
Journal of Parallel and Distributed Computing 204 (2025) 105136

Available online 18 June 2025
0743-7315/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

The CAMINOS interconnection networks simulator

Cristóbal Camarero ,∗, Daniel Postigo , Pablo Fuentes

Universidad de Cantabria, Facultad de Ciencias, Avda. Los Castros S/N, Santander, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

CAMINOS
Network simulator
Rust
Performance
Router microarchitecture

This work presents CAMINOS, a new interconnection network simulator focusing on router microarchitecture.
It was developed in Rust, a novel programming language with a syntax similar to C/C++ and strong memory
protection.
The architecture of CAMINOS emphasizes the composition of components. This allows new designs to be defined
in a configuration file without modifying source code, greatly reducing effort and time.
In addition to simulation functionality, CAMINOS assists in managing a collection of simulations as an experiment.
This includes integration with SLURM to support executing batches of simulations and generating PDFs with
results and diagnostics.
We show that CAMINOS makes good use of computing resources. Its memory usage is dominated by in-flight
messages, showing low overhead in memory usage. We attest that CAMINOS can effectively use CPU time, as
scenarios with little contention execute faster.

1. Introduction

In the development of large computer systems, such as the Fron-

tier supercomputer [1] that achieved the Exaflop milestone, a high-
performance interconnect that delivers high throughput and low latency
becomes indispensable, lest it become a performance bottleneck for the
system. For such systems, estimating the interconnect’s behavior accu-
rately in various scenarios with high reproducibility is extremely useful.
A network simulator provides a valuable tool to handle different eval-
uations without the constraints and costs of developing a hardware
prototype. This allows for easy analysis of different characteristics of the
interconnect, including the network topology that describes its connec-
tions, the routing protocol, the flow-control mechanism, or the low-level
details of the router microarchitecture. This approach eliminates the
need to deploy a physical prototype to test a new feature, significantly
reducing manufacturing costs for new designs [2]. A comparable sce-
nario arises for the communications between multiple cores within a
chipset across a Network-on-Chip (NOC). At this level, network simula-
tors avoid the specifics of higher-level network protocols or the physical
implementation of the links. Instead, reference values, where appropri-
ate, are employed to assess performance under different communication
scenarios and traffic loads. The main purpose is to establish the impact

* Corresponding author.
E-mail addresses: camareroc@unican.es (C. Camarero), daniel.postigo@unican.es (D. Postigo), fuentesp@unican.es (P. Fuentes).

1 Caminos is also the Spanish word for paths.

of the given aspects of the router microarchitecture on the general per-

formance of an interconnect.

This paper introduces CAMINOS (Cantabrian Adaptable and Mod-

ular Interconnection Network Open Simulator),1 a network simulator
written in the Rust language [3] that models the underlying router mi-

croarchitecture. It is oriented toward analyzing and evaluating lossless
network interconnects at the High-Performance Computing (HPC) and
Datacenter domains. It is an event-driven simulator that operates at the
level of physical digits called phits, the smallest data unit that can move
in a cycle. CAMINOS has already been employed in published research,
such as [4–6]. CAMINOS can be found at [7].

The paper is organized as follows. The introduction explains the need
for a new network simulator and the benefits of using the Rust language.
Section 2 presents the state of the art and describes the main characteris-

tics of comparable network simulators. Section 3 describes the structure
of the simulator, while Section 4 covers the workflow, the input param-

eters, and the main output statistics. An example of network simulation
with CAMINOS against a known scenario to validate its accuracy is pre-

sented in Section 5. Section 6 assesses the simulator’s performance in
terms of resource utilization. Finally, Section 7 concludes the work and
remarks on the most important aspects.

https://doi.org/10.1016/j.jpdc.2025.105136
Received 12 March 2024; Received in revised form 24 February 2025; Accepted 12 June 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://orcid.org/0000-0001-6418-2614
http://orcid.org/0000-0001-8442-8634
http://orcid.org/0000-0001-6424-2533
mailto:camareroc@unican.es
mailto:daniel.postigo@unican.es
mailto:fuentesp@unican.es
https://doi.org/10.1016/j.jpdc.2025.105136
https://doi.org/10.1016/j.jpdc.2025.105136
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2025.105136&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Parallel and Distributed Computing 204 (2025) 105136

2

C. Camarero, D. Postigo and P. Fuentes

1.1. Need for a new network simulator

As stated, a network simulator represents a useful tool for estimating
the performance of a network interconnect and discovering pathological
issues. By their very nature, network simulators are usually purposely
developed for a given original target and require significant code addi-
tions to evaluate new proposals. This tends to introduce limitations that
drag out further developments, hindering the work of network archi-
tects. For example, a simulator with a plain configuration may introduce
parameters such as pairs x/y, which can later become confusing when
extending the simulator for networks with more dimensions. This phi-
losophy matches the benefits of the Zero-Cost Abstractions provided by
the Rust language, which allow users to benefit from many high-level
constructs without incurring performance costs.

CAMINOS has been developed with a focus on HPC and data center
domains, although it can also analyze the performance of Networks-
on-Chip. In these domains it is typical the use of lossless networks,
where packets cannot be dropped, hence requiring deadlock avoidance
mechanisms to avoid network stalls introduced by cyclic dependencies.
CAMINOS focuses solely on lossless networks and does not model link
errors due to network noise, that may cause information to be discarded
and retransmitted, since the focus is on the topological characteristics
and performance degradation introduced by the contention for network
resources.

CAMINOS employs a discrete event simulation model, in which all
occurrences are modeled by events [8]. It is clear that in the real world,
changes are continuous but can be adequately modeled as discrete
events with no changes in between. Moreover, as we consider systems
with a well-defined clock, the time itself can be discretized using inte-
gers for the cycle in which an event occurs. Examples of these events
may be to introduce a packet into the buffer of the next router at the
time indicated by the link latency or to process the heads of buffers for
access to the crossbar. The executions of these events may cause new
events to be enqueued, driving the simulation.

CAMINOS models the network at a phit level, taking into consid-
eration details of the router microarchitecture, such as the structures
for handling resources (crossbar, allocators) and the ability to transmit
or store information (buffers, links), to evaluate the performance im-
pact of contention on the use of shared resources. Communications in
the network are modeled through synthetic workloads, where the most
common model is to follow a Bernoulli process. Section 3.2 provides
a detailed description of the supported communication models in the
simulator.

1.2. Benefits of the Rust language

Rust is a modern programming language born within Mozilla Re-
search and reached its first stable release version in 2015. Its most
essential aspects are similar to C or C++ but include constructs such
as algebraic data types. The general philosophy of Rust is to allow the
resulting executable to be as optimized as if it were hand-coded assem-
bly and to allow the compiler to verify the correctness of the program
as much as possible. A fundamental difference between C and C++ is
the memory safety guaranteed in Rust’s code, which prevents many
common programming errors during compile time. Notably, Rust stat-
ically avoids Out-of-bounds Write or Read, Use After Free
and NULL Pointer Dereference, which are among the 25 most
dangerous weaknesses listed in the Common Weakness Enumeration of
2023 [9]. Rust helps prevent other mistakes beyond memory safety; for
example, a function returning a Result <T , E > is less error-prone than
one in C, where a negative number or NULL pointer could indicate the
error.

In cases where Rust’s lifetime-based analysis is not enough to prove
access to be valid, a runtime check or the promise of its correctness
using the unsafe keyword can be added. Thus, Rust does not sacrifice
safety, performance, or abstraction and modeling capabilities. Safety is

guaranteed by protecting all accesses in regular mode. Performance is
achieved by making available a C-layout and other low-level features.
Strong types with generics, traits, abstract data types, type inference,
and lambda functions provide abstraction and modeling capabilities. Yet
there is a cost, as it sometimes forces the programmer to reconsider the
design choices, encouraging a more rigorous choice that can be statically
proved safe.

A network simulator that includes large systems in its scope needs a
language that provides good performance. Note that the requirements
from the Rust programming model should not be conflated with those
of functional programming, which has a more evident impact on per-
formance. In a functional language, such as Haskell, some performance
may be lost due to the stringent requirements on the mutability of data
structures. Rust is designed to closely represent the machine’s workings,
annotating extra requirements for verification when possible. Only for
very specific constructions must one decide whether to write precise but
not automatically verifiable code or automatically verifiable code with
some slight indirection. There are also some potential runtime checks,
such as out-of-bound checks that the compiler fails to remove, for which
an aware programmer can use the unchecked variants to remove their
overhead [10]. Furthermore, the declarations that allow the automatic
verification of memory safety can also be exploited for the optimiza-
tion process. This effect is dominated by providing clear aliasing rules,
whose lack in languages such as C can prevent the application of some
low-level optimizations [11]. This allows Rust to excel over other lan-
guages to perform some specific tasks. Different benchmarks show Rust
times to range between 50% to 400% from that of C/C++, depending
on the implementation effort and tools employed [10,12,13].

In our experience, Rust imposes a higher cognitive load on the pro-
grammer than similar performant languages. Nevertheless, this is more
than offset by the reduced time dedicated to debugging memory errors
and the more seamless inclusion of higher-level designs. This approach
is well suited for network simulators focusing on the router microarchi-
tecture. Since evaluating new proposals frequently entails coding new
features, greater trust in their validity speeds up the evaluation process.

1.3. The Rust toolchain

While not technically part of the language, the Rust toolchain is
crucial in supporting development. In particular, the rustc compiler
provides notably helpful error messages, aiding developers in identify-
ing and resolving issues effectively. The cargo tool, akin to a Makefile
but with additional features, stands out for its capacity to manage de-
pendencies, simplifying the development process.

The cargo.io website extends the toolchain’s functionality by offer-
ing a vast repository of libraries that can be easily used as dependencies.
This facilitates immediate access to many functionalities, streamlining
the development of projects like CAMINOS. Additionally, the clippy
tool contributes by providing tips for correctness, simplicity, and per-
formance, enhancing the overall quality of the code.

One notable feature is the standardized documentation comments,
enabling the use of the cargo doc command to generate documentation
pages. These pages are typically made available at https://doc.rs, sig-
nificantly easing the process of creating well-documented libraries. This
emphasis on documentation positively affects the quality of available
libraries.

The Rust toolchain is known for its user-friendly nature and compre-
hensive set of features, including error management, dependency han-
dling, and documentation support. This contributes to a robust devel-
opment ecosystem. In our experience, the Rust toolchain and CAMINOS
can be installed on quite old systems without issues. This is due to great
efforts from the Rust team to make every version of the toolchain avail-
able for a wide range of machines. Rust’s commitment to support various
systems was demonstrated in a 2022 update. This update increased the
minimum Linux requirements to glibc 2.17 (2012-12-25) and kernel

http://cargo.io
https://doc.rs

Journal of Parallel and Distributed Computing 204 (2025) 105136

3

C. Camarero, D. Postigo and P. Fuentes

3.2 (2012-01-04).2 This contrasts with other network simulators, such
as SuperSim [14], where the Bazel toolchain demands several modern
infrastructure components, some of which are missing in specific old sys-
tems. Although systems without internet access might pose challenges,
the cargo vendor tool already builds a packed collection of project de-
pendencies, ensuring usability in an offline environment.

2. State of the art

Network simulators are commonly used in network analysis and de-
velopment to evaluate the performance under complex scenarios [15,
16]. To the extent the authors are aware, there is no previous phit-
accurate network simulator developed in the Rust language; all other
similar tools described in this section are written in C or C++. Book-
Sim [17], which bears its name for being the reference simulator used
for the analyses presented in [16], has been extensively used in the lit-
erature to evaluate new network proposals [18–21]. Its second iteration
(BookSim 2.0) is mainly intended to estimate the performance of NoCs,
but it can and has been applied to evaluating HPC system interconnects.
Apart from its extensive use in the research community, the accuracy of
this simulator has also been validated against a Register-Transfer Level
(RTL) implementation.

In contrast to CAMINOS, BookSim is a time-driven simulator that can
increase execution time for evaluations with a low simulated traffic load.
BookSim also presents a limitation related to the size of the simulated
data units, being unable to model flow-transfer units (flits) with a size
of multiple physical units (phits), that is, that require more than a single
network cycle to transfer the information from the beginning to the end
of the flit.

FSIN, part of the INSEE (Interconnection Network Simulation and Eval-

uation Environment) [22] framework developed at the Universidad del
País Vasco, is very similar to BookSim, but with a lower adoption
rate [23,24].

