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ABSTRACT 
Climate change, driven by increasing CO₂ emissions, necessitates innovative mitigation strategies, 
particularly for hard-to-abate industries. Carbon Capture and Utilization technologies offer prom-
ising solutions by capturing CO₂ from industrial flue gases and converting it into value-added prod-
ucts. Among capture methods, membrane separation stands out for its compact design, energy 
efficiency, and scalability. Following capture, CO₂ can be converted into chemicals like formic acid 
using electrocatalytic processes, enabling energy storage from renewable sources. This study 
proposes the design of an industrial demonstrator for a CO₂ recycling plant targeting hard-to-
abate sectors such as textile and cement industries. The system integrates polymeric membranes 
for CO₂ capture and a 100 cm² electrochemical reactor for CO₂ electroreduction into formic acid. 
Experimental data from both stages are used to develop predictive models based on artificial neu-
ral networks (ANN), optimizing system performance. Case studies reveal that CO₂ concentration 
at the capture inlet significantly impacts plant design. For a textile plant with 3.5% CO₂ emissions, 
a four-stage membrane system is required, resulting in higher CAPEX and OPEX. Conversely, a 
cement plant with 12% CO₂ emissions requires only two stages to achieve the target CO2 concen-
tration of >75 %, reducing costs by over 60%. Sensitivity analysis highlights the critical role of inlet 
CO₂ concentration on the membrane area and system stages. The findings underscore the feasi-
bility of modular membrane systems tailored to emission characteristics, paving the way for sus-
tainable CO₂ recycling processes adaptable to various industries. This integrated approach offers 
a pathway to mitigate emissions while generating valuable chemical products. 
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INTRODUCTION 
Climate change has emerged as one of the most im-

portant challenges that society faces nowadays. Increas-
ing anthropogenic CO2 emissions is one of the main 
causes driving this phenomenon. In this sense, several 
strategies have been proposed to mitigate CO2 emis-
sions. Some of these are related to the use of renewable 
energy sources or improving energy efficiency. However, 
some industries inherently produce CO2 as a by-product 
of their production processes, making conventional ap-
proaches insufficient to eliminate emissions. In such 

cases, alternative strategies must be explored, including 
Carbon Capture and Utilization (CCU) technologies [1]. 

Two stages are involved in this decarbonization ap-
proach. First, CO2 is captured from industrial gas effluent. 
In the second stage, it is converted into value-added 
chemicals. To achieve efficient separation of CO2 from 
industrial flue gas streams and prevent its release into 
the atmosphere, various capture technologies have been 
developed. These include absorption, adsorption, mem-
brane capture, and cryogenic separation [2,3]. 

Among these technologies, membrane separation 
has garnered significant attention due to its compact 
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design, energy efficiency, simplicity, and ability to over-
come selectivity limitations [4]. Additionally, the modu-
larity of membrane systems enhances their scalability, 
making them a promising solution for industrial CO2 cap-
ture. Polymeric membranes are particularly well-suited 
for separating CO2 from other compounds in post-com-
bustion streams, which typically contain CO2, N2, O2, and 
traces of CO or NOx [5]. 

Once captured, CO2 is directed to the conversion 
stage. In this context, the electroreduction of CO2 
(ERCO2) into value-added products has emerged as one 
of the most promising CO2 conversion processes, offer-
ing significant economic and environmental benefits [6]. 
This technology converts CO2 into various chemical 
products, such as formic acid, methanol, and ethylene, 
via an electrocatalytic process that supplies an external 
voltage to generate electron flux between two elec-
trodes. Furthermore, it enables the storage of energy 
from renewable sources in the form of chemical bonds 
[7]. 

Integrating these two stages presents a significant 
challenge for the industrial implementation of CO2 recy-
cling plants, where CO2 is first captured and subse-
quently converted [1]. To address it, this work proposes 
the design of an industrial demonstrator for a CO2 recy-
cling plant. This system employs polysulfone membranes 
for CO2 capture, followed by conversion into formic acid 
through ERCO2 targeting the decarbonization of hard-to-
abate industries such as textile or cement. 

The study focuses on empirically modeling both the 
CO2 capture and electroreduction systems using neural 
networks, resulting in an integrated predictive model for 
the entire CO2 recycling process. This model aims to op-
timize the performance of the capture-conversion sys-
tem, thereby paving the way for developing a sustainable 
process for CO2 capture and its conversion into formic 
acid. Furthermore, the model is designed to adapt to the 
specific conditions and needs of different industries.  

