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Resumen

El objetivo de este proyecto radica en la creacién de un modelo de lenguaje (Large Language
Model, LLM) para la generacién automatica de nombres estandar (standard names) empleados
en las Climate and Forecast Conventions (CF), que son utilizados en el ambito de las geociencias
para estandarizar los metadatos y asi mejorar la interoperabilidad y el intercambio de datos.

Estos standard names son etiquetas que definen las variables dentro de un conjunto de datos.

El objetivo de estos modelos del lenguaje, es automatizar la creacién de standard names, mini-
mizando errores humanos, y permitiendo ampliar tanto la especificidad, como la cobertura del
vocabulario disponible. Este proyecto estudia adaptar un modelo de lenguaje preentrenado para
que sea capaz de generar standard mames a partir de descripciones de parametros o variables
fisicas, altamente especializadas, en las que diferencias sutiles en la terminologia pueden implicar

una semantica fisica, significativamente distintas.

Palabras clave: ’Large Language Models’, ’Climate and Forecast Conventions’, ’Standard

Names’, ’Ciencia de Datos’, 'Inteligencia Artificial’



Abstract

The objective of this project is the development of a Large Language Model (LLM) for the auto-
matic generation of standard names used in the Climate and Forecast Conventions (CF). These
conventions are widely employed in geosciences to standardize metadata in order to improve
interoperability and data exchange. Standard names serve as labels that precisely define the

variables within a dataset.

This language model aims to minimize human error in the creation of standard names and
to expand both the specificity and coverage of the existing vocabulary. The project explores
the adaptation of a pretrained language model—originally designed for programming language
tasks—to generate standard names from highly specialized physical descriptions, where subtle

differences in terminology may correspond to significantly different physical meanings.

Key words: ’Large Language Models’, ’Climate and Forecast Conventions’, ’Standard names’,’Data

Science’, ’Artificial Intelligence’
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Introduction

The Climate and Forecast Conventions (CF Conventions) are a standard for organizing scientific
data in network common data form (netCDF) files to facilitate their reading, analysis, and auto-
mated processing, especially in climate and weather numerical modeling and observation. These
CF Conventions allow for the integration of observational and simulated data, ensuring inter-
operability, long-term compatibility, and scientific reproducibility. The Chapter 2, introduces
netCDF, and its data model, which is the standard data format used by the CF community to

exchange data.

One of the most important aspects of these metadata is the clear differentiation between ele-
ments, which ensures that datasets are correctly interpreted and used in scientific research. To
this purposes CF Conventions define standard names for describing physical parameters and its
relationships between elements of a netCDF components to describe structural metadata of the
data itself. The Chapter 3, introduces the CF Conventions and it’s most important elements

including standard names and its data model, related to netCDF data model.

In the current landscape, marked by the rise of fields like artificial intelligence (AI), and in partic-
ullary the Natural Language Processing tecnologies based on neural networks. A neural network
is a machine learning model that mimics the human brain’s function by using interconnected

nodes to identify patterns, assess data, and make predictions[1].

Multiple layers of connected nodes, sometimes referred to as artificial neurons, make up a neural
network. An input layer, one or more hidden layers, and an output layer are among them. Every
node has a weight and threshold and is connected to other nodes. A node is activated and sends
data to the next layer when its output exceeds its threshold. The signal is not transmitted if
the output falls below the threshold.

As neural networks process more information, they gradually improve their accuracy by learning
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from training data. They can quickly classify and organize data after being taught, making them
extremely useful tools in computer science and artificial intelligence (AI). They are particularly
useful in fields like voice and picture recognition, where tasks that previously required hours
of human expertise can be finished in minutes due to their speed and efficiency. The search

algorithm used by Google [2] is a well-known illustration of a neural network in action.

Hidden
Input
Output

()
O

Figure 1.1: A schematic structure of a neural network. The circles represent the nodes and the
arrows represent connection and data flow among processing units (Source [3])

John Hopfield created Hopfield networks, a kind of recurrent neural network, in the 1980s [4].
They are mostly used to simulate associative memory. They draw inspiration from how neurons
behave collectively in the brain [5]. John Hopfield received the Nobel Prize in Physics in 2024, for
which the prize motivation was “for foundational discoveries and inventions that enable machine

learning with artificial neural networks” (Source [6]).

Hopfield networks function by using a network of connected neurons to store patterns as stable
states. Every neuron is linked to every other neuron; the weights of these connections dictate
how they affect each other. Associative recall is the process by which the network iteratively
changes the neuronal states in response to a partial or noisy version of a remembered pattern

until it converges to the closest stored pattern.

The idea of energy reduction is essential to their operation. In order to lower a global energy
function, the network modifies the states of its neurons until it reaches a minimum that corre-
sponds to a recorded memory. This enables Hopfield networks to carry out content-addressable
memory tasks, which, like human memory, enable them to recall comprehensive information

from incomplete input [5].
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Figure 1.2: How Hopfield’s neural networks work (Source [7])

Natural Language Processing (NLP) is a field of computer science that enables computers to
interpret language in a more human-like manner. A subtype of NLP is the large language model
(LLM), which is trained on vast amounts of textual data using sophisticated neural networks.
These models will be discussed in more detail in Chapter 4.

This project aims to develop an Al-based tool for the automatic generation of CF standard

names, with a particular focus on enabling the model to understand the physical principles

represented by these labels.

Finally, an experimental setup for modeling CF standard names using LLMs is described in

Chapter 5, with conclusions presented in Chapter 6.



The Network Common Data Form

The network common data form (netCDF) is a primary data management system for scien-
tific information, which is vital in computer physics and climate and geophysical modeling
and observations. The most valuable aspect of netCDF is its portability, meaning it can be
reasonably, accessed and processed across a host of different computer architectures. This is
necessary for fine-grained numerical simulations [8]. Then adding metadata of variables, phys-
ical units, and spatial-temporal coordinates. The netCDF data-model enables a way of data
self-descriptiveness, which is necessary in scientific fields and in particular in physics for precise

data interpretation datasets.

The climate and forecast conventions (CF or CF Conventions) [9] provides a standardized meta-
data framework to improve interoperability by guaranteeing that datasets include rich contextual
information in addition to plain numerical values. In physics-based study fields including fluid
dynamics, thermodynamics, atmospheric physics, and oceanography, provides precise spatial-
temporal references, physical units, and physical variables definitions. By providing a stan-
dardized encoding method, CF conventions facilitate data consistency and comparability across

different numerical models and observational datasets.

2.1 Classic Model

The classic netCDF data model is built around three main components: variables, dimensions,
and attributes. This foundational approach to structuring data was established in the very firsts
versions of netCDF and continues to serve as the backbone of all netCDF data products today.

They consist of the following elements:



1. Classic Model The Network Common Data Form

L File
_.l location: Filename .—

| create( ), open( ), ...

Variables and
Attribute Dimension attributes have one
name: String name: String Of six primitive
type: DataType length: int data types.
values: 1D array S s de o
isUnlimited( ) DataType
char
Variable byte
name: String short
_’| shape: Dimension][ ] o int
type: DataType float
double
array: read(), ...

A file has named variables, dimensions, and
attributes. Variables also have attributes. Variables
may share dimensions, indicating a common grid.
One dimension may be of unlimited length.

Figure 2.1: netCDF’s classic data model (Source [10])

e Variable: Multidimensional Array of data. The netCDF variable types can be one of six

defined formats representing basic numerical types

e Dimension: In netCDF data multidimensional arrays, its sizes on each dimension are
labeled as common dimension type and values, each with a name and length. There can
be one unlimited dimension that grows as data is added to the file. Each netCDF file

supports only a single unlimited dimension.

e Attribute: Attribute in netCDF add brief metadata to variables or the file itself (global
attribute). They are scalar or 1D vector and typically kept small [10].

netcdf example { // example of CDL notation

dimensions:
lon = 3 ;
lat = 8 ;
variables:
float rh(lon, lat) ;
rh:units = "percent" ;
rh:long name = "Relative humidity" ;
// global attributes
:title = "Simple example, lacks some conventions" ;
data:
rh =

2o 3 By Tp 11, 13, 17, 1Y,

23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89 ;
}

Figure 2.2: Example of common data language notation describing a simple netCDF dataset
(source [11])

This common data language (CDL) describes a simple netCDF dataset called example, where

we can see the three parts of the netCDF classic model.
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As it’s shown, the dimensions block defines two sized dimensions, ‘lon’ (longitude) with size 3
and ‘lat’ (latitude) with size 8, defining together a 3x8 grid. In the variables block declares a 2D
float variable ‘rh’ (relative humidity), using the ‘lon’ and ‘lat’ dimensions, including two variable-
level attributes, ‘units="percent”’ that shows how the variables are measured and ‘long_name

979

= “Relative humidity”’ which is a human-readable description.

After that, the attributes block which is a global attribute for documentation or metadata in
this case ‘:title= Simple example, lacks some conventions”’ which means that the file does not
follow the standard conventions like climate and forecast conventions. And, finally, the data

section, which provides 24 data values for rh (corresponding to the 24 values of the 3x8 grid).

2.2 The netCDF Enhanced Data Model

The netCDF data model represents our conceptual framework for organizing and interpreting
data [10]. Originally, the classic model, based on just dimensions, variables and attributes,
formed the foundation of this approach. With the release of netCDF version4.0 (netCDF4), the
model was extended to create an enhanced data model (see Figure 2.2). This extended model
maintains full backward compatibility with the classic model (i.e. netCDF3) while introducing
powerful new features, including groups, support for multiple unlimited dimensions, and user-

defined data types.

When the purpose of the data is to ensure the highest level of compatibility with existing software
applications or tools, it is recommended, when possible, that new datasets be created using the

simply classic model.

Variables and attributes have one of
twelve primitive data types or one of
location: Filename Jour user-defined types.

e

" Group O——————— UserDefinedType PrimitiveType

V| name: String char

File

A file has a top-level unnamed group. Each group may contain one or more
named subgroups, user-defined types, variables, dimensions, and attributes.
Variables also have attributes. Variables may share dimensions, indicating a

common grid. One or more di;

Figure 2.3: The netCDF Enhanced Data Model (Source [10])

may be of

ited length.

typename: String byte
A short
Di N Enum int
Attribute : e
S name: String float
na.meD Ting longth: iut Opaque double
type: DataType _&isUnlir‘lil:ed unsigned byte
values: 1D array ited() | Compound unsigned short
| Compound | nsigned int
A unsigned int64
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- VariableLength Fring
name: String
4 shape: Dimension] ] K—
type: DataType
array: read( ), ...




