, which
behaves like a network switch. It forwards packets between interfaces that are connected
to it [37]. This creates a bridge device named br0 and sets two TAP devices (tap1, tap2)
and a physical device (eth0) as its slaves, as shown in Figure 5.1a. In this case, only eth0,
from both host and VM, should be monitored in order to track the real traffic on the host
interface, as well as the portion of the traffic forwarded to/from each VM.

The second topology, as shown in Figure 5.1b, involves the use of Virtual Local Area
Networks (VLANs) within a physical interface. This allows the broadcast domains to be
separated by adding labels to the network packets [37]. The main issue is that counting
the network statistics for each available device may result in counting the traffic on the
physical device (eth0) as well as part of the traffic forwarded to the virtual interfaces
(eth0.2, eth0.3), leading to an overestimation. Only eth0 device should be tracked.

• tcpconns: This plug-in gathers network statistics regarding the number of TCP connections
to specific local and remote ports and their TCP state, as defined on RFC793 [38].

• nginx: Collects the number of connections and requests handled by a NGINX daemon. It
queries the ngx_http_stub_status_module module, which is not compiled by default.
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• uptime: Reports system uptime statistics, showing the time elapsed since last system boot.

• users: Reports the number of the current logged in users on host. No configuration needed.

• network: This plugin sends data to a remote server, Telegraf’s Socket Listener Plug-in in
our case. The server address and port must be specified. For datacenter hosts, port :25826
is used, while for user cloud machines, port :25827 is used.

5.1.1.3 Telegraf Processing Pipeline

Once the metrics are received in Telegraf, they are tagged according to the input plug-in based
on the network port where they were received, allowing the separation of the metric streams
from the two main groups of machines, as each requires slightly different processing steps.

On one hand, for metrics received through the input designated for datacenter hosts, processing
involves extracting the group name which they belong to, from the hostname label. At IFCA, the
naming convention assigns characteristic names to groups of machines based on their model,
with digits appended to identify individual machines. Telegraf removes these digits and creates
a new label containing the group name. On the other hand, for metrics from user machines in
the cloud, since hostnames are user-defined without a specific naming convention, there is no
inherent way to group these machines. To address this, the VLAN number is included in the
hostname field by the collectd agent. Telegraf then splits this field into two separate labels,
hostname and VLAN, which are originally combined and separated by a slash character.

Next, the metrics go through the aggregation plug-ins. At this point both data streams converge
and do not differ in machine type. This plug-in is used to obtain the bandwidth per network
interface, from the number of octets or bytes in transit through the interface in that interval,
in this case 30 seconds. Finally, it is also converted from bytes to bits, to obtain bits/s.
Mathematically, the exact bandwidth is represented as the derivative of the amount of data
with respect to time, as defined in Equation 5.1:

Bw =
dOctecs

dt
× 8 =

(

lim
h→0

Octecs(t+ h)−Octecs(t)

h

)

× 8 ≈

Octecs(t1)−Octecs(t0)

t1 − t0
× 8

(5.1)

However, when continuous data is not available, as is the case in network monitoring systems
where we obtain samples at discrete time intervals, we can approximate the bandwidth by using
the difference in data sent between two points in time, divided by the time interval between
them. This approximation becomes more accurate as the time points get closer together.

It is important to note that for Telegraf and the calculation of derivedmetrics, all hosts must have
synchronized time with the monitoring server. This was already the case in the datacenter due
to the NTP server. If any host’s time is not synchronized, Telegraf will not be able to calculate the
derived metrics, as those metrics will fall outside the aggregation window in which it operates.

5.1.1.4 Prometheus Scraping Jobs

Finally, the set of metrics processed in OpenTSDB format are exposed on port :8126 for the
datacentermachines data flow and on port :8127 for the user cloudmachines data flow, allowing
Prometheus to collect them. To achieve this, two separate jobs are configured on the Prometheus
server, each polling its respective port at 30-second intervals. The metric samples remain
available until they are either updated with new data or expire after a maximum of 120 seconds,
ensuring sufficient time for collection.
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5.1.1.5 Metrics Validation

To validate the data collected by the collectd agents, the transformation and aggregation of
metrics by Telegraf plug-ins and to ensure the platform proper functioning, stress tests were
performed on the machines, focusing on CPU and GPU, intensive memory and disk operations,
synthetic network traffic generated by iPerf and InfiniBand performance tools, as well as machine
reboots. These tests were designed to simulate operational workloads and ensure that any
changes in the host states are accurately reflected in the collected metrics.

5.1.1.6 Dashboards

Since a large amount of data is collected frommonitoring various aspects of numerous machines,
it was decided that organizing this information in an accessible manner, without losing detail,
would be best achieved by establishing a three-tier dashboard hierarchy. Each level has its own
structure, purpose and focus, allowing users to navigate between general and detailed views
seamlessly. Links between the dashboards enable users to move from general overviews to
specific details with ease, creating a fluid navigation experience across all levels.

The first level (Figure C.1) offers a high-level view of CPU usage across all monitored machines,
displaying percentages, color scales and aggregated metrics such as the total number of
monitored machines, average CPU usage and average uptime, among other statistics, providing
a comprehensive overview.

The second level (Figure C.2) presents more metrics, such as network usage, memory and disk
usage, with each row representing a different machine, as shown in Figure 5.2. This level offers
focused views on specific machines, with filters to narrow results by service or group, as well as
time series and bar graphs that illustrate the evolution of key metrics like network bandwidth of
the target hosts selected.
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Figure 5.2: Level 2 Dashboard Row Showcasing Key Metrics of Monitored Host

The third level (Figure C.3) dives into granular details for the selected machine, offering
additional metrics like CPU usage by state, system load, processes status, network interface
statistics (e.g., sent packets, errors and drops) and network ports usage, TCP connections status
and usage of inodes from different mounted file systems.

5.1.2 NVIDIA GPUs

To obtain real-time analytics about GPUs, NVIDIA Data Center GPUManager is used. This process
is being guided using a technical blog post published on the NVIDIA Developer website [39]. For
troubleshooting, the official documentation [15] was consulted. It is an important requirement
that the NVIDIA DCGM relies on the host engine service (nv-hostengine), which is included as
part of the GPU driver installation and must be running in order to collect GPU telemetry data.

5.1.2.1 NVIDIA DCGM Service Connection with collectd Agent

The NVIDIA DCGM package includes a sample collectd plug-in implemented using the NVIDIA
DCGM Python binding. The plug-in needs to be installed and configured to use it with collectd.
The main configuration that has to be done manually is to configure dependency libraries paths,
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as they differ across operating system distribution families. Then, it is necessary to instantiate
the Python plug-in in the collectd agent. The plug-in is simply a Python program that imports a
module and executes it upon loading. For this, the module’s path and its name must be provided.

5.1.2.2 Selected Metrics

At the date of this work, with the latest version available (v4.0), there is a set of 1216
variables that can be measured by this service [15]. As described in the Software Requirements
Specification, in chapter 3, the following entities have been selected:

• DCGM_FI_DEV_MEMORY_TEMP 140 : Memory temperature for the device, in degrees Celsius.
• DCGM_FI_DEV_GPU_TEMP 150 : Current temperature of the device, in degrees Celsius.
• DCGM_FI_DEV_MEM_MAX_OP_TEMP 151 : Maximum operating temperature for GPU memory.
• DCGM_FI_DEV_GPU_MAX_OP_TEMP 152 : Maximum operating temperature for this GPU.
• DCGM_FI_DEV_POWER_USAGE 155 : Power usage for the device, in Watts.
• DCGM_FI_DEV_TOTAL_ENERGY_CONSUMPTION 156 : Total energy consumption for the GPU
in mJ since the driver was last reloaded. Later it is converted to watts per hour in Grafana.

• DCGM_FI_DEV_SLOWDOWN_TEMP 158 : Slowdown temperature for the device, in ºC.
• DCGM_FI_DEV_SHUTDOWN_TEMP 159 : Shutdown temperature for the device, in ºC.
• DCGM_FI_DEV_POWER_MGMT_LIMIT 160 : Power limit for the device, in Watts.
• DCGM_FI_DEV_GPU_UTIL 203 : GPU utilization. Range: 0.0-1.0
• DCGM_FI_DEV_MEM_COPY_UTIL 204 : GPU memory utilization. Range: 0.0-1.0
• DCGM_FI_DEV_FB_TOTAL 250 : Total Frame Buffer (main GPU memory) of the GPU in MB.
• DCGM_FI_DEV_FB_FREE 251 : Free Frame Buffer (main GPU memory) in MB.
• DCGM_FI_DEV_FB_USED 252 : Used Frame Buffer (main GPU memory) in MB.
• DCGM_FI_DEV_FB_RESERVED 253 : Reserved Frame (main GPU memory) Buffer in MB.

5.1.2.3 Dashboards

To present the metrics collected from the NVIDIA GPUs in the clearest and most organized way,
two levels of dashboards are provided. Links are available to allow interaction and navigation
between them. Both dashboards feature a set of filters that allow users to select GPUs by service,
group, host, GPU number and UUID. These make it easier to navigate through the data and focus
on specific GPU. The filters enhance the user experience by enabling a more targeted analysis.

The first dashboard, shown in Figure C.4, displays the usage and energy consumption of each
monitored GPU through time series, providing a quick overview of these measurements for all
GPUs. Additionally, at the top, a series of statistics are shown, summarizing key variables such
as the number of GPUs currently monitored, the number of GPUs being used, average utilization
across all GPUs, memory used, free memory, average temperature, average power consumption
and total energy consumed.

The second dashboard displays, as shown in Figure C.5, a detailed view of a single GPU. It
presents identifying information at the top, such as the machine where is located on and the
GPU UUID, among others. Below, it shows statistics for the selected GPU, including both current
values in gauge format and their evolution over time in time series charts.

With these two levels of dashboards, users can have a comprehensive view of the overall
GPU usage and power consumption, as well as drill down into the performance and energy
metrics of individual GPUs, providing detailed and actionable insights for system monitoring
and optimization.
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5.2 Network Equipment Monitoring

5.2.1 Network Switches

The monitoring of the datacenter network switches is carried out through the Telegraf SNMP
input plug-in. Each network switch is queried by a dedicated instance of the plug-in. Some
initial connection configuration is required for each instance, including the target SNMP agent
URL, protocol version and community as the authentication mechanism. Afterwards, the fields
or tables to be monitored must be defined for each target agent, specifying the name of each
metric and the OIDs of the device MIBs from which the value or set of values will be retrieved.

5.2.1.1 Management Information Base Object Identifiers

In order to select the necessary objects from the MIBs, it must be taken into account that certain
objects are common amongst switches, such as the device name or the number of interfaces,
since they are defined as part of theMIB-II hierarchy, which follows a certain standard as specified
in RFC1213 [20], but other objects structure that are dependent on some intrinsic characteristic
of the switch model, such as the number of CPUs, are found in a MIB that is proprietary to each
manufacturer or model.

To identify the different OIDs of each switch model and manufacturer, Observium MIB

Database [40] has been used, as well as the documentation and manuals of the devices.
The selected enterprise OIDs are detailed for each model in Appendix A.2, as well as in the
configuration files themselves, available at the associated folder in the project repository1.

5.2.1.2 Telegraf Processing Pipeline

All input metrics are labeled with the device name, as well as the interface identifier if applicable.
Also, all string values, such as management IP address, device description, interface alias or
interface MAC address, must be embedded into other metrics labels, as OpenTSDB format does
not allow any kind of value type without direct conversion to float type.

Once the metrics are gathered from the input plug-in every 30 seconds, some processing
must be done in order to standardize field names, scale units, data formats and types of the
uncommon MIB objects, as each manufacturer has their own naming agreement. Subsequently,
the aggregation plug-in calculates the bandwidth in bits per second from the cumulative value
of outgoing and incoming octets for each interface, as was already done for the network
interfaces on machines. Finally, the output plug-in exposes all the metrics on port :9128 via
the Prometheus client, with a metrics expiration window of 120 seconds. At the other end of the
communication, a Prometheus job is configured to scrape the metrics every 30 seconds at that
endpoint.

5.2.1.3 Selected Metrics

Once all metrics have been processed and derived, they can be categorized into twomain groups:
Device metrics and interface metrics:

• Device metrics: Include the device name, model description, number of interfaces, which
encloses physical and virtual interfaces (VLANs), uptime, management IP address, CPU
usage, memory usage and device temperature.

1https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/tree/main/server/etc/telegraf/telegraf.d/snmp_network

https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/tree/main/server/etc/telegraf/telegraf.d/snmp_network
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• Interface metrics cover several aspects:

– General information: Interface name, interface alias, configured link speed, interface
type (as defined by IANA registry2), MTU and MAC address.

– Status: Administrative and operational status and interface connector presence.
– Usage: Bandwidth, including current value, historical time series, and histogram
distribution, aggregated utilization (hourly, daily, weekly, and monthly), and packet
statistics classified by type (unicast, multicast and broadcast), along with packet
discard and error statistics.

5.2.1.4 Dashboards

A single dashboard is provided, offering two filters: Device selection and interface selection
within the device. Relatively static data, such as name, description and interface general
information, such as index or alias, are presented using a stat chart, showing only the latest
value. More dynamic data, such as utilization, temperature, statuses and bandwidth, are
visualized through time-series charts, bar charts and histograms. A dashboard screenshot can
be seen in Figure C.6 in Appendix C.

5.3 Energy and Power Consumption Monitoring

5.3.1 Technical Room

The connection to the electrical sensor system installed in the facility is made through an already
available open-source Home Assistant custom add-on3. This enables real-time data collection
from the sensors system gateway, allowing values to be retrieved and stored externally, thus
integrating these measurements into the datacenter’s monitoring platform.

5.3.1.1 Home Assistant Installation and Configuration

The installation of Home Assistant as a Docker container is carried out using Docker Compose
with the official Home Assistant Docker image. Additionally, it is possible to deploy a
custom image using a Dockerfile, which has the integration embedded directly into the image,
simplifying deployment but increasing the maintenance efforts of the integration. For this, an
alternative installation method is used: Home Assistant Community Store (HACS), a third-party,
open-source add-on that allows the installation of custom components and plug-ins into a Home
Assistant instance. This method enables managing updates of the custom integration directly
from its official repository releases, avoiding the need to manually update the integration code
attached to the container. The installation was carried out following the official documentation4.

5.3.1.2 Schneider Acti9 PowerTag Link HD Configuration

It is assumed that the Gateway and all associated PowerTags have been properly installed and
configured according to the manufacturer’s guidelines. For the integration with Home Assistant
to function correctly, the Modbus/TCP service must be enabled on the Gateway, which is typically
enabled by default. To confirm this setting, users should access the device’s administration and
configuration webpage. By default, Modbus/TCP operates on port :502; however, if a different
port has been specified during setup, thismust be updated accordingly within the Home Assistant

2IANAifType-MIB: https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
3Home Assistant integration for EcoStruxure Gateways: https://github.com/Breina/PowerTagGateway
4HACS User documentation: https://hacs.xyz/docs/use/

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
 https://github.com/Breina/PowerTagGateway
https://hacs.xyz/docs/use/
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integration settings [41]. Furthermore, it is recommended to enable the discovery service on the
Gateway, as this simplifies the integration process by allowing Home Assistant to automatically
detect the device on the network.

5.3.1.3 EcoStruxure PowerTag Link Gateway Installation and Configuration

The installation and integration of the EcoStruxure PowerTag Link Gateway begins by
downloading the custom integration repository through HACS and restarting Home Assistant.
The integration is then added. If the discovery service is enabled, the Gateway is automatically
detected; otherwise, the host address and Modbus/TCP port must be entered manually. Once
the Gateway is successfully added, devices and entities are created, one device per PowerTag
and one entity for each measurement obtained through the Gateway.