SuperSim [14] is a more modern simulator that is closer to CAMINOS
in terms of a flexible and modular design. SuperSim was initially devel-
oped by Hewlett-Packard Labs and has been employed in analyzing a
routing proposal for the HyperX network topology intended for HPC sys-
tems [25]. However, it is currently singlehandedly maintained by one
of the original developers. Furthermore, this support is offered through
a separate, private repository that is different from the official GitHub
repository provided by Hewlett-Packard Labs. Similar to CAMINOS, Su-
perSim is an event-driven simulator that supports the simulation of flits
composed of multiple phits. It also employs a hierarchical and structured
syntax to define simulation experiments.

FOGsim [26] is another simulator of similar characteristics but de-
signed exclusively for the simulation of Dragonfly networks, either un-
der synthetic traffic loads or using execution traces of parallel applica-
tions. Despite its limitations, it has been used in several Ph.D. theses and
multiple publications [27–29].

Other simulators provide less detail to focus on different aspects of
the system. INRFlow [30] simulates traffic flows instead of network
packets, which allows the simulation of much larger systems aimed at
the data center and HPC domains but comes at the expense of being blind
to many congestion problems. Garnet2.0 [31] is designed to be a mod-
ule of the GEM5 full-system simulator [32] to assess the performance
of a more complex system modeling a complete CPU with the memory
subsystem and the execution of real applications. However, Garnet uses
a simplified model of the router microarchitecture. It must be noted that
BookSim can also be integrated into GEM5 through external work [33].

SST/Macro [34,35] does not provide flit-accurate simulations but is
only accurate up to the packet level. Instead, it focuses on performing the
communications of an actual MPI (the Message Passing Interface stan-

2 The current requirements for the rustc compiler can be found at https://
doc.rust-lang.org/nightly/rustc/platform-support.html.

Table 1
Comparison of network simulators.

Simulator Detail level Language License Latest commit
BookSim flit C++ privative 2017
CAMINOS phit Rust MIT 2024
FSIN phit C GPL 2.0 2017
FOGSim phit C++ GPL 2.0 2021
HNoCs flit C++ GPL 3.0 2022
Garnet flit C++ Berkeley-alike 2023
INRFlow Traffic flow C GPL 2.0 2016
Noxim flit C++ GPL 2.0 2024
ROSS/CODES flit C Open Source 2022
SST/Macro Traffic flow C++ privative 2023
SuperSim phit C++ Apache 2.0 2022

dard) application. Alternatively, it can simulate an application skeleton
where the computations in the code have been removed.

CODES (Co-Design of Multi-layer Exascale Storage Architecture) [36] is
a flit-level simulation framework for the torus and Dragonfly topologies.
CODES uses ROSS (Rensselaer Optimistic Simulation System) [37] as its
discrete event simulator. In contrast to the other simulators, it can run
in parallel with multiple CPU cores working together, providing greater
execution flexibility and lower execution time.

HNoCs [38] and Noxim [39] also present flit-level accuracy but fo-
cus on the analysis of Networks-on-Chip. Noxim can model wireless
communications between the network nodes, and HNoCs can model
heterogeneous networks. Both tools are based on existing simulation
frameworks written in C++: HNoCs use OMNET++, whereas Noxim
leverages SystemC.

Table 1 compares these simulators, including our new entrant,
CAMINOS. The table presents the detail level of the simulator, the pro-
gramming language used in its development, the type of software li-
cense, and the date of the latest commit.

As mentioned at the beginning of this section, other simulation tools
exist written in the Rust language, including network simulators. How-
ever, those tools focus on different aspects of the system, such as the
impact of network protocols [40–43] or to simulate a network for testing
network-oriented code [44] and a discrete event simulation framework
meant to be built on top of MPI [45].

As far as the authors are concerned, CAMINOS remains the first
network simulator written in Rust that focuses on the router microar-
chitecture and provides phit-level accuracy.

3. Simulator architecture

CAMINOS is a phit-accurate simulator, which decomposes packets
between servers into physical digits or phits, representing the smallest
data unit that can move in a single cycle. Traditionally, a phit was iden-
tified with the number of bit lanes in a network cable. Nowadays, they
are more aptly associated with the width of the Serializer/Deserializer
(SerDes). Phit accuracy is achieved by modeling the traversal of phits
through the router components (buffers, crossbar) and links.

By using phits and cycles to model the router behavior, the simula-
tor allows a layer of abstraction from actual hardware that can be easily
translated into units of time (e.g., seconds) and bandwidth rates (e.g.,
bits per second) by considering the router clock frequency and link bi-
trate. All statistics expressed in cycles can be translated into seconds by
dividing the number of cycles by the router clock frequency. Similarly,
the throughput rates expressed in phits per cycle can be translated into
bits per second by establishing the size of a phit in bits, considering that
a phit needs to traverse through the link in a single cycle of the model.
This approach is usual in network simulators that model the router mi-
croarchitecture, such as those described in Section 2.

This section describes the different classes of components modeled
by CAMINOS and how they can be combined.

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

Journal of Parallel and Distributed Computing 204 (2025) 105136

4

C. Camarero, D. Postigo and P. Fuentes

3.1. Events and time

At its core, CAMINOS operates with an event queue that encapsu-
lates scheduled occurrences at specific times. The smallest unit of time
represented in CAMINOS is called a cycle. When all components oper-
ate at the same frequency, this cycle should be the period of operation.
Generally, each component can have a period that is a multiple of the
cycle. Each event is scheduled to a cycle and denoted as occurring ei-
ther at the start or end of the cycle. This is a simplification of the delta
delay used in VHDL and more general time models such as epsilon delay
and superdense time; see [46]. In our case, this removes the ambiguity
when some data is inserted into a queue, and the head of the queue is in-
spected in the same cycle. We schedule all insertions at the start of that
cycle, during which other events can inspect them. Since the required
event engine is relatively simple, we have implemented our own event
engine to have finer control instead of using an existing framework.

The main events are the movement of phits and the processing of a
network component. Additional events can be implemented as needed
by providing a procedure to be executed when the event is processed.
As notable example, a router can be modeled as a monolithic com-
ponent, generating a single event for each router. A more elaborated
router model would include events for different subcomponents. Such
design reduces unnecessary computation by avoiding the reevaluation
of a component when its state has not changed. This is helpful when the
queues are empty or full, as they may cause deterministic stalls. More-
over, having subcomponents with independent events allows one to run
each subcomponent at a different frequency, enabling an internal cross-
bar speed-up. Currently, two routers are available, a basic monolithic
router and another with the described finer granularity; both are de-
scribed in Section 3.4.

3.2. Traffic

During a simulation, servers generate their traffic in the form of
messages. These messages are segmented into packets as they enter the
network, following an MTU (Maximum Transmission Unit) equivalent.
These packets are further divided into physical digits or phits, that re-
quire several simulation cycles to traverse from one network element to
the next. Each packet can consist of one or more flow-management units
known as flits, which can be stored separately in each router, depending
on the flow control mechanism employed by the routers. CAMINOS con-
siders a unit of 1 flit to refer the amount of data space required in the
next buffer to allow its traversal; if Virtual Cut-Through (VCT) switch-
ing is used, this entails a packet size of 1 flit. CAMINOS assumes that
the packet header can be fully stored in the first phit of the packet and
therefore, under VCT switching, allows the packet to be retransmitted
as soon as its first phit has been received, even when all the phits in the
packet correspond to the same single flit.

A traffic component in the simulator describes the message gener-
ation process. These components allow their composition to simulate
applications in sequence or parallel. The potential of composition is
elaborated in Section 3.5. Messages can be generated in the network
servers by following a Bernoulli process, with a given traffic load deter-
mining the probability of new message generation. Whenever a message
generation is attempted, the available space at the server generation
queue is checked; if available space is insufficient to fully host the mes-
sage, the generation attempt is aborted and may be later reattempted.
The number of instances in which this occurs, also named missed genera-

tion, is tracked through a functional metric later described in Section 4.2.
The traffic is also responsible for the size of messages, making it pos-

sible to mix messages of different sizes. There are more possible traffic
types than generating load continuously. It is possible to provide each
process with an initial load and wait for it to be consumed. It is also pos-
sible to define how new messages are generated in response to received
messages. This makes it possible to implement traffic such as the wave-
front found in the LU solver from the NAS Parallel Benchmarks. In this

kernel, a corner of a mesh starts sending a message to its neighbors, and
when a node receives the messages from its preceding neighbors, it gen-
erates new messages for its other neighbors. There are also functions to
help place multiple applications across the topology and combine dif-
ferent traffic in multiple ways.

Traffic patterns in CAMINOS are built upon a more general concept
of pattern as an algorithm that maps elements from one set into another,
defining the possible destinations for any given source in a pattern. Sig-
nificantly, these patterns are not limited to pure mathematical functions
and may employ state or use a random number generator. This design
allows for the composition of patterns, for instance, by building a global
pattern over groups of varying sizes distinct from the total number of
servers. The sources and destinations in the final composition are then
mapped to the servers in the network. Within this context, a traffic
pattern is a pattern over the network servers. For example, different
permutations are patterns, such as transpose, cyclic or random permu-
tation, or random involution. This permutation can even be loaded from
a file instead of generating it on the fly. Other patterns include uniform
traffic, where the destination changes per packet, or hotspot patterns,
where some destination has multiple sources. Patterns can be composed
to make new patterns, which is elaborated in Section 3.5.

Patterns can be used to define the destination of messages and to help
define other mappings. They are also useful for managing the placement
of multiple applications in the network.

3.3. Topologies

The topology of a network defines whether each switch port is con-
nected, to which server or switch port it is connected, which is the port
in the other endpoint, and a class for that link. We call radix of a switch
to the number of its ports and degree to the number of other switches
to which it is connected. These connections between switches make a
graph in which the vertices are the switches, and the edges are the links.
Thus, we may talk indistinctly about topology or the graph of switches
for those matters where the servers, port indices, and classes are irrel-
evant. Topologies may be irregular, allowing for switches of different
degrees, radix, non-connected ports, or connected servers. In particu-
lar, CAMINOS allows for irregular graphs, such as meshes, and indirect
networks, such as Fat Trees. Links can be associated with a class, giving
them special latency and frequency, for example, when including electri-
cal and optical wires. Moreover, the link class is also employed in some
algorithms. For instance, for the Dragonfly topology [47], CAMINOS de-
fines three classes: one for links to servers, another for switches within
the same group, and the last one connecting switches in different groups.
Then, a weighted minimal routing can prefer to use a local-global-local
route over a possible global-global one.

At present, CAMINOS offers a variety of topologies, including
meshes, tori, and low-diameter topologies such as Dragonflies [47],
projective networks [48] and Slim Flies [49]. In particular, the Dragon-
fly topology is presented with multiple aspect ratios and arrangements
of global links. Among the available multi-stage network topologies
are the eXtended Generalized Fat Tree (XGFT) [50], the Orthogonal
Fat Tree (OFT) [51], Random Folded Clos (RFC) [52], and the flexibil-
ity to compose custom stages. Furthermore, CAMINOS incorporates the
Megafly [53] (also known as Dragonfly+ [54]), featuring a diameter-3
indirect network of two levels, sharing similarities with both the Drag-
onfly and the Fat Tree.

In this paper we focus in another topology supported by CAMINOS,
the Hamming Graph, which we employ in our evaluations in subsequent
sections. In a Hamming Graph, which is the Cartesian product of com-
plete graphs, nodes are organized in a multi-dimensional lattice where
all adjacent nodes differ in a single coordinate, pertaining to a different
position in one of the dimensions. This topology is also known as Gen-
eralized Hypercube [55], Flattened Butterfly [56] (FB) or HyperX [57].
The FB is achieved by “flattening” a regular Butterfly topology by coa-
lescing routers from all the stages of the network into a single router,

Journal of Parallel and Distributed Computing 204 (2025) 105136

5

C. Camarero, D. Postigo and P. Fuentes

which results in a direct topology with all-to-all connectivity between
the routers in each dimension. It can thus be argued that the FB topology
is a particular case of a Hamming Graph where the number of endpoints
per router equals the number of routers per dimension.

In addition to these families with particular definitions, CAMINOS
provides for more general ones, such as random regular networks [58].
Moreover, CAMINOS allows you to read the topology from a file and
export any created topology into a file. For example, the following com-
mand would export a 3D HyperX.

c a m i n o s --s p e c i a l = e x p o r t --s p e c i a l _a r g s = ’ E x p o r t {
t o p o l o g y : H a m m i n g { s i d e s : [4 , 4 , 4] , s e r v e r s _p e r _r o u t e r : 4 } ,
s e e d : 5 ,
f i l e n a m e : " h y p e r x 4 x 4 x 4 " } ’

Working over arbitrary topologies gives patent a certain degree of
abstraction that eases the implementation of new topologies. The con-
struction of the topology is automatically verified, indicating the kind
of problem, if any.

