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Abstract

In this thesis we present a systematic, quasi-automated methodology for generating electronic models
in the framework of second-principles density functional theory (SPDFT). Second-principles electronic
models employ an effective multiscale approach for treating the relevant electronic degrees of freedom.
In this framework they are represented by a tight-binding model corrected by electron–electron interac-
tions. The Hamiltonian matrix elements are expressed in a basis of Wannier functions which are obtained
from the band manifolds of interest in the problem. As a result, the first objective of this thesis was to
study the methodology for constructing a Wannier function basis, which provides an exact tight-binding
representation of the Hamiltonian matrix elements. This involved a comprehensive examination of both
the theoretical foundation and its computational implementation using WANNIER90.

At this point, the main goal of this thesis has been focused on the development of the methodology to fit
automatically the parameters involved in the second-principles model considering one-electron Hamilto-
nians and including properly the electron-lattice coupling and the electron-electron interaction, enabling
accurate modeling of structural and electronic responses. The developed approach derives all necessary
parameters from first-principles calculations on a carefully designed training set with the objective of
maintaining a high level of accuracy and predictive power similar to that of first-principles methods.
Notably, this methodology relies entirely on theoretical input, without incorporating any experimental
data.

This thesis places particular emphasis on the study and calculation of electron–lattice interaction param-
eters, aiming to clarify their physical meaning and establish reliable methods for their determination.
Electron–vibration interaction plays a crucial role in the understanding of different solid-state proper-
ties such a as charge and energy transport in polarons or structural distortions as the Jahn-Teller ef-
fect. Alongside a comprehensive review of state-of-the-art approaches to vibronic coupling within the
framework of density functional theory, we present a detailed theoretical analysis that connects these
methodologies with the electron–lattice parameters used in second-principles models. Special attention
is given to recent developments, including finite-difference techniques, reciprocal-space formulations,
and Wannier function-based approaches, which serve as a foundation for the accurate parametrization of
second-principles models.

Accordingly, the chosen procedure for obtaining the electron–lattice interaction parameters involved their



direct evaluation using the finite-difference method. In contrast, the determination of electron–electron
interaction parameters was carried out by fitting these parameters to first-principles calculations through
the minimization of a suitably defined goal function. A key feature of our method is the enforcement
of space group symmetries, which reduces both the number of independent parameters and the required
computational effort.

Finally, we apply the methodology to SrTiO3 and LiF, materials representative of transition-metal per-
ovskites and wide-band-gap insulators, respectively. In both cases, the resulting models reproduce DFT
reference data with high fidelity across various atomic configurations and charge states. Our results val-
idate the robustness of the approach and highlight its potential for simulating complex phenomena such
as polarons and excitons.



Resumen

En esta tesis se presenta una metodología sistemática y cuasi-automatizada para la generación de mod-
elos electrónicos en el marco de la teoría del funcional de la densidad de segundos-principios (Second-
Principles Density Functional Theory, SPDFT). Los modelos electrónicos de segundos-principios em-
plean un enfoque multiescala efectivo para tratar los grados de libertad electrónicos relevantes, rep-
resentándolos mediante un modelo de enlace fuerte (tight-binding) corregido por interacciones elec-
trón–electrón. Los elementos de matriz del Hamiltoniano se expresan en una base de funciones de
Wannier obtenidas a partir de los conjuntos de bandas de interés en el sistema en estudio. Como resul-
tado, el primer objetivo de esta tesis ha sido estudiar la metodología para la construcción de una base de
funciones de Wannier, la cual proporciona una representación exacta del Hamiltoniano en el marco del
modelo de enlace fuerte. Este análisis implica una revisión exhaustiva tanto de los fundamentos teóricos
como de su implementación computacional mediante el código WANNIER90.

A partir de este punto, el objetivo principal de la tesis se centra en el desarrollo de una metodología
para ajustar automáticamente los parámetros del modelo, considerando Hamiltonianos a un electrón e
incorporando adecuadamente tanto la interacción entre electrones y las vibraciones de la red cristalina
como los grados de libertad electrón–electrón. Esto permite una descripción precisa de las respuestas es-
tructurales y electrónicas del sistema. La metodología desarrollada permite derivar todos los parámetros
necesarios a partir de cálculos ab initio realizados sobre un conjunto de entrenamiento cuidadosamente
diseñado, con el fin de mantener un alto nivel de precisión y capacidad predictiva comparable con la
de los métodos de primeros-principios. Cabe destacar que esta metodología no está basada en datos
experimentales.

Esta tesis pone especial énfasis en el estudio y la determinación de los parámetros que capturan la inter-
acción electrón–vibración, con el objetivo de clarificar su significado físico y establecer métodos fiables
para su cálculo. La interacción electrón–vibración desempeña un papel crucial en la comprensión de
diversas propiedades del estado sólido, tales como el transporte de carga y energía en polarones, o las
distorsiones estructurales asociadas al efecto Jahn–Teller. Además de una revisión detallada del estado
del arte en el acoplamiento vibriónico en el contexto de la teoría del funcional de la densidad, en esta
tesis se presenta un análisis teórico que conecta dichas metodologías con los parámetros de interacción
electrón–vibración empleados en los modelos de segundos-principios. Se presta especial atención a de-
sarrollos recientes, incluyendo técnicas de diferencias finitas, formulaciones en el espacio recíproco y



métodos basados en funciones de Wannier, que constituyen la base para una parametrización precisa de
los modelos SPDFT.

El procedimiento adoptado para la obtención de los parámetros de interacción electrón–red se ha basado
en su evaluación directa mediante el método de diferencias finitas. Por otro lado, los parámetros de in-
teracción electrón–electrón han sido determinados ajustando su valor a cálculos de primeros-principios,
mediante la minimización de una función objetivo asociada al error cuadrático. Además, una carac-
terística clave del método propuesto es la imposición de las simetrías del grupo espacial del sistema,
lo que permite reducir tanto el número de parámetros independientes como el esfuerzo computacional
requerido.

Finalmente, se ha aplicado la metodología desarrollada a los materiales SrTiO3 y LiF, representativos de
perovskitas con metales de transición y aislantes con gran ancho de banda, respectivamente. En ambos
casos, los modelos resultantes reproducen con alta fidelidad los datos de referencia obtenidos por DFT
en distintas configuraciones atómicas y estados electrónicos. Nuestros resultados validan la solidez del
enfoque propuesto y destacan su potencial para la simulación de fenómenos complejos como polaronas
y excitones.
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Glossary

The acronyms used throughout this thesis are presented below in alphabetical order:

AFD Antiferrodistortive
AFE Antiferrolectric
APES Adiabatic Potential Energy Surface
ASR Acoustic Sum Rule
BO Born-Oppenheimer
BZ Brillouin Zone
DFT Density Functional Theory
DFPT Density Functional Perturbation Theory
FE Ferroelectric
GF Goal Function
JT Jahn-Teller
ML Machine Learning
MLWF Maximally localized Wannier functions
MO Molecular Orbital
PES Potential Energy Surface
PJT Pseudo Jahn-Teller
RAG Reference Atomic Geometry
SAT Symmetry Adapted Terms
SP Second-principles
SPDFT Second-principles Density Functional Theory
STO SrTiO3

TB Tight Binding
TS Training Set
H̃mn⃗k Hamiltonian matrix elements expressed in a basis of smooth Bloch-like functions

{|ψ̃n⃗k j
⟩} obtained through a unitary transformation of the original ab initio Bloch

eigenstates, {|ψn⃗k j
⟩}, eliminating their nonanalytic behavior.

TC Curie temperature
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Motivation, most relevant questions and
main results

Advancements in materials science research have catalysed the development and innovation of techno-
logical devices. Whether it’s a positron emission tomography machine to detect a tumor in a hospital
or the large hadron collider at CERN, modern equipment exists because material properties are pushed
to their limits. Looking into the very near future, the advent of artificial intelligence (AI), the extensive
use of big-data analysis, and the increasing connectivity of electronic devices in the so-called Internet of
Things (IoT) impose an ever-growing demand for energy and natural resources. For instance, training
a single AI model can consume as much energy as five cars in their lifetimes [1]. Cooling large data
centers is also a significant energy drain, often accounting for 40% of the total energy consumption of
these facilities [2]. Another example is the emergence of autonomous vehicles, which will require orders
of magnitude higher levels of computing with sustainable power consumption. This trend of designing
new electronic devices with the ability to “learn” and improve without human intervention necessitates
novel and smart microelectronic components that push the limits of existing materials. Just to mention a
few of the requirements that the new materials should gather: low energy consumption, increased storage
density for the myriad of produced data and, ideally, energy harvesting capabilities.

Moreover, the rapid advancement of technological capabilities is driving an unprecedented exploitation
of natural resources. Humanity now faces challenges never before encountered, many of which are
highlighted in the Sustainable Development Goals [3]. Achieving these goals often hinges on discovering
more efficient, eco-friendly materials that maintain or enhance functionality.

However, developing such materials is often a lengthy process that requires substantial effort. The tran-
sition from laboratory research to commercial application is typically characterized by trial-and-error
experimentation, with successful materials taking an average of 15 to 20 years to reach the market [4].

This is where computational simulations can make a significant impact. Modern computational materials
science enables the prediction of many properties before materials are synthesized, resulting in substan-
tial savings in materials optimization and significant economic benefits across several key industries. In
this regard, the field of materials science and engineering is undergoing a paradigm shift. The reliance on
traditional experimental methods is giving way to an era where computational modeling plays a crucial
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role in guiding knowledge-based decisions, accelerating development, and significantly reducing costs.

The ability to utilize workflows and high-throughput simulations to pre-screen materials with specific
desired properties “in silico”, filtering promising candidates based on existing knowledge, is fueled by
the rapid and continuous growth of computational power (hardware) and the significant development of
more efficient algorithms (software).

At the foundational level, hardware improvements stem from relentless research and innovation in high-
speed, smaller, and more energy-efficient microelectronic devices [5; 6], consistent with Moore’s Law
(1965) [7], which predicts that the number of transistors on an integrated circuit doubles approximately
every two years. These advanced chips are connected in parallel [8] within powerful supercomputers,
capable of delivering performance measured in hundreds of petaflops (1 petaflop = 1.000 teraflops), with
leading systems surpassing 250 Pflops [9]. New architectures, such as those based on GPU comput-
ing [10], are also emerging. Additionally, the era of quantum computing applied to material science
challenges is on the horizon [11].

From the software point of view, today it is possible to accurately describe material properties using
methods directly grounded in the fundamental laws of quantum mechanics and electrostatics. While
studying complex systems often requires practical approximations, these methods are free from empiri-
cally adjustable parameters, which is why they are known as “first-principles” or “ab initio” techniques.
These methods offer atomic-level resolution, enabling highly precise calculations of a system’s electronic
and atomic structures, even in the absence of prior experimental data, making them fully predictive.
Additionally, they provide a comprehensive understanding of material properties, fostering knowledge-
driven research.

Indeed, first-principles methods are often the ultimate computational tools for the design of functional
materials. However, despite their widespread use, two major limitations hinder the practical application
of first-principles methods for designing materials-enabled products. First, the computational cost of
first-principles simulations remains high, restricting their use to relatively small systems (up to a few
thousand atoms for basic properties) and short time scales (up to a fraction of a nanosecond in small
systems). Second, first-principles simulations are typically confined to zero or very low temperatures,
meaning they cannot model realistic operating conditions, such as temperature, mechanical constraints,
or external fields, which are crucial for industrial applications.

To address these limitations, we need to climb the different steps of the multiscale ladder (Fig. 1), both
in terms of the spatial and temporal scales that simulation methods can address. To achieve this goal,
approximate models have been developed, where the electronic and/or atomic degrees of freedom are
further simplified. Where to put the focus (on the lattice or the electronic properties) depend on the
specific problem. For instance, several lattice-dynamical properties of materials such as structural and
mechanical features, dielectric and piezoelectric responses or lattice thermal transport are dominated by
the structural degrees or freedom. Then, the treatment of the electrons in the simulations can be avoided.
In order to tackle these problems, different methods have been developed. In particular, it is possible to
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create effective models that capture the phenomena of interest in a “simple” mathematical form allowing
for much faster calculations.

Figure 1: Range of length and time scales accessible through the different theoretical approaches discussed in this
introduction. Black arrows highlight how these methods interconnect. First-principles approaches, which capture
atomic-level details feed second-principles models that focus on fewer degrees of freedom. Force-field methods
model atomic interactions using empirical or semi-empirical potential functions based on classical mechanics.
These methods describe systems at the atomistic level, where bonded interactions are modeled similarly to springs.
In contrast, phase field models capture mesoscale phenomena, simulating phase transitions and domain dynamics
at larger spatial scales without the need to model individual atoms. This makes them particularly suitable for
studying microstructure evolution and domain dynamics over extended spatial and temporal scales. The red arrows
emphasize the interactions between experimental data and theoretical models across these different scales. Adapted
from Ref. [12].

The most frequently used methods have originated within the fields of chemical physics, material science,
and biophysics. Atomistic force-field methods utilize empirically determined interatomic potentials to
calculate system energy as a function of atomic positions. That is the case of the Lennard-Jones poten-
tial [13] that depends only on the magnitude of the separation between a pair of atoms, or the bond order
potentials (such as the one proposed by Tersoff [14]) where the potential is also written as a simple pair
potential depending on the distance between two atoms, but the strength of this bond is modified by the
environment of the atom via the bond order (the strength of a chemical bond depends on the bonding en-
vironment, including the number of bonds and possibly also angles and bond lengths). The inclusion of
these connection-dependent terms in the force-field description opened the door to treat reactive events
with reactive force fields [15]. However, systematically extending these models to enhance precision is
generally not well-defined or feasible. Another successful lattice model is the so-called effective Hamil-
tonian approach, initially proposed by Rabe and Joannopoulos [16] and latter applied to compute the
temperature phase diagram of BaTiO3 [17].
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The models presented until now describe the Born–Oppenheimer ground energy surface in terms of
structural degrees of freedom. However, this could be a constriction in some cases, specially, in those
problems where the relevant physics is dominated by the electronic degrees of freedom. Consequently,
different methods were also proposed to reintroduce explicitly the treatment of the meaningful electronic
degrees of freedom. Between the methodologies that have been proposed, the tight-binding approxima-
tion stands out.

In tight-binding (TB) methods [18], electronic interactions are efficiently described using a Hamiltonian
expressed in a basis of localized atomic orbitals or Wannier functions. Significant advances have been
made in developing these methods. The TB methodology allows for the adaptation of interaction models
to suit the specific problem, ranging from effective free-electron descriptions to partially self-consistent
solutions, while also incorporating effects such as magnetism, electronic correlations, spin-orbit cou-
pling, and other subtle phenomena. As a result, tight-binding methods have been successfully applied
to a wide range of materials, including carbon nanostructures, biological molecules, and simple oxides.
Additionally, the TB framework facilitates the calculation of atomic forces, making it a powerful tool for
studying structural and lattice-dynamical properties, as well as processes involving bond breaking and
formation.

However, these methods face limitations when addressing situations where the key interactions involve
very small energy differences, on the order of meV per atom, requiring high precision, or where a fully
atomistic description of the material is necessary. Additionally, many approximate approaches struggle
to treat both electronic and lattice degrees of freedom with comparable accuracy and completeness.
Most existing methods tend to focus predominantly on either electronic properties [19; 20; 21] or lattice
properties [16; 22; 23; 24; 25]. Moreover, the few approaches that aim to treat both types of variables
simultaneously often rely on highly coarse-grained representations [26; 27; 28].

In the last few years, machine-learning (ML) models in condensed matter physics and chemistry have
proliferated [29; 30]. Universal deep neural network approaches to represent the DFT Hamiltonian of
crystalline materials, aiming to bypass the computationally demanding self-consistent field iterations of
DFT and substantially improve the efficiency of ab initio electronic-structure calculations, are already
available [31; 32]. Machine learning and artificial intelligence models have proven to be highly accurate
in condensed matter physics, capable of predicting material properties, phase transitions, and electronic
structures in large systems with remarkable precision. However, the complexity of these models, of-
ten involving deep neural networks or high-dimensional feature spaces, makes them inherently opaque.
Unlike traditional physics-based approaches, where analytical equations offer clear insights into under-
lying mechanisms, ML-driven models function as “black boxes”, providing results without a transparent
explanation of the reasoning behind them. This lack of interpretability poses a challenge, as scientists
may obtain precise predictions but struggle to extract fundamental physical principles or causal relation-
ships from the model’s inner workings. Moreover, ML-based approaches are often tailored to specific
properties (such as energy gap predictions [33]) or materials (for instance, the mechanical properties of
zeolites [34]).
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Here, we propose a second-principles approach [35], which involves developing effective models using
a multiscale perspective. This method, implemented in the SCALE-UP code, directly derives parameters
from first-principles data, with the goal of maintaining a high level of accuracy and predictive power
similar to that of first-principles methods [36]. This might be a constriction in some cases, specially, in
those problems where the relevant physics is dominated by the electronic degrees of freedom. Recently,
a method has also been proposed to reintroduce explicitly the treatment of the meaningful electronic
degrees of freedom in the form of a tight-binding model [37], while avoiding double-counting with the
effective atomic potentials. Since there is not input coming from the experiment, our method retains
full predictive power, and that is why it is coined as second-principles simulations. In contrast, second-
principles density-functional theory offers a physics-driven framework that applies to a broader range of
systems and properties, making it a valuable complement to data-driven methodologies. The problem
before this thesis was how to fit automatically the parameters in the tight-binding model including prop-
erly the interaction of the electronic and the lattice, and the electron-electron degrees of freedom. This
has been precisely the topic of this work.

In this thesis we present a systematic, quasi-automated methodology for generating electronic models in
the framework of second-principles density functional theory. This approach enables the construction of
accurate and computationally efficient models by deriving all necessary parameters from first-principles
calculations on a carefully designed training set. A key feature of our method is the enforcement of space
group symmetries, which reduces both the number of independent parameters and the required computa-
tional effort. The formalism includes improved treatments of one-electron Hamiltonians, electron-lattice
coupling—through both linear and quadratic terms—and electron-electron interactions, enabling accu-
rate modeling of structural and electronic responses. It has been implemented in a python code, called
MODELMAKER that bridges a first-principles code producing the band-structures for different configu-
rations (SIESTA [38]) and a code that computes tight-binding matrix elements in real space in a basis
of Wannier functions (WANNIER90 [39; 40]). We apply the methodology to SrTiO3 and LiF, materials
representative of transition-metal perovskites and wide-band-gap insulators, respectively. In both cases,
the resulting models reproduce DFT reference data with high fidelity across various atomic configura-
tions and charge states. Our results validate the robustness of the approach and highlight its potential for
simulating complex phenomena such as polarons and excitons. This work lays the foundation for ex-
tending second-principles density functional theory to real-time simulations of optoelectronic properties
and further integration with machine-learning methods.

The thesis will be organized as follows. In Chapter 1, we present the theoretical approaches behind
the second-principles methods. Specifically, this chapter outlines the tight-binding approach which con-
stitutes the foundation for modeling the electronic degrees of freedom. In addition, it introduces the
localized Wannier functions, utilized as the basis set for the electronic part in the second-principles im-
plementation of SCALE-UP. Chapter 2 details the practical procedure for constructing tight-binding-like
interactions within a Wannier function basis using the WANNIER90 code. These interactions are sub-
sequently employed to extract the parameters of the second-principles Hamiltonian. In Chapter 3, we
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provide an overview of the current state of the art in the study of electron-phonon coupling, emphasizing
its crucial role in the accurate description of a wide range of physical phenomena. We outline the un-
derlying theoretical framework and the methodologies used to incorporate electron-phonon interactions
within first-principles approaches. Furthermore, we place particular emphasis on the implementation
of this interaction within the second-principles formalism and its connection to first-principles meth-
ods. In Chapter 4, we describe the theoretical framework underlying the electronic component of the
second-principles methodology as implemented in SCALE-UP. The procedure for generating the elec-
tronic models which feed SCALE-UP calculations is described in Chapter 5. This chapter discusses the
different methodologies developed and employed in this work to obtain the model parameters with the
MODELMAKER software. In addition, it outlines the key aspects involved in the calculation of these vari-
ables, including the construction of training sets and the application of symmetry constraints. Finally,
the electronic models constructed using the methodology implemented in MODELMAKER are applied
to the SrTiO3 perovskite and the LiF crystal systems. In Chapter 6, we present the results obtained by
comparing the band structures and quadratic errors across different atomic configurations and electronic
states. These comparisons are made between second-principles calculations (which employ the gener-
ated electronic models) and reference results obtained from density functional theory, in order to assess
the robustness and accuracy of the proposed approach.
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Chapter 1

Computational Methods

1.1 Effective Hamiltonian Approach

One important step forward in the computational study of functional material properties using a coarse-
grain for the lattice degrees of freedom comes from the ferroelectric community. Within this area, the
method coined as first-principles-based effective Hamiltonian (Heff) approach was developed [24]. It
can be considered as a generalization of a scheme originally proposed by Rabe and Joannopoulos for
GeTe [16].

The development of the effective Hamiltonian relies on the fact that the ferroelectric phase transitions
of some typical ferroelectric perovskite oxides (such as BaTiO3) implies small atomic displacements
and macroscopic strains with respect to a reference prototype structure. This aristotype structure in the
perovskites is usually taken as the high-symmetry cubic phase, with symmetry Pm3m, stable at high-
temperature. Moreover, the structural phase transition that yields to the relaxed ferroelectric structure
is driven mostly from the condensation of a single unstable (soft) normal mode [41], that presents an
imaginary frequency in the high-symmetry cubic structure. This soft mode is a local cooperative pattern
of atomic distortion associated to each unit cell. The displacements of the atoms can be obtained from
the soft-mode eigendisplacement vectors computed in the high-symmetry phase. For instance, the over-
lap between the total distortion of the tetragonal phase of BaTiO3 in the optimized tetragonal phase and
the eigendisplacements associated with the soft-mode of the optimized cubic phase might be as large as
99.3% [42]. Since essentially one mode is involved in the phase transition, and the final displacements
are small, then the Born-Oppenheimer energy surface can be parametrized as a low-order Taylor expan-
sion within the restricted subspace defined by the local soft mode (lattice part) and macroscopic strains
(elastic part, that is also coupled to the lattice). The method explicitly treats the long-range dipole-dipole
interactions and restricts to local anharmonic terms. All the parameters, both the ones required for the
Taylor expansion and for the electrostatic treatment, are directly fitted to first-principles DFT calcula-
tions.
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The approximations introduced in the effective Hamiltonian method reduce computational cost on two
levels. First, at the level of identifying the relevant degrees of freedom, instead of accounting for the
(3×Nat) degrees of freedom per unit cell plus strain, the model focuses on just one soft local mode. This
leads to a computational cost reduction by a factor of 2 to 5. Second, at the level of the simple parametric
form of the energy, rather than performing self-consistent DFT calculations to compute energy and forces
for the simulation box, the method evaluates a minimal Taylor expansion of the energy in terms of soft
modes and strains. This results in a substantial time savings, reducing computational effort by many
orders of magnitude. These models have been coupled to classical [24] or even quantum [43; 44] Monte
Carlo or Molecular Dynamic simulations to sample the configurational space at finite temperatures.

Since the first-proposal, the effective Hamiltonian approach proved to be extremely successful, predict-
ing the right sequence of phase transitions in BaTiO3 as a function of temperature (cubic→ tetragonal
→ orthorhombic→ rhombohedral) [24; 25]. In practice, the phase transition temperatures Tc are system-
atically and significantly underestimated using the effective Hamiltonian approach, but good qualitative
description of the systems can be achieved when rescaling Tc on experimental data.

As it has been previously cited, the initial simulations were carried out for GeTe [16] and BaTiO3 [24].
But effective Hamiltonians have been fitted to other bulk ferroelectrics, such as PbTiO3 [45], KNbO3 [46],
or NaNbO3 [47; 48]. More recently, they have been extended to treat oxygen octahedra rotations, paving
the way to deal with antiferrodistortive phase transitions, for instance in quantum paraelectrics like
SrTiO3 [17; 43] or in prototypical multiferroics like BiFeO3 [28], where the two primary order pa-
rameters (polarization and oxygen octahedra rotations) coexist.

Although the effective Hamiltonian approach is physically-motivated, computationally very efficient,
and its precision can be improved, to some extent, in a well-defined way (just increasing the number of
terms in the Taylor expansion), their usability is restricted to a very small set of problems. In particular,
this approach has not been adopted in other fields beyond the original ferroelectric community. The main
reason behind this “failure” is the coarse-graining step involved in the construction of the potential. In
general, only one mode is retained in the model. Although this was supported by a plethora of former
simulations in the field of the ferroic perovskite oxides, it will be difficult to generalise to other materials.
On general grounds, it may be unclear how to choose a subset of the relevant degrees of freedom. In
other words, which modes might play an important role in determining the properties of a given material.
That is the case, for instance, of Pnma perovskites combining sizable in-phase and out-of-phase oxygen
rotations and antipolar motions, or hybrid improper ferroelectrics.

Based on these premises, a more sophisticated approach that retains many of the good features of the
effective-Hamiltonian method developed within the ferroelectrics community and avoids its most serious
limitations has been developed. In short, this method creates models that describe the energetics of a
material by Taylor expanding the potential energy surface around a suitably chosen reference structure
as a function of all the atomic degrees of freedom [36]. This approach has been implemented in the
SCALE-UP [37] and MULTIBINIT [49] codes. One of the most important fingerprint of these methods is
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that the parameters required for the description of the Born-Oppenheimer energy surface in terms of the
structural degrees of freedom are determined directly from first-principles data. Thus, they keep most
of the accuracy and predictive power of first-principles approaches. For these reasons, they have been
called second-principles methods [35].

1.2 Second-principles method for the lattice. The SCALE-UP code.

In this section the rudiments of the second-principles SCALE-UP code will be presented. We shall only
focus on those aspects that will be relevant to the explanation about how the electrons will be included
in the lattice model. A more detailed explanation on all the technicalities behind the technique can be
found in Ref. [36].

1.2.1 Reference structure

In order to build a second-principles effective model for a selected system, the first step consists on se-
lecting a reference structure, denominated as Reference Atomic Geometry (RAG). This structure is a
particular configuration of the nuclei which will be employed as reference to describe any other con-
figuration of the system. In principle, no restrictions are imposed on the choice of the RAG. However,
it is usually convenient to employ the ground state structure or, alternatively, a properly chosen high-
symmetry configuration. Note that these choices correspond to critical points (a local minimum, a local
maximum, or a saddle point) of the potential energy surface (PES), where all gradients vanish, so that the
corresponding forces on the atoms and stresses on the cell are zero. Depending on the purpose for which
the model is built, the suitable reference structure might be a local minimum if the aim of the model is
focused on studying the anharmonic behavior of a given phase or a local maximum in order to describe
phase transitions, competition between phases or domain structures [36; 37].

As an illustrative case, let us consider typical ferroelectric perovskites such as PbTiO3. The polarization
of the system along the (001) direction, which is directly related to the strain, exhibits a temperature-
dependent behavior. At T = 0K, the system adopts a tetragonal lattice elongated in the (001) direction
with atomic displacements leaving the centrosymmetric positions, leading to a ferroelectric phase that
corresponds to a minimum in the energy curve (indicated by a blue dot in Fig. 1.1). However, as the
temperature increases and reaches the Curie temperature (TC), the system transitions into a paraelectric
state with a cubic phase (marked by a red dot in Fig. 1.1).

According to Fig. 1.1(a), the two most natural structural configurations to consider are the cubic phase,
in which the strain is zero, and the ferroelectric phase, which corresponds to the minimum of the energy
curve. In these systems, the distortions from the cubic phase to the ferroelectric phase are relatively
small. Therefore, by considering the RAG as the cubic phase, a perturbative approach can be applied to
analyze the system. The cubic lattice represents a high-symmetry configuration, enabling the generation
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of other configurations through small lattice distortions. Thus, to facilitate the study of various phases in
these perovskites, the cubic phase is the most suitable choice for the RAG.

(a) (b)

Figure 1.1: (a) Polarization as a function of temperature for a prototypical perovskite system. The polarization,
which is intrinsically linked to the strain, reveals that for temperatures below the Curie temperature (TC), the
system adopts a tetragonal Bravais lattice. This is marked by atomic displacements from their centrosymmetric
positions, giving rise to ferroelectric phases. At T = 0K, the system attains its energy minimum. Upon reaching
TC, the structure transitions to a paraelectric phase characterized by a cubic lattice. (b) Energy as a function of
polarization. The system’s energy minimum corresponds to the ferroelectric phase, which is reached at T = 0K
and arises from small distortions relative to the cubic structure.

In the second-principles method it is convenient to see a material as the periodic repetition of the unit
cell of its reference structure. To describe the atomic and electronic configuration of the system we
shall adopt a notation similar to that of Ref. [37]. The magnitudes related to the atomic structure will
be labeled by Greek letters. Considering periodic three dimensional infinite crystal, the different cells
are denoted by uppercase letters {Λ,∆, . . .} and the corresponding atoms in the cell as lowercase letters,
{λ ,δ , . . .}. According to this, the lattice vector of the cell Λ is R⃗Λ. In order to employ a more compact
notation, a cell/atom pair shall be represented as a bold lowercase index, i.e., R⃗Λλ ↔ λ.

The positions in the RAG are defined as

τ⃗
(0)
λ = R⃗Λ + τ⃗

(0)
λ

. (1.1)

Any possible crystal configuration can be specified by expressing the atomic positions, τ⃗λ, as a distortion
with respect to the RAG as

τ⃗λ =
(
1+
←→
η
)(

R⃗Λ + τ⃗
(0)
λ

)
+ u⃗λ, (1.2)

where 1 is the identity matrix,←→η is the homogeneous strain tensor, and u⃗λ is the absolute displacement
of atom λ in cell Λ with respect to the strained reference structure. In Eq. (1.2), the strain tensor, denoted
by ←→η , refers to the the homogeneous strain tensor since the inhomogeneous strains (or local strains)
are described by the u⃗λ atomic displacements in the proposed methodology. The homogeneous strain
tensor ←→η contains both the symmetric and antisymmetric components. However, for the purposes of
the following discussion, it will be restricted to its symmetric part, such that ηαβ = ηβα . Under this
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assumption, the Voigt notation for strain, represented as ηa with a = 1 . . .6, can be employed, leading to
the following transformation, η11 η12 η13

η21 η22 η23

η31 η32 η33

→
 η1 η6 η5

η6 η2 η4

η5 η4 η3

 . (1.3)

This simplifies the notation for use in subsequent equations.

Figure 1.2: Illustration of various distortions experienced by a lattice, described from the reference atomic geom-
etry (RAG). (a) RAG structure with atomic displacements occurring in the absence of homogeneous strain. (b)
Homogeneous strain applied without any accompanying atomic displacements. (c) Inhomogeneous (local) strain
represented by specific atomic displacement patterns. Figure adapted from Ref. [36].

The various contributions to lattice distortions are illustrated in Fig. 1.2. First, Fig. 1.2(a) depicts the po-
sitions of the nuclei in the reference structure, R⃗Λ+ τ⃗λ , along with the atomic displacements, u⃗λ, relative
to the reference atomic geometry (RAG). Figure 1.2(b) illustrates the system’s response to a homoge-
neous strain,←→η , which results in a uniform deformation of the lattice. Lastly, Fig. 1.2(c) highlights the
lattice distortion caused by an inhomogeneous strain. In this case, the effect of local strain is represented
through atomic displacements.

With this notation, a given snapshot describing a particular configuration of the system is completely
determined by ({⃗uλ},←→η ), where the curled brackets represent the collection of the displacements for all
the atoms in the system. This section has been written according to Ref. [37].

In Chapter 4, once the electronic part will be introduced, a similar notation will be used. The elements
related to electrons will be labeled by latin subscripts. In particular, the Wannier functions will group
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both the cell and its discrete label in a contracted bold index a↔ R⃗Aa.

1.2.2 Lattice-models

1.2.2.1 Energy contributions

In this subsection, the general scheme for the construction of effective model potential for lattice-
dynamical simulations is presented. This part is based on Refs. [36; 50].

The total energy of the second-principles model is represented as Eeff, employing the subscript “eff”
to differentiate between the energy that the effective potential gives for atomic state ({⃗uλ},←→η ) and the
exact energy E({⃗uλ},←→η ) that would be obtained from a first-principles simulation of the same configu-
ration. The energy Eeff is split in two contributions. The first one represents the energy of the reference
structure, ERAG , for which the atomic positions verify r⃗λ = R⃗Λ+ τ⃗λ i.e. ({⃗uλ},←→η ) = (0,0). The second
term, ∆Eeff = Eeff−ERAG, which describes the energy of the effective polynomial, captures the energy
variations around the reference atomic geometry (RAG) and is a function of the atomic positions and the
strain in the crystal after undergoing a distortion.

A natural approach to handling the energy ∆Eeff is to decompose it into three terms, distinguishing those
associated with atomic displacements and strain dependence,

∆Eeff({⃗uλ},←→η ) = Ep({⃗uλ})+Es(
←→
η )+Esp({⃗uλ},←→η ). (1.4)

Here, Ep({⃗uλ}) denotes the phonon contribution to the total energy when the RAG is distorted by atomic
displacements, while the energy change due to a strain applied on the RAG is given by Es. The energy
variations resulting from the phonon-strain coupling, arising from the simultaneous presence of both dis-
tortions are captured by Esp.

PHONON CONTRIBUTION

The phonon contribution to the energy captures the variation of the energy as consequence of atomic
distortions {⃗uλ}. This energy is expanded in a Taylor series around the RAG as

Ep({⃗uλ}) =
1
2 ∑
λαδβ

∂ 2Eeff

∂uλα∂uδβ

∣∣∣∣
RAG

uλαuδβ +
1
6 ∑
λαδβπγ

∂ 3Eeff

∂uλα∂uδβ ∂uπγ

∣∣∣∣
RAG

uλαuδβ uπγ + . . . (1.5)

where α,β ,γ represent Cartesian axis. The first term refers to the harmonic contribution and it is associ-
ated to the second order coefficient which represents the inter-atomic force constants. The higher-order
derivatives account for the anharmonic terms. Equation (1.5) is written under the assumption that the
RAG is a stationary point on the potential energy surface (PES), implying that the first derivative is zero.
It is essential to recognize the preceding derivatives are not independent, as they must satisfy the acoustic
sum rules (ASRs), ensuring that the energy remains invariant under rigid translations of the system.
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1.2. Second-principles method for the lattice. The SCALE-UP code.

STRAIN CONTRIBUTION

The expression for the elastic energy E(←→η ) is also expanded as a Taylor series around the RAG. In order
to simplify the notation, the Voigt criterion to represent the symmetric homogeneous strain tensor shall
be used, Eq. (1.3). In this way,

Es({←→η }) =
N
2 ∑

ab

∂ 2Eeff

∂ηa∂ηb

∣∣∣∣
RAG

ηaηb +
N
6

∂ 3Eeff

∂ηa∂ηb∂ηc

∣∣∣∣
RAG

ηaηbηc + . . . , (1.6)

where N represents the number of reference unit cells in the simulation box of the crystal. The second
order coefficient is the elastic force constant, the elastic tensor for fixed atomic positions and can be
obtained from finite differences or DFPT calculations. As before, the first order term is null since we
have assumed that the RAG has been selected as a stationary point of the PES.

STRAIN-PHONON CONTRIBUTION

The strain-phonon coupling contribution to the energy is also expanded in a Taylor series around the
RAG. This term depends on both the atomic displacement and the strain of the system with respect to
the reference structure,

Esp({⃗uλ},←→η ) =
1
2 ∑

a
∑
λα

∂ 2Eeff

∂ηa∂uλα

∣∣∣∣
RAG

ηauλα+

+
1
6 ∑

a
∑

λαδβ

∂ 3Eeff

∂ηa∂uλα∂uδβ

∣∣∣∣
RAG

ηauλαuδβ +
1
6 ∑

ab
∑
λα

∂ 3Eeff

∂ηa∂ηb∂uλα

∣∣∣∣
RAG

ηaηbuλα + . . .

(1.7)

The lowest-order coupling term represents the force-response internal strain tensor. This constant can be
computed employing DFPT or finite differences considering mixed second order derivatives with respect
to homogeneous strain and atomic distortions.

This term describes the forces exerted on the atoms under a specific strain state or the stresses within
the unit cell resulting from a given set of atomic displacements {⃗u}. In certain cases, such as the cubic
perovskite structure, which serves as the reference for the second-principles model developed in this
work, the lowest-order coupling term vanishes due to symmetry. For the phonon-coupling term, the
aforementioned coefficients must comply with the ASRs.

The parameters of the lattice model are the coefficients shown in Eqs. (1.5)-(1.7). As they have been
presented so far, they are functions of the displacements of the atoms with respect the positions of the
RAG. However, they can also be rewritten in terms of displacement differences, so that the potential is
explicitly compliant with the acoustic sum rule at all orders of the expansion [36].

In addition, employing the points symmetry and the lattice-translations which characterized the reference
structure around which we develop the polynomial expansion, it is possible to build symmetry-based
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Chapter 1. Computational Methods

relationships among the different coefficient reducing the number of independent parameters. This sym-
metry allows for the construction of irreducible sets of anharmonic coefficients, and can be understood
as restrictions in the system. Consequently, the terms in the Taylor series can be grouped attending to
these symmetry relations stabilizing symmetry-adapted terms (SAT), which group together symmetry-
equivalent contributions.

1.2.2.2 Building lattice models

As it was explained at the end of Sec. 1.1, the lattice models discussed in this thesis encompass all lattice
degrees of freedom, in contrast to effective Hamiltonian models which consider only a subset of selected
modes. The coefficients appearing in the previous Eqs. (1.5)-(1.7) represent the parameters of these
lattice models. The problem now is how to give values to these coefficients and construct the model
for a particular system. Since the original proposal described in Ref. [36], different strategies have been
designed [51].

These construction models share some common backgrounds. In particular: (i) they must be obtained
from a set of first-principles calculations on a training set (TS) of relevant lattice-dynamical and structural
data. The TS should contain a representative “unbiased” sampling of the potential energy surface, and
can be generated in many different ways. The most used one is to take snapshots of first-principles
molecular dynamic runs at different temperatures, augmented by an automatic generation of distorted
structures from random occupations of stable phonon modes. (ii) The parameters are chosen to minimize
a positive defined goal function (GF). This GF is a simple function of the model parameters that serve
as a metric of the “distance” between the energy, forces, and stresses predicted by the model and those
obtained in the first-principles results.

The most important differences in the construction models come from the fact about whether all the
parameters are fitted, or some of them are computed. In particular for the lattice atomistic model all
the second order energy derivatives can be directly calculated by linear response within the Density
Functional Perturbation Theory (DFPT) [52; 53; 54], providing exactly all the harmonic terms. The
terms required to compute the long-range dipole-dipole interactions, such as the Born effective charges
or the electronic (optical) dielectric tensor are also directly accessible from all the modern first-principles
packages. Then, only the anharmonic parts for the phonon contributions and the phonon-strain coupling
are fitted to reproduce the energy, forces, and stresses of the first-principles simulations included in the
training set, keeping only the most relevant symmetry adapted terms. This is the approach followed in
MULTIBINIT [49].

Other strategy is to fit all the parameters, including the harmonic ones, following the scheme proposed by
Escorihuela, Wojdeł and Íñiguez [51]. This is the schema followed in SCALE-UP. Ultimately, this process
involves solving a system of linear equations, while recognizing that there are far too many independent
coefficients to determine without imposing constraints. To address this, a limited subset of important
terms is selected, and their coefficients are fitted accordingly. Defining a complete lattice expansion is
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1.3. Treatment of the electronic degrees of freedom: the tight-binding approach

impractical due to the exponential increase in the number of SAT coefficients with increasing order of
expansion. Then, to prioritize the most significant anharmonic coefficients, a series of cutoff distances
are introduced, ensuring that only atomic pairs separated by distances below the cutoff are included in
the expansion. Special attention is paid to the fact the model must be bounded, avoiding terms that would
produce divergences favoring nonphysically long atomic displacements.

