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Abstract: The Einstein equation in a semiclassical approximation is applied to a spherical region of
the universe, with the stress-energy tensor consisting of the mass density and pressure of the ΛCDM
cosmological model plus an additional contribution due to the quantum vacuum. Expanding the
equation in powers of Newton constant G, the vacuum contributes to second order. The result is
that at least a part of the acceleration in the expansion of the universe may be due to the quantum
vacuum fluctuations.
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1. Dark Energy, Cosmological Constant, and Vacuum Fluctuations

In this paper, I will study the possible effects of the quantum vacuum at a scale larger
than the typical distances between galaxies. The work may provide clues to ascertain
whether vacuum fluctuations might be the origin of dark energy.

The hypothesis of dark energy (DE) has been introduced in order to explain the
accelerating expansion of the universe [1–4]. DE consists of a density and pressure

ρDE = −(1 + ε)pDE ≃ (6.0 ± 0.2)× 10−27 kg/m3, (1)

filling space homogeneously [5,6]. The nature of dark energy is unknown, but it is an
empirical fact that |ε| << 1 shows that its effect is fairly equivalent to a cosmological
constant [7].

As is well known, the cosmological constant (CC) was introduced by Einstein in order
to obtain a stationary (although not stable) model of the universe. Later on, the discovery
of the expansion of the universe made the CC useless, but it was a recurrent possibility
for about 70 years although without too much empirical support [8]. The view changed
in 1998, when it was discovered that the expansion of the universe was accelerating [1,2],
which might be seen as the effect of a CC, although the less committed assumption has
been made that the acceleration is caused by a hypothetical ingredient named DE. In any
case, some of the proposals about the nature of DE are similar to previous assumptions
about the origin of a possible CC.

An early proposal was that CC may correspond to the energy and pressure of the
quantum vacuum. If this was the case, a plausible assumption seemed to be that its value
could be obtained via a combination of the universal constants c, h, G. There is a unique
combination with dimensions of density, that is, Planck density with a value

ρPlanck =
c4

G2h
≃ 1097 kg/m3, (2)

which is about 123 orders greater than either the known value of the DE Equation (1) or
any reasonable value for a CC. This big discrepancy has been named the “cosmological
constant problem” [8,9]. Many proposals have been made in the past for the origin of a
CC [8] (or DE, see, e.g., [10] and references therein) that shall not be discussed here. One of
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them has been the quantum vacuum origin, as said above. If this is the case, then some
mechanism should exist reducing Equation (2) to Equation (1), but the fine tuning required
looks unplausible, even conspiratory [8]. However, I point out that, although the mean
energy of the vacuum might be canceled by some mechanism, the fluctuations cannot
cancel it completely, which suggests that the fluctuations could give rise to an effective CC
or DE.

Using dimensional arguments, any theory aimed at explaining the DE Equation (1)
would involve at least a new parameter, in addition to the universal constants, c, h, G. If
we choose the parameter to be a mass, m, then the value of dark energy could be written in
the form (with c = 1)

ρDE ≈ Gnm2n+4

hn+3 , (3)

with n being a real number. The choice n = −2 would remove m and lead to the Planck
density Equation (2), but n = 1 may give the observed value Equation (1) for ρDE provided
that m is of order the pion mass. Indeed, more than forty years ago Zeldovich [11] proposed
a formula like Equation (3) with n = 1 in order to obtain a plausible value for a cosmological
constant. Furthermore, he interpreted the result in terms of the mass m and its associated
“Compton wavelength” λ, as follows:

Λ ≡ ρCC ∼ −Gm2

λ
× 1

λ3 , λ ≡ h
m

. (4)

Thus, Equation (4) looks like the energy density corresponding to the (Newtonian) gravi-
tational energy of two particles of mass m placed at a distance λ, assuming that such an
energy appears in every volume λ3 (although in Equation (4), the gravitational energy
Λ would be negative if both masses were positive). Zeldovich’s interpretation was that
the “particles” were actually vacuum fluctuations. Hence, his hypothesis that a finite CC
might exist derived from the fluctuations of the quantum vacuum. In recent times, some
modifications of Zeldovich’s proposal have been attempted as an explanation for dark
energy, identifying the CC with the DE Equation (1) [12].

In the present paper, I again study the possibility that vacuum fluctuations produce a
gravitational effect similar to a DE. Unlike previous papers [12], where heuristic arguments
were used, here I will use a more formal quantum approach to the vacuum fluctuations.
Indeed, the quantum vacuum fluctuations are specific quantum features; therefore, clas-
sical equations like Friedman’s (see next section) are not appropriate in order to obtain
the contents of the universe from the observable value of the accelerated expansion. In
summary, a correct approach should involve quantum field theory and general relativity.

We should deal with quantized general relativity, but no fully satisfactory quantum
gravity is available. Thus, I will follow an approximate or effective approach to the gravity
of a quantum system, that is, the quantum vacuum. In fact, I will integrate a semi-classical
Einstein equation of general relativity approximated to the second order in the Newton
constant G, as will be explained in Section 3.2. An effective treatment of the quantum
vacuum will be studied in Section 3.1.