5.3.1.4 Prometheus Connection to Home Assistant

The official Prometheus endpoint plug-in5 is used to export themetrics to a Prometheus instance.
The code provided on the official website is added to the Home Assistant configuration file
(configuration.yaml). Afterwards, custom filters are applied to remove unnecessary metrics,
such as Home Assistant zones, users, and other items unrelated to Schneider sensor data.

On the main server side, a new job is created in the Prometheus configuration file. This job is
configured to pull metrics from the “/api/prometheus” path every 30 seconds from the Home
Assistant target.

5.3.1.5 Available Metrics

Figure 5.3: Power Relationships
in AC Circuits [42]

We obtain from each electric sensor the following metrics:

• Current (A): Measured per phase and neutral. Electrical
current is the flow of electric charge through a conductor.

• Voltage (V):Measured per phase. Voltage represents the
electrical potential difference between two points.

• Power (W): Includes active, reactive and apparent power
per phase and overall. Also includes total active power
demand. Their relationship is represented in Figure 5.3.

– Active power (W): Power used by the equipment to perform useful work.
– Reactive power (VAR): Power that flows back and forth without doing useful work.
– Apparent power (VA): Total power, combining active and reactive.

• Energy (Wh): Total active, reactive and apparent energy accumulated since the last reset.
Energy represents the total power consumed over time.

• Power Factor (%): The ratio between active power and apparent power. This measure
indicates how much of the energy consumed is actually used to do useful work and how
much is wasted. In other words, it reflects how efficiently electricity is being used [42].

• Diagnostics: The Schneider integration also provides additional metrics related to sensor
status and wireless connectivity, including gateway status, link quality indicator (LQI),
received signal strength indicators (RSSI), packet loss ratio, connection status and more.

5Home Assistant Prometheus integration: https://www.home-assistant.io/integrations/prometheus/

https://www.home-assistant.io/integrations/prometheus/
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5.3.1.6 Dashboards

Based on the three-tier dashboards for machine monitoring, a similar two-tier structure is used
for Schneider Electric Sensors, offering linked navigation between dashboards and filters to
select one or multiple sensors for visualization.

The first dashboard (Figure C.10) provides an overview of total power related metrics per
sensor, displaying active, reactive, apparent power and power factor through time series charts.
Additionally, by aggregating data from the sensors on the main incoming electrical panels, a
comprehensive view of the entire datacenter’s power consumption is obtained.

The second dashboard (Figure C.11) dives into more detailed measurements for each sensor,
presenting both real-time values and historical trends. It covers power, voltage, current and
power factor, broken down per phase, enabling thorough monitoring of each variable’s behavior
over time.

Finally, a dashboard was created to visualize the various diagnostic metrics of the sensors
(Figure C.12). Its purpose is to verify and measure the connectivity performance of the sensors,
as several issues were identified during the project’s deployment phase. These connectivity
problems arise because the sensors are installed inside electrically shielded panels for safety
reasons. Additionally, a datacenter contains a high concentration of electronic equipment, such
as servers, power supply units (PSUs), cooling systems, all of which can generate electromagnetic
noise (EMI) that interferes with Wi-Fi signals. Furthermore, metal racks and other equipment can
reflect or absorb Wi-Fi signals, creating dead zones or areas with weak coverage. The physical
layout of the hardware and the presence of barriers can also contribute to signal degradation [43].

5.3.2 Physical Servers

In this section, the energy and powermonitoring for physical servers in a datacenter is addressed,
as they are among the most energy-consuming hardware components. The IPMI plug-in,
integrated into the collectd library, allows for collecting and filtering power-related data from
various sensors. Additionally, we explore the use of Intel’s RAPL interface for more precise power
monitoring, specifically for CPU power consumption, further enhancing the accuracy of energy
tracking on these servers.

5.3.2.1 IPMI Plug-in Integration

The IPMI plug-in is already integrated into the collectd library and can be used by simply
instantiating it in the configuration. However, since this interface provides access to numerous
sensors and system parameters, it is necessary to filter those that report power data. To achieve
this, the plug-in supports filtering based on a regular expression, which matches if the sensor
name contains the word “power” or its multiple existing abbreviations. It is important to note,
however, that not all sensors with the word “power” in their name actually measure power. For
example, sensors related to power supply unit (PSU) parameters may not measure power directly;
they could measure current, voltage, status, or other variables. To address this, additional
processing and filtering are performed in Telegraf by checking the unit of measurement of the
filtered readings, discarding those that are not power measurements in watts.

Finally, it is essential to consider that, since we are measuring hardware elements within the
server enclosure, some of these components may be shared across multiple nodes, as in the
case with chassis or blade servers. In these server format, multiple nodes share the power supply
units, and each node may report the power consumption of the PSU as if it were exclusively its
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own. To address this discrepancy, we normalize the power consumption for each node by dividing
the total power usage of the shared power supply unit by the number of nodes utilizing it.

5.3.2.2 Intel RAPL Integration

After reviewing public open-source code repositories, an Intel RAPL Reader Python plug-in for
collectd was found6. However, some modifications were necessary, as the original plug-in does
not support multi-socket hosts. To adapt the code, a unique numeric identifier was added to
each RAPL domain name to distinguish each socket. The source code of the modified plug-in is
in the project repository7.

Additionally, some processing must be performed in Telegraf, as this plug-in report energy
rather than power. Energy can be converted to instant power by deriving energy over time.
By differentiating the energy every 30 seconds (or the monitoring period), we can calculate
the average instantaneous power for that particular interval. The exact instantaneous power is
derived from energy with respect to time, as defined in Equation 5.2. As mentioned earlier, since
the data is sampled at discrete intervals, a Difference Quotient Approximation is used.

Pinst =
dE

dt
= lim

h→0

E(t+ h)− E(t)

h
≈

E(t1)− E(t0)

t1 − t0
(5.2)

5.3.2.3 Metrics

The metrics collected by the IPMI plug-in vary depending on the server manufacturer and model,
as not all systems provide the same set of sensors. In general, it is possible to retrieve the whole
server instant power consumption, AC input, and DC output power for all installed power supply
units, as well as the power usage of the fans, DRAM, and CPU.

From the RAPL interface, we have measured the average instantaneous power consumption per
sampling interval, broken down by the various available RAPL domains for each processor model.
Although the total system-on-chip (SoC) power consumption is not reported directly, it can be
calculated later in Grafana, by aggregating the non-inclusive domains (PKG and DRAM).

5.3.2.4 Dashboards

As previously, a two-tier hierarchical approach has been used to organize data into two
dashboards. Both offer three filters to refine the view by service, group and host, as well as
navigation links that enable seamless switching between the two dashboards.

The first dashboard displays the current power consumption per machine, measured by IPMI,
RAPL, or both, as shown in Figure C.7. It also shows summary statistics, such as the number
of monitored machines, measurements by type and overall consumption, calculated as the
maximum between methods for each machine.

The second dashboard, shown in Figure C.8, details the temporal evolution of measurements,
breaking them down by method and domain. It also includes ratios comparing CPU and memory
consumption across both measurement methods. From these ratios, it can be concluded that the
measurements align closely, showing minimal discrepancies that could be due to measurement
precision or unit conversion.

6https://github.com/jsastriawan/intel_rapl/blob/master/intel_rapl.py
7https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/intel_

rapl.py

https://github.com/jsastriawan/intel_rapl/blob/master/intel_rapl.py
https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/intel_rapl.py
https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/intel_rapl.py
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5.3.3 Virtual Machines

Finally, at this level of detail, we focus on the energy consumption of the main asset used by
users and the platforms deployed on them in a cloud computing environment: virtual machine.
This level of technicality is more complex than the one described above since it is a virtual entity,
which runs on a physical resource, shared among multiple instances through virtualization. To
achieve this, the Scaphandre agent is added to the stack of agents running on the physical host
machines, as described below.

5.3.3.1 Scaphandre Installation and Configuration

Installing the Scaphandre agent is straightforward: simply download and install the package
from the official repository, then run the main program with the --qemu option to map
QEMU-KVM processes to virtual machines, thereby adding VM metadata to process metrics.
Additionally, specify the exporter to use, Prometheus in this case, along with the required
port [21]. A systemd service is created to manage the execution of the agent.

Additionally, it is necessary to ensure that RAPL is enabled in the system’s kernel, which can be
done by running modprobe intel_rapl_common, and that QEMU-KVM is installed. To verify
that data is being collected, at least one hosted virtual machine should be running.

5.3.3.2 Scaphandre Connection with collectd Agent

To read the metrics provided by Scaphandre through the Prometheus exporter from the host’s
collectd agent, a plug-in capable of reading and parsing thosemetrics is required to convert them
into collectd-compatible metrics. Since this functionality is quite specific, the simplest approach
is to implement it through a Python script, leveraging two available libraries: The Prometheus
client for Python, which facilitates both requesting and parsing the metrics, and the collectd
library, which handles composing the metrics in collectd’s format and connecting them with the
agent. Following a review of public open-source code repositories, it was discovered that this
plug-in had already been developed by the community and is accessible in this repository8.

However, when using that plug-in, some useful native Scaphandre metric labels, such as exe,
which indicates the executable name of the process metric, cmdline, which provides additional
information about the process and vmname in case the process is a virtual machine, were lost
during metric parsing. These are custom labels added by the Scaphandre Prometheus exporter
and were therefore not expected or considered by the generic plug-in. Since these labels are
essential to univocally identify the time series of each virtual machine, we modified the code to
parse these new labels and add them as collectd labels. One restriction is that collectd metrics
have finite and predefined labels, unlike the Prometheus metrics format, so it was necessary
to encapsulate several of these Scaphandre metrics labels into a single one. Later, the Telegraf
Starlark processor plug-in separates this tag intomultiple labels. The source code of themodified
plug-in is in the project repository9.

5.3.3.3 Metrics

The Scaphandre agent adds two new measurements to the platform regarding the power
consumption of the infrastructure. It provides the consumption of each host in microwatts,

8https://github.com/ryarnyah/collectd-prometheus/blob/master/collectd_prometheus.py
9https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/

collectd_prometheus.py

https://github.com/ryarnyah/collectd-prometheus/blob/master/collectd_prometheus.py
https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/collectd_prometheus.py
https://gitlab.ifca.es/iglesiasj/ifca-monitor-toolkit/-/blob/main/clients/usr/lib/collectd/python-plugins/collectd_prometheus.py
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calculated as an aggregation of several measurements to give a try on the power usage of the
whole host. It might be the same as RAPL-PSYS domain or a combination of RAPL-PKG and
RAPL-DRAM domains [21]. Neither does it represent the real consumption that can be measured
with IPMI. The most interesting measure from this data source is the power consumption in
microwatts per existing process on the host, focusing only on the QEMU-KVM processes that are
virtual machines. Each of the VMs can be identified by its instance name within the host’s KVM
domain, as well as the VM UUID assigned by the VMs manager, OpenStack.

5.3.3.4 Dashboards

To display these measurements in Grafana, the same dashboard structure is used as for the
machine’s consumption monitoring. For each physical machine, the total consumption provided
by Scaphandre is shown, followed by the consumption breakdown per virtual machine hosted
on the host. Ratios are also calculated to compare how much the measurements calculated
by Scaphandre represent out of the total machine consumption measured with IPMI, if such
a measurement is available. Finally, two charts display the aggregated consumption of all
monitored servers and all VMs fitted with this data source. All consumption charts are plotted
as time series to visualize historical evolution, while stat charts display real-time values and
counters, such as the number of monitored machines.

Since this dashboard handles a large amount of data that identifies different hosts and virtual
machines, five filters are available: By host service, by host group, hostname, KVM domain and
VM UUID. A screenshot of this dashboard is shown in Figure C.9.

Additionally, to verify and validate themeasurements previously taken from the RAPL counters by
the collect agent plug-in, a third column of charts was added to the second dashboard described
in 5.3.2.4, showing the detailed energy consumption breakdown per machine, as shown in
Figure C.8. This allows comparison between the value computed by Scaphandre and the sum of
those retrieved directly from the RAPL interface.

5.4 Service Monitoring

5.4.1 OpenStack Exporter for Prometheus

As previously mentioned, an OpenStack Exporter for Prometheus is a tool designed to expose
OpenStack metrics in a format that Prometheus can scrape and monitor. This is especially useful
for keeping track of cloud infrastructure health, performance and resource utilization.

There are currently several implementations of such exporters available, developed either by
the community or third-party enterprises. Among the available options, a well-maintained,
community-driven, open-source implementation has been selected10, due to its broad support
for all relevant services used at IFCA’s cloud computing service.

5.4.1.1 Installation and Configuration

The OpenStack Exporter can be installed in multiple formats [23], including a straightforward
deployment using the Snap package manager, which simplifies the process by bundling all
dependencies into a single, self-contained package. After installing, configuration primarily
involves setting the necessary environment variables to allow the exporter to authenticate and
query metrics from the OpenStack APIs.

10OpenStack Exporter for Prometheus: https://github.com/openstack-exporter/openstack-exporter

https://github.com/openstack-exporter/openstack-exporter
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5.4.1.2 Metrics

The first step was to check, classify and sort the various metrics provided by the exporter, as the
official documentation [23] failed to define some metrics that were observed during execution.
After this review, the following metrics are available in summary:

• Identity (Keystone): Metrics on domains, projects, groups and users registered in the
identity service, including detailed information and service status.

• Compute (Nova): Metrics on instances, flavors, availability zones and resource limits (CPU,
memory, disk). Also includes the status of compute agents and the service itself. The
number of GPUs are not directly reported in flavors data, but they can be extracted and
added based on the flavor name using Prometheus processing rules after scraping.

• Network (Neutron): A wide range of metrics on networks, subnets, ports, routers, floating
IPs, agents and security groups. All has attached some metadata like status or ownership.
Also includes IP address availability and service status.

• Image (Glance): Metrics related to the number of images, their size in bytes, somemetadata
such as status, visibility and creation dates. Also includes service availability status.

• Storage (Cinder): Metrics related to service state, volumes and snapshots; including
storage limits and usage (in GB) for volumes and backups.

• Allocation (Placement): Metrics on resource allocation, usage, reservation and total
availability in the compute infrastructure in terms of vCPUs, memory and storage, as well
as the status of the placement service.

5.4.1.3 Dashboards

One dashboard is provided per service. At the top of each, the service status (UP/DOWN/ERROR)
is shown both in real-time and as a time series. Relevant metrics are displayed in three ways:
Representative values, like Keystone’s project count, are shown as current values with time series
charts to track changes. Tabular data from OpenStack Exporter is presented in tables, sometimes
merged for clearer insights (e.g., VMs and their flavors), showing only current values. When
historical trends are relevant, time series graphs are also included.

For agent status, a two-tier dashboard structure is used. The first tier gives an overview of all
agents per host, showing their current state, while the second tier adds temporal evolution.
Filters allow easy exploration by host and agent status, while navigation links provide seamless
movement between dashboards.

Screenshots of the OpenStack dashboards developed have been excluded from this report due
to the presence of sensitive information related to the cloud service and its entities, including
users, projects, and networks, among others, to protect user privacy and confidentiality.

5.5 Data Management Backend

5.5.1 Grafana Mimir

After Prometheus has collected all the relevant metrics, as previously outlined, it is configured
to write these metrics to an external TSDB service, specifically Grafana Mimir. The basic
configuration of Mimir follows the official installation and configuration guidelines detailed in
its documentation [44]. This ensures that the setup is properly aligned with the best practices
and optimized for reliability and performance in a production environment.
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Another important aspect of this service is the configuration of the storage backend. This service
uses the local filesystem for storage, which is simple and fast. Since the storage is on themachine
itself, there is no need to connect to a remote storage system. In this configuration, a retention
policy is applied, ensuring that metrics are retained for a period of three years.

