
Ad Hoc Networks 170 (2025) 103784

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

On the performance of Zenoh in Industrial IoT Scenarios
Miguel Barón a,b , Luis Diez b,∗, Mihail Zverev a, José R. Juárez a, Ramón Agüero b

a Ikerlan Technology Research Center, Arizmendiarrieta 2, Arrasate/Mondragón, 20500, Spain
b Department of Communications Engineering, Universidad de Cantabria, Plaza de la Ciencia s/n, Santander, 39005, Spain

A R T I C L E I N F O

Keywords:
Zenoh
MQTT
Reliability
Congestion control
IIoT
Latency
Middleware

A B S T R A C T

Robust and efficient communication frameworks have become essential for the advancement of manufacturing
and industrial processes in the era of Industry 4.0. This paper presents a comprehensive performance analysis
of Eclipse Zenoh, a promising solution for the Industrial Internet of Things (IIoT). The analysis is conducted
using a real testbed built with Raspberry Pi devices, comparing Eclipse Zenoh’s performance against the widely
used Message Queuing Telemetry Transport (MQTT) protocol. The study assesses Eclipse Zenoh’s capabilities in
terms of latency, as well as its reliability and congestion control mechanisms over various network topologies,
using both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The results indicate
that Eclipse Zenoh offers significant advantages in specific scenarios, making it a compelling choice for IIoT
applications. Additionally, this paper contributes to a deeper understanding of Eclipse Zenoh’s underlying
principles and its communication capabilities, positioning it as a versatile and efficient solution for modern
industrial environments.
1. Introduction

In the era of Industry 4.0, manufacturing and industrial processes
have undergone profound transformations, revealing the importance
of connectivity, data exchange, and automation [1]. Within this con-
text, Industry 4.0 encompasses smart manufacturing systems, where
machines are interconnected through the IIoT, enabling real-time data
sharing and decision-making. This paradigm shift relies on robust com-
munication frameworks that ensure reliable and efficient data transfer.
In the automotive sector, Vehicle-to-everything (V2X) communication
plays a crucial role in assisted and autonomous driving, allowing
vehicles to communicate with each other and with the underlying
infrastructure. Similarly, in robotics, Robot Operating System (ROS) [2]
has emerged as a standard framework for developing robot appli-
cations [3], which require reliable middleware solutions to enable
appropriate communication between various robotic components.

In the context of communication solutions, Eclipse Zenoh has re-
cently gained recognition as a promising application-layer protocol in
both the robotics and automotive sectors due to its versatile capabili-
ties. In robotics, Eclipse Zenoh has already been adopted, particularly
to support Robot-to-Anything (R2X) communications over wireless net-
works [4]. It has become the first non-Data Distribution Service (DDS)
protocol to be natively supported in ROS 2 [5], addressing the walled
garden problem [6], where proprietary or less compatible protocols
limit the interoperability. This has led to an increase in commercially
deployed solutions based on Eclipse Zenoh. In the automotive industry,

∗ Corresponding author.
E-mail address: diezlf@unican.es (L. Diez).

its relevance is growing due to its suitability for both in-vehicle and
V2X communications [4,7]. Its flexibility, which allows it to run across
a broad range of platforms, from microcontrollers to datacenters [7],
makes it an attractive choice for V2X applications. Furthermore, con-
sidering its performance and scalability, Eclipse Zenoh has recently
been identified by the International Telecommunication Union (ITU) as
the most appropriate protocol for these applications [8]. On the other
hand, existing information about how Zenoh exploits the underlying
communication protocols is still very limited, and this may hinder its
operation in certain scenarios.

In this paper, a comprehensive performance analysis of Eclipse
Zenoh over various network topologies is discussed, leveraging a real
testbed implemented with Raspberry Pi devices. In order to evaluate
the potential advantages offered by Zenoh, its performance is compared
against that of MQTT. Considering the growing importance of mobility
in robotics and vehicular applications, where Eclipse Zenoh is being
proposed for adoption, tests are conducted to emulate different node
velocities as they move closer to and farther from the access point,
assessing how the two aforementioned protocols react to such mobility
situations.

While the comparative analysis focuses primarily on the behavior of
MQTT and Eclipse Zenoh over TCP [9] as the transport layer, the paper
also explores Eclipse Zenoh’s capability to ensure data reliability and
handle potential network congestion scenarios by experimenting with
https://doi.org/10.1016/j.adhoc.2025.103784
Received 4 October 2024; Received in revised form 19 January 2025; Accepted 26
vailable online 3 February 2025
570-8705/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
 January 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
https://orcid.org/0009-0008-0213-7090
https://orcid.org/0000-0002-9620-3990
mailto:diezlf@unican.es
https://doi.org/10.1016/j.adhoc.2025.103784
https://doi.org/10.1016/j.adhoc.2025.103784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2025.103784&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Barón et al.

E

v

m

c

w

A

S

c
s

c

t
b
m
t
a
r
s
m

L

b
i

t
m
t
c
i

l
n
P
t
e
T
s
l
E
i
o
m

o
U
P
t

Ad Hoc Networks 170 (2025) 103784
UDP [10] as the transport protocol. Additionally, the study delves into
clipse Zenoh’s communication principles, depicting its most relevant

features and characteristics.
Hence, the main contributions of this paper are:

• A comprehensive description of Eclipse Zenoh’s underlying prin-
ciples.

• A comparative analysis of Eclipse Zenoh and MQTT in terms of
latency, over various network topologies.

• An assessment of MQTT and Eclipse Zenoh’s performance in
mobility scenarios, tested at different node velocities.

• An evaluation of Eclipse Zenoh’s reliability and congestion control
mechanisms, considering both TCP and UDP transmissions.

The remainder of the paper is structured as follows. Section 2 pro-
ides background information on MQTT and Eclipse Zenoh, introducing

and comparing their fundamental aspects. Then, Section 3 provides a
ore detailed analysis of Eclipse Zenoh, focusing on its communica-

tion level, followed by a description of its reliability and congestion
control mechanisms. Then, Section 4 discusses the results of the tests
onducted, which entail latency, reliability, and congestion control

mechanisms. Afterwards, Section 5 positions this work, providing an
overview of the related state-of-the-art. Finally, Section 6 concludes the
paper, and it also provides an outlook of our future work.

2. Background

In recent years, research in the field of application-layer protocols
ithin the IIoT domain has experienced a remarkable surge. Protocols

such as DDS [11], Constrained Application Protocol (CoAP) [12] or
pache Kafka [13] have been thoroughly studied, due to their rele-

vance in industrial settings. Their ability to provide efficient, secure,
and scalable communication solutions aligns well with the stringent
requirements of IIoT environments, where interoperability, reliabil-
ity, and real-time performance are paramount. Among them, MQTT
stands out as one of the most widely adopted solutions [14]. Its
lightweight and efficient design, flexible Publish/Subscribe (Pub/Sub)
model, persistent connection capabilities, and support for Quality of
ervice (QoS), have facilitated its adoption across several verticals [15].

Meanwhile, Eclipse Zenoh [6] has recently emerged as a prominent
ontender, offering unique features and promising applications well-
uited to IIoT environments.

2.1. MQTT

MQTT [16,17] is a lightweight application-layer protocol specifi-
ally designed for Internet of Things (IoT) applications. Due to its small

code footprint and ease of integration, it is a convenient choice for
low-power sensor networks that require low bandwidth and Machine-
to-Machine (M2M) environments.

MQTT uses a Point-to-Point (PtP) communication model based on
he Pub/Sub pattern. In MQTT nodes can take two roles: client or
roker. In turn, there are two client roles: (1) publishers, which publish
essages on specific topics; and (2) subscribers, which subscribe to those

opics to receive the corresponding information. Then, the broker acts
s an intermediate entity between publishers and subscribers, and it is
esponsible for receiving, storing and forwarding published messages to
ubscribed clients. MQTT offers three levels of QoS to ensure reliable
essage delivery:

• QoS 0: At most once delivery. The message is sent without ac-
knowledgment of receipt and may reach the destination once or
not at all.

• QoS 1: At least once delivery. The message is resent until the
receiver confirms its successful reception via a PUBACK, ensuring
it arrives at least once at the destination.
2
• QoS 2: Exactly once delivery. A four-step exchange process
(PUBLISH, PUBREC, PUBREL, PUBCOMP) is established between
sender and receiver to ensure the unique delivery of the message,
avoiding duplication.

The typical implementation of MQTT uses TCP at the transport
layer. Additionally, security may be provided by means of the Transport
ayer Security (TLS) [18] protocol. The standard port for MQTT is
1883, although port 8883 is reserved for MQTT connections using
TLS [16,17]. Nevertheless, recently alternative implementations have
een proposed to leverage novel transport solutions. For instance,
n [19] MQTT is implemented over QUIC [20] to better fulfill certain

performance requirements, such as latency.

2.2. Zenoh

Eclipse Zenoh [6] is a protocol that supports not only real-time
data transmission but also the management of data at rest through
storages, alongside the capability to execute queries directly within
the system. Thus, it operates as a Pub/Sub/Query protocol, offering a
more holistic solution than traditional solutions based on the Pub/Sub
or Request/Response patterns. This provides significant flexibility and
scalability, simplifying the development of distributed applications and
reducing infrastructure complexity.

