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6
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Abstract. We study the existence of generalized complex structures on
the six-dimensional sphere S

6. We work with the generalized tangent
bundle TS

6 → S
6 and define the integrability of generalized geometric

structures in terms of the Dorfman bracket. Specifically, we prove that
there is not a direct way to induce a generalized complex structure on
S
6 from its usual nearly Kähler structure inherited from the octonions

product.
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1. Introduction

The problem of finding almost complex structures that are integrable on even-
dimensional spheres S

2n was first presented by H. Hopf in [1]. Since then,
multiple results concerning this topic have been presented: for example, A.
Borel and J. P. Serre proved in [2] that the only spheres admitting almost
complex structures are S2 and S

6. It is widely known that the two-dimensional
sphere S

2 admits an integrable complex structure, but there is not a definite
result that determines whether the six-dimensional sphere S6 can be endowed
with an integrable complex structure. This question is known as the “Hopf
problem”.

Multiple points of view have been adopted to solve the Hopf problem
(see, for example, [3] for a historical point of view and [4] to know about the
state of the art). One of these points of view concerns the search of partial
results, studying the existence of complex structures on S

6 that satisfy addi-
tional requirements. Following this line, one important result by A. Blanchard
(see [5]) shows that S6 does not admit any complex structure compatible with
the Euclidean metric of R7. This result was popularized by C. LeBrun in [6].
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A question that has not been addressed yet, as far as we know, is the
Hopf problem in generalized geometry. Generalized geometry was firstly in-
troduced by N. Hitchin in [7], and studied more deeply by M. Gualtieri in
[8]. This geometry field focuses on the generalized tangent bundle TM :=
TM ⊕ T ∗M → M of a manifold. The first researches about generalized ge-
ometry dealt with generalized almost complex structures (by M. Gualtieri,
[8]) and generalized almost paracomplex structures (by A. Wade, [9]). Gener-
alized almost complex (resp. paracomplex) structures were defined as bundle
endomorphisms J : TM → TM such that J 2 = −Id (resp. J 2 = Id) and
that met a compatibility condition with the canonical pairing G0, defined in
Eq. (2.2). This compatibility condition was that G0(J u, v) = −G0(u,J v) for
every u, v ∈ TM.

However, in later studies such as [10,11] by A. Nannicini and [12] by
C. Ida and A. Manea the compatibility condition between generalized al-
most complex/paracomplex structures and G0 was omitted to study a broader
range of interesting geometric structures. This point of view agrees with spe-
cialized text in vector bundles (see, for example, [13] by W. A. Poor), and it
allows the study of these geometric structures in a similar way than polyno-
mial structures on a manifold. In this document, we consider both compatible
and non-compatible generalized almost complex structures with G0, and name
them strong and weak structures, respectively. It is worth remarking that the
notion of weakness used throughout this document is not the same as in other
references; for example, in [14] a different notion of weakness is introduced
for any generalized polynomial structure.

The compatibility condition is especially important when studying the
integrability of generalized polynomial structures. The integrability of a gen-
eralized almost complex or paracomplex structure is defined in terms of the
Dorfman bracket, introduced in Eq. (2.7); and it can be characterized using
the generalized Nijenhuis map (see Eq. (2.8) for generalized almost complex
structures). One interesting property of the generalized Nijenhuis map is that,
as it is shown in Proposition 2.4 for generalized almost complex structures,
it acts as a tensor when the structure is compatible with G0. In other words,
even though the generalized Nijenhuis map associated to a weak generalized
almost complex structure can be used to study its integrability (Proposition
2.3), it may not behave as a tensor (see the example after Proposition 2.4).
The problem in this case is that the integrability of the structure cannot
be checked on local frames, as pointed out by M. Aldi, S. Da Silva and D.
Grandini in [15], for example. However, we are able to obtain necessary local
conditions for a weak generalized almost complex structure to be integrable
(see Theorem 2.5).

On the other hand, weak structures allow us to define a greater number
of interesting geometries. For example, when the manifold M is endowed
with an almost Hermitian structure (J, g), numerous polynomial generalized
structures can be induced from J , g and its fundamental form ω(·, ·) = g(J ·, ·)
(see, for example, [16]). In particular, the almost complex structure J induces
two generalized almost complex structures, defined as Jλ,J(X + ξ) = JX +
λJ∗ξ for λ ∈ {1,−1}; the fundamental form ω defines the generalized almost
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complex structure Jω(X + ξ) = −�ωξ + �ωX; and the metric g produces the
generalized almost complex structure Jg(X +ξ) = −�gξ+ �gX. It can also be
checked that any spherical combination aJ1,J +bJg+cJω, with a, b, c ∈ F(M)
such that a2 +b2 +c2 = 1, is also a generalized almost complex structure (see
Corollary 3.3).

M. Gualtieri proved that, for an almost complex structure J , the in-
duced generalized almost complex structure J−1,J is integrable if and only
if J is integrable in the classical way. Also, for an almost symplectic struc-
ture ω, we have that Jω is an integrable generalized complex structure if
and only if ω is symplectic. Therefore, any manifold that admits a complex
structure or a symplectic structure admits an integrable generalized complex
structure, and hence admits generalized complex structures. This is the case
of the two-dimensional sphere S

2, which admits a complex and a symplectic
structure. In the case of the six-dimensional sphere S

6, since H2(S6,R) = 0
we know that it does not admit a symplectic structure. In respect of strong
generalized complex structures, even though it is not known if there is an
integrable complex structure on S

6 we can study the problem on the bundle
TS

6 and determine if there are some particular integrable generalized com-
plex structures. The main result that is proved in this part of the paper is
summarized in the following statement:

Theorem 1.1. There are no weak generalized complex structures on S
6 that

can be written as a spherical combination of the weak generalized almost
complex structures J1,J ,Jg from Eqs. (2.4, 2.5), and the strong generalized
almost complex structure Jω from Eq. (2.6), where (J, g) is the nearly Kähler
structure on S

6 inherited from the pure octonions product.