METHODOLOGY 
Experimental set-up 

Two experimental setups are used to provide the 
data required for constructing the empirical model for 
each stage. For CO2 capture, hollow fiber membrane 
modules (Airrane, MCH-1006A) with an active area of 
1822 cm-2, 2000 fibers, and 110 µm thickness are utilized. 
The concentrated CO2 is collected in the permeate, which 
is released at ambient pressure. Various operational var-
iables are evaluated to determine the separation perfor-
mance; i) pressure applied, ii) CO2 inlet flow rate, and iii) 
CO2 inlet concentration. Capture experiments are carried 
out at least twice using synthetic and real gas mixtures 
from two industrial sources (textile and cement). These 
flue gas sources differ in CO2 concentration, reflecting 
the variability in industrial emissions. 

For the conversion stage, a 5 cm2 commercial lab-
scale three-compartment electrochemical reactor (Diox-
ide Materials and Membranes International, Inc), consist-
ing of a Bi2O3 cathode, an IrO2 anode, with a central com-
partment formed by ion exchange resins (Amberlite), a 
CEM (Nafion) and an AEM (Sustainion). The reactor is fed 
with deionized water to the anode and central compart-
ment, while humified CO2 is supplied to the cathode. This 
is utilized to investigate the effects of key process varia-
bles. A factorial experimental design is implemented to 
analyze three operational parameters: (i) CO2 inlet flow 
rate, (ii) humidity of the CO2 feed, and (iii) applied current 
density, identified as critical variables [8]. Additional fac-
tors, such as the water flow rate into the central compart-
ment and the anolyte inlet flow rate, are evaluated based 
on information from the literature [9]. To ensure robust 
input data for the model, all experimental tests are per-
formed at least in duplicate. 

Model deployment 
Two independent neural-network-based empirical 

models are developed using Neural Designer [10] (Artifi-
cial Intelligence Techniques, Ltd.). These models gener-
ate numerical expressions based on the input data col-
lected during experimental work with the membrane 
modules and the commercial reactor. The input variables 
and their corresponding ranges are detailed in Table 1: 

Table 1: Variables and value ranges for input variables in 
the Artificial Neural Network (ANN) models. 

Model Variable Range 
Capture Pressure (bar) - 
Capture Inlet flowrate (ml 

min- cm-) 
- 

Capture CO inlet concen-
tration (%) 

- 

ERCO Central water flow 
rate (ml min-) 

- 

ERCO Current density (mA 
cm-) 

- 

ERCO Cathode water feed 
(g h-) 

- 

ERCO CO flowrate (ml 
min-) 

- 

ERCO CO concentration 
(%) 

- 

Case study 
An optimization problem is proposed for the func-

tioning of an industrial demonstrator plant, where the 
electrochemical reactor serves as the central element. In 
this case, the CO2 capture process must be optimized to 
supply CO2 under specific conditions to the 100 cm² elec-
trochemical reactor. The critical variables of the reactor 
must also be optimized to maximize formic acid 
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production. The overall cost is established as the objec-
tive function to minimize, considering both the CAPEX 
and OPEX of the recycling plant. 

𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶    (1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝐴𝐴𝑅𝑅 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝐴𝐴𝑅𝑅)/5  (2) 

𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑂𝑂𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐹𝐹  (3) 

In these equations, AreaR represents the reactor's 
geometric area (m²), and AreaM refers to the total mem-
brane area required for CO2 capture (m²). The respective 
costs, Rc (Reactor cost, 27,000 € m⁻²) and Mc (Mem-
brane cost, 5,500 € m⁻²), are based on previous acquisi-
tion costs per square meter. Ecost and Ccost represent 
the energy cost from the conversion stage and the com-
pression cost required in each separation stage, respec-
tively. FA denotes the amount of formic acid produced, 
and FAp is its market price (4,100 € t⁻¹). 

The CAPEX evaluates the cost of constructing the 
CO2 recycling plant, taking into account both the mem-
brane area required for CO2 capture and the fixed cost of 
the 100 cm² reactor, annualized over 5 years. On the 
other hand, the OPEX includes the electricity cost (based 
on Spanish electricity prices) for the ERCO2 process, the 
compression cost for the capture stage, and the savings 
associated with the formic acid produced, which can ei-
ther be sold or used in industry. 

The optimization problem is subject to constraints 
related to product quality, model, or process input re-
quirements (as shown in Table 2). This leads to a con-
strained non-linear optimization minimization problem 
(MINLP), which is addressed using the General Algebraic 
Modeling System (GAMS, GAMS Development Corpora-
tion, Washington, DC, USA). A reduced gradient algo-
rithm is employed to solve the MINLP, with the CONOPT 
solver used to obtain the optimal solution. 