Typically, Eclipse Zenoh is conceived as an application-layer pro-
ocol, operating over TCP. However, it is designed to function with
inimal transport requirements and it can therefore operate over any

ransport layer that provides point-to-point, packet-based communi-
ation, even with a best-effort delivery model. This, combined with
ts wire efficiency, which boasts a minimal overhead of just 5 B [4],

ensures that Eclipse Zenoh can seamlessly operate across multiple
ayers of the protocol stack, both over Internet Protocol (IP) and
on-IP networks. To this end, Eclipse Zenoh incorporates a Session
rotocol that allows it to operate over either the link, network or
ransport layers. Besides, Eclipse Zenoh offers abstractions for best-
ffort and reliable channels, diverse priorities, and adjustable Maximum
ransmission Unit (MTU) across all layers. For instance, by extending
upport to serial connections, it enables the integration of devices
acking traditional networking interfaces such as Wi-Fi, Bluetooth, or
thernet into a Zenoh network. This versatility is particularly relevant
n verticals such as robotics, transportation, and maritime, agricultural,
r industrial applications, where conventional network technologies
ay not be adequate [21].

As illustrated in Fig. 1, Eclipse Zenoh has the flexibility to operate
ver the transport layer using protocols like TCP (with or without TLS),
DP, or QUIC; over the network layer, using either IP or IPv6 over Low-
ower Wireless Personal Area Networks (6LoWPAN); or directly over
he link layer, including Wi-Fi, Ethernet, Thread, Bluetooth, or serial

links.
Eclipse Zenoh nodes can play a higher number of roles. Applications

can be configured to operate either as clients or peers, depending
on specific requirements. Additionally, Eclipse Zenoh allows for the
deployment of a Zenoh router, which can load plugins to extend its
functionality. These plugins enable features such as a REST API, access
to various databases, and integration with protocols like DDS or MQTT.
This enhances data accessibility, while offering greater flexibility, in-
teroperability, and ease of migration, simplifying the overall adoption
process.

Exploiting the aforementioned roles, Eclipse Zenoh supports a
broader range of topologies. These include configurations such as Clique
or Mesh in P2P communications, as well as those involving Zenoh
routers, such as Brokered and Routed communications. This versatility
makes Eclipse Zenoh a suitable solution for a wide array of applications
within the Industry 4.0 paradigm.

Within a Clique topology, all peers establish direct communication
with each other, creating a tightly interconnected network (termed

M. Barón et al. Ad Hoc Networks 170 (2025) 103784
Fig. 1. Zenoh architecture. Based on [21].
Fig. 2. Eclipse Zenoh and MQTT topologies. Based on [6].
peer_to_peer mode in the Eclipse Zenoh configuration file). Con-
versely, Mesh topologies assume a more selective approach to P2P
communication, allowing nodes to selectively engage with specific
peers, based on a defined criteria (referred to as linkstate mode). In
Brokered communications, the Zenoh router assumes a broker-like role,
enabling client communication across the network alike MQTT. This
vision simplifies the communication process, enhancing efficiency [22,
23]. In contrast, Routed communications introduce a more dynamic
approach, where every network node has the capability to commu-
nicate with others, by means of interconnected routers. Additionally,
clients can establish connections with peers, allowing information to
be routed. This decentralized mechanism ensures scalability and robust
connectivity [22].

Fig. 2 illustrates the various topologies available in Eclipse Zenoh,
which are compared to the brokered model in MQTT.

A more detailed and technical description of Eclipse Zenoh will be
provided in Section 3.

3. Zenoh in detail

Eclipse Zenoh, as a protocol designed to enable efficient and scal-
able communications in distributed environments, incorporates several
advanced features that allow it to operate flexibly and reliably. This sec-
tion explores some of its core components, which enable Eclipse Zenoh
to effectively manage data transmission across complex networks.
3
First, we delve into the scouting process, which allows nodes to ef-
ficiently discover and connect with other nodes. Next, we describe how
Eclipse Zenoh handles port opening, facilitating the communication
between nodes across different transport layers.

The Zenoh session, a key component of the protocol, is explained in
terms of its complete cycle: from the initial handshake between nodes,
through data transmission and reception, to the closure of the session.

Finally, we discuss the reliability and congestion control mech-
anisms that Zenoh implements to ensure stable communication in
dynamic and high-performance networks.

3.1. Multicast scouting

Eclipse Zenoh enables direct configuration of the network nodes
through a configuration file, allowing users to specify both the end-
points to connect to and those to listen on. This feature is particularly
advantageous in scenarios that require precise and controlled network
setups, as well as in static applications, where minimizing network
overhead is a priority.

In addition, Eclipse Zenoh offers an automatic node discovery fea-
ture (scouting), which is useful in dynamic environments where the
quick integration of new devices is essential. An illustrative use case
for automatic discovery is V2X communications, where vehicles can
connect to various devices as they move through different locations.

M. Barón et al.

t

m

Z

n
I
t
H
a

e

n
t
a

(
t

m
t
b

n

p

o
P
o

C

t

e
b
o
C
t

r
d

f
s

n
p
t
r
p

Ad Hoc Networks 170 (2025) 103784
In Eclipse Zenoh, network node discovery typically relies on UDP
scout messages. Any node seeking to join the network must subscribe
to the multicast group 224.0.0.224 on UDP port 7446 (both address
and port are configurable), using a frame that identifies its role within
the network.

The specifics of the scouting mechanism may vary, depending on
he type of node, as detailed in the following sections.

3.1.1. Peers and routers
Upon subscribing to the network, any peer keeps sending scout

essages, indicating its role, to the multicast group at specific time
intervals, which follow a geometric progression: 1, 2, 4, 8 s, remaining
constant from the fourth round onward. On the other hand Zenoh
routers behave similarly to peers in multicast scouting, and they also
announce their role in the scout message.

Each time a not-client node joins the network, existing peers and
enoh routers transmit their IP address and port (hereinafter,

‘‘@IP:Port’’) where they listen for incoming Zenoh communications
(TCP, UDP, QUIC, etc.); we will refer to this as ‘‘Server Port’’. This
transmission also follows the geometric progression mentioned earlier.
Afterwards the connected not-client node sends its @IP:Port every 8 s to
each node it had previously connected to. Thus, every peer and router
in the network becomes acquainted with the Server Port of all other
participants.

3.1.2. Clients
Clients send a single scout message to the multicast group. A Zenoh

router will respond sending its @IP:Port (usually, 7447) to establish the
Zenoh connection. No more UDP frames are sent or received by clients
to establish connections.

3.2. Gossip scouting

Particularly designed for P2P scenarios where multicast commu-
ications are not available, Eclipse Zenoh introduces gossip scouting.
t allows peers to perform application-level gossiping to propagate
he @IP:Port pairs of all discovered peers throughout the network.
owever, for a peer to start gossiping, it must have already established
 connection with another node in the network. Therefore, it is essential

for nodes to be connected to an initial entry point, typically a Zenoh
router, to discover the rest of the network.

Since this mechanism is part of Eclipse Zenoh’s session protocol,
it involves specific Zenoh packet types, such as OAM, which will be
xplained later in Section 3.4. OAM is also included in Table 1, where

Zenoh control packets are listed.
Unlike multicast scouting, the propagation of @IP:Port pairs does

ot occur periodically. Each time a new node enters the network,
he node it connects to sends its table of IP address and Server Port
ssignments of the known nodes within a Frame (OAM) packet, see

Table 1, to the newly discovered node. It then propagates the @IP:Port
pair of the latter to the next hop, also encapsulated within a Frame
OAM) packet. Subsequently, the new node establishes connections with
he other nodes and exchange their tables among themselves.

When not all nodes have direct connectivity with each other, it is
also possible to enable Mesh communications in the network. In this
situation peers are configured to operate in linkstate routing mode and

ultihop gossip scouting can be set up. This entails increased scouting
raffic and reduced scalability, while gossip scouting information can
e propagated across multiple hops to all nodes in the local network,

ensuring complete knowledge of each other.

3.3. Opening ports

As depicted in Fig. 3, in Eclipse Zenoh the opening of ports for nodes
in a network depends on their roles. The involved procedures under
different topologies are described below.
4
3.3.1. P2P communications
To initiate a Zenoh communication with another peer, a peer only

eeds to open a port (hereinafter referred to as ‘‘Client Port’’) to
establish a communication with the Server Port of each of the other
eers in the network. In a P2P communication scenario, the first node

only opens its Server Port. When the second node joins, it opens a Client
Port to communicate with the existing node, and a Server Port. The
third node would then open two Client Ports (one for each existing
node) and a Server Port. This process continues with each new node
joining the Zenoh network.

As can be observed, the number of open ports increases with the size
f the network. Let 𝑃𝑆𝑖

and 𝑃𝐶𝑖
be the number of Server Ports and Client

orts, respectively, in the pair that is incorporated in the 𝑖th position
f P2P communications. For all nodes, we have:

𝑃𝑆𝑖
= 1, 𝑃𝐶𝑖

= 𝑖 − 1

3.3.2. Brokered communications
Regarding Brokered communications, it has been observed that

clients exclusively open a Client Port and do not require a Server Port.
This Client Port is used to communicate through the Zenoh router,
which, in turn, opens a Server Port, but does not need to open any

lient Ports to interact with the clients.
Using the same notation as in P2P communications, and if the Zenoh

router corresponds to node 0, the number of Server and Client Ports that
he router and the other nodes open can be expressed as:

𝑃𝑆0
= 1, 𝑃𝐶0

= 0; 𝑃𝑆𝑖
= 0, 𝑃𝐶𝑖

= 1 ∀𝑖 ≠ 0

3.3.3. Routed communications
In a Routed communication scenario, the configuration incorporates

lements of the two aforementioned modes. The Zenoh router is capa-
le of opening Client Ports to communicate through the Server Ports
f other peers or Zenoh routers. Meanwhile, client nodes only open a
lient Port, which they use to connect either to the router or directly
o another peer.