The paper is organized as follows:
In the first part of the paper, we introduce the basic concepts and fix the

notation that is necessary to work with the generalized tangent bundle TM

of a manifold. We distinguish between weak and strong generalized almost
complex structures regarding their compatibility with the canonical metric
that arises in TM. We also take the definition of integrability of an endo-
morphism and analyze the behavior of the generalized Nijenhuis map of a
generalized almost complex structure, depending on whether the structure
is weak or strong. Lastly, in Theorem 2.5 we find necessary conditions for
the integrability of a generalized almost complex structure working in local
coordinates.

In the second part of the paper, we consider the particular case of the six-
dimensional sphere S

6 endowed with its well-known nearly Kähler structure,
inherited from the pure octonions product on R

7. Following the spirit of
other partial results, our aim is to study the existence of a specific type of
generalized complex structures. Working in local coordinates with the nearly
Kähler structure on S

6, and using spherical combinations of the induced
generalized almost complex structures, we show that the necessary conditions
found in Theorem 2.5 are not fulfilled. In this way, we prove the Theorem
1.1.
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S
6 F0(X +ξ) = X −ξ, It should be noted that, as the problem of finding

generalized paracomplex structures on S
6 is trivial (every manifold admits

the structure F0(X + ξ) = X − ξ, )[9], we only focus on generalized complex
structures.

2. Generalized Almost Complex Structures and Integrability

First, we recall the basic notations we are going to use. Throughout the paper,
manifolds of dimension n and tensor fields are smooth (i.e., C∞), and Einstein
summation convention will be used when we work in local coordinates. The
generalized tangent bundle of M is defined as the Whitney sum of its tangent
and cotangent bundle, namely TM := TM ⊕ T ∗M → M . On each point,
the fiber of this vector bundle is the direct sum of its tangent and cotangent
space, that is, TpM = TpM ⊕ T ∗

p M for p ∈ M . The smooth sections Γ(TM)
of this bundle can be written as sums of a vector field and a differential form
on M ; that is to say, Γ(TM) = X(M)⊕Ω1(M), and for any u ∈ Γ(TM) there
are some unique X ∈ X(M) and ξ ∈ Ω1(M) such that u = X + ξ.

In this work, we focus mainly on bundle endomorphisms J : TM → TM

such that each fiber of TM is mapped to itself. The following matrix notation
is used to describe these morphisms. Any bundle endomorphism J of TM

can be written as

J =
(

A B
C D

)
, (2.1)

for some bundle morphisms A : TM → TM , B : T ∗M → TM , C : TM →
T ∗M and D : T ∗M → T ∗M . This means that for any X + ξ ∈ TM the
following expression can be written:

J (X + ξ) =
(

A B
C D

)(
X
ξ

)
=

(
AX + Bξ
CX + Dξ

)

= (AX + Bξ) + (CX + Dξ) ∈ TM ⊕ T ∗M.

On this vector bundle, there is a canonical generalized metric that
emerges without the need of adding any further structure to M . This mor-
phism G0 ∈ Γ((TM)∗ ⊗ (TM)∗) is defined such that for each X,Y ∈ TpM and
ξ, η ∈ T ∗

p M ,

G0(X + ξ, Y + η) :=
1
2
(ξ(Y ) + η(X)). (2.2)

It is immediate to check that G0 is symmetric, nondegenerate, and its signa-
ture is (n, n).

Although generalized almost complex structures were originally required
to be isometric with respect to the canonical metric G0, later studies ([10–
12])suggest that this condition may be omitted. To study a wider range of
interesting geometric structures, but not to forget about this relevant prop-
erty, we give the following definition.

Definition 2.1. A weak generalized almost complex structure is a bundle en-
domorphism of the generalized tangent bundle J : TM → TM such that
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J 2 = −Id. If for every X + ξ, Y + η ∈ TpM , such an endomorphism J also
satisfies

G0(J (X + ξ), Y + η) = −G0(X + ξ,J (Y + η)), (2.3)

it will be called a strong generalized almost complex structure.

Some interesting examples of generalized almost complex structures ap-
pear when the base manifold is endowed with some geometric structure. These
examples have been previously studied by other authors (see, for example,
[11,17]).

Example. Let (M,J) be an almost complex manifold, and λ ∈ {1,−1}. Then,
the generalized almost complex structure

Jλ,J =
(

J 0
0 λJ∗

)
, (2.4)

where the dual structure J∗ is defined as (J∗ξ)X = ξ(JX) for ξ ∈ T ∗
p M and

X ∈ TpM , is weak for λ = 1 and strong for λ = −1.

Example. If we consider an almost symplectic manifold (M,ω), the following
endomorphism is a strong generalized almost complex structure:

Jω =
(

0 −�ω

�ω 0

)
. (2.5)

In the last expression, the musical isomorphisms associated to ω, �ω : TM →
T ∗M and �ω : T ∗M → TM , are obtained in such a manner that (�ωX)Y =
ω(X,Y ) for every X,Y ∈ TpM , and �ω = �−1

ω .

Example. Now, we take a (pseudo-)Riemannian manifold (M, g). Then, the
following generalized almost complex structure is weak:

Jg =
(

0 −�g

�g 0

)
. (2.6)

The musical isomorphisms associated to g are defined analogously to the ones
in Example 2.