In this Section, we have presented the second-principles model for the lattice. The goal of this thesis
is to extend this methodology to incorporate an accurate treatment of the relevant electronic degrees of
freedom. In the following Sec. 1.3, we introduce the tight-binding formalism that is at the basis of the
new implementation. A comprehensive description of its integration into the second-principles code is
provided in Chapter 4.

1.3 Treatment of the electronic degrees of freedom: the tight-binding ap-
proach

The previous effective Hamiltonian approach presented in Sec. 1.1 does not consider explicitly the elec-
tronic degrees of freedom. Thus, if the electrons are essential to understand the physics of the problem,
and in agreement with the spirit followed for the lattice, a simplified and efficient scheme for their treat-
ment must be constructed.

Elaborating on the conditions suggested by Pople and Beveridge [55], and beautifully summarized in
Ref. [56], the features that this method should fulfill are: (i) the method should be simple enough to
allow for its application to large systems with a reasonable computational effort; (ii) the approximations
introduced should not be that severe that they modify the physical forces that determine structural and
dynamical properties; (iii) the approximate wave function should be as unbiased as possible; (iv) the
method should account for all the chemically active electrons; and (v) the approach should be sufficiently
general to allow for systematic improvements, from the simplest possible up to ab initio levels.

The tight-binding approach has been proposed as a way to cope with all of these requirements, in order
to simulate the electronic properties of the material with arbitrarily high accuracy, and at a modest com-
putational cost. In the following we shall summarize the most important points of such approximation.

The first issue to be introduced is the concept of the basis set to expand the Hilbert space of the electronic
eigenfunctions of the Hamiltonian. The starting point of the tight-binding approach is to consider that,
in a first order approximation, electrons are localized in a single atom, but they have the possibility to
jump to neighboring atoms [56]. In order to have an efficient method, the range of localization for these
hopping should be small. Therefore, based on the two previous assumptions, a basis set made of localized
atomic orbitals is a sensible choice. We select this to explain the basics of the approximation, although
the version we shall work on in the final code is based on the use of Wannier functions, that shall be
introduced in Sec. 1.4.
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Chapter 1. Computational Methods

Let’s start our discussion with a set of local orbital basis φα (⃗r− R⃗I), each associated with an atom in the
unit cell at position R⃗I . In principle, α might run over all the atomic orbitals of a given atom (1s, 2s, 2p,
3d, ...). In principle, the atomic orbitals considered are those occupied in the isolated atom, and it will be
assumed that these orbitals hybridize to give rise to energy bands. Therefore, for each atomic species we
consider a minimal basis set of atomic valence orbitals, i.e. one orbital for each valence state occupied
in the isolated atom [56]. In practice, we restrict the atomic orbitals that will be explicitly included in the
simulation to a given subset, typically only the atomic orbitals that participate in the description of the
states at the energy window of interest are retained. For instance, if we are interested in the description
of the lowest conduction bands of SrTiO3, we can retain in the basis set only the t2g orbitals of Ti (3dxy,
3dyz, 3dxz) as in Ref. [57].

In order to simplify the notation, we will let µ denote both α and the site I, so that µ runs from 1 to
Nbasis (the total number of atomic orbitals retained in the basis set in a unit cell). With this new notation,
the atomic orbital can also be written as φµ (⃗r− R⃗µ). In a crystal, the atoms in a unit cell are at positions
τ⃗κ, j, where τ⃗κ, j is the position of the j = 1, . . . ,nκ atoms of type κ . The composite index {κ, j,α → µ}
allows the entire basis to be specified by φµ

[⃗
r−
(⃗

τµ + T⃗
)]

, where T⃗ is a translation vector.

We know that the eigenstates of a Hamiltonian in a periodic potential must comply with the Bloch
theorem,

ψi⃗k(⃗r+ T⃗ ) = ei⃗k·T⃗
ψi⃗k(⃗r), (1.8)

where i is a band index and k⃗ is a wavevector in the first Brillouin zone. A deeper discussion of the Bloch
theorem and its consequences on our method will be described in Sec. 2.1.2. A good starting point to
represent the eigenstate ψi⃗k in a basis of localized atomic orbitals is to define a basis that complies also
with the Bloch theorem, i.e. by defining a basis state with wavevector k⃗

φ
µ⃗k(⃗r) = A

µ⃗k ∑
T⃗

ei⃗k·T⃗
φµ (⃗r− τ⃗µ − T⃗ ). (1.9)

where τ⃗µ is the position of the atom within the unit cell to which orbital φµ belongs, and A
µ⃗k is a

normalization factor.

1.3.1 Hamiltonian matrix elements

The next step is the computation of the Hamiltonian matrix elements in these basis of numerical atomic
orbitals. From the expressions given in Eq. (1.9)

⟨φµ (⃗k)|H|φν (⃗k
′
)⟩= A∗

µ⃗k ∑
T⃗

e−i⃗k·T⃗
ˆ

all space
d⃗rφ

∗
µ (⃗r− τ⃗µ − T⃗ )H

(
A

ν⃗k′ ∑
T⃗ ′

ei⃗k
′ ·T⃗ ′

φν (⃗r− τ⃗ν − T⃗
′
)

)

= A∗
µ⃗k

A
ν⃗k′ ∑

T⃗

(
∑
T⃗ ′

ei
(⃗

k
′ ·T⃗ ′ −⃗k·T⃗

)ˆ
all space

d⃗rφ
∗
µ (⃗r− τ⃗µ − T⃗ )Hφν (⃗r− τ⃗ν − T⃗

′
)

)
. (1.10)
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In the sum in brackets, the translation vector T⃗ is fixed. We can therefore make the following change of
variables in the integral r⃗

′
= r⃗− T⃗ ,

⟨φµ (⃗k)|H|φν (⃗k
′
)⟩= A∗

µ⃗k
A

ν⃗k′ ∑
T⃗

(
∑
T⃗ ′

ei
(⃗

k
′ ·T⃗ ′ −⃗k·T⃗

)ˆ
all space

d⃗r
′
φ
∗
µ (⃗r

′
+ T⃗ − τ⃗µ − T⃗ )Hφν (⃗r

′
+ T⃗ − τ⃗ν − T⃗

′
)

)

= A∗
µ⃗k

A
ν⃗k′ ∑

T⃗

(
∑
T⃗ ′

ei
(⃗

k
′ ·T⃗ ′ −⃗k·T⃗

)ˆ
all space

d⃗r
′
φ
∗
µ (⃗r

′− τ⃗µ)Hφν

[⃗
r
′− τ⃗ν −

(
T⃗
′− T⃗

)])
.

(1.11)

Now, making the change in variables T⃗ ′− T⃗ = T⃗
′′
,

⟨φµ (⃗k)|H|φν (⃗k
′
)⟩= A∗

µ⃗k
A

ν⃗k′ ∑
T⃗

(
∑
T⃗ ′′

ei
(⃗

k
′ ·
(

T⃗
′′
+T⃗
)
−⃗k·T⃗

)ˆ
all space

d⃗r
′
φ
∗
µ (⃗r

′− τ⃗µ)Hφν (⃗r
′− τ⃗ν − T⃗

′′
)

)

= A∗
µ⃗k

A
ν⃗k′

[
∑
T⃗

ei
(⃗

k
′ −⃗k
)
·T⃗
](

∑
T⃗ ′′

ei⃗k
′ ·T⃗ ′′
ˆ

all space
d⃗r
′
φ
∗
µ (⃗r

′− τ⃗µ)Hφν (⃗r
′− τ⃗ν − T⃗

′′
)

)

= Nδ⃗k,⃗k′A
∗
µ⃗k

A
ν⃗k′

(
∑
T⃗ ′′

ei⃗k
′ ·T⃗ ′′
ˆ

all space
d⃗r
′
φ
∗
µ (⃗r

′− τ⃗µ)Hφν (⃗r
′− τ⃗ν − T⃗

′′
)

)
, (1.12)

where we have used Eq. (1.13a) [see Ref. [58], Eq. (F.4)]

∑
T⃗

ei⃗k·T⃗ = Nδ⃗k,⃗0, (1.13a)

∑
k⃗

ei⃗k·T⃗ = NδT⃗ ,⃗0, (1.13b)

where T⃗ runs through the N sites of the Bravais lattice in Eq. (1.13a), and the sum on k⃗ in Eq. (1.13b) runs
through all the sites in the first Brillouin zone consistent with the Born-von Kármán boundary condition.

The integral within the last bracket of Eq. (1.12) requires a more deep study. It represents the interaction
between two orbitals in real space. If the orbital µ and the orbital ν are the same and are located on the
same atom (T⃗ = 0), this integral is often recalled as the on-site energy term. These depend on the type
of orbital, and would be the only matrix elements that would be non-zero in the limiting case where the
atoms are sufficiently far away.

When the atoms are brought together, there is a possibility for the electrons to jump from one orbital to
its neighbors. This is represented by the off-diagonal terms in the Hamiltonian (where µ ̸= ν and/or the
orbitals are not centered on the same atom, T⃗ ̸= 0). These integrals are often called as hopping-integrals.
The hopping parameters depend on the type of orbitals between which the electron jumps, and on the
distance between the atoms. The hopping parameters can be interpreted in terms of the band width, and
fitted to experimental or first-principles calculated values.

Now, we can denote the matrix element of the hamiltonian of a orbital µ in the unit cell at the origin and
an orbital ν in the cell labelled by translation vector T⃗

′′
as

Hµ,ν(T⃗
′′
) =

ˆ
all space

d⃗r
′
φ
∗
µ (⃗r

′− τ⃗µ)Hφν (⃗r
′− τ⃗ν − T⃗

′′
). (1.14)
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Figure 1.3: Interactions between an orbital placed at the home unit cell, φµ (⃗r′− τ⃗µ), and the periodic images of
another orbital φν . The Hamiltonian matrix elements will vanish if there is not overlap between the orbitals.

For the purpose of computing the matrix elements of the Hamiltonian, it is shown the interaction between
two different atomic-like orbitals in a periodic crystal, Fig. 1.3. Firstly, we select an orbital φµ (⃗r′− τ⃗µ)

(represented by a gray shadow) at the home unit cell (R⃗ = 0⃗) and the periodic images in the lattice of
a φν orbital (dotted pattern). The matrix element Hµν(T⃗ ′′) will vanish if the orbitals φµ (⃗r′− τ⃗µ) and
φν (⃗r′− τ⃗ν − T⃗ ′′) don’t overlap. Regarding the sketch, the only φν (⃗r′− τ⃗ν − T⃗ ′′) orbitals which intersect
with φµ (⃗r′− τ⃗µ) are the ones placed in the cells characterized by the lattice vectors R⃗ = 0⃗, R⃗1, R⃗2, R⃗3.
The orbital overlaps between φµ (⃗r′− τ⃗µ) and φν (⃗r′− τ⃗ν− T⃗ ′′) are shown in green, pink, orange and blue
respectively.

With the definition given in Eq. (1.14), then Eq. (1.12) transforms into

⟨φµ (⃗k)|H|φν (⃗k
′
)⟩= Nδ⃗k,⃗k′A

∗
µ⃗k

A
ν⃗k′

(
∑
T⃗ ′′

ei⃗k
′ ·T⃗ ′′Hµ,ν(T⃗

′′
)

)
. (1.15)

Finally, assuming that the normalization factors of the Bloch orbitals are 1/
√

N, we finally arrive to

Hµ,ν (⃗k) = ⟨φµ (⃗k)|H|φν (⃗k)⟩= ∑
T⃗

ei⃗k·T⃗ Hµ,ν(T⃗ ). (1.16)
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1.3. Treatment of the electronic degrees of freedom: the tight-binding approach

1.3.2 Overlap matrix elements

By analogy, the matrix elements of the overlap matrix between Bloch basis orbitals φµ (⃗k) and φν (⃗k
′
) are

also diagonal in k⃗ and equals

Sµ,ν (⃗k) = ⟨φµ (⃗k)|φν (⃗k)⟩= ∑
T⃗

ei⃗k·T⃗ Sµ,ν(T⃗ ). (1.17)

1.3.3 The secular equation

Since the hamiltonian conserves k⃗, an eigenfunction of the Schrödinger equation in a basis always can
be written in the form

ψi⃗k(⃗r) = ∑
µ

cµi(⃗k)φµ⃗k(⃗r). (1.18)

Inserting this expansion of the eigenfunctions into the Schrödinger equation,

Hψi⃗k(⃗r) = εi(⃗k)ψi⃗k(⃗r),

H

(
∑
µ

cµi(⃗k)φµ⃗k(⃗r)

)
= ∑

µ

cµi(⃗k)Hφ
µ⃗k(⃗r) = εi(⃗k)∑

µ

cµi(⃗k)φµ⃗k(⃗r), (1.19)

Multiplying both sides of Eq. (1.19) by φ ∗
ν⃗k
(⃗r) and integrating over all space,

∑
µ

cµi(⃗k)
ˆ

all space
d⃗rφ

∗
ν⃗k
(⃗r)Hφ

µ⃗k(⃗r) = εi(⃗k)∑
µ

cµi(⃗k)
ˆ

all space
φ
∗
ν⃗k
(⃗r)φ

µ⃗k(⃗r),

∑
µ

cµi(⃗k)Hν ,µ (⃗k) = εi(⃗k)∑
µ

cµi(⃗k)Sν ,µ (⃗k). (1.20)

Transposing all the terms to the left hand side in Eq. (1.20),

∑
µ

(
Hν ,µ (⃗k)− εi(⃗k)Sν ,µ (⃗k)

)
cµi(⃗k) = 0, (1.21)

which constitutes the secular equation that must be solved for a given wave vector k⃗ within the first
Brillouin zone.

1.3.4 Calculation of the matrix elements

According to Eq. (1.21), the band structure of the system can be computed. For a given k⃗ point in the
first-Brillouin zone, the square Hamiltonian and Overlap matrices, of range Nbasis, are build following
Eq. (1.16) and Eq. (1.17), respectively. Finally, the generalized eigenvalue problem given by Eq. (1.21) is
solved to find the eigenvalues, εi(⃗k), and the coefficients of the expansion of the eigenfunctions in terms
of the basis set, cµi(⃗k).
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The problem now is how to calculate in an efficient way the Hamiltonian [Hµν(T⃗ )] and the Overlap
[Sµν(T⃗ )] matrix elements between the orbitals included in the basis set.

In the empirical tight-binding models, the parameters are fitted to reproduced the experimental band
structures. Although they can achieve excellent agreement with specific properties, their transferability
(the ability to accurately describe systems or conditions beyond those used in the fitting) can be limited,
requiring careful validation. For the bands, the parameters are usually designed to fit selected eigenvalues
for a particular crystal structure and lattice constants. Extensive tables can be found in the works by
Papaconstantopoulos [59] and Harrison [60].

In the mid-1990s, several approaches to ab initio tight-binding were introduced [61]. These methods
employed a minimal basis set, consisting only of numerical atomic orbitals for valence electrons. The
Hamiltonian in Eq. (1.14) was replaced with the Kohn-Sham Hamiltonian, requiring integrals involv-
ing one to four atomic centers when expressed in a basis of atomic orbitals. To improve computa-
tional efficiency, many contributions to the Hamiltonian matrix elements were omitted, retaining only
the one- and two-center terms. It was assumed that the omitted terms could be accounted for through a
parametrization of the remaining integrals—an approximation that, though uncontrolled, could be jus-
tified by demonstrating the smallness of these neglected terms. The matrix elements depend solely on
interatomic distances and orientations. Consequently, they can be precomputed for each pair of atoms
and stored in a table as functions of distance. For any given interatomic distance, intermediate values
can be interpolated from these stored data.

The foundational work of Slater and Koster [62] enabled the efficient computation of two-center inte-
grals, where orbitals are located on separate atomic centers. These integrals are categorized based on the
relative orientation of orbitals with respect to the interatomic axis: σ (parallel), π (perpendicular), or δ

(for d-orbitals). When orbitals are not perfectly aligned or perpendicular, the integrals can be determined
as linear combinations of these types by applying a coordinate rotation. Despite the great simplifica-
tion that leads to an extremely useful approach to understanding electron in materials, the Slater-Koster
method considering only two-center matrix elements are not transferable between materials.

The proper description of the electronic band structure usually requires the consideration of many atomic
orbitals. For instance, in the case of SrTiO3 we need to include all the valence orbitals of O, Sr and Ti
atoms and even the semi-core states for the metallic cations. To achieve accurate results using SIESTA,
it is necessary to employ single-ζ for the semicore and double-ζ polarized basis sets for the valence
shell. This implies that for each unit cell analyzed in the study, 72 numerical atomic orbitals must
be included. The diagonalization of the Kohn-Sham Hamiltonian yields the same number of bands
per k⃗-point in the first Brillouin zone, ranging from the deeply localized semicore Sr and O orbitals to
numerous conduction band orbitals corresponding to 72 bands per unit cell. Even more, for SrTiO3, a
characteristic distortion is the antiferrodistortive phase. The smallest computational cell required to study
this system is a

√
2×
√

2×1 unit cell, achieved by rotating the x- and y-axes by 45◦. However, if the axes
are to remain fixed, the required simulation cell corresponds to a 2×2×2 supercell. This configuration
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necessitates the diagonalization of matrices with dimensions of 576 (72 orbitals per unit cell × 8 unit
cells). If we extend our analysis to simulate defects in this system, such as polarons, the computational
cost of diagonalization, which scales as O(N3

orb/cell) we can ascertain how the first-principles treatment
of the super cell to simulate defects is unfeasible.

In many cases, it is beneficial to restrict the electronic degrees of freedom to the states most relevant to the
problem under study. Specifically, in our case, these states correspond to the top of the valence band and
the bottom of the conduction band. This focus is particularly valuable for understanding the mechanisms
underlying electron and hole polarons, as well as excitonic effects. Additionally, it is possible to restrict
the analysis to the top of the valence band when studying electron polarons. Such a reduction in electronic
degrees of freedom allows the investigation to concentrate on the Bloch states directly involved in the
behavior of crystal defects.

A viable strategy to restrict the electronic degrees of freedom and lower the computational cost of cal-
culations while preserving accuracy is to replace the original basis set with a minimal orthonormal basis
constructed from Wannier functions. These Wannier functions faithfully reproduce the bands of interest
and provide an efficient basis for analyzing the electronic degrees of freedom within the framework of
second-principles methodology.

1.4 Bloch functions and Wannier functions

The tight-binding approach, introduced in Sec. 1.3, relies on localized atomic orbitals as a basis set
for expanding the electronic wavefunctions. An alternative yet closely related approach employs Wan-
nier functions, which provide a maximally localized representation of the electronic states in real space.
Wannier functions are particularly advantageous in capturing the underlying physics of electronic sys-
tems, especially when dealing with strongly correlated or localized electrons. Indeed, the construction
of localized Wannier orbitals from the Kohn-Sham states calculated using density-functional theory rep-
resents an elegant and systematic way to obtain realistic (materials-specific) tight-binding models. The
Maximally localized Wannier functions (MLWF) approach automatically leads to a tight-binding param-
eterization of the relevant bands so that the parameters of the model can simply be “read off” and no
fitting procedure is required.

1.4.1 Isolated band case

The main property of crystal structure is its periodicity. Consequently, the electronic structure calcula-
tions in crystals are performed by applying periodic boundary conditions. In the study of the one-particle
Hamiltonian, H = p2/2m+V (⃗r) with a real periodic potential V (⃗r) the Hamiltonian H is invariant to
translations and then commutes with the lattice-translation operator T⃗T . Consequently, as eigenfunctions
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of the Hamiltonian can be chosen the Bloch orbitals,

ψn⃗k(⃗r) = un⃗k(⃗r)e
i⃗k·⃗r (1.22)

determined by a plane wave arising from the translational symmetry (characterized by a k⃗-vector) mod-
ulated by a periodic function with the same periodicity of the potential and defined in real space, un⃗k(⃗r).
By construction, Bloch functions are delocalized and span on over all the space. They are also orthog-
onal and represent a basis of a Hilbert space. The Bloch functions are not univocally defined due to its
dependence on an arbitrary phase. One particularly appropriate choice of these phases is the use of a
smooth and periodic gauge [63].

In order to find localized functions in the real space storing the same information as the Bloch basis set,
the Fourier transform is applied. The Fourier-transform partners of the Bloch functions are known as
Wannier functions [64] which represent a basis set of the Hilbert space too.

Attending to a band diagram, a Bloch band is considered isolated if never crosses the bands above or
below it, in other words, the band does not exhibit degeneracy with another band at any point within the
Brillouin zone. However, if a collection of bands are interconnected by degeneracies and simultaneously
do not intersect with bands lower or higher in energy, they constitute a composite group. For the sake of
simplicity, we are going to consider the case of one isolated band, meaning that the band never crosses
the bands above or below it. Taking the Bloch function ψn⃗k(⃗r) linked to the n index band and wave vector
k⃗, and the Wannier function labeled by a cell index R⃗ and a band-like index n, χnR⃗(⃗r), we can go from
reciprocal space to real space by

∣∣χnR⃗

〉
=

Vcell

(2π)3

ˆ
BZ

d⃗ke−i⃗k·R⃗ ∣∣ψn⃗k

〉
. (1.23)

The inverse transformation is given by

∣∣ψn⃗k

〉
= ∑

R⃗

e−i⃗k·R⃗ ∣∣χnR⃗

〉
. (1.24)

This is an special case of an unitary transformation where Vcell is the volume of the primitive unit cell
and the integral is defined in the Brillouin zone (BZ). Consequently, we can view the Bloch and Wannier
functions as providing two different basis sets describing the same manifold of states associated with the
electronic band in question.
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Figure 1.4: Bloch and Wannier functions for a chain of atoms in 1D (blue dots). Left: Bloch functions of a
single band for three different values of k. The green curves show the envelopes eikx of the Bloch functions.
Right: Wannier functions obtained for the same band, producing periodic images of one another. Reprinted with
permission from Ref. [65].

1.4.2 Properties

Among the properties of the Wannier functions in the single band case, we can stand out the following,
as nicely summarized in Ref. [63].

• The Wannier functions are localized in real space. A Wannier function associated with a band n can
be understood as a function localized in a specific unit cell, labelled by the vector R⃗ in the subscript.
While it is primarily centered in this unit cell, its tails may extend into neighboring unit cells. As a
result, the amplitude of the Wannier function gradually decays with increasing distance from the unit
cell where it is localized. That is∣∣χnR⃗(⃗r)

∣∣→ 0 as |⃗r− R⃗| gets larger. (1.25)

As result, they are perfect to generate range-limited models.
• In real space, a Wannier function can be defined at each unit cell, with the functions in different unit

cells being translationally equivalent to one another,

χnR⃗(⃗r) = χn R⃗+R⃗′ (⃗r+ R⃗′). (1.26)

Or more formally

|χn R⃗+R⃗′⟩= T⃗R′ |χnR⃗⟩ (1.27)

where T⃗R′ is the operator that translates the system by a lattice vector R⃗′.
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Proof. Applying the definition of a Wannier function, Eq. (1.23),

χn R⃗+R⃗′ (⃗r+ R⃗′) =
Vcell

(2π)3

ˆ
BZ

d⃗ke−i⃗k·(R⃗+R⃗′)
ψn⃗k(⃗r+ R⃗′), (1.28)

The Bloch theorem states ψn⃗k(⃗r+ R⃗′) = ei⃗k·R⃗′ψn⃗k(⃗r), resulting

χn R⃗+R⃗′ (⃗r+ R⃗′) =
Vcell

(2π)3

ˆ
BZ

d⃗ke−i⃗k·(R⃗+R⃗′)ei⃗k·R⃗′
ψn⃗k(⃗r) =

=
Vcell

(2π)3

ˆ
BZ

d⃗ke−i⃗k·R⃗
ψn⃗k(⃗r) = χnR⃗(⃗r)

(1.29)

• The Wannier functions form an orthonormal basis set,〈
χmR⃗′

∣∣χnR⃗

〉
= δR⃗′R⃗δmn. (1.30)

• The Wannier functions span the same subspace of the Hilbert space as is spanned by the Bloch func-
tions from which they are constructed. To elucidate this property, let us define Pn as the projector
operator onto band n. This operator can then be expressed as,

Pn =
Vcell

(2π)3

ˆ
BZ

∣∣ψn⃗k

〉〈
ψn⃗k

∣∣d3k = ∑
R⃗

∣∣χnR⃗

〉〈
χnR⃗

∣∣ . (1.31)

From this it follows that the total charge density in real space ρn(r) in band n is the same when
computed in every representation,

ρn(⃗r) =−e ⟨⃗r|Pn |⃗r⟩=−e
Vcell

(2π)3

ˆ
BZ

∣∣ψn⃗k(⃗r)
∣∣2d3k =−e∑

R⃗

∣∣χnR⃗(⃗r)
∣∣2. (1.32)

Figure 1.5: Schematic representation of three aligned Wannier functions, χnR(x), corresponding to band n in a one-
dimensional crystal characterized by a lattice constant a. The solid curve is associated with the Wannier function
in the reference unit cell R = 0, while the dotted and dashed curves illustrate those located in the unit cells at
positions R = −a and R = a, respectively. The Wannier functions are translationally invariant of one another and
orthonormal. This picture has been adapted from Ref. [63].
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All these properties are illustrated in the schematic representation of Fig. 1.5 for a simple one-dimensional
case. The lattice constant of the unit cell is denoted by a. In this diagram, it is evident how the Wannier
functions are centered within a specific unit cell in real space, are normalized, and exhibit localization.
Additionally, neighboring Wannier functions are periodic images of each other. Notably, the functions
also include regions of negative amplitude, ensuring that the scalar product between adjacent Wannier
functions vanishes. This orthogonality arises from the cancellation of contributions with opposite signs
in the integral over x.

All the equations and properties above can be generalized to the case of isolated band manifolds.

1.4.3 Gauge freedom

The Wannier functions are strongly non-unique as a consequence of the phase indeterminacy of Bloch
orbitals. There exists a “gauge” freedom in the definition of the Bloch functions. For instance, a Bloch
function ψn⃗k(⃗r) can be replaced by another Bloch function ψ̃n⃗k(⃗r) where a phase factor has been intro-
duced, ∣∣ψ̃n⃗k

〉
= eiϕn (⃗k)

∣∣ψn⃗k

〉
(1.33)

considering the periodic part of the Bloch function the previous definition is equivalent to∣∣ũn⃗k

〉
= eiϕn (⃗k)

∣∣un⃗k

〉
(1.34)

where ϕn(⃗k) is a real function periodic in the reciprocal space. The replacement of the Bloch function∣∣ψn⃗k

〉
by the Bloch function

∣∣ψ̃n⃗k

〉
does not change the physical properties of the problem.

However, the gauge freedom in Bloch functions, Eqs. (1.33) and (1.34), has an impact in the Wannier
functions definition. In other words, the spread and the shape of the Wannier functions depend on the
ϕn(⃗k) phase. An important consideration is that the Schrödinger equation does not specify a particular
gauge for the Bloch functions. As a result, the non-uniqueness of the Wannier functions emerges from
Eq. (1.23) as a consequence of the gauge freedom of the Bloch functions.

To identify a specific set during the construction of Wannier functions in an insulating material, it is
essential to apply a rigorously defined localization criterion. In this work, we present the two most com-
monly employed methodologies: maximally localized Wannier functions (MLWFs) [66] and Wannier
functions obtained through projection, following the framework of Ref. [67]. Both approaches will be
discussed in detail in the subsequent Secs. 1.4.5 and 1.4.6.

1.4.4 Multiband case

Until now, we have worked on the isolated band case. However, bands can display nonanalytic be-
haviours as crossings with other bands and singularities. This complexity is particularly observed in the
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top of the valence band [in blue attending to Fig. 1.6(a)] and the bottom of the conduction band [in green
regarding Fig. 1.6(a)] of the cubic paraelectric phase of SrTiO3.

Figure 1.6: (a) Electronic band structure of SrTiO3 in the cubic phase at the equilibrium lattice constant. The
diagram displays the bands corresponding to the Sr 4p semicore levels (orange), the O 2s (red) and 2p (blue)
valence states, and the Ti 3d conduction bands, with t2g and eg symmetries represented in green and magenta,
respectively. The energy zero point is set to the top of the valence band. (b) Projected density of states (PDOS)
for cubic SrTiO3 at the equilibrium lattice constant. Contributions from O 2s (red), O 2p (blue), Ti t2g (green), Ti
eg (magenta), and Sr 4p semicore (orange) states are shown. (c) Real-space representation of maximally localized
Wannier functions: two orbitals with dominant O p-like character at the top of the valence band, and one Ti-
centered orbital with predominant d-character associated with the bottom of the conduction.

To address this issue, we have moved away from the concept of isolated bands and we consider multiband
manifolds defined as a set of J consecutive energy bands, covering an energy range, with the possibility
of exhibiting internal crossing and degeneracies among them, but that do not become degenerate with
any lower or higher band outside of the energy range anywhere in the Brillouin zone. The energy degen-
eracies observed at band crossings leading to non-analytic behavior generate poorly localized functions
under the Fourier transform. Consequently, for a band manifold is not possible to directly insert the
Bloch functions obtained from the electronic structure calculation, {|ψnR⃗⟩}, into Eq. (1.23).

Nevertheless, well localized Wannier functions can still be constructed if we abandon the idea that each
Wannier function should be associated with one and only one energy band. The proposed solution
consists of defining a unitary transformation, U (⃗k), which transforms the original Bloch functions |ψn⃗k⟩,
typically non-smooth in the Brillouin zone (BZ), into Bloch-like functions that are smooth in k⃗-space
(i.e. they satisfy the smoothness condition: ∇⃗k|ψ̃n⃗k⟩ is regular at all k⃗). These Bloch-like functions are
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represented by |ψ̃n⃗k⟩ and are computed as

∣∣ψ̃n⃗k

〉
=

J

∑
m=1

Umn(⃗k)
∣∣ψm⃗k

〉
. (1.35)

The resulting ψ̃n⃗k are no longer, in general, eigenstates of H. According to the unitary rotation matrices
U (⃗k), they are defined at each k⃗-point within the Brillouin zone (BZ), possess a dimensionality of J, and
exhibit periodicity in reciprocal space.

As a result, the Wannier orbitals set {
∣∣χnR⃗

〉
} represents each one of the J bands composing a manifold

and spans the same subspace as the Bloch functions {|ψn⃗k⟩} considered as a group, {|ψ̃n⃗k⟩}∣∣χnR⃗

〉
=

Vcell

(2π)3

ˆ
BZ

d⃗ke−i⃗k·R⃗ ∣∣ψ̃n⃗k

〉
. (1.36)

The unitary rotation U (⃗k) represents a gauge transformation. Then, Eq. (1.35) is replaced in Eq. (1.36)
resulting ∣∣χnR⃗

〉
=

Vcell

(2π)3

ˆ
BZ

e−i⃗kR⃗
J

∑
m=1

Umn(⃗k)
∣∣ψm⃗k

〉
d⃗k. (1.37)

For instance, revisiting the case of SrTiO3, the manifold formed by the top of the valence band is con-
formed by J = 9 bands while the bottom of the conduction band is composed by J = 3 bands.

1.4.5 Wannier functions via projection

To construct smooth and well-localized Wannier functions, one effective approach is to use projections
over atomic-like orbitals. This method begins by considering N localized trial orbitals of the simulation
cell (R⃗ = 0⃗) {φn(⃗r)} which typically corresponds to the number of resulting Wannier functions. These
trial orbitals serve as initial guesses or “seeds” for the Wannier functions, and are chosen to reflect the
chemical and physical nature of the bands comprising the manifold of interest. The primary requirement
for these orbitals is their localization in real space, justifying their atomic-like character.

In particular, in the context of using WANNIER90 as a post-processing tool with SIESTA software, which
is the method employed in this work, the trial orbitals φn(⃗r) are selected as the atomic-like numerical
orbitals from SIESTA basis set. The basis set in SIESTA in real space, and thus, the trial orbital φn(⃗r)
refers to this real-space representation.

In general, to compute Wannier functions through projection, one begins considering the definition pro-
vided in Eq. (1.23), where Wannier functions are expressed as the Fourier transform of Bloch states[68].
In order to perform the projection of Bloch functions onto the trial atomic-like orbitals φn the first step
is to express these trial orbitals in reciprocal space using a Fourier transform. This process must ac-
count for the translational symmetry of the crystal, which introduces periodic replicas of the trial orbitals
φn(⃗r− R⃗). For compactness of notation, the atomic-like orbitals will be expressed as

φn(⃗r− R⃗)≡ φnR⃗, (1.38)
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∣∣φn⃗k

〉
= ∑

R⃗

ei⃗k·R⃗ ∣∣φnR⃗

〉
. (1.39)

At this stage, the objective is to determine the Wannier functions that most closely approximate the given
basis set. This is achieved by projecting the states {

∣∣φn⃗k

〉
} onto the Bloch manifold. With respect to the

wavevector k⃗, this projection yields ∣∣ϕn⃗k

〉
=

J

∑
m=1

∣∣ψm⃗k

〉
⟨ψm⃗k|φn⃗k⟩. (1.40)

Although
∣∣ϕn⃗k

〉
functions are smooth in reciprocal space, they would not be orthonormal. To solve this

problem, the solution is based on considering the overlap matrix (S⃗k)mn = ⟨ϕm⃗k|ϕn⃗k⟩V where V refers to
an integral over one cell. As a result

|ψ̃n⃗k⟩=
N

∑
l=1

∣∣ϕl⃗k

〉
(S−1/2

k⃗
)ln =

N

∑
l=1

∣∣ϕl⃗k

〉〈
ϕl⃗k|ϕn⃗k

〉−1/2
=

N

∑
l=1

[
J

∑
m=1

∣∣ψm⃗k

〉〈
ψm⃗k|φl⃗k

〉]〈
ϕl⃗k|ϕn⃗k

〉−1/2
=

=
J

∑
m=1

[
N

∑
l=1

〈
ϕl⃗k|ϕn⃗k

〉−1/2 〈
ψm⃗k|φl⃗k

〉]∣∣ψm⃗k

〉
=

J

∑
m=1

Umn(⃗k)
∣∣ψm⃗k

〉
, (1.41)

so that the Löwdin transformation is expressed as

Umn(⃗k) =
N

∑
l=1

〈
φl⃗k|φn⃗k

〉−1/2 〈
ψm⃗k|φl⃗k

〉
. (1.42)

Wavefunctions |ψ̃n⃗k⟩ in Eq. (1.41) represent the Löwdin orthonormalized Bloch-like states. As a result,
the new states |ψ̃n⃗k⟩ are related to the original Bloch-states |ψn⃗k⟩ by a unitary transformation. They
represent the Bloch-like states the most similar to the atomic orbitals.

Once we have obtained Bloch-like states with a smooth gauge in k⃗, these states can be substituted into
Eq. (1.23).

The Bloch-like states ψ̃n⃗k are uniquely defined by the selected manifold and the trial orbitals. According
to Eq. (1.40), if a phase factor is introduced by employing a Bloch function |ψ ′

m⃗k
⟩= eiβ |ψm⃗k⟩, it is

canceled out by the term ⟨ψ ′
m⃗k
|. As a result, the gauge freedom is eliminated.

As an example, Fig. 1.6(c) illustrates some of the Wannier functions obtained for SrTiO3, specifically
two p-orbitals of oxygen atoms and a t2g-orbitals centred on titanium atoms, obtained through projections
onto a basis set comprising trial SIESTA orbitals, denoted as |φµ⟩. This basis set enables the construction
of well-localized Wannier functions that span the top nine occupied valence bands and the bottom t2g

empty conduction bands.

1.4.6 Maximally localized Wannier functions

Marzari and Vanderbilt developed a localization criterion in order to define a methodology to generate
well-defined Wannier functions eliminating the phase indeterminacy [68]. The methodology is based
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on the minimization of the spread of the Wannier functions. For a Wannier function χn⃗0 the spread of
a Wannier function represents the mean square variation of the Wannier electron density away from its
mean position (centres of the Wannier functions), r⃗n = ⟨χn⃗0|r̂|χn⃗0⟩,

Ωn⃗0 = ⟨χn⃗0|r2|χn⃗0⟩− ⟨χn⃗0|r̂|χn⃗0⟩
2 . (1.43)

The localization functional is defined as the sum of the quadratic spreads of the Wannier functions of the
simulation cell (R⃗n = 0) around their centers, resulting

Ω = ∑
n

[
⟨χn⃗0|r2|χn⃗0⟩− ⟨χn⃗0|r̂|χn⃗0⟩

2
]
. (1.44)

In order to minimize the spread, Ω, the first step consist on expressing the functional as a function
of Bloch-orbitals by means of the expression Eq. (1.37). This step is perform as a post-processing
methodology. The ground state Bloch functions |ψm⃗k⟩ are obtained in a self consistency convergence
in a conventional electronic structure calculation. The minimization of the spread is focused on the
definition of the unitary rotations Umn(⃗k) (parameters of the minimization) which minimizes the spread
of the Wannier functions.

1.4.7 Mapping hamiltonian matrix elements from SIESTA basis to Wannier basis

To determine the energy bands of a system, it is necessary to solve the Norb×Norb complex eigenvalue
problem defined in Eq. (1.21) for every k⃗-point in the reciprocal space mesh. Here, Norb denotes the total
number of atomic orbitals in the unit cell, which directly determines the dimensionality of the problem.
Solving this eigenvalue equation yields two key results: the eigenvalues, representing the energy levels of
the system, and the eigenvectors, corresponding to the Bloch wavefunctions associated with these energy
levels. The Bloch wavefunctions are expressed as linear combinations of the atomic orbitals within the
SIESTA basis set, capturing the periodic nature of the crystal and the quantum mechanical behavior of
the electrons. According to Eq. (43) of Ref. [38],

∣∣ψm⃗k

〉
= ∑

µ ′
ei⃗k·R⃗

µ ′ cµ ′m(⃗k)
∣∣φµ ′

〉
, (1.45)

where the sum in µ ′ extends over all the atomic orbitals in space, and cµ ′n ≡ cµn if µ ′ ≡ µ (this notation
indicates that φµ ′ and φµ are equivalent orbitals, related by a lattice vector). Here replacing Eq. (1.45)
into Eq. (1.37), and making use of Eq. (21) of Ref. [65],

V
(2π)3

ˆ
d⃗k→ 1

N ∑
k⃗

(1.46)
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then

|χnR⃗⟩=
1
N ∑

k⃗

e−i⃗k·R⃗
J

∑
m=1

Umn(⃗k)

(
∑
µ ′

ei⃗k·R⃗
µ ′ cµ ′n(⃗k)

∣∣φµ ′
〉)

= ∑
µ ′

(
∑
k⃗

J

∑
m=1

1
N

Umn(⃗k)ei⃗k·(R⃗
µ ′−R⃗)cµ ′n(⃗k)

)∣∣φµ ′
〉

= ∑
µ ′

T
µ ′nR⃗

∣∣φµ ′
〉
.

(1.47)

The preceding expression has been derived by generalizing to a manifold consisting of J bands.

From hamiltonian matrix elements expressed in numerical atomic orbitals it is possible to obtain the
hamiltonian matrix elements expanded in Wannier functions basis set.

〈
χmR⃗′

∣∣H∣∣χnR⃗

〉
=

〈
∑
µ ′

T
µ ′mR⃗′φµ ′

∣∣∣∣∣H
∣∣∣∣∣∑

ν ′
T

ν ′nR⃗φν ′

〉
= ∑

µ ′
∑
ν ′

T ∗
µ ′mR⃗′Tν ′nR⃗

〈
φµ ′
∣∣H |φν ′⟩

= ∑
µ ′

∑
ν ′

T ∗
µ ′mR⃗′Tν ′nR⃗Hµ ′ν ′ .