3 The Climate and Forecast

Conventions

The primary advantage of Climate and Forecast (CF, or CF Conventions) is the automation of
data processing and model connection in CF [9]. Scientific computing software already knows
how to read this structure when a dataset satisfies CF standards, allowing for rapid visualization,
numerical methodology and large-scale simulations with little manual work required. They are
also designed to accommodate a number of spatial and temporal representations compatibly

with each other, in different modeling scenarios.

CF Conventions are especially useful in the context of climate modeling, atmospheric physics
or numerical weather prediction, where structured, interpretable, and fast datasets need to be
maintained. Aside from climate models, they have also been used for observational data now as
well as station-based data, profile soundings, and satellite data, enabling researchers to cross-
check theoretical models against empirical measurements. Such a combination of modeled and
observed data is fundamental to understanding intricate physical systems, such as atmospheric

circulation, ocean currents, and planetary boundary layers.

Using these rules for ordering metadata provides data interoperability, process automation and
long-term data compatibility with legacy systems that CF conventions enable. Crucially, in
computational physics (long-lived simulations; geophysical models), this is important to keep
the data structures usable over time. The interoperability between numerical models and obser-
vational datasets will allow scientists to step seamlessly into CF-compliant workflows, preserving

interoperability of existing tools and applications.

In the end, the CF Conventions (extend netCDF just enough to be useful) give a firm standard,

and so do CF conventions on top of them. CF lets you manage, share and analyse complex
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physical datasets with confidence. Which in turn ensures that numerical simulations, geophysi-
cal analysis and climate models can always be reproduced and as scientific rigorous as possible.
These conventions help to ensure that the physical datasets are used to do physics and climate
advancing atmospheric dynamics, oceanography, and Earth system modeling, using high pre-
cision coupled with the notional gap between theoretical research and observatory experiences

from physicists to climatologists.

3.1 Principles for designing

The CF conventions aim to enable datasets to be self-descriptive, datasets that can be under-
stood on their own without any external references. Rather than codes, they use controlled

vocabulary with simple, self-documenting terms and fuller definitions in CF documentation.

The cost of changing the CF conventions mostly comes from how they are used in real-world
situations, so changes are only made when truly necessary. To keep things easy to read and use,
the rules for new standard names follow a clear structure, and the vocabulary is based on the
CF data model.

Metadata is always written to be both human-readable and easy for software to process. For
this reason, the conventions focus on being user-friendly for both data creators and users. They

also aim to avoid repeating information to reduce errors and prevent inconsistencies.

Instead of telling people what data they must collect, CF standards give flexibility, most features
can be used with or without CF. To make sure data stays usable over time, metadata created

with older versions still works with newer versions.

New features are only added when existing methods can’t do the job, so older datasets can

continue to be supported [9].

3.2 Overview

All netCDF users, regardless of the software tools or libraries they use, can find a thorough
description of their concepts in the NetCDF User’s Guide (NUG, [12]). It contains a lot of
high-level overviews, which is especially beneficial for data users, producers, managers or tool
developers working with netCDF files. Also, the NUG contains voluminous specifications for

developers and maintainers of netCDF data model implementations.

The "Conventions’ global attribute in a netCDF file specifies the standards or conventions that
the dataset follows, usually within the context of the Unidata [13] ecosystem, Unidata is the
organization that develops and mantains the CF conventions. This attribute contains a string

of one or more convention names, separated by spaces or commas.
Unidata provides a page where many conventions are registered [14]. However, the list found

8
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there is neither complete nor regularly updated. Some of the conventions listed are obsolete or
no longer in use, and there are others in active use that do not appear on the list. As a result,
this page should not be viewed as a fully authoritative reference for netCDF conventions. At

present, no single official or comprehensive source exists.

Conventions are typically accompanied by documentation and examples that define how netCDF

files should be structured according to that specific standard [9].

The ’Conventions’ global attribute in a netCDF file identifies the data standards or structural
rules the file follows, generally from the Unidata community. These conventions guide how
variables, dimensions, metadata, and units are described within the file to ensure consistency

and interoperability.

The attribute itself is a string that may list one or more conventions, separated by spaces or
commas. These conventions define expected practices for naming, organizing, and documenting
data.

Unidata maintains a page listing many of these conventions. However, that list is not compre-
hensive or regularly maintained. Many of the conventions included there are outdated or no
longer in common use, while some widely used modern conventions are missing altogether. For
this reason, although the page is a helpful starting point, it cannot be considered a definitive or
authoritative source. Unfortunately, no such complete reference currently exists. Each conven-
tion is typically associated with its own documentation and usage examples that demonstrate
how a netCDF file should be structured under that standard.

UDUNITS-2 [15], used within some conventions, is a system and software library that defines

and converts physical units of measurement in a standardized way.

Latitude, longitude and time are available standard names, specifying the location on the Earth’s
surface of data values at a moment in time. However, a single vertical coordinate is not always
enough to locate a data value vertically. The ’standard_name’ and ’formula_terms’ attributes
are used to establish a mapping from the values of the parametric vertical coordinate used in
the dataset to the dimensional vertical coordinates for uniquely locating data on the surface of
the Earth.

Occasionally, data observations are multidimensional cells, not single point values. The CF
conventions provide a ’bounds’ attribute to specify how big and exactly where these intervals or
cells start and end, to describe the extent (in coordinate space) of extensive physical variables or
fields (for example, accumulations or means). The NUG declares coordinate variables, although
in practice, gridpoint data is often assumed to always be at the center of their cells. That is
not how CF works. In the absence of bounds, the cell where this data point is located is not

defined, so no assumptions can be made about its cell or extent.

Sometimes, the data is cell-based (which can be described with easily derived statistics such as
mean or maximum), and this needs to be described with the ’cell_ methods’ attribute. This is

especially helpful to document climatological and diurnal statistics.
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Data can be packed to reduce size, which means reducing the data size by sacrificing precision.
Values are stored with reduced precision by applying a chosen scaling and offset (see NUG[16]

for more details), or it can be compressed while retaining full precision by omitting missing data.

3.3 The Climate and Forecast Conventions Data Model

Although the CF Conventions originally existed as a long descriptive document detailing the
rules and structures of the convention and still serve that purpose, starting from version CF-1.11
a CF Data Model was introduced to provide a clearer and more formal representation of the

underlying structure.

This data model helps standardize how datasets are understood conceptually, beyond just how
they are encoded in netCDF. CF conventions are in place to facilitate the creation, interpretation,
and interchange of climate and forecasting data as netCDF files. In order to assist in this goal,
the CF Conventions specify an explicit data model that defines the conceptual structure of CF

datasets in a way independent of netCDF’s encoding.

The CF data model gives a standard and complete view of CF datasets. It leads the construction
of future CF extensions, facilitates interoperability with other data models, and assists software
developers in constructing CF-compliant tools and interfaces. By abstracting from encoding

specifics, it also positions CF for possible use beyond netCDF.

A data model embodies the conceptual data structure; it assigns dataset elements, their scientific
purpose, and their relationship to each other. It enforces rules and constraints that determine
how metadata is associated with data so that it may be scientifically understood and processed

meaningfully.

The data model was constructed based on several guiding principles:

e [t should be able to describe any current or future CF-compliant dataset.
e It should only have the absolute minimum parts necessary to fully define CF concepts.

e It should not rely on netCDF-specific knowledge, so it is easier to use with other types of

data in the future.

The CF data model’s capacity to differentiate between seemingly identical data kinds is another
especially remarkable characteristic. When working with values that have the same units and
may appear to have the same physical meaning but actually represent completely different

notions or measurements, this is particularly crucial.

For example, two quantities will have the same unit in meters, but one will be measuring the
ocean bottom depth, and another will be measuring the surface height. In the practical world,

they are inherently different quantities, although the units are the same and even the range of

10
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values is similar. To make these differences identified and maintained in the data set, the CF

data model provides room for the required differences in metadata and structure.

Because CF promotes the use of descriptive metadata to supply context, not just standard
names, units, axis definitions, and cell methods, but in ways that help make it even more under-
standable what a variable is referring to, this is particularly potent. In scientific data processing,
where inference based on similarities at the surface level could result in false conclusions, this

level of specificity is essential [9)].

float ata ();
ata: long_name='The air temperature’

ata: units='K’;
ata: standard_name='air_temperature’;

float sst ();
sst: long name='sea surface temperature’;

sst: units="K’;
sst: standard_name='sea_surface_temperature’;

Figure 3.1: Example of two different temperature standard names

Looking at the figure, we notice two distinct attributes: one with the standard name ’air_temperature’

and the other ’sea_surface_temperature’.

When we look for their definitions in the CF Standard Name Table [17]:

standard_name: air_temperature
canonical units: ’K’
description: Air temperature is the bulk temperature of the air,

not the surface (skin) temperature. It is strongly
recommended that a variable with this standard name
should have a units_metadata attribute, with one of
the values ’on-scale’ or ’difference’, whichever is
appropriate for the data, because it is essential to
know whether the temperature is on-scale (meaning
relative to the origin of the scale indicated by

the units) or refers to temperature differences
(implying that the origin of the temperature scale is

irrelevant), in order to convert the units correctly.

While ’sea_surface_temperature’:

11
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standard_name: sea_surface_temperature

canonical units: ’K’

description: Sea surface temperature is usually abbreviated as
’SST’. It is the temperature of sea water near
the surface (including the part under sea-ice, if
any). More specific terms, namely ’sea surface skin
temperature’, ’sea surface subskin temperature’, and
’surface temperature’ are available for the skin,
subskin, and interface temperature respectively. For
the temperature of sea water at a particular depth
or layer, a data variable of sea water temperature
with a vertical coordinate axis should be used. It
is strongly recommended that a variable with this
standard name should have a units metadata attribute,

with one of the values ’on-scale’ or ’difference’.

At first glance, both variables might appear to represent similar physical quantities. They both
involve measurements of temperature, and they even share the same units, but they are not the

same.

This example highlights the importance of relying on the standard name metadata, not just
units or variable names, to accurately understand the role and meaning of each variable within
a dataset. Careful attention to these distinctions is essential when working with CF-compliant
data, ensuring that datasets are interpreted and used correctly in scientific research and appli-

cations.

3.3.1 Elements of CF-netCDF

In order to standardize the description of scientific data and facilitate uniform interpretation and
usage in climatic and geospatial applications, CF-NetCDF [18] is a data format that combines
NetCDF files with the CF Conventions.