It must be noted that, even though the structures J1,J and Jg are con-
sidered weak generalized almost complex structures, they both are compatible
with G0 in a different way than strong structures:

G0(J1,J (X + ξ), Y + η) = G0(X + ξ,J1,J (Y + η)),

G0(Jg(X + ξ), Y + η) = G0(X + ξ,Jg(Y + η)).

However, we will use the “strong” adjective only for structures that fulfill the
condition given in Eq. (2.3).

For the sake of introducing the concept of integrability of a generalized
almost complex structure, we must define a bracket product in TM. The
most used bracket in generalized geometry is the Dorfman bracket, because
it makes the structure J−1,J from Eq. (2.4) integrable if and only if J is
integrable in the usual way; and the structure Jω from Eq. (2.5) integrable
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if and only if ω is symplectic. This bracket is defined for any X,Y ∈ X(M)
and ξ, η ∈ Ω1(M) as

�X + ξ, Y + η� = [X,Y ] + LXη − iY dξ. (2.7)

In the previous expression, [·, ·] denotes the Lie bracket of vector fields; LX

is the Lie derivative with respect to X; and iY is the contraction with Y . It
is immediate to see that, unlike the Lie bracket, �·, ·� is not skew-symmetric.

Definition 2.2. A weak (resp. strong) generalized almost complex structure
J is said to be integrable when the distribution L

1,0
J = {u− iJ u : u ∈ TM} ⊂

TM ⊗ C is involutive with respect to the Dorfman bracket (in other words,
if �u − iJ u, v − iJ v� ∈ Γ(L1,0

J ) for every u, v ∈ Γ(TM)). Then, J is called a
weak (resp. strong) generalized complex structure.

The integrability of a generalized almost complex structure can easily
be characterized in terms of the generalized Nijenhuis map associated to J ,
which is defined for u, v ∈ Γ(TM) as

NJ (u, v) = �J u,J v� − J (�J u, v� + �u,J v�) − �u, v�. (2.8)

Proposition 2.3. A weak generalized almost complex structure J is integrable
if and only if NJ ≡ 0.

Proof. The Dorfman bracket can be extended to TM⊗C in such a way that
�iu, v� = �u, iv� = i�u, v�, so it is a C-bilinear map. If �u − iJ u, v − iJ v� is
computed for any u, v ∈ Γ(TM), we have

�u − iJ u, v − iJ v� = �u, v� − �J u,J v� − i(�J u, v� + �u,J v�).

Then, J will be integrable iff �u − iJ u, v − iJ v� can be written as w − iJ w
for some w ∈ Γ(TM). From the last expression, it is inferred that w =
�u, v�−�J u,J v� and J w = �J u, v�+�u,J v�. Therefore, J will be integrable
iff �J u, v� + �u,J v� = J (�u, v� − �J u,J v�) or, equivalently,

�J u,J v� − �u, v� − J (�J u, v� + �u,J v�) = NJ (u, v) = 0,

as we wanted to prove. �

The above result was already known for strong generalized almost com-
plex structures (see, for example,18, Lemma 2.7). It is worth remarking that
if J is a strong generalized almost complex structure then L

1,0
J is isotropic

with respect to the canonical generalized metric G0 (that is, L1,0
J ⊂ (L1,0

J )⊥):
for any u, v ∈ Γ(TM), if J is strong then

G0(u− iJ u, v− iJ v) = G0(u, v)−G0(J u,J v)− i(G0(J u, v)+G0(u,J v)) = 0.

In fact, the following two conditions are equivalent for strong generalized
almost complex structures [8, Prop. 3.27]:

• NJ ≡ 0.
• L

1,0
J is a maximal isotropic subbundle of TM ⊗ C which is involutive

with respect to the Dorfman bracket.
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As we have just seen in Proposition 2.3, the equivalence between NJ ≡ 0
and the fact that L

1,0
J is involutive under the Dorfman bracket remains true

in the case of weak generalized almost complex structures. In other works,
such as [12] by C. Ida and A. Manea, and [18] by S. Hu, R. Moraru and D.
Svoboda, non-isotropic structures are also studied regarding its integrability.

It is of utmost importance to comment on some properties of the gener-
alized Nijenhuis map and the differences with respect to the usual Nijenhuis
tensor of two vector fields. In other works where strong generalized structures
are studied, such as [19] by V. Cortés and L. David, it has been checked that
the generalized Nijenhuis map behaves as a tensor on a manifold, as it is
shown in the following statement:

Proposition 2.4. [[19, Lemma 9]] The Nijenhuis generalized map NJ (u, v)
associated to a strong generalized almost complex structure is F(M)-linear in
both u and v.

Then, the generalized Nijenhuis map of a strong generalized almost
complex structure can be called its generalized Nijenhuis tensor. However,
this is not the case for weak generalized almost complex structures: NJ is
not always F(M)-linear. To see this, take any almost Hermitian manifold
(M,J, g). This geometric structure induces the following generalized almost
complex structure:

J =
(

J �g

0 J∗

)
.

It is easy to check that J 2 = −Id: knowing that J�g = −�gJ
∗ ([16, Prop.

2.8]),

J 2 =
(

J �g

0 J∗

)(
J �g

0 J∗

)
=

(
J2 J�g + �gJ

∗

0 (J∗)2

)
=

(−Id 0
0 −Id

)
.