In addition, the ingestion rate of metrics is carefully adjusted to meet the specific requirements
of the system. These adjustments ensure that the system can handle the expected volume of
incoming data without performance degradation. The configuration parameters for ingestion
rates are determined based on key Prometheus statistics, such as the number of generated time
series, which provide insight into the overall load on the system. By analyzing these metrics, the
ingestion process is optimized, ensuring both scalability and performance.

5.5.2 Grafana

Grafana dashboards are organized into twomain folders: Internal and External. The Internal folder
is restricted to service administrators, housing sensitive data related to the overall infrastructure,
with all metrics from the monitored systems displayed. These permissions are configured in
Grafana’s administration menu via web interface. The External folder contains dashboards that
displaymetrics gathered from cloudmachines, designed tomake this content generally available
to registered users at IFCA, via SSO through LDAP. However, an additional layer of control is
applied to restrict the information about which virtual machines users can view.

Additionally, each dashboard can have customized permissions, allowing precise control over
who can view or modify it, based on user roles. This feature is particularly useful for granting
access to specific project stakeholders. For example, it allows GreenDIGIT developers to view data
regarding power consumption. The structure ensures proper data access management, granting
users visibility according to their permissions while safeguarding sensitive information.

5.5.2.1 Grafana Filters

To enrich Grafana filters, an SQLite database is used to establish relationships between metric
labels. Two aspects are addressed: Linking VLANs numbers to usernames to enable filtering
of user-specific VLANs associated with user cloud virtual machines, and grouping hosts into
services for functional categorization of the datacenter machines, as shown in Table A.1 in
Appendix A. YAML files define these relationships, one mapping VLANs to username lists and
another linking services to machine groups. Python scripts parse these files and convert them
into SQLite databases, simplifying integration.

This approach adds flexibility, enabling more meaningful data visualization and improved
organization. In the case of user VLANs, this implementation enforces the privacy and access
control policy, ensuring that each user can only query data for the VLANs assigned to them in the
database. This restriction is integral to the system, guaranteeing that access to sensitive data is
strictly limited according to the user’s specific VLAN assignments.

5.6 Data Backup and Recovery System

An essential component of the monitoring platform is the data it collects and stores, as it
provides valuable insights into the system’s performance over time. Given that this data must be
retained for at least three years, implementing reliable backup systems is crucial to ensure its
long-term availability and protection against data loss. This can be achieved by simply backing
up the relevant directories where data is stored, leveraging existing tools in the datacenter
environment, such as Bacula [45], to automate and manage these backups efficiently.



CHAPTER 6

Deployment

This chapter outlines the process of deploying and automating the platform configuration for
IFCA’s premises. The main objective of this process is to ensure that the configurations applied
to the monitoring services are both persistent and replicable, while also enabling the automatic
and unattended deployment of agents across the datacenter systems. This ensures that when a
new server, network switch, or sensor is installed, it is automatically configured, integrated into
the platform and begins being monitored with just a few steps.

Figure 6.1 shows the production deployment diagram of the platform’s agents and services across
the IFCA’s infrastructure. The diagram maps all containers from the architecture diagrams in
Chapter 4 to the respective datacenter resources and systems. The server-side components are
deployed on two physical machines in the datacenter.

6.1 Server Configuration Management

The platform configuration is managed using Puppet to ensure a consistent and automated
deployment of all necessary services. For the server side, two Puppet modules have been
defined: The first module is structured into five classes which configure Grafana, Prometheus,
Telegraf, SQLite and Mimir. These classes install the required software using system packages,
attach predefined configuration files, as described in the previous chapter, enable the services,
as all of them are being executed as systemd services and verify that they are running correctly.
Additionally, other files, such as dashboard templates and YAML files for filters, are also attached.
The secondmodule handles the deployment of the Home Assistant instance as a pre-built Docker
container, ensuring it is launched with the correct configuration attached and remains in a
running state. This structured approach guarantees a modular, scalable and reliable deployment
process, minimizing manual intervention while maintaining system consistency.

6.2 Agent Installation and Setup

Given the diversity in machine provisioning, two distinct deployment methods for agents and
the required software are necessary. The first applies to centrally managed physical and virtual
machines, including virtual instances (i.e., worker nodes) in the HPC and Grid Slurm queues, as
well as VMs hosting Software as a Service (SaaS) applications. For these, system administrators
handle deployment and configuration using Puppet. The second method concerns user-created
cloud virtual machines, where end users are responsible for deploying and configuring the agents
on their own machines, with a bash script provided to automate the setup.

6.2.1 Servers and Datacenter Services

6.2.1.1 Puppet Facts

In the Puppet context, the variables that define and categorize a host are called ‘facts’. These
provide crucial details about the system’s configuration and environment. Some facts are
predefined, such as the operating system version, whether the host is virtual or physical and
other system attributes [46]. These facts are essential in the deployment of the platform across
the infrastructure, as they help tailor the monitoring setup to each specific host.
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Figure 6.1: Monitoring Platform Production Diagram on IFCA’s Datacenter
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Three new boolean facts have been added to the Puppet server utilities to dynamically manage
the loading of different agents and their configurations, considering the machine characteristics:

• nvidia_gpu: This fact has True value if the machine has an NVIDIA GPU driver installed.
In this case, NVIDIA DCGM and the necessary collectd configuration will be installed on
the system for integration. It has value False in any other case and therefore, does not
perform any configuration.

• intel_rapl: This fact has value True if the machine has access to the path where the
RAPL energy meter registers are read. In this case, the plug-in to read these registers will
be enabled in collectd. As in the previous case, no action is taken in case of False value.

• qemu_installed: This fact has value True if the machine has qemu installed or False
otherwise. If the previous fact is also True, Scaphandre agent will be installed in the server
and its corresponding connector with collectd, in order to obtain the energy consumption
of the hosted VMs.

6.2.1.2 Puppet Modules

As shown in Figure 4.4, there are three main agents deployed on the machines. The rollout of
each is defined in its own dedicated Puppet module. The deployment and configuration of these
modules are determined by the values of the facts outlined earlier.

• Collectd Module: Responsible for installing and configuring the collectd agent, following
the configuration explained on section 5.1.1. Furthermore, if a machine is not virtual, it
enables power-monitoring plug-ins and also provides custom plug-ins code.

• NVIDIA DCGM Module: Installs the NVIDIA DCGM service on the host machine, copies the
Python bindings required for integrationwith the collectd agent, and enables the plug-in
accordingly. It also verifies that the service is running.

• Scaphandre Module: Responsible for installing the Scaphandre agent, creating a systemd
service to run it, adding the reader plug-in to the collectd agent configuration, and verifying
that the service is active.

Lastly, the OpenStack Exporter snap package is deployed within the existing Nova module.

6.2.2 IFCA Cloud Virtual Machines

The deployment of the multiple agents, which involves several steps and configuration files, is
automated through a bash script to ensure a seamless procedure for users. This script installs
and configures the software on both Red Hat-based and Debian-based systems. While running,
it retrieves the network configuration parameters to determine the VLAN, installs collectd
daemon and enables the selected set of plug-ins. The script activates NVIDIA GPU monitoring if
applicable. It also ensures required services are active and verifies the collectd service is running.
The script can be downloaded and executed directly using the command shown in listing 6.1.

Listing 6.1: Automatic agents deployment on IFCA Cloud VMs

root@IFCAcloudVM:~# curl -s -S -L https://gitlab.ifca.es/monitor/main/install.sh | bash

The access to the platform must be requested through a support ticket. The administrator
attached as a response the link and the requester has to provide as response the VLAN number
code issued by the script. Then a system administrator could provide access to Grafana to the
user and their machines, adding this username-VLAN mapping into relational SQLite database.



CHAPTER 7

Discussion and Conclusion

Finally, this last chapter presents the achievements obtained after carrying out this project, the
lessons learned during the execution of this work and the points of improvement and growth for
the future of the developed platform.

7.1 Achievements

This project has successfully developed a scalable, modular and extensible observability
platform for data processing centers, leveraging open-source tools to monitor resource usage,
power consumption and service availability. It features easy integration of new data sources
through a flexible framework, ensuring efficient data processing and metrics visualization. The
outdated monitoring stack was replaced, making the platform more intuitive, user-friendly,
performance and cost-effective. Moreover, efforts have focused on deploying the platform with
a minimal number of agents, ensuring easy interconnections and maximizing data collection
per agent. Network usage was optimized by reducing the number of connections, as telemetry
generates continuous network traffic.

Moreover, it should be noted that the implementation of this platform has enabled the
integration of monitoring capabilities for systems that were previously unsupported:

• Physical machines: In addition to usage metrics, the platform now tracks the energy
consumption of each individual node and their components, whichwas not possible before.

• Cloud virtual machines: The system now supports monitoring of both resource usage and
power consumption of virtual machines deployed in cloud environments.

• Schneider Electric sensors: Energy monitoring has been enhanced by fully integrating
Schneider Electric sensors, which were previously limited to reporting only current values.

• NVIDIA GPUs: Previously unavailable, GPUs observability has now been added, including
detailed metrics such as status, utilization, temperature, and power consumption.

• Network infrastructure: The platform monitors CPU usage, memory, and temperature of
the network switches, as well as the status and bandwidth of each of their interfaces.

• OpenStack: The state of OpenStack agents and services is now integrated into the
observability stack. While this information was already accessible via OpenStack’s native
interface, the unified platform offers a more intuitive view for system administrators.

The development of this work has led to internal enhancements of the existing monitoring
system, as well as external improvements to other systems through accurate monitoring and
the use of this information to support decision-making.

7.1.1 Performance Enhancements

As shown in Figures 7.1a and 7.1b, the new platform’s performance has improved considerably,
comparing it with the InfluxDB update alternative, in terms of disk usage and response time of
the dashboards. Both tests have been developed under equal conditions and in the same period
of time, so the amount of metrics and their properties are the same for both systems.
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Regarding Figure 7.1a, it shows the disk space occupied by the data stored in it, by means of both
backends, over the course of a month. The difference is overwhelming and there is not much
to comment on. This ensures that the platform is far more scalable in terms of disk capacity
availability to ensure that all the metrics collected can be stored for as long as required.

Subsequently, Figure 7.1b shows the response time, including data request and plots rendering,
of a set of dashboards that were developed for both backends, with the aim of carrying out
this benchmark. To perform the measurements, the Firefox Profiler is used, a tool available
within the browser’s web developer tools, with the cache option disabled. For dashboards with
a small data set and few charts, response times are not divergent in comparison. However, the
difference becomes noticeable in dashboards that display a large volume of metrics, such as
those showing multiple metrics for all machines in the datacenter. This is where Grafana Mimir
has the advantage. These results evidence that the platform has become significantly more
usable than before, as the time required for user interaction to use the platform has decreased.
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Figure 7.1: Backend Performance Comparison (InfluxDBv2 vs. Grafana Mimir)

7.1.2 Resource Placement Improvement

In addition to tracking the health of systems and services in real time, the platform provides
data that enables the analysis of usage patterns to optimize resource placement. By offering
both historical and real-time data, inefficiencies in resource allocation can be identified. A clear
example is the optimization of the distribution of virtual machines in the cloud infrastructure
among servers with graphics processing units. By analyzing their usage, something that was
not possible before, many virtual machines use a compute flavor that provides more graphics
processing unit than actually needed, based on their historical usage, which resulted in some
graphics processing unit allocated but being left underutilized.

This insight led to a refinement in resource provisioning to better align graphics processing
unit allocation with real demand. As a result, resource utilization improved, idle capacity
was reduced, and available hardware could be more effectively leveraged. These adjustments
contributed to lower energy consumption and enhanced scalability of the cloud infrastructure.

7.1.3 Monitoring Dataset

As a result of collecting high-resolution data across various relevant areas in the datacenter,
a dataset has been generated along with its corresponding data descriptor. This dataset is
currently being prepared for publication in DIGITAL.CSIC [47], the institutional repository of the
Spanish National Research Council.
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The dataset includes, on one hand, data collected over a period of 4 months from various usage
parameters of 130 physical machines, including CPU, memory, disk, and network usage, as
well as power usage measured at multiple levels. This energy consumption data includes the
readings reported by IPMI and the measurements obtained through the RAPL interface and the
Scaphandre agent, all with the highest possible granularity. A detailed hardware inventory by
model is also provided for the set of physical machines.

On the other hand, the dataset includes energy consumption data obtained via the Scaphandre
agent from 612 virtual machines running on the 130 servers. For each VM, additional information
is provided to establish associations, such as the hypervisor, flavor, user, project, and domain
within OpenStack. All identifying data have been anonymized to ensure data privacy.

The primary goal of this dataset is to provide data for an in-depth study of the relationship
between the underlying hardware configuration, resource usage, or flavor characteristics in the
case of VMs, and their resulting energy consumption, for both physical and virtual machines.
This will contribute to the analysis of energy efficiency in computing systems, helping optimize
energy consumption in datacenters and improve resource management in cloud infrastructures.

7.2 Future Work

7.2.1 Scale Up the Number of Monitored Services

Initially, the project focused on monitoring OpenStack, as it manages most of the trackable
computing resources. However, as expected, there are other key services at the IFCA’s datacenter,
including distributed storage systems like Ceph and IBM Spectrum Scale (formerly GPFS), as well
as the Slurm task queue manager for HPC and Grid jobs, that also need to be monitored leading
to ease their maintenance. Integrating these services into the platform is not too far-reaching,
involving the deployment of compatible Prometheus exporters with an API that each service
provides and connecting them to the Prometheus instance. Finally, relevant dashboards need to
be rolled out in Grafana to display the metrics in an accessible manner.

This process is already underway and demonstrates that the system is both scalable and
expandable with new modules, thus supporting once again that the objectives of the project
have been met.

7.2.2 Include New Related Data Sources for Completeness

An important future task involves incorporating additional data sources to enable real-time
estimation of the datacenter’s environmental impact, with granularity ranging from the whole
facility down to the virtual machine level. Building on existing energy consumption data, the
system could quantify the impact in terms of gCO2eq, standing for the emissions associated
with the generation of the electricity needed to operate the infrastructure. This functionality
would reinforce ongoing efforts aimed at improving energy efficiency and minimizing the
environmental footprint, while also enabling consistent reporting and dissemination of the
environmental impact of IFCA’s computing infrastructure.

7.2.3 Closing the Loop with Meta-Monitoring

Finally, it would be interesting to actively monitor the services deployed on the platform,
especially those that receive and manage the huge amount of metrics acquired. For example, it
would be convenient to monitor the data ingestion performed by Telegraf, the amount of data
series created in Prometheus or the disk usage by Grafana Mimir writes, from the platform itself.
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APPENDIX A

Datacenter Inventory

This appendix details the different types of equipment and assets involved in the monitoring of
the Institute of Physics of Cantabria’s datacenter. This includes both the physical IT infrastructure
of the facility, such as servers, network switches and electrical energy meters. Furthermore, since
the datacenter is mostly virtualized and part of the platform is focused on them, virtual machines
are also detailed as computing resources.

Additionally, this inventory serves as a checklist to organize, prove and verify whether the
monitored features match the system’s characteristics and to determine what monitoring agents
are required for each group of machines.

A.1 Compute Machines

This section provides a detailed overview of the machines available in the datacenter at the
Institute of Physics of Cantabria [1]. The infrastructure is organized and classified into distinct
services and groups. It encompasses both physical servers and virtual machines (VMs).