(1.48)

1.5 Tight binding in Wannier functions

As previously mentioned, the band structure can be represented within a Wannier function basis. In
this section, we address this formulation following the approach presented in Ref. [63]. For the sake of
simplicity, we assume again the case of isolated bands, a manifold composed by one band. It can be
proved that 〈

χn⃗0

∣∣H∣∣χnR⃗

〉
= EnR⃗, (1.49)

where
EnR⃗ =

Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗En⃗kd3k, (1.50)

so the diagonal elements between Wannier functions are the coefficients in the Fourier expansion of the
band energy. From a practical point of view, these matrix elements can be obtained from the knowledge
of the band structure, the k⃗-points sampling and the volume of the unit cell, Vcell. These operations
are done within the WANNIER90 code. Deeming a physical perspective, Eq. (1.49) represents the same
matrix elements in real space as shown in Fig. 1.3, but in a basis of Wannier functions and not in atomic
orbitals. Then, applying the inverse Fourier transform we can compute the band structure in the reciprocal
space knowing the Hamiltonian matrix elements written in a basis of Wannier functions,

En⃗k = ∑
R⃗

ei⃗k·R⃗EnR⃗. (1.51)

Analyzing Eq. (1.51), it is formally the same as the Hamiltonian matrix expressed in a basis of Bloch-like
basis functions. In other words, the Wannier functions provide an exact tight-binding representation of
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the dispersion En⃗k of band n where tight binding on-site energy is obtained by EnR⃗=0 and the hoppings
are given by EnR⃗ to its neighbor located at R⃗.

Equation (1.51) is exact and, by construction, accurately reproduces the band dispersion. From a compu-
tational point of view, performing an infinite summation is not feasible. However, owing to the localized
character of the Wannier functions, the hopping matrix elements decay rapidly with increasing distance.
As a result, only a limited number of hopping terms need to be retained in practice,

En⃗k ≈ ∑
|R⃗|<δ rh

ei⃗k·R⃗EnR⃗, (1.52)

where δ rh is a radius cutoff designed as cutoff-h. This approximation is systematically convergent. In
order to obtain a better representation of the band diagram, the increasing of the δ rh value is enough
being the asymptotically limit of the bands the ones obtained by the Bloch orbitals.

The expression presented in Eq. (1.51) was derived from the Wannierization of an isolated band. How-
ever, in many practical scenarios, one must consider the Wannierization of a group of entangled bands,
particularly when band crossings occur within a given manifold, as discussed in Sec. 1.4.4. In such
cases, the interpretation of Eq. (1.51) can be extended to encompass entire band manifolds, following
the formalism outlined in Ref. [63]. In the case of the study of a manifold composed for a J bands, the
Eq. 1.49 is also satisfied.

However, as discussed in Sec. 1.4.4, these bands may be associated to Bloch functions which exhibit
non-analytic behavior. Consequently, it becomes necessary to construct analytic Bloch-like functions,
ψ̃m⃗k to enable a well-defined Wannier representation. In such basis set, the Hamiltonian matrix is not
diagonal,

H̃mn⃗k =
〈
ψ̃m⃗k

∣∣H ∣∣ψ̃n⃗k

〉
. (1.53)

The terms H̃mn⃗k represent the matrix elements of a J×J Hamiltonian matrix. Then, instead of Eq. (1.51),
we compute the energies solving the secular equation

det
[
H̃mn⃗k−En⃗k

]
= 0. (1.54)

constructed by considering

H̃mn⃗k = ∑
R⃗

ei⃗k·R⃗HmnR⃗, (1.55)

where

HmnR⃗ = ⟨χm⃗0|H|χnR⃗⟩ . (1.56)

At this point, in order to study the relation between the Hamiltonian matrix elements HmnR⃗ and the
energies in Eq. (1.49). We begin by considering the basis set of Bloch functions, denoted as {ψn⃗k} where
n = 1, . . . ,J. This basis is assumed to be orthonormal within the simulation cell, with a volume Vcell. As
a result, the corresponding periodic parts of the Bloch functions, {un⃗k}, also satisfy the orthonormality
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condition within the same domain,
ˆ

Vcell

∣∣ψn⃗k

∣∣2d3r =
ˆ

Vcell

∣∣un⃗k

∣∣2d3r = 1. (1.57)

In the following reasoning has been taken into account the periodicity of {un⃗k} functions,

〈
ψm⃗k

∣∣ψn⃗k′
〉
=

ˆ
R

e−i(⃗k −⃗k′)·⃗ru∗
m⃗k
(⃗r)un⃗k′ (⃗r)d

3r

= ∑
R⃗

ˆ
cell

e−i(⃗k −⃗k′)·(R⃗+⃗r)u∗
m⃗k
(⃗r+ R⃗)un⃗k′ (⃗r+ R⃗)d3r

= ∑
R⃗

ˆ
cell

e−i(⃗k −⃗k′)·(R⃗+⃗r)u∗
m⃗k ′

(⃗r)un⃗k(⃗r)d
3r

=

(
∑
R⃗

e−i(⃗k −⃗k′)·R⃗
)ˆ

cell
e−i(⃗k −⃗k)·⃗ru∗

m⃗k
(⃗r′)un⃗k(⃗r)d

3r

=
(2π)3

Vcell
δ (⃗k − k⃗′)

ˆ
cell

u∗
m⃗k ′

(⃗r)un⃗k(⃗r) d3r =

=
(2π)3

Vcell
δ (⃗k − k⃗′)

ˆ
cell

u∗
m⃗k ′

(⃗r)un⃗k(⃗r) d3r =
(2π)3

Vcell
δ (⃗k − k⃗′) δmn.

(1.58)

Once this characteristic of the Bloch function is fixed, we compute the Hamiltonian matrix elements
expressed in a Wannier functions basis set

HmnR⃗ =
〈
χm⃗0

∣∣H ∣∣χnR⃗

〉
, (1.59)

|χnR⃗⟩=
Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗|ψ̃n⃗k⟩d⃗k =
Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗
J

∑
p=1

Upn(⃗k)|ψp⃗k⟩d⃗k, (1.60)

|χm⃗0⟩=
Vcell

(2π)3

ˆ
BZ
|ψ̃m⃗k ⟩d⃗k =

Vcell

(2π)3

ˆ
BZ

J

∑
l=1

Ulm(⃗k′)|ψl⃗k ⟩d⃗k ′, (1.61)

〈
χm⃗0

∣∣H ∣∣χnR⃗

〉
=

V 2
cell

(2π)6

ˆ
BZ

ˆ
BZ

e−i⃗k·R⃗
J

∑
l=1

J

∑
p=1

U†
ml (⃗k

′)Upn(⃗k)
〈
ψl⃗k ′

∣∣H|ψ p⃗k⟩d⃗k′ d⃗k =

=
V 2

cell
(2π)6

ˆ
BZ

ˆ
BZ

e−i⃗k·R⃗
J

∑
l=1

J

∑
p=1

U†
ml (⃗k

′)Upn(⃗k)E p⃗k⟨ψl⃗k ′
∣∣ψp⃗k⟩d⃗k′ d⃗k =

=
V 2

cell
(2π)6

ˆ
BZ

ˆ
BZ

e−i⃗k·R⃗
J

∑
l=1

J

∑
p=1

U†
ml (⃗k

′)Upn(⃗k)E p⃗k
(2π)3

Vcell
δ (⃗k − k⃗′)δl p d⃗k′ d⃗k =

=
Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗
J

∑
p=1

U†
mp(⃗k)Upn(⃗k)Ep⃗kd⃗k.

(1.62)

Finally, we obtain the relation between the Hamiltonian matrix elements expressed in a Wannier func-
tions basis set and the energy bands,

HmnR⃗ =
Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗
J

∑
p

U†
mp(⃗k)Upn(⃗k)Ep⃗kd⃗k. (1.63)
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If the Brillouin zone is discretized, applying Eq. (1.46),

HmnR⃗ =
1
N

N−1

∑
j=0

e−i⃗k·R⃗
J

∑
p

U†
mp(⃗k)Upn(⃗k)Ep⃗k =

1
N

N−1

∑
j=0

e−i⃗k·R⃗H̃mn⃗k. (1.64)

Finally, equivalently with Eq. (1.52) a δ rh cutoff can be applied,

Hmn⃗k ≈ ∑
|R⃗|<δ rh

ei⃗k·R⃗HmnR⃗. (1.65)

An important consideration related to the Wannierization procedure is that we can restrict our bands to
the treatment of the set of active electrons in our problem. That means we can wannierize and keep in our
calculations only the bands that really play a role in the physical problem under study. For example, in
the case of the polaron existence which we are interested in, it will be enough to keep the top-valence and
the bottom-conduction bands related to the O 2p and Ti t2g characters respectively. This leads to a tight
binding model integrated by 12 bands per unit cell, in contrast to first-principles calculations, performed
with 72 bands per unit cell, arising a high reduction of the computational cost.

Finally, we must hightlight that from the point of view of the band manifold study, the Wannier functions
maintain the orthonormality already expressed in the isolated band case, Eq. (1.30). As a result, for a
basis set composed by Wannier functions the overlap matrix S is the identity,

Smn(R⃗) =
〈
χmR⃗′

∣∣χnR⃗

〉
= δR⃗′R⃗δmn. (1.66)

1.6 Disentanglement

In the preceding sections, we described the procedure for Wannierize isolated bands or groups of bands
forming a manifold that is energetically separated from other bands across the entire Brillouin zone by
well-defined energy gaps [65]. However, in certain systems, even when considering entangled bands
within manifolds, achieving such separation is not always feasible.

One illustrative example is the case of SrTiO3, a material studied in this work. As previously mentioned,
the focus is on the valence bands with oxygen p-character and the conduction bands with t2g-character.
Analyzing the band structure, as shown in Fig. 1.6(a), it is evident that the valence band manifold does
not overlap with any other bands across the Brillouin zone. On the other hand, the conduction bands
exhibit a different behavior: although the titanium t2g bands appear isolated at first glance, they cross
in energy with the titanium eg bands. This crossing becomes more pronounced near the Γ-point and its
vicinity when examining the band structure of a 2×2×2 supercell, as depicted in Fig. 1.8. This figure
shows the fat bands plot of the conduction band, where the width of the band is modulated based on
the contribution of a particular orbital to that band at each k⃗-point. Due to the crossing between t2g and
eg bands, disentanglement [69] is required during Wannierization to separate the t2g bands from the eg

bands within the energy window of interest.
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When bands are entangled, the target bands for Wannierization overlap with other states above or be-
low the desired energy range, leading to hybridization. In SrTiO3, the top eigenvalues of the t2g bands
hybridizes with the lower-energy eg states. Addressing such situations requires a careful selection of
the energy window and the associated J-dimensional Bloch manifold, which corresponds to the states
we aim to wannierize and from which J Wannier functions will be constructed. Consequently, selecting
the energy window for the Wannierization of the bottom of the conduction band requires performing a
disentanglement procedure to separate the eg bands from the t2g bands.

The disentanglement procedure [69] involves constructing J smooth Bloch-like states
∣∣ψ̃n⃗k

〉
by combin-

ing contributions from all bands within the selected energy window, which is referred to as the “outer
window”. At each k-point, the Jk⃗ Bloch states that fall within this energy range are identified, and
a unitary transformation is applied to these states to produce the desired number of smooth Bloch-like
states, corresponding to the number of Wannier functions being sought. The transformation is expressed
as, ∣∣ψ̃n⃗k

〉
=

Jk⃗

∑
m=1

Umn(⃗k)
∣∣ψm⃗k

〉
, (1.67)

where U (⃗k) is a rectangular Jk⃗×J matrix. This matrix is determined by ensuring that the resulting states
are as smooth as possible across k⃗-space, according to Ref. [65]. By carefully tailoring this process, the
disentanglement ensures that the target bands are extracted cleanly, free from unwanted hybridization
with nearby states.

In the SrTiO3 system, the outer energy window is defined to encompass both the t2g and eg bands. The
upper and lower bounds of this energy window are chosen as illustrated in Fig. 1.7.

To refine the disentanglement, an additional “inner window” can be defined, within which certain Bloch
states are preserved exactly in the projected manifold. This approach prevents unwanted mixing of
higher-energy states that possess some t2g-character into the t2g manifold. The energy window is illus-
trated in Fig. 1.7.

The projection process involves selecting J trial orbitals φn, which are used as a basis to construct the
smooth Bloch-like states. At each k-point, the selected Bloch states are projected onto these trial orbitals,

∣∣ϕn⃗k

〉
=

Jk⃗

∑
m=1

∣∣ψm⃗k

〉〈
ψm⃗k | φn

〉
, (1.68)

where φn are the trial functions.

For SrTiO3, selecting an energy window targeting the t2g bands and projecting onto t2g orbitals can
inadvertently include higher-energy, undesired states with significant t2g-character. By enforcing a frozen
inner window, this mixing is avoided, and the t2g manifold is accurately preserved. As illustrated in
Fig. 1.7 in red dashed lines, this approach reproduces the three t2g bands faithfully, demonstrating the
effectiveness of the procedure.
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Figure 1.7: Electronic band structure of the cubic paraelectric phase of SrTiO3, with emphasis on the bottom
of the conduction band for the purpose of applying the disentanglement procedure. This approach is necessary
to address the energy overlap between the t2g bands (shown in green) and the eg bands. The outer energy win-
dow spans the range −6.0 eV≤ E ≤ 2.0 eV, while the inner energy window corresponds to the narrower interval
−6.0 eV≤ E ≤−3.0 eV, within which the Bloch states |ψn⃗k⟩| are kept fixed. Superimposed on the DFT bands
computed with SIESTA are the bands employing a Wannier functions basis set (in red), obtained applying the dis-
entanglement procedure.

Figure 1.8: (a) Fat band representation of the conduction band for the cubic centrosymmetric phase of the SrTiO3

system, computed using a 2×2×2 supercell. The fat bands representation for the bottom of the conduction band
is provided, highlighting 24 bands with t2g character (corresponding to three d-orbitals per titanium atom across
eight titanium atoms) and 16 bands with eg character (arising from two d-orbitals per titanium atom across eight
titanium atoms), shown in magenta. Panels (b) and (c) show the isolated contributions from the t2g and eg orbitals,
respectively.
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Chapter 2

Band structure representation using
Hamiltonian matrix elements in the
Wannier basis

2.1 Practical Study of WANNIER90: Internal Mechanisms of the Code

A byproduct of the Wannierization of Bloch band manifolds using the WANNIER90 code is the com-
putation of the tight-binding matrix elements of the Hamiltonian, as well as the matrix elements of the
position operator, all expressed in the Wannier function basis,

HmnR⃗ = ⟨χm⃗0|H|χnR⃗⟩. (2.1)

In Eq. (2.1), one of the Wannier functions is centered in the home unit cell (χm⃗0), while the other resides
in a replica unit cell used to construct a supercell (χmR⃗). The replica’s origin is shifted by a Bravais vector
R⃗ relative to the home unit cell. The size of the supercell is determined by the number of k⃗-points used
during the Wannierization process. The final expression used to compute HmnR⃗ was discussed in Sec. 1.5,
more precisely in Eq. (1.64).

In this chapter, we will describe the construction of this supercell and examine the convergence of the
tight-binding matrix elements concerning the sampling of reciprocal space.

2.1.1 Simulation box

Let’s begin our discussion by defining the simulation box as the unit cell used to perform calculations
in the first-principles code. This box can be the primitive cell, the conventional cell, or any other con-
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figuration deemed suitable for a specific problem by the user. Obviously, smaller simulation boxes lead
to faster first-principles calculations. However, due to the application of periodic boundary conditions, a
small simulation box may lack the flexibility needed to accommodate significant lattice distortions. For
example, oxygen octahedra rotations in perovskites cannot be accurately modeled using a simulation box
that contains only five atoms per unit cell.

To clarify these concepts and the notation used in this thesis, Fig. 2.1 presents a schematic representation
of a square lattice (it can be trivially generalized to a three-dimensional lattice).

In Fig. 2.1(a), the simulation box (outlined by the red square) corresponds to the primitive unit cell,
containing a single atom in the basis. The Bravais lattice vectors are labeled as a⃗1 and a⃗2. Assuming
each atom hosts a single Wannier function, the simulation box contains only one Wannier function,
denoted as χm1 ,⃗0

(⃗r). According with the properties of the Wannier functions described in Sec. 1.4.2,
the Wannier functions are translational images of one another. That means that for any lattice vector
R⃗ = ℓ1⃗a1 + ℓ2⃗a2, where ℓ1 and ℓ2 are a couple of integers, then there is an image of χm1 ,⃗0

(⃗r) centered on
R⃗, that will be denoted as χm1,R⃗

(⃗r).

(a) (b)

y

x

R⃗

a⃗ 2

a⃗1

χssb
m1 ,⃗0

χssb
m1,(1,0)

χ lsb
m1 ,⃗0

= χssb
m1 ,⃗0

χ lsb
m2 ,⃗0

= χssb
m1,(1,0)

R⃗′

a⃗′ 2

a⃗′1

Figure 2.1: Bidimensional system where the primitive cell is a square containing a dxy Wannier function. The prim-
itive cells in the diagram are delineated by dashed lines. Two possible simulation boxes are illustrated (highlighted
in red). In panel (a), the selected simulation box corresponds to the primitive cell (denoted as the small simulation
box, ssb), which is characterized by lattice vectors a⃗1 and a⃗2 and contains a single Wannier function, denoted χssb

m1 ,⃗0
.

In panel (b), the selected simulation box encompasses four primitive cells (denoted as the large simulation box,
lsb), defined by lattice vectors a⃗1

′ and a⃗2
′. This box contains four Wannier functions: χ lsb

m1 ,⃗0
, χ lsb

m2 ,⃗0
, χ lsb

m3 ,⃗0
, and

χ lsb
m4 ,⃗0

. Using explicit symmetry constraint on the unitary transformation matrices, the unit cell consistency can be

rigorously preserved, so χ lsb
m2 ,⃗0

= χssb
m1,(1,0)

. For both cases, a translational image of the simulation box, located at a

lattice vector R⃗ and R⃗′, is shaded in green.
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In some cases, it may be advantageous to enlarge the simulation box. This is illustrated in Fig. 2.1(b),
where a larger square, now containing four atoms in the basis, is selected (again outlined in red). Con-
sequently, the simulation box now accommodates four Wannier functions, labeled as mi, with i ranging
from 1 to 4. Using explicit symmetry constraint on the unitary transformation matrices, the unit cell con-
sistency can be rigorously preserved [70]. That means that the physical properties or quantities of solids
resulted from electronic structure calculations should not depend on the specific choice of the unit cell.
That means that in Fig. 2.1(b), χ lsb

m2 ,⃗0
= χssb

m1,R⃗=(1,0)
, where “lsb” and “ssb” refer to the large simulation

box [Fig. 2.1(b)] and the small simulation box [Fig. 2.1(a)] respectively. In the large simulation box, the
translational images are determined by lattice vectors R⃗′ = ℓ1⃗a′1 + ℓ2⃗a′2, where a⃗′1 and a⃗′2 are the Bravais
lattice vectors that expand the larger simulation box. In our sketch, these lattice vectors are twice as large
as those of the primitive unit cell.

2.1.2 Relationship between Brillouin zone sampling and supercells in real space

The simulation boxes defined above are periodically replicated along all directions in real space, follow-
ing the methodology prescribed by the corresponding Bravais lattice vectors. Therefore, the potential
satisfies the imposed periodic boundary conditions,

V (⃗r) =V (⃗r+ R⃗), (2.2)

where R⃗ is a linear combination of the corresponding Bravais lattice vectors, as defined earlier. It follows
directly that the system remains invariant under the action of the translation operator T⃗R, which shifts
the entire system by the displacement R⃗ [63]. Consequently, the eigenvectors of the Hamiltonian must
obey Bloch’s theorem, as discussed in Sec. 1.3. These eigenvectors can be uniquely identified by a
continuous wave vector k⃗ within the first Brillouin zone and a discrete index n, referred to as the band
index. According to Bloch’s theorem, the eigenfunctions are given by the product of a function that
exhibits the same periodicity as the simulation cell and a phase factor determined by the wave vector k⃗,

ψn⃗k (⃗r) = ei⃗k·⃗run⃗k (⃗r) , (2.3)

where un⃗k (⃗r) = un⃗k(⃗r+ R⃗). From this condition, it immediately follows that

ψn⃗k (⃗r+ a⃗i) = ei⃗k·⃗aiψn⃗k (⃗r) . (2.4)

Since the system exhibits periodicity, the corresponding electronic density remains unchanged across all
replicas of the simulation box. This follows from the fact that the phase factors cancel out when com-
puting the modulus squared of the eigenfunction by multiplying it with its complex conjugate. However,
the eigenfunction itself is not inherently periodic within the simulation box, except at the special point
k⃗ = 0. Nevertheless, the wave function retains periodicity within a supercell in real space. Indeed, after
Eq. (2.4)

ψn⃗k(⃗r+ pa⃗i) = eip⃗k·⃗aiψn⃗k (⃗r) , (2.5)
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and therefore the wave function exhibits periodicity if k⃗ · a⃗i = 2πq/p, where p and q are integers.
Considering a simple one-dimensional system with a lattice constant a, this condition simplifies to
k = 2πq/(pa). For this case:

• If p = 2, the values of k for which ψnk is periodic are k = 0 (q = 0) and k = π/a (q = 1). The next
value, k = 2π/a (q = 2), is equivalent to k = 0, as they are related by a reciprocal lattice vector.
Similarly, k = 3π/a (q = 3) is equivalent to k = π/a. Consequently, a k-sampling of two points
within the simulation box is equivalent to sampling a supercell of the simulations box of size 2 at
the Γ point.

• For a larger integer p = 4, the wave function remains periodic for k = 0, k =±π/2a, and k = π/a.
Consequently, performing a k-sampling of four points within the original simulation box is equiva-
lent to sampling exclusively at the Γ point in a supercell of size 4.

Based on this analysis, we conclude that investigating the simulation box with a k⃗-point sampling of
N1,N2,N3 points within its Brillouin zone is mathematically equivalent to employing a supercell with
lattice vectors defined as A⃗i = Ni⃗ai, sampled solely at the Γ point. Consequently, the k⃗-point sampling in
reciprocal space corresponds to an equivalent Born–von Kármán supercell in real space.

In the thermodynamic limit, where the sampling of the first Brillouin zone within the reciprocal unit
cell becomes continuous (Ni→ ∞, i = 1,2,3), this is equivalent to performing a calculation at a single
k⃗-point within a supercell in real space that extends infinitely.

Γ

X
X

Brillouin Zone

Figure 2.2: Equivalence between k-space sampling in the first Brillouin zone of the primitive unit cell and real-
space simulations in a supercell. The simulation box, represented here as a periodic repetition of small squares
with lattice constant a, corresponds to the primitive unit cell in this simplified illustration. The associated first
Brillouin zone, with a size of 2π/a, extends from [−π/a,π/a]. Two distinct k-points are selected to sample the
one-dimensional Brillouin zone: X ≡ π/a (upper panel) and Γ = 0 (lower panel). In the first case (X point),
the wave function alternates in sign between adjacent unit cell replicas, as indicated by the color variation in the
upper panel. A phase recovery occurs after shifting by two unit cells. At the Brillouin zone center (Γ point), the
wave function remains unchanged in phase. Ultimately, both wave functions exhibit periodicity within a supercell
consisting of two repetitions of the primitive unit cell along the x-direction, effectively forming a Born-von Kármán
supercell, highlighted with thick lines.

To illustrate the transition from reciprocal space to real space, we are going to consider a one-dimensional
system, taken along the x cartesian direction, and we perform different k-samplings for a squared unit
cell. Firstly, we select a k-sampling of two points within the first Brillouin zone. The first one is the Γ
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point, characterized by the same phase in all unit cells (modulus 2π) colored in blue in picture Fig. 2.2.
The second one is the X = π/a point, where two consecutive cells are out of phase (blue positive phase
and red negative phase). Consequently, for the X point the wavefunction ψk is not periodic in the unit
cell but the wavefunction keeps the periodicity of the lattice in a supercell composed by two unit cells.
By this way, considering two k-points in the unit cell, it is equivalent to employ a Γ point in the supercell
composed by two unit cells. The equivalent representation for a k-sampling of four points within the
first Brillouin zone is shown in Fig. 2.3 where the equivalent Born-von Kármán supercell in real space
contains four unit cells.

Γ

X
Xπ

2a
− π

2a

Brillouin Zone

Figure 2.3: Same as in Fig. 2.2 but using four k-points to sample the first Brillouin zone: Γ = 0, X = π/a, and
k = ±π/2a. Now, the four corresponding wavefunctions exhibit periodicity within a supercell consisting of four
repetitions of the primitive unit cell along the x-direction.

2.1.3 k⃗-mesh sampling in the computation of Wannier functions

In the formal definition of a Wannier function as the Fourier transform of Bloch wave functions, the
integral over the entire Brillouin zone is inherently assumed, as already shown in Eq. (1.23), reproduced
here for the shake of clarity

∣∣χnR⃗

〉
=

Vcell

(2π)3

ˆ
BZ

d⃗k e−i⃗k·R⃗ ∣∣ψn⃗k

〉
. (2.6)

Nevertheless, from a computational perspective, directly evaluating this Brillouin zone integral is infea-
sible. Instead, it is commonly approximated by a summation over a finite set of selected k⃗-points. The
more general strategy for constructing these k⃗-point grids was introduced by Monkhorst and Pack [71].
The accuracy of this discretization scheme is intrinsically linked to the density of the k⃗-point sampling,
with finer grids systematically reducing the errors arising from the approximation of the continuous
integral.

From a mathematical standpoint, this methodology effectively substitutes the integral in Eq. (2.6) with a
discrete summation over the N k⃗-points composing the grid,
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Vcell

(2π)3

ˆ
BZ

d⃗k→ 1
N ∑

k⃗

w(⃗k), (2.7)

ensuring computational tractability while maintaining convergence towards the continuum limit. In this
substitution, Vcell denotes the volume of the simulation box, and w represents the weights assigned to the
k⃗-points.

From a practical perspective, this implies that the first-principles code computes the wave eigenfunctions,
ψn⃗k, and eigenvalues, En⃗k, only for the selected set of special k⃗-points. This set of special k⃗-points forming
a grid within the first Brillouin zone is determined using the following procedure.

Considering the simulation box defined by the set of lattice vectors {⃗ai}where i∈ {1,2,3}, the reciprocal
lattice vectors are computed as

a⃗ ∗1 =
2π

Vcell
a⃗2× a⃗3, (2.8)

a⃗ ∗2 =
2π

Vcell
a⃗3× a⃗1, (2.9)

a⃗ ∗3 =
2π

Vcell
a⃗1× a⃗2, (2.10)

where Vcell represents the volume of the simulation unit cell in real space

Vcell = a⃗1 · (⃗a2× a⃗3) = a⃗2 · (⃗a3× a⃗1) = a⃗3 · (⃗a1× a⃗2) . (2.11)

Now, taking the k⃗-grid as (N1,N2,N3), the k⃗ j−points are computed as

k⃗ j =
q1

N1
a⃗ ∗1 +

q2

N2
a⃗ ∗2 +

q3

N3
a⃗ ∗3 (2.12)

where qi are integers such that 0≤ qi ≤ Ni−1.

Based on these calculations, as described in Sec. 1.5, the matrix elements of the Hamiltonian in real
space can be constructed within a Wannier function basis, following the expression HmnR⃗ = ⟨χm⃗0|H|χnR⃗⟩
[Eq. (2.1)]. Here, the vector R⃗ spans the replicas of the simulation box within a supercell compatible
with the chosen k⃗-point sampling. For a given R⃗, the Hamiltonian matrix in real space is a square matrix
of dimension J, where J corresponds to the number of Wannier functions within the simulation box. In
the asymptotic limit, where the number of k⃗-points in the Brillouin zone approaches infinity—leading to
an infinitely extended supercell in real space—the Hamiltonian matrix elements HmnR⃗ provide an exact
tight-binding-like representation of the system’s band structure. Due to the localized nature of Wan-
nier functions, the tight-binding Hamiltonian matrix elements decay rapidly with increasing distance,
meaning that only a limited number of hopping terms typically need to be retained. The interaction
range considered in the simulations is determined by the k⃗-point sampling used in the Wannierization
process, which in turn defines the size of the corresponding supercell in real space. These tight-binding
matrix elements are directly outputted by the WANNIER90 code in a file with the suffix _tb.dat. This
file constitutes one of the most critical components for extracting parameters to be employed in second-
principles simulations.
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2.1.4 Selection of R⃗-vectors for the computation of HmnR⃗

To clarify the meaning of the different parameters that enter in the expression of the tight-binding matrix
elements, and how the lattice vectors R⃗ are chosen, let us take an example of a two-dimensional hexagonal
simulation box that coincides with the primitive unit cell, of lattice vectors a⃗1 and a⃗2. Let as assume that
there are two Wanniers per simulation box [Fig. 2.4(a)], labeled as m and n. Let us assume a k⃗-point
sampling with Ni = 2 for i = 1,2, that means a (2×2) grid in the first Brillouin zone. According to the
discussion in the previous subsection, this corresponds to perform a simulation in a Born-von Kármán
supercell made of two repetitions of the primitive unit cell. The Bravais lattice vectors used to displace
the simulation box to build the supercell are denoted by R⃗. In the cartoon of Fig. 2.4(b), the supercell is
made after replicating the home unit cell R⃗⃗0 by the lattice vectors R⃗′ = 0⃗a1− 1⃗a2, R⃗′′ =−1⃗a1− 1⃗a2, and
R⃗′′′ =−1⃗a1+ 0⃗a2. The Wanniers are periodic with the periodicity of the primitive unit cell. As explained
before, a computation in the primitive cell with unit cell vectors a⃗i with a sampling in k⃗ is equivalent to
perform the calculation in the Born-von Kármán supercell with unit cell vectors A⃗i = Ni⃗ai at the Γ point
[Fig. 2.4(b)].

In order to select the R⃗ lattice vectors for which the HmnR⃗ elements will be calculated, the Wigner-Seitz
cell of the Born-von Kármán supercell built before is found [Fig. 2.4(c)]. The selection of the Bravais
lattice vectors R⃗ is carried out by centering the Wigner-Seitz supercell at the origin of the Born-von
Kármán supercell. The chosen Bravais lattice vectors R⃗ are those that fall within the boundaries of the
Wigner-Seitz supercell. In our example, the home unit cell R⃗0 is positioned at the center of the Wigner-
Seitz supercell. Additionally, the vectors R⃗′ and R⃗′′′, located at the centers of the faces, are included, and
are relabeled in Fig. 2.4(d) as R⃗1 and R⃗2, respectively.

However, the vector R⃗′′ does not lie within the Wigner-Seitz supercell, and therefore, the matrix elements
between the Wannier functions at the home unit cell and this replica will not be computed. As depicted
in Fig. 2.4(d), additional vectors pointing toward the centers of the remaining faces of the hexagonal
Wigner-Seitz supercell are also considered. These vectors are labeled R⃗ j, where j = 3, . . . ,6. Each vector
R⃗ j has assigned a weight factor of 1/NR⃗ j

, where NR⃗ j
represents the degeneracy of the vector. The degen-

eracy factor NR⃗ j
corresponds to the number of periodic images of the Wigner-Seitz supercell (centered

at the origin of the Born-von Kármán supercell) that share the given lattice vector R⃗ j. It is particularly
relevant for Bravais lattice vectors that lie on the boundary of the Wigner-Seitz supercell, including its
faces, edges, or vertices. In the specific example considered, the lattice vectors R⃗ j with j = 1, . . . ,6 fall
on the faces of the Wigner-Seitz supercell. Consequently, these vectors are shared between two Wigner-
Seitz supercells, leading to a degeneracy of NR⃗ j

= 2 for j = 1, . . . ,6. Conversely, the lattice vector R⃗0 is
located within the interior of the supercell, resulting in a degeneracy of NR⃗0

= 1. Following the previous
reasoning, if a lattice vector were to fall on a vertex in this example, the corresponding degeneracy NR⃗

would be three. In a WANNIER90 calculation, the degeneracy numbers NR⃗ are listed at the top of the
tb.dat file, as depicted in Fig. 2.5.

The total sum of the weights associated with the selected Bravais lattice vectors R⃗ j must be equal to
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the total number of k⃗-points. In particular, considering this example, the number of k⃗-points is N = 4.
Regarding the Bravais lattice vectors R⃗, the weight of R⃗0 is given by 1/NR⃗0

= 1, while for R⃗ j with
j = 1, . . . ,6, the corresponding weights are 1/NR⃗ j

= 1/2. Consequently, the total sum amounts to four,
as expected.

Once the Bravais lattice vectors R⃗ are selected, WANNIER90 code computes the Hamiltonian matrix
elements HmnR⃗ j

and they are stored in the _tb.dat file in units of eV (see Fig. 2.5). The index m runs
over the Wannier functions in the home unit cell, R⃗0, while the index n corresponds to the Wannier
functions placed in R⃗ j for j = 0, . . . ,6. In Fig. 2.4(e), the cells associated with these lattice vectors are
shaded in red (R⃗0) and yellow (R⃗ j for j = 1, . . . ,6).

Figure 2.4: The figure illustrates the methodology employed by WANNIER90 to determine the Bravais lattice
vectors R⃗, associated with periodic replicas of the simulation box, for the computation of the Hamiltonian matrix
elements HmnR⃗ in a two dimensional hexagonal system. In panel (a), the simulation box, which corresponds to
the primitive unit cell of a two-dimensional hexagonal lattice, is depicted. The simulation box is defined by the
lattice vectors a⃗1 and a⃗2 and contains two Wannier functions, χm⃗0 and χn⃗0. Panel (b) introduces the Born-von
Kármán supercell constructed for a 2× 2 k⃗-point sampling, with lattice vectors A⃗1 and A⃗2 defining its extension.
The supercell is constructed by replicating the home unit cell R⃗0 (highlighted in red) through the application of
the lattice translation vectors R⃗′, R⃗′′, and R⃗′′′. In panel (c), the Wigner-Seitz supercell of the Born–von Kármán
supercell is depicted in blue and is centered at the origin. This supercell provides a natural framework for selecting
the relevant Bravais lattice vectors for the WANNIER90 calculation. The selected R⃗ vectors are those that fall
within its boundaries, as illustrated in panel (d), and are denoted as R⃗ j with j = 0, . . . ,6. Finally, in panel (e),
the cells associated to the R⃗ j selected Bravais lattice vectors are highlighted in yellow. In the WANNIER90 code,
they are going to be employed in the calculation of HmnR⃗ j

Hamiltonian matrix elements. The WANNIER90 code
computes and stores these matrix elements in the _tb.dat file, explicitly considering interactions between a
Wannier function m centered in the home unit cell and a Wannier function n centered at R⃗ j.
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Figure 2.5: Illustration of the _tb.dat file corresponding to a two-dimensional hexagonal lattice system charac-
terized by two Wannier functions in the simulation box and a k⃗-point sampling of 2× 2, as depicted in Fig. 2.4.
The numerical data stored in the file is shown in black, while additional annotations in different colors, consistent
with Fig. 2.4, have been included to emphasize key information. According to the structure of the file, the file first
lists the lattice vectors {⃗ai} with i = 1,2,3 defining the simulation box, followed by the number of Wannier func-
tions. Next, the number of reciprocal lattice vectors R⃗ j and their corresponding degeneracies, NR⃗ j

with j = 0, . . . ,6.

These are presented in the same order as the Bravais lattice vectors R⃗ j appear throughout the file. Subsequently, the
coordinates of each Bravais lattice vector R⃗ j are expressed in terms of the lattice basis {ai}. Below each Bravais
lattice vector, the Hamiltonian matrix elements HmnR⃗ j

are presented, where m refers to a Wannier function centered
in the home unit cell, χm⃗0, and n corresponds to the periodic replica of Wannier function χn⃗0 located in unit cell
R⃗ j, denoted as χnR⃗ j

.
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2.1.5 Invariance of the Hamiltonian matrix elements HmnR⃗ under a translational vector
T⃗ in the Born-von Kármán supercell

The real space Hamiltonian matrix elements HmnR⃗ remain invariant under translations of the form R⃗→ R⃗+ T⃗ ,
where T⃗ is a translational vector of the Born–von Kármán superlattice. As an example, Fig. 2.6 illustrates
the Hamiltonian matrix element HmnR⃗2

, which represents the interaction between the Wannier function
χm⃗0 (centered at the lattice site R⃗0, shown in red) and χnR⃗2

(centered at R⃗2, shown in light green). The
value of this interaction is equivalent to that of the Hamiltonian matrix elements HmnR⃗2+T⃗ , which repre-
sent the interaction between χm⃗0 and any Wannier function χnR⃗2+T⃗ (also shown in light green), where T⃗
is a translational vector of the Born-von Kárman superlattice.

Figure 2.6: Schematic representation of the interactions between the Wannier function χm⃗0, located in the sim-
ulation box (shaded in red), and all the periodic replicas of the Wannier function χnR⃗2

located at R⃗′ = R⃗2 + T⃗ ,
generated through translations T⃗ of the Born–von Kármán supercell (defined by the lattice vectors A⃗1 and A⃗2). All
periodic images of the cell R⃗2 are shaded in green. As a consequence of translational symmetry, the Hamiltonian
matrix elements satisfy HmnR⃗2

= Hmn(R⃗2+T⃗ ).

Now, the equality HmnR⃗ = HmnR⃗+T⃗ , as shown in Fig. 2.6, is demonstrated analytically. According to the
previous notation, the translational vectors of the Born-von Kármán superlattice verify T⃗ ∈ ⟨{A⃗i =Ni⃗ai}⟩.
Consequently, a general expression for a translational vector is T⃗ = p1N1⃗a1 + p2N2⃗a2 + p3N3⃗a3 where
p1, p2, p3 are integer numbers. At this point, we compute HmnR⃗ and HmnR⃗+T⃗ employing the relation in
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Eq. (1.64). Firstly, we obtain HmnR⃗,

HmnR⃗ =
〈
χm⃗0|H|χnR⃗

〉
=

1
N

N−1

∑
j=0

e−i⃗k j·R⃗H̃mn⃗k j
. (2.13)

Secondly, we compute HmnR⃗+T⃗ ,

HmnR⃗+T⃗ =
1
N

N−1

∑
j=0

e−i⃗k j·(R⃗+T⃗ )H̃mn⃗k j
=

1
N

N−1

∑
j=0

e−i(⃗k j·R⃗+⃗k j·T⃗ )H̃mn⃗k j
=

=
1
N

N−1

∑
j=0

e−i
[⃗
k j·R⃗+

(
q1
N1

a⃗∗1+
q2
N2

a⃗∗2+
q3
N3

a⃗∗3
)
·(p1N1a⃗1+p2N2a⃗2+p3N3a⃗3)

]
H̃mn⃗k j

=

=
1
N

N−1

∑
j=0

e−i(⃗k j·R⃗+q1 p1a⃗∗1 ·⃗a1+q2 p2a⃗∗2 ·⃗a2+q3 p3a⃗∗3 ·⃗a3)H̃mn⃗k j
=

1
N

N−1

∑
j=0

e−i[⃗k j·R⃗+2π(q1 p1+q2 p2+q3 p3)]H̃mn⃗k j
=

=
1
N

N−1

∑
j=0

e−i⃗k j·R⃗e−2πi(q1 p1+q2 p2+q3 p3)H̃mn⃗k j
=

1
N

N−1

∑
j=0

e−i⃗k j·R⃗H̃mn⃗k j
= HmnR⃗. (2.14)

Here, from the first to the second line the expression for the sampled k⃗ j-points, given by Eq. (2.12), is
applied alongside the expression for the translational vector T⃗ . Moving from the second to the third line,
the orthogonality condition a⃗∗i · a⃗ j = 0 for i ̸= j is used. In third line, the expressions for the reciprocal
lattice vectors and the definition of the volume, as given in Eq. (2.11), are considered.