Also, this generalized structure is weak (see, for example, [20, Prop. 4.9]): a
direct calculation shows that

G0(J (X + ξ),J (Y + η)) = G0(JX + �gξ + J∗ξ, JY + �gη + J∗η)

=
1
2
((J∗ξ)(JY + �gη) + (J∗η)(JX + �gξ))

=
1
2
(g(�gξ, J�gη) + g(�gη, J�gξ) − ξ(Y ) − η(X))

= −G0(X + ξ, Y + η),

thus proving that it is not strong. To see that its generalized Nijenhuis map
does not behave as a tensor, we may calculate NJ (ξ, η) for any ξ, η ∈ Ω1(M):

NJ (ξ, η) = �J ξ,J η� − J (�J ξ, η� + �ξ,J η�) − �ξ, η�

= ��gξ + J∗ξ, �gη + J∗η� − J (��gξ + J∗ξ, η� + �ξ, �gη + J∗η�)

= [�gξ, �gη] + L�gξ(J∗η) − i�gηd(J∗ξ) − J (L�gξη − i�gηdξ)

= [�gξ, �gη] − �gL�gξη + �gi�gηdξ + L�gξ(J∗η)

− i�gηd(J∗ξ) − J∗L�gξη + J∗i�gηdξ.
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If we now multiply ξ by a function f ∈ F(M), it is clear that the map NJ is
not F(M)-linear:

NJ (fξ, η) = [f�gξ, �gη] − �gLf�gξη + �gi�gηd(fξ) + Lf�gξ(J∗η)

− i�gηd(fJ∗ξ) − J∗Lf�gξη + J∗i�gηd(fξ)

= fNJ (ξ, η) − (�gη)(f)�gξ − �gdfη(�gξ) + (�gη)(f)�gξ

− �gdfξ(�gη) + df(J∗η)(�gξ) − (�gη)(f)J∗ξ + df(J∗ξ)(�gη)

− J∗dfη(�gξ) + (�gη)(f)J∗ξ − J∗dfξ(�gη)

= fNJ (ξ, η) − 2g(�gξ, �gη)�gdf − 2g(�gξ, �gη)J∗df.

The next result focuses on conditions that a structure must fulfill to be
integrable.

Theorem 2.5. Let J : TM → TM be a weak generalized almost complex struc-
ture that is written in matrix form as in Eq. (2.1). Let us take local coordinates
(U, (x1, . . . , xn)) such that

A∂i = Aj
i∂j , Bdxi = Bij∂j , C∂i = Cijdxj , Ddxi = Di

jdxj .

If the generalized structure J is integrable, then the following conditions are
met for i, j, l = 1, . . . , n:

Ak
i

∂Al
j

∂xk
− Ak

j

∂Al
i

∂xk
+ Al

k

(
∂Ak

i

∂xj
− ∂Ak

j

∂xi

)

−Bkl

(
∂Cjk

∂xi
− ∂Cik

∂xj
+

∂Cij

∂xk

)
= 0, (2.9)

Ak
i

∂Cjl

∂xk
+ Cjk

∂Ak
i

∂xl
+ Ak

j

(
∂Cik

∂xl
− ∂Cil

∂xk

)

+Ckl

(
∂Ak

i

∂xj
− ∂Ak

j

∂xi

)
− Dk

l

(
∂Cjk

∂xi
− ∂Cik

∂xj
+

∂Cij

∂xk

)
= 0, (2.10)

Ak
i

∂Bjl

∂xk
− Bjk ∂Al

i

∂xk
− Al

k

∂Bjk

∂xi
− Bkl

(
∂Aj

i

∂xk
+

∂Dj
k

∂xi

)
= 0, (2.11)

Ak
i

∂Dj
l

∂xk
+ Dj

k

∂Ak
i

∂xl
+ Bjk

(
∂Cik

∂xl
− ∂Cil

∂xk

)

−Ckl
∂Bjk

∂xi
− Dk

l

(
∂Aj

i

∂xk
+

∂Dj
k

∂xi

)
= 0, (2.12)
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Bik
∂Al

j

∂xk
− Ak

j

∂Bil

∂xk
+ Al

k

∂Bik

∂xj
+ Bkl

(
∂Di

k

∂xj
− ∂Di

j

∂xk

)
= 0, (2.13)

Bik ∂Cjl

∂xk
+ Cjk

∂Bik

∂xl
+ Ak

j

(
∂Di

k

∂xl
− ∂Di

l

∂xk

)

Ckl
∂Bik

∂xj
+ Dk

l

(
∂Di

k

∂xj
− ∂Di

j

∂xk

)
= 0, (2.14)

Bik ∂Bjl

∂xk
− Bjk ∂Bil

∂xk
− Bkl ∂Bij

∂xk
= 0, (2.15)

Bik ∂Dj
l

∂xk
+ Dj

k

∂Bik

∂xl
+ Bjk

(
∂Di

k

∂xl
− ∂Di

l

∂xk

)
− Dk

l

∂Bij

∂xk
= 0. (2.16)

Proof. To obtain Eqs. (2.9–2.16), one must calculate NJ (X,Y ), NJ (X, η),
NJ (ξ, Y ), NJ (ξ, η) for any vector fields and differential forms X,Y ∈ X(M)
and ξ, η ∈ Ω1(M). We compute NJ (X,Y ) explicitly:

NJ (X,Y ) = �J X,J Y � − J (�J X,Y � + �X,J Y �) − �X,Y �

= �AX + CX,AY + CY �

− J (�AX + CX,Y � + �X,AY + CY �) − �X,Y �

= [AX,AY ] + LAX(CY ) − iAY d(CX)

− J ([AX,Y ] − iY d(CX) + [X,AY ] + LX(CY )) − [X,Y ]

= [AX,AY ] − A([AX,Y ] + [X,AY ]) + B(iY d(CX)

− LX(CY )) − [X,Y ] + LAX(CY ) − iAY d(CX)

− C([AX,Y ] + [X,AY ]) + D(iY d(CX) − LX(CY )).