The CF data model elements, which are intended to characterize climate and forecasting data,
are the source of the CF data model. To reduce the number of pieces, remove netCDF specific
aspects, and preserve the ability to fully define the CF conventions, the CF data model abstracts
these elements (mentioned in Table 1.1 from [7]) and their interrelationships (shown in Figure
3.1). This method guarantees that the model satisfies the design requirements of being both

comprehensive and flexible.

Their elements are the following:

e Domain Variable: Locations in multi-dimensional space.

e Data Variable: Scientific data discretized within the domain.

12
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The Climate and Forecast

Conventions

¢ Dimension: Independent axis of the domain.

e Coordinate Variable: Unique coordinates for each axis.

e Auxiliary Coordinate Variable: Additional or alternative coordinates.

e Scalar Coordinate Variable: Coordinate for a size-one axis.

e Grid Mapping Variable: Horizontal coordinate system.

e Boundary Variable: Defines cell vertices.

e Cell Measure Variable: Describes cell areas or volumes.

e Ancillary Data Variable: Metadata related to the domain.

e Mesh Topology Variable: Describes related domains with cell connectivity.

e Location Index Set Variable: Defines domain with cell connectivity.

e Formula Terms Attribute: Vertical coordinate system.

e Feature Type Attribute: Describes the characteristics of sampling geometry.

e Cell Methods Attribute: Describes variation within cells.

Figure 3.1, it’s been shown that the idea of an ”abstract generic coordinate variable” to refer

to coordinates when the precise type (coordinate, auxiliary, or scalar) is irrelevant captures

the relationships between these components. The CF data model maintains its flexibility by

streamlining these relationships and eliminating netCDF-specific encoding, which allows it to

enable possible future additions while properly describing CF conventions (for more details see

[9])-

Dimension

Cell Methods

Formula Terms

0.. 1. J;l
NC::Dimension NC::Variable 0:31 NC::Attribute
[
“gb;r:f‘”cct» M rre == T Grid Cell Ancillary Mesh Location
Coordinate "2 Variable Variable Variable Mapplng Megsure D_ata TOD?IOQV Inde_x et
i Variable Variable Variable Variable Variable
Variable
[
Auxiliary = Scalar
Coordinate ng:idalgite Coordinate
Variable Variable

Figure 3.2: The relationships between CF-netCDF elements and netCDF variables are outlined,
with an abstract generic coordinate variable introduced to simplify coordinate reference without
specifying type (Source [9]).

13
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3.3.2 The field construct

A CF data variable and all of its related metadata are equivalent to a field construct in the
CF data model. Field ancillary constructs with metadata defined over the same domain, a
data array, a domain construct that specifies the measurement locations and cell properties for
the data, and cell method constructs that explain how cell values represent physical variations
within the domain are its constituent parts. It also contains attributes that characterize features

of the data that are not domain-specific.

The data array is the only required component; all other components are optional. Certain
netCDF features of variables, like ’units, 'long_name’, and ’standard_name’, as well as group
attributes and global attributes like ’history’ and ’institution in the root group, the root group
is the structure of an netCDF4 file, corresponding to the qualities of the field construct. The
word ’property’ is used instead of ’attribute’ because not all CF attributes are regarded as
properties in this context; certain attributes serve structural purposes in the file or point to
other netCDF variables.

Unless they are overridden by attributes of the same name in individual variables, netCDF
group attributes in the data model apply to all data variables in the file. This is required
because group attributes’ metadata needs to be moved to the field construct because the data
model does not take the group notion into account. It is regarded as a property of the field
construct and applies to all data variables in the file with a discrete sampling geometry if the

global file attribute ’featureType’ is present.

Additionally, only specific units are suitable with each standard name since the unit’s property
is constrained by the ’standard_name’ property. Moreover, it could place restrictions on the size
that a data variable needs to possess. Similarly, the domain’s axes are subject to criteria from
the 'featureType’ attribute. Nevertheless, ’standard name’ and ’'featureType’ are not handled
as distinct constructs within the field, in keeping with the model’s simplicity objective, because
these constraints are not dependent on other constructs for interpretation (more details and

explanations at [9]).

3.4 Description of the data

The following attributes qualify the material and establish the measurement units of each com-
ponent. The ’long name’ and ’units’ attributes follow the Cooperative Ocean/Atmosphere Re-
search Data Service (COARDS) standard. COARDS is complemented by the ’standard_name’
attribute, which provides unique identifiers for variables. This is particularly useful in data
exchange, since variable names may differ within institutions, thus making them less readily
identifiable.

The ’standard_name’ attribute can be employed in order to name variables carrying data. The

applications employing such attributes will also have to define coordinate types.
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3.4.1 The units attribute

The ’units’ attribute is required for all variables representing dimensional quantities, except for
those related to boundaries and climatology. For dimensionless quantities, the 'units’ attribute

is optional.

The value of this attribute is a string recognized by the UDUNITS-2 package, with some ex-
ceptions. Unit strings are case-sensitive. CF uses UDUNITS only to define valid units but does
not require the UDUNITS software for unit conversion. Most unit conversions involve multiply-
ing by a scale factor, with special handling needed for temperature units and time coordinate

variables.

While the COARDS convention disallows the degrees unit, CF allows it when appropriate, such
as for the solar zenith angle or transformed grid coordinates like latitude and longitude. In these
cases, the coordinate values are not true latitudes and longitudes and must be identified with

more specific forms of degrees.

3.4.2 The long name attribute

The ’long_name’ attribute, as defined by NUG, provides a detailed descriptive name that can
be used, for example, to label plots. For backward compatibility with COARDS, this attribute
is optional. However, it is strongly recommended to include either this attribute or the ’stan-
dard_name’ attribute, described in the following section, for all data variables and coordinate
variables to make the file self-describing. If a variable does not have the ’long_name’ attribute,

an application may default to using the ’standard_name’ (if available) or the variable name itself.

3.4.3 The standard name attributte

Accurately describing the physical quantities being represented is crucial for the exchange of
scientific data. While the ’long_name’ attribute contributes to this, it primarily serves as a means
for reaching a goal. In many cases, providing a more precise description is far more beneficial,
as it allows users from different sources to determine whether quantities are comparable. To
ensure consistency, this convention assigns each variable a ’standard_name’, providing a unified

reference across datasets.

A standard name is associated with a variable via the ’standard_name’ attribute, which contains
a string value representing the standard name. This string may optionally be followed by one

or more spaces and a standard name modifier, selected from a predefined list of modifiers.

Every standard name available is collected in the standard name table. Each entry must have

the following attributes:
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e Standard name: Name that qualifies the physical quantity. This standard name must

not have any spaces between words.

e Canonical units: Units used to describe the physical quantity, unless it is a dimensionless
magnitude. A variable with a standard name must have units that are equivalent to he

canonical units

e Description: This defines the qualifiers for physical quantities, specifying aspects such as
the surface on which a quantity is measured or the conventions for flux signs. While funda-
mental physical quantities have precise definitions in scientific literature, this description
focuses on the rules governing variable types, attributes, and coordinates that must be

adhered to by any variable assigned a standard name [9].

float tama(X,X_area) ;

tama:long_name = "Variance respect the time of atmosphere mass per unit area" ;
tama:units = "kg m-2 s-1" ;
tama:standard_name = "tendency_of_atmosphere_mass_per_unit_area"” ;

Figure 3.3: Example of a standard name usage

3.5 The standard name creation process

CF Standard Names Guidelines lay down some rules on how to name geophysical quantities
used in science data [19]. The standards enable clarity and interoperability in the scientific data
exchange, particularly in formats such as netCDF. CF standard names: a casing of lowercase
words without special encoding. Text strings in quotes. The standards require CF standard
names to be camelcase strings with underscores between words. Use American English (e.g.,
vapor instead of vapour). Wherever you see a name, it must be an unambiguous and unique
physical quantity. Here, 'sea_surface_temperature’ is the temperature on the sea surface and not

‘air_temperature’.

The next is the general structure:

[Surface] [Component] standard_name [in medium] [due_to process] [assuming condition]

The measured quantity’s geographic location is indicated by the surface. For instance, ’at_sea_level’
denotes sea level, whereas ’at_surface’ denotes the earth’s surface. A vector’s direction is spec-
ified by the component; for example, 'northward wind’ denotes the wind’s northward compo-
nent. The environment in which the quantity is measured, such as ’in_air’ or ’in_sea_water’, is
described by the medium. The ’due_to_advection’ term is an example of a quantity that may
be broken down into its constituent parts using this approach. The condition, such as ’assum-

ing_dry_adiabatic_lapse_rate’, defines an assumption that is used to quantify the quantity.

Examples of standard names include ’air_temperature_at_2_m_above_ground_level’, which refers

to the air temperature at 2 meters above the ground level, and 'net_upward_longwave_radiation_flux_
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in_sea_water_due_to_diffusion’, which represents the net upward longwave radiation flux in sea

water due to diffusion.

Additional rules include the use of 'net_’ as a prefix to radiative fluxes to indicate the difference
between incoming and outgoing radiation. The term ’content’ is used for quantities that are
vertically integrated, such as ’content_of_atmosphere_layer’. The term 'mass_fraction_of X _in_Y’
is used to describe the mass fraction of a component X in a medium Y. Units should not be

included in the name; they are specified separately to avoid redundancy.

Any member of the scientific community can propose new standard names by submitting pro-
posals to the discussion section on the Github. These proposals must include a clear justification
and follow the established guidelines. If approved, they are incorporated into the list of standard
names. These guidelines are essential for maintaining consistency and interoperability in the

handling of scientific data, facilitating its use and understanding across disciplines and platforms.

3.6 Modifiers for standard names

A key requirement for the exchange of scientific data is the ability to accurately describe the
physical quantities being represented. While the ’long_name’ attribute allows some description,
it is used informally and inconsistently. For applications that require clear and consistent def-
initions, a more standardized approach is needed. To meet this need, variables can optionally

be associated with a ’standard_name’ that uniquely identifies the quantity they represent.

The ’standard_name’ attribute links a variable to a predefined name that describes a specific
physical quantity. This name may optionally be followed by one or more modifiers that clarify
the nature of the data, for example, indicating uncertainty or a rate of change. All valid standard

names are listed in a controlled vocabulary called the standard name table.

When relevant, the table also provides mappings to other naming systems like GRIB codes and
AMIP identifiers.

The standard name table is published online in both XML and formatted text versions. The
formatted version can be used to look up appropriate names for variables. Some standard names
are tied to predefined sets of allowable values, for instance, for variables that describe specific

regions or area types.