2. Revisiting the Argument for Dark Energy

Our quantum approach in Section 3 will parallel the standard procedure to obtain
the DE Equation (1) from the observed accelerated expansion of the universe [1–3]. For
this reason, I will revisit that method, which allows one to relate observable properties of
spacetime to the contents of the universe via general relativity. Indeed, astronomical obser-
vations are compatible with the universe having a Friedmann–Lemaître–Robertson–Walker
(FLRW) metric with flat spatial slices [13] of the form

ds2 = −dt2 + a(t)2
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
, (5)
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where the parameter a(t) takes into account the expansion of the universe. Indeed, at the
present time t0, it is related to the measurable Hubble constant, H0, and the deceleration
parameter, q0, via [ .

a
a

]
t0

= H0,
[

ä
a

]
t0

= −H2
0 q0. (6)

From the function a(t), the contents of the universe may be obtained by solving the
Friedman equation (which is a particular case of the Einstein equation that is appropriate
for the FLRW metric). The result is that, aside from the baryonic mass density, ρB, two
hypothetical ingredients seem to exist, namely, an additional (dark) matter having the mass
density ρDM with negligible pressure, and another component with positive energy density,
ρDE, but negative pressure pDE = −ρDE, labeled dark energy (DE). In fact, the following
relations are obtained, as proved below[ .

a
a

]2

=
8πG

3
(ρB(t) + ρDM(t) + ρDE),

ä
a

=
8πG

3

(
1
2
[ρB(t) + ρDM(t)]− ρDE

)
, (7)

where small effects of radiation and matter pressure are neglected.
The baryonic density ρB is well known from the measured abundances of light chemi-

cal elements, which allows for the calculation of ρDE and ρDM from the empirical quantities
H0 and q0 via comparison of Equation (7) with Equation (6). The result may be summa-
rized in the ΛCDM model. In it, baryonic matter density, ρB, represents about 4.6% of
the matter content, while cold dark matter (CDM) and dark energy (represented by the
greek letter Λ) contribute densities ρDM ∼ 24% and ρDE ∼ 71.3%, respectively. The values
obtained by this method agree with data from other observations. For instance, cold dark
matter, in an amount compatible with ρDM, is needed in order to explain the observed
(almost flat) rotation curves in galaxies.

In this section, I revisit the derived relation of the metric of spacetime, at the cos-
mological scale, with the mass densities ρB(t), ρDM(t), ρDE and pressure pDE = −ρDE
of the ΛCDM model. The standard approach is to use the FLRW metric as said above,
but for our purposes it is more convenient to deal with a metric alternative to FLRW,
Equation (5), using curvature coordinates for spherical symmetry whose most general
metric is as follows:

ds2 = grr
(
r′, t′

)
dr′2 + r′2(dθ2 + sin2 θdϕ2)− gtt

(
r′, t′

)
dt′2. (8)

This metric may be appropriate for a small enough region of the universe around us but
large in comparison with typical distances between galaxies [14].

The relation between the metrics Equations (5) and (8) is as follows. We perform a
change of variables in Equation (5), that is,

r = a−1r′, t = t′ − ȧ
2a

r2, ȧ ≡ da
dt

, (9)

so chosen that, after some algebra, Equation (5) becomes Equation (8) where

grr
(
r′, t′

)
= 1 +

(
ȧ
a

)2
r′2 + O

(
r′3

)
,

gtt
(
r′, t′

)
= 1 +

ä
a

r′2 + O
(

r′3
)

, ä ≡ d2a
dt2 . (10)

The calculation may be performed to order r′2, consistent with the metric Equation (8)
being appropriate for a small region around us.
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Now, I shall solve (the classical) Einstein equation for the metric Equation (8) with a
stress-energy tensor given by the ΛCDM model as described above, that is, the mass (or
energy) density ρmat of matter may be taken as the sum of two homogeneous contributions,
that is, a ρmat = ρB(t) + ρDM(t), meaning baryonic and dark matter, respectively, with
negligible pressure, plus a dark energy with homogeneus density ρDE and negative pressure
pDE = −ρDE.

The metric Equation (8) requires spherical symmetry, that is, both mass density and
pressure should depend only on the radial coordinate r and time t. Obviously, this is not
the case for the actual universe where matter is mainly localized in galaxies. In practice,
an approximation consists of averaging the mass density over the whole region. I point
out that a similar approximation is usually made when the FRW metric Equation (1) is
used [14]. The result of solving the Einstein equation for the metric Equation (8) is

grr = 1 +
8πG

3
[ρB + ρDM + ρDE]r2 + O

(
r3
)

,

gtt = 1 +
8πG

3

[
1
2
[ρB + ρDM]− ρDE

]
r2 + O

(
r3
)

, (11)

as is well known [14]. A comparison of Equation (11) with Equation (10) leads to Equation (7).
Now, I proceed to the proof of Equation (11). I will neglect terms of order O