Table A.1: Machines available at IFCA’s datacenter under monitoring

Group # VM Server Model / NVIDIA GPU #CPU #GPU Memory Disk Infiniband

Service: HPC Compute (Altamira v2)

node 158 ✓ IBM System iDataPlex dx360 M4 2 0 64GB 500GB ✓

Service: HPC Management

login 2 ✓ IBM System x3550 M4 1 0 185GB 220GB ✓

ojancano 2 ✓ - - 0 4GB 90GB ✓

Service: HPC Worker Nodes

wncompute 55 ✓ - - 0 460GB 300GB ✓

wngpu 5 ✓ - - 2 122GB 300GB ✓

Service: Grid Compute

cmsfj 18 ✓ Fujitsu PRIMERGY BX924 S4 2 0 90GB 400GB ✓

cmsgiga 8 ✓ Lenovo ThinkSystem SR650 2 0 188GB 1.2TB ✓

cmsgpu 1 ✓ Supermircro SYS-420GP-TNR / A30 2 8 250GB 1TB ✓

cmsln 20 ✓ Lenovo ThinkSystem SD530 2 0 192GB 450GB ✓

Service: Grid Management

pool 10 ✓ - - 0 5GB 26GB ✓

... 11 ✓ - - 0 - - ✓

Service: Grid Worker Nodes

wngrid 33 ✓ - - 0 700GB 600GB ✓

wncmsgpu 1 ✓ - - 8 230GB 300GB ✓
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Table A.1: Machines available at IFCA’s datacenter under monitoring

Group # VM Server Model / NVIDIA GPU #CPU #GPU Memory Disk Infiniband

Service: Cloud Compute

aitken 2 ✓ IBM System x3850 X5 4 0 1TB 2.5TB ✓

fcloud 5 ✓ Lenovo ThinkSystem SR630 2 0 775GB 250GB ✓

gpumad 20 ✓ Lenovo ThinkSystem SR650 / V100 2 2 188G 2TB ✓

gpumax 10 ✓ Supermircro SYS-4028GP-TNR / T4 2 8 360GB 500GB ✓

mcloud 8 ✓ Dell Inc. PowerEdge C6420 2 0 192GB 4TB ✓

metcloud 40 ✓ Gigabyte H262-Z61-00 2 0 500GB 2TB ✓

scloud 65 ✓ Lenovo ThinkSystem SR630 V2 2 0 370GB 1TB ✓

Service: Cloud Management

openstack 15 ✓ - - 0 - - ✓

net 1 ✓ Lenovo System x3550 M5 1 0 24GB 400GB ✓

Service: Management

bacula 1 ✓ Lenovo System x3550 M5 1 0 61GB 450GB ✓

db 3 ✓ Fujitsu PRIMERGY RX2530 M4 1 0 14GB 200GB ✓

geoffrey 1 ✓ Lenovo ThinkSystem SR570 2 0 30GB 4TB ✓

grafana 1 ✓ Dell Inc. PowerEdge R730 1 0 62GB 50TB ✓

hutch 1 ✓ Lenovo ThinkSystem SR630 2 0 188GB 210GB ✓

monitor 1 ✓ IBM System x3650 M2 2 0 47GB 1.6TB ✓

repo 1 ✓ Lenovo ThinkServer TD350 1 0 16GB 77TB ✓

starsky 1 ✓ IBM System x3550 M4 1 0 16GB 490GB ✓

wngw 1 ✓ Dell Inc. PowerEdge R320 1 0 16GB 460GB ✓

virt 5 ✓ Fujitsu PRIMERGY RX200 S7 1 0 4GB 20GB ✓

zeus 7 ✓ Fujitsu PRIMERGY RX2530 M4 2 0 188GB 70GB ✓

... 12 ✓ - - 0 - - ✓

Service: Ceph Storage

cephiscsi 3 ✓ - - 0 2GB 16GB ✓

cephmon 3 ✓ - - 0 4GB 12GB ✓

cephosd 6 ✓ Supermicro SSG-6029-E1CR24L 2 0 60GB 400GB ✓

cephrgw 2 ✓ - - 0 4GB 16GB ✓

Service: GPFS Storage

dss 2 ✓ Lenovo ThinkSystem SR650 V2 2 0 500GB 500GB ✓

quorum-dss 1 ✓ - - 0 7GB 100GB ✓

Service: IFCA Local Services

... 13 ✓ - - 0 - - ✓

As of the date of completion of this work, 384 user virtual machines in the IFCA cloud remain to
be detailed, which could also be monitored through the platform if their owner wishes.
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A.2 Network Switches

This section details the Object Identifiers (OIDs) used for monitoring various parameters within
the datacenter’s network switches. It lists the OIDs for each monitored field, along with their
corresponding types, grouped by switch model. As some of them are common across switches,
they are shown in Table A.2.

Table A.2: Common MIBs: Summary of selected OIDs

Field Name: OID: Type:

Device Name RFC1213-MIB::sysName.0 Field

Device Model RFC1213-MIB::sysDescr.0 Field

Uptime DISMAN-EXPRESSION-MIB::sysUpTimeInstance Field

Num Interfaces IF-MIB::ifNumber.0 Field

Interfaces IF-MIB::ifTable and IF-MIB::ifXTable Table

Table A.3: IBM RackSwitch G8052 MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::enterprises.26543.2.7.7.3.1.1.2.1.2.1 Field

CPU Usage HOST-RESOURCES-MIB::hrProcessorLoad.1 Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-8] SNMPv2-SMI::enterprises.26543.100.100.14.[11-13,32-36].0 Field

Table A.4: FS S5850-48B8C-PE MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::enterprises.52642.1.43.1.1.1.2.0 Field

CPU Usage SNMPv2-SMI::enterprises.52642.1.1.9.1.0 Field

Table A.5: Extreme Networks ERS 4950GTS MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::mib-2.14.8.1.1.(IP Address).0.0 Field

Table A.6: ExtremeSwitching SLX 9540 MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::enterprises.1588.2.1.1.1.1.25.0 Field

CPU Usage [1-8] HOST-RESOURCES-MIB::hrProcessorLoad.1966[08-15] Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-8] SNMPv2-SMI::enterprises.1588.2.1.1.1.1.22.1.4.[1-8] Field

Table A.7: Mellanox MQM8700-HS2F MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP IP-MIB::ipAdEntAddr.(IP Address) Field

CPU Usage [1-4] HOST-RESOURCES-MIB::hrProcessorLoad.1966[08-11] Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-9] SNMPv2-SMI::mib-2.99.1.1.1.4.(200020011|200100011|200110011|

200110012|200400011|200410011|200450011|601240011|602240011)

Field
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Table A.8: Mellanox MSB7700-ES2F MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP IP-MIB::ipAdEntAddr.(IP Address) Field

CPU Usage [1-2] HOST-RESOURCES-MIB::hrProcessorLoad.1966[08-09] Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-8] SNMPv2-SMI::mib-2.99.1.1.1.4.(200020011|200100011|200110011

|200110012|200400011|200410011|200450011|601240011)

Field

Table A.9: Brocade BR-VDX6740 MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::enterprises.1588.2.1.1.1.1.25.0 Field

CPU Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.1.0 Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-4] SNMPv2-SMI::enterprises.1588.2.1.1.1.1.22.1.4.[1-4] Field

Table A.10: Brocade BR-VDX6740T-56-1G-F MIB: Summary of selected OIDs

Field Name: OID: Type:

Management IP SNMPv2-SMI::enterprises.1588.2.1.1.1.1.25.0 Field

CPU Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.1.0 Field

Memory Usage SNMPv2-SMI::enterprises.1588.2.1.1.1.26.6.0 Field

Temperature [1-3] SNMPv2-SMI::enterprises.1588.2.1.1.1.1.22.1.4.[1-3] Field

A.3 Electric Sensors

There are three types of sensors: PowerTag Rope 600A 3P/3P+N (A9MEM1591)1, in Figure A.1a,
PowerTag Flex 160A 3P/3P+N (A9MEM1580)2, in Figure A.1b and PowerTag Universal 3P+N
(A9MEM1570)3, in Figure A.1c. All of them are connected to a Schneider Acti9 PowerTag Link HD
wireless communication hub (A9XMWD100)4, shown in Figure A.1d, which offers an administration
web interface, to manage and configure all the sensors.

(a) PowerTag Rope 600A 3P/3P+N (b) PowerTag Flex 160A 3P/3P+N (c) PowerTag Universal 3P+N (d) Acti9 PowerTag Link

Figure A.1: Wireless Sensors and Communication Hub Device from Schneider Electric

Two out of the three sensors of the first type are used to measure the two unmaintained facility’s
main energy input lines. The third sensor, together with one sensor of the second type, is used
to monitor the two maintained facility’s main energy input lines. The remaining sensor of the
second type, along with the seventeen sensors of the third type, is distributed across various
assets, including cooling systems, fans, chillers, and high-power racks.

1PowerTag Rope 600A 3P/3P+N: https://www.se.com/es/es/product/A9MEM1591
2PowerTag Flex 160A 3P/3P+N: https://www.se.com/es/es/product/A9MEM1580/
3PowerTag Universal 3P+N: https://www.se.com/es/es/product/A9MEM1570/
4Acti9 PowerTag Link: https://www.se.com/es/es/product/A9XMWD100/

https://www.se.com/es/es/product/A9MEM1591
https://www.se.com/es/es/product/A9MEM1580/
https://www.se.com/es/es/product/A9MEM1570/
https://www.se.com/es/es/product/A9XMWD100/


APPENDIX B

User Stories

This appendix presents the user storiesmade in the requirements analysis process. They describe
in a detailed and understandable way all the user needs and the system capabilities or features
to be developed. In addition, the different acceptance criteria for the subsequent evaluation of
the project are specified, ensuring clear expectations and project alignment. For each user story,
the stakeholder requesting the specific feature is also clearly identified.

ID: US01

Name: Monitor operating system statistics of each machine.

Description: As a system administrator, I wish to track system indicators across
all machines, to ensure proper functioning and to quickly detect any
failures or anomalies.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Each machine must be uniquely identified by its hostname.

2. Monitor host status (UP/DOWN) and uptime to ensure availability and
reliability.

3. Track CPU usage, system load and process status for performance
monitoring.

4. Record memory usage in bytes and swap usage to ensure sufficient
memory resources on the host.

5. Monitor network activity, including interface usage (bytes
sent/received), bandwidth (in bits/sec) and port status to detect
any network issues. Also, track packet statistics (sent/received) and
errors by interface. Only real network interfaces must be considered.

6. Track disk usage and partitions in bytes and monitor inode usage to
ensure sufficient storage is available on each machine. Also, only
real disk partitions must be considered.

7. Number of logged-in users on each machine.

8. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

9. A filtering system must exist to categorize machines, allowing
filtering by group and service for IFCA computing machines and by
VLAN or project name for user virtual machines (VMs).

Comments: • It must be applicable to all types of machines, including physical,
VMs and user-owned cloud instances, ensuring broad coverage.

• Machines may run a variety of operating systems, specifically
distributions from the Debian family (Debian 11/12, Ubuntu 20/22)
and Red Hat (AlmaLinux 8/9).
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ID: US02

Name: Monitor the network switches performance and link status.

Description: As a network administrator, I need to continuously monitor the status
of all network switches to ensure reliability and quickly detect failures.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Each device must be identified by its name or management IP.

2. For each network device, it should display the number of available
interfaces, the device’s uptime, CPU and memory usage and its
temperature, as some of them are equippedwith optical transceivers.

3. For each network interface on the device, some identification data
must be provided: Interface name or alias and MAC Address.

4. For each network interface of the device, it might be useful to report
some link properties: Configured link speed and Interface type.

5. For each network interface of the device, the link status (UP/DOWN),
bandwidth (bits/s), aggregate link usage by hour, day, week and
month (bytes) and packet error rate should be reported.

6. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

Comments: • Network switches are from various manufacturers (See annex A.2)

ID: US03

Name: Monitor the utilization and power consumption of NVIDIA GPUs.

Description: As a system administrator, I wish to know how the GPUs installed in the
datacenter are actually being used, as well as their power consumption.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Some identification data must be collected to identify the device
clearly. Hostname of the host where is mounted and device UUID.

2. GPU utilization, device memory utilization and instant power usage
should be reported.

3. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

4. In addition, it could be relevant to track the GPU temperature, to
detect possible heat dissipation problems that lead to potential
failures of the device.

Comments: • NVIDIA GPUs models: See annex A.1. More models will be added.
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ID: US04

Name: Store historical data about the datacenter power distribution grid.

Description: As an infrastructure administrator, I want to be able to have a
historical evolution of the different electrical parameters obtained by
the Schneider Electric sensors.

Stakeholders: IFCA Computing Service & GreenDIGIT Project.

Acceptance criteria: 1. The data must be collected from a Schneider Acti9 PowerTag Link
HD wireless communication hub (A9XMWD100).

2. The integration and incorporation of a new sensor into the platform
should be automatic once it is linked to the existing sensor system.

3. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

Comments: • The installation and configuration of the sensors and hub is already
done and operational, so the metrics are now available in real time.

ID: US05

Name: Monitor the datacenter physical machines power consumption.

Description: As an infrastructure administrator, I would like to get and provide the
instant power usage in watts of each physical machine placed.

Stakeholders: IFCA Computing Service & GreenDIGIT Project.

Acceptance criteria: 1. Machine must be identified by its hostname.

2. The platform must provide instant power usage in watts for each
physical machine in the datacenter.

3. Measurements should be as close to real consumption as possible,
using accurate methods and available sensors.

4. Additional metrics, such as isolated GPU consumption, should also
be reported to provide more detailed insight into the machine’s
energy usage.

5. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

Comments: • Most servers have a Baseboard Management Controller (BMC) that
allows IPMI access for hardware monitoring, but some do not.



64 APPENDIX B. USER STORIES

ID: US06

Name: Monitor the AI4EOSC platform power consumption.

Description: As a platform developer, I am interested in getting the instant power
consumption (W) of the virtual machines where the platform is placed.

Stakeholders: IFCA Computing Service, GreenDIGIT Project & AI4EOSC Project.

Acceptance criteria: 1. VM must be uniquely identified using its instance name or by its
UUID given by the cloud resource manager: OpenStack.

2. Data must be collected at regular intervals with a period of at least
30 seconds and must be available for a minimum period of 3 years.

Comments: • The AI4EOSC platform is deployed in a cloud computing environment.

ID: US07

Name: Calculation of energy efficiency metrics.

Description: As an infrastructure administrator, I want to calculate energy efficiency
metrics, such as PUE and related indicators, at different scopes based
on energy consumption data gathered overall infrastructure.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Energy efficiency metrics must be computed automatically using
real-time and historical data from Schneider Electric sensors and
other power monitoring sources.

2. The system must support calculations at different scopes, including
overall datacenter efficiency and specific subsystems or equipment.

Comments: • The methodology for computing PUE and other metrics should align
with industry best practices to ensure accuracy and comparability.

ID: US08

Name: Visualize service metrics on dashboards.

Description: As a system administrator, I want to visualize metrics on interactive
dashboards so that I can easily monitor and analyze the performance
and health of services using various visual representations.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Dashboards should display service metrics through various visual
elements, such as line graphs, bar charts, histograms and counters.

2. Dashboards should update in real-time to reflect the latest metrics
collected from the monitored systems.

3. The data displayed must be customizable (e.g., time range, metric
filters) to meet specific monitoring needs on demand.
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ID: US09

Name: Monitor the OpenStack computing resources and main services.

Description: As a cloud administrator, I am interested in getting all the information
available from the cloud computing resources and the status of the
OpenStack services that manages them.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. To be able to see the current status of each of the OpenStack services.

2. Specifically for Keystone, identity service, I want to be able to
visualize information about the projects created and their status.
Additionally, it is interesting to show a counter of registered users.