2.1.6 Band energy diagrams from Wannier interpolation

For a given vector of the Bravais lattice R⃗ the real-space Hamiltonian matrices HR⃗, whose entries HmnR⃗

were introduced in Sec. 2.1.4, are square and have dimensions equal to the number of Wannier functions
within the simulation box. This corresponds to the number of wannierized states (bands), denoted as J.
Examples of these square HR⃗ matrices for different values of R⃗ have been given in Fig. 2.5.

The next question is whether from these real-space Hamiltonian matrix elements, HmnR⃗, is possible to
compute the collection of J energy bands En⃗k at an arbitrary k⃗ point of the first Brillouin zone, where
n indexes the different energy bands. The answer is positive, and the procedure is called the Wannier
interpolation. In Fig. 2.8 we show a scheme of this methodology. The determination of these energy
bands in reciprocal space requires a two-step procedure.

The first step involves the construction of the Hamiltonian matrices in reciprocal space for each k⃗, denoted
as H̃ k⃗. In principle, the Hamiltonian matrix elements in reciprocal space, H̃mn⃗k, are obtained by applying
the inverse transformation to the real-space Hamiltonian matrix elements, HmnR⃗- stored in the _tb.dat

file [Fig. 2.5],

H̃mn⃗k = ∑
R⃗

1
NR⃗

ei⃗k·R⃗HmnR⃗, (2.15)
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where the summation runs over the set of lattice vectors R⃗ selected in Sec. 2.1.4, and the factor 1/NR⃗

represents the corresponding weight assigned to each vector. Remember that ∑R⃗ 1/NR⃗ = N, where N is
the number of k⃗ j-points selected in the sampling of the first Brillouin zone.

However, it is important to note that in the construction of the Hamiltonian matrix elements H̃mn⃗k, it
is essential to preserve the symmetry of the system. To ensure this symmetry, an intermediate step is
introduced in the application of Eq. (2.15) during the computation of the matrix elements H̃mn⃗k. This
step accounts for the fact that, as established in Sec. 2.1.5, the Hamiltonian matrix elements HmnR⃗ remain
invariant under a translation T⃗ ∈ {Ni⃗ai : i = 1,2,3}, such that HmnR⃗ = HmnR⃗+T⃗ . This can be illustrated in
our simplified example, as shown in Fig. 2.7. For the sake of clarity, we shall focus on a particular matrix
element between the Wannier m in the home unit cell (whose center is given by r⃗m), and the Wannier n
centered at the unit cell displaced by R⃗3, HmnR⃗3

[represented in Fig. 2.7(a) by a black arrow]. The center
of the n Wannier function in the home unit cell is denoted by r⃗n. Here, we can clearly distinguish the
matrix elements that are equivalent to HmnR⃗3

by a translational vector of the Born-von Kármán supercell.
Four of them are shown and represented in Fig. 2.7 in dark blue:

• The translation vector T⃗mnR⃗3
= (0,0) corresponds to the original position of χnR⃗3

, marked with a
blue dot in Fig. 2.7.

• The translation vector T⃗ ′
mnR⃗3

= 0⃗a1− 2⃗a2 shifts χnR⃗3
from r⃗n + R⃗3 to χnR⃗′′ , which is now located at

r⃗n + R⃗3 + T⃗ ′
mnR⃗3

= r⃗n + R⃗′′ [orange in Fig. 2.7(b)].

• The translation vector T⃗ ′′
mnR⃗3

= 2⃗a1− 2a⃗2 shifts χnR⃗3
from r⃗n + R⃗3 to χnR⃗6

, which is now located at

r⃗n + R⃗3 + T⃗ ′′
mnR⃗3

= r⃗n + R⃗6 [dark green in Fig. 2.7(c)].

• The translation vector T⃗ ′′′
mnR⃗3

= 2⃗a1 +0a⃗2 shifts χnR⃗3
from r⃗n + R⃗3 to χnR⃗′′′′ , which is now located at

r⃗n + R⃗3 + T⃗ ′′′
mnR⃗3

= r⃗n + R⃗
′′′′

[yellow in Fig. 2.7(c)].

Then, the next step is to identify between those interactions the ones that minimizes the distances. In
order to do this,

a) For each pair of Wannier functions m,n and R⃗, the optimal choice of translation vectors T⃗ is the
one obtained by the minimization of the distance between the two Wannier functions m and n,

|⃗rm− (⃗rn + R⃗+ T⃗ )|. (2.16)

b) If there exist NmnR⃗ vectors T⃗ which minimize the Wannier functions distance, all of them are
included in Eq. (2.15) multiplied by a weight factor 1/NmnR⃗.

Finally, the general employed expression to compute the Hamiltonian matrix Eq. (2.15) is replaced by

H̃mn⃗k = ∑
R⃗

1
NR⃗

1
NmnR⃗

NmnR⃗

∑
l=1

ei⃗k·
(

R⃗+T⃗ (l)
mmR⃗

)
HmnR⃗, (2.17)

where the summation runs over the set of lattice vectors R⃗ selected in Sec. 2.1.4, and the factor 1/NR⃗

represents the corresponding weight assigned to each vector.
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Figure 2.7: Hamiltonian matrix element HmnR⃗3
between Wannier functions χm⃗0 and χnR⃗3

, as well as all symmetry-
equivalent functions generated by translation vectors of the Born–von Kármán supercell. (a) Illustration of the
Hamiltonian matrix element between the Wannier function χm⃗0, centered at the home unit cell (depicted in red),
and the Wannier function χnR⃗3

, centered at the lattice site R⃗3 (shown in magenta). (b) Two translational vectors of
the Born–von Kármán supercell (in blue) that generate periodic replicas of the Wannier function χnR⃗3

. The first
vector, T⃗mnR⃗3

= (0,0), corresponds to the original Wannier function χnR⃗3
, while the second translational vector,

T⃗ ′
mnR⃗3

= 0⃗a1− 2⃗a2, produces the periodic image χnR⃗′′ (displayed in orange). (c) Four translational vectors within
the Born–von Kármán supercell that give rise to four periodic replicas of χnR⃗3

. These include the two vectors
described in (b), along with T⃗ ′′

mnR⃗3
= 2⃗a1− 2⃗a2, which generates the replica χnR⃗6

(in green), and T⃗ ′′′
mnR⃗3

= 2⃗a1+ 0⃗a2,
leading to the replica χnR⃗′′′′ (in yellow). (d) Translational vectors (represented as solid blue vectors) that define
periodic images χnR⃗3+T⃗ of χnR⃗3

in the Born-von Kármán supercell, such that each image lies at the same spatial
distance from χm⃗0 as the original function χnR⃗3

.

Considering our example, among the four translational vectors T⃗ which lead to the four replicas of χnR⃗3
,

we select those which minimize the distance between the Wannier functions χm⃗0 and χnR⃗3+T⃗ . Attending
to Fig. 2.7(c) we can see that there are three periodic replicas of χnR⃗3

which are at the same distance to
χm⃗0. These Wannier functions are associated to the translation vectors T⃗mnR⃗3

, T⃗ ′
mnR⃗3

and T⃗ ′′
mnR⃗3

, which

are now relabeled as T⃗ (1)
mnR⃗3

, T⃗ (2)
mnR⃗3

and T⃗ (3)
mnR⃗3

, respectively. These translational vectors are represented by

solid blue vectors in Fig. 2.7(d). Finally, because we have selected three traslational vectors T⃗ which lead
to a three periodic replicas of χnR⃗3

at the same distance of χm⃗0, we incorporate NmnR⃗3
= 3. Consequently,

the contribution of the R⃗3 cell to the Hamiltonian matrix element Hmn⃗k is given by
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1
NR⃗3

1
NmnR⃗3

[
e

i⃗k·
(

R⃗3+T⃗ (1)
mnR⃗3

)
+ e

i⃗k·
(

R⃗3+T⃗ (2)
mnR⃗3

)
+ e

i⃗k·
(

R⃗3+T⃗ (3)
mnR⃗3

)]
HmnR⃗3

=
1
2
· 1
3

[
ei⃗k·R⃗3 + ei⃗k·R⃗′′ + ei⃗k·R⃗6

]
HmmR⃗3

.

(2.18)

This procedure is applied to all the elements in the sum over R⃗ in Eq. (2.17). Similarly, the remaining
entries constituting the H̃⃗k matrices can be obtained in an analogous manner.

Once the Hamiltonian matrices H̃⃗k have been constructed in reciprocal space, the next step involves diag-
onalizing these matrices to determine the energy eigenvalues En⃗k associated with the k⃗-points belonging
to the first Brillouin zone.

At this stage, the energy bands En⃗k can be evaluated at arbitrary k⃗-points within the first Brillouin zone.
We can wonder to which extend the eigenvalues En⃗k obtained in the tight-binding reproduce the ones
obtained from a first-principles simulations. We prove below that they are exactly the same, by construc-
tion, for the k⃗-points used in the sampling to build the Wanniers, denoted as k⃗ j in Sec. 2.1.3.

To prove the previous statement, we first show that the phase factor ei⃗k j·R⃗ remains invariant under the
transformation R⃗→ R⃗+ T⃗ , employed in Eq. (2.17). It is equivalent to prove the equality k⃗ j · T⃗ = 2πn
where n ∈ Z, since this condition ensures ei⃗k j·T⃗ = 1. This follows immediately from the definition of the
sampled k⃗ j-points as defined in Eq. (2.12). Indeed, if we consider the lattice translation vector defined
as T⃗ = p1N1⃗a1 + p2N2⃗a2 + p3N3⃗a3, where p1, p2, p3 ∈ Z, and N1,N2,N3 are the numbers of k⃗ j-points
sampled along each reciprocal lattice direction, then the scalar product k⃗ j · T⃗ can be evaluated explicitly,

k⃗ j · T⃗ =

(
q1

N1
a⃗∗1 +

q2

N2
a⃗∗2 +

q3

N3
a⃗∗3

)
· (p1N1⃗a1 + p2N2⃗a2 + p3N3⃗a3) =

= q1 p1⃗a∗1 · a⃗1 +q2 p2⃗a∗2 · a⃗2 +q3 p3⃗a∗3 · a⃗3 = 2π(q1 p1 +q2 p2 +q3 p3),

(2.19)

where we have used the identity a⃗∗i · a⃗ j = 2πδi j. As a result, for k⃗ ∈ {⃗k j}, and applying the property
HmnR⃗ = HmnR⃗+T⃗ , which is satisfied for any translational vector T⃗ of the Born–von Kármán supercell, the
following equality holds,

ei⃗k j·(R⃗+T⃗ )HmnR⃗+T⃗ = ei⃗k j·R⃗HmnR⃗. (2.20)

Applying this result in Eq. (2.17),

H̃mn⃗k j
= ∑

R⃗

1
NR⃗

1
NmnR⃗

NmnR⃗

∑
l=1

ei⃗k j·
(

R⃗+T⃗ (l)
mmR⃗

)
HmnR⃗ = ∑

R⃗

1
NR⃗

1
NmnR⃗

NmnR⃗

∑
l=1

ei⃗k j·R⃗HmnR⃗ =

= ∑
R⃗

1
NR⃗

1
NmnR⃗

NmnR⃗ei⃗k j·R⃗HmnR⃗ = ∑
R⃗

1
NR⃗

ei⃗k j·R⃗HmnR⃗.

(2.21)

In particular, considering the example illustrated in Fig. 2.4, the real-space Hamiltonian matrices HR⃗ are
square matrices of dimension two, corresponding to the number of Wannier functions in the simulation
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cell (equal to the number of bands). From these matrices, it is possible to exactly reconstruct the original
band energies En⃗k j

(with n = 1,2) at each sampled k⃗ j-point,

• Band 1: E1⃗k0
, E1⃗k1

, E1⃗k2
E1⃗k3

,

• Band 2: E2⃗k0
, E2⃗k1

, E2⃗k2
E2⃗k3

.

The k⃗ j-points are computed by Eq. (2.12) leading to k⃗ j ∈ {(0,0),(π/a,0),(0,π/a),(π/a,π/a)}. For
the rest of the k⃗-points of the first Brillouin zone, the energy values will be interpolated following the
previous methodology.

In the case of an infinitely dense grid of k⃗ j-points, the En⃗k values become exact for any k⃗, and the
sum in Eq. (2.15) transforms into an infinite series. Due to the real-space localization of the Wannier
functions, the matrix elements HmnR⃗ become negligibly small when the distance between the Wannier
centers exceeds a critical length L, which represents the “bandwidth” of the Wannier Hamiltonian. As
a result, only a finite number of terms significantly contribute to the sum in Eq. (2.15) . This means
that even with a finite N1×N2×N3 grid, employed to reduce the computational cost, the interpolation
remains accurate, as long as the “sampling rate” Ni along each cell vector a⃗i is large enough to satisfy
the condition Ni |⃗ai|> 2L, analogous to the Nyquist-Shannon sampling criterion [72].

Figure 2.8: Schematic representation of the Wannier interpolation methodology. The left panel shows the grid
defined in the Brillouin zone to perform the first-principles simulation. There, the Hamiltonian matrix elements
H̃mn⃗k j

are directly computed. Later, a Fourier transform is performed to express the Hamiltonian matrix elements in

real space, obtaining Hamiltonian matrix elements HmnR⃗. The right panel illustrates a dense mesh of k⃗-points of the
Brillouin zone employed to compute by the inverse Fourier transform the H̃mn⃗k values by means of an interpolation
procedure, employing HmnR⃗ elements. Adapted from Ref. [65].

2.2 Practical examples

2.2.1 Linear chain of H-atoms. The primitive unit cell.

The preceding Section detailed the methodology for obtaining interpolated energy bands En⃗k at arbitrary
k⃗-points within the first Brillouin zone, employing the real-space Hamiltonian matrix elements HmnR⃗.
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Chapter 2. Band structure representation using Hamiltonian matrix elements in the Wannier basis

In this section, we apply the aforementioned method to a prototypical one-dimensional system composed
of a linear chain of hydrogen atoms, each separated by a lattice constant a, and associated with one
Wannier function per atom. The purpose of this analysis is to elucidate: (i) the number of hopping
parameters included in the tb.dat file; (ii) the spatial decay behavior of these parameters as the distance
between Wannier function centers increases; and (iii) the convergence of the interpolated tight-binding
band structure toward the reference first-principles band structure as a function of k⃗ j-point sampling
density.

a

Figure 2.9: In SIESTA, the simulation box, shaded in red, contains one s-like Wannier function. The lattice constant
of the simulation box is a.

The simulation cell, as implemented in the SIESTA framework (presented in Sec. 2.1.1 and highlighted in
red in Fig. 2.9), consists of a single hydrogen atom and it is characterized by a lattice constant a. Bloch
eigenstates are computed for various k⃗ j-point grids, after which a wannierization procedure is performed
to construct the corresponding Wannier functions. The resulting Wannier function, χm⃗0, resembles an s-
like orbital localized on a hydrogen atom (represented by the yellow isosurface in Fig. 2.10). To maintain
orthogonality with neighboring functions, the Wannier function includes two lobes of opposite phase on
either side of the central peak (depicted as blue regions in Fig. 2.10). It is worth emphasizing that these
Wannier functions are obtained by maximizing their projection onto the localized hydrogen 1s atomic
orbital defined within the SIESTA basis set, rather than by optimizing for maximal real-space localization.
Finally, the periodic Wannier function replicas χmR⃗ corresponding to the different Bravais lattice vectors,
as given by Eq. (1.27), are represented schematically (avoiding the detailed structure) by gray spheres in
Fig. 2.9.

Figure 2.10: Wannier function with an s-like character, centered on a hydrogen atom within a linear chain. The
different colors indicate the sign of the wavefunction phase. The presence of nodes is necessary to satisfy the
orthonormality condition of the basis set.
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WIGNER-SEITZ SUPERCELL HAMILTONIAN MATRIX ELEMENTS ENERGY BANDS

Figure 2.11: Schematic representation of various k j-point sampling schemes for a linear hydrogen chain. For
each sampling, the Wigner-Seitz supercell of the corresponding Born–von Kármán supercell is shaded in blue.
Below the chain, the selected R lattice vectors are shown, while their corresponding degeneracies NR are displayed
above. The middle section of the figure presents the magnitude of the Hamiltonian matrix elements between the
Wannier function in the simulation cell and its periodic images located at each R lattice vector, as a function of
distance. On the right, the interpolated electronic band structures obtained using different k j-point samplings (red)
are compared with first-principles results from SIESTA (blue). Sampled k j-points are marked in black; at these
points, Wannier-interpolated and first-principles energies coincide. The horizontal line denotes the Fermi level.
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Chapter 2. Band structure representation using Hamiltonian matrix elements in the Wannier basis

To illustrate the impact of the k j-point sampling (see Sec. 2.1.3), we analyze in Fig. 2.11 the behavior
of several key quantities as a function of the increasing number of sampled k j-points. As a first step,
we compare the number of Bravais lattice vectors R⃗, defined according to Sec. 2.1.4. These vectors are
related to the real-space supercell employed in the WANNIER90 formalism. We begin with a k j-point
sampling in reciprocal space consisting of two points, N = 2. Attending to Sec. 2.1.3 these k j-points
are k1 = 0 and k2 = π/a. This k j-grid in reciprocal space defines an equivalent Born–von Kármán
supercell in real space, following the discussion in Sec. 2.1.2. Thus, a k j-sampling of two corresponds
to constructing a supercell in real space composed of two replicas of the original simulation box. Its
corresponding Wigner-Seitz supercell is shaded in blue in Fig. 2.11. Subsequently, the Wigner–Seitz cell
of the Born-von Kármán supercell is constructed to define the set of Bravais lattice vectors R⃗. According
to the procedure described in Sec. 2.1.4, the selected R⃗ vectors are R0 = 0, with NR0 = 1, and R1 = a,
R2 = −a, each with a degeneracy of NR1 = NR2 = 2, as both lie on the boundary of the Wigner–Seitz
supercell. It can be checked that the sum of the weights, 1/NR⃗, gives the total number of sampled points.

As the number of sampled k j points increases, the corresponding Born–von Kármán supercell in real
space expands, and with it, the associated Wigner–Seitz supercell also enlarges. Consequently, the
number of lattice vectors R required to evaluate the Hamiltonian matrix elements HmnR increases, pro-
gressively incorporating interactions between more distant Wannier functions. Figure 2.11 displays the
evolution of the Wigner–Seitz supercell for the one-dimensional chain as the k-point sampling becomes
denser. The selected R vectors according to Sec. 2.1.4 and their associated degeneracies NR are identi-
fied. Notably, vectors lying strictly inside the Wigner-Seitz supercell have NR = 1, while those on the
boundaries exhibit NR = 2. It can be verified that the sum of the inverse degeneracies, ∑1/NR, recov-
ers the total number of sampled k j points, consistent with the normalization imposed by the Wannier
interpolation scheme.

Once the set of lattice vectors R and their corresponding degeneracies have been determined, the next step
is to analyze the numerical values of the Hamiltonian matrix elements HmmR. Given that the simulation
box contains a single Wannier function, these matrix elements involve only one type of Wannier function
and are denoted by γR≡HmmR. For each k-point sampling, we represent the Hamiltonian matrix elements
γ (measured in eV) as a function of the distance between the Wannier function centered in the home unit
cell and a second Wannier function located at a cell associated to the lattice vector R; see Fig. 2.11,
“Hamiltonian matrix elements” panel. This figure reveals two key features.

First, within each representation, the matrix elements γ exhibit a rapid decay with increasing distance
between the Wannier centers R. This behavior reflects the localized nature of the Wannier functions.
From a computational perspective, this property enables a truncation of the sum of the Hamiltonian
matrix elements in real space in Eq. (1.65) when evaluating the Hamiltonian in reciprocal space. Specifi-
cally, matrix elements γR can be neglected beyond a predefined cutoff distance δ rh, thereby reducing the
computational cost without significantly affecting the accuracy of the results.

Second, by analyzing both the panels in Fig. 2.11 and the data presented in Table 2.1, which reports the
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values of the matrix elements γR for various k-point samplings, clear convergence trends can be identified.
The table displays the forward interaction terms only, as the backward interactions are equivalent due to
the symmetry of the system. Attending to the table the Hamiltonian matrix elements corresponding
to interactions with neighboring sites converge with increasing k-point sampling. This is evident from
the consistent γR values for equivalent lattice vectors across different k-grids. Additionally, Table 2.1
includes the spatial spread of the Wannier function computed for the simulation box and represented in
Fig. 2.10. The results indicate that the Wannier spread also converges as the density of the sampling
increases.

Number of k-points
for Wannierization

Number of γ Spread of WF (Å2) R⃗/a γ (eV)

(1,1,2) 3 0.445
(0,0,0) 0.806
(0,0,1) -13.678

(1,1,4) 5 0.553
(0,0,0) -2.479
(0,0,1) - 6.839
(0,0,2) 3.285

(1,1,6) 7 0.582

(0,0,0) 2.844
(0,0,1) - 6.266
(0,0,2) 1.825
(0,0,3) - 1.1449

(1,1,10) 11 0.600

(0,0,0) -2.891
(0,0,1) - 6.189
(0,0,2) 1.621
(0,0,3) - 0.579
(0,0,4) 0.228
(0,0,5) - 0.141

Table 2.1: The Hamiltonian matrix elements between the Wannier function centered in the home unit cell and the
Wannier functions located in the cell defined by R⃗ in the forward direction are shown as a function of the number
of the k-point sampling. The number of interactions reflects the expansion of the Born–von Kármán supercell as
the density of the k-grid increases. Additionally, the spreading of the Wannier function centered in the home unit
cell is represented, providing insight into its degree of localization.

Finally, we study the bands obtained from the real space Hamiltonian matrix elements γR. The system
under consideration exhibits a single electronic band, consistent with the presence of only one Wannier
function per unit cell. For each k-point grid, we present the interpolated band structure computed follow-
ing Eq. (2.17) using the Hamiltonian matrix elements in real space shown in Fig. 2.11. The interpolated
bands, obtained via the WANNIER90 formalism, are shown in red. For comparison, the reference band
structure derived from first-principles calculations using the SIESTA code is displayed in blue.
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Chapter 2. Band structure representation using Hamiltonian matrix elements in the Wannier basis

In the evaluation of the band energies Ek, the k j-points used in the construction of the Wannier functions
determine the specific points at which the interpolated energies exactly match those computed from first-
principles, as discussed in Sec. 2.1.6. The coordinates associated to the sampled points, (k j,Ek j), are
indicated with black dots in the figure.

As the number of the k j-points, N, increases, the interpolated band structure shows clear convergence
toward the reference band obtained from SIESTA. In particular, for N = 8, the agreement between the
bands from WANNIER90 and those from the first-principles calculation becomes essentially exact across
the entire Brillouin zone.

2.2.2 Linear chain of H-atoms. Larger simulation boxes.

In the previous Section, we analyzed the rapid decay of the real-space Hamiltonian matrix elements as
a function of the distance between Wannier functions, considering the case of a single Wannier function
per simulation box.

In this Section, we extend the analysis to systems containing multiple Wannier functions within a single
simulation box. Specifically, we examine a one-dimensional linear chain of hydrogen atoms where the
simulation box now comprises five atoms, leading to a lattice constant a′ = 5a, shaded in red in Fig. 2.12.
As a result, five s-like Wannier functions (schematically represented as red spheres in Fig. 2.12) are
included, each centered on a different hydrogen atom.

a′ = 5a

(a) SIESTA simulation box. (b) Born von Karman cell.

Figure 2.12: (a) Simulation box employed in SIESTA, consisting of five s-like Wannier functions, each centered
on a hydrogen atom. (b) Born–von Kármán supercell (shaded in blue) constructed from the simulation box shown
in (a), corresponding to a k-point sampling with N = 2. The resulting supercell comprises two repetitions of the
original simulation box, leading to a ten Wannier functions in the Born-von Kármán supercell.

For studying this problem we adopt a k j-point sampling with N = 2 points. Consequently, the Born–von
Kármán supercell constructed within the WANNIER90 framework consists of two simulation boxes, en-
compassing a total of ten Wannier functions. This supercell is represented in blue in Fig. 2.12(b). In
this figure, the combined set of red and blue spheres corresponds to the Wannier functions in the Born-
von Kármán supercell. The corresponding Wigner–Seitz supercell of the Born-von Kármán supercell
is depicted in blue in Fig. 2.13. Additionally, Fig. 2.13 includes the set of selected lattice vectors
R ∈ {−a′,0,a′} which have been determined following the methodology outlined in Sec. 2.1.4.
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R =−a′ R = 0 R = a′

WS

Figure 2.13: Schematic representation of a one-dimensional linear chain of hydrogen atoms, where each sphere
corresponds to an s-like Wannier function centered on an individual hydrogen atom. The simulation box, shaded
in red, contains five Wannier functions. The Wigner–Seitz cell corresponding to the Born–von Kármán supercell,
constructed from a k-point sampling of two points, is outlined in blue. The selected lattice vectors R, determined
according to the procedure described in Sec. 2.1.4 and used in the evaluation of the Hamiltonian matrix elements
HmnR, are indicated below their associated unit cells.

At this stage, we begin the analysis of the Hamiltonian matrix elements HmnR which are expressed in real
space. These matrix elements describe the interaction between the mth Wannier function χm0, centered
at the home unit cell R = 0, and the nth Wannier function χnR, located in the unit cell defined by the
lattice vector R. In this system, the indices m,n run over the five Wannier functions in the simulation
box, m,n ∈ {0,1,2,3,4}.

Figure 2.14 presents the obtained values of the Hamiltonian matrix elements H0nR measuring the interac-
tion between the Wannier function χ0,0 and a second Wannier function χnR. The horizontal axis indicates
the position of the second Wannier in units of the lattice constant a.

−5 0 5
x/a

0

2

4

6

|H
0n
R
|(

eV
)

Figure 2.14: Representation of the absolute values of the real-space Hamiltonian matrix elements between the Wan-
nier function χ1,0, located in R = 0, and the remaining Wannier functions χnR placed in the cells R ∈ {−a′,0,a′}.
The horizontal axis indicates the spatial distance between χ1,0, at the origin, and the corresponding Wannier func-
tion χnR.

The plot illustrates a rapid decay in the magnitude of the Hamiltonian matrix elements up to the fifth
nearest-neighbor shell. Although a monotonic decrease with increasing distance between Wannier func-
tions might be expected, deviations from this trend appear beyond the sixth shell. Specifically, the
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Chapter 2. Band structure representation using Hamiltonian matrix elements in the Wannier basis

interaction between χ0,0 and χ1,a′ is found to be equivalent to that between χ0,0 and χ1,−a′ , both shown
in green in Fig. 2.15. Similarly, the Hamiltonian matrix element between χ0,0 and χ2,a′ matches that of
χ0,0 with χ2,−a′ , represented in purple in Fig. 2.15. Analogous correspondences continue for subsequent
pairs.

This behavior arises from the inclusion of interactions with the periodic images of the Born–von Kár-
mán supercell. Wannier functions located beyond the sixth nearest-neighbor cell correspond to those at
positions x < 0 translated by a vector of the Born-von Kármán supercell, T = −2a′. As discussed in
Sec. 2.1.5, the Hamiltonian matrix elements HmnR⃗ are invariant under a translation T⃗ of the Born-von
Kármán supercell, i.e., HmnR⃗ = HmnR⃗′ , where R⃗′ = R⃗+ T⃗ is a periodic image of R⃗. Accordingly, the
Wannier function χ1,a′ is a periodic replica of χ1,−a′ , which lies closer to the reference Wannier function
χ0,0, thereby explaining the observed equivalence in their corresponding Hamiltonian matrix elements
on Fig. 2.14.

R =−a′ R = 0 R = a′

H0,1,a′

χ1,a′

H0,2,−a′

χ2,a′

H0,2,a′

χ2,−a′

H0,1,−a′

χ1,−a′

Figure 2.15: Representation of interactions between Wannier functions related by a translational vector of the
Born–von Kármán supercell. The interaction between the Wannier functions χ0,0 and χ1,a′ , indicated by a green
arrow pointing to the right, corresponds to the Hamiltonian matrix element H0,1,a′ . This interaction is equivalent
to that between χ0,0 and χ1,−a′ , indicated by a green arrow pointing to the left, as the functions χ1,a′ and χ1,−a′ are
related via a translational vector T = −2a′ applied to χ1,a′ . Similarly, the Wannier functions χ2,a′ and χ2,−a′ are
also related by the translation vector T =−2a′, making the interactions H0,2,a′ and H0,2,−a′ , represented in purple,
equivalent.

Finally, we verify that the simulation presented in this section—performed using an enlarged simulation
cell with a lattice constant a′ = 5a, comprising five Wannier functions and a k-point sampling of two—is
equivalent to a simulation using the original, smaller unit cell with lattice constant a, containing a single
Wannier function and a k-point sampling of ten. This equivalence is evidenced by comparing Fig. 2.14
with the last row of Fig. 2.11.
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2.3 Comparison of the tight-binding formalism in WANNIER90 and the
standard text-book formalism:

In Sec. 2.1.6 we have summarized how WANNIER90 interpolates the band structure of a given material
starting from a few Hamiltonian matrix elements defined in real space, HmnR⃗. A priori, that formalism
is exactly the same as the one described in Sec. 1.3. However, some care must be taken if we want
to use directly the matrix elements in real space stored in the tb.dat file. Here, we shall explain the
subtleties focusing on the previously analyzed system- a linear chain of hydrogen atoms. We consider a
simulation cell with a lattice parameter a′ = 2a, containing two hydrogen atoms and, consequently, two
s-like Wannier functions. The simulation box is shaded in red in Fig. 2.16. These Wannier functions
possess the same characteristics as those discussed in the preceding sections.

The energy bands are first computed by diagonalizing the Hamiltonian in reciprocal space, where the
corresponding matrix elements have been constructed using the interpolation procedure outlined in
Sec. 2.1.6.

2.3.1 WANNIER90 tight binding

For the selected system, we consider a k-point sampling consisting of two points, which, according
to the procedure outlined in Sec. 2.1.4, corresponds to the selection of three Bravais lattice vectors
R ∈ {−a′,0,a′}.

R =−a′ R = 0 R = a′

Figure 2.16: In SIESTA, the simulation box, shaded in red, contains two s-line Wannier functions. The correspond-
ing Born-von-Kármán supercell in WANNIER90, for a k-sampling of N = 2, is framed in blue. This represents a
supercell of two simulation boxes. Periodic replicas of the simulation cell are labeled by the R-vector.

To perform the band interpolation as described by Eq. (2.17), the Hamiltonian matrix elements are sys-
tematically constructed by summing over the selected R-lattice vectors.

We begin by analyzing the diagonal terms H1,1,k which relates the interaction between the Wannier
function χ1,0 and a second Wannier function χ1,R. Consequently, the interactions involving Wannier
orbitals of label “1” include the on-site interaction, the interaction with the second-nearest neighbor at
R = a′, and the interaction with the second-nearest neighbor at R = −a′. These last Wannier functions
are related through a translational vector T = 2a′, which defines the periodicity of the Born–von Kármán
supercell.

Once considered the on-site interaction, renamed as αW90 we study the interaction associated to R = a′.
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For R = a′, which has a degeneracy NR = 2, we consider the interaction between χ1,0 and the Wannier
function χ1,a′ , located in the unit cell defined by this lattice vector. According to the procedure described
in Sec. 2.1.6, the interpolation algorithm determines whether the Wannier function χ1,0 interacts more
strongly with χ1,a′ or one of its periodic images, specifically χ1,−a′ , obtained via the translation T = 2a′.
In this scenario, χ1,a′ and χ1,−a′ are equidistant from χ1,0, and therefore both contribute equally to the
interaction.

Consequently, for R = a′, the code averages the contributions of both interactions, assigning a weight of
1/N1,a′ , where N1,a′ = 2. An analogous argument applies for the lattice vector R = −a′, as the spatial
arrangement and symmetry of the system yield equivalent contributions. These interactions are hereafter
denoted as γW90

2 and represented in Fig. 2.17.

R =−a′ R = 0 R = a′

γW90
2 γW90

2

Figure 2.17: The interactions between χ1,0 and the periodic replicas χ1,a′ and χ1,−a′ are denoted as γ2. Both orbitals
are at the same distance of χ1,0..
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(2.22)

Similarly, considering the interactions between χ2,0 and χ2,R,

H2,2,k =
1
4

e−ika′H2,2,−a′+
1
4

eika′H2,2,−a′+

+H2,2,0+

+
1
4

eika′H2,2,a′+
1
4

e−ika′H2,2,a′ =

= α
W90 + γ

W90
2 cos

(
ka′
)
.

(2.23)

We now analyze the off-diagonal Hamiltonian matrix elements, specifically H12⃗k, which describe the
interaction between the functions χ1,0, centered in the home unit cell, and the type-2 Wannier functions.

For the lattice vector R = 0, where the degeneracy factor is NR=0 = 1, no periodic image of χ2,0 lies
closer to χ1,0 than the function itself. Therefore, the degeneracy factor is N1,2,0 = 1, and the interaction
is denoted by γW90

1 , represented in Fig. 2.18(a).
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In the case of the lattice vector R = a′, which has a degeneracy NR = 2, the relevant orbital is χ2,a′ .
However, its periodic image located at R′ = R+T1,2,0 =−a′, with T1,2,0 =−2a′, is closer to the reference
orbital χ1,0. Hence, the translation vector T1,2,0 is used to account for the interaction in the Hamiltonian
matrix construction. Analogously, for R = −a′, there exists no periodic image of χ2,−a′ that is closer to
χ1,0 than the orbital itself, and the original interaction is retained. These interaction are reprsented in
Fig. 2.18(b).

H1,2,k = H1,2,0 +
1
2

e−ika′H1,2,a′+
1
2

e−ika′H1,2,−a′ = γ
W90
1 (1+ e−ika′) (2.24)

H2,1,k = H1,2,0 +
1
2

eika′H1,2,a′+
1
2

eika′H1,2,−a′ = γ
W90
1 (1+ eika′) (2.25)

R =−a′ R = 0 R = a′

γW90
1

(a) Interactions between χ1,0 and χ2,0.

R =−a′ R = 0 R = a′

γW90
1 γW90

1

(b) Interactions between χ1,0 and the periodic replicas of χ2,a′ .

Figure 2.18: Interactions between the Wannier function χ1,0 and the functions χ2,R. Panel (a) illustrates the inter-
action between χ1,0 and χ2,0. Panel (b) shows the interaction between χ1,0 and χ2,a′ , as well as the interaction with
its periodic replica χ2,−a′ , associated with a translation vector of the Born–von Kármán supercell, T =−2a′, from
χ2,a′ . The Wannier function χ2,−a′ is closer to χ1,0 than χ1,a′ .

Finally, the Hamiltonian matrix as a function of the k vector is obtained,

Hk =

(
αW90 + γW90

2 cos(ka′) γW90
1 (1+ e−ika′)

γW90
1 (1+ eika′) αW90 + γW90

2 cos(ka′)

)
(2.26)

The eigenvalues of a two-dimensional hermitian matrix,(
A B
B∗ A

)
(2.27)

are λ = A±
√

B ·B∗. Consequently, the eigenvalues of Eq. (2.26) are the energy bands

E1(k) = α
W90 +2γ

W90
1 cos

(
ka′

2

)
+ γ

W90
2 cos

(
ka′
)
, (2.28)

E2(k) = α
W90−2γ

W90
1 cos

(
ka′

2

)
+ γ

W90
2 cos

(
ka′
)
. (2.29)
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2.3.2 Standard tight binding formalism

We now turn our attention to the standard tight-binding formalism. Following this approach, the Hamil-
tonian matrix elements for an arbitrary k⃗-point are constructed according to Eq. (1.16).

As a preliminary step, we must identify the number of neighboring shells to be considered, consistent
with the methodology employed in the previous analyses with WANNIER90 code. To this end, we center
the Wigner–Seitz cell on each Wannier function within the simulation cell. From this inspection, it is
evident that we should include the interactions up to the second-nearest neighbors. This is illustrated in
Fig. 2.19.

R =−a′ R = 0 R = a′

γTB
1 γTB

1

γTB
2 γTB

2

Figure 2.19: Linear chain characterized by two orbitals per simulation cell (red orbitals) and a k-sampling (1,1,2).
The Wigner-Seitz supercell, associated with the Born von Karman cell, is shaded in blue and centered on the first
orbital to identify the Wannier functions interacting with it. The possible interactions between χ1,0 and the orbitals
of the system are included (except the on-side interaction).

Considering the Hamiltonian matrix elements (also referred to as hoppings) presented in Fig. 2.19, where
αTB represents the on-site matrix element of a Wannier function with itself, and γTB

1 and γTB
2 denote

the hoppings to the first- and second-nearest neighbors, respectively, we compute the corresponding
Hamiltonian matrix elements in reciprocal space using Eq. (1.16),

H1,1,k = α
TB + eika′

γ
TB
2 + e−ika′

γ
TB
2 = α

TB +2γ
TB
2 cos

(
ka′
)
, (2.30)

H2,2,k = α
TB + eika′

γ
TB
2 + e−ika′

γ
TB
2 = α

TB +2γ
TB
2 cos

(
ka′
)
, (2.31)

H1,2,k = γ
TB
1 (1+ e−ika′), (2.32)

H2,1,k = γ
TB
1 (1+ eika′). (2.33)

Since all the Wannier functions are identical and equidistance, it is clear that the on-site Hamiltonian ma-
trix elements, the first-neighbor interactions and second-neighbor interactions will be the same regardless
of the orbital under study.
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The resulting Hamiltonian matrix follows the shape

Hk =

(
αTB +2γTB

2 cos(ka′) γTB
1 (1+ e−ika′)

γTB
1 (1+ eika′) αTB +2γTB

2 cos(ka′)

)
, (2.34)

where the eigenvalues are the following energies,

E1(k) = αTB +2γTB
2 cos(ka′)+2γTB

1 cos
(

ka′

2

)
E2(k) = αTB +2γTB

2 cos(ka′)−2γTB
1 cos

(
ka′

2

)
.

(2.35)

Comparing the eigenvalues obtained from both the WANNIER90 and tight-binding methodologies, we
observe that WANNIER90 operates akin to a tight-binding method, satisfying the relations, αTB = αW90,
γTB

1 = γW90
1 , γTB

2 = γW90
2 /2 in this scenario. If this calculation were repeated for a case using a k-sampling

N = 4 for WANNIER90, the equivalent tight-binding approximation would consider interactions up to
fourth neighbors. Again, the relationship between the interactions obtained from WANNIER90 and those
from the tight-binding approximation would be one, except for the interactions at the boundaries, where
a factor of 2 would appear again. In these instances, it becomes apparent that the interactions obtained
with WANNIER90 at the boundaries are twice those of the tight-binding interactions.

It is noteworthy that in these examples, for a clear theoretical treatment of the WANNIER90 approach, we
have worked with a small simulation cell and a minimal number of k-points. Nevertheless, in practical
calculations, the interactions at the boundaries tend to diminish to an extent where this effect becomes
negligible. This is either due to a large number of k-points or a large simulation cell, or a combination of
both factors.

Hence, it follows that when the number of k−points is sufficiently large, WANNIER90 becomes equiva-
lent to a tight-binding treatment with a specific number of neighboring shells.
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Chapter 3

State of art: Electron-vibration interaction

The interaction between electrons and atomic vibrations is a central topic in condensed matter and molec-
ular physics, essential to understand phenomena such as electrical resistance, charge transport, and su-
perconductivity in solids, as well as electron transfer and non-radiative relaxation processes in molecules
[73; 74; 75]. Given its fundamental role across a wide range of physical and chemical processes, as
will be shown in detail below, it is very important taking them into account during the construction of
second-principles models. And so, this Chapter focuses on the study of the basis of electron–vibration in-
teractions. In the bibliography and along this Chapter, this interaction is commonly referred to as vibronic
coupling (vibrational–electronic coupling) or known as electron-phonon or electron-lattice interaction in
solid state physics. We will use both terms as equivalent.