Table 2: Constrained variables of the case study optimi-
zation problem 

Constrain Variable Range 
Model Capture Pressure - 
Model ERCO Central water 

flow rate (ml 
min-) 

- 

Model ERCO Current density - 
Input ERCO CO inlet con-

centration (%) 
- 

Input ERCO CO flowrate (ml 
min-) 

- 

Product Quality Formic acid con-
centration (g L-) 

- 

 
Two industries are considered for the case studies: 

a textile plant, where the CO2 content in the flue gas 
stream is 3.5 %, and a cement industry that emits 12 % of 

CO2 in its post-combustion stream. Additionally, a sensi-
tivity analysis regarding the CO2 concentration in the inlet 
of the CO2 capture is conducted to evaluate the econom-
ical viability of installing this CO2 recycling plant in diverse 
industries with varying CO2 emissions. 

RESULTS 

Model deployment 
The CO2 capture predictive model is developed us-

ing a machine learning approach, where experimental 
data is utilized to establish the architecture of the artifi-
cial neural network (ANN). As shown in Figure 2.a, the re-
sulting ANN comprises several interconnected compo-
nents: (i) a scaling layer to normalize input values, (ii) a 
perceptron layer that processes the inputs using a math-
ematical function derived from the experimental data, (iii) 
an un-scaling layer that restores the output values to 
their original dimensions, and (iv) a bounding layer that 
constrains the final output within the model’s confidence 
intervals. The selection and optimization of neurons is 
performed through an iterative process designed to 
achieve the best possible alignment with the provided 
data, thereby constructing an accurate and efficient 
ANN. The neural network architecture comprises three 
neurons in the scaling layer, seven and two for the sub-
sequent perceptron layers (with hyperbolic and linear ac-
tivation functions), and two neurons in each un-scaling 
and bounding layer. As seen in Figures 1.c-d, the predic-
tive model’s adjustment for the two output variables 
achieves an R² value exceeding 0.99, demonstrating high 
accuracy. 

The Gradient Boosting Variable Importance high-
lights the contribution of each input variable to the final 
output, effectively capturing the system's nonlinearities 
(Figure 2.b). For the permeate flow rate, the inlet pres-
sure emerges as the most influential factor (0.544), fol-
lowed by the inlet flow rate (0.332). In contrast, these 
variables have a negligible impact on the CO₂ outlet con-
centration, which is primarily determined by the inlet CO₂ 
concentration (0.964). 

For the CO2 conversion predictive model, a similar 
methodology is followed, as detailed in previous works 
[8]. Another input variable is introduced in this case: the 
inlet CO2 concentration, which corresponds to the CO2 

concentration at the capture stage outlet. The target var-
iable in this model is the formate concentration obtained. 
When analyzing the importance of each input variable 
with the Gradient Boosting Variable Importance, two in-
put variables stand out as the most influential on the tar-
get variable, the current density and CO2 inlet concentra-
tion. 

The development of the ANN enables the creation 
of an empirical mathematical model that establishes the 
relationship between input and output variables. The 
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mathematical expressions defining the ANN's architec-
ture are manually derived and integrated as model equa-
tions within the optimization problem described below. 

Case Study 
The optimization problem focuses on designing an 

industrial demonstrator for decarbonizing hard-to-abate 
industries. The system consists of two stages: CO2 cap-
ture using polymeric membranes and CO2 conversion to 
formic acid via ERCO2. The design is centered around the 
ERCO2 reactor, which has an active area of 100 cm2. 

Two different scenarios are proposed for imple-
menting the system: the case of the textile industry, the 
CO2 concentration is 3.5 %, while for the cement industry, 
it rises to 12 %. This variation directly impacts the overall 
design of the CO2 recycling plant, although both scenar-
ios target the same product quality. 

For the textile industry case, the optimal design for 
the capture stage involves four different membrane 
stages to achieve the required 75 % CO2 concentration at 
the inlet of the ERCO2 [11]. Four membrane separation 
stages are arranged in series, using the polymeric mem-
brane modules employed in the experimental testing, as 
shown in Figure 2. The total membrane area is 27.7 m2, 
operating at 3 bar pressure. The membranes feed the 
ERCO2 with 1569 ml min-1 of gas at a CO2 concentration 

of 90.9 %. The ERCO2 reactor operates at 200 mA cm-2, 
producing 137.2 g L-1 of formic acid.  The system CAPEX 
is estimated at 30,524 € y-1, with the membrane cost be-
ing the biggest contributor. On the other hand, the com-
pression cost, primarily associated with the CO2 capture 
stage is the main contributor to the OPEX. Ultimately, the 
total yearly cost for the recycling plant, representing the 
objective function, is calculated at 36440 € y-1. 

Figure 2: Schematic diagram for the capture stage of the 
CO2 recycling plant for the textile industry case study. 