3. For Nova, provisioner of compute instances (i.e. virtual machines),
there are different elements to monitor: The flavors and their
characteristics (CPUs, DRAMs, Disk and GPUs). The use of these
resources by each project. On the other hand, to show the status,
from the administrative point of view of the different VMs and finally
the status of the different hosts where they are deployed.

4. For Neutron, network service, monitor the different networks and
their characteristics, availability of public floating IPs, subnets and
the status of the different network agents on the host machines.

5. For Glance, the image service, I want to be able to monitor the size
of each image, as well as the overall size. In addition, it might be
useful to visualize their properties such as status, visibility, owner.

6. For Placement, cloud inventory and resource usage service, show
total usage of CPUs, Memory and Storage, as well as per host.

7. In addition, combined data from the different services can be
displayed, e.g. GPUs or floating IPs used per project.

8. Data must be collected at regular intervals with a period of at least
5 minutes and must be available for a minimum period of 3 years.

Comments: • More services are expected to be monitored in the future.

ID: US10

Name: Monitor the OpenStack agent’s status.

Description: As a cloud administrator, I would like to check the status of the multiple
OpenStack service agents distributed across the host machines.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. It is possible to see the current status of all agents (Nova and
Neutron) and the evolution of each of them over time.

2. Data must be collected at regular intervals with a period of at least
5 minutes and must be available for a minimum period of 3 years.

Comments: • More services agents are expected to be monitored in the future.
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ID: US11

Name: Platform access, user authentication and data visibility permissions.

Description: Access to the monitoring platform to visualize the data should be open
to all users with an account in the IFCA Computing Services.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. Access to the monitoring platform must be through an existing
Single Sign-On (SSO) authentication system using LDAP.

2. Data extracted from user virtual machines must be visible only to the
own user and the administrators of the computing service (External).

3. Data extracted from all the datacenter infrastructure must be visible
only to the system administrators of the computing service (Internal).

Comments: • There may be occasions when certain users need internal data. There
must be the possibility to give read-only permissions for certain data.

ID: US12

Name: Monitoring platform requirements and design constrains.

Description: The monitoring platform must meet specific software and deployment
requirements to ensure reliability, maintainability and full control
over the collected data. All software used for data collection,
processing, storage and visualization must adhere to open-source
licensing. Additionally, the platformmust be entirely self-hosted within
the IFCA’s infrastructure, avoiding dependencies on external services.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. All components of the monitoring system, including data collection
agents, storage backends and visualization tools, must be based on
open-source software with active community support and a track
record of reliability.

2. The entire platform must be deployed on premise within the IFCA’s
infrastructure, ensuring that no external services are required for
data storage, processing, or authentication.

3. 100% of the monitoring data must be stored within IFCA’s
infrastructure, with no external data storage or cloud dependencies.

4. Every deployed software component must generate logs to allow
verification of correct operation, debugging and security auditing.

5. The system must be designed to ensure maintainability, allowing
updates and patches without significant downtime or disruption to
the monitoring process.

Comments: • If a software component does not meet long-term reliability or
maintainability expectations, it should be possible to replace it with
an alternative open-source solution.
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ID: US13

Name: Automated deployment of the monitoring platform.

Description: As an infrastructure administrator, I want the deployment and
configuration of the monitoring platform to be automated to ensure
consistency, repeatability and ease of maintenance.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. The deployment of all infrastructure-related components of the
monitoring platformmust be automated using Puppet to the greatest
extent possible.

2. Puppet must handle the installation, configuration and management
of services, ensuring that all nodes maintain a consistent state over
time.

3. For areas where Puppet cannot be applied, such as user-managed
virtual machines (VMs), alternative automation mechanisms (e.g.,
shell scripts) must be available.

4. The automation process must be documented and include clear
instructions for execution, troubleshooting and updates.

5. Any configuration changes must be version-controlled, allowing
rollback and auditability of modifications.

Comments: • The automation system should support scalability, allowing new
machines to be integrated with minimal manual intervention.

• Regular validation should be carried out to ensure that automated
deployments remain functional and up to date.

ID: US14

Name: Extensible monitoring for additional services.

Description: As a system administrator, I need the platform to be extensible so that
we can monitor other general services and local machine services in the
future to ensure comprehensive system oversight.

Stakeholders: IFCA Computing Service.

Acceptance criteria: 1. The platform must be designed to allow the addition of new
monitoring capabilities for external already deployed services, such
as Slurm task scheduler, or storage systems such as GPFS or Ceph.

2. The platform should support monitoring of local machine services,
such as proxies (NGINX, Apache) or databases (MySQL, PostgreSQL).

3. It must be possible to add and configure monitoring of additional
services without requiring major code changes, ensuring easy
scalability.

4. Monitoring data for all added services must be integrated with the
existing system monitoring and presented in a unified interface.
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APPENDIX C

Dashboards

This appendix shows the dashboards developed in Grafana to display the data collected by the
monitoring platform. The different dashboards have been designed to show in a clear and fast
way the different metrics collected, in multiple levels of detail and volume of information.
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node25 98%

node26

node26 99%

node27

node27 100%

node28

node28 100%

node30

node30 100%

node33

node33 99%

node34

node34 0%

node35

node35 99%

node36

node36 100%

node37

node37 97%

node38

node38 98%

node39

node39 100%

node40

node40 100%

node41

node41 100%

node42

node42 100%

node43

node43 1%

node44

node44 0%

node45

node45 1%

node47

node47 20%

node48

node48 20%

node49

node49 8%

node51

node51 26%

node53

node53 16%

node54

node54 8%

node55

node55 25%

node56

node56 21%

node57

node57 22%

node58

node58 26%

node59

node59 8%

node60

node60 99%

node61

node61 99%

node62

node62 100%

node63

node63 99%

node64

node64 100%

node65

node65 100%

node66

node66 100%

node67

node67 100%

node68

node68 50%

node69

node69 13%

node70

node70 6%

node71

node71 7%

node72

node72 99%

node73

node73 100%

node74

node74 100%

node75

node75 98%

node76

node76 99%

node77

node77 99%

node78

node78 99%

node79

node79 100%

node80

node80 100%

node81

node81 98%

node82

node82 50%

node84

node84 50%

node85

node85 6%

node86

node86 100%

node87

node87 6%

node88

node88 100%

node89

node89 100%

node90

node90 6%

node92

node92 100%

node93

node93 6%

node94

node94 100%

node95

node95 100%

node97

node97 7%

node99

node99 100%

node100

node100 6%

node101

node101 100%

node103

node103 100%

node104

node104 6%

node105

node105 6%

node107

node107 100%

node108

node108 100%

node109

node109 6%

node110

node110 6%

node111

node111 100%

node112

node112 6%

node113

node113 100%

node114

node114 100%

node115

node115 6%

node116

node116 100%

node119

node119 6%

node121

node121 6%

node123

node123 100%

node124

node124 0%

node125

node125 6%

node127

node127 100%

node129

node129 0%

node131

node131 6%

node132

node132 6%

node135

node135 6%

node136

node136 100%

node137

node137 6%

node138

node138 100%

node139

node139 6%

node140

node140 100%

node141

node141 6%

node142

node142 100%

node143

node143 6%

node144

node144 100%

node145

node145 100%

node146

node146 100%

node147

node147 56%

node148

node148 100%

node150

node150 6%

node154

node154 100%

node155

node155 6%

node156

node156 100%

node157

node157 6%

node158

node158 81%

HPC Management

ojancano01

ojancano01 5%

ojancano02

ojancano02 1%

HPC WNs

wncomp…

wncompute009 27%

wncomp…

wncompute010 15%

wncomp…

wncompute011 92%

wncomp…

wncompute012 100%

wncomp…

wncompute013 92%

wncomp…

wncompute014 25%

wncomp…

wncompute015 90%

wncomp…

wncompute016 100%

wncomp…

wncompute017 100%

wncomp…

wncompute018 100%

wncomp…

wncompute019 50%

wncomp…

wncompute020 15%

wncomp…

wncompute021 5%

wncomp…

wncompute022 6%

wncomp…

wncompute023 3%

wncomp…

wncompute024 0%

wncomp…

wncompute025 0%

wncomp…

wncompute026 0%

wncomp…

wncompute027 0%

wncomp…

wncompute029 0%

wncomp…

wncompute051 0%

wncomp…

wncompute052 50%

wncomp…

wncompute053 50%

wncomp…

wncompute054 50%

wncomp…

wncompute055 50%

wncomp…

wncompute056 50%

wncomp…

wncompute057 50%

wncomp…

wncompute058 50%

wncomp…

wncompute059 50%

wncomp…

wncompute060 50%

wncomp…

wncompute061 50%

wncomp…

wncompute062 50%

wncomp…

wncompute063 50%

wncomp…

wncompute064 50%

wncomp…

wncompute065 50%

wncomp…

wncompute066 50%

wncomp…

wncompute067 50%

wncomp…

wncompute068 50%

wncomp…

wncompute069 50%

wncomp…

wncompute070 50%

wncomp…

wncompute071 50%

wncomp…

wncompute072 50%

wncomp…

wncompute073 50%

wncomp…

wncompute074 50%

wncomp…

wncompute075 50%

wncomp…

wncompute076 50%

wncomp…

wncompute077 50%

wncomp…

wncompute078 0%

wncomp…

wncompute079 1%

wncomp…

wncompute080 0%

wngpu001

wngpu001 0%

wngpu002

wngpu002 0%

wngpu003

wngpu003 0%

wngpu004

wngpu004 0%

wngpu005

wngpu005 0%

Grid Compute

cmsfj01

cmsfj01 1%

cmsfj03

cmsfj03 0%

cmsfj04

cmsfj04 35%

cmsfj05

cmsfj05 26%

cmsfj08

cmsfj08 2%

cmsfj09

cmsfj09 39%

cmsfj12

cmsfj12 47%

cmsfj13

cmsfj13 1%

cmsfj14

cmsfj14 43%

cmsfj16

cmsfj16 1%

cmsfj17

cmsfj17 1%

cmsgiga01

cmsgiga01 0%

cmsgiga02

cmsgiga02 0%

cmsgiga03

cmsgiga03 0%

cmsgiga04

cmsgiga04 0%

cmsgiga05

cmsgiga05 1%

cmsgiga06

cmsgiga06 0%

cmsgiga07

cmsgiga07 0%

cmsgiga08

cmsgiga08 0%

cmsgpu01

cmsgpu01 0%

cmsln01

cmsln01 45%

cmsln02

cmsln02 54%

cmsln03

cmsln03 68%

cmsln04

cmsln04 0%

cmsln05

cmsln05 44%

cmsln06

cmsln06 1%

cmsln07

cmsln07 0%

cmsln08

cmsln08 62%

cmsln09

cmsln09 46%

cmsln10

cmsln10 1%

cmsln11

cmsln11 0%

cmsln13

cmsln13 0%

cmsln14

cmsln14 0%

cmsln15

cmsln15 0%

cmsln16

cmsln16 64%

cmsln17

cmsln17 47%

cmsln18

cmsln18 53%

cmsln19

cmsln19 0%

cmsln20

cmsln20 38%

Grid Management

amargus01

amargus01 58%

amargus…

amargus02 24%

arcce01

arcce01 28%

arcce02

arcce02 16%

gridii01

gridii01 2%

gridiis01

gridiis01 0%

pool01

pool01 1%

pool02

pool02 2%

pool03

pool03 2%

pool04

pool04 1%

pool05

pool05 2%

pool06

pool06 2%

pool07

pool07 2%

pool08

pool08 23%

pool10

pool10 2%

rargus

rargus 4%

squid01

squid01 1%

squid02

squid02 2%

srmbe01

srmbe01 1%

srmbe02

srmbe02 1%

003 004 d005 d007 008 009 d017 d018 d019 d020

d021 d022 d023 d025 026 d027 029 d031 d032 d033

034 035 036 d037 038 039 040

itken en02 ud01 ud03 ud04 ud05 ad01 ad02 ad03 ad04 ad05

ad06 ad07 ad08 ad10 ad11 ad12 ad13 ad14 ad15 ad16 ad17

ad18 ad19 ad20 ax11 ax12 ax13 ax14 ax15 ax16 ax17

ax20 ud01 ud02 ud03 ud04 ud05 ud06 ud07 ud08 loud

Developed by Advanced Computing and e-Science Group

With Collectd, NVIDIA DCGM, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.1: Dashboards > Compute > Machines L1
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Home Dashboards IFCA Monitoring Internal Compute Machines Machines - L2 Add Share 5s

Search or jump to... ctrl+k

service groupdss-storage All

Nº Machines

3

CPU Usage (a…

1.31%

Nº GPUs

0

GPU Usage (a…

0

Network RX

12.6 Mb/s

Network TX

1.22 Gb/s

Free Memory

259 GiB

Used Memory

670 GiB

Free Disk

1.03 TiB

Used Disk

44.2 GiB

Uptime (avg)

1.38 years

Users (total)

0

dss01

Status

dss01

UP

CPU Usage (%�

dss01 1.25%

Network Traffic

dss01 � RX

3.87 Mb/s

dss01 � TX

622 Mb/s

Free Memory

dss01

133 GiB

Used Memory

dss01

334 GiB

Free Disk

dss01

495 GiB

Used Disk

dss01

11.9 GiB

Uptime

dss01

1.53 years

Logged In Us…

dss01

0

dss02

Status

dss02

UP

CPU Usage (%�

dss02 1.23%

Network Traffic

dss02 � RX

4.38 Mb/s

dss02 � TX

603 Mb/s

Free Memory

dss02

126 GiB

Used Memory

dss02

331 GiB

Free Disk

dss02

495 GiB

Used Disk

dss02

12.0 GiB

Uptime

dss02

1.53 years

Logged In Us…

dss02

0

quorum-dss

Status

quorum-dss

UP

CPU Usage (%�

quorum-dss 1.45%

Network Traffic

quorum-dss - RX

4.34 Mb/s

quorum-dss - TX

466 kb/s

Free Memory

quorum-dss

624 MiB

Used Memory

quorum-dss

5.15 GiB

Free Disk

quorum-dss

69.8 GiB

Used Disk

quorum-dss

20.3 GiB

Uptime

quorum-dss

1.07 years

Logged In Us…

quorum-dss

0

All Machines

Network Traffic

RX

12.6 Mb/s

TX

1.22 Gb/s

Network Traffic

Name Last * Min Max Mean

dss01 � RX 3.87 Mb/s 2.04 Mb/s 2.48 Gb/s 265 Mb/s

dss01 � TX �622 Mb/s �12.1 Gb/s �122 Mb/s �3.38 Gb/s

dss02 � RX 4.38 Mb/s 2.57 Mb/s 2.53 Gb/s 261 Mb/s

dss02 � TX �603 Mb/s �9.12 Gb/s �121 Mb/s �3.25 Gb/s

quorum-dss - RX 4.34 Mb/s 1.63 Mb/s 193 Mb/s 8.52 Mb/s

quorum-dss - TX �466 kb/s �71.9 Mb/s �105 kb/s �519 kb/s

Network Utilization (Hourly) Last 24 hours

Name Last * Min Max Mean

dss01 � RX 15.8 GB 7.77 GB 301 GB 121 GB

dss02 � RX 7.74 GB 6.73 GB 297 GB 119 GB

quorum-dss - RX 4.23 GB 3.00 GB 8.08 GB 3.97 GB

dss01 � TX 376 GB 138 GB 3.37 TB 1.45 TB

dss02 � TX 382 GB 138 GB 3.41 TB 1.46 TB

Network Utilization (Daily) Last 1 week

Name Last * Min Max Mean

dss01 � RX 2.94 TB 122 GB 3.86 TB 1.93 TB

dss02 � RX 2.86 TB 777 GB 3.96 TB 2.25 TB

quorum-dss - RX 778 GB 56.5 GB 778 GB 324 GB

dss01 � TX 31.1 TB 2.59 TB 31.1 TB 14.8 TB

dss02 � TX 31.4 TB 2.62 TB 31.4 TB 14.9 TB

Network Utilization (Weekly) Last 30 days

Name Last * Min Max Mean

dss01 � RX 3.45 TB 3.16 TB 32.8 TB 13.2 TB

dss02 � RX 6.13 TB 4.01 TB 33.6 TB 14.4 TB

quorum-dss - RX 1.88 TB 1.05 TB 1.92 TB 1.68 TB

dss01 � TX 86.5 TB 86.5 TB 145 TB 113 TB

dss02 � TX 87.2 TB 87.2 TB 144 TB 113 TB

Network Utilization (Monthly) Last 360 days

Name Last * Min Max Mean

dss01 � RX 58.6 TB 58.6 TB 58.6 TB 58.6 TB

dss02 � RX 63.7 TB 63.7 TB 63.7 TB 63.7 TB

quorum-dss - RX 7.58 TB 7.58 TB 7.58 TB 7.58 TB

dss01 � TX 500 TB 500 TB 500 TB 500 TB

dss02 � TX 500 TB 500 TB 500 TB 500 TB

Load Average

dss01 dss02 quorum-dss

Memory Used

dss01 dss02 quorum-dss

Disk Used

dss01 dss02 quorum-dss

Inodes Used

dss01 dss02 quorum-dss

GPU Utilization

Developed by Advanced Computing and e-Science Group

With Collectd, NVIDIA DCGM, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.2: Dashboards > Compute > Machines L2
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Home Dashboards IFCA Monitoring Internal Compute Machines Machines - L3 Add Share 30s