(
r3) and

ignore the (slow) change of the metric coefficients with time, a change derived from the
slow time dependence of the matter density ρmat. With grr = gtt = 1 for r = 0, we obtain
the following elements for a metric like Equation (8) [15]

grr(r) =

(
1 − 2Gm(r)

r

)−1
, m(r) = mmat(r) + mDE(r)

mmat(r) =
∫
|z|<r

ρmatd3z, mDE(r) ≡
∫
|z|<r

ρDEd3z,

gtt(r) = exp γ, γ = 2G
∫
|x|<r

m(x) + 4πx3 pDE(x)
x2 − 2Gxm(x)

dx. (12)

as typically, Gm(r) << r, an approximation, is appropriate, consisting of expanding
Equation (12) in powers of the Newton constant G, retaining terms up to order O

(
G2). For

Equation (12), this approximation agrees with order O
(
r2) in the radial parameter r, as

may be easily checked. Thus, I may write

grr = 1 +
2Gm(r)

r
+

4G2m(r)2

r2 + O
(

G3
)

. (13)

gtt = 1 + 2G
∫ r

0

(
m(x)

x2 + 4πxp(x)
)

dx + 2G2
[∫ r

0

(
m(x)

x2 + 4πxp(x)
)

dx
]2

+4G2
∫ r

0
m(x)

(
m(x)

x3 + 4πp(x)
)

dx + O
(

G3
)

. (14)

The terms of order O
(
G2) will be relevant when the quantum vacuum is taken into

account, as in the quantum approach of the next section but, here we may neglect those
terms. As said above, I take the contents of the universe into account as in the ΛCDM
model, that is, a (homogeneous) mass density given by ρB + ρDM + ρDE and pressure
pDE = −ρDE. Then, Equations (13) and (14) give Equation (11).

3. A Quantum Treatment

The aim of this article is to improve the standard derivation of the contents of the uni-
verse from astronomical observations, essentially the Hubble constant and the acceleration
parameter as in Equations (5)–(7). This involves a quantized, rather than classical, Einstein
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equation and the inclusion of the quantum vacuum fluctuations. I shall start dealing with
the approach to the quantum vacuum and a semi-classical approximate Einstein equation
of general relativity.

3.1. The Quantum Vacuum

Vacuum fluctuations are straightforward consequences of quantum field theory (QFT),
but their treatment is far from trivial. In a naive approach, the energy of the vacuum
is divergent, for instance, in the quantum electromagnetic field the vacuum energy in a
finite volume is Evac = ∑j hωj, which goes to ∞ when we take all possible normal modes j
into account. There are procedures to avoid the divergence, from the simplistic “normal
ordering” rule to the sophisticated renormalization methods in quantum electrodynamics;
the latter is extremely successful, as is well known. In the study of the influence of vacuum
fluctuations at a cosmic scale, at least two alternatives arise. We may assume that the
vacuum energy density is just given by Equation (1), with the associated pressure, thus
explaining the nature of dark energy. Another possibility is that the vacuum energy density
is strictly zero, with dark energy having a different origin, maybe unrelated to the quantum
vacuum. An intermediate possibility is that just a part of DE is due to the quantum vacuum.
In any case, it is natural within quantum theory to assume that the vacuum energy is an
observable that I should represent by a quantum operator ρ̂vac(r, t). Its vacuum expectation
may be either finite (positive), e.g., given by Equation (1), or just zero. In this paper, I
attempt to study the latter posibility. Indeed, if it is finite it should be either all or a part of
DE, but no further study of that possibility will be made here.

Thus, I shall assume the following

p̂vac(r, t) = −ρ̂vac(r, t), ⟨vac|ρ̂vac(r, t)|vac⟩ = 0,
〈

vac
∣∣∣ρ̂vac(r, t)2

∣∣∣vac
〉
> 0, (15)

where I have included the vacuum pressure operator, the former equality deriving from
the requirement of Lorentz invariance, which is plausible. Indeed,we are considering a
spacetime very close to Minkowski. The inequality in Equation (15) means that the vacuum
energy density fluctuates. I point out that Equation (15) might be derived in principle
from quantum field theory, including the vacuum fluctuations of all fields (belonging to
the standard model of high energy physics) and their interactions.

For our purposes, Equation (15) is not sufficient in order to characterize the quantum
vacuum. The quantities relevant for our work are the two-point correlations of the density
and pressure of the vacuum. In an approximate flat (Minkowski) space, the vacuum
should be invariant under translations and rotations, whence the vacuum expectation
of the product of two vacuum density operators (at equal times) should be a universal
function, C, of the distance |r1−r2|, that is,

1
2
⟨vac|ρ̂vac(r1) ρ̂vac(r2) + ρ̂vac(r2)ρ̂vac(r1)|vac⟩ = C(|r1−r2|). (16)

The function C may be named the self-correlation of the vacuum energy density.
In this article, I will assume that the integral of C(x) extended over the whole space is

nil, that is, ∫
|r2|∈(−∞,∞)

C(|r1−r2|)d3r2 =
∫
|r|∈(−∞,∞)

C(|r|)d3r = 0. (17)

I believe that this assumption is plausible once we assume ⟨vac|ρ̂vac(r, t)|vac⟩ = 0 as in
Equation (15). The opposite assumption might be worth studying but will not be made
here. The implication

⟨vac|ρ̂vac(r, t)|vac⟩ = 0 ⇒
∫

ρ̂vac(r, t)d3r = 0,

is similar to the ergodic property in the (classical) stochastic processes (See Appendix A for
the problems of interpretation).
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Equation (17) may be generalized to the self-correlation of the pressure and the cross-
correlation of density and pressure to be introduced in Section 3.2.