3.4. Router models

A router has the task of moving the incoming packets from its in-
put ports to its output ports. It has to enforce a flow control, that is, to
ensure the receiver has space for a flit before sending data. CAMINOS
employs a credit counter on the emitter as the primary mechanism,
tracking the available space on the receiver. The receiver sends notifi-
cations upstream when it gains more space. Upon reception, the sender
updates its associated counter. The router also needs to include mecha-
nisms such as routing and management of virtual channels (VCs).

Two router implementations are available in CAMINOS, called Basic
and InputOutput. The Basic router is intended to be more simplistic, al-
though they share many features. Both routers have multiple buffers per
port, specifically one input and output buffer for each VC. The depth of
these buffers can be controlled. In the Basic router, setting the size of
the output buffers to 0 removes them, connecting the crossbar directly
to the output ports. Traversing the Basic router does not add latency; if
it is otherwise empty, a packet that enters an input queue at a cycle may
go across the router and be scheduled at the next router with the link
delay. The InputOutput router may set the crossbar delay and frequency.
In the InputOutput, the allocator can be chosen between different imple-
mentations, while the Basic is fixed to a pure random allocation.

CAMINOS allows three different types of speed-up: internal, input,
and output speed-up. Internal speed-up (only for InputOutput router) is
achieved by forwarding data through the crossbar faster than through
the links, hence requiring output buffers to decouple transmission rates.
Input speed-up corresponds to having a greater number of inputs to the
crossbar than the number of input ports to the router; in both routers
of CAMINOS, the number of input ports to the crossbar equals the total
number of input buffers, which is the product of the number of physical
ports and the number of VCs in each port. Output speed-up is equivalent
to input speed-up but is applied to the output ports of the crossbar and
router.

In CAMINOS, a routing algorithm is characterized mainly by the
function that provides valid output ports for a packet in an input queue.
More specifically, given the current router, the destination, the topol-
ogy, and the information potentially stored in the packet, the routing
must build a set of candidate output ports. Each of these candidates is
described by its output port and its VC, and it may optionally include
indications for prioritizations or estimations. The routing specifies the
routing information stored per packet. In particular, we aim to minimize
costs for those routings that do not require extra information. Some ex-
amples of basic routing blocks supported by CAMINOS are minimal rout-
ing, Dimension-Order Routing (DOR), OmniWAR [25], and Up/Down.
Nevertheless, nesting is allowed for composition. For example, when us-
ing Valiant routing [59], the information used for the subroutes is stored
inside the information used for the Valiant routing. Some adaptive rout-

ing mechanisms such as UGAL can be expressed as the composition of
other routing blocks.

Finally, many strategies exist to manage the valid candidates the
routing indicates. A VC policy is a scheme that may combine the routing
information with router information. A straightforward policy prevents
deadlock by restricting the selected VC to a hop count or ladder [60,61].
Other policies may choose the minimum function of queue occupancy
and route priority. For example, in UGAL routing [62], a packet must
choose at source between using a minimal or Valiant route. As the aver-
age Valiant route has a base network latency twice that of a minimal
route, it may select the shortest queue with the occupancy of non-
minimal ones multiplied by a factor of 2. There are many possible
variations: the length estimation could be used, the occupancy may in-
clude the output buffer of the current router and/or the credits of the
next router, etc.

3.5. Component encapsulation and composition

CAMINOS is designed as a library, providing clear APIs for each com-
ponent. Its design favors component composition, so many mechanisms
can actually be defined at configuration.

Within the role of a library, CAMINOS allows a small project to add a
new component without modifying the source code of CAMINOS. Such
project would consist of an import declaration, the code of new com-
ponents, and a call to the entry point function from the library. These
steps only require the following lines of code.

/ / I n c l u d e t h e l i b r a r y o f C A M I N O S .
u s e c a m i n o s _l i b : : { s e l f , P l u g s } ;
/ / C r e a t e a n e m p t y c o l l e c t i o n o f e x t r a c o m p o n e n t s .
l e t m u t p l u g s = P l u g s : : d e f a u l t () ;
/ / I n s e r t t h e l o c a l l y d e f i n e d c o m p o n e n t .
p l u g s . a d d _t o p o l o g y (" M y L o c a l T o p o l o g y " . t o _s t r i n g () ,

| a r g | B o x : : n e w (t o p o l o g y : : M y L o c a l T o p o l o g y : : n e w (a r g))) ;
/ / C a l l t h e s i m u l a t o r .
c a m i n o s _l i b : : t e r m i n a l _m a i n _n o r m a l _o p t s (& a r g s , & p l u g s ,

o p t i o n _m a t c h e s) ;

A project following this workflow would consist exclusively of code
for the new components being developed instead of being a clone of
the whole simulator. This also allows us to easily update the employed
version of caminos-lib without significant revisions to the new com-
ponents. This differs from many simulators, such as BookSim and FSIN,
where several files must be modified to indicate new components. It
also deviates from SuperSim, which via Factories avoids the need for
that micro-management of files but still requires working over the whole
source tree.

This approach is not without limitations. If a user has a component
with complex connections that do not work within our defined API, it is
unavoidable to clone the library to make the required changes. Addition-
ally, the API is yet subject to changes when new components need to be
added, which means the easy upgrade of the version of caminos-lib
could require a little refactorization when it happens. A further possi-
bility would be to provide a way to dynamically load components at
execution time, although the usability of this approach is yet unclear.

A Rust trait defines the API for each component. This encapsulation
is extended to the configuration file, which has the syntactical structure
of a tree. Each component is built from a subtree, effectively making it
independent from the other components. This encapsulation also facili-
tates the use of composition, which is applied extensively, allowing the
definition of many novel components at the configuration level.

A helpful abstraction across several components is the interpretation
of a set as a block with Cartesian coordinates. A region of size 𝑛 with fac-
torization 𝑛 = 𝑛1𝑛2⋯𝑛𝑑 can be interpreted as a block of 𝑑 dimensions
with side 𝑛𝑖 for the dimension 𝑖. Then, any integer 𝑚, with 0 ≤ 𝑚 < 𝑛

can be converted into coordinates for such block by finding 𝑑 integers
𝑚𝑖 such that 0 ≤𝑚𝑖 < 𝑛𝑖 and 𝑚 =

∑𝑛

𝑖=1𝑚𝑖

∏𝑖−1
𝑘=1 𝑛𝑖. This is a natural rep-

resentation for some topologies, such as the mesh and the Hamming

Journal of Parallel and Distributed Computing 204 (2025) 105136

6

C. Camarero, D. Postigo and P. Fuentes

Graph, and can be usefully exploited in their routing algorithms. An-
other notable application is for the definition of traffic patterns. Many
sensible patterns interpret the set of nodes as a Cartesian block and then
shift or permute coordinates to find the destination. This alone allows
defining a transpose pattern at configuration that is not required to be
a power of 2 elements. Furthermore, the set of transposed nodes can be
easily established to be the set of switches, servers, or others.

3.5.1. Examples of composition

We now present a non-exhaustive list of composition examples to
illustrate the potential of this approach. Some are instances of a final
mechanism with another component as a parameter; others are funda-
mental bricks to build others.

Valiant’s randomization scheme is a prominent parametrized routing
that can be used with various underlying routing schemes. For instance,
the segment from injection to the intermediate switch can be routed us-
ing DOR, while the intermediate switch to the destination can be routed
using fully adaptive minimal routing.

The most natural pattern composition is the product of two pat-
terns: uniform destinations inside groups and some permutations among
groups. A group may be the servers attached to a router, the routers in
a Dragonfly group, or a row in a Cartesian-based topology.

An example of traffic composition is to build a sequence of other
traffic, each with a given duration. A similar scenario is to make a se-
quence, where every traffic entry has an intrinsic finalization criteria,
such as sending a given number of messages. In this case, each traffic in
the sequence starts when the previous one has ended.

Some operations on routing candidates are defined as the composi-
tion of VC-management policies. For instance, some thresholds of UGAL-
like mechanisms are set for packets excluding a defined escape channel.

As a simple operation for a topology, it is possible to relabel the
servers according to a given pattern.

4. Usability

The usability of CAMINOS is built around the concept of experiment.
An experiment is a collection of cohesive simulation instances that aim to
answer some question. Those simulations will vary in a few parameters
and their results can be reasonably represented in a figure. In CAMINOS,
an experiment is represented as a directory with several files. The defini-
tion of the simulations belonging to that experiment is in the main.cfg
file at the experiment’s root. To comply with the encapsulation, this
configuration is syntactically a tree, following a syntax designed for it.
CAMINOS also allows executions without an entire experiment folder,
just a configuration file. This mode is intended for quick simulations at
an interactive shell and allows for command-line overrides of the con-
figuration.

The working methodology with CAMINOS is to create a single folder
for the whole experiment, with one file defining the simulations’ param-
eters and a separate file describing the output to be generated, including
the plots. This allows a simplified behavior where a single command can
run the experiment and produce PDF files containing the desired plots
and any other preferred output, such as a CSV (Comma-Separated Val-
ues) file. This methodology is appropriate for local runs and debugging
since it aggregates all the tool’s functionality and simplifies the user’s
process. For experiments run in computing clusters, the behavior is split
into two phases: one to launch the experiments as jobs through a work-
load manager and another to aggregate the results and generate plots.
This allows the division of the experiment into several steps, aggregates
results from different partial executions of the same experiment, and de-
couples the output generation from the model execution to account for
execution runtime.

4.1. Configuration syntax

In CAMINOS, experiments are declared in a domain-specific lan-
guage employing a syntax similar to JSON but with notable enhance-

ments. The same syntax is also used to describe outputs and some inter-
nal results.

Most syntax elements are like JSON, including double-quoted strings
and bracketed lists. Dictionaries are tagged: writing routing:DOR {

order:[0 ,1] } indicates the field routing of the parent is a DOR ob-
ject, which has key/value pairs. This is different than JSON, where the
DOR tag would be indicated in some other way, like routing:{type:
DOR , order:[0 ,1]} or routing:{tag:DOR ,data:{order:[0 ,1]}}. Most sig-
nificantly, using a hierarchical syntax instead of a plain configuration
allows for multiple uses of the same object with different parame-
ters. For example, Valiant{first:DOR{order:[0 ,1]} , second:DOR{order:

[1 ,0]}} expresses a randomized routing where the segment from the
source to a random switch is made in dimension order, and the routing
from the intermediate to the destination uses the reverse order.

The syntax further differs from JSON by including the elements
![a ,b ,c] and name![a ,b ,c] which determine the extent of the set of
experiments. Specifically, a tree containing an element ![a ,b ,c] is ex-
panded into three trees, each containing one of the variants. This simpli-
fies the launch of experiments with sweeps in one or more parameters,
as is common in evaluating new proposals and mechanisms.

For example, an experiment with load:![0.25 ,0.5 ,0.75 ,1.0] will
expand into four trees containing respectively load:0.25, load:0.50,
load:0.75, and load:1.0. When there are multiple elements, the result-
ing experiment has the Cartesian product of all combinations as its set
of simulations. The named variant of this syntax allows for an expan-
sion that must match between them; this is, all expansions with the same
non-empty name must have the same number of elements. For instance,
a tree containing both size![1 ,10] and size!["small" ,"large"] will ex-
pand into two trees, the first one with 1 and "small". The syntax also
includes support for evaluating functions. This describes output process-
ing to generate readily usable data (such as a graphic) and is described
in Section 4.3. This repeating operator provides an easily manageable
way to express large experiments. To illustrate this, note, for example,
the case of SuperSim, where a battery of experiments is represented by
a JSON file plus a Python script. In other simulators, such as BookSim,
these batches are not supported, predisposing its users to make their
own scripts, leading to unnecessary repeated efforts.

4.2. Experiment metrics and statistics

A simulation in CAMINOS can be divided into a warmup phase and a
measured phase, with durations specified in the configuration file. Some
traffic may finish before the specified duration, ending the simulation.
In classical experiments, the warmup phase should be long enough for
the network to reach a steady state. It should be noted that it is not
always possible to achieve such a state, depending on the properties
of the network and the workload. Tracked statistics for each phase are
reported separately, with the measurements from the warmup phase
mainly used for diagnosis.

