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Abstract: In this work we present the proof-of-concept of what we believe to be a novel liquid-
crystal compact and transmissive device useful to generate cylindrical vector beams (CVBs) of
tunable topological charge. The device combines two adaptive spiral phase plates (ASPP) in
orthogonal directions and a quarter-wave plate (QWP). Each ASPP relies on a specially designed
circular transmission electrode with radial lines to generate a spiral phase upon addressing two
voltages. The combination of two orthogonal ASPP allows imparting two independent spiral
phases onto two orthogonal linear polarization states that are converted into circular states by the
final QWP, thus efficiently realizing arbitrary CVBs. By adjusting the four addressed voltages,
the topological charges can be tuned to provide pure or hybrid CVBs with arbitrary topological
charges. The device performance is analyzed in terms of the mapping relations between the
Poincaré sphere and the higher-order Poincaré sphere. We find that it performs as a q-plate, but
with the remarkable advantage of providing dynamic control of the topological charge in vortices
and CVBs. Hence, we name it adaptive q-plate (AQ-plate). Experimental results demonstrate
the versatility of the device.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Cylindrical vector beams (CVB), featuring and axially symmetric distribution of the phase
and polarization in the beam’s cross section have been a major topic in Optics in the last two
decades [1]. They can be regarded as the superposition of two optical vortices with orthogonal
polarizations. Hence, these beams exhibit helical wavefronts carrying orbital angular momentum
(OAM) and an inhomogeneous local state of polarization. These unique properties make them
very useful in applications that range from light trapping [2], singular optics [3], super-resolution
imaging [4], or optical communications [5], among others. Many different techniques have been
developed in these years for their generation. The most common methods are based either on the
dynamic control of the phase by means of spatial light modulators (SLMs) or those based on
geometric phase diffractive elements and structured materials. Those based on SLMs present the
great advantage of being programmable [6,7] and can be combined with other optical functions to
create parallel CVBs [8]. As drawbacks, SLMs introduce losses due to their pixelated structure,

#560620 https://doi.org/10.1364/OE.560620
Journal © 2025 Received 25 Feb 2025; revised 10 Apr 2025; accepted 15 Apr 2025; published 6 May 2025

https://orcid.org/0000-0002-6286-0079
https://orcid.org/0000-0002-1425-6918
https://orcid.org/0000-0002-2654-583X
https://orcid.org/0000-0003-2116-6969
https://orcid.org/0000-0002-1550-0601
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.560620&amp;domain=pdf&amp;date_stamp=2025-05-06


Research Article Vol. 33, No. 10 / 19 May 2025 / Optics Express 20574

they have a limited spatial resolution, and they require building bulky optical systems. By
contrast, methods based on structured materials are very compact and very efficient. These are
micro-structured retarders with an optical axis spatial distribution that encodes a target phase
function. They have been produced with liquid-crystal (LC) materials [9–11], by femtosecond
laser nano-structuring of glass [12], and more recently with metamaterials [13]. However,
these are in most cases static elements whose performance parameters are set on fabrication.
Consequently, they cannot provide a dynamic control of the generated CVB. Other techniques
to generate CVBs combine one SLM with structured retarders, like the polarization-selective
cylindrical lenses employed in [14].

One of the most popular elements for generating CVBs is the q-plate device introduced in 2006
by Marrucci et al. [15]. It is a geometric phase element whose optical axis spatial distribution
follows q times the azimuthal angle (θ) in the plane of the device, thus encoding a spiral phase. It
can be fabricated through LC photoalignment techniques to achieve the azimuthal patterning
of the LC director [16]. This structure imparts a helical phase to one circular polarization
component, and the opposite helical phase to the other circular polarization component. For
half-wave retardance of the LC layer, the maximum polarization conversion efficiency is achieved,
thus fully converting an input beam with uniform polarization into a CVB of order ℓ = 2q. Since
their invention, q-plates have proved very useful in applications involving the manipulation of
optical vortices and vector beams [17–20]. Introduced in a cavity they have been useful to
produce CVBs outputs directly from a laser [21]. In addition, LC devices can be made tunable if
indium-titanium oxide (ITO) transparent electrodes are incorporated. Tunable LC q-plates have
been reported [22–24], where their tunability refers exclusively to the capability of adjusting the
retardance. This is very convenient since the LC retardance strongly depends on the wavelength
of light. The q-plate performance is only optimal for those wavelengths fulfilling the half-wave
retardance condition [25,26]. Thus, the capability of tuning the retardance of the LC layer allows
operating the q-plate optimally at different wavelengths. However, the q value of these tunable
LC q-plates (and therefore the order of the generated CVB) is set during the photoalignment
process and cannot be tuned.