The vector fields X,Y can now be replaced by the coordinate fields X = ∂i,
Y = ∂j . Then, we expand the vector field and differential form components
of NJ (∂i, ∂j) separately, obtaining two different expressions:

NJ (∂i, ∂j)|X(U) = [A∂i, A∂j ] − A([A∂i, ∂j ] + [∂i, A∂j ])

+ B(i∂j
d(C∂i) − L∂i

(C∂j)) − [∂i, ∂j ]

= [Ak
i ∂k, Al

j∂l] − A([Ak
i ∂k, ∂j ] + [∂i, A

k
j ∂k])

+ B(i∂j
d(Cikdxk) − L∂i

(Cjkdxk))

=

(
Ak

i

∂Al
j

∂xk
− Ak

j

∂Al
i

∂xk

)
∂l − A

(
∂Ak

j

∂xi
− ∂Ak

i

∂xj

)
∂k

+ B

(
∂Cik

∂xj
− ∂Cij

∂xk
− ∂Cjk

∂xi

)
dxk

=

[
Ak

i

∂Al
j

∂xk
− Ak

j

∂Al
i

∂xk
+ Al

k

(
∂Ak

i

∂xj
− ∂Ak

j

∂xi

)

−Bkl

(
∂Cjk

∂xi
− ∂Cik

∂xj
+

∂Cij

∂xk

)]
∂l,
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NJ (∂i, ∂j)|Ω1(U) = LA∂i
(C∂j) − iA∂j

d(C∂i) − C([A∂i, ∂j ] + [∂i, A∂j ])

+ D(i∂j
d(C∂i) − L∂i

(C∂j))

= LAk
i ∂k

(Cjldxl) − iAk
j ∂k

d(Cildxl) − C([Ak
i ∂k, ∂j ]

+ [∂i, A
k
j ∂k]) + D(i∂j

d(Cikdxk) − L∂i
(Cjkdxk))

=
(

Ak
i

∂Cjl

∂xk
+ Cjk

∂Ak
i

∂xl

)
dxl + Ak

j

(
∂Cik

∂xl
− ∂Cil

∂xk

)
dxl

− C

(
∂Ak

j

∂xi
− ∂Ak

i

∂xj

)
∂k + D

(
∂Cik

∂xj
− ∂Cij

∂xk
− ∂Cjk

∂xi

)
dxk

=
[
Ak

i

∂Cjl

∂xk
+ Cjk

∂Ak
i

∂xl
+ Ak

j

(
∂Cik

∂xl
− ∂Cil

∂xk

)
+ Ckl

(
∂Ak

i

∂xj

−∂Ak
j

∂xi

)
− Dk

l

(
∂Cij

∂xk
− ∂Cik

∂xj
+

∂Cjk

∂xi

)]
dxl.

Therefore, it is proved that NJ (∂i, ∂j) = 0 if and only if Eqs. (2.9, 2.10) hold
true.

Similar calculations can be done for each NJ (∂i, dxj), NJ (dxi, ∂j) and
NJ (dxi, dxj), splitting each of them into its vector field and differential form
components and obtaining the conditions in Eqs. (2.11-2.16). �

Because of the F(M)-linearity of the generalized Nijenhuis tensor of a
strong generalized almost complex structure, it is immediate to check that
the converse implication is also true when the structure is strong. Then, we
have the following proposition.

Proposition 2.6. If the generalized almost complex structure J in Theorem
2.5 is strong, then J is integrable if and only if Eqs. (2.9-2.16) hold true.

The above result can be compared with some of the generalized struc-
tures that have been studied in other works.

Example. ([8, Ex. 4.21])
It is well-know that, if (M,J) is an almost complex manifold, the strong

generalized almost complex structure J−1,J from Eq. (2.4) is integrable if and
only if J is integrable. In this case, we have A = J , B = 0, C = 0 and D =
−J∗. Therefore, the only non-trivial expressions from Theorem 2.5 are Eqs.
(2.9, 2.12, 2.14). Using local coordinates, J∂i = Jk

i ∂k and J∗dxi = J i
kdxk.

The Nijenhuis tensor of J , in coordinates, is equal to

NJ(∂i, ∂j) =

[
Jk

i

∂J l
j

∂xk
− Jk

j

∂J l
i

∂xk
+ J l

k

(
∂Jk

i

∂xj
− ∂Jk

j

∂xi

)]
∂l.

Then, Eq. (2.9) holds true if and only if NJ ≡ 0; in other words, if and only
if J is integrable. In respect of Eqs. (2.12, 2.14), one must also use the fact
that J2 = −Id; taking local coordinates, J i

kJk
j = −δi

j and, consequently,

J i
k

∂Jk
j

∂xl
= −Jk

j

∂J i
k

∂xl
.
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Thus, it is easy to check that, as expected, these two equations are true if
and only if J is integrable.

Example. ([8, Ex. 4.20]) The other typical example of a generalized complex
structure is induced from an almost symplectic manifold (M,ω). The gener-
alized almost complex structure Jω from Eq. (2.5) is integrable if and only if
ω is symplectic (i.e., dω = 0). Using its matrix form we have A = 0, B = −�ω,
C = �ω and D = 0. Then, Eqs. (2.9, 2.12, 2.14, 2.15) must be studied because
of their non-triviality. Taking local coordinates, we have that �ω∂i = ωijdxj

and −�ωdxi = −ωij∂j , where ωikωkj = δi
j because �ω = �−1

ω . In coordinates,
the local representation of the exterior derivative of ω is given by

(dω)ijk =
∂ωjk

∂xi
− ∂ωik

∂xj
+

∂ωij

∂xk
.