Metrics can be classified into two main categories: functional metrics
related to the experiment and metrics that consider the resource usage
from the simulator itself.

There are two main groups of functional metrics, focusing on the
amount of data per time unit and the latency. In the first group, we can
find the throughput or accepted load, which is the rate at which packets
reach their destination, and the injected load, which is the average rate at
which packets are introduced into the network. Under stable conditions,
the values for these two metrics converge as simulation time increases.

Latency can be measured through several different metrics, such as
the network latency, which is the time since a packet enters the network
until it is consumed at its destination server. Additionally, we can track
the total message delay, the number of network cycles since the whole
message was created until it is consumed at its destination. This includes
all time spent on the server generation queues plus the link delay to the
first router. It can be helpful to track other latency metrics under partic-
ular traffic loads or to understand pathological behavior. For instance,

Journal of Parallel and Distributed Computing 204 (2025) 105136

7

C. Camarero, D. Postigo and P. Fuentes

CAMINOS reports the cycle in which the simulation is finished for traf-
fic that finishes after completing a load. Other metrics of interest in this
traffic that can be tracked are the cycle in which the last message was
consumed and the cycle in which the last phit was created, providing
more information on the relative termination of the servers.

Under specific scenarios, traffic behavior between servers can be
asymmetrical, which makes it interesting to check network fairness.
Among the aggregated reported metrics in CAMINOS is the Jain index
[63], a balance between the load of individual servers, either generated
or consumed.

There are also metrics to assess the validity of a network model and
its proper operation. The maximum link utilization reports the maxi-
mum rate of utilization across the links. If it does not reach a value of
1, every link in the network has been unused at some point in the sim-
ulation. The average number of missed generations in the servers and
the number of servers with missed generations track the missed gener-
ations. In these instances, the traffic requested to generate a message
at a server at some cycle, but the server generation queue did not have
enough space to host the whole message. Depending on the traffic, the
message may be generated later or skipped. Values greater than 0 may
correspond with communications with infinite latency for the typical
traffic with Bernoulli-distributed generation.

As information on the routes taken, CAMINOS provides the average
number of hops per packet. This information is also tracked through a
list with the count of packets of each route length, allowing the genera-
tion of path length histograms. There is also a metric with the average
link utilization, which measures the average number of phits per cycle
that traverse the links; for minimal routes, this metric should track the
accepted load, and a deviation from that value may correspond to an in-
efficient use of the network resources. Such information, complemented
with the accepted load and the average path length, allows us to assess
the behavior of the network accurately. Link usage can also be analyzed
per virtual channels, which may provide insight into the routes or other
aspects, depending on how virtual channels are managed.

Other reported measures are related to the performance of CAMINOS,
such as its memory footprint or execution time. The reported memory
footprint is the process’s maximum resident size obtained from VmHWM
(high watermark in KB). The reported times are the user time and the
system time in seconds. CAMINOS spends most of its time in user mode,
so any high system time represents more of a problem in the node run-
ning CAMINOS than in the simulation.

4.2.1. Optional statistics

By default, CAMINOS only reports the aggregate measurements of
the functional metrics over the whole measured phase. CAMINOS sup-
ports statistics across different regions of time, servers, or packets, but
they require opt-in since they may negatively affect the simulation’s per-
formance.

It is possible to query for values at different percentiles to comple-
ment the default average values for given metrics. For example, for
accepted load and percentile 75%, you get the value of accepted load
such that 75% of servers have accepted less load than that value. This
has little extra cost since servers already have to store some information.
Similarly, percentile statistics can be gathered per packet; however, this
is notably more expensive, as data are stored for each packet generated
during the measuring phase.

CAMINOS supports a powerful option to add aggregated statistics per
packet that are a function of certain packet properties. For example, it
can be used to track the average delay per packet for each possible com-
bination of hops given and the last VC used. This can be useful to identify
particular behavior or network properties, particularly when evaluating
new proposals. Employing this option impacts execution time, which
should be considered.

4.3. Working methodology

For most simulators, the tools for launching simulations and process-
ing results appear as satellites growing around them. These tools are also
usually built-in scripting languages such as Python. We consider that a
mistake, even if for some small experiments that may get you running,
the final tools can have a size comparable to the simulator itself. For
CAMINOS, we have opted to integrate these tools in the simulator. This
makes the work methodology more uniform, with all actions operat-
ing over the same objects. Specifically, we define an experiment as a
folder that includes some files. The file of major importance is the con-
figuration file, describing all simulations that comprise the experiment.
Each simulator action is executed against this folder with the proper --
action= flag. In addition to the configuration file, the experiment folder
contains a journal file, a description of outputs (main.od), a description
of a remote host, obtained results (in binary.results or within runs/),
and the generated outputs (within outputs). The journal file tracks the
history of the experiment, with entries added whenever any action starts
or finishes, plus the possibility of additional messages.

CAMINOS can manage executions on a SLURM system. For this pur-
pose, it invokes externally the commands from the workload manager.
For example, the action slurm enqueues the selected pending simula-
tions into the SLURM queue system by calling the system’s sbatch. Jobs
can be launched or canceled, and their status can be checked directly
from CAMINOS.

CAMINOS only executes simulations for which it does not have re-
sults already. If some results are known to be incorrect, they may be
discarded with the discard action. Selective control for most actions is
possible with a series of flags, restricting to a range or a set of condi-
tions through a provided expression; for example, this allows separate
simulations with the highest load to be run. There is support for merg-
ing experiments: if an experiment is defined as containing simulations
already executed as part of other experiments, they can be imported us-
ing a flag. An empty copy of an available experiment is also possible,
which helps make a new experiment with only a few differences from a
previous one.

CAMINOS also helps manage remote copies of experiments by the
actions push and pull, among others. These actions establish an SSH
connection by requesting a password or using the user’s public key file.
The remote file manages the host to which these actions connect.

4.3.1. Generation of outputs

CAMINOS can generate CSV files, which can be helpful when inter-
facing with external tools. However, CAMINOS also seamlessly gener-
ates outputs from currently available results, such as direct plots, which
are more common for ordinary usage.

CAMINOS allows seamlessly generating outputs from currently avail-
able results, e.g., by calling the system’s pdflatex to generate PDFs.
These outputs can be considered the end product of the simulation
tool, presenting the user with more easily parsable data. In the case of
generated TeX/PDF, the fraction of completed simulations is indicated,
together with a lot of other diagnostic information that helps to repli-
cate results in later experiments. For example, it includes all versions
of CAMINOS that have been involved in the simulations. The outputs
to be generated are described in the main.od file using the same syntax
employed to define the experiments, including the option to evaluate
expressions. This allows users to create their definitions of outputs to
be generated, particularizing the information for their use cases of in-
terest. By default, outputs include the value from the configuration or
the results, but they can be renamed to make the output more easily
integrated into documents.

It is more common to generate plots directly for ordinary usage.
CAMINOS supports generating pgfplot-backed figures on LaTeX code,
and PDFs are generated from them. These LaTeX fragments can be incor-
porated into other documents, providing some methods to ease tuning
the presentation when working directly on such a document.

Journal of Parallel and Distributed Computing 204 (2025) 105136

8

C. Camarero, D. Postigo and P. Fuentes

This infrastructure of CAMINOS can also be used without an actual
CAMINOS experiment, beginning with a foreign CSV. It is thus possible
to have a CSV file obtained with a different simulator, declare what
plots to generate, and invoke CAMINOS with the --foreign and --use_
csv flags to generate them.

All the forthcoming figures in Sections 5 and 6 are obtained with
this methodology. For simulations with BookSim, their results have been
exported to CSV and managed with the --use_csv flag. The LaTeX code
of the figures was later retouched for a cleaner presentation.

5. Validation

To assess CAMINOS’ accuracy, we selected a well-known scenario.
We evaluated it in CAMINOS against BookSim, which was described in
the state-of-the-art analysis performed in Section 2. We selected Book-
Sim for its widespread adoption in the scientific community, as evi-
denced by the following works [49,64,33,65,66].

We initially intended to include SuperSim in this validation. How-
ever, preliminary simulations showed senseless results, such as negative
delays. Since the source of the issues could not be traced back conclu-
sively, we discarded it from the comparison.

The section first presents the methodological approach to this valida-
tion process, including a description of the network scenario considered.
Next, a set of simulation results is presented and contextualized to un-
derstand the accuracy of CAMINOS and compare its output to that of
BookSim for the same network scenario.

5.1. Validation methodology

This subsection provides an in-depth explanation of the methodolog-
ical approach followed to assess CAMINOS’s accuracy by analyzing its
output for a given scenario. The main purpose of this process is to show
that results from CAMINOS are consistent with analyses in previous
works and with an outcome that does not diverge significantly from
BookSim. To this extent, the scenario must be similar in all cases, with
a target hindered by the limitations presented by the syntax and model
restrictions in BookSim.

As described in Section 3.2, CAMINOS considers 1 flit as the amount
of data that needs to be able to be hosted in a neighbor buffer to allow its
forwarding and, therefore, has a packet size of 1 flit when Virtual Cut-
Through switching is employed. BookSim employs the same approach
but is only capable of flit-level simulations, transmitting the whole flit
in a single network cycle; therefore, in the case of Virtual Cut-Through
switching, the whole packet is transmitted in the same network cycle. In
CAMINOS, non-trivial packet sizes with VCT switching can be modeled
by setting a flit size of several phits, requiring several simulation cy-
cles to traverse from one network element to the next, and allowing the
packet to traverse to the next network element after receiving the first
phit. To harmonize the scenarios given to each simulator, we considered
only communications where both packets and flits are restricted to a size
of 1 phit. Notice that, for this scenario, Virtual Cut-Through switching
coincides with Store-and-Forward switching. Moreover, BookSim does
not allow the generation of messages composed of multiple packets shar-
ing the same source and destination. Accordingly, in CAMINOS, the size
of messages has been set to one packet.

5.1.1. Network scenario

Table 2 presents the scenario employed in validating CAMINOS. A
network following a regular HyperX topology [57] has been simulated
since the topology is modeled in the two simulators. A regular HyperX
network follows a multi-dimensional structure where the routers in each
dimension present all-to-all connectivity and are directly connected to
a given number of endpoints, as discussed in Section 3.3. This network
is defined by the number of endpoints per router (𝑇), the network side
or number of routers per dimension (𝑆), and the number of dimensions
(𝐿).

Table 2
Parameters of the network scenario fed to the simulation tools to perform the
validation process.

Parameter Value Comment
Topology HyperX The topology is named

flatfly_onchip in BookSim
and Hamming in CAMINOS, but
they are equivalent for the values
employed.

Network side 𝑆 16 Number of routers per network
dimension.

Dimension 𝐿 2 Number of network dimensions.
Concentration 𝑇 16 Number of endpoints connected to

each router.
Radix 𝑟 46 Total number of input/output

ports per router:
𝑟 = 𝑇 + (𝑆 − 1) ⋅𝐿.

Endpoints 4096 Total number of servers/endpoints
in the network.

Router architecture Input-Output
Queueing (IOQ)

Router with buffers at ingress and
egress points.

Virtual channels (VC) 8 Number of virtual channels
(buffers) per physical channel
(link).

Input (VC) buffer size 8 Buffer size for each virtual channel
at the router input ports, expressed
in flits.

Output (VC) buffer size 4 Buffer size for each virtual channel
at the router output ports,
expressed in flits.

Message/packet size 1 Size of the message/packet size,
expressed in flits.

Routing algorithm XY-YX DOR-based routing.
Traffic pattern UN, RandPerm
Offered load 0.1 to 1 with 0.1

steps
Measured in phits/cycle/endpoint.

Simulation extent 23000 cycles Split into warmup (20000 cycles)
and measured (3000 cycles)
phases.

Crossbar delay 2 cycles
Link delay 1 cycle All network links have the same

delay.

CAMINOS models HyperX networks where all dimensions can have
different sizes, and those sizes can be any arbitrary value, as well as
different from the number of servers per router. However, BookSim only
allows modeling regular 2D HyperX networks where 𝑆 is the same for
every dimension and is restricted to a square integer. Moreover, the
number of servers per router, 𝑇 , needs to be equal to 𝑆 . Fig. 1 displays
a sample diagram for a 2-dimensional HyperX with four endpoints per
router and four routers per dimension.