Q-plates are restricted to impart a spiral phase with integer topological charge of equal
magnitude but opposite sign to each circular polarization component, thus creating pure CVBs
whose polarization pattern does not change upon propagation and defines the higher-order
Poincaré sphere (HOPS) [27]. However, they cannot produce the so-called hybrid CVBs, which
have arbitrary charges in the circular polarization components and are represented on the hybrid
HOPS [28]. An exception are detuned q-plates operated at quarter-wave retardance [24], which
generate full Poincaré beams [29], useful to perform single shot polarimetry [30]. These are a
particular case of hybrid CVBs with zero charge in one of the circular components while the
entire topological charge is encoded in the orthogonal component. Generic hybrid CVBs can
be created using the j-plate device [31,32], a recent extension of the q-plate that enables the
independent encoding of topological charges on two orthogonal polarizations. The j-plate can be
fabricated with metamaterials, but not with LC materials, thus not yet programmable. Of course,
SLM-based systems allow the independent manipulation of the topological charges to generate
arbitrary hybrid vector beams [33,34] but this is at the expense of bulkier and less efficient setups.
In addition, because of their rectangular pixelated array, SLMs are not well adapted to display
the continuous azimuthal phase required to generate CVBs. The SLM spatial resolution limits
the reproduction of the spiral phase in the central part of the pattern.

In this work we introduce the proof-of-concept of a new device explicitly designed for creating
CVBs that presents several advantages compared to the previous technologies. It is based on a
recently demonstrated adaptive LC spiral phase plate (ASPP) featuring a customized distribution
of the ITO electrodes [35]. The ASPP generates an azimuthal voltage distribution in the LC layer
that yields the spiral phase required in a vortex plate. Compared to other LC devices useful to
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generate a spiral phase with discrete phase steps [36,37], the ASPP generates continuous spiral
phases with different topological charges that can be tuned by applying only two voltages. We
build a compound device that combines two such novel ASPPs and a quarter-wave plate (QWP) to
generate CVBs. The constituent ASPPs are now made of LC with higher birefringence compared
to that in [35] (∆n = 0.27 at λ = 633 nm instead of ∆n = 0.16), thus reaching larger topological
charges (ℓ = ±12 instead of ℓ = ±4). The device is tunable, compact and highly efficient since,
unlike SLMs, diffraction losses are non-significant. It can be operated at different wavelengths
and allows to dynamically encode different topological charges simply by changing the voltage
values. Since the spiral phases encoded in the orthogonal polarization states are independent,
it is useful to generate both pure and hybrid CVBs. We name this compound device adaptive
q-plate (AQ-plate).

The paper is organized as follows: after this introduction, Section 2 briefly reviews CVBs and
describes how they can be produced. Then, Section 3 introduces the new device, the AQ-plate
and its mode of operation. Section 4 presents experimental results. Namely, the verification of
the spiral phase in the ASPP elements constituting the AQ-plate and the subsequent generation of
pure and hybrid CVBs. Finally, in Section 5 the main conclusions of this work are provided.

2. Cylindrical vector beams and the higher-order Poincaré sphere

Figure 1(a) presents the standard Poincaré sphere (PS) that describes a fully polarized state as a
unique point on the sphere surface. Any polarization elliptical state can be expressed as:

|e⟩ = cos(χ)e−iα |R⟩ + sin(χ)eiα |L⟩, (1)

in the basis of the circular polarization states, |R⟩ and |L⟩, given by the Jones vectors:

|R⟩ =
1
√

2
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1
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√
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The angle χ, with 0 ≤ χ ≤ π/2, controls the relative magnitude between the circular
components and defines the ellipticity angle as ε = π/4 − χ. The angle 2α, where 0 ≤ α ≤ π,
directly provides the azimuth of the polarization state. The latitude and the longitude coordinates
on the sphere are given respectively by 2ε and 2α. Thus, the circular states are located on the
poles and the linear states lie on the equator of the PS.