In order to include the interaction between electronic and nuclear degrees of freedom, the concept of vi-
bronic coupling arises as a framework to address two fundamental questions: How do nuclear vibrations
influence the electronic structure? And conversely, how do electronic states affect nuclear dynamics?
To describe geometric distortions we can use three complementary representations: individual atomic
displacements {⃗uλ}, atomic positions {⃗τλ}, and vibrational normal modes {QΓ}, which correspond to
collective atomic motions. Each vibrational mode can be expressed as a linear combination of atomic
displacements. In the case of a specific mode QΓ, where the subscript Γ does not denote a mode at
the high-symmetry Γ point but rather refers to any mode of the system, and considering a Cartesian
coordinate α ,

QΓ,α = ∑
λ

cλΓ,αuλ,α (3.1)

with the inverse relation given by,
uλ,α = ∑

Γ

c̃λΓ,αQΓ,α . (3.2)

In this Chapter, we first illustrate the importance of this interaction across various physical and chemical
phenomena and highlight its relevance in numerous applications. After establishing its physical signifi-
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cance, we present various theoretical formalisms that have been developed to describe the electron-lattice
interaction.

Furthermore, we explore how vibronic effects can be incorporated from a computational perspective.
This Chapter attempts to synthesize the state-of-the-art theoretical developments and practical strategies
for treating electron–phonon interactions within first-principles calculations, particularly within DFT. In
this context, we address the computational challenges and the corresponding solutions they entail.

In order to study the state of art of the vibronic coupling, a comparative analysis of different approaches
from DFT to incorporate the electron–lattice interaction is provided. Among the significant recent con-
tributions discussed in this Chapter are the finite-difference approach to electron–phonon coupling [76],
a reciprocal-space formulation to deal with solid state systems [74] and its treatment based on Wannier
function representations [68; 69; 74]. Finally, we also present the incorporation of vibronic coupling
through an alternative approach: second-principles method [37], which constitutes the key methodology
in this work.

3.1 Historical development

Bloch introduced the concept of electron-phonon interaction while studying the temperature depen-
dence of electrical resistivity in metals [77]. Thermal vibrations of the crystal lattice—later identified
as phonons—play a fundamental role in understanding electrical resistivity. Although Bloch did not ex-
plicitly refer to phonons, he identified elastic waves as the primary mechanism for electron scattering
at low temperatures [77]. In his work, Bloch studied the interaction between two coupled systems—the
electron gas, simulating the electrons in a metal, and the lattice, capable of elastic oscillations—using a
perturbative approach.

Figure 3.1: Temperature dependence of the electrical resistivity for various metals. This figure shows the T 5

dependence for low temperatures regime. This figure has been extracted from Ref. [78] with permissions.

At sufficiently low temperatures, electron scattering is dominated by acoustic phonons, characterized by
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large wavelength and low energy. In this regime, it can be assumed that the wavelengths of the elastic
waves are much larger than the interatomic distances, allowing the crystal to be treated as a continuum.
Furthermore, the amplitudes of these waves are small enough to apply the harmonic approximation.
Under these assumptions, Bloch derived the temperature dependence of thermal resistivity demonstrating
that it follows a T 5 dependence, leading to the so-called “Bloch T 5 law”. In 1940, Bloch predictions were
experimentally confirmed by Bardeen [78], Fig. 3.1.

Although Bloch employed a classical description of lattice vibrations by means of long wavelength
elastic waves, the derivation of the “Bloch T 5 law” is only possible considering some main fundamental
quantum mechanical principles, making his approach effectively semi-classical. In particular, Bloch’s
theory is based on two key quantum principles: (i) the quantization of the vibrational energies, where
phonon occupancy is governed by the Bose-Einstein statistics; (ii) electron scattering by lattice vibrations
must obey selection rules leading to quantum energy and momentum conservation laws.

The general quantization of lattice vibrations for studying lattice dynamics was first introduced by
Frenkel [79]. While Bloch described lattice vibrations in terms of elastic waves, Frenkel replaced this
concept with that of phonons [79]. His work formally addressed the mechanics of phonons, which rep-
resent the quantized vibrational modes in crystalline solids. This treatment established a foundational
framework for understanding how lattice vibrations influence the thermal, acoustic, and electronic prop-
erties of materials.

3.2 Applications

The electron–phonon interaction plays a crucial role in the understanding of different solid-state proper-
ties. In particular, the vibronic coupling interaction is fundamental in the study of (i) charge and energy
transport of several materials including the development of efficient solar cells and other electronic de-
vices [80; 81; 82; 83; 84], semiconductor physics [85], superconductivity [86; 87; 88] and the formation
of polarons [88; 89; 90; 91] and localized defects in insulators [92]; (ii) vibronic effects in spectroscopy
like the Stokes shift [93; 94; 95] and (iii) structural changes as the symmetry breaking and Jahn-Teller
effect [73; 96; 97].

3.2.1 Symmetry breaking and Jahn-Teller effect

From an energetic perspective, symmetry breaking is inherently connected to the emergence of multiple
minima on the potential energy surface of a system. This phenomenon holds profound implications
across a wide range of physical processes. One of the most interesting examples is the maser [98], where
the symmetry breaking plays a central role in its functionality, as we explain below. In this case, the
underlying process is crucial factor driving the device’s operation, demonstrating the tangible impact of
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symmetry breaking in real-world applications.

A maser (Microwave Amplification by Stimulated Emission of Radiation) is a device designed to gener-
ate and amplify electromagnetic waves through stimulated emission. It represents one of the pioneering
developments that preceded the invention of the laser. While both devices rely on similar amplification
principles, the maser operates specifically in the microwave region of the electromagnetic spectrum. The
first maser was constructed in 1953 by Charles H. Townes [98] in collaboration with J.P. Gordon and
H.J. Zeiger using ammonia (NH3) as the active medium. This groundbreaking work was awarded by the
Nobel Prize in Physics in 1964.

Ammonia is a non-planar molecule that exhibits two equivalent equilibrium configurations—both C3v

pyramidal structures—in which the nitrogen atom resides either above or below the plane defined by
the three hydrogen atoms. As a result, the potential energy surface features two degenerate minima
corresponding to these geometries, leading to a symmetric double-well potential represented in Fig. 3.2.
These wells are separated by an energy barrier of 25 kJ/mol [99] (ten times greater than thermal energy
at room temperature) associated with a transition state of higher symmetry, specifically a planar D3h

configuration.

The functionality of the ammonia maser is fundamentally based on the umbrella inversion of the ammo-
nia molecule [100], a quantum mechanical phenomenon closely linked to symmetry breaking. The um-
brella inversion refers to the process by which the nitrogen atom transitions between the two equivalent
equilibrium positions via the tunneling effect inverting the pyramid. This inversion flip-flops repeatedly
with a tunneling rate [99]. To understand the underlying physics, it is important to recognize that, due
to the equivalence of the two pyramidal geometries, the associated potential wells are also equivalent,
as are their vibrational energy levels. Thus, one can initially model the system as two independent har-
monic oscillators: oscillator a corresponding to the configuration where the nitrogen atom is “above”
the hydrogen plane, and oscillator b corresponding to the configuration where it is “below” the plane.
Each oscillator supports quantized vibrational states, and we focus on the fundamental vibrational states,
called here ϕa and ϕb, of each configuration [101].

Due to the tunneling effect, these two oscillators begin to interact. Analogous to the molecular orbital
approach used in the treatment of the hydrogen molecule, we construct linear combinations of the vi-
brational wavefunctions ϕa and ϕb. These combinations yield symmetric, Ψ+ and antisymmetric Ψ−

molecular vibrational wavefunctions [101],

Ψ
+ =

1√
2
(ϕa +ϕb), Ψ

− =
1√
2
(ϕa−ϕb). (3.3)

As a result, the interaction of the two wells via tunneling lifts the degeneracy of the vibrational levels,
opening an energy splitting between the symmetric, Ψ+ (lower in energy) and antisymmetric, Ψ− (higher
in energy) states. These energies levels are depicted in Fig. 3.2 by horizontal lines. In this way, the
emission of the maser is a result of the desexcitation of the NH3 molecules from the antisymmetric state
to the symmetric state. The energetic separation between these states is 0.8118 cm−1 [99], transition
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associated to the microwave region of the electromagnetic spectrum.

In the case of the NH3 maser, although the umbrella inversion arises from a quantum tunneling pro-
cess, the origin of the characteristic double-well potential lies in the instability of the high-symmetry
planar geometry (Dh). How, then, can we understand the symmetry breaking observed in the ammonia
molecule? This instability is a direct consequence of a Pseudo Jahn–Teller (PJT) effect [102].

Figure 3.2: Potential energy surface of the ammonia (NH3) molecule along the normal mode coordinate associated
with the oscillatory mode of the nitrogen atom along the axis perpendicular to the plane of the hydrogen atoms.
This vibrational mode gives rise to a double-well potential with two minima located at normal mode coordinates
Qa and Qb, corresponding to the nitrogen atom positioned “above” and “below” the hydrogen plane, respectively.
Each minimum exhibits C3v symmetry. The two wells are separated by an energy barrier associated with a tran-
sition state, which corresponds to the planar geometry of the molecule characterized by D3h symmetry. Quantum
tunneling between the two equivalent minima leads to a splitting of the degenerate vibrational energy level into
two distinct levels, represented by horizontal lines, corresponding to a symmetric state Ψ+ (shown in red) and an
antisymmetric state Ψ− (shown in blue). This energy splitting occurs in the microwave region of the electromag-
netic spectrum. This figure has been adapted from Ref. [101].

This phenomenon is of considerable importance, as it reflects a broader theoretical framework for un-
derstanding symmetry breaking in condensed matter systems. As discussed in Ref. [73], the instability
of a high-symmetry configuration in a system can generally be attributed to one of three mechanisms:
the Jahn–Teller effect (in the case of degenerate electronic states), the Pseudo Jahn–Teller effect (for
non-degenerate states), or the Renner–Teller effect (specific to linear molecular systems).

In order to introduce the Jahn-Teller theorem, two fundamental concepts must first be introduced: the
spatial degeneracy of electronic states and the susceptibility of a system leading to symmetry breaking.
Firstly, regarding the spatial degeneracy of electronic states: two electronic states are said to be degen-
erate, for fixed nuclear positions, if they have the same electronic energy upon solving the electronic
Schrödinger equation. Secondly, in this context, a system susceptible of suffering a symmetry breaking
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in a degenerate state refers to a configuration associated with a high-symmetry geometry, where the de-
generacy arises from the symmetry of the system. Upon the application of a small distortion—lowering
the molecular symmetry—the system undergoes a reduction of the total electronic energy, indicating that
the high-symmetry degenerate state is energetically unfavorable.

As illustrated in Fig. 3.3, we consider an octahedral complex of the form MX6, characterized by an
open-shell electronic configuration. In this case, the high-symmetry Oh configuration corresponds to
an unstable point. Due to the presence of electronic degeneracy in the open-shell state, the system is
susceptible to a symmetry-lowering distortion—typically toward a tetragonal geometry (with symmetry
D4h)—that lifts the degeneracy of the electronic levels. This distortion leads to an energy splitting and
results in a more stable configuration of the complex. Later on, we will examine a concrete example.

Figure 3.3: Highest occupied molecular orbital (HOMO) of the CuCl4−6 complex in its high-symmetry Oh ge-
ometry. This electronic state is unstable, resulting in a lowering of the total energy through a distortion of the
geometry—specifically, an elongation along the z-axis—which reduces the molecular symmetry and lifts the or-
bital degeneracy.

This example illustrates the fundamental interplay between degeneracy and structural distortion. It re-
veals how a system with a spatially degenerate electronic ground state is unstable and can lower its energy
through a symmetry-breaking distortion that lifts the degeneracy. This leads us to the general statement
of the Jahn-Teller theorem, which asserts that the nuclear configuration of any nonlinear molecular sys-
tem in a spatially degenerate electronic state is inherently unstable with respect to nuclear displacements
that reduce the system’s symmetry, thereby removing the degeneracy [73].

Although originally the Jahn-Teller effect was proposed in molecular systems, Van Vleck (1939) [103]
extended the concept to solid-state systems with localized electrons.

The Jahn-Teller effect is particularly relevant in solid-state systems containing open-shell complexes,
such as octahedral centers with Oh symmetry, characterized by electronic configurations d7[104],d9 [96;
105], p5 [106], . . . One example are insulator crystals composed by charged MXn complexes where the
M cation represents a transition metal characterized by an open d shell, and the nearest-neighbor ligands
(n) are anions (F−, Cl−, O2−, . . . ). These complexes exhibit significant electron localization, rendering
them particularly susceptible to Jahn-Teller distortions.
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As the Jahn-Teller effect arises in the presence of a degenerate electronic ground state, electron local-
ization is essential. It enables stronger interactions between the localized electrons and the surrounding
ligands. If the charge density is localized it exerts a strong force over the ligands distorting the lattice.
This interaction will be examined in further detail later considering the case of the CuCl4−6 complex.

Among the different examples in which the Jahn-Teller effect can be observed, we find pure solids such
as KCuF3 [107; 108; 109], composed by CuF4−

6 complexes with d9 configuration; CuO crystal [110; 109]
characterized by CuO10−

6 complexes or systems with defects such as NaCl : Cu2+ involving the CuCl4−6
complex [94]. In particular, to illustrate the vibronic coupling we study the Jahn-Teller effect in the
NaCl : Cu2+ system [96]. In its pure form, NaCl consists of NaCl5−6 octahedral complexes, exhibiting Oh

symmetry group. Since Na+ cation is a closed shell ion, its electronic density is spherically symmetric,
exerting a uniform force on the surrounding Cl− ligands.

Figure 3.4: Orbital splitting in the CuCl4−6 octahedral complex induced by the Jahn–Teller effect, resulting in a
tetragonal distortion with D4h symmetry, either elongated or compressed along the z-axis. Figure extracted from
Ref. [111].

At this point, if one of the Na+ cations is substituted by the impurity Cu2+, characterized by an open shell
3d9, it leads to a CuCl4−6 complex. According to the molecular orbital diagram of the complex, shown
in the center of Fig. 3.4, in the high-symmetry octahedral configuration the triplet level t2g is complete
while the highest occupied level corresponds to a doubly degenerate eg state—associated with the atomic
orbitals dx2−y2 and dz2— where one orbital is fully occupied while the other is only partially filled. This
leads to a twofold spatial degeneracy in its fundamental ground state. Then, the system undergoes a Jahn-
Teller distortion lowering the symmetry to a tetragonal geometry. Since in the undistorted structure the
eg orbital is twofold degenerate and partially occupied, this uneven occupation results in an asymmetric
electronic density. In the case where the completely occupied eg orbital corresponds to the dz2 orbital
while dx2−y2 is partially occupied, the localized nature of the electrons gives rise to anisotropic electronic
density, which exerts directional forces on the surrounding ligands [see Fig. 3.5(c)]. This results in a
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distortion of the local coordination environment, with the ligands along the z-axis being pushed outward
(because an excess of electron density in an antibonding orbital oriented in this direction), while those in
the xy-plane are drawn closer to the central ion. Consequently, vibronic coupling through the Jahn-Teller
effect induces a distortion along the normal mode Qθ . The configurations corresponding to negative and
positive values of Qθ are illustrated on the left and right sides of Fig. 3.4, respectively. Specifically,
for Qθ > 0, the mode results in an elongation of the two axial bond distances by an amount 2a, while
simultaneously compressing the four equatorial bond distances by an amount a. Conversely, for Qθ < 0,
the complex suffers compression along the axial direction and an expansion within the equatorial plane.

As a result, the system undergoes a symmetry-lowering distortion from its original cubic configuration,
becoming elongated along the z-axis and compressed within the xy-plane. This leads to a final geometry
consistent with D4h symmetry, as illustrated on the right in Fig. 3.4.

This symmetry breaking lifts the degeneracy of the eg states: on the one hand, the dz2 orbital, which
now forms an a1g state, is stabilized (its energy is lowered relative to the eg doublet); on the other
hand, the dx2−y2 orbital, which corresponds to a b1g state, is destabilized by an equivalent amount (in the
linear approximation). Consequently, the system lowers its total energy compared to the undistorted Oh

geometry, being the system in the high symmetry configuration unstable.

Returning to the high-symmetry configuration, when the occupied orbital corresponds to the dx2−y2 , vi-
bronic coupling occurs with equatorial ligands instead of the z-axis. This asymmetric charge distribution
exerts a repulsive force on the ligands within the xy-plane, leading to an expansion in that plane, accom-
panied by a compression along the z-axis [see Fig. 3.5(a)]. In this case, the splitting of the electronic
energy levels follows the order illustrated on the left side of Fig. 3.4.

In the electronic band structure, this effect appears as a splitting of degenerate states at the top of the va-
lence band or bottom of the conduction band, altering the bandgap and influencing both the spectroscopic
properties and charge transport mechanisms of the material.

Furthermore, the Jahn-Teller effect plays a crucial role in metal-insulator transitions, as observed in man-
ganites and perovskite oxides, where Jahn-Teller distortions induce phase transitions between conducting
and insulating states [112].

Beyond the Jahn-Teller effect, certain systems exhibit the pseudo-Jahn-Teller (PJT) effect, where vi-
bronic coupling induces geometric distortions even in the absence of degenerate electronic states. In
such cases, the vibrational modes couple the ground electronic state with excited states, leading to a
distortion of the molecular or crystalline geometry. An important difference between both effects is that
the JT effect exerts a force and not necessarily involves a change in the density while the PJT effect
necessarily involves a change in the density (covalency).

An illustrative example of a system exhibiting the pseudo-Jahn–Teller (PJT) effect is Cs2AgF4, a layered
compound whose high-symmetry configuration is intrinsically tetragonal. Although the ground state
in this configuration is non-degenerate, it is unstable due to vibronic coupling with low-lying excited
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Figure 3.5: (a) Asymmetric electronic density, compressed along the z-axis and expanded in the xy-plane, for
a CuCl 4 –

6 complex with an open-shell d9 electronic configuration. This density arises from a configuration in
which both electrons in the eg level occupy the dx2−y2 orbital, while the dz2 orbital is partially occupied by a single
electron. As a result, the increased electron density in the dx2−y2 orbital leads to an expansion of the complex
in the xy-plane (due to its antibonding character) and a compression along the z-axis, in contrast to the full-shell
structure shown in (b). (b) Symmetric electronic density of an octahedral NaCl 5 –

6 complex with a closed-shell
d10 configuration. (c) Asymmetric electronic density, elongated along the z-axis and compressed in the xy-plane,
for a CuCl 4 –

6 complex with an open-shell d9 configuration. This density corresponds to a configuration in which
both electrons in the eg level occupy the dz2 orbital, while the dx2−y2 orbital is partially occupied. Consequently,
the dominant electron density in the dz2 orbital induces an elongation of the complex along the z-axis, due to its
antibonding character.

electronic states. This instability arises from the PJT effect, whereby the ground state interacts with an
excited state through vibrational modes, leading to a distortion of the crystal structure [73]. Although the
system may initially appear analogous to a Jahn–Teller system, the phonon modes coupled to the elec-
tronic states are fundamentally different from those involved in the JT effect. In the JT case, the relevant
vibrational modes are Qθ (representing a tetragonal distortion) and Qε (associated to an orthorombic dis-
tortion), which transform according to the eg representation and mediate the electron–phonon interaction.
In layered crystals, however, the system couples to a mode resembling the Qε mode.

It is important to note that in solids, the manifestation of the Jahn-Teller effect is inherently more intricate
than in molecular systems, due to the fact that single-electron states form continuous energy bands in
reciprocal space, as opposed to the discrete energy levels characteristic of isolated molecules. In order to
perform a rigorous treatment of the JT effect in solids within reciprocal space, two competing theoretical
frameworks have been developed: orbital ordering theory stablished by Kugel and Khomskii in 1982
[113; 114; 115; 116] and the cooperative JT effect proposed by Kanamori [117] and later extended by
other researchers [118; 119; 120].

3.2.2 Vibronic coupling in spectroscopy

Vibronic coupling plays a fundamental role in spectroscopy, manifesting in various optical phenomena
governed by vibronic coupling. This is particularly evident in processes such as optical absorption,
observed in systems like organic dyes [121] and transition metal complexes [122]; fluorescence, mani-
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fested in quantum dots [123] and rare-earth-doped oxides [124] and Raman spectroscopy, measured in
crystalline silicon [125] and graphene [126], where the coupling between electronic states and lattice
vibrations influences spectral features and transition dynamics.

One significant manifestation of electron-phonon coupling is observed in thermally activated optical
absorption transitions [127]. At low temperatures, certain optical transitions between electronic states
are forbidden by selection rules. However, in some systems, as the temperature increases, the larger
vibrations enhance the coupling between electronic states and lattice vibrations, enabling the observation
of transitions which were initially symmetry-forbidden.

As an illustrative example, we consider a system initially in its electronic ground state, described by the
wavefunction Ψ(0). The potential energy surface (PES) corresponding to this electronic state is depicted
in Fig. 3.6 as a function of the vibrational normal mode coordinate Q. This coordinate represents the
distortion pathway along a specific vibrational mode that becomes active upon thermal excitation of the
system. In particular, we consider a structure in which the vibrational mode is non-totally symmetric,
meaning it transforms according to a non-totally symmetric irrep 1, (Q ̸= A1). In other words, this mode
does not correspond to an isotropic expansion or compression of the system.

At low temperatures (T ≈ 0), the system remains in the equilibrium configuration of the ground state,
residing at the minimum of the PES where the value of the wavefunction is Ψ(0)(Q0). Under these
conditions, we assume that an electric dipole transition between the ground state and the first electronic
excited state Ψ(1)(Q0) is forbidden by selection rules, i.e., the transition dipole moment is null

⟨Ψ(1)(Q0)|⃗r|Ψ(0)(Q0)⟩= 0. (3.4)

This is equivalent to prove that the direct product of the irreducible representations corresponding to
Ψ(0)(Q0), r⃗, and Ψ(1)(Q0) does not contain the totally symmetric representation (A1). In Fig. 3.6 this
forbidden transition is represented by a vertical red dashed arrow.

Now, we apply on the structure a finite temperature (T ̸= 0). Thus, the system experiences thermal
excitations causing a distortion of the atomic geometry leading to a new geometry Q′ (represented in
Fig. 3.6 by the orange color). The resulting ground-state wavefunction for T ̸= 0 is perturbed (later, we
will see the added perturbation represents first-order vibronic coupling),

Ψ
(0)(⃗r,Q′) = Ψ

(0)(⃗r,Q0)+
(

∂Ψ
(0)(⃗r)/∂Q

)
Q0

(Q′−Q0). (3.5)

The thermally distorted wavefunction exhibits different symmetry properties compared to Ψ(0)(Q0), as
it involves a vibrational mode that does not possess the totally symmetric character.

To analyze the transition probability at T ̸= 0, we evaluate the transition dipole moment considering as

1For a molecular system with symmetry described by a point group G, the irreducible representations (irreps) classify the
ways in which different quantum states or operators transform under the symmetry operations of the group.
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the initical state the perturbed wavefuntion,

⟨Ψ(1)(Q′)|⃗r|Ψ(0)(Q′)⟩= ⟨Ψ(1)(Q′)|⃗r|Ψ(0)(Q0)⟩+
〈

Ψ
(1)(Q′)|⃗r|

(
∂Ψ

(0)/∂Q
)

Q0
(Q′−Q0)

〉
=

=

〈
Ψ

(1)(Q′)|⃗r|
(

∂Ψ
(0)/∂Q

)
Q0

(Q′−Q0)

〉
̸= 0

(3.6)

In this expression, the first term vanishes due to selection rules, expressed in Eq. (3.4). However, the
second term may be nonzero if the distortion transforms in such a way as to render the integrand totally
symmetric, allowing the transition (represented by a green arrow in Fig. 3.6). As a result, the key to the
transition becoming allowed lies in the change of the electronic wavefunction with respect to the nuclear
positions.

In this way, the mixing between electronic states through the electron-lattice interaction can transform
forbidden transitions at low temperatures into allowed transitions at T ̸= 0, a phenomenon referred to
as vibronic transitions. Such transitions, allowed by electron-phonon coupling, are a hallmark of the
Herzberg-Teller effect [127], which describes how vibrational motion can relax electronic selection rules,
enabling otherwise forbidden optical transitions.

Figure 3.6: Schematic representation of the potential energy surfaces (PES) corresponding to the ground state, Ψ(0),
and the excited state, Ψ(1), of a system. The PES are plotted as functions of a normal mode coordinate Q associated
with a thermally activated vibrational mode (different from the totally symmetric mode). At zero temperature, the
system resides at the equilibrium geometry Q0, and the electronic transition from the ground to the excited state is
symmetry-forbidden, as indicated by the red dashed vertical arrow. Upon thermal excitation, the system becomes
vibrationally distorted, spending time in geometries displaced from Q0, such as Q′. This distortion modifies the
symmetry properties of the wavefunction through a first-order perturbative term (∂Ψ(0)/∂Q)Q0(Q

′−Q0), which
may relax the selection rules. As a result, the transition dipole moment becomes non-zero, rendering the transition
optically allowed. This thermally enabled transition is indicated by the solid green arrow.

Another phenomenon in spectroscopy related to vibronic coupling is the Stokes shift, which arises from
the coupling between electronic states and lattice vibrations. This shift, observed in fluorescence and
Raman spectroscopy, results from the energy relaxation of an excited electronic state due to vibrational
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interactions before photon emission, leading to an emission spectrum redshifted relative to the absorption
spectrum [93; 94; 95], as shown on the right side of Fig. 3.7.

To explain this effect, we consider a system in the ground electronic state where the potential energy
surface (PES) along a vibrational mode coordinate Q is given by the expression

E(0)(Q) =
1
2

K(Q−Q0)
2. (3.7)

Here, the value Q0 denotes the equilibrium position along the normal mode coordinate. The potential
energy surface (PES) of the ground state is depicted in yellow in Fig. 3.7.

Upon the absorption of a photon, the system transitions to the first excited state. It should be noted
that, according to the Franck-Condon principle [128], the transition occurs without an immediate change
in the system’s geometry, as nuclear motion is much slower than electronic transitions [128]. In the
excited state, the electronic distribution of the system differs from that in the ground state, leading to a
modification of the forces acting on the nuclei. This change induces vibronic coupling since these new
forces lead to atomic displacements, causing the system to relax into a different equilibrium geometry
(non-radiative relaxation process). This minimum of the excited state corresponds to the normal mode
coordinate Q′. Thus, a shift is manifested in the potential energy surface (PES) of the excited state, E(1),
which is displaced with respect to that of the ground state (see Fig. 3.7) due to the action of the force
F(Q−Q0), where F is a constant with units of force per unit displacement,

E(1)(Q) = Eexc +
1
2

K(Q−Q0)
2−F(Q−Q0). (3.8)

In the previous expression, the energy Eexc represents the energy of the vertical transition from the ground
state to the excited state evaluated at Q0. In subsequent sections we will see F represents the linear
vibronic coupling.

Figure 3.7: Diagram depicting the adiabatic potential energy surfaces of two electronic states in a molecule. Verti-
cal arrows indicate vibronic transitions, accompanied by a schematic representation of the corresponding absorp-
tion and emission spectra. This figure has been adapted from Ref. [128].
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After excitation, the system eventually relaxes from the excited state to the ground state. Due to non-
radiative relaxation via vibronic coupling, the emitted photon has a lower energy than the absorbed
photon. This energy difference leads to a shift between the maxima of the absorption and emission
spectra, resulting the Stokes shift. Figure 3.7 illustrates the excitation (previously discussed) and decay
processes and the corresponding absorption and emission spectra.

As an example of a system that exhibits a Stokes shift, we examine this phenomenon in a candidate ma-
terial for the development of emissive layers in organic light-emitting diodes (OLEDs) [129; 130; 131]:
the molecule known as 9-methoxypyrroloisoquinolinetrione. This compound exhibits a large Stokes shift
in the transition π → π∗. The excitation, associated with an absorption energy of 354 nm [132], leads
to a relocalization of the electronic density. This redistribution of the electronic density is depicted in
Fig. 3.8. In the first panel, the electronic density for the ground state, π , is shown in yellow. In the
second panel, the electronic density of the excited state, π∗, is represented in green. In the third panel,
the transition density is illustrated indicating in yellow regions of electron density depletion and in green
isosurfaces associated to regions of electron density gain.

As previously discussed, the redistribution of electronic density in the excited state generates forces on
the atoms, resulting in bond length changes: bonds with antibonding character lengthen, while others
shorten. This constitutes the vibronic coupling.

Finally, the system undergoes desexcitation at 514 nm [132], producing the observed Stokes shift in the
comparison of the absorption and emission spectra.

Figure 3.8: Electron density redistribution associated with the π → π∗ electronic excitation in the 9-
methoxypyrroloisoquinolinetrione molecule. The first panel illustrates the electron density corresponding to the
initially occupied orbitals involved in the excitation, represented by yellow isosurfaces. The second panel depicts
the spatial distribution of the unoccupied orbitals that are populated upon excitation, shown as green isosurfaces.
The third panel presents the transition density, where yellow and green isosurfaces indicate regions of electron de-
pletion and accumulation, respectively, capturing the net shift in electron density induced by the excitation. Figure
extracted from Ref. [132] with permissions.
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3.2.3 Localized states: polarons

A polaron is a quasiparticle that emerges from the interaction between a charge carrier (electron or hole)
and the lattice of a material. When the system is doped with the charge carrier, it exerts forces on
the surrounding atoms, inducing a local distortion of the lattice, as can be observed in Fig. 3.9. This
distortion creates a potential well that energetically stabilizes the carrier leading to the localization of
the charge carrier. The polaron thus represents the combined entity of the charge and its accompanying
lattice deformation [128; 133].

Several physical phenomena are mediated by the presence of polarons. This quasiparticle significantly
influences a wide range of processes, including charge transport [134; 135], colossal magnetoresistance
[136], ferroic ordering [137], photoemission [138], and thermoelectricity [139].

Figure 3.9: Schematic representation of a polaron. Blue and red spheres depict the atoms forming the lattice of
the system. The blue cloud illustrates the electronic density associated with an excess electron that contributes
to the formation of the polaron. This electron is localized on the central blue atom. In its vicinity, the electronic
density induces a force that distorts the surrounding lattice, reflecting the electron–lattice coupling. Blue and
orange arrows indicate the direction of atomic displacements resulting from this coupling, which characterizes the
polaronic distortion.

Previously, we provided an overview of the definition of a polaron. Here, we further elaborate on the
physical mechanism underlying its formation by presenting a schematic model that illustrates the process.
In this framework, we consider a system in its ground state, whose potential energy surface (PES) is
schematically depicted in green in Fig. 3.10. The associated potential energy is approximated by a
harmonic potential of the form

EGS(Q) =
1
2

K(Q−Q0)
2, (3.9)

where Q denotes the normal mode coordinate, K is the force constant, and Q0 corresponds to the equi-
librium position of the system, i.e., the minimum of the PES. Next, we consider the introduction of an
extra electron into the system. Initially, assuming that the added electron remains delocalized, the result-
ing energy gain is denoted by ∆Eel. Under this condition, the corresponding potential energy surface is
described by the expression

Edeloc(Q) = ∆Eel +
1
2

K(Q−Q0)
2, (3.10)
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that is represented in blue in Fig. 3.10. However, the added electron can be localized forming a polaron.
In this scenario, the electron exerts a force F in its local region, adding a contribution−F(Q−Q0) to the
energy. This interaction effectively lowers the system’s energy, leading to a modified PES given by

E loc(Q) = ∆Eel +
1
2

K(Q−Q0)
2−F(Q−Q0), (3.11)

which is represented in red in Fig. 3.10. Attending to the new PES, the distortion in the system reduces
the energy, stabilizing the electron and keeping it localized in a region of space. The force exerted by the
electron induces a local distortion in the lattice, resulting in a displacement of the surrounding atomic
positions. It is through this distortion—arising from the electron–lattice interaction—that vibronic cou-
pling emerges. This geometric distortion results in a new minimum of the potential energy described by
Eq. (3.11). The equilibrium atomic positions are consequently shifted, reflecting the structural deforma-
tion induced by the localization of the electron.

The contributions to the total energy of the polaron are schematically illustrated in Fig. 3.10. The first
contribution corresponds to the electronic energy gain, ∆Eel, associated with the introduction of an extra
electron into the system. The second contribution, denoted as ∆Elat,

∆Elat = |Edeloc(Q′)−Edeloc(Q0)|=
1
2

K(Q′−Q0)
2, (3.12)

represents the lattice distortion energy required to accommodate the localized charge. This energy cost
is associated with the structural modification from the undistorted configuration at Edeloc(Q0) to the dis-
torted geometry at Edeloc(Q′). Thirdly, the energy gain arising from the force performed by the electron
leading to the electron–lattice coupling,

∆Eel−lat = |E loc(Q′)−Edeloc(Q′)|= F(Q′−Q0). (3.13)

This energy is associated with lowering of the gap energy. In the case of strong coupling between the
electron and the lattice distortions—typically associated with small polarons—the formation of a polaron
leads to a highly localized electronic state, resulting in the emergence of a strongly localized mid-gap
level. Conversely, for weakly coupled (large) polarons, the effect manifests as a slight lowering of the
conduction band edge [88; 133].

Then, the energy of the polaron with respect the ground state is

E loc(Q′)−EGS(Q0) = ∆Eel +∆Elat−∆Eel−lat = ∆Eel +
1
2

K(Q′−Q0)
2−F(Q′−Q0). (3.14)

Whereas, the energy associated to the stabilization of the polaron with respect the delocalized state

∆Epol = ∆Eel−lat−∆Elat = F(Q′−Q0)−
1
2

K(Q′−Q0)
2 =

1
2

F2

K
. (3.15)

In the last step of the equation, we apply the equilibrium condition, for which ∂ (∆Epol)/∂Q′ = 0, ob-
tained at Q′ = Q0 +F/K.
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In the context of polarons the terms self-trapped carrier or self-trapping are often used. These terms
describe the physical scenario in which the carrier becomes localized within a potential well, whose
depth is given by ∆Epol = F2/2K [Eq. (3.15)], formed by the displacements of the surrounding atoms.
This potential well lowers the energy of the system, energetically favoring localization of the carrier over
the delocalized (free) state [133].

Figure 3.10: Configuration coordinate diagram illustrating the energy balance as a function of lattice distortion for
both a delocalized conduction electron and a localized polaron. EST represents the structural energy, EPOL denotes
the polaron binding energy, and EEL corresponds to the electronic energy. The right side of the panel displays
charge density isosurfaces alongside schematic band structures: the upper panel depicts a delocalized conduction
electron, while the lower panel illustrates a small polaron with its characteristic polaron peak localized below the
Fermi energy. Figure adapted from [88].

Historically, the idea behind self-localization effect, which emerges from lattice distortions in a per-
fect crystal, was first introduced by Landau in 1933 [140]. However, it was not until 1946 that Pekar
[139] formally coined the term polaron to describe this phenomenon. Several experimental observations
confirmed the presence of polarons in various systems [89; 90; 91]. Alongside these experiments, numer-
ous theoretical frameworks were developed to investigate the nature, properties and dynamics of these
quasiparticles. These advancements culminated in the classification of polarons into two types, distin-
guished by the spatial extent of the lattice distortions, which determines the radius of the polaron (rP):
large-radius polarons, formulated by Fröhlich [141; 142], and small-radius polarons, studied by Holstein
[143; 144]. In their theories, they introduced quantum-field Hamiltonians establishing the foundational
theoretical framework for subsequent developments [88].

Polarons formed due to short-range vibronic coupling are addressed by Holstein’s theory [143; 144].
In this framework, the lattice is considered discrete. This model is primarily used to describe small
polarons. Although it has been established that the most distinctive feature for the applicability of this

80



3.2. Applications

model is the presence of strong electron–lattice coupling. Highly ionic solids, such as AgCl and alkali
halides, are typical examples where this model is relevant [128].

In ionic systems, carriers exhibit self-trapping due to the strong lattice distortion that localizes the elec-
tron or hole. As a result, the movement of the polaron through the crystal is driven by hoppings between
lattice sites, resulting in an incoherent motion. These polarons are characterized by reduced mobility,
typically lower than 1cm2V−1s−1 [88; 133; 135]. Notably, this mobility increases with temperature
because thermal-induced distortions lead to phonon-assisted hopping.

Fröhlich polarons, which correspond to large-radius polarons, extend over multiple lattice cells. In the
Fröhlich model, the discretization of the lattice is neglected, and the system is treated as a continuum.
Such polarons are prevalent in ionic, polar, and ferroelectric materials due to the long-range electron-
phonon coupling they exhibit. Large polarons are characterized by high mobility [145; 146; 147; 148],
which is influenced by temperature. As the temperature increases, scattering with the phonon field
becomes more significant, leading to a reduction in mobility.

The presence of large polarons can be observed in the band diagram. A polaron leads to a reduction in
band dispersion, resulting in band narrowing. However, in contrast to small polarons, it does not generate
a deep gap state. In this case, the polaron band is weakly bound to either the conduction or valence band,
reflecting a less localized character compared to small polarons. This effect is schematically represented
in Fig. 3.10, where the formation of the large polaron leads to a descend of the conduction band reducing
the band gap.

3.2.4 BCS superconductivity

Superconductivity is a quantum phenomenon observed in certain materials at temperatures below a crit-
ical threshold Tc. This phase is characterized by the complete absence of electrical resistance and the
manifestation of the Meissner effect [149], wherein the material exhibits perfect diamagnetism. Specifi-
cally, the magnetic susceptibility becomes χ =−1, leading to a magnetic permeability of µ = 1+χ = 0,
which implies the expulsion of any externally applied magnetic field from the interior of the material.

The emergence of superconductivity lies in the manifestation of the instability of the conventional Fermi
liquid ground state. In their seminal paper, Bardeen, Cooper and Schrieffer (BCS) [150] showed this in-
stability drives the system into a new quantum ground state characterized by the formation of correlated
electron pairs, known as Cooper pairs. The stabilization of this new state arises from an effective attrac-
tive interaction between electrons, which—despite their natural Coulomb repulsion—can occur through
the mechanism of electron-phonon coupling. As an electron propagates through the crystal lattice, it
induces a local distortion due to its interaction with the positively charged ions. This lattice distortion
creates a potential that can attract a second electron, resulting in an effective attraction mediated by lattice
vibrations, or phonons.

This electron-phonon-mediated attraction modifies the electronic states of the system and leads to the
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formation of an energy gap ∆ at the Fermi surface. The behavior of the energy gap is governed by the
BCS gap equation [151]

1 = λ

ˆ h̄ωD

0

dε√
ε2 + |∆|2

tanh

(√
ε2 + |∆|2
2kBT

)
, (3.16)

where ωD is the Debye frequency and λ = |geff|2g(εF) is the dimensionless electron-phonon coupling
constant, with g(εF) being the electronic density of states at the Fermi level. This equation implicitly
determines the temperature dependence of the energy gap ∆(T ). Physically, this gap represents the
minimum energy required to break a Cooper pair. The excitation spectrum in the superconducting state
is shifted such that the energy to add or remove a quasiparticle is ±Ek, where Ek > ∆. Consequently, the
minimum energy required to create excitations is 2∆, which suppresses low-energy scattering processes
due to vibrations or impurities that would otherwise contribute to electrical resistance, thereby enabling
the material to conduct electric current without dissipation.