Therefore, Eq. (2.9) is true if and only if dω = 0. Regarding Eqs. (2.12, 2.14),
in a similar way to Example 2, knowing that

ωik ∂ωkj

∂xl
= −ωkj

∂ωik

∂xl
,

we have that these two equations are true if and only if ω is symplectic.
Finally, to check Eq. (2.15) we can modify the previous relation to obtain

∂ωik

∂xl
= ωirωks ∂ωrs

∂xl
.

Then, it can be checked that, as we expected, Eq. (2.15) is true if and only
if dω = 0, that is, if ω is symplectic.

3. Proof of Theorem 1.1

Before detailing the proof of Theorem 1.1, we must justify why we use certain
F(M)-linear combinations of the structures J1,J , Jg, Jω to find a weak gen-
eralized complex structure. The argument is grounded on the properties of
commutation and anti-commutation of the previously introduced structures.
As we are only working with endomorphisms J : TM → TM with J 2 = −Id,
we introduce the following concept.

Definition 3.1. A generalized almost hypercomplex structure is a structure
(J1,J2,J3) formed by three weak generalized almost complex structures such
that they anti-commute (that is, JiJj = −JjJi for i �= j) and J3 = J2J1.

When the base manifold is endowed with an almost Hermitian or an al-
most Norden structure, a generalized almost hypercomplex structure is nat-
urally induced, as it is shown in the next result.

Proposition 3.2. ([20, Prop. 5.4]) Let (M,J, g) be a manifold and ε ∈ {−1, 1}
such that J2 = −Id and g(JX, JY ) = εg(X,Y ) for every X,Y ∈ X(M), and
let ω(·, ·) = g(J ·, ·). Then, (Jε,J ,Jg,Jω) is a generalized almost hypercomplex
structure.
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The anti-commutation of these three generalized structures is based on
the fact that, for such a manifold (M,J, g) with J2 = −Id and g(JX, JY ) =
εg(X,Y ), the musical isomorphisms of g and ω are related between them (see
[16, Prop. 2.8]):

�ω = �gJ = −εJ∗�g,

ε�ω = �gJ
∗ = −εJ�g.

Because this is the only generalized almost hypercomplex structure that can
be generated from (M,J, g) using the endomorphisms Jλ,J ,Jg,Jω from Eqs.
(2.4-2.6) for λ ∈ {−1, 1}, the following corollary is easily inferred.

Corollary 3.3. Let (M,J, g) be an almost Hermitian manifold (i.e., ε = 1).
Then, a linear combination aJλ,J + bJg + cJω with a, b, c ∈ F(M) is a weak
generalized almost complex structure if and only if λ = 1 and a2+b2+c2 = 1.
The structure is strong if and only if c ≡ ±1 (or, equivalently, if and only if
a = b ≡ 0).

Proof. The value of λ must be equal to 1 because g(JX, JY ) = g(X,Y ) for
every X,Y ∈ X(M) and, from Proposition 3.2, λ = ε = 1 and (J1,J ,Jg,Jω)
is a generalized almost hypercomplex structure. Apart from that, we com-
pute the square of any endomorphism obtained as a linear combination
J = aJ1,J + bJg + cJω with a, b, c ∈ F(M):

J 2 = (aJ1,J + bJg + cJω)2

= a2J 2
1,J + b2J 2

g + c2J 2
ω

+ ab(J1,JJg + JgJ1,J ) + ac(J1,JJω + JωJ1,J) + bc(JgJω + JωJg)

= −(a2 + b2 + c2)Id.

Therefore, it must be a2 + b2 + c2 = 1. To check whether J is strong or not,
we calculate G0(J u,J v) for any u, v ∈ Γ(TM):

G0(J u,J v) = G0(aJ1,Ju + bJgu + cJωu, aJ1,Jv + bJgv + cJωv)

= a2G0(J1,Ju,J1,Jv) + b2G0(Jgu,Jgv) + c2G0(Jωu,Jωv)

+ ab(G0(J1,Ju,Jgv) + G0(Jgu,J1,Jv)) + ac(G0(J1,Ju,Jωv)

+ G0(Jωu,J1,Jv)) + bc(G0(Jgu,Jωv) + G0(Jωu,Jgv))

= −a2G0(u, v) − b2G0(u, v) + c2G0(u, v)

+ ab(G0(Jωu, v) + G0(u,Jωv)) + ac(G0(u,Jgv) + G0(Jgu, v))

− bc(G0(J1,Ju, v) + G0(u,J1,Jv))

= (−a2 − b2 + c2)G0(u, v) + 2acG0(u,Jgv) − 2bcG0(J1,Ju, v).

Thus, if the structure J is strong then −a2 − b2 + c2 = 1. This condition
combined with a2 + b2 + c2 = 1 shows that it must be c ≡ ±1. The converse
statement is immediate to check. �

We will call such a F(M)-linear combination aJ1,J+bJg+cJω a spherical
combination of the generalized almost hypercomplex structure.
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Our main goal is to ask ourselves if, for the nearly Kähler structure
(S6, J, g) inherited from the pure octonions product, there is any integrable
spherical combination of the structure (J1,J ,Jg,Jω). We will work in spher-
ical coordinates for S

6 ⊂ R
7: if we take angular coordinates u1, . . . , u6 such

that u1, . . . , u5 ∈ (0, π) and u6 ∈ (0, 2π), then the coordinates of the six-
dimensional sphere are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1 = cos(u1),
x2 = sin(u1) cos(u2),
x3 = sin(u1) sin(u2) cos(u3),

...
x6 = sin(u1) sin(u2) sin(u3) sin(u4) sin(u5) cos(u6),
x7 = sin(u1) sin(u2) sin(u3) sin(u4) sin(u5) sin(u6).