Search or jump to... ctrl+k

service group hostcloud-compute gpumad gpumad10

CPU

Status

gpumad10

UP

CPU Usage (%�

gpumad10 1.07%

Uptime

gpumad10

49.9 weeks

Processes State

blocked paging running sleeping stopped zombies

0 0 0 427
0.708%

0 0

CPU Usage

Name Last * Min Max Mean

nice 0 0 0.420 0.00185

softirq 0.0481 0.0196 0.129 0.0491

system 0.253 0.189 0.791 0.301

user 0.688 0.443 1.48 0.683

wait 0.0782 0.00334 0.433 0.0573

Load Average

Name Last * Min Max Mean

short 1.14 0.190 2.93 0.862

medium 1 0.480 1.86 0.863

long 0.930 0.590 1.26 0.860

Processes State

Name Last * Min Max Mean

blocked 0 0 1 0.0291

running 0 0 1 0.0721

sleeping 427 422 427 424

Memory

Free Memory

gpumad10

967 MiB
�13.6%

Used Memory

gpumad10

151 GiB
0.417%

Free Swap

gpumad10

4.01 GiB
�0.0972%

Used Swap

gpumad10

645 MiB
0.77%

In Swap I/O

gpumad10

38.8 KiB
0.853%

Out Swap I/O

gpumad10

233 KiB
0.601%

Memory

Name Last * Min Max Mean

used 151 GiB 149 GiB 151 GiB 150 GiB

Memory Distrubution

Name Last * Min Max Mean

buffered 29.3 GiB 29.2 GiB 29.9 GiB 29.6 GiB

cached 2.85 GiB 2.77 GiB 3.14 GiB 2.93 GiB

free 1.03 GiB 709 MiB 1.74 GiB 1.14 GiB

slab_recl 1.44 GiB 1.42 GiB 1.48 GiB 1.44 GiB

Swap

Name Last * Min Max Mean

cached 13.8 MiB 13.6 MiB 14.7 MiB 14.0 MiB

free 4.01 GiB 4.01 GiB 4.02 GiB 4.02 GiB

used 645 MiB 640 MiB 645 MiB 642 MiB

Swap I/O

Name Last * Min Max Mean

in 38.8 KiB 38.5 KiB 38.8 KiB 38.6 KiB

out 233 KiB 231 KiB 233 KiB 232 KiB

Network

Packets Stats

eth0 � RX eth1 � RX ib0 � RX ib10 � RX ib1 � RX ib2 � RX ib3 � RX ib4 � RX ib5 � RX ib6 � RX ib7 � RX ib8 � RX ib9 � RX

eth0 � TX eth1 � TX ib0 � TX ib10 � TX ib1 � TX ib2 � TX ib3 � TX ib4 � TX ib5 � TX ib6 � TX ib7 � TX ib8 � TX ib9 � TX

107 Bil
0.235%

35.9 Bil
0.134%

0 0 0 0 0 0 0 0 0 0 0

99.5 Bil
0.243%

365 Mil
0.0954%

0 0 0 0 0 0 0 0 0 0 0

Network Errors

eth0 � RX eth1 � RX ib0 � RX ib10 � RX ib1 � RX ib2 � RX ib3 � RX ib4 � RX ib5 � RX ib6 � RX ib7 � RX ib8 � RX ib9 � RX

eth0 � TX eth1 � TX ib0 � TX ib10 � TX ib1 � TX ib2 � TX ib3 � TX ib4 � TX ib5 � TX ib6 � TX ib7 � TX ib8 � TX ib9 � TX

2.25 K
00%

537
0.187%

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Network Drops

eth0 � RX eth1 � RX ib0 � RX ib10 � RX ib1 � RX ib2 � RX ib3 � RX ib4 � RX ib5 � RX ib6 � RX ib7 � RX ib8 � RX ib9 � RX

eth0 � TX eth1 � TX ib0 � TX ib10 � TX ib1 � TX ib2 � TX ib3 � TX ib4 � TX ib5 � TX ib6 � TX ib7 � TX ib8 � TX ib9 � TX

0 2.22 Mil
0.358%

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Network Traffic

15.9 Mb/s 11.2 Mb/s

Network Traffic

Name Last * Min Max Mean

RX � eth0 16.7 Mb/s 9.44 Mb/s 215 Mb/s 15.9 Mb/s

Developed by Advanced Computing and e-Science Group

With Collectd, NVIDIA DCGM, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.3: Dashboards > Compute > Machines L3
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Home Dashboards IFCA Monitoring Internal Compute Machines NVIDIA GPUs - L1 Add Share 30s

Search or jump to... ctrl+k

service group hostAll All All

General GPUs Statistics

Nº of GPUs Available

10

Nº of GPUs Used

6

Average GPU Utilization

50.6%

Total GPU Memory Free

192 GB

Total GPU Memory Used

133 GB

Average GPU Temperature

57.7 °C

Total Power Usage

1.20 kW

Total Energy - Since boot

1.01 MWh

GPUs Utilization (%�

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu002 � GPU1 0% 0% 0% 0%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu004 � GPU1 100% 89% 100% 99.3%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu004 � GPU0 100% 6% 100% 97.5%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu003 � GPU1 0% 0% 100% 49.3%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu005 � GPU1 100% 83% 100% 98.9%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu003 � GPU0 0% 0% 100% 48.5%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu005 � GPU0 100% 0% 100% 97.1%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu001 � GPU1 0% 0% 0% 0%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu001 � GPU0 100% 0% 100% 66.2%

GPUs Utilization (%�

Name Last * Min Max Mean

wngpu002 � GPU0 6% 0% 100% 54.5%

GPUs Power Usage (W�

Power Usage (W�

Name Last * Min Max Mean

wngpu002 � GPU1 26.8 W 26.6 W 27.1 W 26.9 W

Power Usage (W�

Name Last * Min Max Mean

wngpu004 � GPU1 220 W 52.3 W 274 W 204 W

Power Usage (W�

Name Last * Min Max Mean

wngpu004 � GPU0 214 W 137 W 279 W 215 W

Power Usage (W�

Name Last * Min Max Mean

wngpu003 � GPU1 26.2 W 26.2 W 46.7 W 31.4 W

Power Usage (W�

Name Last * Min Max Mean

wngpu005 � GPU1 246 W 26.5 W 297 W 144 W

Power Usage (W�

Name Last * Min Max Mean

wngpu003 � GPU0 30.7 W 30.4 W 145 W 60.5 W

Power Usage (W�

Name Last * Min Max Mean

wngpu005 � GPU0 195 W 24.1 W 304 W 149 W

Power Usage (W�

Name Last * Min Max Mean

wngpu001 � GPU1 24.3 W 23.9 W 24.8 W 24.4 W

Power Usage (W�

Name Last * Min Max Mean

wngpu001 � GPU0 159 W 36.9 W 185 W 116 W

Power Usage (W�

Name Last * Min Max Mean

wngpu002 � GPU0 60.8 W 44.0 W 208 W 127 W

Developed by Advanced Computing and e-Science Group

With Collectd, NVIDIA DCGM, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.4: Dashboards > Compute > NVIDIA GPUs L1
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Home Dashboards IFCA Monitoring Internal Compute Machines NVIDIA GPUs - L2 Add Share

Search or jump to... ctrl+k

Service Group Host GPU GPU UUIDhpc-wns wngpu wngpu003 0 All

Service

hpc-wns

Group

wngpu

Hostname

wngpu003

# GPU

0

GPU UUID

GPU-b379c0d5�972f-7b72�7c4e-62069e3fea65

Utilization Statistics

GPU Utilization %

100%

GPU Utilization %

Name Min Max Mean

wngpu003 � GPU0 0% 100% 62.9%

Memory BW Utilizati…

6%

Memory Bandwidth Utilization %

Name Min Max Mean

wngpu003 � GPU0 0% 26% 3.41%

Power Usage (W�

51.426 W

Power Usage (W�

Name Min Max Mean

wngpu003 � GPU0 28.9 W 217 W 49.6 W

Memory Utilization %

40.5%

Memory Utilization %

Name Min Max Mean

wngpu003 � GPU0 (used/total) 0% 40.5% 25.5%

GPU Power Limit

250 W

Total Energy (Wh)

68.402 kWh

Total Energy (Wh) - Since boot

Name Min Max Mean

wngpu003 � GPU0 65.5 kW 68.4 kW 66.7 kW

Memory Used

13.3 GB

Memory Used

Name Min Max Mean

wngpu003 � GPU0 0 MB 13.3 GB 8.36 GB

GPU Total Memory

32.8 GB

Temperature

Temperature

48 °C

Temperature

Name Last * Min Max Mean

wngpu003 � GPU0 48 °C 36 °C 48 °C 43.2 °C

Memory Temperature

46 °C

Memory Temperature

Name Min Max Mean

wngpu003 � GPU0 33 °C 50 °C 41.2 °C

GPU Maximum Operating Tempe…

83 °C

GPU Slowdown Temperature

87 °C

GPU Shutdown Temperature

90 °C

Memory Maximum Operating Temperature

85 °C

rafana

Developed by Advanced Computing and e-Science Group

With Collectd, NVIDIA DCGM, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.5: Dashboards > Compute > NVIDIA GPUs L2



74 APPENDIX C. DASHBOARDS

Home Dashboards IFCA Monitoring Internal Network Network Devices Add Share 30s

Search or jump to... ctrl+k

device interfaceSLX�9540�IFCA Ethernet 0/52

Device

Name

SLX�9540�IFCA

Model Info

Extreme BR�SLX9540 Router, SLX Operating System
Version 20.3.2h.

Nº Interfaces + VLANs

66

Uptime

28.6 weeks

Hostname

Not available yet

Management IP

192.168.20.21

CPU Usage

Name Min Max Mean

SLX�9540�IFCA � CPU1 13% 22% 15.7%

SLX�9540�IFCA � CPU2 5% 14% 6.83%

SLX�9540�IFCA � CPU3 13% 22% 15.3%

SLX�9540�IFCA � CPU4 5% 16% 7.67%

SLX�9540�IFCA � CPU5 14% 22% 15.3%

Memory Usage

Name Min Max Mean

SLX�9540�IFCA 14% 14% 14%

Temperature

Name Min Max Mean

SLX�9540�IFCA � Temp Sensor 1 49 °C 52 °C 50.7 °C

SLX�9540�IFCA � Temp Sensor 2 45 °C 48 °C 46.7 °C

SLX�9540�IFCA � Temp Sensor 3 42 °C 45 °C 43.8 °C

SLX�9540�IFCA � Temp Sensor 4 55 °C 59 °C 57.5 °C

SLX�9540�IFCA � Temp Sensor 5 48 °C 51 °C 49.9 °C

Interface Status

Interface Name

Ethernet 0/52

Interface Alias

ENLACE�RED_IRIS�TELMAD

Link Speed

100 Gb/s

Type

Ethernet CSMACD

MTU

9216

MAC Address

00�04�96:bc:0f:4a

Admin Status

UP

Admin Status

Operational S…

UP

Operational Status

Connected

TRUE

Connector Present

Interface Bandwidth

Bandwidth

Name Min Max Mean

SLX�9540�IFCA�Ethernet 0/52�IN 19.4 Mb/s 2.62 Gb/s 211 Mb/s

SLX�9540�IFCA�Ethernet 0/52�OUT �1.97 Gb/s �11.6 Mb/s �363 Mb/s

Current Bandwidth

IN

211 Mb/s

OUT

58.2 Mb/s

Histogram - Bandwidth IN

SLX�9540�IFCA�Ethernet 0/52�IN

Histogram - Bandwidth OUT

SLX�9540�IFCA�Ethernet 0/52�OUT

Network Utilization (Hourly) Last 24 hours Network Utilization (Daily) Last 1 week Network Utilization (Weekly) Last 30 days Network Utilization (Monthly) Last 360 days

Developed by Advanced Computing and e-Science Group

With SNMP, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.6: Dashboards > Network > Network Devices
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Home Dashboards IFCA Monitoring Internal Energy & Environment CPD Machines Power Consumption (Detailed) - L1 Add Share

Search or jump to... ctrl+k

service group hostAll All All

All Host (Instant Values)