The HyperX network provides good topological characteristics, such
as performance scaling with the number of endpoints and a small diam-
eter that allows for short, minimal paths. The HyperX topology receives
different names in each tool, and particular parameters differ slightly.
In CAMINOS, this topology is known as the Hamming Graph, the Carte-
sian product of complete graphs, which is the mathematical definition
of the HyperX topology. Instead, BookSim refers to this topology as the
Flattened Butterfly.

A network with a side length of 𝑆 = 16 has been established, re-
sulting in a non-trivial network size of 256 network routers and 4096
end nodes. This size is large enough to be representative of behaviors
observed in larger networks. It ensures that we can evaluate network
behavior without encountering pathological artifacts that may appear
in smaller networks, which may not scale effectively and are, therefore,
less representative for evaluation using the simulator.

The duration of the warmup phase has been chosen to reach a stable
state. Booksim employs a convergence criterion to finish the measured
phase, and we use the same duration for the simulation with CAMINOS.

The router microarchitecture follows an Input-Output Queuing ap-
proach, where buffers are located at the router’s ingress and egress.

Journal of Parallel and Distributed Computing 204 (2025) 105136

9

C. Camarero, D. Postigo and P. Fuentes

Fig. 1. Diagram of a 2-dimensional HyperX network with side 𝑆 = 4 and concentration 𝑇 = 4.

r o u t i n g : S u m {
p o l i c y : R a n d o m , / / r a n d o m l y s e l e c t X Y o r Y X r o u t i n g
f i r s t _r o u t i n g : D O R { o r d e r : [0 , 1] } , / / X Y r o u t i n g
s e c o n d _r o u t i n g : D O R { o r d e r : [1 , 0] } , / / Y X r o u t i n g
f i r s t _a l l o w e d _v i r t u a l _c h a n n e l s : [0 , 1 , 2 , 3] , / / f i r s t 4 V C s
s e c o n d _a l l o w e d _v i r t u a l _c h a n n e l s : [4 , 5 , 6 , 7] / / l a s t 4 V C s

}

Listing 1: Definition with the syntax of CAMINOS of the XY-YX routing
from BookSim.

Buffering at the ingress ensures storage if the crossbar resources cannot
be immediately allocated. Buffers at the egress decouple router speed-
up from the link bandwidth. Routers have an input and output speed-up
factor of 8, as they can concurrently route data between each pair of
input/output buffers (virtual channels, VCs), as defined in Section 3.4.
However, the link connection limits the actual data transmission speed
from the router. Router resources are allocated using the iSLIP algo-
rithm, as described in [67], with 1 iteration to maintain consistency
across simulators.

Packets are routed using a variant of DOR, a deterministic method
that ensures the absence of network deadlock. In particular, we em-
ploy XY-YX routing, which has a specific implementation in BookSim
and is supported in CAMINOS. It should be noted that BookSim has
a ran_min_flatfly routing function. This function allegedly uses a
random minimal route but never uses a random number, actually im-
plementing DOR. To avoid confusion, we employ instead BookSim’s
xy_yx_flatfly function that randomly uses either XY or YX order,
where nomenclature and code agree.

For coherence, this routing has been declared in CAMINOS and built
upon the existing DOR. Remarkably, this routing configuration is en-
tirely defined within the CAMINOS syntax without the need to code
new functions. Listing 1 provides a detailed description of the routing
approach employed in CAMINOS to implement DOR.

This routing does not cause deadlock, as each part uses a separate set
of VCs. To mitigate head-of-line blocking, we employ a total of 8 VCs,
which are separated into two blocks of 4 VCs, one for each DOR order.
All four channels for each set are requested and resolved by the iSLIP
allocator.

The analysis has considered two distinct traffic patterns. The first
is Random Uniform Traffic (UN), which exhibits a homogeneous tem-
poral and spatial distribution of communications between all network
endpoints. Each endpoint has an equal probability of sending traffic to
any other server in this pattern. The implementation of UN is identi-

cal in both simulators and can be considered benign for low-diameter
networks.

The second pattern, RandPerm, involves monotonous flows of mes-
sages between the same pairs of source and destination endpoints across
the whole simulation, following random permutations of endpoints es-
tablished at the beginning of the simulation. Similar to the UN, this
pattern demonstrates spatial homogeneity but models persistent con-
nections without temporal variability throughout the simulation. The
RandPerm pattern can induce more stress on the network depending on
the specific flows generated by the permutations used. This increased
stress can lead to the presence of hotspots where communications over-
lap, potentially affecting performance. We perform simulations with
nine different permutations in both simulators to remove the bias for
any particular permutation. Empirical results indicate little difference
across the permutations, with a maximum deviation in throughput of
under 4% for both simulators.

5.2. Results for the network scenario

This subsection describes the performance metrics utilized to assess
the accuracy of CAMINOS in a scenario with known results beforehand.
It presents the outcome of CAMINOS for that scenario and compares
them to the results obtained from BookSim.

5.2.1. Average throughput

The throughput metric and average latency provide good evidence to
detect network saturation or congestion. Fig. 2 presents the throughput
values in CAMINOS and BookSim for the two traffic patterns described
in Section 5.1.1, as a function of the traffic load offered to the network.

The graph displays nearly identical behavior for both simulators for
the Uniform pattern and approximately the same for RandPerm. Rand-
Perm presents a saturation point around 0.4 phits/node/cycle (40% of
the maximum achievable), and UN can reach a significantly higher point
of 0.9 phits/node/cycle. Apart from being the same in both simulators,
these results adjust to a theoretical analysis of the scenario.

Theoretically, a perfectly uniform and homogeneous pattern of com-
munications would allow every endpoint to inject and eject a phit in
every cycle. However, the actual distribution of the communications in
the UN subtly differs in several ways. Since the destinations are ran-
domly independent, some servers are chosen more times than others
across the simulation. This makes it impossible to reach the full rate, as
those destinations would be asked to consume more load than possible.
UN can also display heterogeneity for limited time periods, conducing

Journal of Parallel and Distributed Computing 204 (2025) 105136

10

C. Camarero, D. Postigo and P. Fuentes

BookSim CAMINOS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Offered load (phits/node/cycle)

A
cc

ep
te

d
 lo

ad
(p

h
it

s/
n
od

e/
cy

cl
e)

Uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Offered load (phits/node/cycle)

A
cc

ep
te

d
 lo

ad
(p

h
it

s/
n
od

e/
cy

cl
e)

RandPerm

Fig. 2. Average throughput for the Random Uniform (left) and RandPerm traffic patterns (right).

Fig. 3. Average latency, measured in cycles, as a function of offered traffic load and the traffic pattern. In the left the total message latency including time spent in
server generation queues. In the right only the network latency.

to small areas of congestion (also called hotspots). Similarly, the pat-
tern distribution cannot guarantee a perfect equilibrium that prevents
collisions between resources (links, buffers, endpoints) and thus further
reduces the maximum throughput that can be achieved.

On the other hand, RandPerm strongly depends on the distribution
established at the beginning of the communications. The randomness
is reflected on some links being part of the route of a higher number
of source/destination pairs. Those links become bottlenecks and cause
significant throughput degradation, but only affecting a subset of the
endpoints. This conduct explains how the throughput achieved at the
peak offered load is around 0.54 phits/node/cycle, notably above the
saturation point. At peak load, there is a difference of about 0.04 phit-
s/node/cycle between simulators, but they are nearly identical up to the
saturation point.

The small differences between simulators in both traffic patterns
come from a non-identical implementation of the same scenarios in each
simulator, due to small architectural differences in the router compo-
nents. For example, both simulators allow output speedup which, as
described in Section 3.4, consists of a greater number of output ports
in the crossbar than physical ports to the outside of the router. How-
ever, in CAMINOS this output speedup is modeled using one buffer per
output port in the crossbar, and then arbitrating between all the buffer
ports of the same physical output port. In BookSim there is a single out-
put buffer in the physical port, but it can be filled by multiple output
ports from the crossbar concurrently. Both approaches render a simi-
lar performance improvement, since they allow the crossbar to forward
packets faster, but the approach in CAMINOS, which needs less com-
plex logic, does not allow multiple packets targeting the same output
port and Virtual Channel to advance at the same time.

5.2.2. Average latency

Latency measurements can be characterized for each size of informa-
tion unit: phit, flit, packet, and message. As stated at the beginning of the
section, we model a size of 1 phit for flit, packet, and message. There-
fore, all information units have the same size, and any latency statistics
are the same at each level. BookSim presents a model of the router mi-

croarchitecture with finer granularity, which introduces an increase in
the number of cycles invested in traversing the router due to resource
conflicts that reduce performance. However, a similar effect can be eas-
ily modeled in CAMINOS by establishing a 2-cycle delay to traverse the
crossbar, as is done in all the simulations presented in the paper.

Latency results can be split into two components: injection latency,
which establishes the time between a packet being generated and enter-
ing the network, and network latency, which measures the time between
the instant the packet enters the network and the time it is delivered to
its destination.

Fig. 3 shows the average latency, measuring the network component
and the aggregated packet latency for each traffic pattern. Latency be-
haves differently before and after reaching the saturation point. Both
simulators present similar behavior below saturation, with a steady in-
crease in latency as the network load grows.

Above saturation, the latency rapidly increases due to injection la-
tency; the buffer size limits this increase at the server generation buffers.
In BookSim, these buffers are considered to have an infinite length. How-
ever, the injection of any packet behind the head of the buffer is not
modeled until that packet is forwarded to a router output. This allows
the simulation of server generation queues of unbounded size without
requiring excessive memory resources and can lead to a rapid increase in
packet latency for simulations beyond saturation. As described in Sec-
tion 3.2, CAMINOS applies a different approach, limiting the size of
the server generation buffer through an input parameter; when a traffic
model attempts to generate a message, and it cannot be entirely stored
in the queue at generation time, the message is discarded. Its generation
is re-attempted at a later network cycle. This approach does not signif-
icantly affect the accuracy of the results with synthetic traffic loads,
as can be observed. Modeling infinite queues may result in a correct
open-loop simulation, as those discarded packets would be a case of
the network influencing the traffic. Nevertheless, actual networks have
buffers, and real applications frequently introduce waits. If messages ac-
cumulate, traffic adapts its shape (e.g., one application becomes slower
than the other) or slows down.

Journal of Parallel and Distributed Computing 204 (2025) 105136

11

C. Camarero, D. Postigo and P. Fuentes

UN RandPerm

0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

4,000

Offered load (phits/node/cycle)

Se
rv

er
s w

it
h

m
is

se
d
 ge

n
er

at
io

n
s

Fig. 4. Amount of severs which have failed to generate a message at some point
due to limited space on the server generation queue.

To establish if such behavior is present, CAMINOS also outputs a met-
ric of missed generations which, as described in Section 4.2, accounts for
generated messages that could not be allocated enough buffer space to
be hosted at the server generation queues of the server NIC and, there-
fore, had to be dismissed. If a network model renders a non-zero value
for missed generations, this would imply an increase in the completion
time of communications. The value of this metric is shown in Fig. 4. It
can be observed that in RandPerm, some endpoints are already unable
to complete the generation of all their messages for a load of 0.3, likely
due to some network links being used by packets from a large number of
sources. The saturation is already prominent for a load of 0.4, with 19%
(760 from 4,096) of the servers being limited. The amount of capped
communications grows progressively until affecting 91% of the servers
at peak load. The impact of the difference in the modeling of the server
generation queue is removed in the right part of Fig. 3, which only dis-
plays the average latency between the ingress and egress of the packets
from the network. In this case, the outcome is similar for both simula-
tors, and the increase after saturation has the same slope since network
latency above saturation is limited by the size of the transit buffers in
every router, which are finite in both simulators.

For the total message latency in BookSim, one cycle of delay from
the server to the first switch has been added, as it is not included by
default.

6. Performance of CAMINOS

This section describes the process followed to evaluate the perfor-
mance of CAMINOS, including the performance metrics employed and
the computational environment where the evaluation has been con-
ducted.

6.1. Evaluation methodology

A set of metrics needs to be selected to analyze the performance of
CAMINOS. All performance results have been achieved with the scenario
from the simulator validation in Section 5.1.1 unless otherwise stated.