In the original formulation of BCS theory [150], the electron-phonon interaction is treated within a
weak-coupling approximation. In this regime, an increase in the electron-phonon coupling strength λ

leads to a corresponding increase in both the superconducting energy gap ∆ and the critical temperature
Tc. Thus, the strength of this coupling plays a central role in determining the superconducting properties
of a material.

For conventional superconductors, the electron-phonon interaction alone is sufficient to explain the for-
mation of Cooper pairs. However, in the case of high-Tc superconductors, such as the cuprates, the
standard BCS framework is inadequate because its strong electron-phonon coupling. Multiple theoret-
ical models have been proposed to account for high-temperature superconductivity, but none has been
universally accepted. Among these models, some highlight the potential importance of strong vibronic
interactions, suggesting that lattice distortions may play a more dominant role in the pairing mecha-
nism. In particular, polaronic and bipolaronic theories [87; 152; 153] propose that strong electron-lattice
coupling can lead to localized bound states that contribute to unconventional superconducting behavior
beyond the scope of the traditional BCS theory.

3.3 Electron-phonon interaction and its effect on the force constant

In the preceding section, we have presented several examples where vibronic coupling emerges as a fun-
damental interaction governing various physical phenomena. In particular, we discussed the important
role played by the forces that electrons create when changing the state. In this Section, we establish
the theoretical framework necessary to rigorously describe and analyze the interactions. Specifically, we
examine how electron–vibration coupling influences the energy of the system and force constants. This
understanding is crucial for interpreting results from first-principles simulations aimed at addressing the
aforementioned problems.
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The first step involves the definition of the vibronic Hamiltonian, which explicitly incorporates the
electron-vibration interaction.

3.3.1 Vibronic Hamiltonian

One of the principal goals of quantum mechanics is to solve the Schrödinger equation and ascertain the
electronic structures of atoms and molecules. This task is inherently complex because the wave function
depends on the positions of numerous electrons, complicating the derivation of straightforward solutions.
Until a few decades ago, the only feasible approach involved semi-empirical methods, which simplified
the problem by incorporating extensive experimental data. However, with the advent of advanced com-
putational techniques, it is now possible to solve the Schrödinger equation using only fundamental con-
stants and nuclear atomic numbers, without relying on experimental results. These methods are called
ab initio.

We operate under the assumption of the Born–Oppenheimer approximation. Firstly, we consider the
time-independent electronic Schrödinger equation (stationary situation), which can be expressed in op-
erator form as

He(⃗τ)Ψi(⃗r; τ⃗) = Ei(⃗τ)Ψi(⃗r; τ⃗) i = 0,1,2, . . . (3.17)

Here, the eigenstates {Ψi} are multielectronic (many-body) states relevant to the problem (ground state
and excitations) and Ei are the associated energies. The ground state is denoted as Ψ0 and Ψi (i= 1,2, . . .)
represent the excited states for the nuclear positions τ⃗ ordered in increasing energy. The electronic
coordinates are denoted by the vectors r⃗, whereas the atomic positions are represented by the vectors τ⃗ .

Since we are working on the Born–Oppenheimer approximation the wavefunction is confined to a single
electronic potential energy surface, leading to an adiabatic description of the molecular system. As
a result, within the framework of this approximation, the nuclei are assumed to move on an adiabatic
potential energy surface (APES), Ei(⃗τ), where the energy depends parametrically on the atomic positions.

In constructing the electronic Hamiltonian of the system, it is important to recognize that the spatial
scale under consideration is on the order of angstroms, where electrostatic interactions constitute the
predominant forces governing the system’s behavior. Thus, the Hamiltonian associated with the problem
will include the kinetic energy of the electrons (Te), the electrostatic energy between nuclei (Vnn), elec-
trons (Vee), and between electrons and nuclei (Ven), as well as the external potential (Vext). Therefore, the
resulting electronic Hamiltonian He is given by

He = Te(⃗r)+Vee(⃗r)+Ven(⃗r, τ⃗)+Vnn(⃗τ). (3.18)

It depends parametrically on the nuclear positions that appear in Ven and Vnn but not in their momenta,
that are contained in the kinetic energy of the nuclei. The expressions for the electrons kinetic energy is

Te(⃗r) =−ℏ2
∑
a

∇⃗2
a

2m
. (3.19)
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On the other hand, the repulsive Coulomb interaction between nuclei and between electrons is obtained
from the following expressions, respectively

Vnn(⃗τ) =
1

4πε0
∑
λ

∑
υ>λ

ZλZυe2

|⃗τλ− τ⃗υ|
, (3.20)

Vee(⃗r) =
1

4πε0
∑
a

∑
b>a

e2

|⃗ra− r⃗b|
. (3.21)

Here, Zλ and Zυ are the atomic numbers of the nuclei, e is the elementary charge, τ⃗λ and τ⃗υ are the
positions of the nuclei, and r⃗a and r⃗b are the positions of the electrons.

Finally, the electrostatic attractive interaction between electrons and nuclei is

Ven(⃗r, τ⃗) =−
1

4πε0
∑
λ

∑
a

Zλe2

|⃗τλ− r⃗a|
. (3.22)

Let us now assume a system in the reference configuration. Firstly, the electronic Schrödinger equation
[Eq. (3.17)] at zero order of perturbations (without including the vibronic coupling corrections) is solved
for the reference geometry τ⃗(0) (a local minimum in the APES) as explained in Sec. 1.2.1,

H(0)
e (⃗r; τ⃗

(0))Ψ
(0)
i (⃗r; τ⃗

(0)) = E(0)
i (⃗τ(0))Ψ

(0)
i (⃗r; τ⃗

(0)). (3.23)

Secondly, the perturbed problem is addressed by introducing the perturbative correction. To define the
perturbation, we identify and isolate the terms in the electronic Hamiltonian that explicitly depend on the
nuclear coordinates,

V (⃗r, τ⃗) =Ven(⃗r, τ⃗)+Vnn(⃗τ). (3.24)

Then, it is possible to define the vibronic operator, W (⃗r, τ⃗) that represents the perturbation in He due to
the motion of the nuclei with respect to the reference structure τ⃗(0)

W (⃗r, τ⃗) =Ven(⃗r, τ⃗)−Ven(⃗r, τ⃗(0))+Vnn(⃗τ)−Vnn(⃗τ
(0)). (3.25)

Once defined the vibronic term, the electronic Hamiltonian can be expressed as

He(⃗r; τ⃗) = He(⃗r; τ⃗
(0))+W (⃗r, τ⃗)≡ H(0)

e (⃗r)+W (⃗r, τ⃗). (3.26)

The operator W (⃗r, τ⃗) is typically expressed in terms of normal modes Q, rather than atomic displace-
ments. These normal modes are labeled as QΓ, where the subscript Γ does not denote a mode at the
high-symmetry Γ point but rather refers to any mode of the system. Upon performing the basis set
transformation, the vibronic operator can be rewritten as W (⃗r,Q). Assuming small displacements of the
nuclei around their equilibrium positions, the vibronic operator W (Q) can be expanded as a Taylor series,
with the equilibrium positions taken as the origin,

W (⃗r,Q) = ∑
Γ

(
∂W
∂QΓ

)
0

QΓ +
1
2 ∑

Γ

∑
Γ′

(
∂ 2W

∂QΓ∂QΓ′

)
0

QΓQΓ′+ . . . (3.27)
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Once the vibronic operator has been defined, we know the final expression of the electronic Hamiltonian.
Then, it is possible to compute the energy of the electronic states considering the Schrödinger equation,
Eq. (3.26). Now the objective consists on solving the electronic Schrödinger equation considering the
Hamiltonian corrected by the perturbation,

Ei(Q) = ⟨Ψi(Q)|He(⃗r;Q)|Ψi(Q)⟩= ⟨Ψi(Q)|H(0)
e (⃗r;Q0)+W (Q)|Ψi(Q)⟩ . (3.28)

Here, the electronic wavefunctions Ψi(Q) correspond to the system in the presence of the applied per-
turbation. To solve the eigenvalue problem directly, it is necessary to work with a complete, infinite-
dimensional basis set in the Hilbert space. However, such an approach is generally infeasible. To ad-
dress this issue the basis set is restricted to a finite-dimensional subspace of the Hilbert space and the
Rayleigh-Ritz variational method [154] is employed to obtain the best solution. This method is based
on the variational principle, which states that for a Hermitian operator, the lowest eigenvalue can be
approximated by minimizing the energy expectation value within the chosen subspace.

The set {Ψ(0)
i }NΨ−1

i=0 defines a basis for the Hilbert space. A subset of this basis, {Ψ(0)
i }NΨ−1

i=0 , consisting of
the first NΨ wavefunctions, ordered by their respective energies (known as an adiabatic basis), can be used
to represent the total wavefunction. This expansion accounts for nuclear coordinates and incorporates
the variations in the electronic wavefunctions caused by atomic distortions,

Ψi(⃗r, τ⃗) = ∑
j

ci j (⃗τ)Ψ
(0)
j (⃗r; τ⃗). (3.29)

Hence, the energy of the i-th state, Eq.(3.28), is considered and expressed according to the expansion of
Ψi in Eq. (3.29). Thus, the electronic energy is

Ei(Q) = ⟨Ψi(Q)|He(⃗r;Q)|Ψi(Q)⟩= ∑
j
∑
k

c∗i j (⃗τ)cik(⃗τ)
〈

Ψ
(0)
j

∣∣∣He

∣∣∣Ψ(0)
k

〉
. (3.30)

By applying the Rayleigh-Ritz variational principle, the energy is minimized with respect to the coeffi-
cients and their complex conjugates. In matrix notation, the obtained solution is

[He(⃗r;Q)−Ei(Q)] c⃗i(Q) = 0. (3.31)

Now, the hamiltonian He is expressed in the basis set {Ψ(0)
i }. In this context, the overlap matrix is

the identity since the states are orthonormal. The term c⃗i denotes the vector of coefficients associated
with the i-th state. In the preceding equation, both the energy and the coefficients are unknown. With
respect to c⃗i, this constitutes a homogeneous system of linear equations, which admits a solution when
the following determinant condition is satisfied,

det|He(⃗r;Q)−Ei(Q)|= 0. (3.32)

This corresponds to an eigenvalue problem, from which the energies Ei(Q) can be determined, while the
vectors c⃗i correspond to the eigenvectors. The vector c⃗i associated with the lowest eigenvalue Ei provides
the coefficients that define the optimal Ψi(⃗r;Q) wavefunction, Eq. (3.29).
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3.3.2 Vibronic constants

The energy of the i-th multielectronic state, Ei(Q) = ⟨Ψi(Q)|He(Q)|Ψi(Q)⟩ [Eq. (3.31)], along with its
associated wavefunction Ψi, can be determined by solving the variational problem outlined in Eq. (3.32).
As previously discussed, the energy Ei(Q) defines the adiabatic potential energy surface (APES) as-
sociated with electronic state i, upon which the nuclei move. To achieve this, the Hamiltonian ma-
trix elements ⟨Ψ(0)

j |He|Ψ(0)
k ⟩ in the selected basis—frozen wavefunctions of the reference geometry,

{Ψi}NΨ−1
i=0 — must be calculated, which can be expressed as a sum of several contributing terms. The

terms arising in this context can be categorized based on their symmetry properties: those involving to-
tally symmetric modes are referred to as “elastic terms”, while terms involving other modes are classified
as “vibronic terms”.

At this stage, the tools required to evaluate the Hamiltonian matrix elements are presented. The electronic
Hamiltonian of the system, He(⃗r, τ⃗), incorporates vibronic coupling and is expressed in Eq. (3.26). As-
suming that atomic displacements around the equilibrium geometry are small, He and its eigenfunctions
can be expanded in a Taylor series following perturbation theory.

The electronic Hamiltonian He(⃗r,Q) can be expressed according to perturbation theory, up to second
order, as

He(⃗r,Q) = H(0)
e +∑

Γ

(
∂He

∂QΓ

)
0

QΓ +
1
2 ∑

Γ

∑
Γ′

(
∂ 2He

∂QΓ∂QΓ′

)
0

QΓQΓ′+ . . . (3.33)

In this context, the wavefunction Ψi(⃗r,Q) can be expressed according to perturbation theory, up to second
order, as

Ψi(⃗r,Q) = Ψ
(0)
i +∑

Γ

(
∂Ψi

∂QΓ

)
0

QΓ +
1
2 ∑

Γ

∑
Γ′

(
∂ 2Ψi

∂QΓ∂QΓ′

)
0

QΓQΓ′+ . . . (3.34)

By considering the electronic Hamiltonian expansion in Eq. (3.26) and the Taylor expansion of the
vibronic operator around the reference atomic geometry, Eq. (3.27), the following relationships hold:
∂He/∂QΓ = ∂W/∂QΓ and ∂ 2He/∂QΓ∂QΓ′ = ∂ 2W/∂QΓ∂QΓ′ .

After the aforementioned clarifications, the next step in solving Eq. (3.32) involves calculating the matrix
elements of the Hamiltonian [see Eq. (3.28)] in the {Ψ(0)

i }NΨ−1
i=0 basis,〈

Ψ
(0)
j

∣∣∣He

∣∣∣Ψ(0)
k

〉
=
〈

Ψ
(0)
j

∣∣∣H(0)
e +W (Q)

∣∣∣Ψ(0)
k

〉
= E(0)

j +
〈

Ψ
(0)
j

∣∣∣∑
Γ

(
∂W (Q)

∂QΓ

)
0

QΓ

∣∣∣Ψ(0)
k

〉
+

+
〈

Ψ
(0)
j

∣∣∣∑
Γ

∑
Γ′

(
∂ 2W (Q)

∂QΓ∂QΓ′

)
0

QΓQΓ′

∣∣∣Ψ(0)
k

〉
. (3.35)

Various terms arise in connection with the derivatives of the vibronic operator, that will be connected
to the change of the energy with the displacement. The matrix elements of the vibronic operator in the
electronic basis are called to as vibronic constants. These constants quantify the strength of interaction
between nuclear displacements and the electronic structure. In essence, they describe the extent to which
the electronic structure is altered due to nuclear motion and, conversely, how nuclear dynamics are
influenced by variations in electronic distribution.
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3.3.2.1 Linear vibronic constants

In the context of the Hamiltonian matrix elements computed in Eq. (3.35), two distinct types of vibronic
coupling constants arise. The first type corresponds to the linear coupling terms, associated with the
first derivative of the Hamiltonian with respect to a normal mode coordinate QΓ, while the second type
involves quadratic terms, which are linked to the second derivative. In the present Section, we focus
exclusively on the linear contributions.

When analyzing vibronic coupling constants, it is essential to distinguish between diagonal and off-
diagonal matrix elements. Diagonal elements refer to cases in which both electronic states involved are
identical, whereas off-diagonal elements pertain to interactions between different electronic states.

We begin by considering the diagonal linear terms in Eq. (3.35). For a specific normal mode Γ, the
corresponding linear vibronic coupling constant takes the form:

F( j)
Γ

=
〈

Ψ
(0)
j

∣∣∣( ∂W
∂QΓ

)
0

∣∣∣Ψ(0)
j

〉
. (3.36)

Applying the Hellman-Feynman theorem [155], we find

F( j)
Γ

=
〈

Ψ
(0)
j

∣∣∣( ∂W
∂QΓ

)
0

∣∣∣Ψ(0)
j

〉
=

(
∂

∂QΓ

〈
Ψ

(0)
j

∣∣∣H∣∣∣Ψ(0)
j

〉)
0
. (3.37)

The diagonal constants of the linear coupling, F( j)
Γ

, represent minus the force with which the electrons
in state Ψ

(0)
j distort the nuclear configuration in the directions defined by the QΓ mode.

If we examine a system in a non-degenerate state and in the reference configuration τ⃗(0) (associated to
the Q = 0 configuration) which represents a critical point of the APES, the first derivative of the adiabatic
potential energy surface (APES) with respect the QΓ mode vanishes. As a result F( j)

Γ
= 0.

The coefficients F( j)
Γ

can be expressed in terms of orbital vibronic constants. In particular, represent-
ing the vibronic constants in a molecular orbital basis is especially useful for comparison with values
obtained from other computational approaches, such as second-principles calculations, which constitute
one of the primary methodologies employed in this work. A detailed analysis of the vibronic constants
in second-principles calculations will be presented in Sec. 3.5.

To define these orbital vibronic constants, we consider the additive nature of the vibronic operator
W (⃗r, τ⃗), Eq.(3.25), with respect to the electrons. It allows to express W (⃗r, τ⃗) as a sum of one-electron
operators,

W (⃗r, τ⃗) =
N

∑
a=1

wa(⃗ra, τ⃗)

where

wa(⃗ra, τ⃗) =−∑
λ

e2Zλ

|⃗ra− τ⃗λ |
+∑

λ

e2Zλ

|⃗ra− τ⃗
(0)
λ |

+
1
N ∑

λ ̸=υ

e2Zλ Zυ

|⃗τλ − τ⃗υ |
− 1

N ∑
λ ̸=υ

e2Zλ Zυ

|⃗τ(0)
λ
− τ⃗

(0)
υ |

(3.38)

87



Chapter 3. State of art: Electron-vibration interaction

and N is the number of electrons. This additivity of the vibronic operator allows the simplification of the
vibronic terms. We define the linear orbital vibronic constants as

f ab
Γ = ⟨φa|

(
∂wa(Q)

∂QΓ

)
0
|φb⟩ (3.39)

where the functions φa and φb represent one-electron molecular orbitals (MOs).

In order to show the relation between the linear constants F( j)
Γ

and the orbital vibronic constants f ab
Γ

,
we assume Ψ

(0)
i can be described by one only determinant. Expressing it in a multiplicative format, we

obtain ∣∣∣Ψ(0)
i

〉
= det|φ1φ2 . . .φn|. (3.40)

It is composed by one-electron molecular orbitals φa (MOs) which conform an orthonormal basis set.
At this point, substituting Eq. (3.40) in Eq. (3.36) we can express the vibronic operator as the sum of its
one-electron operators [156],

F( j)
Γ

=
〈

Ψ
(0)
j

∣∣∣( ∂W
∂QΓ

)
0

∣∣∣Ψ(0)
j

〉
=

n

∑
a=1

oa ⟨φa|
∂wa

∂QΓ

|φa⟩=
n

∑
a=1

oa f (aa)
Γ

(3.41)

where f aa
Γ

represent the diagonal linear orbital vibronic constants and oa is the occupation number of the
molecular orbital φa.

Thus, we can see that the elements f aa
Γ

represent the force exerted by the electrons in the molecular
orbital φa on the nuclear configuration along the directions defined by the vibrational mode QΓ. In order
to calculate the total force F( j)

Γ
we have to correct it by subtracting the contribution from the internuclear

repulsion along the same direction. Finally, the physical interpretation of Eq. (3.41) indicates that the
total force exerted by all the electrons in the system can be represented as the sum of the forces exerted
by each individual one-electron molecular orbital.

Let’s now move to the off-diagonal linear vibronic constants.

The off-diagonal linear coupling constants, F( jk)
Γ

, are defined as

F( jk)
Γ

=
〈

Ψ
(0)
j

∣∣∣( ∂W
∂QΓ

)
0

∣∣∣Ψ(0)
k

〉
. (3.42)

When analyzing the linear terms for which the electronic states Ψ
(0)
j and Ψ

(0)
k correspond to two distinct

configurations, a particularly simple scenario arises if these states are single-determinant wavefunctions
related by a one-electron excitation, j→ k, under the frozen orbital approximation. Specifically, this
transition is described by a single excitation from molecular orbital φa to molecular orbital φb, denoted
a→ b, while the remaining molecular orbitals remain unaffected. In this context, the electronic wave-
functions Ψ

(0)
j and Ψ

(0)
k are Slater determinants that differ solely by the occupation of the molecular

orbitals φa and φb. Using the usual rules [156] of evaluation of matrix elements with Slater determinants
we find,

F( jk)
Γ

=
〈

Ψ
(0)
j

∣∣∣( ∂W
∂QΓ

)
0

∣∣∣Ψ(0)
k

〉
= ∑

a′,b′
ca′ jcb′k ⟨φa′ |

(
∂W
∂QΓ

)
0
|φb′⟩= ⟨φa|

(
∂W
∂QΓ

)
0
|φb⟩ , (3.43)
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where the indexes a′ and b′ run over the one-electron molecular orbitals. Here, the only term that remains
is the one associated with the orbitals φa and φb, as they are the only molecular orbitals involved in the
excitation. All other orbitals remain unchanged and, therefore, do not contribute to the integral.

The linear vibronic coupling constants are directly related to the force constants of the system. In the
following section, this relationship will be formally established.

3.3.2.2 Force constants

The vibronic linear coupling constants, analyzed in the preceding Section, are intrinsically related to the
force constants of the system. These force constants are associated with the curvature of the adiabatic
potential energy surface (APES), and thus provide insight into the stability of the system at a given
configuration. In this section, we will explicitly examine the relationship between the vibronic linear
constants and the force constants.

Considering τ⃗(0) a critical point of the energy surface, we can study its stability with respect to displace-
ments along QΓ by observing the curvature of the APES with respect to that mode. In that configuration,
the system will be stable if the curvature is positive (a local minimum in the APES) and it will be unstable
if the curvature is negative (a local maximum in the APES).

At this point, we will assume that we are dealing with a system without electronic degeneracy, and
therefore, we will place particular emphasis on the diagonal terms concerning vibrational modes. Then,
the curvature of the APES K(i)

Γ
is defined as,

K(i)
Γ

=

(
∂ 2Ei

∂Q2
Γ

)∣∣∣∣
Q=0

(3.44)

where
Ei(Q) = ⟨Ψi(Q)|He(Q)|Ψi(Q)⟩ . (3.45)

In order to compute the first derivative, the Hellman-Feynman [155; 157] theorem is applied resulting

∂Ei

∂QΓ

= ⟨Ψi|
∂He

∂QΓ

|Ψi⟩ . (3.46)

Knowing the first derivative, the second derivative is computed taking into account the Leibniz integral
rule [158],

∂ 2Ei

∂Q2
Γ

=
∂

∂QΓ

⟨Ψi|
∂He

∂QΓ

|Ψi⟩=
〈

∂Ψi

∂QΓ

∣∣∣∣ ∂He

∂QΓ

∣∣∣∣Ψi

〉
+ ⟨Ψi|

∂ 2He

∂Q2
Γ

|ψi⟩+
〈

Ψi

∣∣∣∣ ∂He

∂QΓ

∣∣∣∣ ∂Ψi

∂QΓ

〉
. (3.47)

The Hamiltonian operator, He, is a Hermitian operator, which implies that H† = H. This fundamental
property ensures,〈

Ψi

∣∣∣∣ ∂He

∂QΓ

∣∣∣∣ ∂Ψi

∂QΓ

〉
=

〈
Ψi

∣∣∣∣∂H†
e

∂QΓ

∣∣∣∣ ∂Ψi

∂QΓ

〉
=

〈
Ψi

∣∣∣∣( ∂He

∂QΓ

)†∣∣∣∣ ∂Ψi

∂QΓ

〉
=

〈
∂Ψi

∂QΓ

∣∣∣∣ ∂He

∂QΓ

∣∣∣∣Ψi

〉∗
(3.48)
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where the hermitian property has been applied in the firts step. By applying the aforementioned equality
to Eq. (3.47), the expression reduces to the sum of a scalar and its complex conjugate. Consequently, the
imaginary part cancels out, leaving a result that is twice the real part,

∂ 2Ei

∂Q2
Γ

= ⟨Ψi|
∂He

∂QΓ

|Ψi⟩+2Re
(〈

∂ 2Ψi

∂Q2
Γ

∣∣∣∣∂He

∂Q

∣∣∣∣Ψi

〉)
. (3.49)

The last step is the evaluation of the previous expression in the equilibrium position considering for the
wavefunction the expression from the perturbation theory, Eq.(3.34) with Ψi(Q = 0)≡Ψ

(0)
i(

∂ 2Ei

∂Q2
Γ

)
0
=
〈

Ψ
(0)
i

∣∣∣(∂ 2He

∂Q2
Γ

)
0

∣∣∣Ψ(0)
i

〉
+2Re

(〈
Ψ

(0)
i

∣∣∣∣(∂Hel

∂QΓ

)
0

∣∣∣∣( ∂Ψi

∂QΓ

)
0

〉)
. (3.50)

According to perturbation theory around the equilibrium position (Q = 0), the first correction of the
wavefunction satisfies ∣∣∣∣(∂Ψi

∂Q

)
0

〉
= ∑

j ̸=i

〈
Ψ

(0)
j

∣∣∣(∂He/∂Q)0

∣∣∣Ψ(0)
i

〉
E(0)

i −E(0)
j

∣∣∣Ψ(0)
j

〉
. (3.51)

Inserting this equality in Eq. (3.50),

(
∂ 2Ei

∂Q2
Γ

)
0
=
〈

Ψ
(0)
i

∣∣∣(∂ 2He

∂Q2
Γ

)
0

∣∣∣Ψ(0)
i

〉
−2∑

j ̸=i

∣∣∣〈Ψ
(0)
i

∣∣∣(∂He/∂Q)0

∣∣∣Ψ(0)
j

〉∣∣∣2
E(0)

j −E(0)
i

. (3.52)

Considering the definition of He in Eq.(3.26), it is the sum of H(0)
e which does not depend on Q and the

vibronic interaction, W which is a function of Q. As a result, the previous expression can be expressed
employing the vibronic operator instead of the electronic Hamiltonian,

(
∂ 2Ei

∂Q2
Γ

)
0
=
〈

Ψ
(0)
i

∣∣∣(∂ 2W
∂Q2

Γ

)
0

∣∣∣Ψ(0)
i

〉
−2∑

j ̸=i

∣∣∣〈Ψ
(0)
i

∣∣∣(∂W/∂Q)0

∣∣∣Ψ(0)
j

〉∣∣∣2
E(0)

j −E(0)
i

. (3.53)

According to the obtained expression for the curvature of the APES [Eq. (3.53)], K(i)
Γ

, it can be expressed
as the sum of the following terms,

K(i)
Γ

= K(i)
0,Γ +K(i)

v,Γ. (3.54)

The main effect of the first term

K(i)
0,Γ =

〈
Ψ

(0)
i

∣∣∣(∂ 2W
∂Q2

Γ

)
0

∣∣∣Ψ(0)
i

〉
, (3.55)

is to describe the force constant created by the initial density when this density is not allowed to relax to
change the geometry of the system. The second term represents the vibronic contribution to the curvature,

K(i)
v,Γ =−2∑

j ̸=i

∣∣∣〈Ψ
(0)
i

∣∣∣(∂W/∂Q)0

∣∣∣Ψ(0)
j

〉∣∣∣2
E(0)

j −E(0)
i

. (3.56)
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This term is associated with the pseudo-Jahn–Teller effect, which describes the mixing of the ground
electronic state with an excited state. The corresponding force constant is related to the linear vibronic
coupling constants F(i j)

Γ
defined in Eq. (3.36),

K(i)
v,Γ =−2∑

j ̸=i

∣∣∣F(i j)
Γ

∣∣∣2
E(0)

j −E(0)
i

. (3.57)

The constant Kv is referred to as the vibronic term because it accounts for the coupling between ground
electronic state and excited electronic states due to lattice vibrations to express the charge of the electron
density with the vibrations. This mixing of electronic states leads to the correction of the wavefunction
under the atomic distortions perturbation ∂Ψ/∂Q.

3.3.2.3 Quadratic vibronic coupling

Once the linear coupling constants from the Taylor expansion in Eq. (3.35) and their relationship to
the force constants have been established, the next step is to introduce the quadratic terms of the same
expansion. These quadratic vibronic coupling terms are represented by

Gi j
ΓΓ′ =

〈
Ψ

(0)
i

∣∣∣( ∂ 2W
∂QΓ∂QΓ′

)
0

∣∣∣Ψ(0)
j

〉
, (3.58)

If QΓ and QΓ′ are non-degenerate modes, G(i j)
ΓΓ′ is non-zero only if Γ = Γ′.

The term Gii
ΓΓ

represents K0, the first term of Eq. (3.55) elastic constant defined in the pseudo Jahn Teller
theory. K0 is referred to as the elastic term (non-vibronic) because it does not mix states.

Similar to Eq. (3.39), if the second order correction to the vibronic coupling is expressed projecting
onto the one-electron molecular orbitals {φa}, the resulting elements are the quadratic orbital vibronic
constants,

gab
ΓΓ′ =

1
2
⟨φa|

(
∂ 2W (Q)

∂QΓ∂QΓ′

)
0
|φb⟩ . (3.59)

3.4 Electron-phonon interaction from first-principles

In previous sections, the linear terms of the vibronic operator (Sec. 3.3.2.1) and the force constants
(Sec. 3.3.2.2) have been derived by applying the Hellmann-Feynman theorem. These results hold under
the assumption that the employed wavefunction corresponds to the exact solution of the Schrödinger
equation. However, in practical applications, such as first-principles simulations, the wavefunction is
generally not exact but rather incomplete, since completeness is only attained in the theoretical limit of
an infinite basis set of wavefunctions. In the framework of an incomplete basis set, the difference between
the derivative of the energy and the expectation value of the derivative of the Hamiltonian (equality hold
in Hellman-Feynman theorem) is often non-negligible [102; 159]. Consequently, to address this issue
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Chapter 3. State of art: Electron-vibration interaction

in computational calculations, it is essential to include an additional correction term to ensure accurate
results when the wavefunction is approximate.

This Section is devoted to analyzing the implications of basis set incompleteness and introducing the
corresponding corrections, commonly referred to as Pulay terms, which bridge the gap between the ideal
Hellmann-Feynman framework and practical implementations. This discussion provides a foundation
for connecting the ideal setting described and the working equations typically used in first-principles
simulations. In particular, within the scope of this work, first-principles calculations are carried out
using density functional theory.

Finally, in this Section, we extend the treatment of the electron-lattice interaction to periodic systems,
enabling the analysis of problems in solid-state physics through a formulation in reciprocal space. Addi-
tionally, we examine the representation of these interactions within the Wannier function formalism.

Accordingly, the first step for the described study involves introducing the Hamiltonian used in density
functional theory.

3.4.1 Hamiltonian in Density Functional Theory

In first-principles calculations, the behavior of the system can be studied by employing a Hamiltonian
composed of three contributions:

H = He +Hp +He−p, (3.60)

where He represents the electronic contribution, Hp accounts for the lattice effects, and He−p encompasses
the electron-phonon interaction.

Electronic Hamiltonian

In the framework of density functional theory, the Kohn-Sham density is [160]

n(⃗r) = ∑
a

|φ S
a(⃗r)|2. (3.61)

where the molecular orbitals φ S
a yield the same electron density as the original interacting system. The

associated one electron Hamiltonian is [160]

ha =− h̄2

2me
∇

2
a+ vKS(⃗ra; {⃗τλ}) (3.62)

and the corresponding Kohn-Sham Schrödinger-like equations are

haφ
S
a(⃗r) = εaφ

S
a(⃗r). (3.63)
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The orbitals {φ S
i } in the Kohn-Sham system are solutions to one-electron equations similar to the Hartree

equations, but including, in this case, the exchange and correlation terms integrated in the vKS(⃗ra,{τ⃗λ})
potential. The exact solution to the Schrödinger equation in the case of non-interacting electron is given
as a Slater determinant composed of those molecular orbitals, φi, Ψ = |φ S

1 . . .φ
S
n |. The scalars εS

i are
the eigenvalues associated with the molecular orbitals φ S

a and the potential vKS(⃗ra, {⃗τλ}) is an effective
potential for the non-interacting system. The obtained vKS potential follows

vKS(⃗ra; {⃗τλ}) =
e2

4πε0

ˆ
n (⃗r′; {⃗τλ})
|⃗ra− r⃗′| d⃗r′− e2

4πε0
∑
λ

Zλ

|⃗ra− τ⃗λ|
+ vxc(⃗ra, {⃗τλ}). (3.64)

It is the sum of the the Hartree electronic screening, the electronic-nuclear potential, and the exchanges
and correlation potential, respectively.

Lattice vibrations

In order to study the lattice vibrations, the total potential energy, U , is expanded around the RAG, which
represents an equilibrium point of the APES. The considered displacements from the RAG are suffi-
ciently small to handle the harmonic approximations, expanding the potential energy until second order.
lattice vibrations

U =U0 +
1
2 ∑
λα

∑
υβ

∂ 2U
∂τλα∂τυβ

∣∣∣∣⃗
τ(0)

(τλα − τ
(0)
λα

)(τυβ − τ
(0)
υβ

), (3.65)

where the value U0 represents the potential energy of the ions in the equilibrium positions, τ⃗(0) and α

and β the cartesian coordinates. Moreover, the Hamiltonian describing the phonons is,

Hp =
1
2 ∑
λα

∑
υβ

∂ 2U
∂τλα∂τυβ

∣∣∣∣⃗
τ(0)

(τλα − τ
(0)
λα

)(τυβ − τ
(0)
υβ

)−∑
λα

h̄2

2Mλ

∂ 2

∂τ2
λα

. (3.66)

Electron-phonon interaction

The electron-phonon coupling is computed following the previous defined potential vKS(⃗ra, {⃗τλ}). This
term represents the vibronic operator in Eq. (3.27),

Hep = ∑
a

∑
λα

∂vKS

∂τλα

∣∣∣∣⃗
τ(0)

(τλα − τ
(0)
λα

)+∑
a

∑
υβ

∑
λα

∂ 2vKS

∂τυβ ∂τλα

∣∣∣∣⃗
τ(0)

(τλα − τ
(0)
λα

)(τυβ − τ
(0)
υβ

). (3.67)

3.4.2 Force constants from first-principles

As noted in the introduction to this Section, the theoretical evaluation of vibronic coupling constants typ-
ically invokes the Hellmann–Feynman theorem. However, in practical first-principles simulations, this
theorem is not strictly satisfied due to the finite and incomplete nature of the employed basis set. This lim-
itation necessitates the development of alternative approaches to accurately compute vibronic coupling
terms. To circumvent the limitations associated with the direct application of the Hellmann–Feynman
theorem, the vibronic force constants are obtained without applying the Hellman-Feynman theorem. As
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a result, the derivative of the energy with respect to a mode Q is computed taking into account the Leibniz
integral rule and the hermitian property of the Hamiltonian.

∂E
∂Q

=

〈
Ψi

∣∣∣∣∂He

∂Q

∣∣∣∣Ψi

〉
+2Re

〈
Ψi

∣∣∣∣He

∣∣∣∣∂Ψi

∂Q

〉
. (3.68)

Furthermore, if the wavefunction is a real-valued function (in conjunction with the Hermitian nature of
the Hamiltonian),

∂E
∂Q

=

〈
Ψi

∣∣∣∣∂He

∂Q

∣∣∣∣Ψi

〉
+2
〈

Ψi

∣∣∣∣He

∣∣∣∣∂Ψi

∂Q

〉
. (3.69)

Now, by evaluating the preceding expression at the reference structure (Q = 0),(
∂Ei

∂Q

)
Q=0

=

〈
Ψ

(0)
i

∣∣∣∣∣
(

∂He

∂Q

)
Q=0

∣∣∣∣∣Ψ(0)
i

〉
+2

〈
Ψ

(0)
i

∣∣∣∣∣H(0)
e

∣∣∣∣∣
(

∂Ψi

∂Q

)
Q=0

〉
. (3.70)

In the application of the Hellmann-Feynman theorem the second term in the summation vanishes as the
wavefunction is assumed to be exact, thereby upholding the theorem. However, in practical applications,
such as first-principles calculations, the non-exact nature of the wavefunction introduces an error that is
not negligible. To correct this discrepancy, the second term, commonly referred to as Pulay forces [161],
is incorporated.

Considering the first derivative of the energy in Eq. (3.47), we compute the second derivative. In the
study of the second derivative, we build a Hessian matrix with off-diagonal elements where the derivative
has been performed with respect two different modes, as example, QΓ and QΓ′ and diagonal term. As-
suming the of modes, {Q} has been build considering nondegenerate normal modes, the Hessian matrix
is diagonal. As a result, in order to study the second derivative, the only terms that we have to take into
account are the ones in the diagonal,

∂ 2Ei

∂Q2 =

〈
Ψi

∣∣∣∣∂ 2He

∂Q2

∣∣∣∣Ψi

〉
+4
〈

Ψi

∣∣∣∣∂He

∂Q

∣∣∣∣ ∂Ψi

∂Q

〉
+2
〈

∂Ψi

∂Q

∣∣∣∣ He

∣∣∣∣∂Ψi

∂Q

〉
+2
〈

Ψi | He|
∂ 2Ψi

∂Q2

〉
. (3.71)

Since the energy Ei is a real number and an eigenstate of the Hamiltonian He,

∂ 2Ei

∂Q2 =

〈
Ψi

∣∣∣∣∂ 2He

∂Q2

∣∣∣∣Ψi

〉
+4
〈
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∣∣∣∣∂He

∂Q

∣∣∣∣ ∂Ψi

∂Q

〉
+2
〈

∂Ψi

∂Q
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∣∣∣∣∂Ψi

∂Q

〉
+2Ei

〈
Ψi

∣∣∣∣∂ 2Ψi

∂Q2

〉
. (3.72)

Evaluating in the reference structure, Q = 0(
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∣∣∣∣(∂Ψi

∂Q

)
0

〉
+2E(0)

i

〈
Ψ

(0)
i

∣∣∣∣(∂ 2Ψi

∂Q2

)
0

〉
. (3.73)

3.4.3 2n+1 Theorem

To calculate
(
∂ 2Ei/∂Q2

)
0 as defined in Eq. (3.73), the first- and second-order corrections to the wave-

function are required. However, to simplify the computational complexity, the 2n+1 theorem [52] can
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3.4. Electron-phonon interaction from first-principles

be applied. The theorem states that knowing the n-th order term of the wavefunction, it is possible to
compute until the 2n+1 order of the energy corrections. Specifically, in this case, we will demonstrate
that, by knowing the first-order correction to the wavefunction (n = 1), it is possible to compute the
second-order correction to the energy avoiding the calculation of ∂ 2Ψi/∂Q2.

The starting point involves applying the normalization condition to the wavefunction obtained from per-
turbation theory, as given by Eq. (3.34). By enforcing the normalization constraint,

⟨Ψi|Ψi⟩= 1 =
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Ψ
(0)
i |Ψ

(0)
i
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+Q
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i |
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(

∂ 2Ψi
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〉
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|
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)
0

〉]
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(3.74)

The electronic wavefunctions in the reference geometry satisfy ⟨Ψ(0)
i |Ψ

(0)
i ⟩= 1. Since equality Eq. 3.74

is holds for any mode Q 〈
Ψ

(0)
i |

∂Ψi

∂QΓ

〉
+

〈(
∂Ψi

∂Q

)
0
|Ψ(0)

i

〉
= 0, (3.75)
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Considering the assumption that the wavefunction Ψi is real-valued, ⟨Ψ(2)
i |Ψ

(0)
i ⟩= ⟨Ψ

(0)
i |Ψ
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. (3.77)

The previous equality is substitute in Eq.(3.73)(
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. (3.78)

Analysis of the expression reveals that only the zeroth- and first-order corrections to the wavefunction
appear. Consequently, knowledge of the first derivative of the wavefunction is sufficient to determine the
second-order energy. This result exemplifies the so-called 2n+1 theorem for the total energy, which also
holds in the case of the one-particle eigenvalue problem. The theorem was rigorously demonstrated up
to third order in energy in Ref. [52], and the Appendix provides a general proof for any arbitrary order n.

3.4.4 First-order correction to wavefunction

Once the second-order correction to the energy is expressed as a function of the first-order correction to
the wavefunction, the next step involves evaluating this term explicitly. The value of ∂Ψ/∂Q could be
obtained by means of the Sternheimer equation [162],

(H(0)
e −E(0)

i )

(
∂Ψi

∂Q

)
0
=−

(
∂He

∂Q

)
0

Ψ
(0)
i , (3.79)
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which is the result of solving the perturbation problem. In Eq. (3.79), the first-order energy does not
appear since we assume the reference structure is a minimum of the APES, as we discussed before. In
first-principles simulations all equations associated to to the electronic structure are solved within a basis.
Let’s see how the basis choice affects the solution of Eq. (3.79).