As observed in the model evaluation, the CO2 con-
centration in the flue gas at the capture inlet is one of the 
most impactful variables in achieving the desired CO2 

QIN: 
96 l min-1

yCO2: 
0.035 QIN: 15.3 l min-1

yCO2: 0.12 
QIN: 5.5 l min-1

yCO2: 0.27 

QIN: 2.7 l min-1

yCO2: 0.52 Q: 
1.6 l min-1

yCO2: 0.91 

 
Figure 1: a) ANN architecture for the CO2 capture predictive model using membranes, b) Gradient Boosting variable 
importance coefficient chart of the input variables regarding the two target variables of the model, c) Model 
adjustment to experimental data for the permeate flow rate, and d) Model adjustment to experimental data for the 
CO2 outlet concentration. 
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concentration at the outlet. In this sense, the next case 
study evaluates the cement industry, where the initial 
CO2 concentration is 12 %. The optimal design for the CO2 
recycling plant in this case consists of 2 stages in series, 
as seen in Figure 3. The total membrane area is reduced 
compared to Case Study 1 to 8.2 m2, and it achieves a 
CO2 concentration of 95.9 % with a 1640 ml min-1 flow 
rate. The ERCO2 is operated at 200 mA cm-2, resulting in 
a formic acid concentration of 130.27 g L-1.  The CAPEX 
is notably reduced to 9074 € y-1, with the membrane cost 
is cut by 70 %. OPEX is also lower, as less gas volume is 
treated by the membrane modules, resulting in reduced 
compression costs. Overall, the total cost is 12,359 € y-1, 
which is a 66 % reduction compared to the overall cost 
for the textile industry case, confirming the significant 
impact of the CO2 inlet concentration on the overall CO2 
recycling plant design.  

 

 

Figure 3: Schematic diagram for the capture stage of the 
CO2 recycling plant for the cement industry. 

One of the benefits of membrane separation for CO2 
capture is the system’s modularity, which allows it to 
adapt to varying CO2 concentrations at the capture in let. 
As observed in both case studies, the CO2 concentration 
is a critical variable in the system's design to achieve the 
target CO2 concentration before the ERCO2. A sensitivity 
analysis is performed to determine the effect of this input 
variable in the membrane area required to achieve the 
target CO2 concentration (>75 %). This analysis helps 
identify which emission sources are suitable for capture 
without oversizing the membrane system. It also serves 
as a preliminary estimate for evaluating other CO₂-emit-
ting industries, such as biogas plants, thermal power 
plants, or large chemical plants. 

A sensitivity analysis is carried out to evaluate the 
membrane area and the number of capture stages 
needed to achieve the target CO2 concentration with dif-
ferent CO2 concentrations at the inlet. As seen in Figure 
4, as the inlet CO2 concentration increases, the mem-
brane area required decreases significantly. Notably, a 
small increase in concentration yields a substantial re-
duction in the membrane area when operating with highly 
diluted CO₂ streams. However, when the CO2 stream is 
less diluted, increasing the concentration results in a 
smaller reduction in the total membrane area required. 

The membrane area directly impacts the CAPEX of 
the system. Therefore, a higher CO₂ concentration in the 

inlet stream leads to lower capital investment for the CO2 
recycling plant. Additionally, the number of membrane 
stages decreases as the CO₂ concentration increases, 
affecting the OPEX, as fewer stages result in lower com-
pression costs. 

 

 

Figure 4: Sensitivity analysis results for evaluating the 
influence of the inlet CO2 concentration on the membrane 
area and stages of the CO2 capture system. 

CONCLUSIONS 
The integration of CO₂ capture and conversion pre-

sents a viable solution for reducing emissions in hard-to-
abate industries such as textiles and cement. This ap-
proach not only mitigates CO₂ emissions but also facili-
tates the conversion of captured CO₂ into value-added 
products like formic acid, offering economic and environ-
mental benefits. 

The CO2 concentration of ₂ in the inlet stream is a 
critical factor that significantly impacts the design and 
cost of the system. Higher CO₂ concentrations reduce 
the required membrane area and the number of capture 
stages, leading to lower capital (CAPEX) and operational 
(OPEX) expenditures. This underscores the importance 
of adapting the system design to the specific character-
istics of each industrial emission source. The modularity 
of membrane systems makes them highly adaptable to 
varying CO₂ concentrations and emission profiles. Sensi-
tivity analyses confirm that even small increases in inlet 
CO₂ concentration can drastically reduce the required 
membrane area, particularly in highly diluted streams. 
This adaptability makes the technology suitable for a 
wide range of industries, including biogas plants, thermal 
power plants, and chemical manufacturing facilities. 

Overall, the proposed CO₂ recycling system offers a 
scalable and sustainable pathway for decarbonizing in-
dustrial processes. It demonstrates the potential to ad-
dress climate change challenges while generating 
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economic value through the production of high-demand 
chemical products. 
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