The metric g on S
6 is the one induced by the Euclidean metric on R

7, where S6

is seen as a submanifold of the seven-dimensional Euclidean space. Therefore,
in spherical coordinates this metric is given by

gij =

⎧⎨
⎩

1 if i = j = 1,
sin2(u1) . . . sin2(ui−1) if i = j �= 1,
0 if i �= j.

(3.1)

On the other hand, the local representation of the inverse metric can be easily
computed from the data in Eq. (3.1):

gij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j = 1,
1

sin2(u1) . . . sin2(ui−1)
if i = j �= 1,

0 if i �= j.

(3.2)

The almost complex structure J on S
6 is inherited by the pure octonions

product in R
7. If we denote this product by ×, in any point p ∈ S

6 the
structure Jp : TpS

6 → TpS
6 is defined as

Jpw = p × w,

for any w ∈ TpM . The explicit multiplication table can be consulted, for
example, in [21, Ch. 19]. As the explicit expression of J in local coordinates
is really long and it would not fit in one page, we will just give some specific
values of J i

j . In particular, we will use that

J∂1 =
cos(u3)
sin(u1)

∂2 − cos(u2) sin(u3)
sin(u1) sin(u2)

∂3 +
cos(u5)
sin(u1)

∂4

− cos(u4) sin(u5)
sin(u1) sin(u4)

∂5 − 1
sin(u1)

∂6,

(3.3)

and
J∗du1 = − sin(u1) cos(u3)du2 + sin(u1) cos(u2) sin(u2) sin(u3)du3

− sin(u1) sin2(u2) sin2(u3) cos(u5)du4

+ sin(u1) sin2(u2) sin2(u3) cos(u4) sin(u4) sin(u5)du5

+ sin(u1) sin2(u2) sin2(u3) sin2(u4) sin2(u5)du6.

(3.4)
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Therefore, as J∂1 = Jk
1 ∂k and J∗du1 = J1

kduk, we have the expressions for
each Jk

1 and J1
k .

It can be checked that, for any X,Y ∈ X(S6), we have g(JX, JY ) =
g(X,Y ). Therefore, Corollary 3.3 assures that any spherical combination of
the generalized structures (J1,J ,Jg,Jω) is a weak generalized almost complex
structure.

Because the proof of Theorem 1.1 is quite extensive, we firstly check
what happens when the contribution of Jg in the spherical combination is
null (i.e., when b ≡ 0).

Proposition 3.4. Let (S6, J, ω) be the six-dimensional sphere with its usual
nearly Kähler structure. Then, there is not any spherical combination J =
aJ1,J + cJω with a, c ∈ F(S6) and a2 + c2 = 1 such that the weak generalized
almost complex structure J is integrable.

Proof. To see that such a weak generalized almost complex structure J can-
not be integrable, we will analyze the necessary conditions shown in Theorem
2.5. In particular, we will use both Eqs. (2.11, 2.13). Firstly, we interchange
the indices i, j in Eq. (2.13), obtaining the following expression:

Bjk ∂Al
i

∂xk
− Ak

i

∂Bjl

∂xk
+ Al

k

∂Bjk

∂xi
+ Bkl

(
∂Dj

k

∂xi
− ∂Dj

i

∂xk

)
= 0.

This equation is quite similar to Eq. (2.11); in fact, if both expressions are
added up some terms will vanish, resulting in the following identity:

Bkl

(
∂Aj

i

∂xk
+

∂Dj
i

∂xk

)
= 0.

This condition must be fulfilled by any integrable structure J with J 2 =
−Id. Taking now the spherical combination J = aJ1,J + cJω and using its
matrix form, it is A = aJ , B = −c�ω = cJ�g, C = c�ω = c�gJ and D = aJ∗.
The local representations of these morphisms are

Aj
i = aJj

i , Bij = cgikJj
k , Cij = cJk

i gkj ,D
i
j = aJ i

j ,

so the previous condition is turned into

cgksJ l
s

∂

∂uk

(
aJj

i

)
= 0.

If this equation is developed, it can be written in the following form:

ac

(
gksJ l

s

∂Jj
i

∂uk

)
+ c

∂a

∂uk

(
gksJ l

sJ
j
i

)
= 0. (3.5)

In this last equation, there are two clearly differentiated parts: one re-
lated to the product ac, and other related to the product of c with each
derivative of a with respect to uk. The idea is to compare Eq. (3.5) for differ-
ent values of the indices i, j, k and, by combining them, to obtain restraints
for the functions a and c. We use the combinations of indices i = l = 1, j = 2;
and i = l = 1, j = 3:
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• i = l = 1, j = 2:

ac

(
gksJ1

s

∂J2
1

∂uk

)
+ c

∂a

∂uk

(
gksJ1

s J2
1

)
= 0. (3.6)

• i = l = 1, j = 3:

ac

(
gksJ1

s

∂J3
1

∂uk

)
+ c

∂a

∂uk

(
gksJ1

s J3
1

)
= 0. (3.7)

From Eq. (3.3), we know that J2
1 = cos(u3)

sin(u1) and J3
1 = − cos(u2) sin(u3)

sin(u1) sin(u2) . We can
multiply Eq. (3.6) by −J3

1 and Eq. (3.7) by J2
1 and add them up, obtaining

ac

[
gksJ1

s

(
J2

1

∂J3
1

∂uk
− J3

1

∂J2
1

∂uk

)]
= 0.