As mentioned, CVBs are light beams with a structured spatial pattern in their transversal plane
that is axially symmetric; thus, following the azimuthal angle (θ). A common approximation [5]
describes these beams as

|eℓR,ℓL (θ)⟩ = cos(χ)ei(ℓRθ−α) |R⟩ + sin(χ)ei(ℓLθ+α) |L⟩. (3)

Here ℓR and ℓL are the topological charges encoded, respectively, in the |R⟩ and |L⟩ states.
Pure CVBs are obtained when ℓR = −ℓL. These states in Eq. (3) define the higher-order Poincaré
sphere (HOPS) [27]. Figure 1(b) presents the first-order HOPS, where topological charges are
ℓL = +1 and ℓR = −1. The two states located in the poles are circularly polarized vortex beams,
while the states located on the equator (χ = π/4) are linearly polarized CVBs (also named
vortex vector beams), which include the radial |Rd⟩, the slanted |Sl⟩, the azimuthal |Az⟩ and the
anti-slanted |Asl⟩ CVBs as particular cases for 2α = 0, π/2, π and 3π/2 respectively, i.e, having
Jones vectors:

|Rd⟩ = ⎛⎜⎝
cos(θ)

sin(θ)
⎞⎟⎠ , |Az⟩ = ⎛⎜⎝

−sin(θ)

cos(θ)
⎞⎟⎠ , (4a)
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Fig. 1. (a) Poincaré sphere (PS) and (b) higher-order Poincaré sphere (HOPS) for CVB
with ℓL = +1 and ℓR = −1. (c-d) Polarization transformations of the PS that provide the
mapping to the HOPS for a q-plate (green arrows) and for an AQ-plate (blue arrows). The
colour symbols (triangle, square, circle) in the HOPS (Fig. 1(b)) result from the action of the
AQ-plate (blue symbols), the standard q-plate (green symbols) and the azimuthal polarization
rotator (red symbols) on the input polarization state indicated with the corresponding symbol
in the PS (Fig. 1(a)).
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The radial |Rd⟩ and azimuthal |Az⟩ states are aligned along the S1 axis in the first-order HOPS,
while the slanted |Sl⟩ and anti-slanted |Asl⟩ states lie along the S2 axis (Fig. 1(b)).

An azimuthal rotator, i.e. a device that rotates the input polarization by the azimuthal angle θ,
is described by the following Jones matrix T:

T = e+iθ |L⟩ ⟨L
|︁|︁+e−iθ |R⟩ ⟨R

|︁|︁ = ⎛⎜⎝
cos(θ) −sin(θ)

sin(θ) cos(θ)
⎞⎟⎠ . (5)

This device provides a direct mapping, with the same (2α, 2ε) coordinates, between the input
polarization represented as a point on the standard PS and the output CVB represented on the
HOPS. Such direct mapping is indicated by the red arrow in Fig. 1, and it also corresponds to the
phase shifter device introduced in [14].

A q-plate performs additional polarization transformations that can be visualized as rotations
of the PS prior to the direct mapping provided by the azimuthal rotator. The standard q-plate
yielding first-order CVBs is a HWP whose principal axis rotates as θ/2, and is defined by the
Jones matrix Q [15]

Q = e+iθ |L⟩ ⟨R
|︁|︁+e−iθ |R⟩ ⟨L

|︁|︁ = ⎛⎜⎝
cos(θ) sin(θ)

sin(θ) −cos(θ)
⎞⎟⎠ . (6)
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Note that this matrix can be decomposed as the product Q = T · Hw [38], where Hw =
|H⟩ ⟨H |−|V⟩ ⟨V | = diag[1,−1] stands for the Jones matrix of a HWP aligned along the S1 axis.
The matrix Hw induces a 180° rotation of the PS around the S1 axis (Fig. 1(d)), after which a
direct mapping with equal coordinates is performed by the T matrix. Thus, the path indicated by
the green arrows in Fig. 1 illustrates the mapping relations provided by the q-plate [39]. The
proposed AQ-plate provides an additional transformation, illustrated with the blue arrows in
Fig. 1, as it will be described in the next section.