3.2. Semiclassical Approximation to a Quantum Einstein Equation

We must solve the Einstein equation of GR for a stress-energy tensor that should be
defined for an essentially quantum system involving the quantum vacuum. However, there
is no fully satisfactory quantum gravity theory that unifies GR and quantum mechanics,
and we must rely on approximations. The left side of Einstein equation of GR is known
only in its classical form, that is, the Einstein tensor Gµν. But the right side should be an
stress-energy tensor defined in quantum form, that is, an operator T̂µν in the Hilbert space.
An equation with a classical tensor on one side and a quantum operator tensor on the other
is inconsistent, and the standard solution to the problem is the semiclassical approximation,
that is,

Gµν = −8πG
〈
ψ
∣∣T̂µν

∣∣ψ〉, (18)

where | ψ⟩ is the quantum state of the system. Then both sides of the (Einstein) equation
are c-numbers. The Einstein tensor is a function of the metric elements and their first and
second derivatives with respect to the coordinates. Therefore, Equation (18) is a partial
differential equation involving the metric elements, which in our case consists of just two
non-trivial ones, that is, grr and gtt, see Equation (8).

The stress-energy tensor operator T̂µν may be written, similar to its classical counter-
part in Section 2, in terms of energy density and pressure operators. In the classical case,
the contributions to the mass (or energy) density, and pressure, are given by the ΛCDM
cosmological model. That is, mass densities ρmat = ρB + ρDM and ρDE, and the pressure
pDE = −ρDE. In Equation (18), these quantities should be considered expectation values,
in the state | ψ⟩, of appropriate quantum observables, that is,

⟨ψ|ρ̂mat|ψ⟩ = ρmat, ⟨ψ|ρ̂DE|ψ⟩ = ρDE, ⟨ψ| p̂DE|ψ⟩ = pDE,

so that Equation (18) becomes just like the classical Einstein equation solved in Section 2, if
we ignore the possible quantum vacuum contribution.

The semiclassical approximation in Equation (18) presents the problem that any
information about fluctuations is lost. Indeed, fluctuations of a quantum observable, say,
M̂, appear only in the higher moments

〈
ψ
∣∣M̂n

∣∣ψ〉, n ≥ 2. However, in our case all operators
(of either mass density or pressure) appear linearly in the stress-energy tensor T̂µν, whence
fluctuations are neglected in Equation (18). Thus, in order to study the effect of vacuum
fluctuations I propose a different semiclassical approximation, that is, using the expectation
value of an integrated, rather than differential, Einstein equation defined in Equation (18). That
semiclassical approximation may be represented as follows:

gµν =
〈
ψ
∣∣ĝµν

({
T̂λσ

})∣∣ψ〉, (19)

where
{

gµν

}
are the elements of the metric and

{
ĝµν

}
the corresponding operators in a

hypothetical quantum Einstein equation.
Equation (19) would be useless except if we were able to get the function ĝµν

({
T̂λσ

})
of the operators ĝµν in terms of the elements of the operator tensor T̂λσ. This will be possible
just in some extremely simple situations. One of them is our case of the metric Equation (8)
with just two non-trivial metric elements and where we may neglect the time dependence
of the stress-energy tensor. Then, the two functions ĝrr

({
T̂λσ

})
and ĝtt

({
T̂λσ

})
will be

similar to Equation (12) with two modifications. Firstly, we shall substitute the quantum
operators ρ̂mat, ρ̂DE, and p̂DE for the (classical) expectations ρmat, ρDE and pDE, respectively.
Secondly, we shall include the vacuum operators ρ̂vac(r, t) and p̂vac(r, t).
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The result is the following Equation (19), consisting of just two metric elements written
in terms of the quantum operators for energy density and pressure,

grr(r) =

〈
ψ

∣∣∣∣∣1 + 2Gm̂(r)
r

+
4G2m̂(r)2

r2

∣∣∣∣∣ψ
〉
+ O

(
G3

)
,

gtt(r) =

〈
ψ

∣∣∣∣∣1 + 2G
∫ r

0
x−2m̂(x)dx + G2

5

∑
n=1

ĉn

∣∣∣∣∣ψ
〉
+ O

(
G3

)
, (20)

where we define

m̂(r) = m̂mat(r) + m̂DE(r) + m̂vac(r), m̂vac(r) ≡
∫
|z|≤r

ρ̂vacd3z

m̂mat(r) ≡
∫
|z|≤r

ρ̂matd3z =
∫
|z|>r

ρ̂matd3z, m̂DE(r) ≡
∫
|z|≤r

ρ̂DEd3z. (21)

I will label {ĉn} the operators corresponding to the terms of the sum Equation (14), which
now are promoted to be operators, that is,