In some cases, a standard name alone is not enough to fully describe a variable. If the data
reflects operations like averaging over time or represents a measure of uncertainty, additional
qualifiers can be used. These may appear as part of the ’standard_name’ attribute or in other

metadata such as ’cell_methods’ [9].
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3.7 Standard name relevance

When sending climate data in formats like netCDF, the CF protocols, which are discussed in
this section, ensure consistency and compatibility. The ’standard_name’ property is essential for

enabling data exchange and cross-institution comparison since it gives variables distinct IDs.

By ensuring that physical quantities are sufficiently described, the ’standard_name’ property
ensures data comparability and consistency. Additionally, the efficiency of research and visual-

ization is improved by automated data processing enabled by uniform nomenclature.

A standard name table that provides a clear reference for every variable is part of the CF
conventions. While the rules for developing standard names guarantee accuracy and clarity,
this aids in data integration and analysis. To sum up, standard names are essential for the
correctness, consistency, and interoperability of climate data; they facilitate data sharing and

foster cooperation in scientific study.

The CF conventions might be improved even more by adding a Large Language Model (LLM)
that can produce standard names from descriptions. As previously stated, the CF norms are
crucial for guaranteeing the uniformity and compatibility of climate data, particularly when it

is exchanged in netCDF-like formats.

The development of these standard names may be automated by an LLM, which would expedite
the procedure and lower human error, thus saving scientists and researchers time. A standard
name table that provides a clear reference for every variable is part of the CF conventions.
While the rules for developing standard names guarantee accuracy and clarity, this aids in data
integration and analysis. To sum up, ’standard_names’ are essential for the correctness, consis-
tency, and interoperability of climate data; they facilitate data sharing and foster cooperation

in scientific study.
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Large Language Model

A type of deep learning model called large language models (LLMs) is made to comprehend and
produce human language on a large scale. Text generation, translation, summarization, question
answering, and other natural language processing (NLP) activities can be accomplished by these
models, which are trained on large text corpora and acquire statistical patterns and semantic

structures.

Large datasets and increasing computer resources have sped up the development of LLMs in re-
cent years, making them effective instruments for everyday applications, business, and research.
Their intricacy, resource requirements, and possible biases, however, also bring up significant

ethical and technical issues.

4.1 Natural language processing

The interdisciplinary study of Natural Language Processing (NLP) combines machine learning
and linguistics to understand all aspects of human discourse [20]. NLP does not just read words;

it also examines the context and the relationships between words in communication.
The following list of typical NLP tasks includes examples:
e Sentence-level classification: Determining the sentiment of a product review, identifying

whether an email is spam, checking grammatical correctness, or assessing whether two

sentences are logically connected.

e Word-level classification: Assigning roles to each word in a sentence, such as identifying

parts of speech (e.g., noun, verb, adjective) or recognizing named entities like people,
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places, or organizations.

o Text generation: Producing text based on a prompt, such as continuing a sentence or

filling in missing words.

e Answer extraction: Finding specific answers within a passage of text when given a question

and related context.

o Text-to-text generation: Transforming text into another form, such as translating between

languages or summarizing content.

NLP can be used for tasks in speech and vision in addition to written language. For example,

it can convert spoken audio into text or generate a description based on an image.

One particular kind of NLP system is a Large Language Model (LLM). NLP, which broadly
focuses on understanding and interpreting human language, includes LLMs as powerful tools.
Large amounts of text have been used to teach them to do a range of language-related activities,
including answering queries, summarizing texts, translating languages, and generating human-

like responses.

4.2 Large language model

A Large Language Model (LLM) is a type of text-to-text model that learns patterns, structures,
and relationships in language, enabling it to generate and understand text based on vast amounts

of training data. It uses resources such as tokenization and embedding.

Before modeling text data, tokenization is required because models do not understand text
directly; they process numbers, known as tokens. Choosing an effective tokenizer is essential
to accurately capture the meaning of the text, which ultimately improves the performance of
the model. The tokenizer splits the text into predefined segments such as characters,words or

sentences, assigning a number to each. The resulting array is then processed by the embedding.

| It is raining right now | — ’ It | is | raining | right | now ‘ > |23 |65 | 123 |465 ‘ 7 |

Figure 4.1: Example of tokenizer splitting the text in words

However, we cannot directly introduce raw numbers into the model, as static representations
alone are not sufficient for capturing the true meaning of words. Embeddings are vectorial

representations of words and characters in the text [21].
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Storm

Lightning

Tornado

Tsunami

Earthquake

Figure 4.2: Example of embedding applied to weather forecast

As shown in Figure 4.2, we have a simple example of an embedding in a 2D space. Here, we
can observe how embeddings work: words like storm and lightning are positioned close to each
other, indicating a strong relationship. In contrast, their greater separation from the other words
suggests weaker associations. Furthermore, we see that tsunami and earthquake are relatively
close, though slightly farther apart than storm and lightning, implying that while they are

related, their connection is not as strong as the first pair.

4.2.1 Tokenizer

Tokenization is a fundamental step in the operation of LLMs [21], transforming raw text into
smaller units called tokens. These tokens can range from individual characters to subword
fragments, depending on the tokenizer’s design and the model’s vocabulary. For example, the

” 9

sentence “Tomorrow’s weather looks unpredictable” might be tokenized into [" Tomorrow”,

2 Mo’

, ’s”, ?weather”, "looks”, ”

un”, "predictable”], allowing the model to process and interpret

the text more effectively.

Rather than relying on traditional methods that split text based on spaces or punctuation, LLMs
typically employ subword tokenization techniques. These approaches are especially effective at
balancing vocabulary size and model generalization. They allow the model to handle uncommon
or complex words by breaking them into known subcomponents, turning a word like “thunder-
storm” into ["thunder”, ”storm”], for instance, which reduces the likelihood of encountering

out-of-vocabulary tokens.

Tokenization is critical to model performance and efficiency [22]. Since LLMs do not interpret

text at the word level but rather as sequences of tokens mapped to numerical vectors, the

21



2. Large language model Large Language Model

structure of these tokens influences how much context a model can handle. Most models are
limited to a fixed number of tokens (e.g., 2048 or 4096), so poor tokenization can lead to hitting
the limit early and losing relevant content. Efficient tokenization maximizes the meaningful

information passed into the model and ensures coherent output generation.

Tokenization consistency is also essential for pretraining and fine-tuning. Even minor differences
in token handling can have an impact on downstream performance because LLMs are trained
on enormous datasets with billions of tokens. When reusing pretrained tokenizers for transfer

learning or modifying models for other domains, this is particularly crucial.

4.2.2 Embedding

A key method in natural language processing, particularly when it comes to LLMs, is text em-
bedding [23]. Fundamentally, they convert text into a high-dimensional vector of real numbers,
whether it be a word, sentence, or paragraph. These numerical representations capture the
input text’s semantic content, therefore they are not arbitrary. Two weather-related phrases,
like ” Chance of showers tomorrow” and ”Expect rain in the morning,” would have embeddings

that place them near to one other in the vector space to demonstrate their similar meaning.

LLMs excel at tasks like search, categorization, and intent recognition because of this spatial
relationship between vectors. Instead of comparing texts through surface-level pattern matching,
the model measures how ”close” two pieces of language are in this multidimensional space.
Closeness is typically computed using distance metrics such as Euclidean or cosine distance.
The former is based on geometric distance, while the latter evaluates how similar the directions

of two vectors are useful when magnitude is less important than semantic alignment.

Embeddings power a wide range of practical applications. To retrieve the most semantically
equivalent content, for example, a query such as ”Will it snow this weekend?” can be embedded
and compared to a collection of pre-embedded papers or reports. Similar to this, embeddings
can be used in sentiment analysis or moderation to assess how closely a new message matches
examples of content that have been tagged as suitable, unfavorable, or positive. Since embed-
dings are model outputs, they can be precomputed and stored efficiently, making them ideal for

real-time systems that rely on fast similarity comparisons.

OpenATl’s ’'text-embedding-ada-002’ model, derived from the GPT family, is currently one of
the most effective tools for generating embeddings [24]. It generates 1536-dimensional vectors
that demonstrate a thorough comprehension of the text, allowing for superior semantic analysis.
Once created, these embeddings can be utilized for more than simply comparisons; they can also
be used to visualize trends in the data using dimensionality reduction techniques like UMAP or

to cluster similar articles together using algorithms like k-means.

The ’openai’ package can be used to access OpenAl’s API and create these embeddings in
Python. With a single call to the 'Embedding.create()’ method, a piece of text can be trans-

formed into a dense vector. These vectors can then be used in downstream tasks, whether it’s
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grouping similar reviews, powering a recommendation engine, or analyzing sentiment trends in

real-time weather feedback.

By reducing human language to structured vectors, embeddings bridge the gap between raw text
and mathematical reasoning. In the world of LLMs, they are what allow models to generalize,

compare, and make sense of language, far beyond surface-level syntax.

4.2.3 Transformer

A Transformer is a type of neural network architecture specifically designed to handle sequences
of data, like text. Its main function is to understand the meaning and relationships between
words in a sentence, regardless of how far apart they are. Unlike older models that read text
one word at a time, Transformers can look at an entire sentence or paragraph all at once.
This allows them to capture context more effectively and generate more accurate, meaningful
responses. Transformers are the foundation of modern language models like GPT because they
are fast, flexible, and exceptionally good at understanding language through a mechanism called
attention, which helps the model decide which words to focus on while processing or generating

text.

Here’s a simplified breakdown of the key components of a Transformer:

1. Input and Input Embeddings
Text is broken into tokens (words or subwords), then converted into numerical vectors
called embeddings, which represent the meaning of words in a mathematical space. The
model learns these representations during training. These embeddings are crucial because
they allow the model to capture the relationships between words in a mathematical form.
These embeddings are learned during the training process, so the model gradually builds
a deeper understanding of how different words relate to one another, based on the context

in which they appear.

2. Positional Encoding
Since word order matters in language, Transformers add positional information to embed-
dings so the model understands the sequence of words. Positional encodings are added to
the input embeddings to inject information about the relative positions of tokens within
the sequence. This ensures that the model understands the importance of word order in
language. These encodings are mathematically designed to allow the model to distinguish
between statements where the positions of the words alter the meaning of the sentence.
Positional encodings are crucial for the transformer’s ability to capture the syntactic struc-

ture of language.