If we have a set of client nodes 𝐶 and non-client nodes 𝑁 (either
outers or peers), the number of open port for both node types can be
efined as:

𝑃𝑆𝑖
= 1, 𝑃𝐶𝑖

= 𝑖 − 1 ∀𝑖 ∈ 𝐶 ;

𝑃𝑆𝑗
= 0, 𝑃𝐶𝑗

= 1 ∀𝑗 ∈ 𝑁

3.4. Zenoh session

Upon discovering a new node, an application-layer exchange of
rames is initiated to establish the communication, opening the corre-
ponding channel: (1) InitSyn, (2) InitAck, (3) OpenSyn, and (4)
OpenAck, as illustrated in Fig. 4 (see Table 1).

Zenoh communication relies on the transmission and reception
of values associated with different keys. Throughout a connection or
session, values can be transmitted or removed using Push frames
(Put/Del). Entities that frequently send values to the same key ex-
pression can be declared as publishers. It is important to note that this
declaration serves as an optimization technique to enhance system
efficiency, especially in scenarios involving frequent data transmis-
sion. However, it is not mandatory, as any application can perform
write operations (Put) without having explicitly been designated as
a publisher.

To receive all updates related to one or more keys, an entity within a
ode can be declared as a subscriber to a specific key expression, or as a
ull subscriber, so that it decides when to retrieve new data samples from
he nearest node as they become available. Alternatively, the entity can
equest specific data through queries. These requests are handled by
rocesses declared as queryables for such key expressions. As shown in

Table 1, information queries are dispatched within Request frames,
and replies are delivered via Response frames.

M. Barón et al.

q

S

o

a

Ad Hoc Networks 170 (2025) 103784
Fig. 3. Port configuration in Eclipse Zenoh. This figure presents six different Zenoh applications grouped into three scenarios: (1) Scenario 1: Three pairs (two publishers (Pubs)
and one subscriber (Sub)) forming a Clique topology; (2) Scenario 2: Two clients (one Pub and one Sub) and a Zenoh router, forming a Brokered topology; (3) Scenario 3: All six
nodes combined, forming a Routed topology. The figure illustrates the ports opened by each node, distinguishing between Server Ports and Client Ports, and highlights the paths
of direct communication between nodes. The color of the ports indicates direct communication: nodes with ports of the same color communicate directly with each other. The
figure also specifies the key expressions to which nodes publish or subscribe.
c

e
I
t

s

(

r

Fig. 4. Eclipse Zenoh Four-Way Handshake.

Once the Zenoh session is established, nodes can start exchanging
Declare frames, indicating subscription interest or availability for
uerying specific keys. Nodes retain the ability to undeclare at their

discretion.
To maintain the connection, nodes transmit KeepAlive frames if

no data has been exchanged during a specified interval set to one-fourth
of the session lease time, which is, by default, 10 seconds. Therefore, in
the absence of data exchange, KeepAlive frames are sent every 2.5 s.
ession closure is conducted through a Close frame.

All control packet types and their corresponding meaning are sum-
marized in Table 1, along with their hexadecimal values, which were
btained from Wireshark captures.

3.5. Reliability and congestion control mechanisms

In distributed systems, ensuring both reliability and efficient conges-
tion control is crucial to ensure robust communications. Eclipse Zenoh
offers a comprehensive framework to appropriately manage these two
aspects.

It provides various reliability strategies to accommodate different
pplication or service requirements while maintaining scalability as

follows:

• Hop to hop reliability. The default strategy in Eclipse Zenoh
ensures reliability at each hop in the network. While offering good
scalability, it may result in data loss during topology changes.

• End to end reliability. This strategy establishes a reliability chan-
nel between each data producer–consumer pair, minimizing data
loss even during topology changes. However, it is less scalable
and may induce higher resource consumption.
5
• First router to last router reliability. By establishing a relia-
bility channel between the first and last routers of each data
route, Eclipse Zenoh offloads pressure from data producers and
consumers, enhancing scalability.

The reliability strategies in Eclipse Zenoh are facilitated by two
ore protocols: the session and the routing protocols. The first one es-

tablishes and manages bidirectional connections between the different
nodes in the Zenoh network. It handles the setup and maintenance of
communication channels, including both best-effort and reliable chan-
nels, and it optimizes network usage through techniques like automatic
batching and fragmentation.

• Best-Effort Channel. This channel allows the transmission of data
without any delivery guarantees nor ordered reception. It is suit-
able for non-critical data where occasional losses are acceptable.

• Reliable Channel. This channel ensures the delivery of all data in
the correct order. It is suitable for services having critical data,
where integrity and reliability are essential.

As mentioned in Section 3.4, producers are applications that per-
form write operations (put()), regardless of whether they have been
explicitly declared as publishers. Consumers, on the other hand, are
applications that subscribe to key expressions or request data via queries.

The routing protocol allows the session protocol to propagate inter-
sts, sending data from producers to consumers in the Zenoh network.
t establishes the most efficient path for data transmission, ensuring
imely and reliable delivery. This protocol is essential for directing data

flows effectively across the network, regardless of the chosen reliability
trategy.

In Eclipse Zenoh, reliability is managed by data consumers, which
specify whether they require the retransmission of lost messages
RELIABLE()) or not (BEST_EFFORT()). Conversely, producers fix

the congestion control to be applied during the session in the event of
significant network congestion. They decide, for each message, whether
it can be discarded (DROP()) or if the publisher should stop sending it
(BLOCK()) upon a congestion situation, prioritizing message delivery
over other operations. This strategy is propagated to all involved nodes
and implemented across the entire route. Both congestion control and
eliability mechanisms are summarized in Table 2.

4. Performance evaluation

In this section we discuss the performance of Eclipse Zenoh and
MQTT. All tests aim to evaluate two key aspects of IIoT scenarios:
latency and reliability.

M. Barón et al.

l

p
l
c

r
f
R

s

T

S

b

S

Ad Hoc Networks 170 (2025) 103784
Table 1
Zenoh control packets.

Packet types Description Hex code

InitSyn Node requests to initialize a connection to another node. 81
InitAck Initialization acknowledgment. a1
OpenSyn Node initiates a session for communication with another node. 42
OpenAck Opening acknowledgment. 62
Close Node closes the connection with another node. 03
KeepAlive Connection maintenance. 04

DeclareKeyExpr Declaration of the key expression utilized.
DeclareSubscriber Declaration of a subscriber.
DeclareQueryable Declaration of a queryable.
UndeclareSubscriber Undeclaration of a subscriber.

Declare

UndeclareQueryable Undeclaration of a queryable.

OAM Transmission of nodes network information.

Put Sending of a value.Push Del Deletion of a value.

Request Query Sending of a query.

Frame

Response Reply Reply to a query.

25
Table 2
Congestion control and reliability mechanisms.

Mechanism Value Definition Decision

BLOCK() Ensures messages not being dropped under any circumstances.Congestion control DROP() Allows the message to be discarded if all buffers are full. Producer

RELIABLE() Informs the network that it is required all publications to be reliably delivered.Reliability BEST_EFFORT() Informs the network that it is acceptable to discard some messages. Consumer
t
t
i

e

t
n

First, latencies of both protocols are compared under different re-
iability configurations across various topologies, including P2P, cen-

tralized, and distributed architectures, common setups in industrial
environments. Additionally, the impact of node movement within the
network is also studied. This includes scenarios where a node is placed
at the cloud, or moved away from the access point, emulating mobility
conditions.

For Eclipse Zenoh, the analysis also explores the differences in
acket loss and delay when using both UDP and TCP at the transport
ayer. These tests cover all available reliability and congestion control
onfigurations (see Table 2).

The experiments were conducted over a physical testbed, which
comprised Raspberry Pi 3 Model B V1.2 and B+, operating with Linux
aspberrypi 6.1.21-v7+ and Raspbian GNU/Linux 11 (bullseye) on dif-
erent hosts. Wireless connections were established through an Asus
T-N18U 2.4 GHz Wi-Fi Router, capable of delivering speeds of up

to 600 Mbps (802.11n standard in infrastructure mode). Additionally,
a NETGEAR GS108 Gigabit Ethernet Switch was employed for wired
connections. Notably, mobility scenarios incorporated two STE2300
hielded test enclosures,1 alongside a 90 dB Programmable Attenuator

RCDAT-8000-90.2
As for protocol implementation, we used the Eclipse Zenoh Python

API,3,4 which is built upon Eclipse Zenoh’s primary Rust implemen-
tation.5 The Zenoh router (zenohd6) has been configured to listen on

CP port 7447. To analyze Zenoh traffic, we used the Eclipse Zenoh
Dissector7 for Wireshark 4.0.10.

1 https://ctscorp-usa.com/wp-content/uploads/2018/03/STE2300_Data_
heet-CTS.pdf.