When CVBs described by Eq. (3) are projected onto a linear analyzer, a scalar beam is obtained,
in the sense that it has a uniform polarization. But the CVB polarization pattern can be retrieved
from the shape of the transmitted intensity, which shows azimuthal lobes, in what is sometimes
referred to as petal beams [40]. In the case of the first order HOPS, the projection onto the
analyzer provides the states of the OAM Poincaré sphere [41,42]. Figure 2 shows some examples
of ℓL = −ℓR = 1, 2, 3 and χ = π/4, thus the CVBs are linearly polarized, and with α = 0 and
α = π/2. For every example, the numerical simulations plotted on the left panels show the CVB
intensity and polarization patterns. In all cases, the beam features a dark central spot created by
the polarization singularity and the corresponding polarization map. For the first order CVBs,
these angles correspond to the radial (a) and to the slanted (b) polarization. The right panels
show the intensity of the CVB transmitted through a linear polarizer with diagonal orientation.
Obviously, rotating the polarizer provokes a rotation of the lobes. We will make use of this effect
to probe the generation of CVBs with the AQ-plate.

Fig. 2. Simulation examples of CVBs generated by the superposition of two LG beams
encoded onto the |R⟩ and |L⟩ states.

3. Adaptive spiral phase plate and the compound AQ-plate

The core element in the compound AQ-plate is the recently developed LC adaptive spiral phase
plate (ASPP) [35]. The ASPP is a LC device that employs the transmission electrode technique
and patterned electrodes to generate controllable spiral phase profiles by inducing an azimuthal
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voltage distribution in the active area. The device consists of two ITO-coated glass substrates
separated by a 50µm spacer, where now the cavity is filled with the nematic LC HTD028200-200
[43] having birefringence ∆n = 0.27 for the wavelength λ = 633 nm. One substrate consists of a
photolithographically-patterned circular transmission electrode connected to voltage sources V1
and V2 and an array of 100 “pie-slice” ITO electrodes that distribute the voltage almost uniformly
across the active area (Fig. 3(a)). By adjusting the applied voltages, the ASPP can dynamically
generate both positive and negative tunable topological charges. The operating voltage range is
selected to ensure linearity in the LC’s birefringence response, which is essential for producing
the spiral phase profiles.

Fig. 3. (a) Schematic depiction of the circular transmission electrode with ITO slices evenly
arranged to distribute the voltage (drawings are not to scale, the space between adjacent
slices is about 10 µm). (b) Scheme of the tunable LC-plate.

Figure 3(b) shows a scheme of the compound adaptive q-plate. It consists of two ASPPs
with perpendicular orientation, followed by a quarter-wave plate (QWP) with neutral axes at
45° relative to the axes of the SPP layers. The first adaptive plate (ASPP1) has its LC director
aligned in the vertical direction, thus encoding a spiral phase of topological charge ℓ1 onto the
vertical linear polarization component of the input beam. Because the horizontal polarization
component is aligned with the LC ordinary index, it is not affected by the voltage applied to
this layer. The second plate (ASPP2) is oriented with its LC director aligned horizontal. Now
the horizontal polarization component is affected by the spiral phase of topological charge ℓ2,
leaving the vertical polarization unmodulated. This way, a CVB is readily generated.

However, to produce the standard CVBs as those shown in Fig. 2, with constant ellipticity
but azimuthal variation of its orientation, the spiral phases must be encoded on the circular
polarization components. This is achieved by adding a QWP with neutral axes oriented at 45°
relative to the LC director of the ASPPs, to transform the vertical/horizontal polarization states
into the left/right circular states. The output vector beam can then be described with Eq. (3)
by selecting the charges in SPP1 and SPP2 as the ones required for the output |L⟩ and |R⟩

components respectively, i.e., ℓ1 = ℓL and ℓ2 = ℓR.
The compound AQ-plate provides a one-to-one mapping between each point of the standard

PS (Fig. 1(a)) and the HOPS (Fig. 1(b)), in a similar way as standard q-plates do [39]. However,
the mapping is different than that achieved with the standard q-plate. Here, input uniform
polarization |V⟩ and |H⟩ linear states provide vortex outputs eiℓL |L⟩ and eiℓR |R⟩ respectively, and
input uniform polarization |D⟩, |A⟩, |R⟩ and |L⟩ states provide linearly polarized CVBs.