3. Encoder

The encoder is the first core component of the transformer. It processes the input sequence
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by passing it through several self-attention layers, which enable the model to capture the
relationships and dependencies between all tokens in the sequence. Unlike RNNs, which
process the input one token at a time and have a limited capacity to capture long-range
dependencies, the transformer can attend to every token in the sequence simultaneously.
This is done through the self-attention mechanism, which computes attention scores be-
tween every pair of tokens. For each token, the model decides which other tokens it should

focus on, based on their relevance to the token in question.

The self-attention mechanism computes three vectors for each word: the Query, the Key,
and the Value. These vectors are used to calculate a weight (or ”attention score”) for each
pair of tokens. The attention scores determine how much focus each word should place on
every other word in the sequence. The weighted values are then combined to generate the
output for each token. This approach allows the model to capture both local and global
dependencies across the entire sequence of words, which is essential for understanding

complex linguistic structures.

4. Multi-Head Attention
The multi-head attention technique is a major improvement over conventional attention
processes. Transformers use various sets of weights to apply attention repeatedly in parallel
rather than just once. This enables the model to concentrate on various facets of word
relationships. For instance, one attention head might concentrate on semantic linkages
(such word meanings or co-reference) and another on syntactic dependencies (like subject-
verb agreement). The model may develop a deeper representation of the input sequence
by combining these several attention heads, which is essential for intricate tasks like text

synthesis, machine translation, and question answering.

5. Shifted Outputs (for Training)
When training, the model is taught to predict the next word by seeing only the previous
ones. This is done by shifting the output sequence to the right, so the model never ” cheats”

by looking ahead.

6. Output Embeddings
Just like input embeddings, outputs are also converted into vectors. These go through
positional encoding and are used to calculate the loss function, which helps the model

improve its predictions during training.

7. Decoder
The decoder is the second key component of the transformer. Its role is to generate
the output sequence, based on the processed input from the encoder. Like the encoder,
the decoder consists of several layers of self-attention and feed-forward neural networks.
However, the decoder has an additional feature: it attends not only to its own previous
output (as in the self-attention layers) but also to the encoder’s output. This allows

the decoder to generate a coherent and contextually appropriate sequence of tokens. In
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tasks like text generation or translation, the decoder is essential for producing fluent,
contextually relevant responses. The decoder works in a step-by-step manner, predicting

one word at a time until the entire sequence is generated.

8. Feedforward Networks and Residual Connections
Following the self-attention mechanism in both the encoder and the decoder, a feedforward
neural network (FFN) processes the output. A non-linear activation function sits between
the two completely connected layers that make up this network. The feedforward network
facilitates the model’s learning of increasingly intricate input-output mappings and link-
ages. Furthermore, residual connections are employed in the vicinity of the feedforward
and self-attention layers. By adding each layer’s input to its output, these residual con-
nections assist solve the vanishing gradient issue and make it possible to train very deep

models more effectively.

9. Linear Layer and Softmax
After decoding, a linear layer transforms the data into a format that can be compared with
the vocabulary. Then, softmax assigns probabilities to each possible next word, allowing

the model to choose the most likely one(For more information read [20] [25]).

Transformers’ capacity to manage long-range relationships and execute parallel computation
has fundamentally altered the field of NLP [26]. Transformers employ the self-attention mecha-
nism to capture dependencies between all tokens simultaneously, in contrast to Recurrent Neural
Networks(RNN) or Long Short-Term Memories(LSTM), which evaluate input sequences sequen-
tially and struggle to catch long-distance links in text. Because of this, transformers can accept
longer input sequences and scale effectively without being constrained by the computational

limits of older architectures.

Because of their adaptability, transformers can be used for a number of activities outside text
production, including summarization, machine translation, and text classification. They are
very good at comprehending complex language patterns because they can focus on multiple

portions of the sequence at once and grasp both local and global interdependence.

To sum up, transformers mark a substantial advancement in the way neural networks interpret
and produce language. They are able to create rich, contextualized representations of text
through mechanisms including positional encoding, multi-head attention, and self-attention,
which help them do well on a variety of NLP tasks. Transformers are now an essential component
of contemporary Al systems since their architecture serves as the basis for models like GPT,

which have raised the bar for language creation.
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4.2.4 Trainer

The function of the data trainer has become crucial in developing and optimizing sophisticated
language processing systems in a world that is becoming more and more Al-driven [27]. These
experts are the designers of quality and accuracy in Al solutions, turning vast amounts of data
into strong bases for producing responses that are logical, pertinent, and appropriate for the

given context. They are far from being merely technical contributors.

The meticulous selection and curation of data is the first step in the Data Trainer’s job. Large
volumes of textual content are insufficient; sources that are representative and pertinent to the
particular field must be found and converted into datasets that accurately reflect the richness
and complexity of human language. This selection process is not at all random; it calls for

discernment, subject-matter expertise, and a thorough comprehension of the project’s goals.

Following the collection of the data, the Data Trainer meticulously and precisely organizes
and annotates the data. Al systems can now identify relationships, entities, and patterns in
unprocessed data that would otherwise be invisible thanks to this annotation process. To ensure
that the system can produce precise, understandable, and pertinent responses, the Data Trainer,
for instance, identifies standard names, canonical units and descriptions while creating a dataset

for a virtual assistant in the CF conventions.

The Data Trainer serves as a guarantee of data quality in addition to annotation. One of their
duties is to carefully verify data using metrics like error rates, coherence, and completeness in
order to spot and fix any discrepancies or errors that can jeopardize results. Reliability depends
on the Data Trainer’s ability to maintain high standards because bad data can compromise

performance regardless of how complex the underlying architecture or algorithms are.

Advanced sampling strategies are often used by data trainers to optimize training process per-
formance and efficiency. They can prioritize the most representative and instructive instances
using techniques like Ask-LLM sampling and density sampling, which speeds up convergence
and maximizes resource utilization. But in the end, these procedures are guided by the Data
Trainer’s expertise and judgment; they choose which data to include and how to strike a bal-
ance between relevance and diversity in order to prevent bias and guarantee a successful learning

process.

A special combination of language and technical skills is required for this position. In addition
to being fluent in linguistic nuances, data trainers must comprehend the goals of the project
and modify data so that the final system can comprehend context and intent in addition to
words. The result is a solution that comprehends and addresses real-world needs in addition to

processing text.

In addition, the Data Trainer is essential in combating prejudice and advancing equity. They
take measures to guarantee diversity and neutrality in the datasets they create because they
understand that data represents human viewpoints and possible biases. Their work goes beyond

technical prowess to include the proper and moral application of Al
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Numerous contemporary language processing applications, such as automatic code production,
content creation, and multilingual customer support, clearly demonstrate the influence of Data
Trainers. The foundation of every interaction that these technologies provide is the painstaking
labor of the Data Trainer, who has transformed disparate data into a dependable and cohesive

knowledge base that can be tailored to various situations and use cases.

In the end, the Data Trainer is the vital connection between artificial intelligence’s potential
and human competence. Their meticulous judgment, subject-matter knowledge, and dedication
to excellence serve as the foundation for solutions that offer companies and users real value that

goes beyond the technology itself.
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The programming ecosystem used in this project is based in Python [28] and Google Colab [29].
Data was taken from the CF conventions tables (in XML format) which is where the process
started. This data was then converted in a ‘DataFrame’ from Pandas [30], which is a way to

structure the data in Pyhon, so that the data was more usable.

5.1 Initial set-up

The code used in this section can be found in Appendix Al.

This stage was to create an LLM that can emit standard names in CF conformance. This phase
converted the 'DataFrame’ into a clean dataset, good for data handling (data is already in the

correct form to be consumed by the model) for efficient data transformation.

A tokenizer was prepared and its function (using 'BertTokenizerFast’) was defined. Finally, a
well-formed dataset is needed to be able to train the model and be able to get more accurate

estimations.

Next, the tokenization of our dataset (using 'BertTokenizerFast’) was done. In the context of
this task, the pre-trained BERT model ’bert-base-uncased’ is often used because it has a superior
understanding of context in a text sequence of words. Input text was converted into tokens by

performing tokenization.

After the tokenizer was configured and the dataset was tokenized, the next step was feeding this
data into the transformer model. The transformer is meant to enable the model to understand

the meaning of words or phrases in the provided input. In this case, the aim was for the model
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to correctly generate standard names corresponding to the descriptions in the dataset.

Subsequently, the model was loaded, and the transformer was built to make predictions based on
the provided descriptions. Random elements from the dataset were selected and used as input
for the model, with the generated predictions compared to the real standard names. However,
the results were not satisfactory. The predictions generated by the model were incorrect and
did not reflect the real standard names associated with the descriptions provided. As a result,

the decision was made to adjust the code to improve the model’s performance.

5.2 Dataset adaptation

The code used in this section can be found in Appendiz A.2.

After analysing the results from the initial setup, some issues appeared related to the way
the standard names were structured. In the format used by CF conventions, standard names
contain an underscore (”_”) to separate words within the same name. However, the tokenizer
may have been interpreting these underscores as part of a single word, causing the model to fail

in capturing the correct meaning of each individual word within the standard name.

This issue is particularly critical because, as mentioned in the CF conventions, the standard
names are very specific and must be treated accurately. If the tokenizer joins those words
together into one token, then the model may not get all the context and meaning from an entity

name context.

A line of code was then added to change the underscores in standard names into spaces (basically
the same names but with a different spacing between words). The change, as small as this, is
to enable the tokenizer to operate on words separately and, therefore, hopefully make model

predictions more fluent.

Despite this adjustment, the predictions continued to be inaccurate. After further reflection,
it was concluded that the pre-trained BERT model might be too generic for this specific task.
Instead of working well with the domain-specific standard names in the CF conventions, the
model appeared to be making predictions based on a broader and more general context. This
led to the decision to train a more specialized model that could better fit the characteristics of

the data and improve prediction accuracy.

5.3 Trainer creation

The code used in this section can be found in Appendiz A.3.

For the third trial, a trainer was used. Trainer tool is one offered by Hugging Face Transformers
library for training and evaluating a language model. When using a trainer, it was hoped that

cleaner results would be returned, inherently more precise and with less control over the aspect
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of training that the tool optimizes.

The initial trainer load was estimated to take about 10 hours for the training process. Upon
doing more research, I found that actually running the code on a GPU helped a hell of a lot
versus doing it on just a CPU and substantially cut down the training time. The training time

reduced from 35 hours to 35 minutes with the GPU, which was a big speed boost and efficiency.

During GPU execution of the code, the model showed those two things it felt were most relevant:
one that had a step (number), and another training loss. Training loss is a crucial metric telling
how accurate the output of our model is for the given inputs; low training loss means that the
model is doing well and producing better and accurate predictions. The training loss here would
be around 8 which is pretty high (the training loss should be almost close to 1). So the model

still predicted incoherent way, as our previous tries did.