2 https://www.minicircuits.com/pdfs/RCDAT-8000-90.pdf.
3 https://github.com/eclipse-zenoh/zenoh-python (accessed on 24 Septem-

er 2024), version 0.10.0-rc.
4 https://zenoh-python.readthedocs.io/en/0.10.0-rc/ (accessed on 24

September 2024).
5 https://github.com/eclipse-zenoh/zenoh (accessed on 24 September

2024).
6 https://github.com/eclipse-zenoh/zenoh/tree/main/zenohd (accessed on

24 September 2024), version v0.10.1-rc-1-g15b36a0f.
7 https://github.com/ZettaScaleLabs/zenoh-dissector (accessed on 24

eptember 2024).
6
Regarding MQTT clients and brokers, we relied on the Eclipse
Paho,8 MQTT client library and Eclipse Mosquitto9 respectively. The
MQTT server was configured to accommodate remote clients on port
1883.

4.1. Comparative latency analysis

In the first set of experiments, we compare Eclipse Zenoh and MQTT
in terms of latency, considering scenarios typically seen in industrial
environments, deploying various applications that emulate sensors or
actuators, and routing communication through routers or brokers. In all
ests, a wireless connection was established between the two nodes of
he network, mimicking the growing presence of wireless technologies
n M2M and IIoT communications [24]. Notably, one Zenoh application

operates in peer mode across all scenarios, and TCP is consistently used
as the transport protocol in all tests.

As depicted in Fig. 5, three distinct scenarios (𝛼, 𝛽, 𝛾) were consid-
red, comprising three (𝛼, 𝛽) or four hosts (𝛾):

• Scenario 𝛼. Two brokered applications within the same network,
with full wireless connectivity.

• Scenario 𝛽. Two brokered applications in two different networks,
one of them using Ethernet.

• Scenario 𝛾. Two routed applications connected through two
routers across three different networks, with the two edge net-
works using Ethernet.

For Eclipse Zenoh, an additional scenario 𝛿 was considered. Its
performance in P2P topologies with wireless connectivity is analyzed
o assess the advantages this approach offers compared to the other
etwork configurations.

The latency for the different configurations was obtained by mea-
suring the application level RTT, based on the communication between
publishers and subscribers, through a request/response mechanism.

8 https://github.com/eclipse/paho.mqtt.python (accessed on 24 September
2024), version 1.6.1.

9 https://github.com/eclipse/mosquitto (accessed on 24 September 2024),
version 2.0.11.

https://ctscorp-usa.com/wp-content/uploads/2018/03/STE2300_Data_Sheet-CTS.pdf
https://ctscorp-usa.com/wp-content/uploads/2018/03/STE2300_Data_Sheet-CTS.pdf
https://www.minicircuits.com/pdfs/RCDAT-8000-90.pdf
https://github.com/eclipse-zenoh/zenoh-python
https://zenoh-python.readthedocs.io/en/0.10.0-rc/
https://github.com/eclipse-zenoh/zenoh
https://github.com/eclipse-zenoh/zenoh/tree/main/zenohd
https://github.com/ZettaScaleLabs/zenoh-dissector
https://github.com/eclipse/paho.mqtt.python
https://github.com/eclipse/mosquitto

M. Barón et al.

v

n
a
a

n
t
a
s

c

0

w

l
r
(
e
s

p
a
s
s
T

p
b
r

l
t

c
n

T

l
a
t
A
Z
t

n

Ad Hoc Networks 170 (2025) 103784
Fig. 5. Topologies of the four proposed scenarios to evaluate the performance of appli-
cations in different network configurations: (1) scenario 𝛼: two brokered applications
within the same network, using wireless connectivity; (2) scenario 𝛽: two brokered
applications in two different networks, with the second network connected via Ethernet;
(3) scenario 𝛾: two routed applications through two routers across three different
networks, with the last two networks wired via Ethernet; (4) scenario 𝛿: two P2P
applications within the same network, using wireless connectivity; For scenarios 𝛼, 𝛽,
and 𝛾, Eclipse Zenoh is depicted on the left and MQTT on the right. The technology
used in each network (Wi-Fi or Ethernet) is illustrated accordingly. The term ‘‘Cli’’
refers to Zenoh applications operating in client mode.

The RTT is calculated by subtracting the initial time 𝑡0 from the final
time 𝑡1. In general, each scenario comprises a sequence of nodes, see
Fig. 5, which allow the communication between the edge ones. The
alue of 𝑡0 is recorded when the first node in the network sends data

to a key the last node is subscribed to. This value is then delivered to
the last node, possibly through intermediate nodes, if they exist. When
the last node receives the message, it publishes a confirmation message
(acknowledgment (ACK)) with a payload of 2 B to another key the first
node in the network is subscribed to. Time 𝑡1 is recorded when the first
ode receives such ACK. This process is repeated 1000 times without
dding any waiting time between reception and transmission, to obtain
 tighter latency average value.

For both protocols, a session was established at the first and last
odes with a client that publishes on and subscribes to distinct keys/
opics. On the first node, the client publishes on the key/topic test/data,
nd it subscribes to test/ack. Conversely, the client at the last node
ubscribes to test/data and publishes on test/ack.

Regarding reliability and congestion control, two scenarios were
onsidered for Eclipse Zenoh: (1) RELIABLE and BLOCK, and (2)
7
BEST_EFFORT and DROP. For MQTT, analysis were conducted for its
three levels of QoS (see Section 2.1). It is worth noting that QoS level
 would align more closely to scenario (2) [25].

Zenoh applications were configured via configuration files, using
the structure outlined in the schema10 provided by ZettaScale Technol-
ogy. Configuration parameters include the node type (peer or client)
and the endpoint address for connection establishment. Multicast scout-
ing was enabled, with the default settings, due to its potential use in
IIoT environments. Additionally, Peer_to_peer was employed as the
routing strategy for peers, while transport parameters were kept at their
default values. For the Zenoh router, the default configuration of zenohd
was used.

4.1.1. Scenario 𝛼: Brokered topology – Single network
The first scenario comprises a network that exclusively operates

ith Wi-Fi connectivity, with three nodes: a publisher, a Zenoh router/
MQTT broker, and a subscriber.

Fig. 6 shows the box plot of the measured latency upon the different
reliability setups. For each configuration, the box upper and lower
imits represent the first and third quartiles (25th and 75th percentiles),
espectively. The middle line within each box indicates the median
50th percentile), while the circle represents the mean. The whiskers
xtend to show the range that contains approximately 99% of the
amples.

The results depicted in Fig. 6 evince that Eclipse Zenoh, using
both Best Effort (BE) and Reliable (Rel.) mechanisms, showcases a
erformance similar to that observed for MQTT with QoS levels 0
nd 1, yielding slightly lower latencies in both cases. Eclipse Zenoh
ignificantly outperforms MQTT QoS 2, which might not be a sensible
olution when employing TCP as the underlying transport protocol.
his is due to TCP’s implementation of flow control, congestion control,

and packet retransmission mechanisms, which aim at ensuring minimal
acket loss. Nevertheless, the adoption of MQTT with QoS 2 might
e a sensible choice in applications requiring an additional level of
eliability and message delivery assurance.

4.1.2. Scenario 𝛽: Brokered topology – Multiple networks
In this second scenario, one of the wireless connections (Zenoh

router/MQTT Broker to client) is replaced with an Ethernet one, emu-
ating a cloud-based setup. Over this scenario two different configura-
ions are considered, as shown in Fig. 7. The first one mimics different

distances to the cloud, which yield different delays, while the wireless
onnection remains the same. Then, we assume mobility in the wireless
ode.

For this first modification of scenario 𝛽, latency is varied using the
raffic Control (tc) Linux command. In particular, the performance of

both protocols is compared when there is no delay and when the delay
to the cloud instance is 200 ms.

We can observe that this setup yields, as was expected, lower
atencies compared to scenario 𝛼, as shown in Fig. 8(a). The results
lso evince slight improvements when using Eclipse Zenoh, compared
o MQTT. Fig. 8(b) depicts the obtained results with additional delay.
s can be seen, there exists a much larger difference between Eclipse
enoh and MQTT than before, reaching more than 0.5 ms difference in
he RTT in the best-case scenario.

Additionally, mobility has been emulated by further modifying sce-
ario 𝛽. As depicted in Fig. 9, two shielded test enclosures (STE2300)

were used to house the devices, creating a controlled wireless envi-
ronment. The first enclosure contained the Raspberry Pi implementing
the first node (Zenoh peer or MQTT client), while the second housed
the Wi-Fi router, the Zenoh router/MQTT broker and the third node

10 https://github.com/eclipse-zenoh/zenoh/blob/master/commons/zenoh-
config/src/lib.rs (accessed on 24 September 2024).

https://github.com/eclipse-zenoh/zenoh/blob/master/commons/zenoh-config/src/lib.rs
https://github.com/eclipse-zenoh/zenoh/blob/master/commons/zenoh-config/src/lib.rs

M. Barón et al.

Fig. 6. RTT obtained in scenario 𝛼.

Fig. 7. Cloud-based and mobility approaches using scenario 𝛽.

Fig. 8. RTT obtained in scenario 𝛽 without motion.

Ad Hoc Networks 170 (2025) 103784

8

M. Barón et al. Ad Hoc Networks 170 (2025) 103784
Fig. 9. Setup to emulate mobility.
connected via Ethernet to the previous one. Antennas inside each
enclosure were connected by a cable with a programmable attenuator
(RCDAT-8000-90), allowing us to precisely control wireless channel
conditions.