Finally, another important detail that must be considered to retrieve the correct mapping that
the AQ-plate performs between the standard PS and the HOPS is the orientation of the line
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electrode that sets the origin of the spiral phase. Being ASPP2 rotated by 90° with respect to
ASPP1 (Fig. 3(b)) makes their phase origin differ in 90°. Therefore, the Jones matrix of the
device, Aq, can be expressed as

Aq = eiℓLθ |L⟩ ⟨V
|︁|︁+ieiℓRθ |R⟩ ⟨H

|︁|︁ = 1
√

2
⎛⎜⎝

ieiℓRθ eiℓLθ

−eiℓRθ −ieiℓLθ

⎞⎟⎠ , (7)

where the i factor in the summation term in Eq. (7) accounts for the 90° phase delay between the
phase origin of the two ASPP devices. Hence, with these considerations the mapping relations
read:

|H⟩
Aq
→ ie−iθ |R⟩, |V⟩

Aq
→ e+iθ |L⟩, (8a)

|D⟩
Aq
→ eiπ/4 |Asl⟩, |A⟩

Aq
→−eiπ/4 |Sl⟩, (8b)

|R⟩
Aq
→ i|Rd⟩, |L⟩

Aq
→ |Az⟩. (8c)

These mapping relations can be easily obtained (except for the multiplying phase factor) as
the rotations of the PS indicated in Fig. 1 by the blue arrows. This transformation path stems
from the fact that the Jones matrix of the AQ-plate can be written as Aq = Q · Qw(−45) where
Qw(−45) = |D⟩ ⟨D |+i|A⟩ ⟨A | represents a QWP oriented along S2 and Q is the Jones matrix of
the standard q-plate defined in Eq. (6). Therefore, using the latter decomposition, the AQ-plate
Jones matrix can be written as Aq = T · Hw · Qw(−45). Hence, the mapping from an input state
on the PS (Fig. 1(a)) to a state on the HOPS (Fig. 1(b)) involves first a 90° rotation around the
S2 axis (Fig. 1(c)), followed by a 180° rotation around the S1 axis (Fig. 1(d)) and finally the
direct mapping to the HOPS. To clearly illustrate it, three symbols (triangle, square and circle)
drawn on the PS in Fig. 1(a) show three input polarizations, |R⟩, |H⟩ and |D⟩ respectively. The
transformations performed by the AQ-plate (blue symbols) as compared to the action of the
standard q-plate (green symbols) and the azimuthal polarization rotator (red symbols) on these
three different input states are indicated with the corresponding coloured symbol in the HOPS.
For example, in the case of the AQ-plate, the input |R⟩ state in sphere (a) (triangle) is transformed
onto the |H⟩ state in sphere (c), is kept unchanged in step (d) since it lies along the rotation axis
S1 and is finally directly mapped onto the radial state in sphere (b). Likewise, the input |H⟩

state in sphere (a) (square) is transformed onto the |L⟩ state in sphere (c), it then yields the |R⟩

state because of the 180° rotation around the S1 axis and is finally directly mapped onto the |R⟩

vortex on the HOPS in (b). Similarly, the anti-slanted state (blue circle in Fig. 1(b)) results from
operating the AQ-plate on the input diagonal state on the PS, Fig. 1(a).

4. Experimental results

4.1. Verification of the spiral phase generation

As a first step to assess the performance of the compound AQ-plate, the generation of tunable
optical vortices by plates ASPP1 and ASPP2 was examined. Following the procedure described
in [35] and sketched in Fig. 4(a), each device was placed between crossed polarizers (P1 and
P2) oriented at 45° with respect to the LC director and then imaged onto a camera. This image
shows an azimuthal intensity variation, as shown in the inset of Fig. 4(b) for cases ℓ = 3 and
ℓ = 4. From this intensity variation the azimuthal phase variation was retrieved. In each case one
of the voltage sources (V1 or V2 in Fig. 3(a)) was kept constant while the other was varied until
the expected azimuthal intensity pattern was observed, with equally spaced dark radial lines. The
graph in Fig. 4(b) shows the voltages required in the electrode with variable voltage to achieve
the corresponding topological charge. In order to generate topological charges ±ℓ, ranging from
1 to 13, voltages V1 and V2 were adjusted accordingly. Fractional charges can be applied as
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well by using the intermediate voltages. For positive ℓ, V1 varied within the range from 1.38
Vrms to 2.44 Vrms, while V2 was held constant at 1.3 Vrms. By reversing V1 and V2, a negative
spiral phase is produced with practically the same voltages, and the corresponding images feature
dark lobes rotating in the opposite sense (as shown in Fig. 5 of Ref. [35]). The procedure was
repeated for both ASPPs, concluding that very similar voltage values were required in each plate
to obtain the same charges, as shown in Fig. 4(b).