ĉ1 = 4
∫ r

0
x−3m̂(x)2dx,

ĉ2 =
∫ r

0
x−2dx

∫ r

0
y−2dy[m̂(x)m̂(y) + m̂(y)m̂(x)],

ĉ3 = 32π2
∫ r

0
xdx

∫ r

0
ydy[ p̂(x) p̂(y) + p̂(y) p̂(x)],

ĉ4 = 8π
∫ r

0
[m̂(x) p̂(x) + p̂(x)m̂(x)]dx,

ĉ5 = 8π
∫ r

0
x−2dx

∫ r

0
ydy[m̂(x) p̂(y) + p̂(y)m̂(x)]. (22)

In the passage from Equations (13) and (14), consisting of numerical quantities (c-
numbers), to Equations (20)–(22) involving operators, the problem appears to involve the
ordering of operators that do not commute in general. In our case, there are at most two
operators in the products in Equation (22), and they appear in symmetrical order, which is
most plausible.

Actually, the solution to Equation (18) presents a difficulty similar to the classical
Equations (8) and (12). That is, the solution Equations (20)–(22) are valid only if the
energy-momentum tensor operator T̂µν depends on the coordinate r but not on the angular
coordinates, θ, ϕ. I will solve the problem as in the classical case, Equations (13) and (14),
that is, averaging the energy density over large enough regions. However, in the quantum
domain the solution is more involved. In fact, in the classical domain the dynamical
variables are directly observables while in the quantum domain the dynamical variables
are represented by operators (usually labeled “observables”) and the actually observable
quantities are the expectation values of the “observables” in the appropriate state | ψ⟩.
Thus, I will assume that the semiclassical Equations (20)–(22) are valid when we deal with
regions having dimensions much larger than typical distances between galaxies, as is the
case in our work.

The metric element grr consists of the following two terms:

grr = gmodel
rr + gvac

rr ,

where the superindex “model” stands for the ΛCDM model. The former term will be
calculated to order O(G) because the contribution of order O

(
G2) is negligible (see the
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comment below Equation (12)). The latter (vacuum term) should be obtained to order
O
(
G2) because the term of order O(G) is nil, see Equation (15). Then, for O(G) we obtain

grr = 1 +
2G
r

∫
|z|<r

(⟨ψ|ρ̂model(z)|ψ⟩+ ⟨ψ|ρ̂vac(z)|ψ⟩)d3z (23)

= 1 +
2G
r

∫
|z|<r

⟨ψ|ρ̂model(z)|ψ⟩d3z,

which will reproduce the standard result, i.e., the first Equation (11) because that term involves

⟨ψ|ρ̂model(z)|ψ⟩ = ρmodel = ρB + ρDM + ρDE.

Similarly, the expectation of ĝtt to order O(G) will reproduce the second Equation (11).

3.3. Contribution of the Quantum Vacuum

Taking Equation (20) into account, the term of order O
(
G2) of the grr metric element is

gvac
rr =

4G2

r2

〈
ψ
∣∣∣m̂vac(r)

2
∣∣∣ψ〉 =

4G2

r2

〈
ψ

∣∣∣∣∣
[∫

|z|<r
ρ̂vac(z)d3z

]2
∣∣∣∣∣ψ

〉

=
2G2

r2

∫
|z|<r

d3z
∫
|v|<r

d3v⟨ψ|ρ̂vac(v) ρ̂vac(z) + ρ̂vac(z)ρ̂vac(v)|ψ⟩. (24)

Generalizing Equation (17), I assume that the two-point correlation function, C, depends
only on the distance |v − z|, that is,

1
2
⟨ψ|ρ̂vac(v) ρ̂vac(z) + ρ̂vac(z)ρ̂vac(v)|ψ⟩ = C(|v − z|), (25)

which implies in particular that we may neglect the possible perturbations of the vacuum
correlations due to the presence of matter. The function C(|v − z|) should be obviously
positive for small values of |v − z| and decrease as |v − z| increases, but as argued in
Section 3.1 we are here concerned with the case when the v integral over the whole space is
nil, that is, ∫

C(|v − z|)d3v = ⟨ψ|ρ̂vac(z)|ψ⟩ = 0, (26)

see Equation (17). Therefore, C(|v − z|) will be negative for large values of |v − z|. An
illustrative example of a function with this behavior is the following:

C(x) = an3 exp(−3nx/b)− a exp(−3x/b), n >> 1 (27)

→ C(0) = a(n3 − 1), C(x) ≃ −a exp(−3x/b) for x >> b,

involving two parameters {a, b}. These parameters measure roughly the size of the fluc-
tuations and the the range of their correlation function. The behavior of the function C(x)
suggests introducing an auxiliary function F(x) such that

C(x) = n3F(nx)− F(x), (28)

where n >> 1 is a real number and F(x) is a positive function of the argument that I
assume rapidly decreasing at infinity, that is, fulfilling

lim
x→∞

x3F(x) = 0 ⇒ lim
x→∞

x3C(x) = 0. (29)

Equation (28) guarantees that Equation (26) holds true. Indeed, for integrals over the
whole space we have∫

d3xn3F(nx) =
∫

d3x′F
(
x′
)
=

∫
d3xF(x) ⇒

∫
d3xC(x) = 0. (30)
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Now, we may evaluate Equation (24) by taking Equation (25) into account. I start
with the following v-integral of C(|v − z|)