A vehicular channel model proposed in [26] was used to simulate
mobility. The attenuation was programmed to reflect the distance-
dependent path loss and so emulate movement of the first node, away
from the access point. To correctly apply the path loss model, the signal
level in free space was first compared with that obtained using the
boxes, to establish the implicit attenuation added by the setup (an-
tennas, cables, etc.). In this sense, Received Signal Strength Indicator
(RSSI) values (recorded with the iwconfig Linux command) obtained
in free space and with the setup were −30 and −42 dBm respectively.
This difference (−12 dB) was taken into account to tune the attenuator.
In particular, the adopted model [26] mentions propagation losses of
around 92 dB at a distance of 400 m, so that the dynamic range in the
attenuator was configured between 0 and 80 dB.

Mobility at different speeds (1 m/s, 10 m/s, and 15 m/s) was
emulated by adjusting the attenuation ramp and dwell time at each
attenuation value, enabling the simulation of a node first moving away
and then towards the access point, twice during the experiment. These
speeds were chosen to represent a range of scenarios, from pedestrian
and robotic movement to drones and vehicles, reflecting diverse mo-
bility conditions found in manufacturing environments and vehicular
networks.

Fig. 10 provides a sample of the RTT variation as a function of the
RSSI throughout a mobility experiment. It shows the impact of distance
and attenuation on communication performance. It is worth noting that
the underlying Wi-Fi implementation (802.11n) adapts its modulation
and coding scheme (MCS) to channel quality variations.

Fig. 11 illustrates the results for the three speeds. As observed,
Eclipse Zenoh consistently outperforms MQTT, achieving much lower
latencies and less variability across all configurations. These results
underscore the robustness of Eclipse Zenoh in scenarios involving
mobility.

4.1.3. Scenario 𝛾: Routed topology – Multiple networks
In scenario 𝛾 with MQTT, a single host has been configured to

act as both broker and client bridging between the two brokers. This
setup ensures that the results obtained are appropriate to be compared
against an Eclipse Zenoh Routed topology.

Fig. 12 shows that the performance (latencies) achieved with Eclipse
Zenoh are significantly better (lower) compared to MQTT. It is notewor-
thy that, although Eclipse Zenoh exhibits slightly worse results than in
scenario 𝛽 (there is an additional hop in the communication), it still
outperforms the results from scenario 𝛼. Conversely, MQTT exhibits
latencies that are even higher than those observed in 𝛼. This highlights
the potentially low performance of MQTT in distributed systems with
9
Fig. 10. Emulation example of measurements outcome.

multiple hops between producers and consumers. In contrast, Eclipse
Zenoh provides an appropriate performance, and it also allows a more
straightforward deployment in such scenarios.

4.1.4. Scenario 𝛿: P2P topology – Single network
The aim of this last scenario was to characterize the latency that

Eclipse Zenoh would cause in its most favorable conditions, which em-
brace a direct communication between two peers on the same network,
with Wi-Fi coverage. As shown in Fig. 13, the delays obtained with the
two reliable mechanisms are much lower than those observed in the
rest of the analyzed scenarios.

To sum up, Table 3 presents the median RTT values for each
scenario, to ease the comparison of the behaviors observed in all of
them. As can be observed, Eclipse Zenoh steadily outperforms MQTT
in all cases when reliability is not added (QoS 0 in MQTT and BE
in Eclipse Zenoh). In addition, it can be seen that, in terms of delay,
Eclipse Zenoh with Reliable configuration yields similar performance
to MQTT without QoS.

4.2. TCP vs. UDP Connections with Zenoh

This section studies the interplay of Eclipse Zenoh’s reliability and
congestion control mechanisms (see Table 2) with the underlying trans-
port protocols, specifically TCP and UDP. In this case, the scenario was

M. Barón et al.

m

Ad Hoc Networks 170 (2025) 103784
Fig. 11. RTT obtained in scenario 𝛽 with motion and no delay to the cloud. For each configuration results with motion speed of 1, 10 and 15 m/s are obtained.
Fig. 12. RTT obtained in scenario 𝛾.
Fig. 13. RTT obtained in scenario 𝛿.
o

simplified to exclusively focus on Eclipse Zenoh’s interaction with these
mechanisms. As depicted in Fig. 14, two applications, operated in peer
mode on separate hosts, are connected via Ethernet to avoid channel-
induced losses. Over this setup packet losses and latencies are analyzed
for different packet sizes.

The tests consisted on the first peer publishing a 5 MB file, seg-
ented into: (1) 5000 packets of 1000 B, (2) 10 000 packets of 500 B,

and (3) 50 000 packets of 100 B. No waiting time was, deliberately,
10
applied between transmissions to induce congestion. The second peer
published a 2 B ACK message to prevent affecting buffer congestion.
This process is illustrated in Fig. 15.

Configuration files were adjusted for peers to connect and listen
n specific endpoints, switching between TCP and UDP protocols.

Multicast and gossip scouting were disabled, and P2P discovery was
thus directly managed, minimizing additional scouting traffic. Times-
tamping was also disabled to prevent message dropping. Peers are

M. Barón et al.

r

s

w
t

a
o

r

l
t
t
r

a
a
h
T

Ad Hoc Networks 170 (2025) 103784
Table 3
Mean and median RTT (ms) in all scenarios.

Scenario Zenoh MQTT

Best effort Reliable QoS 0 QoS 1 QoS 2
Mean Median Mean Median Mean Median Mean Median Mean Median

𝛼 7.18 6.81 8.38 7.03 8.08 7.58 8.87 8.47 127.07 119.73
𝛽 5.15 4.68 4.96 4.60 5.25 4.78 6.69 5.16 117.72 109.66
𝛽 (a) 413.01 409.00 412.96 409.08 416.62 409.66 802.55 802.57 2102.80 2099.00
𝛽 (1 m/s) 36.66 32.60 37.36 33.13 71.29 35.20 100.18 83.89 110.10 94.59
𝛽 (10 m/s) 37.98 31.56 36.04 31.86 86.38 33.66 94.35 82.01 117.83 92.19
𝛽 (15 m/s) 36.36 29.86 36.46 30.31 102.45 31.91 93.80 79.01 127.08 100.31
𝛾 5.81 5.54 6.26 5.61 10.53 9.80 100.64 99.00 122.90 118.39
𝛿 4.30 3.91 4.32 3.90 –
a
Z
s
D
u
b
E
i

f
t
e

Fig. 14. Eclipse Zenoh’s reliability and congestion control mechanisms test setup: two
applications running in peer mode on separate hosts connected via wired Ethernet.

configured to operate in peer-to-peer mode, simplifying routing and
educing overhead. The transmission settings were selected to optimize

data throughput, with a maximum batch size of 65 535 B. Reception
ettings included a 65 535-byte buffer, and supported message sizes up

to 1 GiB, ensuring efficient handling of large data loads.
Tests used default buffer settings on Raspberry Pi devices. That is,

ith maximum and default lengths of 180 224 B for both receive and
ransmit buffers in network sockets.

A total of 100 samples were collected for each of the four
configurations analyzed: (1) BEST_EFFORT() with DROP(), (2)
BEST_EFFORT() with BLOCK(), (3) RELIABLE() with DROP(),
nd (4) RELIABLE() with BLOCK(). The impact of each mechanism
n packet loss and RTT, due to network congestion, was studied.

In this case, the box plots in Figs. 16 and 17 display, with cir-
cles, outlier values that are below or above the 1 and 99 percentiles,
espectively.

Based on the results shown in Fig. 16, we can conclude that the
use of UDP as the transport layer leads to a significant number of
packet losses for all configurations, with minor differences between
them. As the packet count gets higher, increasing network congestion,
the loss rate becomes significantly more relevant, particularly with
configuration (1).

While Eclipse Zenoh’s congestion control mechanisms demonstrate
imited effectiveness with UDP, the results obtained with TCP evince
hat there were no packet losses when employing the BLOCK() option
o halt transmissions. Notably, as discussed in [27], the reliability
equirement at the receiver may not be consistently met if the producer

uses DROP() for the congestion control. This is clearly seen by the
packet losses that occur, even with TCP, which is designed with flow
and congestion control: Eclipse Zenoh discards packets before reaching
the transport layer, which does not cause any loss control mechanism,
nor packet retransmissions.

Finally, Fig. 17 illustrates the distribution of the RTT for each
packet. As expected, UDP transmissions exhibit considerably lower
latency compared to TCP, reflecting a trade-off between packet loss
nd delay. While RTT values are similar when the connection entails
 smaller number of packets, significant differences can be seen when
aving a larger number of packets. In extreme cases, Eclipse Zenoh over

CP leads to RTT times close to 15 s for individual packets.

11
5. Related work

Given its novelty, related works focused on Eclipse Zenoh are quite
scarce to date. Nevertheless, there exist some works, mainly conducted
by Eclipse Zenoh’s developers and maintainers, such as ZettaScale [4,
25], and ADLINK [28] that provide the foundation of this work.

The wide array of topologies offered by Eclipse Zenoh enables com-
parisons in P2P communications with distributed protocols like Cyclone
DDS or in brokered communications with centralized ones like MQTT
or Kafka. In this context, Liang et al. provide in [25] a comparative
nalysis of these protocols, showing rather favorable results for Eclipse
enoh in terms of latency and throughput. Regarding latency, both
ingle and multi-host scenarios were encompassed. In the first case,
DS exhibited lower performance compared to Eclipse Zenoh when
sing the P2P configuration. The authors concluded that the observed
ehavior was due to DDS utilizing UDP multicast mechanisms. Since
clipse Zenoh was not yet implemented over UDP, Eclipse Zenoh’s
mplementation for constrained devices, i.e. Zenoh-Pico,11 implemented

over UDP, was also tested, providing the lowest latencies. Additionally,
Zenoh brokered obtained better results in comparison to MQTT. In the
multi-host scenario, comprising three hosts (publisher, subscriber, and
router/broker) and using a 100 Gb Ethernet, Eclipse Zenoh consistently
outperformed MQTT and Cyclone DDS, demonstrating significantly
lower values across all scenarios.