Three performance metrics have been selected for this evaluation:
execution time, memory footprint, and scalability. Execution time mea-
sures the CPU time invested in running a single simulator execution for
a given network scenario. It can be split into two components: system
time and user time. System time details the amount of time invested in
running OS tasks to complete the execution of the process (in this case,
the simulator), and user time concerns only the execution of code in
user mode. Memory footprint is measured through the peak resident set
size metric, also known as the high water mark. Its value indicates the
maximum amount of memory that a process has referenced. Scalabil-
ity is defined as the ability to simulate a given network scenario when
the network size is increased, leaving all other parameters unchanged.
This last metric allows us to determine the maximum network size that
can be evaluated with the simulator in a given set of resources, which
would enable us to analyze better the impact of a given network feature
in bigger networks.

UN RandPerm

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Offered load (phits/node/cycle)

T
ot

al
 ti

m
e (

m
in

u
te

s)

Fig. 5. Execution time as a function of offered network load and the traffic
pattern.

To evaluate execution time and memory footprint, CAMINOS offers,
by default, a set of performance measurements using the procfs crate,
which reads directly from /proc/. These results are then presented as
part of the default simulator output, allowing users to accurately allocate
the resources needed if the execution is performed in a large system
through a job scheduler.

All evaluations performed in this paper have been conducted on
Triton, a small homogeneous computing cluster belonging to the Com-
puter Architecture and Technology (ATC) group at the Universidad de
Cantabria. This cluster consists of 5 identical computing nodes, each
equipped with 2 Intel Xeon processor sockets and 32 GB of RAM, result-
ing in a total of 200 cores available in the cluster.

6.2. Performance results

This section analyses the performance results from CAMINOS for the
network scenario described in Section 5.1.1; in the case of the scalabil-
ity analysis, different values for the network size parameters have been
considered to assess the tool’s capability to handle a larger network size.

6.2.1. Simulation time

Simulation time refers to the duration of the execution of a single
simulation. It strongly depends on several factors of the simulation being
run: the complexity of the network scenario, the amount of network
activity simulated, or the structure of the simulation. Since the number
of messages traversing the network strongly correlates to the applied
load, it is helpful to represent the simulation time as a function of the
amount of traffic load. Section 6.1 described the two components of
execution time for a program; however, the most important metric for
the user is the invested time into completing a simulation. Since system
time is three orders of magnitude below user time in all cases examined,
this evaluation does not split the aggregated simulation time into user
and system time.

Fig. 5 displays the execution time of CAMINOS under uniform (UN)
and RandPerm traffic patterns, expressed in minutes. Results under UN
traffic show a close to linear increase with the applied load for points
below saturation and a rapid increase thereafter. Under RandPerm traf-
fic, the increase is close to linear with the applied load until a value
of 0.7 phits/node/cycle of applied load is reached. That point coin-
cides with the small plateau for servers with missed generations seen
in Fig. 4, showing a parallelism between simulation time and the num-
ber of source/destination pairs with a saturated path. This behavior is
caused by a larger number of stalled packets at the head of the queues,
which need to be checked to assess whether they can be forwarded.
Maximum execution time sits around 80 minutes for RandPerm, with
UN traffic at a lower maximum of 50 minutes. Since queues under UN
traffic become less congested due to a higher saturation point, there are
fewer packets stalled at the head of buffers; since traversing the cross-
bar and every element of the router microarchitecture consumes several
network cycles, packets that are in motion represent a lower CPU usage
than those that cannot advance, since their target output port needs to be

Journal of Parallel and Distributed Computing 204 (2025) 105136

12

C. Camarero, D. Postigo and P. Fuentes

UN RandPerm

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Offered load (phits/node/cycle)

P
ea

k m
em

or
y (

M
B

)

Fig. 6. Memory usage as a function of the offered network load and the traffic
pattern.

recomputed every cycle. Note that this recomputation is not strictly nec-
essary for deterministic routing; however, CAMINOS follows a common
approach that accounts for non-deterministic routing, such as statistical
and adaptive mechanisms. It must be noted that, for this network size,
there is a significant divergence between minimum and maximum ex-
ecution times for each traffic, which start at less than 10 minutes and
present an average value of approximately 30 minutes across all net-
work loads.

6.2.2. Memory footprint

Memory usage has been measured through the memory peak metric,
which represents the highest use of memory during the execution of
the simulator and establishes the minimal amount of memory required
to run without halting execution. This metric is also known as the high
water mark (VmHWM). Fig. 6 displays the amount of memory used by
CAMINOS under UN and RandPerm traffic.

It can be observed that, for both traffic patterns, the peak of mem-
ory usage follows the same curve as the execution time, whose evolution
was attributed to the number of packets in the modeling of the network.
Since the lowest observed value, for a traffic load of 0.1 phits/node/cy-
cle (10% of the maximum traffic load), sits around 50 MB, this implies
an efficient use of resources: the size of the packet model relates to the
amount of statistical information it provides, and therefore cannot be
reduced without loss of insight, and a low base value proves an efficient
model of the router architecture. Part of the efficient use of resources
can be attributed to the use of the Rust programming language, which
is supposed to avoid some of the costs of some abstractions that could
appear in similar languages as C++.

More importantly, the analysis beyond the saturation point is in-
teresting, but mainly for different scenarios. Throughput levels beyond
saturation are mainly relevant to assess the lack of abnormal network
behavior and performance losses from peak when the network is overly
stressed. Evaluation of when the network links are saturated is also of
interest when assessing the impact of congestion control mechanisms. A
degradation of the simulator performance is expected when simulating
scenarios with high congestion since there is a higher amount of pack-
ets and more contention for the network resources, leading to multiple
attempts to forward the same packet. In general, low use of resources
when the modeled network is not saturated is desirable and allows for
more complex or detailed scenarios to be run for a given set of comput-
ing resources.

6.2.3. Scalability analysis

As described at the beginning of Section 6.1, the scalability of the
tools is defined as the ability to perform a simulation of a given net-
work scenario for increasing network sizes. Results show an analysis of
CAMINOS for the two-dimensional HyperX network described in Sec-
tion 5.1.1, where the network side ranges from 4 routers per dimension
(64 servers in total) to 36 routers per dimension (46,656 servers in to-
tal in the range of modern HPC systems). Table 3 shows the different
network sizes modeled.

Table 3
Size parameters of the HyperX network em-
ployed in the scalability evaluation.

Network side Concentration Endpoints
𝑆 = 4 𝑇 = 4 64
𝑆 = 6 𝑇 = 6 216
𝑆 = 8 𝑇 = 8 512
𝑆 = 9 𝑇 = 9 729
𝑆 = 12 𝑇 = 12 1,728
𝑆 = 16 𝑇 = 16 4,096
𝑆 = 25 𝑇 = 25 15,625
𝑆 = 32 𝑇 = 32 32,768
𝑆 = 36 𝑇 = 36 46,656

Figs. 7 and 8 show the total execution time and peak resident mem-
ory employed by CAMINOS under UN and RandPerm traffic for differ-
ent network sizes. Each figure displays the average execution time and
peak memory usage for a simulation of a given network size, as well
as the minimum and maximum values. Minimum values represent the
behavior when modeling low traffic loads, whereas maximum values
correspond with a model of the network at peak traffic loads (1 phit/n-
ode/cycle). As described in Section 6.2.1, the performance presents two
distinct behavior patterns corresponding to simulations where the load
is below or above the saturation point. Minimum execution times are
representative of the behavior observed below the saturation point,
whereas maximum execution times correspond to scenarios above the
saturation point.

It can also be observed that both metrics grow linearly with the num-
ber of endpoints. Each modeled network has a number of endpoints
defined as the cube of the side of the topology since it is a 2D Hyper-X
network with the same concentration factor as the network side. The
number of server generation queues and generated packets scale with
the number of endpoints in the network, which explains the trend. It
can be observed that, for peak memory usage, the increase of average,
minimum, and maximum values is a near-perfect straight line for over
a thousand endpoints, further assuring efficient memory use in the tool.
For very small sizes, the curve gets flattened, as there is about a 10MB
constant overhead. Execution times show a less consistent trend but
strongly correlate with the number of endpoints (and thus, messages)
modeled in the network and no additional overhead for a small number
of endpoints.

Execution time scales similarly for both traffic patterns, although
higher under RandPerm, as explained in Section 6.2.1. Peak memory
shows similar trends under both patterns for minimum and maximum
values, but average peak memory shows a faster increase under Rand-
Perm than UN traffic. This implies that most values for a given network
size are closer to the maximum, which can be explained by the lower sat-
uration point: values for offered network loads above saturation result
in higher memory values due to the increase in packets in the network.
These packets sit at in-transit, and server generation queues, but packets
behind the head of a buffer do not strain the computational resources
since they are not evaluated until they can be forwarded to the next
buffer. This explains the similar evolution of the execution time under
both patterns compared to the differences in average peak memory us-
age.

In general, it can be asserted that CAMINOS has good scalability,
with a memory usage and execution time that strongly depend on the
number of in-flight packets modeled in the network.

7. Conclusions

Network simulators that consider the details of the router microar-
chitecture are valuable tools for analyzing and developing large high-
performance systems. They can assess the adequacy of the interconnec-
tion to the system or evaluate new proposals such as routing or deadlock
avoidance mechanisms. This paper introduces CAMINOS, a modular net-
work simulator written in the Rust programming language. CAMINOS

Journal of Parallel and Distributed Computing 204 (2025) 105136

13

C. Camarero, D. Postigo and P. Fuentes

Average Minimum (0.1) Maximum (1.0)

64 216 512 1728 4096 15625 46656
1s

10s

1min

10min

1hour

10h

Number of network endpoints

T
ot

al
 ti

m
e

Uniform

64 216 512 1728 4096 15625 46656
1s

10s

1min

10min

1hour

10h

Number of network endpoints

T
ot

al
 ti

m
e

RandPerm

Fig. 7. Execution time as a function of the number of endpoints in the network, under Uniform and RandPerm traffic patterns.

Average Minimum (0.1) Maximum (1.0)

64 216 512 1728 4096 15625 46656

10MB
20MB

50MB
100MB
200MB

500MB
1GB
2GB

Number of network endpoints

P
ea

k m
em

or
y

Uniform

64 216 512 1728 4096 15625 46656

10MB
20MB

50MB
100MB
200MB

500MB
1GB
2GB

Number of network endpoints

P
ea

k m
em

or
y

RandPerm

Fig. 8. Peak memory as a function of the number of endpoints in the network, under Uniform and RandPerm traffic patterns.

leverages the use of the Rust programming language and infrastructure
to avoid common programming pitfalls, have C-like performance, install
anywhere, and provide accessible documentation.

CAMINOS has a powerful configuration syntax that allows a wide
variety of scenarios to be fully defined without modifying the source
code. Additionally, CAMINOS offers a large array of available out-of-
the-box metrics, including performance measures about the simulator
itself, such as execution time and memory consumed. This, coupled with
the integration SLURM job managers and generation of graphic outputs
without external scripts or add-ons, allows a smoother and more pro-
ductive workflow. CAMINOS presents a good use of resources, with the
execution time and memory mainly driven by the amount of detail re-
quested from the simulation; base use for both metrics is significantly
low. This allows high scalability and, therefore, the analysis of large
systems.

CAMINOS has been validated using a network scenario with a Hy-
perX topology under different traffic patterns. Results are coherent with
previous analyses in the literature and match the behavior of the same
scenario in the BookSim network simulator.

CRediT authorship contribution statement

Cristóbal Camarero: Writing – review & editing, Writing – original
draft, Software, Methodology, Investigation, Conceptualization. Daniel
Postigo: Writing – review & editing, Writing – original draft, Software,
Methodology, Investigation. Pablo Fuentes: Writing – review & editing,
Writing – original draft, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work has been supported by the Spanish Ministry of Science,
Innovation and Universities MICIU/AEI/ 10.13039/501100011033

under contracts PID2019-105660RB-C22, TED2021-131176B-I00 and
PID2022-136454NB-C21, Ramón y Cajal contract RYC2021-033959-I
and predoctoral grant with ref FPU23/03878.

We would like to show our gratitude to the reviewers for helping us
improve the quality of the discourse.

Data availability

Data will be made available on request.

References

[1] ORNL, Frontier supercomputer press release, https://www.ornl.gov/news/frontier-
supercomputer-debuts-worlds-fastest-breaking-exascale-barrier, 2022.

[2] F.J. Andújar, J.A. Villar, F.J. Alfaro, J.L. Sánchez, J. Escudero-Sahuquillo, An open-
source family of tools to reproduce MPI-based workloads in interconnection network
simulators, J. Supercomput. 72 (12) (2016) 4601–4628, https://doi.org/10.1007/
s11227-016-1757-0.

[3] N.D. Matsakis, F.S. Klock, The rust language, Ada Lett. 34 (3) (2014) 103–104,
https://doi.org/10.1145/2692956.2663188.