I ≡
∫
|v|<r

C(|v − z|)d3v = n3
∫
|v|<r

F(n|v − z|)d3v −
∫
|v|<r

F(|v − z|)d3v. (31)

In the limit n → ∞, the function n3F(nx) becomes proportional to a 3D Dirac’s delta δ3(x),
as may be shown taking Equation (29) into account. Thus, for very large n the relevant
contribution to the first integral of Equation (31) comes from the region where |v − z| is
small. Hence, we may extend the v-integral to the whole space with fair approximation
provided that |z| < r but neglect it if |z| > r. That is, we may write

n3
∫
|v|<r

F(n|v − z|)d3v ≃ Θ(r − |z|)n3
∫
|v|∈(0,∞)

F(n|v − z|)d3v,

where the step function Θ(y) = 1 if y ≥ 0, Θ(y) = 0 otherwise. Hence, Equation (31) gives

I ≃ Θ(r − |z|)n3
∫
|v|∈(0,∞)

F(n|v − z|)d3v −
∫
|v|<r

F(|v − z|)d3v

= Θ(r − z)n3
∫
|x|∈(0,∞)

F(nx)d3x −
∫
|v|<r

F(|v − z|)d3v

= Θ(r − z)
∫
|x′ |∈(0,∞)

F
(
x′
)
d3x′ −

∫
|v|<r

F(|v − z|)d3v

= Θ(r − z)
∫
|v|∈(0,∞)

F(|v − z|)d3v −
∫
|v|<r

F(|v − z|)d3v,

leading to

I = Θ(r − z)
∫
|v|≥r

F(|v − z|)d3v − Θ(z − r)
∫
|v|<r

F(|v − z|)d3v. (32)

It is the case that I will integrate for z ≤ r everywhere in the rest of this section whence
Equation (32) becomes

I = Θ(r − z)
∫
|v|≥r

F(|v − z|)d3v

in the following.
We obtain, taking Equations (24) and (25) into acount,

J ≡
∫

v≥r,z<r
C(|v − z|)d3vd3z = 4

∫
z<r

d3z
∫

v>r
d3vF(|v − z|)

= 32π2G2r−2
∫ r

0
z2dz

∫ ∞

r
v2dv

∫ 1

−1
duF

(√
v2 + z2 − 2vzu

)
, (33)

where u ≡ cos θ, θ is the angle between the vectors v and z. We know neither the two-point
correlation function C(|v − z|) nor F(|v − z|) in detail, but I propose to characterize the
latter by just two parameters (see Equation (27)), namely, the size D and the range γ. That
is, I will approximate the angular integral in Equation (33) as follows:

f ≡
∫ 1

−1
duF

(√
v2 + z2 − 2vzu

)
≈ DΘ(γ − |v − z|), (34)

where Θ(x) is the step function, and we assume that the parameter γ > 0 is small in the
sense that γ << r . Thus, we obtain

gvac
rr ≃ 32π2G2r−2D

∫ r

r−γ
z2dz

∫ z+γ

r
v2dv. (35)
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For later convenience, I will summarize the steps going from Equation (33) to Equation (35),
writing the following, slightly more general, relation valid for any α(v, z),∫

v<r,z<r
C(|v − z|)α(v, z)d3vd3z = 8π2D

∫ r

r−γ
z2dz

∫ z+γ

r
α(v, z)v2dv. (36)

The integrals in Equation (35) are trivial and we obtain

gvac
rr ≃ G2

r2 × 32π2D
∫ r

r−γ
z2dz

[
(z + γ)3

3
− r3

3

]
= 16π2G2Dγ2r2 + O

(
γ3

)
. (37)

The ratio γ/r << 1 is small because γ is a length typical of quantum fluctuations, while r is
of order the typical distance amongs galaxies (see comment after Equation (8)). Therefore,
we may neglect terms of order γ3 whence we obtain

gvac
rr ≃ 16π2G2Kr2, K ≡ Dγ2, (38)

where I have substituted the single parameter K for the product D times γ2. In the following,
I take the constant K as the relevant parameter, avoiding any detail about its origin from
the two-point correlation of vacuum fluctuations C(|v − z|).

The terms of order O
(
G2) of gtt, Equation (22), may be obtained in a way similar to

those of grr. For the first term, we obtain

c1 ≡ ⟨ψ|ĉ1|ψ⟩ = 4
∫ r

0
x−3dx

〈
ψ
∣∣∣m̂(x)2

∣∣∣ψ〉
= 4

∫ r

0
x−3dx

∫ x

0
d3z

∫ x

0
d3vC(|v − z|),

where C(|v − z|) is the correlation function Equation (28). I will firstly perform the x
integral, that is,

c1 = 4
∫

z<r
d3z

∫
v<r

d3vC(|v − z|)
∫ r

max(v,z)
x−3dx

= 2
∫

z<r
d3z

∫
v<r

d3vC(|v − z|)( 1

max(v, z)2 − 1
r2 )