While making these strides, the trialing model model prediction obsession continued: it made
a stupid prediction composed of standard words pertaining to type of radiation over and over
again, which indicated that the model failed to learn anything more sophisticated than a bad
word association in my dataset due to random happenstance. This misconduct is a direct sign
of overfitting, as the model starts to over-lean on training data and being non-generalizable
patterns. Overfitting will happen when the model cannot generalize in the right way to the new

data, resulting to its prediction power is being limited.

When machine learning model starts overfitting [31]. It means model learns not only the under-
lying patterns in the training data but also learns the noise and outliers to the model. Which
results in great performance for the training set but bad generalisability to new, unseen data.
Like memorizing answers to certain questions instead of actually understand the big picture

concepts.

5.4 Performance improvement

The code used in this section can be found in Appendiz A.4.

The standard names of the most recent version (version 90) were first separated according to
the version in which each name initially appeared in the experiment’s fourth attempt. This
stage gives training a more structured framework and is crucial for examining how the data has

changed over time.

A smaller dataset that corresponded to versions 2 through 45 was then chosen. Two primary
factors led to the selection of these versions. First, because the amount of data is easier to
handle, training the model is quicker and more effective when a smaller dataset is used. Second,
using a smaller dataset also lessens the possibility of overfitting, which is essential for enhancing

the model’s capacity for generalization.

To maximize the model’s performance, the trainer parameters had to be changed after the data
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was ready. Weight decay, which controls the penalty applied to large weights during training;
num_train_epochs, which determines the number of complete cycles of the training dataset to
be completed; and learning rate, which controls the step size the model takes when adjusting
its parameters during training, were some of the parameters that were changed. The quality of
the training is immediately affected by changing these parameters, which improves fine-tuning

and lowers training loss.

One important parameter that quantifies the discrepancy between the model’s predictions and
the actual labels during training is training loss. Since a low training loss means that the model
is successfully learning from the training data, the primary objective is to reduce this value in
order to increase the model’s accuracy. A very low training loss, on the other hand, can be a
sign of overfitting, in which the model has learned the data by heart rather than recognizing
broad patterns that can be applied to fresh data. This phenomenon, which indicates that the
model has lost its capacity to generalize correctly, becomes apparent when the validation loss

begins to rise while the training loss keeps down.

train/loss
Jresults = ./results .Jresults ts = ./results Jresults = ./results Jresults -

8
6
4
2

train/global  step
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Figure 5.1: Example of different training values in our model.

The trainer has undergone a number of modifications, as seen in the above figure, from which
we can infer a number of inferences. First, as the orange and purple training lines show, the
training loss will not reduce if the parameters are not optimal for training the model or are
not properly adjusted. These lines demonstrate how ineffectively the model is improving under

those specific conditions.

We can therefore conclude that the trainer settings have been properly adjusted by comparing the
pink and blue lines; the only difference between them is the number of epochs. Two significant
inferences can be made from this. First, since the model has more chances to fine-tune its

parameters and perform better, a larger number of epochs increases the trainer’s chances of
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lowering the training loss. However, one of the lines exhibits a quicker decrease in the training
loss even though all sets of parameters are identical. This disparity can be explained by a
randomness or variability component in the training process, which implies that even when the
parameters are the same, the optimization method’s inherent randomness may cause the rate of

improvement to vary.

The model had a decent fit to the data, as evidenced by the training loss of 0.65 that we achieved
after finishing the entire process. We then went ahead and made some forecasts. When we first
included descriptions from versions 2 through 45, the model gave back the same standard name
as it did in the table. There are two probable explanations for this result: either the model
tends to predict the same standard name as in the training data since it was trained using the
same descriptions, or the program may have been biased or made a mistake that produced this

repeating result.

In light of this, we chose to carry out a fresh experiment to investigate the potential outcomes
of incorporating data from the versions that were not used for training. For these descrip-
tions, we anti-cipated receiving precise standard names. The model produced the predictions
"square_of_sea_surface_ temperature’ and northward_land_ice_velocity in the first test, which in-
cluded descriptions of "land_ice_ temperature’ and 'sea_surface_temperature’. Despite being fairly

correct, these forecasts were erroneous due to certain details.

The model returned the same standard name, "land_cover_lccs’, in all of the subsequent experi-
ments we conducted using the descriptions ’change_in_land_ice_mass’ and ’land_ice_mass’. This
identified two problems: first, it should not return the same standard name for two distinct

descriptions; second, the forecast was problematically missing the term ”ice.”

In a last experiment, we included the variables ’change_in_land_ice’ and "tendency_of_land_ice_mass’.

The model recognized them as being the same and produced the same result for both.

We chose to look into the underlying reason for the mistakes after evaluating these results, which
were near but still incorrect. First, we ruled out problems with the model’s adjustment because
the trainer seemed to be working well. Since the predictions were coming true, the code was
also written appropriately. Consequently, we came to the conclusion that the issue might be
caused by database anomalies, which might have resulted in a training strategy that was not

appropriate.

After looking through the database more, we found a number of problems: First, the model’s
fitting was hampered by the standard names that lacked details. Furthermore, we discovered
that the model was unable to identify cases where standard names had the same descriptions but
noticeable variations in the standard name itself. Additionally, some standard names included
labels that were overly descriptive, leaving out crucial details, which led to a discrepancy in
the model’s predictions. Last but not least, the model was unable to comprehend several de-
scriptions that made reference to or were connected to other parts of the CF conventions. Even
though there weren’t many of these problems, taken together, they resulted in a large number

of predictions that didn’t correspond.
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We then reexamined whether we were handling the issue appropriately. We made the decision to
carefully examine the code and the output it generated. After more examination, we discovered
two crucial facts: Initially, the software was only returning one token, which was unexpected
because a vector of tokens should have been produced when the standard name was generated.
Upon further investigation, we found that the software was generating a list of standard names
(ranging from 2 to 45) based on the versions we were entering and identifying the one that most
closely matched the input. This functionality proved to be pretty intriguing, even though it
was not the result we had hoped for. For a given description, it might be used to find the best

standard name available.

5.5 Fine tuning

The code used in this section can be found in Appendix A.5.

In this attempt, the model block has been changed from "T'5ForConditionalGeneration’ to 'Bert-
ForSequenceClassification’, shifting the task from text generation to classification. The dataset
has been converted into a Hugging Face Dataset format and split into training and evaluation

sets using ’train_test_split’.

In this attempt, the 'BertTokenizerFast’ tokenizer has been used, and the process includes fine-
tuning, thanks to the Trainer. Despite these changes, the model continues to attempt to classify

descriptions into a pre-existing standard name.

5.6 Standard name generation

The code used in this section can be found in Appendix A.6.

In this attempt, we finally achieved the desired goal. First, we obtained the dataset and, as
in the previous version, we segmented it by versions to create an appropriate dataset. Next,
we imported the ’t5-small’ tokenizer, a language model developed by Google Research that is
designed to perform a wide range of natural language processing tasks, such as translation,

summarization, and classification, all under a ”text-to-text” framework.

With the tokenizer imported, we created the preprocessing function, which ensures that the
inputs are valid strings and that there are no empty values in the data. Additionally, this function
tokenizes both the inputs and possible outputs, and also generates the necessary training column
for the model. Once this function was defined, it was applied to the entire dataset, creating a

new version of the dataset with the processed Description and ’standard_name’ columns.

We then split the dataset into two parts: one for training and the other for evaluation. With the
data prepared, we loaded the *"T5ForConditionalGeneration’ model using f’rom_pretrained(’t5-

small’)” and configured the training parameters and the trainer.
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When running the trainer, two key aspects caught our attention. First, the training loss started
at much higher values than in previous attempts, which is typical in the initial stages of training.
However, unlike in the previous case, this training loss decreased much more quickly, indicating
that the model was adjusting to the problem more rapidly. This translates to a more efficient

model fitting.
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Figure 5.2: Training loss over the training steps

Finally, after completing the training, we saved the model and performed several tests to verify
that the results obtained were valid and that the model was generating coherent and appropriate
outputs based on the input data. This process allowed us to evaluate the performance of T5-

small on specific tasks and compare its results to previous models.

Following this, we conducted an analysis of the results obtained from the model. To do this, we
input various descriptions of standard names from the table and attempted to verify that the

new standard names generated by the model did not correspond to any existing ones.

Our first test involved the standard name ’beaufort_wind_force’. The model returned exactly
the same standard name, which led us to suspect that it was simply reclassifying our input into
an already existing one. However, there was a factor that cleared up our doubt: for an unknown
reason, the generated standard name starts with an uppercase letter, unlike the original, which
is entirely in lowercase. This suggested that the model is indeed generating the standard name,

and due to the description’s type or specificity, it ended up generating the same standard name.

To confirm this assumption, we tested other standard names. Specifically, we used i’'ntegral_wrt_depth

_of_sea_water_conservative_temperature_expressed_as_heat_content’, and the model’s output was
‘integral_wrt_time_of_temperature_expressed_as_heat_content_of_sea_water’. These names are sim-
ilar and correctly align with their respective descriptions. As mentioned in the fourth attempt,

some descriptions may skip certain details, which can lead to the model generating a standard
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name that surprisingly matches an existing one.

In the final phase, we performed two more experiments with our model. First, we input the
description of 'tendency_of_mass_fraction_of_cloud_condensed_water_in_air’, which is concise and
directly describes the formation of the standard name, rather than its meaning. The model’s
output was ’tendency_of_condensed_water_in_air’, which is quite close to the intended meaning,
though it omits some details. In contrast, when we input the description for ’sea_surface_
foundation_temperature’, a longer and more physically descriptive text, the model outputted
the exact same standard name. This demonstrated that our model performs well when the

description accurately reflects the physical concept behind the standard name.

In summary, while the model sometimes generates the same standard name for similar descrip-
tions, it is capable of adapting well to more descriptive and specific inputs, showing promising

results in both general and precise cases.
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In this project, we have demonstrated that LLMs are powerful tools for automating the gener-
ation of standard names for CF conventions, based on the underlying physical principles. The
correct assignment of these names is essential for managing data in physics, as it ensures consis-
tency and interoperability between different experiments. In addition to this achievement, we
have developed another very useful tool: the sheer number of standard names makes it difficult

to identify the most appropriate one, and this tool helps prevent human errors.