Corsaro et al. refer to the aforementioned results in [4], where they
introduce the principles and key features of Eclipse Zenoh, such as
resources, entities and primitives, and showcase the supported topolo-
gies. The paper also reflects the wire efficiency Eclipse Zenoh offers
compared to DDS and MQTT due to its significantly lower minimal
overhead.

Shih et al. [28] focus their study on evaluating Eclipse Zenoh’s
capability over scalable, cross-network, and real-time systems. They
demonstrate that Eclipse Zenoh and Cyclone DDS exhibit different
behaviors depending on the payload size. The results evince that Eclipse
Zenoh shows better performance with smaller payloads, but it is af-
ected as the payload size increases. The analysis was conducted with
he peers on a single machine simulating the network conditions that
dge devices might encounter on a 802.11g network [29], using the

Linux kernel to throttle traffic.
More recently, some other researches have been conducted in order

to explore the potential that Eclipse Zenoh could have in different
use cases. Zhang et al. [30] study the performance of Cyclone DDS,
MQTT, and Eclipse Zenoh in distributed ROS 2 systems. Three network
environments are set: an Ethernet and a Wi-Fi local network, simulating
Edge-to-Edge communication, and a 4G setup with a ZeroTier12 virtual-
ized network to emulate Edge-to-Cloud communication. They achieve
good results for Eclipse Zenoh when operating under 4G and Wi-Fi
conditions, in comparison to MQTT and DDS. However, under Ethernet,

11 https://github.com/eclipse-zenoh/zenoh-pico (accessed on 24 September
2024).

12 https://www.zerotier.com/ (accessed on 30 September 2024).

https://github.com/eclipse-zenoh/zenoh-pico
https://www.zerotier.com/

M. Barón et al. Ad Hoc Networks 170 (2025) 103784
Fig. 15. Sequence diagram illustrating RTT measurement for analyzing reliability and congestion control mechanisms in Eclipse Zenoh.
Cyclone DDS exhibits minimal latency and maximum throughput. The
authors, as in [4,25], conclude that it is due to the unfair comparison
with DDS, since it works over UDP.

Furthermore, López Escobar et al. [31] have observed significant
potential in utilizing Eclipse Zenoh to implement lightweight services
within the Cloud-to-Edge infrastructure, fostering various use cases
such as emergency rescue and mobile e-health monitoring applications.
Their focus is to assess the performance of centralized and decentralized
communication approaches, comparing MQTT as a centralized strategy
and Eclipse Zenoh P2P as a decentralized one. Three architecture test-
beds are defined to depict various communication scenarios in the
Cloud-to-Edge Continuum: Mist, Fog-Mist, and Cloud-Fog-Mist. These
involve distributed computing across different layers depending on
processing and networking requirements. The evaluation is conducted
over Wi-Fi (802.11ac) and 5G (Stand Alone (SA) core with an indoor
n78-band gNodeB (3.3–3.8 GHz)) access infrastructure. Both MQTT and
Eclipse Zenoh communicate over TCP, with MQTT set to QoS level 0
and Eclipse Zenoh to Best-Effort mode.

Recently, Teixeira et al. [32] explored the use of Eclipse Zenoh as
an alternative to the Message Passing Interface (MPI) for distributed
learning tasks in the context of federated learning (FL), using realistic
6G simulated environments. They show that Eclipse Zenoh exhibits
slightly higher execution time, but their work highlights its reduced
communication overhead and increased flexibility, making it a suitable
solution for resource-constrained and dynamically connected devices in
FL applications.

Especially noteworthy is the different scope given in [33], where
Zenoh-Flow is introduced. This platform is designed to streamline the
development of applications for autonomous robots, vehicles, and other
use cases requiring data transfer between the cloud and devices. It
provides tools and abstractions to enhance performance and efficiency
in control applications while also supporting higher-level data flows for
artificial intelligence and machine learning. Zenoh-Flow is developed
based on the positive results obtained in [34]. Additionally, other
researchers have explored this platform, as Gramaglia et al. [35],
who exploit it to implement heterogeneous Network Intelligence (NI)
algorithms.

This work complements existing research by further exploring the
comparative performance of MQTT and Eclipse Zenoh across network
topologies not yet addressed. It is worth highlighting our focus on
routed communication, where two routers can efficiently forward data
directly between them, eliminating the need for a client to serve as a
bridge, an aspect not covered in previous studies like [25,30] or [31].
By analyzing its performance in multi-router environments, we extend
12
the knowledge about Eclipse Zenoh by providing insights into network
scalability and efficiency, which is especially relevant for IIoT settings
where multi-hop routing is common. Besides, the impact of a node’s
mobility relative to a Wi-Fi access point, tested at varying speeds and
its impact on latency, is another novel aspect not addressed in earlier
research.

Additionally, this work provides an in-depth analysis of the con-
gestion control and reliability mechanisms described in [4], providing
a deeper analysis of their behavior under different configurations.
Specifically, it examines Eclipse Zenoh’s operation over both TCP and
UDP transport protocols, focusing on scenarios involving packet loss in
a fully wired connection. This has been largely overlooked in previous
studies. We consider that the evaluation of Zenoh’s RELIABLE and
BLOCK configurations, in contrast to the BEST EFFORT and DROP
settings, is particularly valuable in revealing how these mechanisms
affect packet delivery and RTT under high-traffic conditions. By simu-
lating real-world scenarios involving the transmission of large volumes
of segmented data (e.g., 5 MB), this analysis offers new insights into
the protocol’s reliability and congestion management strategies. This
understanding is essential for optimizing the balance between reliabil-
ity and efficiency in industrial networks that handle large amounts of
data.

Moreover, this paper provides a detailed communication-level anal-
ysis of Eclipse Zenoh, encompassing processes such as node discovery,
port usage, handshake mechanisms, and data transmission/reception.
These insights are relevant for understanding how the protocol operates
at a fundamental level and complement the performance evaluation by
detailing the protocol’s inner mechanisms. Such a detailed analysis has
not been previously explored in related works, making it a distinctive
contribution to the field.

Table 4 summarizes the comparative features of this study and
related works. While existing research provides important groundwork,
this paper extends it by addressing critical gaps, including routed
communication, mobility, in-depth analysis of reliability and conges-
tion mechanisms, and detailed communication-level insights. These
contributions not only cover existing gaps in the available literature,
but also offer a more comprehensive understanding of Eclipse Zenoh’s
potential in real-world deployments.

6. Conclusion

Given that Eclipse Zenoh is a relatively new protocol and does
not yet have a formal specification or standard, the lack of detailed
documentation poses a significant challenge. This work has analyzed

M. Barón et al.

c
E
w
Z

n

Ad Hoc Networks 170 (2025) 103784
Fig. 16. Distribution of the percentage of losses for UDP and TCP using different configurations and for various packet sizes.
Table 4
Features covered by related works. The terms ‘‘BE’’ and ‘‘Rel.’’ are used to indicate whether Best Effort and Reliable configurations, respectively, are analyzed.

Works Rel., CC/QoS Multiple
hosts

Wireless
connectivity

Zenoh topologies Impact of mobility
in latency

Zenoh over
UDP

This work BE/Rel., Block/Drop/QoS
0, 1, 2

✓ ✓ P2P, Brokered,
Routed

✓ ✓

[4] BE, Block/QoS 0 ✓ ✗ P2P, Brokered ✗ ✗

[25] BE, Block/QoS 0 ✓ ✗ P2P, Brokered ✗ ✗

[28] BE, Drop/Volatile ✗ Simulated P2P ✗ ✗

[30] Unknown ✓ ✓ P2P, Brokered ✗ ✗

[31] BE/QoS 0 ✓ ✓ P2P ✗ ✗

[32] – ✗ Simulated – ✗ ✗

[33–35] – – – – ✗ –
its network-level operation to better understand its capabilities and
ommunication management. Additionally, a thorough evaluation of
clipse Zenoh’s performance compared to MQTT across various net-
ork topologies has been presented. The results show that Eclipse
enoh delivers lower latency under specific conditions, particularly in

distributed (routed) architectures, but also in centralized (brokered) sce-
arios. This makes Eclipse Zenoh particularly well-suited for robotics
13
and automotive applications, where real-time data communication and
flexible topologies are essential.

The study has also thoroughly examined Eclipse Zenoh’s reliability
and congestion control mechanisms by measuring packet loss and
latency for UDP and TCP transmissions. These mechanisms are vital for
ensuring communication integrity and stability, especially in industrial
settings where continuous operation with minimal loss is required.

M. Barón et al.

N

w

n
Z

Ad Hoc Networks 170 (2025) 103784
Fig. 17. Distribution of packet latency for UDP and TCP using different configurations and various packet sizes.
V
–
t
M
o
–

Eclipse Zenoh’s versatile architecture, which spans multiple lay-
ers of the protocol stack and accommodates various communication
topologies, positions it as a highly adaptable solution for the IIoT
landscape. This adaptability suggests that industries could leverage
it to enhance their communication infrastructures, supporting more
advanced and interconnected industrial systems.