= 16π2Dr−2
∫ r

r−γ
z2dz

{
1
3

[
(z + γ)3 − r3

]
− r2(z + γ − r)

}
,

where I have taken Equation (36) into account. The result is that c1 is of order O
(
γ3),

whence this term contributes but slightly to gtt.
In order to obtain c2, I start performing the x and y integrals, that is,

c2 ≡ 8
∫ r

0
x−2dx

∫ r

0
y−2dy

∫
z<x

d3z
∫

v<y
d3vC(|v − z|)

=
∫

z<r
d3z

∫
v<r

d3vC(|v − z|)
∫ r

z
x−2dx

∫ r

v
y−2dy

=
∫

z<r

(
1
z
− 1

r

)
d3z

∫
v<r

(
1
v
− 1

r

)
d3vC(|v − z|).

Taking Equation (36) into account, we obtain

c2 = 8π2Dr−2
∫ r

r−γ
z(r − z)

[
1
2

r
(
(z + γ)2 − r2

)
− 1

3

(
(z + γ)3 − r3

)]
dz

= 8π2Dr2γ2 + O
(

γ3
)
≃ 8π2r2K.
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Now, we must compute the G2 contribution to gtt coming from the pressure operator
p̂vac(r,t) of the vacuum, that is, the terms c3, c4, and c5. Before proceeding, I must deal with
a difficulty due to the fact that Equation (12) is just valid for spherical symmetry. Actually,
that symmetry holds neither for the distribution of matter in the region of interest nor for
the stress-energy of the quantum vacuum. In fact, the stress-energy appears in the form of
localized operators of energy density ρ̂vac(r,t) and pressure p̂vac(r,t). Actually, this was also
the case of the mass and pressure distribution leading the the terms of order G in the metric
elements in Section 3. Indeed, I have solved the problem via a standard approximation that
consists of averaging the matter over the entire region. For the vacuum operator ρ̂vac(r,t),
the problem is not too serious because that operator enters just in the mass m̂(r), whose
definition in Equation (21) already involves an integral. However, there is a more difficult
problem with the pressure operator p̂vac that actually depends on the position x rather
than on the radial coordinate x alone as in Equation (22). A plausible approximation is to
average the operator over the angular variables. Then, I will use P̂(x), an angular average
operator, rather than p̂(x), in Equation (22), that is

P̂(x) → 1
4π

∫ π

0
sin θdθ

∫ 2π

0
dϕ p̂(x) =

1
4πx2

∫
p̂(z)d3zδ(x − z), (39)

with δ() being Dirac delta so that the z integral may be extended to the whole space with
fair approximation.

After substituting P̂ for p̂ in Equation (22), we may obtain the expectation of the term
of order O(G2) belonging to the metric element ĝtt(r). In order to compute the numerical
value, we must introduce two new correlation functions similar to Equation (25), that is,

1
2
⟨ψ| p̂vac(v) p̂vac(z) + p̂vac(z) p̂vac(v) |ψ⟩ = Cpp(|v − z|),

1
2
⟨ψ|ρ̂vac(v) p̂vac(z) + p̂vac(z)ρ̂vac(v)|ψ⟩ = Cρp(|v − z|). (40)

The evaluation of the term c3 is as follows: taking Equations (22), (39), and (40)
into account,

c3 = 32π2
∫ r

0
xdx

∫ r

0
ydy⟨ψ|[ p̂(x) p̂(y) + p̂(y) p̂(x)]|ψ⟩

→ 32π2
∫ r

0
xdx

∫ r

0
ydy⟨ψ

∣∣P̂vac(x) P̂vac(y) + P̂vac(y)P̂vac(x)
∣∣ψ⟩

= 64π2
∫ r

0
xdx

∫ r

0
ydy

1
16π2x2y2

∫
d3zδ(x − z)

∫
d3vδ(y − v)Cpp(|v − z|)

= 4
∫

z<r
z−1d3z

∫
v<r

v−1d3vCpp(|v − z|),

where the x and y integrals have been performed.
Now, I assume that an (approximate) equality holds similar to Equation (36). Then,

I obtain

c3 = 32π2Dpp

∫ r

r−γ
zdz

∫ z+γ

r
vdv = 32π2Dpp

∫ r

r−γ
zdz

(z + γ)2 − r2

2

= 8π2D̀ppr2γ2 + O
(

γ2
)
≃ 8π2r2Kpp, Kpp ≡ D̀ppγ2.