Throughout the project, we have sought to address the challenge of training a model based
on the physical descriptions of the variables listed in the CF conventions. These data are
stored in formats such as netCDF and organized according to the CF conventions, forming the
foundation of various studies in atmospheric physics, ocean physics, and Earth sciences. The
accurate interpretation and standardization of these variables are crucial for modeling processes,

underscoring the importance of having names that are specific and unambiguous.

At the beginning of the experimentation, we clearly encountered difficulties in training models
for such a specific task. The complexity of these concepts and the requirement for extreme
precision initially prevented the model from adjusting optimally to the problem at hand. This
highlighted the importance of tailoring the model’s tools to the specific physical needs of our

dataset.

After making changes to the model upon which our code was based, we achieved a much faster
and more effective training process, demonstrating how crucial it is to select a model that aligns

well with our specific needs.

Despite these advances, the model showed limitations when the physical descriptions were not
clear enough. This was primarily due to the dataset itself, which contained several elements

that produced erroneous results in our model. Some descriptions explained how the variable
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was formed rather than its physical meaning, while others omitted important elements present
in the standard name or had empty entries. This highlights the importance of having a high-
quality database to ensure a good fit between the model and the descriptions of the standard

names.

Ultimately, this project not only provides a valuable tool for the scientific community but also
opens up new pathways for computational and experimental physics. Such tools reduce the

workload and human error that were historically part of data handling.

In the long term, this work lays the groundwork for future exploration of LLM integration in
physics. Improvements such as employing more powerful models, expanding the dataset used
for testing, and incorporating additional critical information, such as physical units and spatial
or temporal dependencies, will further enhance the precision and functionality of this system.
As a discipline grounded in rigorous data analysis and modeling, physics stands to benefit
significantly from these advancements, with artificial intelligence offering new, more accurate

ways to understand, model, and predict the processes that govern our planet.
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Appendix

A1 Code for Initial set-up stage

# Required imports

import pandas as pd

import torch

from datasets import Dataset

from transformers import BertTokenizerFast, BertForSequenceClassification

7 # Step 1: Load and prepare the data

url = ’https://cfconventions.org/Data/cf-standard-names/90/src/cf-standard-name-
table.xml’

df = pd.read_xml(url, xpath=’.//entry’)

df .drop(columns=[’canonical_units’], inplace=True)

df .rename (columns={’id’: ’standard_name’, ’description’: ’Description’}, inplace

=True)

# Step 2: Create a HuggingFace dataset and encode labels
dataset = Dataset.from_pandas (df)
label_dict = {label: idx for idx, label in enumerate(df["standard_name"].unique

(ODN;

; dataset = dataset.map(lambda x: {"labels": label_dict[x["standard_name"]]})
# Step 3: Load the tokenizer

tokenizer = BertTokenizerFast.from_pretrained(’bert—base—uncased’)

print ("Tokenizer loaded successfully")

# Ensure descriptions are strings

dataset = dataset.map(lambda x: {’Description’: str(x[’Description’])})

# Tokenization function
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def tokenize_function(examples):
return tokenizer (examples[’Description’], padding=True, truncation=True,
max_length=512)

# Step 4: Tokenize the dataset
dataset = dataset.map(tokenize_function, batched=True)

print (dataset [0]) # Verify tokenization

# Step 5: Load the pretrained model for classification

model = BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
num_labels=1len(label_dict))

print ("Model loaded successfully")

7 # Step 6: Create new examples for prediction

entryl = ’A variable with the standard_name of cloud_type contains either
strings which indicate the cloud type, or flags which can be translated to
strings using flag_values and flag_meanings attributes.’

entry2 = ’The albedo of cloud. Albedo is the ratio of outgoing to incoming
shortwave irradiance, where shortwave irradiance means that both the
incoming and outgoing radiation are integrated across the solar spectrum.’

new_data = [entryl, entry2]

# Tokenize the new examples

inputs = tokenizer (new_data, padding=True, truncation=True, return_tensors="pt")

# Step 7: Make predictions
with torch.no_grad():
outputs = model (**inputs)

logits = outputs.logits

predictions = torch.argmax (logits, dim=-1)

# Step 8: Display predictions
print ("Predictions:")

print (predictions)

# Map predicted indices to label names
predicted_labels = [list(label_dict.keys())[label] for label in predictions.
tolist ()]

# Show the prediction results

for example, label in zip(new_data, predicted_labels):

print (f"Description: {example} -> Prediction: {labell}")
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A2 Code for Dataset adaptation stage

# Step 1: Imports

import pandas as pd

import torch

from datasets import Dataset

from transformers import BertTokenizerFast, BertForSequenceClassification

# Step 2: Load and preprocess the data

url = ’https://cfconventions.org/Data/cf-standard-names/90/src/cf-standard-name-
table.xml’

df = pd.read_xml(url, xpath=’.//entry’)

# Drop unnecessary column and rename for clarity
df .drop(columns=[’canonical_units’], inplace=True)
df .rename (columns={’id’: ’standard_name’, ’description’: ’Description’}, inplace

=True)

# Replace underscores with spaces in the ’standard_name’ column

df [’standard_name’] = df[’standard_name’].str.replace(’_’, ’> )

# Step 3: Convert to HuggingFace Dataset and create label dictionary

dataset = Dataset.from_pandas (df)

label_dict = {label: idx for idx, label in enumerate(df["standard_name"].unique
O}

dataset = dataset.map(lambda x: {"labels": label_dict[x["standard_name"]]})

# Step 4: Load the tokenizer
tokenizer = BertTokenizerFast.from_pretrained(’bert—base—uncased’)

print ("Tokenizer loaded successfully")

# Ensure all descriptions are strings

dataset = dataset.map(lambda x: {’Description’: str(x[’Description’])})

# Define tokenization function

def tokenize_function(examples):
return tokenizer (examples[’Description’], padding=True, truncation=True,
max_length=512)

# Tokenize the dataset

dataset = dataset.map(tokenize_function, batched=True)

; print (dataset [0]) # Verify tokenization

# Step 5: Load the BERT model for sequence classification

model = BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
num_labels=1len(label_dict))

print ("Model loaded successfully")

# Step 6: Prepare new input examples for prediction
entryl = ’A variable with the standard_name of cloud_type contains either
strings which indicate the cloud type, or flags which can be translated to

strings using flag_values and flag_meanings attributes.’
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entry2 = ’The albedo of cloud. Albedo is the ratio of outgoing to incoming
shortwave irradiance, where shortwave irradiance means that both the
incoming and outgoing radiation are integrated across the solar spectrum.’

new_data = [entryl, entry2]

# Tokenize new examples

inputs = tokenizer(new_data, padding=True, truncation=True, return_tensors="pt")

# Step 7: Run model prediction
with torch.no_grad():
outputs = model (x*inputs)
logits = outputs.logits

predictions = torch.argmax(logits, dim=-1)

# Step 8: Map predictions to label names
predicted_labels = [list(label_dict.keys())[label] for label in predictions.
tolist ()]

# Step 9: Print the results
print ("Predictions:")

print (predictions)

for example, label in zip(new_data, predicted_labels):

print (f"Description: {example} -> Prediction: {labell}")
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A3 Code for Trainer creation stage

# Step 1: Import Libraries

import pandas as pd

import torch

from datasets import Dataset

from transformers import (
BertTokenizerFast,
BertForSequenceClassification,
TrainingArguments,

Trainer

# Step 2: Load and Preprocess Data

url = ’https://cfconventions.org/Data/cf-standard-names/1/src/cf-standard-name-
table.xml’

df = pd.read_xml(url, xpath=’.//entry’)

df .drop(columns=[’canonical_units’], inplace=True)

df .rename (columns={’id’: ’standard_name’, ’description’: ’Description’}, inplace
=True)
df [’ standard_name’] = df[’standard_name’].str.replace(’_’, ’ )

# Step 3: Create Dataset and Labels

dataset = Dataset.from_pandas (df)

label_dict = {label: idx for idx, label in enumerate(df["standard_name"].unique
O}

dataset = dataset.map(lambda x: {"labels": label_dict[x["standard_name"]]})

# Step 4: Load Tokenizer

tokenizer = BertTokenizerFast.from_pretrained(’bert-base-uncased’)

; print ("Tokenizer loaded successfully")

# Tokenize descriptions

dataset = dataset.map(lambda x: {’Description’: str(x[’Description’])})

def tokenize_function(examples):
return tokenizer (examples[’Description’], padding=True, truncation=True,
max_length=400)

dataset = dataset.map(tokenize_function, batched=True)

print (dataset [0])

# Step 5: Load Model

model = BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
num_labels=len(label_dict))

print ("Model loaded successfully")

# Step 6: Set Training Arguments

training_args = TrainingArguments (
learning_rate=5e-5,
max_grad_norm=1.0,
output_dir=’./results’,
num_train_epochs=5,

per_device_train_batch_size=8,
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per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs’,
logging_steps=10,

)

print ("Training parameters configured")

# Step 7: Create Trainer and Train Model
trainer = Trainer (
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=dataset,
)

trainer.train ()

# Step 8: Prepare New Inputs for Prediction

entryl = "A variable with the standard_name of cloud_type contains either
strings..."
entry2 = ’"Sea surface wave radiation stress" describes the excess momentum flux

>

new_data = [entryl, entry2]

# Step 9: Tokenize and Predict

inputs = tokenizer (new_data, padding=True, truncation=True, return_tensors="pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = {key: value.to(device) for key, value in inputs.items ()}

model.to(device)

with torch.no_grad():
outputs = model (x*inputs)
logits = outputs.logits

predictions = torch.argmax (logits, dim=-1)

# Step 10: Display Results

predicted_labels = [list(label_dict.keys())[label] for label in predictions.
tolist ()]

print ("Predictions:", predictions)

for example, label in zip(new_data, predicted_labels):

print (f"Description: {example} -> Prediction: {labell}")
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A4 Code for Performance improvement stage

# Step 1: Imports

import pandas as pd

import torch

from datasets import Dataset

from transformers import (
BertTokenizerFast,
BertForSequenceClassification,
TrainingArguments,

Trainer

# Step 2: Download and preprocess multiple versions

base_url = "https://cfconventions.org/Data/cf-standard-names/{}/src/cf-standard-
name-table.xml"

all_data = []

version_90_standard_names = set ()

for version in range(1l, 91):
if version == 38:

continue

url = base_url.format(version)
df = pd.read_xml(url, xpath=’.//entry’)
df .rename (columns={’id’: ’standard_name’, ’description’: ’Description’},

inplace=True)

df [’ standard name’] = df[’standard_name’].str.replace(’_’, ’ ’)
df [’version’] = version
if version == 90:

version_90_standard_names = set(df[’standard_name’])

all_data.append (df)