Nº Machines

Count 215

Power Consumption

Max 74.568 kW

Nº Measures

IPMI RAPL198 161

Power Consumption by Measure

IPMI RAPL72.989 kW 29.328 kW

aitken

IPMI 520 W

aitken02

IPMI 500 W

bacula

IPMI 110 W

cephosd11

IPMI RAPL525 W 89.9 W

cephosd12

IPMI RAPL475 W 84.7 W

cephosd13

IPMI RAPL415 W 46.7 W

cephosd21

IPMI RAPL350 W 114 W

cephosd22

IPMI RAPL360 W 110 W

cephosd23

IPMI RAPL355 W 117 W

cmsfj01

IPMI RAPL244 W 168 W

cmsfj03

IPMI RAPL68 W 42.6 W

cmsfj04

IPMI RAPL232 W 176 W

cmsfj05

IPMI RAPL184 W 143 W

cmsfj08

IPMI RAPL124 W 73.5 W

cmsfj09

IPMI RAPL284 W 206 W

cmsfj12

IPMI RAPL72 W 44.2 W

cmsfj13

IPMI RAPL72 W 44.6 W

cmsfj14

IPMI RAPL308 W 223 W

cmsfj16

IPMI RAPL96 W 41.1 W

cmsfj17

IPMI RAPL88 W 51.6 W

cmsgiga01

IPMI 430 W

cmsgiga02

IPMI 422 W

cmsgiga03

IPMI 434 W

cmsgiga04

IPMI 428 W

cmsgiga05

IPMI 260 W

cmsgiga06

IPMI 256 W

cmsgiga07

IPMI 260 W

cmsgiga08

IPMI 260 W

cmsgpu01

IPMI RAPL872 W 129 W

cmsln01

IPMI RAPL90 W 57.9 W

cmsln02

IPMI RAPL370 W 315 W

cmsln03

IPMI RAPL90 W 67.7 W

cmsln04

IPMI RAPL60 W 33.5 W

cmsln05

IPMI RAPL340 W 306 W

cmsln06

IPMI RAPL80 W 57.3 W

cmsln07

IPMI RAPL60 W 34.0 W

cmsln08

IPMI RAPL360 W 291 W

cmsln09

IPMI RAPL370 W 314 W

cmsln10

IPMI RAPL80 W 57.0 W

cmsln11

IPMI RAPL370 W 316 W

cmsln13

IPMI RAPL60 W 34.1 W

cmsln14

IPMI RAPL60 W 33.6 W

cmsln15

IPMI RAPL60 W 34.8 W

cmsln16

IPMI RAPL90 W 62.3 W

cmsln17

IPMI RAPL370 W 314 W

cmsln18

IPMI RAPL370 W 314 W

cmsln19

IPMI RAPL60 W 33.5 W

cmsln20

IPMI RAPL370 W 316 W

db01

IPMI RAPL102 W 46.3 W

db02

IPMI RAPL102 W 49.8 W

db03

IPMI RAPL102 W 43.0 W

dss01

RAPL 280 W

dss02

RAPL 287 W

fcloud01

IPMI RAPL90 W 33.6 W

fcloud02

IPMI RAPL120 W 59.3 W

fcloud03

RAPL 53.3 W

fcloud04

IPMI RAPL95 W 38.7 W

fcloud05

IPMI RAPL85 W 33.3 W

geoffrey

IPMI 125 W

gpumad01

RAPL 83.6 W

gpumad02

IPMI RAPL285 W 69.2 W

gpumad03

RAPL 68.2 W

gpumad04

IPMI RAPL265 W 59.5 W

gpumad05

IPMI RAPL285 W 66.2 W

gpumad06

IPMI RAPL280 W 107 W

gpumad07

IPMI RAPL260 W 66.7 W

gpumad08

IPMI RAPL265 W 71.4 W

gpumad09

IPMI RAPL275 W 70.3 W

gpumad10

IPMI RAPL280 W 74.0 W

gpumad11

IPMI RAPL260 W 66.4 W

gpumad12

IPMI RAPL265 W 65.8 W

gpumad13

IPMI RAPL285 W 70.2 W

gpumad14

IPMI RAPL260 W 66.6 W

gpumad15

IPMI RAPL260 W 63.1 W

gpumad16

IPMI RAPL260 W 62.4 W

gpumad17

IPMI RAPL290 W 64.1 W

gpumad18

IPMI RAPL260 W 66.1 W

gpumad19

IPMI RAPL215 W 63.3 W

gpumad20

IPMI RAPL220 W 66.2 W

gpumax01

RAPL 29.8 W

gpumax11

RAPL 111 W

gpumax12

RAPL 67.3 W

gpumax13

RAPL 71.4 W

gpumax14

RAPL 71.5 W

gpumax15

RAPL 61.4 W

gpumax16

RAPL 70.8 W

gpumax17

RAPL 74.3 W

gpumax18

RAPL 63.9 W

gpumax19

RAPL 70.4 W

gpumax20

RAPL 74.1 W

grafana

IPMI RAPL112 W 35.4 W

hutch

IPMI RAPL110 W 31.8 W

mcloud01

IPMI RAPL98 W 57.8 W

mcloud02

IPMI RAPL98 W 59.2 W

mcloud03

IPMI RAPL98 W 52.3 W

mcloud04

IPMI RAPL168 W 112 W

mcloud05

IPMI RAPL98 W 58.6 W

mcloud06

IPMI RAPL98 W 63.0 W

mcloud07

IPMI RAPL84 W 49.2 W

mcloud08

IPMI RAPL98 W 51.9 W

metcloud01

IPMI 576 W

metcloud02

IPMI 568 W

metcloud03

IPMI 574 W

metcloud04

IPMI 566 W

metcloud05

IPMI 576 W

metcloud06

IPMI 562 W

metcloud07

IPMI 562 W

metcloud08

IPMI 566 W

metcloud09

IPMI 592 W

metcloud10

IPMI 592 W

metcloud11

IPMI 590 W

metcloud12

IPMI 584 W

metcloud13

IPMI 364 W

metcloud14

IPMI 368 W

metcloud15

IPMI 372 W

metcloud16

IPMI 364 W

metcloud17

IPMI 490 W

metcloud18

IPMI 500 W

metcloud19

IPMI 502 W

metcloud20

IPMI 498 W

metcloud21

IPMI 702 W

metcloud22

IPMI 708 W

metcloud23

IPMI 720 W

metcloud24

IPMI 718 W

metcloud25

IPMI 464 W

metcloud26

IPMI 464 W

metcloud27

IPMI 464 W

metcloud28

IPMI 456 W

metcloud29

IPMI 458 W

metcloud30

IPMI 458 W

metcloud31

IPMI 462 W

metcloud32

IPMI 336 W

metcloud33

IPMI 580 W

metcloud34

IPMI 574 W

metcloud35

IPMI 574 W

metcloud36

IPMI 572 W

metcloud37

IPMI 586 W

metcloud38

IPMI 592 W

metcloud39

IPMI 608 W

metcloud40

IPMI 610 W

monitor

IPMI 100 W

net01

IPMI RAPL110 W 20.6 W

repo

RAPL 11.9 W

scloud01

IPMI RAPL425 W 271 W

scloud02

IPMI RAPL780 W 525 W

scloud03

IPMI RAPL415 W 266 W

scloud04

IPMI RAPL410 W 262 W

scloud05

IPMI RAPL780 W 527 W

scloud06

IPMI RAPL400 W 264 W

scloud07

IPMI RAPL780 W 527 W

scloud08

IPMI RAPL400 W 261 W

scloud09

IPMI RAPL790 W 527 W

scloud10

IPMI RAPL410 W 264 W

scloud11

IPMI RAPL420 W 271 W

scloud12

IPMI RAPL465 W 301 W

scloud13

IPMI RAPL460 W 348 W

scloud14

IPMI RAPL420 W 272 W

scloud15

IPMI RAPL780 W 523 W

scloud16

IPMI RAPL415 W 272 W

scloud17

IPMI RAPL415 W 270 W

scloud18

IPMI RAPL410 W 264 W

scloud19

IPMI RAPL790 W 523 W

scloud20

IPMI RAPL420 W 277 W

scloud21

IPMI RAPL410 W 266 W

scloud22

IPMI RAPL420 W 271 W

scloud23

IPMI RAPL415 W 268 W

scloud24

IPMI RAPL475 W 312 W

scloud25

IPMI RAPL435 W 278 W

scloud26

IPMI RAPL405 W 262 W

scloud27

IPMI RAPL405 W 261 W

scloud28

IPMI RAPL405 W 263 W

scloud29

IPMI RAPL410 W 269 W

scloud30

IPMI RAPL405 W 264 W

scloud31

IPMI RAPL405 W 265 W

scloud32

IPMI RAPL425 W 272 W

scloud33

IPMI RAPL405 W 259 W

scloud34

IPMI RAPL405 W 263 W

scloud35

IPMI RAPL410 W 271 W

scloud36

IPMI RAPL415 W 272 W

scloud37

IPMI RAPL420 W 279 W

scloud38

IPMI RAPL405 W 267 W

scloud39

IPMI RAPL420 W 279 W

scloud40

IPMI RAPL405 W 263 W

scloud41

IPMI RAPL410 W 274 W

scloud42

IPMI RAPL400 W 268 W

scloud43

IPMI RAPL410 W 271 W

scloud44

IPMI RAPL415 W 269 W

scloud45

IPMI RAPL415 W 271 W

scloud46

IPMI RAPL405 W 260 W

scloud47

IPMI RAPL415 W 270 W

scloud48

IPMI RAPL395 W 267 W

scloud49

IPMI RAPL400 W 261 W

scloud50

IPMI RAPL440 W 290 W

scloud51

IPMI RAPL405 W 261 W

scloud52

IPMI RAPL400 W 262 W

scloud53

IPMI RAPL850 W 528 W

scloud54

IPMI RAPL780 W 526 W

scloud55

IPMI RAPL775 W 524 W

scloud56

IPMI RAPL405 W 270 W

scloud57

IPMI RAPL400 W 266 W

scloud58

IPMI RAPL715 W 489 W

scloud59

IPMI RAPL785 W 526 W

scloud60

IPMI RAPL420 W 269 W

scloud61

IPMI RAPL410 W 268 W

scloud62

IPMI RAPL415 W 265 W

scloud63

IPMI RAPL410 W 271 W

scloud64

IPMI RAPL405 W 261 W

scloud65

IPMI RAPL410 W 264 W

starsky

IPMI RAPL100 W 20.3 W

wngw

IPMI RAPL0 W 30.2 W

zeus01

IPMI 144 W

zeus02

IPMI RAPL150 W 80.9 W

zeus03

IPMI RAPL144 W 85.1 W

zeus11

IPMI RAPL228 W 89.1 W

zeus12

IPMI RAPL228 W 110 W

rafanaDeveloped by Advanced Computing and e-Science Group

With IPMI, RAPL, Scaphandre, Collectd, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.7: Dashboards > Energy > Machines Power Consumption L1
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Home Dashboards IFCA Monitoring Internal Energy & Environment CPD Machines Power Consumption (Detailed) - L2 Add Share 30s

Search or jump to... ctrl+k

service group hostAll scloud scloud01 � scloud02 � scloud04 � scloud05 � scloud06 � scloud0…

All Host

Nº Machines (Source: IPMI�

64

Power Consumption (Source: IPMI�

28.835 kW

Nº Machines (Source: RAPL�

64

Power Consumption (Source: RAPL�

18.508 kW

Nº Machines (Source: Scaphandre)

64

Power Consumption (Source: Scapha…

18.513 kW

All / Source: IPMI (instantaneous)

Name Last * Min Max Mean

Total 28.835 kW 28.100 kW 29.255 kW 28.678 kW

All / Source: RAPL (average)

Name Last * Min Max Mean

Total 18.508 kW 18.257 kW 18.785 kW 18.515 kW

All / Source: Scaphandre (average)

Name Last * Min Max Mean

Total 18.513 kW 18.257 kW 18.813 kW 18.516 kW

All: IPMI �CPU�Mem) / IPMI (system) last difference ratio

64.214%

All: RAPL / IPMI (system) last difference ratio

64.187%

All: Scaphandre / IPMI (system) last difference ratio

64.203%

scloud01

scloud01 / Source: IPMI (instantaneous)

Name Last * Min Max Mean

scloud01 � Sys Power power_unit (19.1� 435 W 430 W 490 W 442 W

scloud01 � Sys Fan Pwr power_unit (19.4� 33 W 30 W 36 W 34.4 W

scloud01 � PSU 2 DC Out Pwr power_unit (19.8� 0 W 0 W 0 W 0 W

scloud01 � PSU 2 AC In Pwr power_unit (19.6� 0 W 0 W 0 W 0 W

scloud01 � PSU 1 DC Out Pwr power_unit (19.7� 410 W 405 W 450 W 419 W

scloud01 / Source: RAPL (average)

Name Last * Min Max Mean

scloud01 � total 273.254 W 267.311 W 289.442 W 275.155 W

scloud01 � package-1 126.723 W 123.321 W 135.796 W 127.574 W

scloud01 � package-0 122.725 W 120.559 W 130.585 W 123.648 W

scloud01 � dram-1 12.522 W 12.113 W 13.369 W 12.615 W

scloud01 � dram-0 11.284 W 11.011 W 12.496 W 11.317 W

scloud01 / Source: Scaphandre (average)

Name Last * Min Max Mean

scloud01 � scaph_host_power 282.286 W 267.691 W 293.539 W 275.041 W

scloud01� IPMI �CPU�Mem) / IPMI (system) last difference ratio

62.529%

scloud01� RAPL / IPMI (system) last difference ratio

62.817%

scloud01� Scaphandre / IPMI (system) last difference ratio

64.893%

scloud02

scloud02 / Source: IPMI (instantaneous)

Name Last * Min Max Mean

scloud02 � Sys Power power_unit (19.1� 440 W 425 W 440 W 431 W

scloud02 � Sys Fan Pwr power_unit (19.4� 27 W 22 W 27 W 26.6 W

scloud02 � PSU 2 DC Out Pwr power_unit (19.8� 0 W 0 W 0 W 0 W

scloud02 � PSU 2 AC In Pwr power_unit (19.6� 0 W 0 W 0 W 0 W

scloud02 � PSU 1 DC Out Pwr power_unit (19.7� 415 W 405 W 415 W 408 W

scloud02 / Source: RAPL (average)

Name Last * Min Max Mean

scloud02 � total 280.239 W 278.267 W 283.025 W 279.254 W

scloud02 � package-0 129.725 W 128.614 W 130.393 W 128.812 W

scloud02 � package-1 124.970 W 124.307 W 128.519 W 124.925 W

scloud02 � dram-1 12.780 W 12.464 W 13.117 W 12.740 W

scloud02 � dram-0 12.764 W 12.460 W 13.031 W 12.778 W

scloud02 / Source: Scaphandre (average)

Name Last * Min Max Mean

scloud02 � scaph_host_power 280.309 W 278.252 W 282.413 W 279.258 W

scloud02� IPMI �CPU�Mem) / IPMI (system) last difference ratio

65.000%

scloud02� RAPL / IPMI (system) last difference ratio

63.691%

scloud02� Scaphandre / IPMI (system) last difference ratio

63.707%

scloud04

scloud04 / Source: IPMI (instantaneous)

Name Last * Min Max Mean

scloud04 � Sys Power power_unit (19.1� 410 W 405 W 435 W 412 W

scloud04 � Sys Fan Pwr power_unit (19.4� 20 W 20 W 27 W 21.2 W

scloud04 � PSU 2 DC Out Pwr power_unit (19.8� 0 W 0 W 0 W 0 W

scloud04 � PSU 2 AC In Pwr power_unit (19.6� 0 W 0 W 0 W 0 W

scloud04 � PSU 1 DC Out Pwr power_unit (19.7� 385 W 385 W 410 W 388 W

scloud04 / Source: RAPL (average)

Name Last * Min Max Mean

scloud04 � total 261.832 W 258.587 W 265.338 W 261.409 W

scloud04 � package-0 122.154 W 120.389 W 124.201 W 122.023 W

scloud04 � package-1 117.097 W 115.849 W 119.206 W 116.860 W

scloud04 � dram-0 12.156 W 11.843 W 12.401 W 12.134 W

scloud04 � dram-1 10.426 W 9.968 W 10.785 W 10.392 W

scloud04 / Source: Scaphandre (average)

Name Last * Min Max Mean

scloud04 � scaph_host_power 264.119 W 258.771 W 265.724 W 261.418 W

scloud04� IPMI �CPU�Mem) / IPMI (system) last difference ratio

63.855%

scloud04� RAPL / IPMI (system) last difference ratio

62.982%

scloud04� Scaphandre / IPMI (system) last difference ratio

62.915%

Developed by Advanced Computing and e-Science Group

With IPMI, RAPL, Scaphandre, Collectd, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.8: Dashboards > Energy > Machines Power Consumption L2
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Home Dashboards IFCA Monitoring Internal Energy & Environment CPD Machines VMs Power Consumption - L3 Add Share

Search or jump to... ctrl+k

service group host VM name / KVM domain (unique) VM UUID (unique)All scloud All All All

All Host

Nº Hosts (Scaphandre Instances)

64

Hosts Power Consumption (Total)

19.387 kW

Nº Virtual Machines

305

VM Power Consumption (Total)