Also, I suppose that similar approximations are valid when the density operator is
combined with the pressure opertor. Thus, we may calculate c4 and c5 in a similar way.
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c4 = 8π
∫ r

0
dx⟨ψ|[m̂(x) p̂(x) + p̂(x)m̂(x)]|ψ⟩

→ 8π
∫ r

0
dx⟨ψ

∣∣[m̂(x)P̂(x) + P̂(x)m̂(x)
]∣∣ψ⟩

= 16π
∫ r

0
dx

1
4πx2

∫
d3zδ(x − z)

∫
v<x

d3vCρp(|v − z|)

= 4
∫

z<r
z−2d3z

∫
v<r

d3vCρp(|v − z|)

= 4Dρp

∫ r

r−γ
z−2d3z

∫ z+γ

r
d3v

= 64π2Dρp

∫ r

r−γ
dz

(z + γ)3 − r3

3
= 32π2r2Dρpγ2 + O

(
γ3

)
Thus, we obtain

c4 = 32π2Kρpr2, Kρp ≡ Dρp.

c5 = 8π
∫ r

0
x−2dx

∫ r

0
ydy⟨ψ[m̂(x) p̂(y) + p̂(y)m̂(x)]ψ⟩

→ 16π
∫ r

0
x−2dx

∫ r

0
ydy

∫ x

0
d3z

1
4πy2

∫
d3vδ(y − v)Cρp(|v − z|)

= 4
∫ r

0

(
1
z
− 1

r

)
d3z

∫
v<r

v−1d3vCρp(|v − z|)

= 64π2r−1Dpρ

∫ r

r−γ
(r − z)zdz

∫ z+γ

r
vdv

= 32π2r−1Dpρ

∫ r

r−γ
(r − z)zdz

[
(z + γ)2 − r2

]
= O

(
γ3

)
.

Hence, the term c5 does not contribute to order O
(
γ2). In summary, we have for the gtt

element of the metric Equation (8)

gtt = 1 +
4
3

πGρmat −
8πG

3
ρDEr2 + 8π2G2r2(K + Kpp + 4Kρp). (41)

It is plausible that the quantities K and Kpp are both positive but KρP is negative. In
fact, we may assume that in quantum vacuum fluctuations the pressure acts with a sign
opposite to the mass density, in agreement with the Lorentz invariant vacuum equation of
state p = −ρ. This suggests identifying

Kpp = K, Kρp = −K (42)

whence we obtain, taking Equations (23) and (38),

grr = 1 +
8πG

3
(ρB(t) + ρDM(t) + ρDE)r2 + 16π2G2Kr2. (43)

Similarly, from Equations (41) and (42) we obtain

gtt = 1 +
8πG

3

(
1
2

ρB(t) +
1
2

ρDM(t)− ρDE

)
r2 − 16π2G2Kr2. (44)

These results reproduce the standard ones Equation (11) plus a correction due to the
quantum vacuum fluctuations (i.e., the last term in Equations (43) and (44)).
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4. Results and Discussion

The main result of this article is that Equations (43) and (44) should be substituted for
the standard Equation (11). Then, the following should be substituted for Equation (1)

ρDE + 6πGK ≃ (6.0 ± 0.2)× 10−27 kg/m3

⇒ 0 < K ≲
(6.0 ± 0.2)× 10−27 kg/m3

6πG
. (45)

The conclusion is that either the acceleration in the expansion of the universe is due to
the quantum vacuum (if the latter inequality is really an equality) or the vacuum gives just
a contribution to be added to the effect of a dark energy. In the former case, the value of the
parameter K would be following

K ≡ Dγ2 =
ρDEc2

6πG
≃ 0.42kg2/m4,

√
K ≃ 0.65 kg/m2. (46)

Taking Equations (31)–(34) into account, the quantity
√

K may be seen as the product
of the typical mass density of the vacuum fluctuations

√
D times its typical correlation

length γ. It is fitting that the value of
√

K, Equation (46), is not too far from the product
of the typical nuclear density, 2.3 × 1017 kg/m3, times a typical nuclear radius, about
10−15 m. For instance, if the correlation length of the vacuum energy density was 10−11 m,
a typical atomic distance, then the fluctuation of the density would be about 10−7 times the
nuclear density.

In summary, our work does not prove that quantum vacuum fluctuations are a valid
alternative to dark energy. But it does show that such fluctuations give rise to a contribution
with qualitative effects similar to those of the dark energy.
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Appendix A. A Note on Interpretation

In the calculation of the present paper I have not attempted any interpretation, but the
treatment has followed the standard quantum formalism. However, a few comments on
interpretation are in order.

After one century of quantum mechanics, there is no agreement about the interpreta-
tion of the theory [16], in particular about the real meaning of the “quantum probability”.
The standard wisdom is that quantum probabilities are dramatically different from the
common probabilities used in so many areas, from economics or biology to classical sta-
tistical mechanics [17]. Then, there are two types of probability in quantum theory, one
in the measurement, the other type in the definition of mixed states. The latter are simi-
lar to the common probabilities above mentioned [17], and they may be associated with
incomplete information.

In the measurement of the properties of a pure state, several different results may be
obtained with a definite probability each. These probabilities are not attributed to incomplete
information about the state of the system, which is assumed to be pure. The common
opinion is that they appear due to a lack of causality of the physical laws, a strange
assumption indeed. I support the view that there are “hidden variables” that might
determine the results of the measurements. If this is the case, the probabilities involved are
also standard [17], that is, no specific “quantum probabilities” exist. The current wisdom is
that suitable hidden variables, that is, local, are not possible [18–20]. See, however, [21,22].
The described situation also applies to the particular case of the “vacuum state”. This state
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is believed to be pure, but vacuum fluctuations exist that are also believed to correspond to
the peculiar “quantum probabilities”.
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