If the sum over the indices k, s explicitly, as J2
1 , J3

1 only depend on u1, u2, u3,
and knowing that gij = 0 for i �= j and J1

1 = 0, the following expression is
inferred:

0 = ac

[
g1sJ1

s

(
J2

1

∂J3
1

∂u1
− J3

1

∂J2
1

∂u1

)
+ g2sJ1

s J2
1

∂J3
1

∂u2

+g3sJ1
s

(
J2

1

∂J3
1

∂u3
− J3

1

∂J2
1

∂u3

)]

= ac

[
g22J1

2J2
1

∂J3
1

∂u2
+ g33J1

3

(
J2

1

∂J3
1

∂u3
− J3

1

∂J2
1

∂u3

)]
.

We calculate explicitly the function that is multiplying ac, taking from Eq.
(3.4) that J1

2 = − sin(u1) cos(u3) and J1
3 = sin(u1) cos(u2) sin(u2) sin(u3):

g22J1
2J2

1

∂J3
1

∂u2
= − sin(u1) cos(u3)

sin2(u1)
cos(u3)
sin(u1)

sin(u3)
sin(u1) sin2(u2)

= − cos2(u3) sin(u3)
sin3(u1) sin2(u2)

,

g33J1
3J2

1

∂J3
1

∂u3
= − sin(u1) cos(u2) sin(u2) sin(u3)

sin2(u1) sin2(u2)
cos(u3)
sin(u1)

cos(u2) cos(u3)
sin(u1) sin(u2)

= −cos2(u2) cos2(u3) sin(u3)
sin3(u1) sin2(u2)

,

g33J1
3J3

1

∂J2
1

∂u3
=

sin(u1) cos(u2) sin(u2) sin(u3)
sin2(u1) sin2(u2)

cos(u2) sin(u3)
sin(u1) sin(u2)

sin(u3)
sin(u1)

=
cos2(u2) sin3(u3)
sin3(u1) sin2(u2)

.

Joining all together,

−ac
sin(u3)(cos2(u3) + cos2(u2))

sin3(u1) sin2(u2)
= 0.

Therefore, it must be a ≡ 0 or c ≡ 0. However, that would imply J = ±Jω,
which is not integrable because ω is not a symplectic form; or J = ±J1,J ,
which is also not integrable because J is not integrable. In consequence, there
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are no functions a, c ∈ F(S6) such that a2 + c2 = 1 and aJ1,J + cJω is a weak
generalized complex structure. �

After proving Proposition 3.4, we are in a good position to prove the
general case in Theorem 1.1, taking any possible expression for the function
b.

Proof of Theorem 1.1. We take a spherical combination J = aJ1,J + bJg +
cJω with a, b, c ∈ F(S6). We will work mainly with Eq. (2.15); specifically,
we symmetrise the expression with respect to the indices i, j. To do this, we
interchange the indices i, j in Eq. (2.15):

Bjk ∂Bil

∂xk
− Bik ∂Bjl

∂xk
− Bkl ∂Bji

∂xk
= 0.

We add this formula to Eq. (2.15), obtaining the following expression in local
coordinates:

Bkl ∂

∂xk
(Bij + Bji) = 0. (3.8)

This condition must be satisfied for a weak generalized complex structure.
Using the matrix notation from Eq. (2.1) for the almost complex structure J ,
it must be B = −(b�g + c�ω). Taking local coordinates, as �ω = −J�g = �gJ

∗,
the local representation for B is

Bij = cgikJj
k − bgij = −cgjkJ i

k − bgij .

Then, making substitutions in Eq. (3.8), we have that the following condition
must be met:

bc

(
gksJ l

s

∂gij

∂uk

)
−b2

(
gkl ∂gij

∂uk

)
+c

∂b

∂uk

(
gksJ l

sg
ij

)−b
∂b

∂uk

(
gklgij

)
= 0. (3.9)

We want now to compare the expression in Eq. (3.9) for different values
of i, j, l and hopefully find any condition for the functions b, c. We work in
spherical coordinates and use the explicit local expressions for g and J ; in
particular, we will use the values g11 = 1, g22 = 1

sin2(u1)
and J1

1 = 0. Eq.
(3.9) is compared for the indices i = j = l = 1; and i = j = 2, l = 1:

• i = j = l = 1:

0 = bc

(
gksJ1

s

∂g11

∂uk

)
− b2

(
gk1 ∂g11

∂uk

)
+ c

∂b

∂uk

(
gksJ1

s g11
) − b

∂b

∂uk

(
gk1g11

)

= c
∂b

∂uk

(
gksJ1

s

) − b
∂b

∂u1
.

• i = j = 2, l = 1:

0 = bc

(
gksJ1

s

∂g22

∂uk

)
− b2

(
gk1 ∂g22

∂uk

)
+ c

∂b

∂uk

(
gksJ1

s g22
) − b

∂b

∂uk

(
gk1g22

)

= bc

(
g11J1

1

∂g22

∂u1

)
− b2

(
g11 ∂g22

∂u1

)
+ c

∂b

∂uk

(
gksJ1

s g22
) − b

∂b

∂u1

(
g11g22

)

=
2 cos(u1)
sin3(u1)

b2 +
1

sin2(u1)

[
c

∂b

∂uk

(
gksJ1

s

) − b
∂b

∂u1

]
.
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Taking both expressions together, it is immediate to see that

2 cos(u1)
sin3(u1)

b2 = 0,

so we have that b ≡ 0. Then, to be integrable, the structure must be J =
aJ1,J + cJω with a2 + c2 = 1. However, Proposition 3.4 states that any such
structure can be integrable. Therefore, there are no functions a, b, c ∈ F(S6)
such that a2+b2+c2 = 1 and aJ1,J +bJg +cJω is a weak generalized complex
structure, thus proving the theorem. �
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