# Step 3: Combine and filter the data

final_df = pd.concat(all_data, ignore_index=True)

final_df = final_df.drop_duplicates(subset=’standard_name’, keep=’first’)
final_df = final_df[final_df[’standard_name’].isin(version_90_standard_names)]
final_df .drop(columns=[’grib’, ’amip’], errors=’ignore’, inplace=True)

# Step 4: Select a version range subset
df = final_df
df2 = df [df [’version’].between (2, 45)]

# Step 5: Create Dataset and label mapping
dataset = Dataset.from_pandas (df2)
label_dict = {label: idx for idx, label in enumerate(df2["standard_name"].unique

O)
dataset = dataset.map(lambda x: {"labels": label_dict[x["standard_name"]]})

# Step 6: Tokenization
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13 tokenizer = BertTokenizerFast.from_pretrained(’bert—base—uncased’)

19 print ("Tokenizer loaded successfully")

51 dataset = dataset.map(lambda x: {’Description’: str(x[’Description’])})

52 def tokenize_function (examples):

53 return tokenizer (examples[’Description’], padding=True, truncation=True,
max_length=400)

55 dataset = dataset.map(tokenize_function, batched=True)
56 print (dataset [0])

58 # Step 7: Load Model

50 model = BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
num_labels=len(label_dict))

60 print ("Model loaded successfully")

62 # Step 8: Training configuration
63 training_args = TrainingArguments (
64 learning_rate=2e-5,

65 max_grad_norm=1.0,

66 output_dir=’./results’,

67 num_train_epochs=190,

68 per_device_train_batch_size=16,
69 per_device_eval_batch_size=16,
70 warmup_steps=500,

71 weight_decay=0.001,

72 logging_dir=’./logs’,

73 logging_steps=10,

74 )

75 print ("Training parameters configured")

77 # Step 9: Train the model
78 trainer = Trainer (

79 model=model,

80 args=training_args,

81 train_dataset=dataset,
82 eval_dataset=dataset,
83 )

s4 trainer.train ()

86 # Step 10: Prediction

s7 defl =
integral_wrt_depth_of_sea_water_conservative_temperature_expressed_as_heat_content
)

ss def2 = ’beaufort_wind_force’

89

90 entryl = str(df[df[’standard_name’] == defl][’Description’].iloc[0])
91 entry2 = str(df [df[’standard_name’] == def2][’Description’].iloc[0])
92 new_data = [entryl, entry2]

93

94 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

95 model .to(device)
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inputs = tokenizer (new_data,

.to(device)

with torch.no_grad():

outputs = model (**inputs)

logits = outputs.logits

predictions = torch.argmax(logits,

padding=True,

dim=-1)

truncation=True, return_tensors="pt")

predicted_labels = [list(label_dict.keys())[label] for label in predictiomns.

tolist ()]
print (£’ Table -> [{defl},

{def2}]
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A5 Code for: Fine-tuning stage

# Step 1: Imports
import pandas as pd
import torch
from datasets import Dataset
from sklearn.model_selection import train_test_split
from transformers import (
BertTokenizerFast,
BertForSequenceClassification,
Trainer,

TrainingArguments

# Step 2: Load and preprocess all XML versions

base_url = "https://cfconventions.org/Data/cf-standard-names/{}/src/cf-standard-
name-table.xml"

all_data = []

version_90_standard_names = set ()

; for version in range (1, 91):

if version == 38:

continue

url = base_url.format(version)
df = pd.read_xml (url, xpath=’.//entry’)
df .rename (columns={’id’: ’standard_name’, ’description’: ’Description’},

inplace=True)

df [’ standard name’] = df[’standard_name’].str.replace(’_’, ’ )
df [’version’] = version
if version == 90:

version_90_standard_names = set(df[’standard_name’])

all_data.append (df)

final_df = pd.concat(all_data, ignore_index=True)
final_df = final_df.drop_duplicates(subset=’standard_name’, keep=’first’)
final_df = final_df[final_df[’standard_name’].isin(version_90_standard_names)]

final_df .drop(columns=[’grib’, ’amip’], inplace=True, errors=’ignore’)

df = final_df
df2 = df [df [’version’].between (2, 45)]

# Step 3: Dataset and Tokenization

dataset = Dataset.from_pandas (df2)

label_dict = {label: idx for idx, label in enumerate (df2["standard_name"].unique
O}

dataset = dataset.map(lambda x: {"labels": label_dict[x["standard_name"]]})

tokenizer = BertTokenizerFast.from_pretrained(’bert-base-uncased’)

print ("Tokenizer loaded successfully")
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dataset = dataset.map(lambda x: {’Description’: str(x[’Description’])})

def tokenize_function(examples):
return tokenizer (examples[’Description’], padding=True, truncation=True,
max_length=400)

dataset = dataset.map(tokenize_function, batched=True)
print (dataset [0])

# Step 4: Train-test split

dataset_df = dataset.to_pandas ()

train_df, eval_df = train_test_split(dataset_df, test_size=0.2)
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)

eval_dataset = Dataset.from_pandas(eval_df, preserve_index=False)

2 # Step 5: Load model

model = BertForSequenceClassification.from_pretrained(’bert-base-uncased’,
num_labels=1len(label_dict))
print ("Model loaded successfully")

# Step 6: Training configuration

7 training_args = TrainingArguments (

learning_rate=2e-5,
max_grad_norm=1.0,
output_dir=’./results’,
num_train_epochs=100,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.001,
logging_dir="./logs’,
logging_steps=10,

# Step 7: Training

trainer = Trainer (
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,

)

7 trainer.train ()

# Step 8: Make predictions
def1l =

integral _wrt_depth_of_sea_water_conservative_temperature_expressed_as_heat_content

)

def2 = ’beaufort_wind_force’
entryl = str(df [df [’standard_name’] == defl1][’Description’].iloc[0])
entry2 = str(df[df[’standard_name’] == def2][’Description’].iloc[0])

5 new_data = [entryl, entry2]
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96

97 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

98 model.to(device)

99 inputs = tokenizer (new_data, padding=True, truncation=True, return_tensors="pt")
.to(device)

100

101 with torch.no_grad():

102 outputs = model (x*inputs)

103 logits = outputs.logits

104 predictions = torch.argmax(logits, dim=-1)

106 # Step 9: Inspect tokenized input

107 tokenized_inputs = tokenizer (new_data, padding=True, truncation=True,
return_tensors="pt")

108 print (f"Tokens generated for descriptions:")

100 for i, description in enumerate (new_data):

110 print (f"\nDescription: {descriptionl}")

111 print (f"Tokens: {tokenized_inputs[’input_ids’]J[i]3}")

112 print (f"Decoded: {tokenizer.decode(tokenized_inputs[’input_ids’]J[i])}")

114 # Step 10: Map predictions to labels

115 predicted_labels = [list(label_dict.keys())[label] for label in predictions.
tolist ()]

116 print (f’Table -> [{def1}, {def2}] Predictions -> {predicted_labels}’)
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A6 Code for Standard name generation stage

# Step 1: Load data from multiple versions

import pandas as pd

from datasets import Dataset

from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer,
TrainingArguments

from sklearn.model_selection import train_test_split

import torch

base_url = "https://cfconventions.org/Data/cf-standard-names/{}/src/cf-standard-

name -table.xml"
all_data = []

version_90_standard_names = set ()

for version in range(1l, 91):
if version == 38:
continue
url = base_url.format(version)
df = pd.read_xml(url, xpath=’.//entry’)
df . rename (columns={’id’: ’standard_name’, ’description’: ’Description’},

inplace=True)

df [’ standard name’] = df[’standard_name’].str.replace(’_’, ’ ’)
df [’version’] = version
if version == 90:

version_90_standard_names = set(df[’standard_name’])

all_data.append (df)

final_df = pd.concat(all_data, ignore_index=True)
final_df = final_df.drop_duplicates(subset=’standard_name’, keep=’first’)
; final_df = final_df[final_df[’standard_name’].isin(version_90_standard_names)]

final_df .drop(columns=[’grib’, ’amip’], inplace=True, errors=’ignore’)

df = final_df
dataset = Dataset.from_pandas (df)

# Step 2: Tokenizer and preprocessing

tokenizer = Tb5Tokenizer.from_pretrained(’t5-small’)

def preprocess_function(examples):

texts = [str(x) if x else "" for x in examples[’Description’]]

summaries = [str(x) if x else "" for x in examples[’standard name’]]

inputs = tokenizer (texts, padding="max_length", truncation=True, max_length
=512)

targets = tokenizer (summaries, padding="max_length", truncation=True,

max_length=150)
inputs[’labels’] = targets[’input_ids’]
return inputs
dataset = dataset.map(preprocess_function, batched=True)

# Step 3: Train-test split

93



81

83

84

85

86

6. Code for Standard name generation stage

Appendix

dataset = dataset.train_test_split(test_size=0.2, seed=42)

train_dataset = dataset[’train’]

s test_dataset = dataset[’test’]

# Step 4: Load model

model = T5ForConditionalGeneration.from_pretrained(’t5-small’)

# Step 5: Training configuration

training_args = TrainingArguments (
output_dir=’./results’,
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs’,
logging_steps=10,

# Step 6: Train the model

trainer = Trainer (
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset

)

trainer.train ()

model.save_pretrained(’./t5_model’)

# Step 7: Load trained model and generate standard names

model = T5ForConditionalGeneration.from_pretrained(’./t5_model’)

7 tokenizer = TbTokenizer.from_pretrained(’t5-small”’)

def generate_sn(text):
inputs = tokenizer (text, return_tensors="pt", max_length=512,

True, padding="max_length")

truncation=

sn_ids = model.generate (inputs[’input_ids’], max_length=40, min_length=5,

length_penalty=2.0, num_beams=4, early_stopping=True)

return tokenizer.decode(sn_ids[0], skip_special_tokens=True).replace ("

||)

# Test examples

defl = ’tendency_of_mass_fraction_of_cloud_condensed_water_in_air’
def2 = ’thickness_of_convective_rainfall_amount’

descl = str(df [df [’standard_name’] == defl][’Description’].iloc[0])
desc2 = str(df [df [’standard_name’] == def2][’Description’].iloc[0])
snl = generate_sn(descl)

sn2 = generate_sn(desc2)

print ("Original:", defl)
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print ("Generated:",
print ("\nOriginal:",

print ("Generated:",

snil)
def?2)
sn2)
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