3.4.4.1 Adiabatic basis {Ψ(0)
i }

The term ∂Ψi/∂Q can be expanded within a basis of the Hilbert space. In particular, the set of eigen-
functions of H(0)

e represents a basis of the Hilbert space. The previous basis set is called adiabatic since
the functions composing the basis set remain unchanged under variations in geometry. Expressing the
function ∂Ψi/∂Q as a linear combination of basis set {Ψ(0)

i }∣∣∣∣(∂Ψi

∂Q

)
0

〉
= ∑

j
ci j

∣∣∣Ψ(0)
j

〉
. (3.80)

The zeroth order basis is divided into two subsets. Considering the state Ψ
(0)
i , the index j associated to

state Ψ
(0)
j belongs to I, j ∈ I, if Ψ

(0)
i and Ψ

(0)
j are eigenstates associated to degenerate states, E(0)

j = E(0)
i .

Conversely, the index j belongs to the orthonormal complement j ∈ I⊥, in other words, if E(0)
j ̸= E(0)

i .∣∣∣∣(∂Ψi
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〉
. (3.81)

The left part of the Sternheimer equation can thus be rewritten as(
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(3.82)

The Sternheimer equation yields the following expression upon substituting the left-hand side of the
equation with the previously derived expression,

∑
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. (3.83)

Premultiplying by ⟨Ψ(0)
k |with k ∈ I⊥ and applying the orthonormality of the basis set, ⟨Ψ(0)

k |Ψ
(0)
j ⟩= δk j
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for j ∈ I⊥. (3.84)

To compute ci j for j ∈ I, premultiplication by ⟨Ψ(0)
k | with k ∈ I causes the left-hand side of Eq. (3.83) to

vanish, as ⟨Ψ(0)
k |Ψ

(0)
j ⟩= 0. In fact, the presence of gauge freedom permits ci j for j ∈ I to be set to zero.

As a result, the so-called sum-over-states expression can be expressed as∣∣∣∣(∂Ψi
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, (3.85)
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which requires knowledge of all the zeroth order wavefunctions and energies. The resulting expres-
sion is equivalent to that derived from the Hellmann–Feynman theorem, as shown in Eq. 3.51, and also
corresponds to the expression obtained within the framework of the pseudo-Jahn–Teller theory [73].

For an exact result, the summation over the excited states extends to infinity. In practice, it is required to
truncate this sum and consider only a finite subset of excited states. However, depending on the nature
of the basis set, this approach may yield highly inaccurate results. This inaccuracy arises because a large
number of excited states is typically required to adequately capture the density changes.

In particular, localized adiabatic basis functions yield highly inaccurate results due to the limited number
of elements in the basis set in practice. For instance, if the basis set is constructed at Q = 0, it may
fail to describe the system accurately at Q ̸= 0 because it lacks the necessary size and flexibility to
represent the system away from the reference geometry. However, if the basis set were large enough,
the localized adiabatic basis set would, in principle, be able to reproduce the results, but this calculation
is not computationally efficient computationally. Conversely, plane-wave basis functions, which also
constitute an adiabatic basis, perform well when the geometry is perturbed. This accuracy arises from
the extremely large number of basis functions in the plane wave set, which collectively allow for an
effective representation of the system under geometric deviations from the reference configuration.

In localized basis sets this limitation can be overcome employing a basis set that varies with position
commonly referred to as the diabatic basis. In practice, due to the reduced number of functions which
composed a localized basis, the diabatic basis is much more exact than the adiabatic one.

3.4.4.2 Diabatic basis {χa}

A basis set is referred to as diabatic when its constituent functions vary with the positions of the atoms.
An example of a diabatic basis is a floating basis set, in which the orbitals dynamically follow the motion
of the nuclei. It must be emphasized that the term "diabatic" refers solely to the basis set changing
with the atomic positions, while the framework remains within the adiabatic scheme described at the
beginning of the chapter.

Employing the previous basis set, the wavefunction is expanded employing a basis set {χa} which de-
pends on the atomic displacements associated to Q,

Ψ
(0)
i = ∑

a
c̃iaχa. (3.86)

We compute the derivative of the wavefunction with respect to the Q coordinates

∂Ψi
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= ∑

a

[
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]
. (3.87)

Substituting in the Sternheimer equation by the previous expansion,

∑
a

(
∂ c̃ia

∂Q

)
0
(H(0)

e −E(0)
i ) |χa⟩+∑

a
c̃ia(H

(0)
e −E(0)

i )

∣∣∣∣(∂ χa

∂Q

)
0

〉
=−∑

a
c̃ia

(
∂He

∂Q

)
0
|χa⟩ . (3.88)
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Now, the equation is expressed in terms of matrix elements applying the bra ⟨χb|,
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The derivatives (∂ c̃ia/∂Q)0 which measure the changes of the coefficients {c̃ia} with respect the atomic
distortions are obtained solving the previous system of linear equations. Considering the expression
presented in Eq. (3.89), there are two terms which depend on ∂ χa/∂Q. These terms represent the Pulay
corrections.

There exist several examples of diabatic bases. In this context, some examples are presented studying
the obtained expression in Eq.(3.89)

• Basis is not nuclear coordinate dependent (plane waves):
This is the simplest case and the easier to interpret
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• Basis displaces rigidly (SIESTA orbitals):
The orbitals have the form χa ≡ χa(⃗r− τ⃗(Q)), resulting

∂ χa

∂Qα

=
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∂τα

∂τα

∂Qα

, (3.91)

where α represents a cartesian coordinate. As a consequence, we obtain
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• Basis is orthogonal at all geometries (Wannier orbitals):
Since the Wannier functions are orthonormal, we can derive the orthonormalization condition, ⟨χb|χa⟩=
δab, to obtain 〈(
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∂Q
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0
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0

〉
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As we are working with real functions, the following relationship is satisfied〈(
∂ χb

∂Q

)
0

∣∣∣∣ χa⟩= 0, (3.94)
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Considering the systems of equations obtained for each case, it can be observed that in both diabatic and
adiabatic scenarios, the results converge to those obtained when a complete basis set is employed. On
the one hand, when using an adiabatic basis, the equation derived for the wavefunction change converges
to the exact result, provided that the infinite set of excited states is considered. On the other hand, in the
case of a diabatic basis, if an exact scenario is assumed where Pulay forces are not relevant, the resulting
equation corresponds to that obtained by the exact scheme.

At first glance, it may seem contradictory that, in the complete basis set limit, an adiabatic basis would
yield the same results as a diabatic basis. However, in the exact case, both basis sets lead to the same
results as they can be related through a basis transformation, as demonstrated in the study presented in
Ref. [159].

3.4.5 Variational energy

The previous discussion focused on computing force constants in a general framework [Eq. (3.78)],
which naturally leads to evaluating the variation of the wavefunction induced by nuclear distortions
(Sec. 3.4.4). This last step is performed by applying the Sternheimer equation, Eq. (3.79).

A major advantage of the Sternheimer equation is that it avoids the explicit summation over excited
states—an operation that is computationally demanding in large systems. Instead, the method directly
yields the first-order correction to the electronic wavefunction, ∂Ψi/∂Q, which can subsequently be used
to evaluate various response properties, such as dipole moments, polarizabilities, and electric-field gra-
dients. The Sternheimer formulation is often introduced directly through perturbation theory, although
it can also be derived variationally from the second-order energy functional, as we will present in this
section.

The variational principle states that the total energy of a system is minimized with respect to the wave-
function of the system in its ground state. When a perturbation is applied, the variational principle still
holds in the sense that the second-order correction to the energy is stationary with respect to the first-
order correction to the wavefunction. For example, in Hartree–Fock theory, the ground-state energy is
obtained by minimizing the energy functional with respect to the molecular orbitals. Under a perturba-
tion, the problem is addressed using Coupled Perturbation Hartree–Fock (CPHF), where the second-order
energy correction remains variational.

The second-order energy correction represents the change in energy resulting from an external perturba-
tion which distorts the lattice inducing a redistribution of the electron density. As expressed in Eq. (3.78),
the second-order energy correction is a functional which explicitly depends on Ψ

(0)
i and (∂Ψi/∂Q)0,

where Q is the perturbation parameter. This functional captures the system’s energy response to the
perturbation and provides a framework for understanding how energy evolves under external influences.

At this point, we are going to show that the correction to the energy is variational with respect Ψ
(1)
i ≡

∂Ψi/∂Q. In other words, we are going to prove the following statement:
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E(2) ≡ ∂ 2Ei
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If the previous equality is satisfied, then δE(2)
i /δΨ

(1)
i = 0 where the quantity δΨ
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i represents an in-

finitesimal variation in Ψ
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i . The second order energy E(2)
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Knowing the hamiltonian is hermitian and grouping terms
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As a result, the expression within braces corresponds to the Sternheimer equation when the variation
is null, Eq. (3.79), which is satisfied. Consequently, the second-order term of the energy is variational
with respect to Ψ

(1)
i . This implies that the energy can be minimized by optimizing the second-order term

with respect to Ψ
(1)
i , while maintaining the normalization of the total wavefunction. Furthermore, this

property provides an alternative approach for determining the first-order correction to the wavefunction,
as it reduces the problem to finding the value of Ψ(1) that minimizes E(2)

i .

The variational nature of E(2)
i ensures that it is stationary when Ψ

(1)
i is properly optimized to describe the

system’s response to the perturbation. This guarantees that the wavefunction response accurately reflects
both the redistribution of electron density and the contributions arising from atomic displacements.

Given the established connection between the Sternheimer equation and the variational principle, the
Coupled Perturbed Hartree–Fock (CPHF) method can be understood as the explicit realization of the
Sternheimer formalism within the framework of Hartree–Fock theory. Conceptually, CPHF is equivalent
to the Sternheimer approach. Both methods solve a linear response problem to determine how the wave-
function (or orbitals) respond to a perturbation, and both avoid the need for summing over unoccupied
states.

These methods differ only in notation and the conventions of their respective fields. The Sternheimer
approach, rooted in the physics literature—particularly in the study of periodic systems using plane-
wave basis sets—is implemented in electronic structure codes such as ABINIT[163] and QUANTUM EX-
PRESSO[164]. In contrast, the CPHF method is the standard formulation in quantum chemistry and is
widely implemented in software packages like Gaussian [165], ORCA [166], and Psi4 [167].
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3.4.6 Effect of the reciprocal space: response to incommesurate perturbations of peri-
odic systems

Thus far, vibronic coupling, which describes the interaction between electronic and vibrational states,
has been primarily described for molecular systems. However, this concept can also be extended to
periodic systems, such as crystalline solids, where vibronic coupling manifests as the interaction between
electrons and phonons (lattice vibrations).

In the context of periodic systems, the Bloch theorem provides a fundamental framework for studying and
modeling the behavior of electrons under a periodic external potential. In the absence of perturbations,
the ground-state external potential operator exhibits translational periodicity in the direct lattice, such
that for any lattice vector R⃗,

v(0)ext (⃗r+ R⃗,⃗r′+ R⃗) = v(0)ext (⃗r,⃗r
′), (3.99)

where r⃗ and r⃗′ represent the electronic positions. According to the Bloch theorem, the wavefunction
ψ

(0)
n⃗k

(⃗r) can be expressed as the product of a plane wave characterized by a vector k⃗ of the reciprocal

lattice and a periodic function labeled by the band number, n and the k⃗-vector, u(0)
n⃗k

, with the same
periodicity as the external potential

ψ
(0)
n⃗k

(⃗r) = ei⃗k⃗ru(0)
n⃗k
(⃗r). (3.100)

Now the effects induced by a perturbation over the periodic external potential v(0)ext are studied. Specif-
ically, we analyze the response of a periodic system to a perturbation associated with a phonon char-
acterized by an incommensurate wave vector q⃗ and branch index ν , as such a perturbation breaks the
translational symmetry of the system. This perturbation gives rise to a structural distortion, which can be
described in terms of local vibrational modes in real space, denoted by Qν(R⃗), where R⃗ labels the lattice
vectors. The corresponding mode in reciprocal space is obtained via a Fourier transform,

Qν (⃗q) = ∑
R⃗

Qν(R⃗)ei⃗q·R⃗. (3.101)

The introduction of an incommensurate wave vector results in a non-local perturbation, in other words,
the perturbation acts as a linear operator rather than a simple local function in real space. Furthermore,
the intrinsic periodicity of the lattice imposes constraints on the perturbing potential operator, ensuring
that it satisfies the following condition,

v(1)ext,⃗qν
(⃗r+ R⃗,⃗r′+ R⃗) = ei⃗qR⃗v(1)ext,⃗qν

(⃗r,⃗r′). (3.102)

This perturbation reflects a Bloch-like modulation characterized by the wave vector q⃗ and the branch
index ν . As consequence, the first order term of the hamiltonian,

h(1) = ei⃗q⃗rv(1)ext,P,⃗qν
(⃗r,⃗r′), (3.103)

which represents a linear perturbation, can be expressed as the product of two elements: a plane wave
factor that captures the modulation as a consequence to the perturbation and a periodic part, represented
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by the subscript “P”, which keeps the periodicity of the lattice satisfying then

v(1)ext,P,⃗qν
(⃗r+ R⃗,⃗r′+ R⃗) = v(1)ext,P,⃗qν

(⃗r,⃗r′). (3.104)

Analyzing the perturbing hamiltonian in Eq. (3.103) it is complex-valued. To ensure that the Hamiltonian
remains real (i.e. Hermitian) regardless of the specific value of q⃗, it must incorporate the Hermitian
conjugate counterpart of the perturbing potential,

h(1) = ei⃗q⃗rv(1)ext,P,⃗qν
(⃗r,⃗r′)+ e−i⃗q⃗rv(1)ext,P,−q⃗ν

(⃗r,⃗r′), (3.105)

where v(1)ext,P,⃗qν
and v(1)ext,P,−q⃗ν

are mutually complex conjugate. The resulting first order corrections to the
wavefunction is obtained applying the Sternheimer equation, Eq. (3.79),(

H0−En⃗k

)
ψ

(1)
n⃗k

(⃗r) =−h(1)ψ(0)
n⃗k

(⃗r). (3.106)

Expanding in Bloch states, the first-order correction takes the form

ψ
(1)
n⃗k

(⃗r) = ∑
m,⃗k′

Cm⃗k′,n⃗kψ
(0)
m⃗k′

(⃗r). (3.107)

Projection onto Bloch states is performed. In addition, perturbation matrix elements are considered

Cm⃗k′,n⃗k =
⟨ψ(0)

m⃗k′
|h(1)|ψ(0)

n⃗k
⟩

En⃗k−Em⃗k′
. (3.108)

Matrix elements ⟨ψ(0)
m⃗k′
|h(1)|ψ(0)

n⃗k
⟩ are nonzero only when the momentum is conserved. As a result, per-

turbation h(1) characterized by q⃗ couples states satisfying −⃗k′+ k⃗ + q⃗ = 0, and then k⃗′ = k⃗ + q⃗. The
perturbation shifts the wavevector of the original state from k⃗ to k⃗+ q⃗. Finally, the obtained first order
correction for the wavefunction is

ψ
(1)
n⃗k

(⃗r) = ∑
m

⟨ψ(0)
m,⃗k+q⃗

|h(1)|ψ(0)
n,⃗k
⟩

En⃗k−Em,⃗k+q⃗
ψ

(0)
m,⃗k+q⃗

(⃗r). (3.109)

It follows the Bloch shape and verifies

ψ
(1)
n⃗k

(⃗r+ R⃗) = ei(⃗k+q⃗)R⃗
ψ

(1)
n⃗k

(⃗r). (3.110)

This study of a non-periodic perturbation in a periodic system is connected to electron-phonon [74]
theory through the equivalence between the Eq. (3.105) and Eq. (33) in Ref. [74]. From this point, it is
possible to determine the electron-lattice linear coupling constant shown in Eq. (38) of Ref. [74]

fmnν (⃗k, q⃗) =
〈

um k⃗+q⃗

∣∣∣v(1)ext,P,⃗q(⃗r,⃗r
′)
∣∣∣un⃗k

〉
uc
, (3.111)

where the subscript “uc” denotes integration over the unit cell. This term is related to linear orbital
vibronic constant in Eq. (3.39) but expressed in reciprocal space. Similarly, the second order term is
computed following

gmnνν ′ (⃗k, q⃗, q⃗′) =
1
2

〈
um⃗k+q⃗+q⃗′

∣∣∣v(2)ext,P,⃗q,⃗q′

∣∣∣un⃗k

〉
uc
. (3.112)

The second order term in reciprocal space is related to Eq. (40) attending to Ref. [74].
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3.4. Electron-phonon interaction from first-principles

3.4.7 Finite-differences

The study of electron-phonon coupling can be performed employing finite differences [76], and alterna-
tively, density functional perturbation theory (DFPT) [52; 53; 54].

The main advantages of finite differences methods are the following ones:

• The finite difference method facilitates the study of electron-phonon coupling without relying on
complex theoretical frameworks. The approach solely involves finite difference formulas, making
it more straightforward in implementation. In comparison to DFPT [74], this method does not
necessitate an elaborate theoretical basis while achieving equivalent precision.

• The finite differences procedure is both versatile and transferable. This method can be seamlessly
applied across various computational approaches without the requirement of a new implementa-
tion. Specifically, within the framework of Density Functional Theory (DFT), the finite differences
approach can be employed effectively regardless of the chosen functional. This versatility allows
for its application to systems exhibiting either weak or strong electronic correlation, considering
the proper methods to address these interactions effectively. As an example of this versatility, the
finite differences technique has been successfully utilized to investigate systems containing the bis-
muthate anion transition-metal chloronitrides complexes, enabling the study of vibronic coupling
and going beyond the LDA and GGA approximations in order to take into account the dominant
role of electron-electron correlations, which are fundamental to understanding the properties of
these strongly correlated systems [168].

• Finite-difference methods are able to incorporate electron-phonon coupling terms extending beyond
the limitations of lowest-order perturbation theory (linear terms). This approach enables the capture
of non-linear effects in the electron–phonon interaction. An example where the treatment of multi-
phonon interactions is critical is the investigation of temperature-dependent absorption phenomena
in hybrid perovskites [169].

However, the finite differences procedure is computationally demanding presenting certain challenges.
The primary issues involve establishing a balance between time and length scales.

• Length Scale: The finite difference method requires multiple first-principles calculations involving
the explicit displacement of atoms. For simulations of modes characterized by long wavelengths, it
is necessary to employ large supercells in which the desired mode can be properly commensurate.

• Time Scale: The computation of finite differences necessitates a large number of calculations to ac-
count for all possible nuclear displacements, each characterized by the three Cartesian coordinates.
For instance, in the case of the STO system using a 2×2×2 supercell to include the Γ, X, M, and R
modes, the number of required calculations scales with several factors: the number of atoms in the
simulation cell, the directions of displacement, the sense of the displacement (positive or negative).
The number of calculation scales when we are interest in quadratic constants.
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To overcome this computational problem a proposed solution entails the incorporation of symmetry.
Finite differences calculations involve several calculations that are related through the symmetry op-
erations of the space group associated with the system under investigation. By imposing symmetry
constraints, it is possible to significantly reduce the number of first-principles calculations required
to carry out the finite-difference procedure.

3.4.8 Electron-phonon formalism in a Wannier functions basis set

In Sec. 3.4.6 electron-phonon interaction has been introduced to tackle solid systems exhibiting period-
icity. In crystalline materials, electrons are commonly represented by Bloch waves, as given in Eq. (2.3).
However, as discussed in Sec. 1.4, electrons can also be described by localized orbitals, in particular
by Wannier functions. As mentioned above, these functions are obtained by a Fourier transform of the
Bloch functions and span the same Hilbert space. Consequently, the electron-phonon matrix elements
can be expressed in terms of Wannier functions, wherein the relationship between the electron-phonon
coupling terms in the Bloch and Wannier representations is established through the Fourier transform
that connects them. In this way, the first order term expressed in the Wannier functions representation,
following Ref.[74], is

fmnλα

(
R⃗Λ, R⃗A

)
=
〈
χm⃗0(⃗r)

∣∣∣∣∣
(

∂V KS

∂τλα

)
r⃗−R⃗Λ

∣∣∣∣∣ χn⃗0

(⃗
r− R⃗A

)〉
sc
, (3.113)

where ∂V KS/∂τλα denotes the first order correction to the Kohn-Sham effective potential with respect
to the nuclear displacements ∆⃗τλ and the subscript “sc” indicated integration over the Born-von Kármán
supercell. As defined in Sec. 1.2.1, the Greek index refers to atomic indices, while Latin indices are
related to the electrons. Then, R⃗Λ represents the lattice vector associated to the atom and R⃗A is the
lattice vector related to the Wannier function. The α component determines the Cartesian coordinate.
The term expressed in Eq. (3.113) is related to electron-phonon interaction matrix element fmnν (⃗k, q⃗) by
substituting the periodic part of the Bloch functions with its representation in terms of Wannier functions
[equation related to Eq. (2.3)],

un⃗k(⃗r) = ∑
m

∑
R⃗

e−i⃗k·(⃗r−R⃗)U†
mn⃗k

χmR⃗(⃗r). (3.114)

The first order correction to the KS potential expressed in reciprocal space, Eq. (3.111), can be rewritten
in terms of Wannier functions expression as

fmnν (⃗k, q⃗) =∑
Λ

∑
A

ei(⃗k·R⃗A+q⃗·R⃗Λ)

× ∑
m′n′λα

Umm′⃗k+q⃗ fm′n′λα

(
R⃗A, R⃗Λ

)
U†

n′n⃗k
uλα ,⃗qν ,

(3.115)

where uλα ,⃗qν =
(
h̄/2Mλ ωq⃗ν

)1/2 eλα,ν (⃗q) and eκα,ν (⃗q) are the vibrational eigenmodes. The employed
Born-von Kármán supercell for electronic band structure, NR⃗A

and phonon dispersions (NR⃗Λ
) may be
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different. The inverse relation is

fmnλα(R⃗A, R⃗Λ) =
1

NR⃗A
NR⃗Λ

∑
A

∑
Λ

e−i(⃗k·R⃗A+q⃗·R⃗Λ)

× ∑
m′n′λα

u−1
λα ,⃗qν

U†
mm′⃗k+q⃗

fm′n′ν (⃗k, q⃗) U†
n′n⃗k

.
(3.116)

The elements fmnλα(R⃗Λ, R⃗A) decay rapidly with increasing R⃗Λ and R⃗A due to the localized nature of
Wannier functions. Consequently, when computing the elements fmnν (⃗k, q⃗) from the real-space ma-
trix elements fmnλα(R⃗Λ, R⃗A), only a limited number of terms are necessary to accurately reconstruct
fmnν (⃗k, q⃗) across the Brillouin zone. By analyzing the decay behavior of the electron-lattice matrix el-
ements fm′n′λα(R⃗A, R⃗Λ), it is observed that they decay with respect to R⃗A and R⃗λ at least as rapidly as
the Wannier functions. In the special case of R⃗A = 0⃗, the decay with R⃗Λ is governed by the decay of the
screened electric potential produced by atomic displacement ∆τλα . Specifically, in nonpolar semicon-
ductors and insulators the decay follows a quadrupolar pattern, scaling as |R⃗Λ|−3, due to the analytical
properties of the dielectric matrix [170]. Regarding metals, the decay rate follows |R⃗Λ|−4 scaling be-
cause of Friedel oscillations due to Fermi-surface nesting [171]. The rapid decay of the linear coupling
constants fmnλα(R⃗Λ, R⃗A) with distances R⃗Λ and R⃗A plays a crucial role in ensuring the efficiency and
feasibility of second-principles calculations.

Because of the localized nature of MLWFs, a basis set composed by these functions is particularly
well-suited for the Slater-Koster interpolation of different magnitudes, as demonstrated in Ref. [69]. In
particular, the calculation of fmnλα(R⃗Λ, R⃗A) from first-principles can be employed to determine the first
order terms in reciprocal space fmnν (⃗k, q⃗) by considering the interpolation technique. Furthermore, the
rapid decay of fmnλα(R⃗Λ, R⃗A) with respect to lattice vectors, as discussed earlier, is a crucial factor that
makes this interpolation technique particularly efficient and practical for such calculations. The first step
involves obtaining the matrix elements fmnν (⃗k, q⃗) using DFPT, with a coarse grid over the Brillouin zone.
Secondly, maximally localized Wannier functions are derived using the method outlined in Refs.[69; 68]
, which provides the unitary matrices U⃗k. These matrices enable the calculation of fmnλα(R⃗Λ, R⃗A) values
by means of Eq. (3.116). Once these values are obtained, interpolation can be performed to compute
fmnν (⃗k, q⃗) on finer grids according to Eq. (3.115). To apply this equation, it is necessary to obtain the
U⃗k+q⃗ matrices on those finer grids. This can be achieved by employing the interpolation procedure
described in Ref.[69].

3.5 Electron-lattice interaction from Second-Principles

After having examined electron-lattice interactions within the framework of first-principles methods, we
now turn to the implementation of vibronic coupling in the second-principles formalism for electrons.
This approach will be further elaborated in Chapter 4, within the context of the SCALE-UP code.

Electron-phonon interactions are ubiquitous in condensed matter systems; consequently, their inclusion
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Chapter 3. State of art: Electron-vibration interaction

in second-principles methods is essential for accurately capturing a wide range of physical phenomena.
In particular, ABO3 systems are prone to antiferrodistortive (AFD) phases, where the oxygen octahedra
surrounding the B cation undergo tilting and rotation along the z-axis, leading to a slight deformation of
the unit cell and resulting in a tetragonal lattice. These systems can also exhibit ferroelectric (FE) phases,
characterized by an off-center cooperative effect in which cations displace oppositely with respect to the
oxygen cage, giving rise to parallel dipoles within the unit cells. Additionally, they can display anti-
ferroelectric (AFE) phases, distinguished by ferroelectric distortions that generate antiparallel dipoles.
Furthermore, numerous compounds exhibit the Jahn-Teller effect, wherein geometric distortions arise
due to the presence of a spatially degenerate electronic ground state. In other systems, such as those
doped with an electron or a hole, lattice distortions can occur due to the formation of polarons. As a final
example, in one-dimensional crystals with one electron per ion, a Peierls transition is observed. In this
case, the system undergoes dimerization, as an equidistant one-dimensional crystal is inherently unsta-
ble. These geometric modifications alter bonding and orbital hybridization, necessitating the inclusion
of electron-lattice coupling corrections in the Hamiltonian.

As mentioned before, the system’s geometry determines its Hamiltonian. In the second-principles frame-
work, the dependence of the model parameters on the atomic configuration is captured by the electron-
lattice coupling terms. To calculate these parameters, it is recognized that in crystals, nuclei undergo
low-amplitude oscillatory displacements around their equilibrium positions. This motion, close to their
equilibrium positions, motivates a Taylor expansion of the Hamiltonian matrix elements, hab. Consider-
ing the one-electron parameters γab of the Hamiltonian matrix elements, which contain the part of the
hamiltonian which does not take into account the electron-electron interaction,

γab({⃗τλ}) = γab({⃗τ(0)
λ })+ ∑

λ,α

∂γab

∂τλα

∣∣∣∣
RAG

(τλα − τ
(0)
λα

)+

+
1
2 ∑
λ,α

∑
υ,β

∂ 2γab

∂τλ,α∂τυβ

∣∣∣∣
RAG

(τλα − τ
(0)
λα

)(τυβ − τ
(0)
υβ

)

(3.117)

where the indices α and β correspond to the direction of the displacement in Cartesian coordinates, with
α,β ∈ x,y,z. Using the notation employed in Eq. (1.2) and neglecting the changes in the lattice vectors
(homogeneous strains), the nuclear positions {τλα} can be replaced by the relative displacements {⃗uλ},
for which u⃗ = 0⃗ represents the crystal’s reference structure,

γab({⃗uλ}) = γ
RAG
ab + ∑

λ,α

∂γab

∂τλα

∣∣∣∣
RAG

uλα +
1
2 ∑
λ,α

∑
υ,β

∂ 2γab

∂τλα∂τυβ

∣∣∣∣
RAG

uλα uυβ , (3.118)

Attending to the previous expression, the zeroth-order term corresponds to the value of the Hamiltonian
matrix element for the chosen reference geometry, while the contribution containing the first and second-
order derivatives evaluated in the RAG represent the electron-lattice coupling corrections. The first-order
derivative is denoted as

fab,λα =− ∂γab

∂τλα

∣∣∣∣
RAG

, (3.119)
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A negative sign has been introduced to ensure that fab,λα is positive when the system favors the dis-
placement of the λ atom in the positive direction.

The linear term f⃗ab,λ is a three-dimensional vector and depends on the displacement of one atom. Mean-
while, the second-order derivative is expressed by

gab,λα υβ =
∂ 2γab

∂τλα∂τυβ

∣∣∣∣
RAG

(3.120)

where
↔
gab,λυ is a second-rank tensor in three-dimensions which is associated to the displacement of

two atoms. The terms f⃗ab,λ and
↔
gab,λυ represent first- and second-order tensors, respectively, that

are closely associated with the concept of orbital vibronic constants as introduced in Eq. (3.39) for the
linear case and in Eq. (3.59) for the quadratic contributions. These tensors are also intimately related
to the electron-phonon coupling constants expressed in the Wannier function representation discussed in
Sec. 3.4.8.

The f⃗ab,λ and
↔
gab,λυ elements are the electron-lattice parameters of the second-principles model. Rewrit-

ing Eq.(3.118) in terms of these parameters yields

γab({⃗uλ}) = γ
RAG
ab −∑

λ

f⃗ T
ab,λu⃗λ+

1
2 ∑

λ
∑
υ

u⃗T
λ
↔
gab,λυu⃗υ, (3.121)

(a) Diagonal term: from lattice to electrons

(b) Diagonal term: from electrons to lattice

(c) Off diagonal term

Figure 3.11: Examples of electron-lattice cou-
pling effects. The diagonal term f⃗ T

aa,λ produce
a reduction of the on-site energy of a px orbital
when a displacement on the x-direction is applied,
(a) and the modification of the occupation of Wan-
nier orbitals can induce atomic force in the neigh-
bor atoms, (b). The off-diagonal term f⃗ T

ab,λ gen-
erates alterations on the bandwidth when there is
a relative displacement between atoms and thus,
between orbitals, (c). In the picture we have ne-
glected the Sr atoms since it does not participate
in the active set. Figure extracted from Ref. [37]
with permissions.

In second-principles, the linear terms f⃗ab,λ are the linear orbital vibronic constants presented in Eq. (3.39)
expressed in atomic coordinates instead of modes. And, in the same way, this terms is equivalent to
Eq. (3.113) in electron-phonon formulation described in Sec. 3.4.8. According to the second order terms,
↔
gab, these elements correspond to the quadratic orbital vibronic constants in Eq. (3.59).
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These electron-lattice terms influence the electronic structure by modulating the electrostatic interactions
in several ways. In order to understand the physics of the f⃗ terms we study the following particular cases:

DIAGONAL INTERACTIONS, γaa. The interaction γaa controls the average energy (center of mass) of
the corresponding band. Hereunder, we separate the effect produced by the lattice on the electrons, and
the alterations generated by the electrons in the lattice.

From the lattice to electrons: the parameters depend on the underlying geometry

This interaction is related to f⃗ T
aa,λ terms. If f⃗ T

aa,λ ̸= 0, then the displacement of one atom, δ u⃗λ, might
modify the center, shape and spreading of the Wannier χa, and therefore the center of gravity of the
bands. An example is illustrated in Fig. 3.11a. It shows a px and a py-like Wannier orbitals and the pres-
ence of forces applied on one atom (spheres). If atoms are displaced along the x-direction, a change in
the on-site energy of the px orbital is produced. In Fig. 3.11a the selected convention considers positive
value of the f⃗ T

aa,λ parameter. As a result, the energy of the px orbital is lowered while the energy of py

does not change.

From the electrons to lattice: the forces depend on the electronic density

The force which suffers an atom λ is computed by

F⃗λ =−∇⃗λE =−∇⃗λE(0)−∑
ab

DU
ab∇⃗λγab. (3.122)

The term of the deformation occupation matrix, DU
ab, quantifies the difference between the density matrix

and the reference density matrix (RED), which use to be identify with the ground state density of the
neutral system. Then, if the occupation of a particular Wannier χa is changed by the injection of extra
charge or by charge extraction, the matrix element DU

aa ̸= 0 and we are out of Born-Oppenheimer surface.
The modification of the occupation can induce atomic forces on atom λ, Fig. 3.11b, and therefore a
displacement. As a result, the force field is corrected by the second term in Eq. (3.122). In SPDFT
model, these distortions are included in f⃗aa.

OFF-DIAGONAL INTERACTIONS, γab. The off-diagonal one-electron terms, γab, govern the hopping
mechanism, encompassing hybridization, covalency, and the bandwidth of electronic states. If f⃗ T

ab,λυ ̸=
0, a relative displacement of atom λ can modify the overlap between the Wannier functions χa and χb,
thereby altering the hopping terms. In other words, f⃗ quantifies the variation in bandwidth induced by
atomic displacements. Figure 3.11c illustrates the interaction between two orbitals: the Wannier function
χa, centered on atom λ, and χb, associated with atom υ, when atom λ undergoes displacement. If the
displacement u⃗λ increases the separation between the two atoms, the Wannier functions move farther
apart, reducing their overlap and consequently diminishing the hopping amplitude. As a result, the
bandwidth narrows (depicted in green) compared to the undistorted case (depicted in red).
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Second-Principles: electronic contribution

The SPDFT method [37] is based on a expansion of the full DFT energy of a material in terms of
the electron density, so that all the properties of the system like bands, spectra or geometries can be
accurately predicted when perturbing the system. In order to reach large-scale simulations it is assumed
that no strong changes in the bond topology of the system are going to take place [37]. For example,
the method allows describing the typical ferroelectric transitions in materials like BaTiO3 or PbTiO3,
where the underlying perovskite structure is retained, but would not be valid to take into account what
happens during the melting of a solid into a liquid. The basic geometry of the system is given by the
Reference Atomic Geometry (RAG), which was further explained in Sec. 1.2.1. As seen before, the RAG
is typically selected as a high-symmetry critical point in the energy surface of the system. The atomic
position of a λ atom in the RAG is defined by Eq. (1.1) while its position in a distorted geometry relative
to the RAG is described by Eq. (1.2).

4.1 Electron density

From second-principles, the electronic density is treated as a perturbed quantity by splitting it into two
parts: the Reference Electron Density (RED) and the deformation charge density, which represents the
perturbation. The Reference Electron Density, n0(⃗r), is defined for each possible atomic configuration. It
is important to note that the concepts of RAG and RED are completely independent: in this methodology
the RED is defined for every atomic structure accessible by the system, and not only for the RAG.

Similarly to perturbation theory, the RED would correspond to a simple electron density, as close as
possible to the real density, n(⃗r). In order to determine n0(⃗r), for the sake of simplicity, we consider a
nonmagnetic system. In particular, we will focus on an insulator or semiconductor compound. Under
these assumptions, the RED, n0(⃗r), can be represented as the ground state and it can be obtained from
DFT calculations. Now, if the system is perturbed a small deformation charge density, δn(⃗r), will appear,
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where the perturbation changes the density as,

n(⃗r) = n0(⃗r)+δn(⃗r). (4.1)

Once the foundation of the method has been established, the next step involves analyzing the energy. To
do this, it is essential to define a basis to express the density. By employing a basis set of Bloch functions,
which are characterized by a wave vector k⃗ and a band index j, the density can be written as

n(⃗r) = ∑
j⃗k

o j⃗k

∣∣∣ψ j⃗k(⃗r)
∣∣∣2 . (4.2)

In this context, o j⃗k denotes the occupation of the |ψ j⃗k⟩ state. At scales of tens of nanometers, where
the number of atoms reaches hundreds of thousands, a localized basis set in real space that conveys the
same information as the Bloch functions becomes essential to control the range of the interactions and
help create a method that scales linearly with the number of atoms. Consequently, a Wannier function
basis is employed [65]. This basis is not only localized but it is also orthonormal. Equation (1.37) allows
expressing the Wannier functions in terms of the Bloch basis.

In this section and the subsequent ones, we introduce a change in notation relative to the previous chap-
ters to simplify the formalism and align with the notation used in the reference work [37]. A Wannier
function, originally denoted as |χaR⃗A

⟩, is centered at the Bravais lattice vector R⃗A and labeled within that
unit cell by the discrete index a. In this section, we adopt the more compact notation |χa⟩, where the
subscript a represents both the unit cell and the discrete index a, such that aR⃗A ↔ a. Throughout this
work, latin indices are used to label all physical quantities associated with electrons. According to this
convention, the Wannier functions are expressed as Eq. (1.37)

|χa⟩=
Vcell

(2π)3

ˆ
BZ

e−i⃗k·R⃗A
J

∑
j=1

U ja(⃗k)
∣∣∣ψ(0)

j⃗k

〉
d⃗k, (4.3)

where the superscript “(0)” in the Bloch functions |ψ(0)
j⃗k
⟩ indicates the Bloch states of the system cor-

responding to the RAG in the RED configuration, i.e. the unperturbed system. Note that the inverse
transformation from Wannier to Bloch functions reads∣∣∣ψ(0)

jk

〉
= ∑

a
c(0)

j⃗k,a
ei⃗k·R⃗A |χa⟩ . (4.4)

The Wannier functions corresponding to the RED form a complete basis of the Hilbert space. Hence, we
can use them to represent any perturbed electronic configuration of the system as∣∣ψ jk

〉
= ∑

a
c j⃗k,aei⃗k·R⃗A |χa⟩ , (4.5)

where the sum can be extended to as many bands as needed to accurately describe the phenomenon of
interest.
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4.1. Electron density

In this way, Eq. (4.2) can be reformulated using real Wannier functions, eliminating the need for complex
conjugates. The resulting expression is

n(⃗r) = ∑
j⃗k

o j⃗kψ
∗
j⃗k
(⃗r)ψ j⃗k(⃗r) = ∑

j⃗k
∑
ab

o j⃗kc∗
j⃗k,a

c j⃗k,bei⃗k·(R⃗B−R⃗A)χa(⃗r)χb(⃗r) = ∑
ab

dabχa(⃗r)χb(⃗r). (4.6)

There, dab defines the charge distribution and is called as the density matrix,

dab = ∑
j⃗k

o j⃗kc∗
j⃗k,a

c j⃗k,bei⃗k·(R⃗B−R⃗A). (4.7)

Similarly to the total density n(⃗r) expressed in terms of Wannier functions in Eq. (4.6), the reference
density n0(⃗r) can be written in this basis as follows,

n0(⃗r) = ∑
ab

d(0)
ab χa(⃗r)χb(⃗r), (4.8)

where d(0)
ab is defined as the reference density matrix.

Once the total density, n(⃗r), and the reference density, n0(⃗r), have been defined in terms of Wannier
functions, we introduce a fundamental quantity that underpins the development of the electronic energy
within this methodology. This quantity is the deformation charge density,

δn(⃗r) = ∑
ab

Dabχa(⃗r)χb(⃗r), (4.9)

which is expressed in terms of the difference density matrix Dab. This matrix quantifies the difference
between the total and reference densities, as given by Eq. (4.6) and Eq. (4.8),

Dab = dab−d(0)
ab . (4.10)

Its elements are supposed to be small in the sense that the trace of the difference density is much smaller
than the number of electrons in the system, ∑a |Daa| ≪ ∑a d(0)

aa.