[4] C. Camarero, C. Martínez, R. Beivide, Polarized routing: an efficient and versatile
algorithm for large direct networks, in: 2021 IEEE Symposium on High-Performance
Interconnects, HOTI ’21, 2021, pp. 52–59.

[5] C. Camarero, C. Martínez, R. Beivide, Polarized routing for large interconnection
networks, IEEE MICRO 42 (2) (2022) 61–67.

[6] A. Cano, C. Camarero, C. Martínez, R. Beivide, Analysing mechanisms for virtual
channel management in low-diameter networks, in: 2023 IEEE 35th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), 2023, pp. 12–22.

[7] C. Camarero, CAMINOS: a modular interconnection network simulator, Com-
mon repository: https://crates.io/crates/caminos, Documentation: https://docs.
rs/caminos-lib/latest/caminos_lib/. GitHub mirror: https://github.com/nakacristo/
caminos-lib.

[8] A. Gavrilovska (Ed.), Attaining High Performance Communications: A Vertical Ap-
proach, Chapman and Hall/CRC, 2010.

[9] CWE/CAPEC Board, 2023 CWE top 25 most dangerous software weaknesses, https://
cwe.mitre.org/top25/archive/2023/2023_top25_list.html, 2023.

[10] Y. Zhang, Y. Zhang, G. Portokalidis, J. Xu, Towards understanding the runtime per-
formance of Rust, in: Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–6.

[11] K. Chitre, P. Kedia, R. Purandare, The road not taken: exploring alias analysis based
optimizations missed by the compiler, Proc. ACM Program. Lang. 6 (OOPSLA2)
(2022) 786–810.

https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://doi.org/10.1007/s11227-016-1757-0
https://doi.org/10.1007/s11227-016-1757-0
https://doi.org/10.1145/2692956.2663188
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibCC2B87CD4C706C55E69F0B23D6461679s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibCC2B87CD4C706C55E69F0B23D6461679s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibCC2B87CD4C706C55E69F0B23D6461679s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib9FEE71AEA60AC64C62FCC4D008AA96A2s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib9FEE71AEA60AC64C62FCC4D008AA96A2s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib34C4078630FADEE6A4195FB5C62E6A93s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib34C4078630FADEE6A4195FB5C62E6A93s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib34C4078630FADEE6A4195FB5C62E6A93s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib34C4078630FADEE6A4195FB5C62E6A93s1
https://crates.io/crates/caminos
https://docs.rs/caminos-lib/latest/caminos_lib/
https://docs.rs/caminos-lib/latest/caminos_lib/
https://github.com/nakacristo/caminos-lib
https://github.com/nakacristo/caminos-lib
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibDC36C5F4023EA9A1EEA397CE930205F8s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibDC36C5F4023EA9A1EEA397CE930205F8s1
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib86DC9BB155A4F0DBBC199D3BA200D888s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib86DC9BB155A4F0DBBC199D3BA200D888s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib86DC9BB155A4F0DBBC199D3BA200D888s1

Journal of Parallel and Distributed Computing 204 (2025) 105136

14

C. Camarero, D. Postigo and P. Fuentes

[12] W. Bugden, A. Alahmar, Rust: the programming language for safety and perfor-
mance, in: 2nd. International Graduate Studies Congress. IGSCONG’22, 2022.

[13] J. Abdi, G. Posluns, G. Zhang, B. Wang, M.C. Jeffrey, When is parallelism fearless and
zero-cost with Rust?, in: Proceedings of the 36th ACM Symposium on Parallelism in
Algorithms and Architectures, 2024, pp. 27–40.

[14] N. McDonald, A. Flores, A. Davis, M. Isaev, J. Kim, D. Gibson, Supersim: extensible
flit-level simulation of large-scale interconnection networks, in: 2018 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, ISPASS ’18,
IEEE, 2018, pp. 87–98.

[15] J.L. Hennessy, D.A. Patterson, A.C. Arpaci-Dusseau, Computer Architecture: A Quan-
titative Approach, 6th edition, Morgan Kaufmann, 2017, https://dl.acm.org/doi/
book/10.5555/3207796.

[16] W.J. Dally, B.P. Towles, Principles and Practices of Interconnection Networks, Mor-
gan Kaufmann, 2004.

[17] N. Jiang, D.U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D.E. Shaw, J.
Kim, W.J. Dally, A detailed and flexible cycle-accurate network-on-chip simulator,
in: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS ’13, 2013, pp. 86–96.

[18] W. Myung, Z. Qi, M. Cheng, Performance analysis of routing algorithms in mesh
based network on chip using booksim simulator, in: 2019 IEEE International Confer-
ence of Intelligent Applied Systems on Engineering, ICIASE ’19, 2019, pp. 297–300.

[19] H. Kasan, G. Kim, Y. Yi, J. Kim, Dynamic global adaptive routing in high-radix net-
works, in: Proceedings of the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, Association for Computing Machinery, 2022, pp. 771–783.

[20] A.Q. Ansari, M.R. Ansari, M.A. Khan, Performance evaluation of various parame-
ters of network-on-chip (NoC) for different topologies, in: 2015 Annual IEEE India
Conference (INDICON), 2015, pp. 1–4.

[21] J. Marri, S. Manishankar, D. Radha, M. Moharir, Implementation and analysis of
adaptive odd-even routing in booksim 2.0 simulator, in: 2019 International Confer-
ence on Communication and Electronics Systems (ICCES), 2019, pp. 76–83.

[22] J. Navaridas, J. Miguel-Alonso, J.A. Pascual, F.J. Ridruejo, Simulating and evaluating
interconnection networks with INSEE, Simul. Model. Pract. Theory 19 (1) (2011)
494–515.

[23] F. Ridruejo, A. Gonzalez, J. Miguel-Alonso, TrGen: a traffic generation system for
interconnection network simulators, in: 2005 International Conference on Parallel
Processing Workshops (ICPPW’05), 2005, pp. 547–553.

[24] J. Miguel-Alonso, J. Navaridas, F. Ridruejo, Interconnection network simulation us-
ing traces of mpi applications, Int. J. Parallel Program. 37 (2009) 153–174.

[25] N. McDonald, M. Isaev, A. Flores, A. Davis, J. Kim, Practical and efficient incre-
mental adaptive routing for hyperx networks, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’19, ACM, 2019, pp. 1–13.

[26] M. García, P. Fuentes, M. Odriozola, E. Vallejo, R. Beivide, FOGSim interconnection
network simulator, https://github.com/fuentesp/fogsim, 2014.

[27] M. Benito, P. Fuentes, E. Vallejo, R. Beivide, ACOR: adaptive congestion-oblivious
routing in dragonfly networks, J. Parallel Distrib. Comput. 131 (2019) 173–188,
https://doi.org/10.1016/j.jpdc.2019.04.022.

[28] P. Fuentes, E. Vallejo, R. Beivide, C. Minkenberg, M. Valero, FlexVC: flexible virtual
channel management in low-diameter networks, in: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2017, pp. 842–854.

[29] M. García González, E. Vallejo Gutiérrez, R. Beivide Palacio, C. Camarero Coterillo,
M. Valero, G. Rodríguez, C. Minkenberg, On-the-fly adaptive routing for dragon-
fly interconnection networks, J. Supercomput. 71 (3) (March 2015) 1116–1142,
https://doi.org/10.1007/s11227-014-1357-9, http://hdl.handle.net/10902/6480.

[30] J. Navaridas, J.A. Pascual, A. Erickson, I.A. Stewart, M. Luján, Inrflow: an inter-
connection networks research flow-level simulation framework, J. Parallel Distrib.
Comput. 130 (2019) 140–152, https://doi.org/10.1016/j.jpdc.2019.03.013.

[31] N. Agarwal, T. Krishna, L.-S. Peh, N.K. Jha, Garnet: a detailed on-chip network model
inside a full-system simulator, in: 2009 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS ’09, IEEE, 2009, pp. 33–42.

[32] J. Lowe-Power, A.M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi, A.
Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black, G. Bloom, B.R. Bruce,
D.R. Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser, C.
Escuin, M. Fariborz, A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D.
Gope, T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes,
A. Herrera, M. Horsnell, S.A.R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T.M. Jones, M.
Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C. Menard,
A. Mondelli, M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L.E.
Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg, J.
Setoain, B. Shingarov, M.D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N.
Vaish, I. Vougioukas, W. Wang, Z. Wang, N. Wehn, C. Weis, D.A. Wood, H. Yoon,
E.F. Zulian, The gem5 simulator: version 20.0+, https://arxiv.org/abs/2007.03152,
2020.

[33] I. Pérez, E. Vallejo, M. Moretó, R. Beivide, BST: a booksim-based toolset to simulate
NoCs with single- and multi-hop bypass, in: 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2020, pp. 47–57.

[34] A. Rodrigues, K. Hemmert, B. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen,
J. Cook, P. Rosenfeld, E. CooperBalls, B. Jacob, The structural simulation toolkit,
ACM SIGMETRICS Perform. Eval. Rev. 38 (2011) 37–42, https://doi.org/10.1145/
1964218.1964225.

[35] C.L. Janssen, H. Adalsteinsson, S. Cranford, J.P. Kenny, A. Pinar, D.A. Evensky, J.
Mayo, A simulator for large-scale parallel computer architectures, Int. J. Distrib.
Syst. Technol. 1 (2010) 57–73, https://doi.org/10.4018/jdst.2010040104.

[36] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, R. Ross, Codes: enabling co-design
of multilayer exascale storage architectures, in: Proceedings of the Workshop on
Emerging Supercomputing Technologies, 2011, pp. 303–312.

[37] C.D. Carothers, D. Bauer, S. Pearce, Ross: a high-performance, low-memory, modular
time warp system, J. Parallel Distrib. Comput. 62 (11) (2002) 1648–1669, https://
doi.org/10.1016/S0743-7315(02)00004-7.

[38] Y. Ben-Itzhak, E. Zahavi, I. Cidon, A. Kolodny, HNoCS: modular open-source simu-
lator for heterogeneous nocs, in: 2012 International Conference on Embedded Com-
puter Systems (SAMOS), IEEE, 2012, pp. 51–57.

[39] A.S. Hassan, A.A. Morgan, M.W. El-Kharashi, An enhanced network-on-chip simula-
tion for cluster-based routing, in: The 11th International Conference on Future Net-
works and Communications (FNC 2016) / The 13th International Conference on Mo-
bile Systems and Pervasive Computing (MobiSPC 2016) / Affiliated Workshops, Proc.
Comput. Sci. 94 (2016) 410–417, https://doi.org/10.1016/j.procs.2016.08.063.

[40] Y. Shen, A multitask parallel executor for ns-3 (network simulator), https://github.
com/BobAnkh/ns3-parallel, 2022.

[41] D. Craven, Netsim-embed - a small network simulator, https://github.com/ipfs-rust/
netsim-embed, 2023.

[42] M. Wagner, Kipa: key to ip address, https://github.com/mishajw/kipa, 2020.
[43] E. Harris-Braun, N. Luck, sim2h - a secure centralized “switchboard” implementation

of lib3h, https://github.com/holochain/sim2h, 2019.
[44] A. Cann, P. Balciunas, netsim - network simulation in rust, https://github.com/

canndrew/netsim, 2019.
[45] D. Sorokin, Discrete event simulation library (the generalized network interface),

https://crates.io/crates/dvcompute_network, 2022.
[46] B.D.S. Dilinila, A behavioral model for simultaneous event execution in sequential

discrete event system simulations, Master’s thesis, Old Dominion University, 2021.
[47] J. Kim, W.J. Dally, S. Scott, D. Abts, Technology-driven, highly-scalable dragonfly

topology, in: Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, IEEE Computer Society, USA, 2008, pp. 77–88.

[48] C. Camarero, C. Martínez, E. Vallejo, R. Beivide, Projective networks: topologies for
large parallel computer systems, IEEE Trans. Parallel Distrib. Syst. 28 (7) (2017)
2003–2016, https://doi.org/10.1109/TPDS.2016.2635640.

[49] M. Besta, T. Hoefler, Slim fly: a cost effective low-diameter network topology, in: SC
’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014, pp. 348–359.

[50] S.R. Öhring, M. Ibel, S.K. Das, M.J. Kumar, On generalized fat trees, in: Proceedings
of 9th International Parallel Processing Symposium, 1995, pp. 37–44, https://api.
semanticscholar.org/CorpusID:26494144.