In our future work we will further explore Eclipse Zenoh’s per-
formance in larger and more complex network environments, ad-
dressing its integration with emerging technologies such as 5G or

on-Terrestrial Network (NTN) communications. Additionally, we will
study the performance impact of the improvements introduced in the
latest version of Eclipse Zenoh and compare its behavior over QUIC

ith that of TCP combined with TLS. Other research activities will
include testing of Eclipse Zenoh and Zenoh-Pico with serial commu-
ication on constrained devices, as well as exploring the capabilities of
enoh-Flow, its native data flow programming framework.

Moreover, we plan to extend our research by testing Eclipse Zenoh
in real-world scenarios involving mobile robots, particularly in robotics
and automotive applications. We will thus focus on dynamic envi-
ronments, where actual robot mobility might affect communication
and routing, such as robotic scouting or autonomous vehicle net-

working. By using physical robots, we will assess Eclipse Zenoh’s t

14
capability to handle challenges that might appear in real-world situa-
tions, like mobility-induced disconnections, re-connections, and routing
adjustments.

Finally, we will broaden our analysis to include other application-
layer protocols such as DDS and CoAP, to compare their performance
with Eclipse Zenoh in terms of latency, scalability, and efficiency,
especially in constrained environments with strict delay requirements.
This will provide further insights into the suitability of Eclipse Zenoh
for various IoT and industrial applications.

CRediT authorship contribution statement

Miguel Barón: Writing – review & editing, Writing – original draft,
alidation, Software, Methodology, Investigation. Luis Diez: Writing
 review & editing, Validation, Supervision, Methodology, Investiga-
ion, Formal analysis, Conceptualization. Mihail Zverev: Validation,
ethodology, Formal analysis. José R. Juárez: Supervision, Methodol-

gy, Funding acquisition, Conceptualization. Ramón Agüero: Writing
 review & editing, Investigation, Funding acquisition, Conceptualiza-
ion.

M. Barón et al. Ad Hoc Networks 170 (2025) 103784
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially supported by SONETO project from
ELKARTEK research programme of the Basque Government, Spain (Ref.
KK-2023/00038). It has been also supported by the Spanish Min-
istry of Economic Affairs and Digital Transformation with the project
SITED (PID2021-125725OB-I00), and by the regional Cantabria Gov-
ernment, Fondo Europeo de Desarrollo Regional (FEDER): ‘‘Grants
for research projects with high industrial potential of technological
agents of excellence for industrial competitiveness (TCNIC)’’ program
(2023/TCN/002).

Data availability

Data will be made available on request.

References

[1] M. Soori, F. Karimi Ghaleh Jough, R. Dastres, B. Arezoo, Connectivity, au-
tomation, and data exchange in advanced manufacturing of industry 4.0, 2024,
http://dx.doi.org/10.13140/RG.2.2.18189.55522.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y.
Ng, et al., ROS: an open-source robot operating system, in: ICRA Workshop on
Open Source Software, Vol. 3, Kobe, Japan, 2009, p. 5.

[3] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A.R. Tsouroukdissian, J.
Bohren, D. Coleman, B. Magyar, G. Raiola, M. Lüdtke, E.F. Perdomo, Ros_control:
A generic and simple control framework for ROS, J. Open Source Softw. 2 (20)
(2017) 456, http://dx.doi.org/10.21105/joss.00456.

[4] A. Corsaro, L. Cominardi, O. Hecart, G. Baldoni, J. Avital, J. Loudet, C.
Guimares, M. Ilyin, D. Bannov, Zenoh: Unifying communication, storage and
computation from the cloud to the microcontroller, in: 2023 26th Euromicro
Conference on Digital System Design, DSD, IEEE Computer Society, Los Alamitos,
CA, USA, 2023, pp. 422–428, http://dx.doi.org/10.1109/DSD60849.2023.00065,
URL https://doi.ieeecomputersociety.org/10.1109/DSD60849.2023.00065.

[5] ROS 2 Core Team, ROS 2 Middleware Interface (RMW) Alternate, Study Item,
Open Source Robotics Alliance (OSRA), 2023.

[6] Eclipse Foundation, Zenoh, 2022, https://zenoh.io/. (Accessed 01 October 2024).
[7] ZettaScale, V2X communication in the automotive industry with Zenoh, 2024,

URL https://www.zettascale.tech/news/v2x-communication-in-the-automotive-
industry-with-zenoh/. Blog. (Accessed 01 October 2024).

[8] Focus Group on AI for autonomous and assisted driving (FG-AI4AD), ITU-
T Automated Driving Safety Data Protocol – Specification, Tech. Rep.,
TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, 2022.

[9] W. Eddy, Transmission control protocol (TCP), 2022, http://dx.doi.org/10.
17487/RFC9293, URL https://www.rfc-editor.org/info/rfc9293. RFC 9293.

[10] User datagram protocol, 1980, http://dx.doi.org/10.17487/RFC0768, URL https:
//www.rfc-editor.org/info/rfc768. RFC 768.

[11] Object Management Group (OMG), Data distribution service (DDS), 2015, https:
//www.omg.org/spec/DDS/. Version 1.4.

[12] Z. Shelby, K. Hartke, C. Bormann, The constrained application protocol (CoAP),
2014, http://dx.doi.org/10.17487/RFC7252, URL https://www.rfc-editor.org/
info/rfc7252. RFC 7252.

[13] Apache Software Foundation, Apache kafka, 2024, https://kafka.apache.org/.
(Accessed 01 October 2024).

[14] Eclipse Foundation, 2023 IoT & edge developer survey report, 2023, URL https:
//outreach.eclipse.foundation/iot-edge-developer-survey-2023. (Accessed 01 Oc-
tober 2024).

[15] MQTT.org, MQTT: The standard for IoT messaging, 2022, https://mqtt.org/.
(Accessed 01 October 2024).

[16] A. Banks, R. Gupta, MQTT Version 3.1.1, Tech. Rep., OASIS Standard, 2014,
URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest
version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[17] A. Banks, E. Briggs, K. Borgendale, R. Gupta, MQTT Version 5.0, Tech. Rep., OA-
SIS Standard, 2019, URL https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-
v5.0-os.html. Latest version: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
v5.0.html.

[18] E. Rescorla, The transport layer security (TLS) protocol version 1.3, 2018, http:
//dx.doi.org/10.17487/RFC8446, URL https://www.rfc-editor.org/info/rfc8446.
RFC 8446.
15
[19] F. Fernández, M. Zverev, P. Garrido, J.R. Juárez, J. Bilbao, R. Agüero, And
QUIC meets IoT: performance assessment of MQTT over QUIC, in: 2020
16th International Conference on Wireless and Mobile Computing, Network-
ing and Communications, WiMob, 2020, pp. 1–6, http://dx.doi.org/10.1109/
WiMob50308.2020.9253384.

[20] J. Iyengar, M. Thomson, QUIC: A UDP-based multiplexed and secure trans-
port, 2021, http://dx.doi.org/10.17487/RFC9000, URL https://www.rfc-editor.
org/info/rfc9000. RFC 9000.

[21] C. Guimarães, G. Baldoni, There is land besides IP: How to cross it with Zenoh,
2022, https://zenoh.io/blog/2022-08-12-zenoh-serial/. (Accessed 01 October
2024).

[22] O. Salman, I. Elhajj, A. Kayssi, A. Chehab, An architecture for the internet of
things with decentralized data and centralized control, in: 2015 IEEE/ACS 12th
International Conference of Computer Systems and Applications, AICCSA, 2015,
pp. 1–8, http://dx.doi.org/10.1109/AICCSA.2015.7507265.

[23] Raymond Andrè Hagen, The future of IT: A balanced perspective on centralized
and decentralized systems, 2023, URL https://www.linkedin.com/pulse/future-
balanced-perspective-centralized-decentralized-hagen/. (Accessed 01 October
2024).

[24] Y. Liu, M. Kashef, K. Lee, L. Benmohamed, R. Candell, Wireless network design
for emerging IIoT applications: Reference framework and use cases, Proc. IEEE
107 (2019) http://dx.doi.org/10.1109/JPROC.2019.2905423.

[25] W.-Y. Liang, Y. Yuan, H.-J. Lin, A performance study on the throughput and
latency of Zenoh, MQTT, Kafka, and DDS, 2023, arXiv:2303.09419.

[26] D. Wang, R.R. Sattiraju, H.D. Schotten, Performances of C-V2X communication
on highway under varying channel propagation models, in: 2018 10th Interna-
tional Conference on Communications, Circuits and Systems, ICCCAS, 2018, pp.
305–309, http://dx.doi.org/10.1109/ICCCAS.2018.8768912.

[27] ZettaScale Zenoh team, Zenoh API reference, 2023, https://zenoh-python.
readthedocs.io/en/0.10.0-rc/. (Accessed 01 October 2024).

[28] C.-S. Shih, H.-J. Lin, Y. Yuan, Y.-H. Kuo, W.-Y. Liang, Scalable and bounded-
time decisions on edge device network using eclipse Zenoh, in: 2022 IEEE
28th International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA, 2022, pp. 170–179, http://dx.doi.org/10.1109/
RTCSA55878.2022.00024.

[29] J. Jun, P. Peddabachagari, M. Sichitiu, Theoretical maximum throughput of IEEE
802.11 and its applications, in: Proceedings of the Second IEEE International
Symposium on Network Computing and Applications, NCA ’03, IEEE Computer
Society, USA, 2003, p. 249.