Fig. 4. (a) Scheme of the optical system to measure the ASPP retardance by imaging it
between crossed linear polarizers (P1 and P2). (b) Voltages required to achieve a given
topological charge from ℓ = ±1 to ±13. One electrode is kept constant at 1.3 Vrms while
changing the voltage on the other electrode. The inset shows an ASPP image for ℓ = 3
and ℓ = 4. (c) Optical interferometer for verifying the sign of the spiral phase. (d)-(i)
Experimental interferograms for ℓ = ±3, ℓ = ±8 and ℓ = ±12.

However, these intensity images do not reveal the sign of the charge as clearly as interference
patterns do, particularly for high-enough charge values, where the different sense of rotation of
the dark lobes is less noticeable. Therefore, to confirm the successful generation of spiral phases
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more conclusively, each device was placed in one of the arms of a March-Zehnder interferometer,
as in Fig. 4(c). The input polarizer (P) is oriented parallel to the LC director axis. Again, a lens
was used to image the ASPP plane onto a camera that recorded the interferograms where the
spiral phase can be visualized as a fork-like pattern

Voltages were adjusted to produce a spiral phase with charges ℓ = ±3, ±8 and ±12. Figure 4(d-
i) illustrates the interferograms for one of the ASPPs. The charge value is clearly visible in the
number of fringes where the central fringe splits at the singularity. Upon reversing the voltage,
the spiral phase rotates in opposite sense, and the topological charge changes sign. This is clearly
revealed by the reversal of the orientation (upward or downward) of the fork interference pattern.
The interferograms in Fig. 4 disclose the electrode pattern described in Section 3 since the
camera is imaging the ASPP plane. Notably, a horizontal dark line appears in the right half of
each interferogram, along with fainter radial lines corresponding to the electrode structure. This
horizontal line arises from the proximity of the two control electrodes in that region, causing an
abrupt change in the applied voltage. The voltage discontinuity results in a phase discontinuity
that manifests itself as a dark horizontal line in the intensity pattern captured by the camera.

This voltage gap between the two control electrodes (V1 and V2) limits the maximum
achievable topological charge, since higher topological charges require a larger voltage gap in
order to fit more 2π cycles in a single roundtrip. On the other hand, an excessive voltage gap
value makes the LC enter the non-linear zone of its birefringence curve [35]. As mentioned, the
ASPP must be operated within the linear birefringence zone to ensure a phase variation linear
with the azimuth. Therefore, the highest achievable topological charge is the result of a tradeoff
which, for these ASPPs based on commercial nematic liquid crystal HTD028200-200 having
a birefringence ∆n = 0.2719 at λ = 633 nm, leads to ℓ = 13. Of course, using a LC material
with higher birefringence and/or linear response within a broader voltage range would provide
higher topological charges. In addition, as revealed by the faint radial lines in the interferograms,
the azimuthal voltage distribution is not perfectly continuous, because of the 10 µm separation
between adjacent “pie-slice” ITO electrodes. As recently reported [44], this can be overcome
by coating the active area with a high-resistivity layer of a conducting polymer, thus filling the
spacing between the ITO electrodes and yielding a completely continuous voltage distribution.

Despite these electrode-induced features in the ASPP image plane, the experimental results
discussed in the following sections demonstrate that they do not significantly affect the quality
of the CVBs generated in the far field. Thus, the abrupt phase change, caused by the voltage
gap in the two control electrodes, is confined to a region that minimally influences the overall
beam-shaping performance of the device.

4.2. Experimental generation of pure CVBs

In this subsection we present experimental results that confirm the effective realization of pure
CVBs using the AQ-plate device. The CVB was focused by means of a convergent lens and
a camera was placed in the focal plane. Figure 5 shows the far-field captures of the generated
first-order CVBs. The AQ-plate was illuminated with the six standard polarization states: linear
states |H⟩, |V⟩, |D⟩, and |A⟩, and circular states |R⟩ and |L⟩ (each row in Fig. 5 corresponds
to one input state). For every input state, the beam was captured without analyzer (1st column)
and then with a polarization analyzer located in front of the camera, set to transmit the six
cardinal states. This was done by simply rotating the linear polarizer, and by adding a QWP
when detecting the circular components.