[51] M. Valerio, L. Moser, P. Melliar-Smith, Recursively scalable fat-trees as interconnec-
tion networks, in: Proceeding of 13th IEEE Annual International Phoenix Conference
on Computers and Communications, 1994, pp. 40–46.

[52] C. Camarero, C. Martínez, R. Beivide, Random folded clos topologies for datacenter
networks, in: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 193–204.

[53] M. Flajslik, E. Borch, M.A. Parker, Megafly: a topology for exascale systems, in:
R. Yokota, M. Weiland, D. Keyes, C. Trinitis (Eds.), High Performance Computing,
Springer International Publishing, Cham, 2018, pp. 289–310.

[54] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, E. Zahavi, Dragonfly+: low
cost topology for scaling datacenters, in: 2017 IEEE 3rd International Workshop on
High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiP-
INEB), 2017, pp. 1–8.

[55] Bhuyan, Agrawal, Generalized hypercube and hyperbus structures for a computer
network, IEEE Trans. Comput. 100 (4) (1984) 323–333.

[56] J. Kim, W.J. Dally, D. Abts, Flattened butterfly: a cost-efficient topology for high-
radix networks, in: Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, Association for Computing Machinery, 2007,
pp. 126–137.

[57] J.H. Ahn, N. Binkert, A. Davis, M. McLaren, R.S. Schreiber, HyperX: topology, rout-
ing, and packaging of efficient large-scale networks, in: Proceedings of the Con-
ference on High Performance Computing Networking, Storage and Analysis, 2009,
pp. 1–11.

[58] A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: networking data centers ran-
domly, in: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, USENIX Association, Berkeley, CA, USA, 2012, p. 17,
http://dl.acm.org/citation.cfm?id=2228298.2228322.

[59] L.G. Valiant, A scheme for fast parallel communication, SIAM J. Comput. 11 (2)
(1982) 350–361, https://doi.org/10.1137/0211027.

[60] K.D. Günther, Prevention of deadlocks in packet-switched data transport systems,
IEEE Trans. Commun. 29 (4) (1981) 512–524, https://doi.org/10.1109/TCOM.
1981.1095021.

[61] P. Merlin, P. Schweitzer, Deadlock avoidance in store-and-forward networks–I: store-
and-forward deadlock, IEEE Trans. Commun. 28 (3) (1980) 345–354, https://doi.
org/10.1109/TCOM.1980.1094666.

[62] A. Singh, Load-balanced routing in interconnection networks, Ph.D. thesis, Stanford
University, 2005.

[63] R.K. Jain, D.-M.W. Chiu, W.R. Hawe, et al., A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems, Eastern Research

http://refhub.elsevier.com/S0743-7315(25)00103-0/bib70F524ADA88A81F9B273D935F93F2CCEs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib70F524ADA88A81F9B273D935F93F2CCEs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB7A8F30FBC3ECBBD45D1BB2ABAF7225Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB7A8F30FBC3ECBBD45D1BB2ABAF7225Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB7A8F30FBC3ECBBD45D1BB2ABAF7225Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEA51EB380F9A0422F7301D4E29CF1453s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEA51EB380F9A0422F7301D4E29CF1453s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEA51EB380F9A0422F7301D4E29CF1453s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEA51EB380F9A0422F7301D4E29CF1453s1
https://dl.acm.org/doi/book/10.5555/3207796
https://dl.acm.org/doi/book/10.5555/3207796
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3BEAC119520695DE812B145E846C2ADFs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3BEAC119520695DE812B145E846C2ADFs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3A09D1B57B97775AA0081911BFFA7BF9s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3A09D1B57B97775AA0081911BFFA7BF9s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3A09D1B57B97775AA0081911BFFA7BF9s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib3A09D1B57B97775AA0081911BFFA7BF9s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib9F706D79303EBB3331EEEB2053008C6Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib9F706D79303EBB3331EEEB2053008C6Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib9F706D79303EBB3331EEEB2053008C6Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1801CA5D8CEA8F13B6A3CF505A34CDB1s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1801CA5D8CEA8F13B6A3CF505A34CDB1s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1801CA5D8CEA8F13B6A3CF505A34CDB1s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80D7B6DAFCDAB13DF5A40C1EF984F610s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80D7B6DAFCDAB13DF5A40C1EF984F610s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80D7B6DAFCDAB13DF5A40C1EF984F610s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib08FD1FF4444EC667A43BCF240E462B98s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib08FD1FF4444EC667A43BCF240E462B98s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib08FD1FF4444EC667A43BCF240E462B98s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB3A5D1D6B307645AC730CB9AD98314D7s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB3A5D1D6B307645AC730CB9AD98314D7s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibB3A5D1D6B307645AC730CB9AD98314D7s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1CF5A51F10C532F55FCC56EA7A5880A5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1CF5A51F10C532F55FCC56EA7A5880A5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib1CF5A51F10C532F55FCC56EA7A5880A5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0EA3CAAA53BAB3C3718FF5F38666AE36s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0EA3CAAA53BAB3C3718FF5F38666AE36s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib5B4C52D70A4189492A42FDEADAFAE2A3s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib5B4C52D70A4189492A42FDEADAFAE2A3s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib5B4C52D70A4189492A42FDEADAFAE2A3s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib5B4C52D70A4189492A42FDEADAFAE2A3s1
https://github.com/fuentesp/fogsim
https://doi.org/10.1016/j.jpdc.2019.04.022
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0A9D5A5FBAE5723BF0A070764B57FFF8s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0A9D5A5FBAE5723BF0A070764B57FFF8s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0A9D5A5FBAE5723BF0A070764B57FFF8s1
https://doi.org/10.1007/s11227-014-1357-9
http://hdl.handle.net/10902/6480
https://doi.org/10.1016/j.jpdc.2019.03.013
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80B7ED9BEE40A1776E86F6E4C3747188s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80B7ED9BEE40A1776E86F6E4C3747188s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib80B7ED9BEE40A1776E86F6E4C3747188s1
https://arxiv.org/abs/2007.03152
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib8549A4E67188376FC66CE5AC4930ACCBs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib8549A4E67188376FC66CE5AC4930ACCBs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib8549A4E67188376FC66CE5AC4930ACCBs1
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.4018/jdst.2010040104
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7D593914CDC3BE1D1CF1677C381FD119s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7D593914CDC3BE1D1CF1677C381FD119s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7D593914CDC3BE1D1CF1677C381FD119s1
https://doi.org/10.1016/S0743-7315(02)00004-7
https://doi.org/10.1016/S0743-7315(02)00004-7
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0DFFBDC86BA09D94251BE6A87960C88Fs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0DFFBDC86BA09D94251BE6A87960C88Fs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib0DFFBDC86BA09D94251BE6A87960C88Fs1
https://doi.org/10.1016/j.procs.2016.08.063
https://github.com/BobAnkh/ns3-parallel
https://github.com/BobAnkh/ns3-parallel
https://github.com/ipfs-rust/netsim-embed
https://github.com/ipfs-rust/netsim-embed
https://github.com/mishajw/kipa
https://github.com/holochain/sim2h
https://github.com/canndrew/netsim
https://github.com/canndrew/netsim
https://crates.io/crates/dvcompute_network
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib031CCB149A69C0815EB4BFA8B0C6F50Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib031CCB149A69C0815EB4BFA8B0C6F50Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibBC72E0D51DF665B3EA20F8CEBC1E9B0Fs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibBC72E0D51DF665B3EA20F8CEBC1E9B0Fs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibBC72E0D51DF665B3EA20F8CEBC1E9B0Fs1
https://doi.org/10.1109/TPDS.2016.2635640
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEBE4B383F38FD4CE90780966D66C6D6Bs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEBE4B383F38FD4CE90780966D66C6D6Bs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibEBE4B383F38FD4CE90780966D66C6D6Bs1
https://api.semanticscholar.org/CorpusID:26494144
https://api.semanticscholar.org/CorpusID:26494144
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib33791837D46160FDD176F141C68C7AB4s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib33791837D46160FDD176F141C68C7AB4s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib33791837D46160FDD176F141C68C7AB4s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib2BE600EC7DBAC29E57154A2C90F5489Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib2BE600EC7DBAC29E57154A2C90F5489Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib2BE600EC7DBAC29E57154A2C90F5489Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibD02605F03D73B7B06F036A936D3AD6D5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibD02605F03D73B7B06F036A936D3AD6D5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibD02605F03D73B7B06F036A936D3AD6D5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7ABFEC636F57EC777B7F7FB0C6A4B22Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7ABFEC636F57EC777B7F7FB0C6A4B22Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7ABFEC636F57EC777B7F7FB0C6A4B22Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bib7ABFEC636F57EC777B7F7FB0C6A4B22Ds1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAEF16B9309E14F0C4902C0974B1701CAs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAEF16B9309E14F0C4902C0974B1701CAs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAAC964714A627FCACF70828708FC5068s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAAC964714A627FCACF70828708FC5068s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAAC964714A627FCACF70828708FC5068s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAAC964714A627FCACF70828708FC5068s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibE37E06C6574A6C436E9DEFCCF5A6E84Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibE37E06C6574A6C436E9DEFCCF5A6E84Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibE37E06C6574A6C436E9DEFCCF5A6E84Es1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibE37E06C6574A6C436E9DEFCCF5A6E84Es1
http://dl.acm.org/citation.cfm?id=2228298.2228322
https://doi.org/10.1137/0211027
https://doi.org/10.1109/TCOM.1981.1095021
https://doi.org/10.1109/TCOM.1981.1095021
https://doi.org/10.1109/TCOM.1980.1094666
https://doi.org/10.1109/TCOM.1980.1094666
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA840409441CA0FDAA1F999E884D0C3ECs1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA840409441CA0FDAA1F999E884D0C3ECs1

Journal of Parallel and Distributed Computing 204 (2025) 105136

15

C. Camarero, D. Postigo and P. Fuentes

Laboratory, Digital Equipment Corporation, Hudson, MA 21, 1984, https://arxiv.
org/abs/cs/9809099.

[64] A. Auten, M. Tomei, R. Kumar, Hardware acceleration of graph neural networks, in:
2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[65] B. Klenk, N. Jiang, G. Thorson, L. Dennison, An in-network architecture for accel-
erating shared-memory multiprocessor collectives, in: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 996–1009.

[66] N. Jain, A. Bhatele, S. White, T. Gamblin, L.V. Kale, Evaluating hpc networks via
simulation of parallel workloads, in: SC ’16: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, 2016,
pp. 154–165.

[67] N. McKeown, The iSLIP scheduling algorithm for input-queued switches, IEEE/ACM
Trans. Netw. 7 (2) (1999) 188–201, https://doi.org/10.1109/90.769767.

https://arxiv.org/abs/cs/9809099
https://arxiv.org/abs/cs/9809099
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA84074E22BC8D6171899DF4E58243D77s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA84074E22BC8D6171899DF4E58243D77s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAC796F2741D27AAB6A38FBE675EECFF6s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAC796F2741D27AAB6A38FBE675EECFF6s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibAC796F2741D27AAB6A38FBE675EECFF6s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA6B4A0EF9EF722733F9516546D9E21C5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA6B4A0EF9EF722733F9516546D9E21C5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA6B4A0EF9EF722733F9516546D9E21C5s1
http://refhub.elsevier.com/S0743-7315(25)00103-0/bibA6B4A0EF9EF722733F9516546D9E21C5s1
https://doi.org/10.1109/90.769767

	The CAMINOS interconnection networks simulator
	1 Introduction
	1.1 Need for a new network simulator
	1.2 Benefits of the Rust language
	1.3 The Rust toolchain

	2 State of the art
	3 Simulator architecture
	3.1 Events and time
	3.2 Traffic
	3.3 Topologies
	3.4 Router models
	3.5 Component encapsulation and composition
	3.5.1 Examples of composition

	4 Usability
	4.1 Configuration syntax
	4.2 Experiment metrics and statistics
	4.2.1 Optional statistics

	4.3 Working methodology
	4.3.1 Generation of outputs

	5 Validation
	5.1 Validation methodology
	5.1.1 Network scenario

	5.2 Results for the network scenario
	5.2.1 Average throughput
	5.2.2 Average latency

	6 Performance of CAMINOS
	6.1 Evaluation methodology
	6.2 Performance results
	6.2.1 Simulation time
	6.2.2 Memory footprint
	6.2.3 Scalability analysis

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