3.328 kW

All VMs / Source: Scaphandre

Name Last * Min Max Mean

Total 19.4 kW 19.4 kW 19.4 kW 19.4 kW

All VMs / Source: Scaphandre

Name Last * Min Max Mean

Total 3.33 kW 3.29 kW 3.39 kW 3.34 kW

All QEMU Host: Scaphandre / IPMI (system) last difference ratio

64.345%

All QEMU Host: VMs / Scaphandre last difference ratio

17.166%

All QEMU Host: VMs / IPMI (system) last difference ratio

11.046%

scloud01

scloud01 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud01 � scaph_host_power 281 W 271 W 290 W 278 W

scloud01 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud01 � instance-00103120 � 2d48e1fe-b669�4d4e-a888�60f857c97d86 2.12 mW 0 W 2.12 mW 957 µW

scloud01 � instance-00100af2 � 3d846f22-c008�4a4e-adc8�738df9c949a4 242 mW 215 mW 270 mW 233 mW

scloud01 � instance-00101023 � 3e4e43bc-9f7f-4cf7-b5b3-db8a6ec151a7 18.4 mW 13.4 mW 21.2 mW 16.3 mW

scloud01 � instance-0010109b - 70c22e2f-d9fd-460e-ade4�02656f1d9878 14.7 mW 13.4 mW 27.6 mW 16.5 mW

scloud01 � instance-001010a4 � 7583358a-d42f-468a-b7ee-ed58507e7b1c 15.4 mW 13.4 mW 21.9 mW 16.2 mW

scloud01 � instance-000fdafe - 81b896e3�0c15�4570-a69c-e22410238a07 4.95 mW 3.54 mW 14.6 mW 6.54 mW

scloud01 � instance-001008c4 � b83cd8e9-a0b2�4c3b-af71�3f7cf31fa020 20.5 mW 5.79 mW 7.14 W 2.23 W

scloud01 � instance-00100f2a - b8e0a6ff-9dca-49fb-b793�2ca790e63d56 15.4 mW 13.6 mW 91.5 mW 17.1 mW

scloud01 � instance-00100a98 � c4a922a7�5994�4b11-b89a-8bcdd74ef5de 7.08 mW 2.17 mW 15.7 mW 6.85 mW

scloud01 � instance-000fdb01 � c94950cc-9d92�4533-ab0f-e7671c04e175 79.1 mW 51.2 mW 3.34 W 384 mW

scloud01 � instance-00102d8d - e3c71fba-59ed-4bca-b91e-f39967e14db3 244 mW 243 mW 285 mW 261 mW

scloud01 � instance-00103438 � ecdb13bf-abdd-4cc2-b652�15b445c0ef11 733 µW 0 W 29.6 mW 1.11 mW

scloud01 � instance-000fbbea - edcff64c-ce57�4cb8�8dd0�2cdd95d644f6 154 mW 141 mW 172 mW 153 mW

scloud01 � instance-00100af5 � fbb97ae0�7891�4421-be67�53096d1b40d1 17.6 mW 14.5 mW 27.0 mW 18.6 mW

scloud01 � instance-00103318 � fcee197f-1e3f-4be2�9701�106b2c661e3d 1.42 mW 1.41 mW 3.65 mW 2.22 mW

scloud01� Scaphandre / IPMI (system) last difference ratio

63.198%

scloud01� VMs / Scaphandre last difference ratio

0.001%

scloud01� VMs / IPMI (system) last difference ratio

0.000%

scloud02

scloud02 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud02 � scaph_host_power 525 W 524 W 525 W 525 W

scloud02 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud02 � instance-00100acb - 78343175�31d0�4d78�9125�3e1b59a3bccb 523 W 521 W 525 W 524 W

scloud02� Scaphandre / IPMI (system) last difference ratio

67.252%

scloud02� VMs / Scaphandre last difference ratio

99.687%

scloud02� VMs / IPMI (system) last difference ratio

67.042%

scloud04

scloud04 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud04 � scaph_host_power 263 W 263 W 266 W 264 W

scloud04 VMs / Source: Scaphandre

Name Last * Min Max Mean

scloud04 � instance-001033a5 � 28adf8e3�2de5�4694�8729�2705f27b3694 8.92 mW 6.18 mW 156 mW 30.6 mW

scloud04 � instance-00103396 � 54ddefa4�852b-4ffa-9bd1�05ca9d8f174c 1.37 mW 0 W 11.0 mW 1.45 mW

scloud04 � instance-0010339c - 6f28c6b0-c90e-4a69�8232-a97cbc4a636f 6.86 mW 4.80 mW 716 mW 108 mW

scloud04 � instance-001033e4 � bee372a3-c952�40af-9a54-ed63b9365456 686 µW 0 W 40.5 mW 975 µW

scloud04 � instance-00103372 � d8fad41a-0834�4491�8b2b-b80a03369d59 178 mW 158 mW 195 mW 179 mW

scloud04 � instance-00103375 � e0e2a86b-5abf-43bc-abad-b0a589f1e0c5 4.12 mW 3.43 mW 6.20 mW 5.00 mW

scloud04 � instance-0010341a - e5733dbd-ece6�4411-b762�47bde4804efb 686 µW 0 W 1.37 mW 502 µW

scloud04 � instance-00103384 � f142b5e0�061d-48f0-b29b-f48b6afddb0a 4.80 mW 1.37 mW 10.3 mW 4.59 mW

�  ratio �  ratio �  ratio

Developed by Advanced Computing and e-Science Group

With Scaphandre, Collectd, Telegraf, Prometheus, Grafana Mimir and Grafana

Figure C.9: Dashboards > Energy > Virtual Machines Power Consumption L3
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Home Dashboards IFCA Monitoring Internal Energy & Environment Schneider Electric PowerTag Link - General - L1 Add Share

Search or jump to... ctrl+k

Panel All

All Panels

Total Active Power:

136.033 kW

Total Reactive Power:

�46.221 kVAr

Total Apparent Power:

151.609 kVA

Average Power Factor:

89.726%

Total Active Power:

Name Last * Min Max Mean

Total 138 kW 124 kW 139 kW 133 kW

Total Reactive Power:

Name Last * Min Max Mean

Total �47.0 kVAr �47.2 kVAr �36.1 kVAr �40.0 kVAr

Total Apparent Power:

Name Last * Min Max Mean

Total 154 kVA 140 kVA 155 kVA 149 kVA

Average Power Factor:

Name Last * Min Max Mean

Active / Apparent 89.6% 88.2% 90.0% 89.0%

CPD_A1

Active Power:

Name Last * Min Max Mean

CPD_A1 active power 21.6 kW 21.5 kW 22.3 kW 21.7 kW

Reactive Power:

Name Last * Min Max Mean

CPD_A1 reactive power �10.4 kVAr �10.5 kVAr �10.1 kVAr �10.4 kVA

Apparent Power:

Name Last * Min Max Mean

CPD_A1 apparent power 24.1 kVA 24.1 kVA 24.8 kVA 24.2 kVA

Power Factor:

Name Last * Min Max Mean

Active / Apparent 89.5% 89.4% 90.2% 89.7%

CPD_A2

Active Power:

Name Last * Min Max Mean

CPD_A2 active power 26.3 kW 16.2 kW 26.3 kW 18.6 kW

Reactive Power:

Name Last * Min Max Mea

CPD_A2 reactive power �29.0 kVAr �29.3 kVAr �24.3 kVAr �25.7 kV

Apparent Power:

Name Last * Min Max Mean

CPD_A2 apparent power 39.3 kVA 29.4 kVA 39.6 kVA 32.0 kVA

Power Factor:

Name Last * Min Max Mean

Active / Apparent 66.9% 54.3% 67.3% 57.8%

CPD_B1

Active Power:

Name Last * Min Max Mean

CPD_B1 active power 37.3 kW 34.5 kW 37.6 kW 36.6 kW

Reactive Power:

Name Last * Min Max Mea

CPD_B1 reactive power �4.56 kVAr �4.59 kVAr �4.28 kVAr �4.47 kV

Apparent Power:

Name Last * Min Max Mean

CPD_B1 apparent power 37.6 kVA 34.8 kVA 37.9 kVA 36.9 kVA

Power Factor:

Name Last * Min Max Mean

Active / Apparent 99.2% 99.1% 99.2% 99.2%

CPD_B2

Active Power:

Name Last * Min Max Mean

CPD_B2 active power 53.3 kW 49.9 kW 58.6 kW 55.6 kW

Reactive Power:

Name Last * Min Max Mean

CPD_B2 reactive power �3.07 kVAr �3.43 kVAr 3.01 kVAr 537 VA

Apparent Power:

Name Last * Min Max Mean

CPD_B2 apparent power 53.4 kVA 50.1 kVA 58.7 kVA 55.7 kVA

Power Factor:

Name Last * Min Max Mean

Active / Apparent 99.7% 99.7% 99.8% 99.8%

D_A2 D_B1 D_B2Developed by Advanced Computing and e-Science Group

With Schneider Electric PowerTag Link, Home Assistant, Prometheus, Grafana Mimir and Grafana

Figure C.10: Dashboards > Energy > Schneider Electric - L1
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Home Dashboards IFCA Monitoring Internal Energy & Environment Schneider Electric PowerTag Link - General - L2 Add Share

Search or jump to... ctrl+k

Switchboard CPD_B2

ENERGY

Total Active Energy Delivered:

1.423766 GWh

Total Reactive Energy Delivered:

68.287 MVARh

Total Apparent Energy:

1.433 GVAh

POWER

Active Power: Reactive Power:

Total Active Power:

57.014 kW

Total Active Power:

Name Last * Min Max Mean

CPD_B2 active power 57.4 kW 49.4 kW 62.7 kW 56.1 kW

Total Reactive Power:

3.257 kVAr

Total Reactive Power:

Name Last * Min Max Mean

CPD_B2 reactive power 3.18 kVAr �3.49 kVAr 3.99 kVAr 629 VAr

P1 �Phase A��

18.485 kW

P1 �Phase A��

Name Last * Min Max Mean

CPD_B2 active power phase Phase.A 18.6 kW 16.1 kW 20.1 kW 18.1 kW

Q1 �Phase A��

572.000 VAr

Q1 �Phase A��

Name Last * Min Max Mean

CPD_B2 reactive power phase Phase.A 545 VAr �1.39 kVAr 824 VAr �235 VAr

P2 �Phase B��

18.829 kW

P2 �Phase B��

Name Last * Min Max Mean

CPD_B2 active power phase Phase.B 18.9 kW 16.3 kW 20.6 kW 18.5 kW

Q2 �Phase B��

1.649 kVAr

Q2 �Phase B��

Name Last * Min Max Mean

CPD_B2 reactive power phase Phase.B 1.60 kVAr �1.04 kVAr 1.88 kVAr 671 VAr

P3 �Phase C��

19.699 kW

P3 �Phase C��

Name Last * Min Max Mean

CPD_B2 active power phase Phase.C 19.9 kW 17.1 kW 21.6 kW 19.5 kW

Q3 �Phase C��

1.036 kVAr

Q3 �Phase C��

Name Last * Min Max Mean

CPD_B2 reactive power phase Phase.C 1.03 kVAr �1.42 kVAr 1.37 kVAr 193 VAr

Demand Power:

Demand Total Active Pow…

57.164 kW

Demand Total Active Power:

Name Last * Min Max Mean

CPD_B2 demand active power 57.2 kW 51.0 kW 60.1 kW 56.1 kW

Apparent Power:

Total Apparent Power:

57.172 kVA

Total Apparent Power:

Name Last * Min Max Mean

CPD_B2 apparent power 57.5 kVA 49.6 kVA 62.8 kVA 56.2 kVA

S1 �Phase A��

18.510 kVA

S1 �Phase A�

Name Last * Min Max Mean

CPD_B2 apparent power phase Phase.A 18.6 kVA 16.1 kVA 20.1 kVA 18.2 kVA

S2 �Phase B��

18.916 kVA

S2 �Phase B�

Name Last * Min Max Mean

CPD_B2 apparent power phase Phase.B 19.0 kVA 16.3 kVA 20.7 kVA 18.5 kVA

S3 �Phase C��

19.745 kVA

S3 �Phase C�

Name Last * Min Max Mean

CPD_B2 apparent power phase Phase.C 20.0 kVA 17.1 kVA 21.6 kVA 19.5 kVA

CURRENT

IN �Neutral):

6.730 A

IN �Neutral):

Name Last * Min Max Mean

CPD_B2 current neutral 7.15 A 5 A 7.79 A 6.39 A

I1 �Phase A��

81.020 A

I1 �Phase A��

Name Last * Min Max Mean

CPD_B2 current A 81.6 A 70.6 A 89.8 A 80.5 A

I2 �Phase B��

82.760

I2 �Phase B�� I3 �Phase C��

85.960

I3 �Phase C��

Developed by Advanced Computing and e-Science Group

With Schneider Electric PowerTag Link, Home Assistant, Prometheus, Grafana Mimir and Grafana

Figure C.11: Dashboards > Energy > Schneider Electric - L2
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Home Dashboards IFCA Monitoring Internal Energy & Environment Schneider Electric PowerTag Link Status Add Share 30s

Search or jump to... ctrl+k

sensors C17 � C18 � C19 � C20 � HIROSS1 � Cloud_ConsumoGeneral + HIR…

C17

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

C17 �78 dBm �79 dBm �76 dBm �77.9 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

C17 �78 dBm �82 dBm �77 dBm �78.9 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

C17 2.22% 0% 17.2% 3.09%

Packet Error Rate in Tag

Name Last * Min Max Mean

C17 3% 0% 19% 4.36%

C18

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

C18 �76 dBm �81 dBm �76 dBm �77.6 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

C18 �77 dBm �81 dBm �77 dBm �78.8 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

C18 3.33% 0% 26.1% 7.70%

Packet Error Rate in Tag

Name Last * Min Max Mean

C18 5% 0% 26.1% 8.96%

C19

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

C19 �86 dBm �87 dBm �79 dBm �85.1 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

C19 �86 dBm �88 dBm �84 dBm �85.2 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

C19 12.8% 0% 31.1% 5.92%

Packet Error Rate in Tag

Name Last * Min Max Mean

C19 16% 0% 35% 7.27%

C20

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

C20 �80 dBm �83 dBm �77 dBm �81.5 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

C20 �80 dBm �83 dBm �77 dBm �81.6 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

C20 5.56% 0% 20% 4.16%

Packet Error Rate in Tag

Name Last * Min Max Mean

C20 5.56% 0% 22% 5.50%

Cloud_ConsumoGeneral

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

Cloud_ConsumoGeneral �75 dBm �85 dBm �73 dBm �75.3 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

Cloud_ConsumoGeneral �75 dBm �85 dBm �73 dBm �75.3 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

Cloud_ConsumoGeneral 0.556% 0% 16.1% 2.35%

Packet Error Rate in Tag

Name Last * Min Max Mean

Cloud_ConsumoGeneral 2% 0% 21% 5.22%

HIROSS1

Signal Strength (dBm) | RSSI in Gateway

Name Last * Min Max Mean

HIROSS1 �78 dBm �84 dBm �75 dBm �76.6 dBm

Signal Strength (dBm) | RSSI in Tag

Name Last * Min Max Mean

HIROSS1 �79 dBm �84 dBm �77 dBm �78.1 dBm

Packet Error Rate in Gateway

Name Last * Min Max Mean

HIROSS1 3.33% 0% 23.3% 3.24%

Packet Error Rate in Tag

Name Last * Min Max Mean

HIROSS1 10% 0% 23.3% 4.61%

HIROSS2

Signal Strength (dBm) | RSSI in Gateway Signal Strength (dBm) | RSSI in Tag Packet Error Rate in Gateway Packet Error Rate in Tag

Developed by Advanced Computing and e-Science Group

With Schneider Electric PowerTag Link, Home Assistant, Prometheus, Grafana Mimir and Grafana

Figure C.12: Dashboards > Energy > Schneider Electric PowerTag Link Status
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