On the other hand, when illuminating the AQ-plate with input states |D⟩, |A⟩, |R⟩ and |L⟩
we obtain the first-order linear CVBs lying in the equator of the first-order HOPS of Fig. 1(b).
For instance, input state |R⟩ yields the radial polarization. This is noticed by the position of the
two lobes in the image captures, which rotate following the analyzer rotation. Similarly, one can
verify that input state |L⟩ leads to the azimuthal polarization output, and input states |D⟩ and
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Fig. 5. Experimental verification of the generation of vector beams with charges ℓL = +1
and ℓR = −1. The left column shows the intensity capture without analyzer. The inset in
each case shows computer simulations of the intensity pattern.

|A⟩ provide the anti-slanted and the slanted states. In all cases the mapping relations of Eq. (8),
regarding the output polarization state, are verified. Furthermore, the experimental results in
Fig. 5 assess the good quality of the CVBs generated by the AQ-plate. This is concluded when
comparing to the numerical simulations presented in the inset of every captured image.

To probe the tunability of the AQ-plate in terms of the topological charge, now the CVBs of
the second-order HOPS are generated. This is achieved by applying higher voltages to ASPP1
and ASPP2 to obtain ℓ1 = ℓL = +2 and ℓ2 = ℓR = −2. In this case the rms voltages are V1= 1.3,
V2= 1.46 and V3= 1.46, V4= 1.3 volts respectively.

The results in Fig. 6 show the same behaviour as those in Fig. 5, except for two important
differences: i) the diameter of the circular doughnut beam when no analyzer is included is now
larger than in Fig. 5, and ii) the number of lobes in the linearly polarized CVBs is now four.
Again, the experimental captures agree very well with the expected intensity patterns plotted in
the insets.

These results in Figs. 5 and 6 prove the successful generation of pure CVBs of first and second
order. However, as shown in Fig. 4, the ASPPs plates can produce with good quality arbitrary
charges up to 12. Therefore, we have tested the possibility of generating pure CVBs of such high
order. The results are presented in Fig. 7 for cases with ℓL = −ℓR = 0, 1, 2, 3, 6, 8, 10 and 12.
We only plot the intensity patterns where the input state is |R⟩, without analyzer and through
a diagonal linear analyzer. As it is shown, the diameter of the doughnut beam increases with
the topological charge, and more importantly, the number of lobes is always twice the encoded
charge. Again, the numerical calculations (insets) agree very well with the experiments.
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Fig. 6. Experimental verification of the generation of vector beams with charges ℓL = +2
and ℓR = −2. The left column shows the intensity capture without analyzer. The inset in
each case shows computer simulations of the intensity pattern.

Fig. 7. Experimental generation of pure vector beams with charges ℓL = −ℓR = ℓ with
different charges ℓ up to 12. The input beam is polarized as an |R⟩ state. For each case
the top image is the capture without analyzer while the bottom image is the beam filtered
through a linear diagonal analyzer.

4.3. Experimental generation of hybrid CVBs

The results in the previous subsection only consider the generation of pure CVBs, which are
obtained when ℓL = −ℓR. However, the AQ-plate is not restricted to this situation (unlike standard
q-plates), since an independent charge can be addressed to each ASPP. Therefore, the AQ-plate
device can be set to generate hybrid CVBs, as we demonstrate in Fig. 8 and Fig. 9. Since the
beam’s diameter changes with the charge, we selected charge values close enough to provide a
good overlap of the two vortex beam circular components.

Figure 8 take as starting point the pure CVB obtained with ℓL = −ℓR = 6. The input polarization
state is once again |R⟩. Figure 8(a) -first column- shows the expected intensity and polarization
map obtained through numerical simulations, which features local linear polarization at all
points (depicted as green in the figure). The numerical calculation of the intensity transmitted
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Fig. 8. Simulated intensity and polarization pattern for: (a) a pure vector beam with charges
ℓL = −ℓR = 6, and hybrid vector beams with charges (b) ℓR = +6 and ℓL = −7 and (c)
ℓR = +6 and ℓL = −5. The input beam is polarized as an |R⟩ state. In each case the second
column shows the intensity transmitted through a diagonal linear analyzer, with numerical
simulations (top) and the corresponding experimental capture (bottom).