[30] J. Zhang, X. Yu, S. Ha, J. Peña Queralta, T. Westerlund, Comparison of
middlewares in edge-to-edge and edge-to-cloud communication for distributed
ROS 2 systems, J. Intell. Robot. Syst. 110 (4) (2024) 162, http://dx.doi.org/10.
1007/s10846-024-02187-z.

[31] J.J. López Escobar, R.P. Díaz-Redondo, F. Gil-Castiñeira, Unleashing the power
of decentralized serverless IoT dataflow architecture for the cloud-to-edge con-
tinuum: a performance comparison, Ann. Telecommun. 79 (3) (2024) 135–148,
http://dx.doi.org/10.1007/s12243-023-01009-x.

[32] R. Teixeira, G. Baldoni, M. Antunes, D. Gomes, R.L. Aguiar, Leveraging decentral-
ized communication for privacy-preserving federated learning in 6G networks,
SSRN Electron. J. (2024) http://dx.doi.org/10.2139/ssrn.4817067, URL https:
//ssrn.com/abstract=4817067.

[33] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, Y. He, Zenoh-based dataflow
framework for autonomous vehicles, in: 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion, QRS-C, 2021, pp.
555–560, http://dx.doi.org/10.1109/QRS-C55045.2021.00085.

[34] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, Y. He, Facilitating distributed
data-flow programming with eclipse Zenoh: the ERDOS case, in: Proceedings
of the 1st Workshop on Serverless Mobile Networking for 6G Communications,
MobileServerless ’21, Association for Computing Machinery, New York, NY, USA,
2021, pp. 13–18, http://dx.doi.org/10.1145/3469263.3469858.

[35] M. Gramaglia, M. Camelo, L. Fuentes, J. Ballesteros, G. Baldoni, L. Cominardi, A.
Garcia-Saavedra, M. Fiore, Network intelligence for virtualized RAN orchestra-
tion: The DAEMON approach, in: 2022 Joint European Conference on Networks
and Communications & 6G Summit, EuCNC/6G Summit, 2022, pp. 482–487,
http://dx.doi.org/10.1109/EuCNC/6GSummit54941.2022.9815816.

Miguel Barón received his Bachelor’s degree in Telecom-
munication Technologies Engineering from the University
of Cantabria in 2022 and completed his M.Sc. at the same
institution in 2024. He is now pursuing a joint Ph.D. degree
through a collaboration between the University of Cantabria
and the Ikerlan Technology Research Centre. His research
interests include performance analysis in Industrial Internet
of Things (IIoT) and Tactile Internet environments, with a
particular focus on the MQTT and Eclipse Zenoh protocols.

http://dx.doi.org/10.13140/RG.2.2.18189.55522
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb2
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb2
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb2
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb2
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb2
http://dx.doi.org/10.21105/joss.00456
http://dx.doi.org/10.1109/DSD60849.2023.00065
https://doi.ieeecomputersociety.org/10.1109/DSD60849.2023.00065
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb5
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb5
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb5
https://zenoh.io/
https://www.zettascale.tech/news/v2x-communication-in-the-automotive-industry-with-zenoh/
https://www.zettascale.tech/news/v2x-communication-in-the-automotive-industry-with-zenoh/
https://www.zettascale.tech/news/v2x-communication-in-the-automotive-industry-with-zenoh/
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb8
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb8
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb8
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb8
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb8
http://dx.doi.org/10.17487/RFC9293
http://dx.doi.org/10.17487/RFC9293
http://dx.doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
http://dx.doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDS/
http://dx.doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://kafka.apache.org/
https://outreach.eclipse.foundation/iot-edge-developer-survey-2023
https://outreach.eclipse.foundation/iot-edge-developer-survey-2023
https://outreach.eclipse.foundation/iot-edge-developer-survey-2023
https://mqtt.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
http://dx.doi.org/10.1109/WiMob50308.2020.9253384
http://dx.doi.org/10.1109/WiMob50308.2020.9253384
http://dx.doi.org/10.1109/WiMob50308.2020.9253384
http://dx.doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://zenoh.io/blog/2022-08-12-zenoh-serial/
http://dx.doi.org/10.1109/AICCSA.2015.7507265
https://www.linkedin.com/pulse/future-balanced-perspective-centralized-decentralized-hagen/
https://www.linkedin.com/pulse/future-balanced-perspective-centralized-decentralized-hagen/
https://www.linkedin.com/pulse/future-balanced-perspective-centralized-decentralized-hagen/
http://dx.doi.org/10.1109/JPROC.2019.2905423
http://arxiv.org/abs/2303.09419
http://dx.doi.org/10.1109/ICCCAS.2018.8768912
https://zenoh-python.readthedocs.io/en/0.10.0-rc/
https://zenoh-python.readthedocs.io/en/0.10.0-rc/
https://zenoh-python.readthedocs.io/en/0.10.0-rc/
http://dx.doi.org/10.1109/RTCSA55878.2022.00024
http://dx.doi.org/10.1109/RTCSA55878.2022.00024
http://dx.doi.org/10.1109/RTCSA55878.2022.00024
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://refhub.elsevier.com/S1570-8705(25)00032-0/sb29
http://dx.doi.org/10.1007/s10846-024-02187-z
http://dx.doi.org/10.1007/s10846-024-02187-z
http://dx.doi.org/10.1007/s10846-024-02187-z
http://dx.doi.org/10.1007/s12243-023-01009-x
http://dx.doi.org/10.2139/ssrn.4817067
https://ssrn.com/abstract=4817067
https://ssrn.com/abstract=4817067
https://ssrn.com/abstract=4817067
http://dx.doi.org/10.1109/QRS-C55045.2021.00085
http://dx.doi.org/10.1145/3469263.3469858
http://dx.doi.org/10.1109/EuCNC/6GSummit54941.2022.9815816

M. Barón et al. Ad Hoc Networks 170 (2025) 103784
Luis Diez received his M.Sc. and Ph.D. from University of
Cantabria in 2013 and 2018 respectively. He is currently
Associate Professor at the Communications Engineering
Department in that University. He has been involved in
different international and industrial research projects. His
research focuses on future network architectures, resource
management in wireless heterogeneous networks, and IoT
solutions and services. He has published more than 70
scientific and technical papers in those areas, and he has
served as TPC member and reviewer in a number of inter-
national conferences and journals. As for teaching, Dr. Diez
has supervised 40 BSc and MSc Thesis, and he teaches in
courses related to cellular networks, network dimensioning
and service management.

Mihail Zverev was born in Dzhambul, Kazakhstan, in 1991.
He received the degree in telecommunications engineering
from University of Cantabria, Santander, Spain, in 2014,
and the M.Sc. degree in project management from La Salle,
University of Ramónn Llull, Barcelona, in 2017. In 2023
he defended the joint Ph.D. degree with Ikerlan Technol-
ogy Research Centre in collaboration with Communications
Engineering department at the University of Cantabria.
From 2015 to 2018, he was a Writing Systems Engineer,
hired through different companies to develop large format
industrial printers. His area of work is mainly centered
around efficient IoT communications.
16
José Ramón Juárez, Telecommunications Engineer in 2004
by the University of the Basque Country, obtained a PhD
in the program ‘‘Technologies for Distributed Information
Management’’ in 2011 by the Public University of Navarra.
During the development of the PhD, he has been Assistant
Professor in the Department of Computer Languages and
Systems and member of the Distributed Systems Group at
the Public University of Navarra, and conducted research
stays at the Universidade do Minho (Braga, Portugal) and at
the Università della Svizzera italiana (Lugano, Switzerland).
He is currently principal investigator of the Smart Con-
nectivity research team at the IKERLAN technology center.
His main interests range from high availability systems, dy-
namic and adaptive distributed systems, machine learning,
wireless communications, 5G, lightweight IoT protocols and
fog-edge-cloud architectures.

Ramón Agüero received his MSc in Telecommunications
Engineering (1st class honors) from the University of
Cantabria in 2001 and the PhD (Hons) in 2008. He is
currently a Professor at the Communications Engineering
Department in that university. His research focuses on future
network architectures, especially regarding the (wireless)
access part of the network and its management. He has
published more than 240 scientific papers in such areas
and he is a regular TPC member and reviewer on various
related conferences and journals. Ramon Aguero serves in
the Editorial Board of IEEE Communication Letters (Senior
Editor since 2019), IEEE Open Access Journal of the Com-
munications Society, Wireless Networks (Springer), IEEE
Systems Journal. Dr. Aguero has supervised 7 PhDs and
more than 70 BSc and MSc thesis. He is the main instructor
in courses dealing with Networks, and Traffic Modeling,
both at BSc and MSc levels. From 2016 to 2024 he was
the Head of the IT Area (deputy CIO) at the University of
Cantabria.

	On the performance of Zenoh in Industrial IoT Scenarios
	Introduction
	Background
	mqtt
	Zenoh

	Zenoh in detail
	Multicast scouting
	Peers and routers
	Clients

	Gossip scouting
	Opening ports
	p2p communications
	Brokered communications
	Routed communications

	Zenoh session
	Reliability and Congestion Control mechanisms

	Performance evaluation
	Comparative latency analysis
	Scenario α: Brokered topology – Single Network
	Scenario β: Brokered topology – Multiple Networks
	Scenario γ: Routed topology – Multiple Networks
	Scenario δ: p2p topology – Single Network

	tcp vs. udp Connections with Zenoh

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