Fig. 9. Simulated intensity and polarization pattern for: (a) a pure vector beam with charges
ℓL = ℓR = +6, and hybrid vector beams with charges (b) ℓR = +6 and ℓL = +7, (c) ℓR = +6
and ℓL = +5 and (d) ℓL = +6 and ℓR = +4. The input beam is polarized as an |R⟩ state.
In each case the second column shows the intensity transmitted through a diagonal linear
analyzer, with numerical simulations (top) and the corresponding experimental capture
(bottom).

through a diagonal linear analyzer is plotted in the second column of Fig. 8(a) together with the
experimental capture, revealing a very good agreement and the expected |ℓL − ℓR | = 12 lobes.
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Figures 8(b) and 8(c) present the corresponding numerical and experimental results for ℓL = +6
and ℓR = −7, and ℓL = +6 and ℓR = −5 respectively. Now, in Fig. 8(b) the outer part of the
doughnut beam shows right helicity (indicated as red ellipses), while the inner part of the circle
shows left helicity (indicated as blue ellipses). This occurs because |ℓR |> |ℓL | and therefore the
diameter of the focused doughnut beam in the |R⟩ component is larger than the one in the |L⟩
component. The situation is reversed in Fig. 8(c), since now |ℓL |> |ℓR |. Hence, the inner part of
the circle has right helicity while the outer part shows left helicity. Nevertheless, in both cases
the ellipticity is very low. The difference between cases is much easier to note by placing a linear
analyzer and counting the number of lobes. In Fig. 8(b) we find |ℓL − ℓR | = 13 lobes while in
Fig. 8(c) there are |ℓL − ℓR | = 11 lobes.

Figure 9(a) considers a similar situation, with input |R⟩ polarization and diagonal linear
analyzer, but taking as a starting point the case with ℓL = ℓR = +6, i.e. now both polarization
components encode the same charge. Therefore, the output is a vortex beam of uniform
polarization. This provides a doughnut beam when observed without analyzer (first column)
and also when placing the diagonal linear analyzer (second column). In Fig. 9(b) the addressed
voltages are those to yield charges ℓL = +6 and ℓR = +7. The intensity pattern without analyzer
is equivalent to that in Fig. 8(b), with again the outer part of the ring featuring right helicity while
the inner part shows left helicity. But the most significant difference with respect to the case in
Fig. 8(b) is that now these charge values lead to |ℓL − ℓR | = 1 . Consequently, only one single
lobe that adopts the shape of a half-moon is expected when transmitting the beam through the
linear analyzer. This is indeed shown in the numerical simulation as well as in the experimental
result plotted in the second column of Fig. 9(b).

Figures 9(c) and 9(d) illustrate the cases with charges ℓL = +6 and ℓR = +5, and ℓL = +6 and
ℓR = +4 respectively. In both situations the outer part of the ring has left helicity while the inner
part has right helicity. Figure 9(c) shows an intensity pattern through the diagonal linear analyzer
like that in Fig. 9(b), i.e., with a single lobe (again the difference |ℓL − ℓR | is one), but now the
bright lobe is pointing upward instead of downward. In Fig. 9(d) the difference is |ℓL − ℓR | = 2,
thus two lobes are observed behind the analyzer. The experiments confirm the result in all cases.

5. Conclusions

In summary, we have presented the proof-of-concept of a new LC device that enables the
dynamic generation of arbitrary CVBs, with tunability both in the operation wavelength and
in the topological charge. The proposed device consists of two LC ASPP cascaded with a
quarter-wave plate layer. A specially designed electrode distribution allows to independently
tune the topological charge in each spiral phase plate, which are encoded in the output circular
polarization components. Because the topological charges can be controlled independently,
the device can generate arbitrary CVBs. The LC employed in this device (HTD028200-200)
operates in the visible range and has a moderate birefringence (∆n = 0.2716 at 633 nm). Thus,
it is useful to generate tunable CVB in the visible range, once the required voltages have been
calibrated, since the retardance of each layer depends on the wavelength. The device shows the
remarkable advantage of encoding independent and tunable topological charges in each output
circular polarization component. This proof-of-concept device could be further improved by
refining the design of the constituent ASPP using the recently reported trans-modal technique [44].
Employing a LC material with higher birefringence, such as the mixture NLC1929 (∆n = 0.3375
at 633 nm) [45] could further improve its performance. Compared to SLMs, the proposed device
is compact, transmissive, and with an electrode design advantageous for generating CVBs without
significant diffraction losses. The presented proof-of-concept AQ-plate remains comparable in
size to SLMs. However, it has the potential to be scaled to more compact integrated devices for
generating reconfigurable structured light, a field where the integration of liquid-crystals with
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metasurfaces is one of the mechanisms to achieve tunability of the different degrees of freedom
[46,47].
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