This deformation charge density may contain interactions of the following nature:

• The charge doping by the addition of electrons to the bottom of the conduction band or by extracting
electrons from the top of the valence band. This phenomenon is related with the simulation of polarons.

• The excitation of the electronic charge density in the neutral system by the transference of electrons
from the valence to the conduction band. In this case, this effect is related to the optical excitations
including exciton creation.

• For each one of the commented phenomenons, δn(⃗r) must capture the charge redistribution (response)
of the remaining electrons to the induced change, screening phenomenon. It can be viewed as resulting
from an admixture of occupied and unoccupied states of the reference neutral configuration since the
eigenstates represent a basis of the Hilbert space.
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Chapter 4. Second-Principles: electronic contribution

It is important to highlight that the three quantities, n(⃗r), n0(⃗r), and δn(⃗r), are, in fact, parametric func-
tions of the atomic positions {⃗τλ}. However, in the case of a non-magnetic insulator, the ground state,
characterized by the reference density matrix d(0)

ab , remains independent of the atomic structure of the lat-
tice and characterizes the reference adiabatic potential energy surface (APES). As an illustrative example,
we consider the insulator SrTiO3 in its cubic paraelectric configuration, where a Wannier function basis
associated with the Bloch states at the top of the valence band and the bottom of the conduction band is
employed. When the ground state is taken as the reference electronic configuration, the reference density
matrix d(0) assumes a diagonal form, consisting of twos and zeros along the diagonal, independently of
the geometry of the system. The alteration of the geometry is implicitly accounted in the change of the
shape of the WFs, including its spread.

4.2 Approximate expressions for the energy

The primary goal of this Section is to derive a functional form that enables an accurate approximation of
the DFT total energy while minimizing computational expense. The DFT energy can be expressed as

EDFT = ∑
j⃗k

o j⃗k

〈
ψ j⃗k

∣∣∣ t + vext

∣∣∣ψ j⃗k

〉
+

1
2

¨
n(⃗r)n (⃗r′)
|⃗r− r⃗′| d3rd3r′+Exc[n]+Enn. (4.11)

From the previous expression, the DFT energy is formulated as a functional of the electronic density,
which contributes to both the Coulomb interaction and the exchange-correlation energy. By applying the
decomposition of the electronic density, outlined in Eq. (4.1), the linear part of the Coulomb energy term
can be addressed straightforwardly. Moreover, an appropriate choice of the RED, that ensures Dab re-
mains small, enables an accurate approximation of the exchange-correlation energy. This approximation
is achieved through a low-order Taylor expansion of δn around the RED, as proposed in reference [172],

Exc[n] = Exc [n0]+

ˆ
δExc

δn(⃗r)

∣∣∣∣
n0

δn(⃗r)d3r+
1
2

¨
δ 2Exc

δn(⃗r)δn (⃗r′)

∣∣∣∣
n0

δn(⃗r)δn
(⃗
r′
)

d3rd3r′+ · · · . (4.12)

Under the aforementioned approximation, the total energy can be expressed as the sum of contributions
arising from the reference density (zeroth order on density) corrected by first and second orders on the
density, related to the deformation density. By performing the expansion up to second order, the final
expression closely resembles that of the Hartree-Fock method. Formally, this is written as

EDFT ≈ E = E(0)+E(1)+E(2). (4.13)

The method is systematically improvable by incorporating higher-order energy terms in the expansion,
while consistently seeking an optimal balance between accuracy and computational cost. Now, we study
the different terms of the expansion step by step in order to elucidate the specific phenomena they repre-
sent.

To achieve a better understanding of the concepts of RED, deformation density and the involved energy
correction terms, an example is illustrated in Fig. 4.1, where the different densities are represented in the
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4.2. Approximate expressions for the energy

top cartoons. Here, the proposed splitting of the electronic density is applied on a doped semiconductor
composed by two different types of atoms: large green/blue and small red balls in a 2D-square geometry
and 3 atoms as motif. The RAG corresponds to the high-symmetry configuration in which the large
atom is located at the center of the square, while the small atoms lie at the centers of the sides. The
neutral system (undoped) is associated to the RED, Figs. 4.1(b). Here, the system is in the ground state:
the valence band is completely occupied while the conduction band is empty. At this moment, if some
charge is added (or removed) Figs. 4.1(c), 4.1(f), the electronic cloud will be affected and will tend to
screen the field caused by the extra charge. The doping electron (respectively, hole) will occupy the
states at the bottom of the conduction band (respectively, top of the valence band). Such a deformation
density, captures both the doping and the system’s response to it, as previously exposed. The doping is
represented by green balls in the electronic band diagrams while the the screening is shown in orange.

Figure 4.1: Schematic representation of the reference atomic structure and the reference and deformation electron
densities. Illustrations (a)–(c) show the total density, the RAG and the deformation density for a semiconductor.
Illustrations (d)–(f) exhibit the energy levels obtained for the neutral ground state. The occupation of a given state
is determined by the full green circles. And the partial occupation is given by half filled orange/green circles. The
notations E(0), E(1) and E(0) for the energies is related to the reference energy, one-electron contribution to the
energy and two-electron contribution respectively. Figure extracted from Ref. [37] with permissions.

4.2.1 Lattice models

E(0) - Energy of the reference state

The zeroth order term corresponds, without approximation, to the full DFT energy for the reference
density n0(⃗r)

E(0) = ∑
j⃗k

o(0)
j⃗k

〈
ψ

(0)
j⃗k

∣∣∣ t + vext

∣∣∣ψ(0)
j⃗k

〉
+

1
2

¨
n0(⃗r)n′0 (⃗r

′)
|⃗r− r⃗′| d3rd3r′+Exc [n0]+Enn. (4.14)

It is the dominant contribution to the total energy. We can compute E(0) as a function of the variables
controlling the geometry: the strain

↔
η and the displacements from the RAG {⃗u}, by employing a model
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Chapter 4. Second-Principles: electronic contribution

potential that depends only on the atomic positions, and where the electrons are assumed to remain in the
RED and are integrated out. Here is where the lattice models, explained in Sec. 1.2.2, come into play.
This approach offers a significant advantage over other methods, such as standard DFTB techniques,
which require both an explicit and precise treatment of electronic interactions to obtain the RED, as well
as the numerical solution for E(0) and n0 for each atomic configuration within the simulation.

The zeroth-order energy exclusively accounts for the lattice degrees of freedom and does not include
the electronic degrees of freedom. Therefore, to analyze the band structure of a system, it is essential
to incorporate the relevant electronic degrees of freedom in an appropriate manner. In particular, this
methodology includes the electronic degrees of freedom through a tight-binding-like model (see Sec. 1.3)
while ensuring the avoidance of double-counting with the effective atomic potentials.

4.2.2 Electronic models

As discussed above, the electronic band structure of a system can be computed by a simple tight binding
model, Eq. (1.65). This model presents several advantages, as the low computational cost and the high
efficiency. The main ingredient for its application are the Hamiltonian matrix elements expressed in the
Wannier functions basis set shown in Eq. (1.65). Thus, the objective of the method is the construction of
these matrix elements parametrically.

The tight-binding-like Hamiltonian matrix elements hs
ab, defined within this framework to account for

electronic degrees of freedom, are determined by the following expression for the spin channel s,

hs
ab = ⟨χs

a|h |χs
b⟩ (4.15)

where h is the Kohn-Sham [160] one-electron Hamiltonian defined for the total density n(⃗r),

h = t + vext− vH (n;⃗r)+ vxc [n;⃗r] . (4.16)

The term vH (n;⃗r) represents the Hartree potential

vH (n0 ;⃗r) =−
ˆ

n0 (⃗r′)
|⃗r− r⃗′|d

3r′, (4.17)

and vxc is the exchange-correlation potential

vxc [n;⃗r] =
δExc[n]
δn(⃗r)

∣∣∣∣
n
. (4.18)

Electrostatics

Regarding the tight-binding Hamiltonian terms, the methodology distinguishes between short- and long-
range contributions, denoted as hs,sr

ab and hs,lr
ab , respectively,

hs
ab = hs,sr

ab +hs,lr
ab. (4.19)
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4.2. Approximate expressions for the energy

In the Hamiltonian, the long-range contribution corresponds to the Coulomb interaction, represented by
the electrostatic potential generated by both electrons and nuclei acting on the Wannier functions χa and
χb. The long-range contribution is computed using a far-field electrostatic potential, where the lattice
effects are described through a multipole expansion representing them as effective charges and dipoles.

The remaining contributions to the system, such as kinetic energy, exchange-correlation effects, and
external applied fields, are local or semi-local. The short-range component, which captures these local
interactions, must be explicitly modeled within the second-principles framework.

E(1) - One-electron excitations

The term E(1) contains the differences in one-electron energies. It involves the one-electron excitations
as captured by the deformation density

E(1) = ∑
j⃗k

[
o j⃗k

〈
ψ j⃗k

∣∣∣h0

∣∣∣ψ j⃗k

〉
−o(0)

j⃗k

〈
ψ

(0)
j⃗k

∣∣∣h0

∣∣∣ψ(0)
j⃗k

〉]
, (4.20)

where h0 is the one-electron Hamiltonian, Eq. (4.16), defined for the RED, n0. Attending to Eq. (4.20), it
is important to emphasize that the summation is performed over the difference between the one-electron
energies of the actual system and those of the reference system. In contrast, standard DFTB schemes
typically incorporate a direct summation of one-electron energies (for example, see references [61] and
[172]). By focusing on the difference between these values rather than their absolute magnitudes, this
approach yields a much smaller quantity, which is more suitable for accurate calculations.

The first-order term of the energy E(1) can be expressed in the Wannier functions basis set as

E(1) = ∑
ab

Dabγab, (4.21)

where γab represents the one-electron operator corresponding to the tight-binding-like interaction

γab = ⟨χa|h0 |χb⟩=
ˆ

χa(⃗r)h0(⃗r)χb(⃗r) d3r. (4.22)

If we consider the division in short-range and long-range interaction,

γab = γ
sr
ab+ γ

lr
ab. (4.23)

The short-range term on the one-electron integral, γsr
ab is highly sensitive to the system’s geometry.

Changes in geometry influence the spread and centers of the Wannier functions, reflecting modifications
in hybridization. In this method, small geometric distortions are considered, allowing for the incorpora-
tion of electron-lattice coupling corrections, δγ

sr,el
ab , to the one-electron parameters obtained for the RAG,

γ
sr,RAG
ab . These corrections, which account for first- and second-order modifications in the one-electron

integrals, effectively describe variations in the Wannier functions and their interaction with the lattice. To
analyze this coupling, γsr

ab is expanded in terms of atomic displacements through a Taylor series around
the RAG, under the assumption of small deformations,

γ
sr
ab = γ

sr,RAG
ab +δγ

sr,el
ab = γ

sr,RAG
ab +∑

λυ

[
− f⃗ T

ab,λυ ·δ τ⃗λυ+ ∑
λ′υ′

δ τ⃗
T
λυ ·

↔
gab,λυ ·δ τ⃗λυ+ ...

]
, (4.24)
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Here, δ τ⃗λυ quantifies the relative displacement between atoms λ and υ,

δ τ⃗λυ =
←→
η

(
R⃗ϒ− R⃗Λ + τ⃗

(0)
υ − τ⃗

(0)
λ

)
+ u⃗υ− u⃗λ. (4.25)

The previous expression for γsr
ab term is related to Eq. (3.121). A comparison of both expressions reveals

that the linear terms involve two atoms, with displacements represented as relative differences between
atomic positions rather than absolute displacements of individual atoms. The methodology presented in
[37] follows this approach to automatically enforce the ASR which can easily be violated due to small
numerical errors. In the following Chapter, we will introduce a new methodology aimed at addressing
some limitations in the formula Eq. (4.24).

Regarding Eq. (4.24), f⃗ and
↔
g are the first- and second-rank tensors that characterize the electron-lattice

coupling. These terms correspond to those in Sec. 3.5, and their relationships will be established in
Sec. 5.6.3.

E(2) - Two-electron excitations

E(2) contains the two-electrons interactions

E(2) =
1
2

ˆ
d3r
ˆ

d3r′g
(⃗
r,⃗r′
)

δn(⃗r)δn
(⃗
r′
)

(4.26)

where the screened electron-electron interaction operator, g (⃗r,⃗r′), is given by

g
(⃗
r,⃗r′
)
=

1
|⃗r− r⃗′| +

δ 2Exc

δn(⃗r)δn (⃗r′)

∣∣∣∣
n0

(4.27)

where δn represents the deformation density exposed in Eq. (4.9). This expression can be extended to
deal with strongly-correlated and magnetic systems taking into account in a differentiate way the two
spin channels. Thus, the deformation density can be expressed in a similar way for each one of the spin
channels s defining Ds

ab. As a result, the deformation density δn(⃗r) is given by

δn(⃗r,s) = ∑
ab

Ds
abχa(⃗r)χb(⃗r) (4.28)

where

D↑ab = d↑ab−
1
2

d(0)
ab D↓ab = d↓ab−

1
2

d(0)
ab (4.29)

The difference density matrix Dab (including both spin channels) can be expressed as the sum of the
two spin components and is renamed by DU

ab. Conversely, the system’s magnetization charge, DI
ab, is

obtained as the difference between the two spin components,

DU
ab = D↑ab+D↓ab DI

ab = D↑ab−D↓ab. (4.30)

The DI
ab matrix only plays a role in the spin-polarized systems and vanishes in non-spin-polarized com-

pounds because a non-spin-polarized density satisfies D↑ab = D↓ab.
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Once the difference density matrix has been defined as a function of the spin, Ds
ab, the general expression

for the energy second order correction expressed in a Wannier function basis set is

E(2) =
1
2 ∑

ab
∑
a′b′

{
DU
abDU

a′b′Uab,a′b′−DI
abDI

a′b′Iab,a′b′
}

(4.31)

where U and I are the two-electron parameters. As an approximation, fluctuations in the interaction
parameters U and I with geometry are neglected, and only the dependence of the one-electron integrals
γab on the lattice distortions is considered.

The associated electron-electron coupling correction added to the RED hamiltonian is studied in terms
of these parameters

δhs,ee
ab = ∑

a′b′

[(
Ds
a′b′+D−s

a′b′
)

Uab,a′b′−
(
Ds
a′b′−D−s

a′b′
)

Iab,a′b′
]
. (4.32)

The two-electron parameters U and I are defined as four-center integrals. Considering X =U, I,

Xab,a′b′ =

ˆ
d3r
ˆ

d3r′χa(⃗r,s)χb(⃗r,s)χa′ (⃗r ′,s)χb′ (⃗r ′,s)gX (⃗r,⃗r ′,s,s′), (4.33)

where gU and gI are the Hubbard and Stoner two-electron constants. The U and I terms match to the
four-index integrals of Hartree-Fock theory. The Hubbard two-electron constant is computed as

gU (⃗r,⃗r ′) =
1

|⃗r− r⃗ ′| +
1
2

[
δ 2Exc

δn(⃗r,↑)δn(⃗r ′,↑)

∣∣∣∣
n0

+
δ 2Exc

δn(⃗r,↑)δn(⃗r ′,↓)

∣∣∣∣
n0

]
. (4.34)

It contains the classical electrostatic Hartree interaction (first term of the expression). This contribution is
corrected by the second term where the elements δ 2Exc/δn(⃗r,s)δn(⃗r ′,s′) capture the effective screening
of the two-electron interactions due to exchange and correlation. It depends on the total difference density
matrix described above, DU

ab, and quantifies the energy needed to add or remove electrons.

The Stoner two-electron constant is related to the spin polarization and is given by the expression

gI (⃗r,⃗r ′) =
1
2

[
δ 2Exc

δn(⃗r,↑)δn(⃗r ′,↓)

∣∣∣∣
n0

− δ 2Exc

δn(⃗r,↑)δn(⃗r ′,↑)

∣∣∣∣
n0

]
. (4.35)

This magnitude considers the magnetic interactions providing the difference in interaction between elec-
trons with parallel and antiparallel spins. Its origin is essentially quantum due to its exchange-correlation
nature.

Finally, the SPDFT energy in Eq. (4.13), when using the WFs basis, takes the expression,

E =E(0)+∑
ab

(
D↑ab+D↓ab

)
γab+

+
1
2 ∑

ab
∑
a′b′

{(
D↑ab+D↓ab

)(
D↑a′b′+D↓a′b′

)
Uab,a′b′−

−
(

D↑ab−D↓ab
)(

D↑a′b′−D↓a′b′
)

Iab,a′b′
}
. (4.36)
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The bands and Bloch wavefunctions can be extracted using the one-electron Hamiltonian Eq. (4.15)
whose final expression for the s spin-channel considering the electrostatic contributions, electron-lattice
coupling δγ

sr,el
ab and the electron-electron correction, δhs,ee

ab ,

hs
ab =γ

sr,RAG
ab +∑

λυ

[
− f⃗ T

ab,λυ ·δ τ⃗λυ+δ τ⃗
T
λυ ·

↔
gab,λυ ·δ τ⃗λυ

]
+

+ ∑
a′b′

[(
Ds
a′b′+D−s

a′b′
)

Uab,a′b′−
(
Ds
a′b′−D−s

a′b′
)

Iab,a′b′
]
+hlr

ab.
(4.37)

As a result, we have a mean field approach consisting of a tight-binding one-electron Hamiltonian cor-
rected by electron-electron interactions has been derived. It depends parametrically on the parameters
γ

sr,RAG
ab , f⃗ab,λυ,

↔
gab,λυ, Uab,a′b′ , Iab,a′b′ and hlr

ab. The method aimed to determine these parameters
through first-principles simulations, with the primary objective of obtaining a parametrization flexible
enough to describe various atomic configurations and electronic states beyond the ground state surface.

The present thesis has focused on the computation of these parameters by refining the existing method-
ology and proposing alternative approaches.
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Chapter 5

MODELMAKER

In the previous Chapter, based on Ref. [37], we introduced second-principles density-functional-theory
(SPDFT) calculations, designed to address large-scale problems including both atomic and electronic
degrees of freedom on the same footing in systems with many atoms and extended simulation times.
This method constructs general models capable of describing diverse properties, mechanical, structural,
electrical, or magnetic, while maintaining a computational cost significantly lower than that of standard
DFT calculations. SPDFT models can capture essential physical properties such as total energy, elec-
tronic bands, and magnetic moments for systems containing tens or even hundreds of thousands of atoms.
Importantly, this approach retains predictive accuracy, as its parameters are systematically derived from
DFT calculations and can, in principle, be refined to converge toward first-principles results.

Since the original publication of second-principles methods concerning the electronic degrees of free-
dom [37], machine-learning (ML) models in condensed matter physics and chemistry have prolifer-
ated [29; 30]. Universal deep neural network approaches to represent the DFT Hamiltonian of crys-
talline materials, aiming to bypass the computationally demanding self-consistent field iterations of DFT
and substantially improve the efficiency of ab initio electronic-structure calculations, are already avail-
able [31; 32]. Machine learning and artificial intelligence models have proven to be highly accurate in
condensed matter physics, capable of predicting material properties, phase transitions, and electronic
structures in large systems with remarkable precision. However, the complexity of these models, of-
ten involving deep neural networks or high-dimensional feature spaces, makes them inherently opaque.
Unlike traditional physics-based approaches, where analytical equations offer clear insights into under-
lying mechanisms, ML-driven models function as “black boxes”, providing results without a transparent
explanation of the reasoning behind them. This lack of interpretability poses a challenge, as scientists
may obtain precise predictions but struggle to extract fundamental physical principles or causal relation-
ships from the model’s inner workings. Moreover, ML-based approaches are often tailored to specific
properties (such as energy gap predictions [33]) or materials (for instance, the mechanical properties of
zeolites [34]). In contrast, SPDFT offers a physics-driven framework that applies to a broader range of
systems and properties, making it a valuable complement to data-driven methodologies.
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The methodology developed in Ref. [37] and briefly described in Chapter 4, is based on the construction
of the one-electron Hamiltonian matrix elements represented in a Wannier functions basis set [65]. As
shown in Eq. (4.37), these Hamiltonian matrix elements are expressed as a function of atomic displace-
ments and density matrix variations; and depend parametrically on a set of parameters which are obtained
from a collection of first-principles calculations which conform the training set. These parameters define
the models and are the key to all future work in second-principles.

In Ref. [37] a first algorithm to generate the different parameters composing the model was described. In
this initial version, these Hamiltonians were obtained from DFT calculations on a loosely defined training
set, allowing users to incorporate specific configurations relevant to the system under study. However,
this approach had several limitations: (i) It did not explicitly enforce the symmetry of the system, leading
to discrepancies in equivalent parameters and potential errors in band structure representation. (ii) The
lack of a formally defined training set made it difficult to compare different models, as they contained
non-equivalent terms derived from disparate DFT calculations. (iii) Model generation required an ex-
tensive number of DFT calculations (potentially tens of thousands), incurring significant computational
costs, which contradicted the efficiency goals of the method. (iv) There was no systematic way to assess
the quality of a given model, making it challenging to refine and improve parameter sets. Considering
these limitations, in this work we have improved the SPDFT model generation method to correct these
main deficiencies.

To address the previously mentioned problems, we propose a new automated model construction algo-
rithm in which most parameters are either directly calculated or fitted, thereby ensuring model consis-
tency. The user needs to only choose a few computational thresholds that are then used to systematically
generate the training set and control the overall quality of the resulting model. This new method requires
a significant interaction of the model-generating toolbox developed in python code (MODELMAKER)
with the first-principles code. Thus, we have selected SIESTA [38] as the main DFT program to interface
with MODELMAKER, although adapting it to other codes that employ WANNIER90 [39] to build WFs
should be a simple task. As described later in Sec. 5.3, we have significantly upgraded the capacity of
SIESTA to deal with the simultaneous Wannierization of different sets of bands.

During this work and since the original publication of the SPDFT method [37], we have identified ways
to address some of the limitations of that work. Below, we report several important changes to the SPDFT
Hamiltonian that are now implemented.

Wannierization. An issue that negatively impacted the accuracy of the second-principles models obtained
with the previous method was the way the Wannierization procedure was carried out. Typically, all WFs
for a system are obtained in a single run where one selects all the bands of interest and produces the
corresponding WFs. However, if one applies this procedure, for example, to the valence and conduction
bands of an insulator, the resulting WFs are described, to maximize localization, by a mixture of valence
and conduction Bloch functions. Since valence bands are fully occupied in an insulator while the con-
duction ones are empty, the resulting density matrix for the ground state, see Sec. 5.2, is not diagonal nor
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constant with changes in the geometry, which involves a significant computational penalty when carrying
out, for example, molecular dynamics simulations.

Symmetry. One-electron Hamiltonians expressed in the WFs basis often exhibited small numerical in-
consistencies. These resulted in symmetry-related terms being treated as distinct, which in turn led to
unphysical features in the second-principles models—such as small band splittings where degeneracies
were expected.

Training set calculations. The approach in the original SPDFT formulation [37] emphasized the im-
portance of filtering the large volume of data produced by first-principles calculations. However, less
attention was given to the construction of the training set, that is, to defining the specific first-principles
simulations needed to parameterize a second-principles model.

Description of the electrostatics. The description of electrostatics in Ref. [37] involved local dipoles
that only depended on the geometry of the system. However, when calculating optical properties [173]
we found that atomic dipoles need to be allowed to vary as a function of time due to the hybridization
between WFs that is induced by external electric fields.

Next, we present the methodology on which MODELMAKER is based, we compare it with the algorithm
proposed in Ref. [37] and analyze in detail the issues it has encountered, and we discuss the improve-
ments introduced in this work.

Considering the system for which we are going to build the electronic model, the starting point of our
methodology is the identification of the Reference Atomic Geometry (RAG) and the Reference Elec-
tronic Density (RED).

5.1 Selection of the Reference Atomic Geometry (RAG): the unit cell

The specific criteria for selecting the RAG are outlined in Sec. 1.2.1. Additionally to these characteris-
tics, an important feature that must be incorporated in the selection of the RAG cell, which defines the
simulation box for the model, is the designation of the RAG as a conventional cell. This simulation box
is referred to as the unit cell in the MODELMAKER framework.

The unit cell represents the simulation box which serves as the framework for constructing the model
and, in particular, the basis set of Wannier functions {χa}. This basis set is employed to express the
Hamiltonian matrix elements hab, where the subscripts a and b correspond to the Wannier functions χa

and χb, respectively, in the chosen basis. The Wannier function χa is centered in the home unit cell while
the χb Wannier function may either reside within the home unit cell or within one of its periodic replicas,
as determined by the k⃗-mesh sampling utilized in WANNIER90, see Sec. 2.1.3.

When selecting the unit cell of the system in the RAG, it is crucial to ensure that it corresponds to
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a conventional, as this allows to properly incorporating the system’s symmetry in the implementation
(see Sec. 5.4). Since, as highlighted in the introduction of this Chapter, one of the key advancements
in this improved methodology is the integration of symmetry within the code. In the MODELMAKER

implementation, this symmetry is defined according to the space group of the system by the symmetry
operations for its conventional cell.

As an example in the selection of the RAG unit cell, consider the SrTiO3 system in the paraelectric cubic
geometry. In this case, the most natural choice for the unit cell would be the primitive cell, which is a
cubic P cell. Here, both the primitive and conventional cells coincide. In contrast, for the solid system
LiF with a rock salt structure, the primitive cell consists of two atoms, whereas the conventional cell is a
cubic F cell composed by 8 atoms. Therefore, the unit cell for this system should be the cubic F cell.

Ultimately, it is important to underscore that although the model is constructed based on the designated
unit cell—that determines the Wannier functions forming the basis set of the Hamiltonian matrix ele-
ments hab— the model generation procedure also considers an additional cell, referred to as the supercell
within the MODELMAKER framework. This supercell is a supercell of the unit cell and defines the sim-
ulation box employed in the first-principles calculations included in the training set for the computation
of model parameters, which will be elaborated upon in subsequent sections.

5.2 Selection of the Reference Electronic Density (RED)

In the original work [37], the RED was defined using a geometry-independent, constant diagonal matrix,

d(0)
ab = oaδab, (5.1)

where oa denotes the occupation number of the corresponding WF. This density matrix is periodic in the
sense that d(0)

ab = d(0)
a′b′ if (a,b)≡ (a′,b′) with “≡” meaning equivalent by translation. For non-magnetic

insulators, this definition was shown [37] to accurately reproduce the ground state within the framework
of DFT, regardless of the geometry. However, this approach becomes insufficient for metals and magnetic
insulators, where many off-diagonal elements of the density matrix (dab with a ̸= b) are non-zero in the
ground state. Accurately capturing the ground state density matrix in such systems therefore requires a
self-consistent approach, which can be both time-consuming and technically demanding.

In the new implementation of SPDFT, the reference density matrix is no longer constrained to be diag-
onal, although it remains constant with respect to the geometry. This generalization allows us to select
the RED as the ground state density matrix of the RAG, accommodating both insulating and metallic
systems.

For insulators, this choice remains valid across different geometries. In contrast, for metals—where par-
tially filled bands evolve with the geometry—this results in variations of the ground state density matrix
along the Born-Oppenheimer surface. Nonetheless, the current approach leads to smaller variations in
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the density matrix and enables a more accurate description of its geometry dependence, which is captured
through electron-lattice interaction elements (see Sec. 3.5).

5.3 Band manifold selection and Wannierization procedure

The second-principles approach involves computing the matrix elements of the Kohn-Sham one-electron
Hamiltonian within a Wannier function basis set {|χa⟩} [69], as expressed in Eq. (4.37). The methodol-
ogy for establishing the Wannier function basis from Bloch states is initiated by considering the system
at the RAG (see Sec. 1.2.1) within the RED framework (selected in Sec. 5.2). The relationship between
this basis and the Bloch state representation is elaborated in Sec. 1.4.

As discussed in Sec. 1.5, Wannier functions offer a highly adaptable representation of the electronic band
structure, enabling the method to incorporate all chemically active electrons. By employing a Wannier
function basis, it is possible to construct a tailored set of Wannier functions that span a selected group
of bands, known as the active set. The flexibility to select an active set from the complete set of bands
enhances computational efficiency. Then, constructing the Wannier function basis set requires a precise
definition of the specific problem being addressed. In particular, if the problem under study involves the
formation of hole polarons, the selected active set consists of the top of the valence band. Conversely,
if the focus is on electron polarons, the bottom of the conduction band plays a fundamental role. In a
different scenario, when investigating low-energy electron-hole excitons or optical properties, the active
set includes both the top of the valence band and the bottom of the conduction band. Thus, the Wannier
functions employed in the proposed methodology correspond to the bands forming the active set.

Once the desired collection of bands for computing the Wannier functions is selected, it is necessary to
establish the procedure for obtaining the Wannier functions. The bands within the active set are organized
into manifolds, as defined in Sec. 1.4.4.

By default, WANNIER90 [39; 40] performs the Wannierization procedure over a single manifold, typ-
ically defined by a global energy window. However, in the context of second-principles modeling, it
is often desirable to construct WFs from multiple, physically distinct manifolds—for instance, separate
treatment of valence and conduction bands, though the approach is not limited to this case.

While one might naively consider applying WANNIER90 independently to each manifold, this presents
challenges when matrix elements connecting different manifolds are required. Although Hamiltonian
matrix elements in the WF basis,

hab = ⟨χa|h |χb⟩ , (5.2)

vanish for WFs χa and χb belonging to different orthogonal manifolds. However, some phenomena
require to obtain integrals involving two manifolds, like

r⃗ab = ⟨χa |⃗r |χb⟩ , (5.3)
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that plays the role of a dipolar transition matrix elements in optical transitions. To address this, we
have extended the SIESTA code [174] to enable the simultaneous Wannierization of multiple independent
manifolds via WANNIER90. The SIESTA code can now generate the input required for WANNIER90 to
construct a combined auxiliary manifold containing all previously obtained WFs, enabling the evaluation
of inter-manifold matrix elements such as those described in Eq. (5.3).

In addition, we have identified two practical issues that arise during Wannierization when applying the
maximally localized algorithm to obtain the WFs (described in Sec. 1.4.6). First, small geometric pertur-
bations can lead to discontinuous changes in WF shapes, introducing significant errors in electron-lattice
coupling elements calculated via finite differences. Second, the initial projectors used to generate WFs
may break symmetry when the spread minimization algorithm is employed, leading to less symmetric
and less transferable WFs. We found that these issues can be mitigated by disabling the spread op-
timization in WANNIER90 thereby leading to the calculation of Wannier functions via projection (see
Sec. 1.4.5), which results in WFs that are more symmetric and stable under structural changes. Further-
more, we observed improved localization and symmetry when using SIESTA’s basis functions as initial
projectors, rather than the default hydrogenoid functions typically used by WANNIER90.

5.4 Symmetrization of the parameters

A major limitation in earlier second-principles model construction approaches was the need to explicitly
include all symmetry-equivalent configurations in the first-principles training set. On one hand, this led
to an unnecessary increase in the number of parameters, as symmetry-related integrals were treated as
independent. On the other hand, it required a significantly larger number of first-principles calculations
to sample all symmetry-equivalent atomic configurations.

In the present work, we exploit the space group symmetries of the reference atomic geometry (RAG),
obtained from the Bilbao Crystallographic Server [175; 176], and apply the corresponding symmetry
operations To to the Wannier functions (WFs). These transformations yield relations among WFs of the
form

To |χa⟩= ∑
a′

T o
aa′ |χa′⟩ . (5.4)

Here, T o
aa′ is the symmetry-matrix element relating the Wannier functions a and a′ through symmetry op-

eration To. We apply this transformation to the relevant matrix elements that define the second-principles
model, including those entering the total energy expression [Eq. (4.36)], the one-electron Hamiltonian
[Eq. (4.37)], and the expected position operator [Eq. (5.3)]. In the case of the one-electron integrals, and
considering that the symmetry operations are defined to leave the Hamiltonian invariant, we obtain

Toγab = To ⟨χa|h(n0) |χb⟩= ⟨Toχa|h(n0) |Toχb⟩=
= ∑

a′b′
T o,T
aa′ T

o
bb′ ⟨χa′ |h(n0) |χb′⟩= ∑

a′b′
T o,T
aa′ T

o
bb′γa′b′ = γab. (5.5)
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where the T superindex indicates transpose. The set of γab elements that are related through nonzero
coefficients T o,T

aa′ T
o
bb′ are said to form a group of symmetry-equivalent parameters.

Similarly, for the linear electron-lattice coupling constants, we obtain

To f⃗ab,λυ = f⃗ ′ab,λυ = ∑
a′b′

T o,T
aa′ T

o
bb′ f⃗a′b′,λ′υ′ (5.6)

and for the quadratic electron-lattice couplings

To
↔
gab,λυ =

↔
g
′
ab,λυ = ∑

a′b′
T o,T
aa′ T

o
bb′
↔
ga′b′,λ′υ′ . (5.7)

For the electron-electron interaction terms, the symmetry relations become

ToUab,a′b′ =Uab,a′b′ = ∑
a′′b′′

∑
a′′′b′′′

T o,T
aa′′T

o
bb′′T

o,T
a′a′′′T

o
b′b′′′Ua′′b′′,a′′′b′′′ (5.8)

and

ToIab,a′b′ = Iab,a′b′ = ∑
a′′b′′

∑
a′′′b′′′

T o,T
aa′′T

o
bb′′T

o,T
a′a′′′T

o
b′b′′′Ia′′b′′,a′′′b′′′ . (5.9)

We call Eqs. (5.5)-(5.9) symmetry constraints (SC), for reasons that will become evident in Sec. 5.6.2.

In order to obtain T o
aa′ we assume that the WFs transform like the SIESTA basis orbitals that were used

as projectors during the Wannierization procedure, Sec. 5.3. Comparing the value of the hab elements
obtained through WANNIER90 we can self-check whether the Wannierization scheme applied in any
practical calculation leads to correct symmetrization.

Another important use of symmetry is the reduction in the number of calculations needed to create a
training set to determine the value of the various integrals needed in a second-principles model. In
the case of calculations where the geometry changes, like those needed to calculate the electron-lattice
coupling, see Sec. 3.5, a distortion with respect to the RAG, realized in a particular geometry of a
supercell, is described by the vectors, u⃗λ [see Eq. (1.2)]. Calculations that involve the distortions

u⃗λ′ = To⃗uλ (5.10)

do not contain any new information with respect to the carried for u⃗λ. Using the DFT calculation at the
geometry given by u⃗λ and applying Eq. (5.5) it is possible to obtain the values of hDFT

ab at u⃗λ′ by simply
operating,

hDFT
a′b′ (⃗uλ′) = T−1

o hDFT
a′b′ (⃗uλ′) = ∑

ab

T o,−1
aa′ T o,−1

b′b hDFT
ab (⃗uλ). (5.11)

This procedure allows us reducing the number of calculations to obtain the electron-lattice matrix ele-
ments, as we will see later.
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5.5 Goal function

To assess the accuracy of the model relative to first-principles simulations, it is essential to establish a
robust metric that quantifies the discrepancy introduced by the model, defined as goal function. Specifi-
cally, we define this metric in terms of the Hamiltonian matrix elements expressed in a Wannier functions
basis set, which serve as fundamental quantities for evaluating model performance.

For a given calculation A, characterized by a specific geometric configuration and electronic state, the
proposed metric quantifies the quadratic error between the Hamiltonian matrix element computed us-
ing the second-principles approach, hab(A), and the corresponding result obtained from first-principles
simulations, hDFT

ab (A). Mathematically, this metric serves as a measure of the deviation of the second-
principles model from the benchmark provided by density functional theory (DFT) calculations.

The first-principles matrix elements hDFT
ab are obtained using WANNIER90 code and represent the inter-

action between the Wannier functions χa and χb. These values serve as a reference for model validation.

As outlined in Eq. (4.37), the second-principles Hamiltonian matrix elements depend on a collection of
model parameters, encompassing both electron-lattice interactions and electron-electron contributions.
These matrix elements can thus be expressed as functions of a parameter set, {pi}1≤i≤P, encapsulating
both collections of parameters. As a result, the second-principles Hamiltonian matrix element hab for a
defined calculation A and a collection of parameters is expressed as hab(A,{pi}).

To comprehensively evaluate the cumulative error introduced by the model, the defined metric systemat-
ically accounts for all pairs of Wannier functions, χa and χb. Moreover, in cases where the error needs
to be assessed over a collection of calculations {A} rather than a single configuration, the goal function
is extended to aggregate errors across all calculations in the dataset.

As a result, the expression of the goal function, Θ, formulated to quantify the quadratic error in the
second-principles model, is expressed as follows,

Θ({A},{pi}) = ∑
A

∑
ab

[
hab(A,{pi})−hDFT

ab (A)
]2
. (5.12)

By defining this goal function, we establish a rigorous framework for quantifying the accuracy of second-
principles models. Finally, this goal function serves as a fundamental tool in parameter optimization
schemes, where minimizing Θ facilitates the optimal selection of the parameter set for the second-
principles model. In fact, this approach represents one of the two methodologies applied to determine
the model parameters. A detailed explanation of this technique will be provided in following sections.

5.6 Obtaining parameters

The proposed second-principles DFT methodology facilitates the simulation of large systems by consid-
ering extensive supercells under operating conditions, such as finite temperatures or externally applied
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electric fields. In this framework, the ability to conduct the desired simulations relies on the knowledge of
a set of parameters defined in Sec. 4.2 that characterize one-electron interactions which include electron-
lattice coupling as well as two-electron interactions. At this point, the critical question to address is
the appropriate method for determining these parameters. We propose two alternative approaches for
computing the model parameters: direct calculation from first-principles simulations and a fitting proce-
dure. Each method has its own advantages and limitations, with the choice depending on computational
feasibility and the required level of accuracy.

Previously, we presented the derivation of the mathematical expressions for each system parameter, as
outlined in [37]. Consequently, by applying Eq. (4.22) for the one-electron parameters and Eq. (4.33)
for the two-electron parameters, it is theoretically possible to obtain their numerical values with the prior
knowledge of the expressions for the Wannier functions used as a basis set, the one-electron Hamiltonian,
and the specific integral operators. To ensure predictive accuracy, these parameters should ideally be
determined through first-principles calculations. However, existing first-principles approaches tend to be
overly restrictive, primarily focusing on single-center, strongly correlated electron systems rather than
the broader multicenter interactions considered in this study. This limitation is particularly important in
the case of electron-electron interaction parameters. The large number of relevant integrals in a typical
system, especially complex four-index integrals, results in a substantial computational burden, making
direct first-principles calculations for electron-electron parameters computationally demanding.

An alternative strategy for obtaining model parameters is to employ a fitting procedure. The objective of
this approach is to achieve accurate results while significantly improving computational efficiency. This
efficiency is achieved by addressing two main aspects. First, as previously discussed, the calculation of
certain parameters, in particular those associated with four-center integrals (electron-electron parameters)
is computationally demanding. The fitting procedure circumvents this challenge by estimating these
parameters using a reduced set of first-principles calculations instead of directly computing them for
the entire system. Second, computational efficiency in large-scale second-principles simulations can be
improved by building smaller models that select only the most relevant degrees of freedom. An advanced
fitting procedure can systematically identify and prioritize the parameters most critical to the problem,
ensuring that the resulting models remain computationally manageable without sacrificing accuracy. For
instance, in the case of SrTiO3 system, electron-lattice interaction parameters associated with the Sr atom
are found to be negligible, whereas those related to Ti and O atoms play a dominant role. By focusing on
these relevant parameters, the model becomes significantly more efficient while retaining its predictive
power.

Nevertheless, the success of the fitting approach depends critically on the selection of an appropriate
collection of first-principles simulations as the foundation for parameter estimation. These calculations
must be designed to capture the essential physics of the system, enabling the identification of relevant
parameters and the accurate extraction of their values. Without a well-constructed collection of first-
principles calculations, the fitting procedure may overlook key interactions, leading to suboptimal model
performance.
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Both approaches, direct parameter calculation from first-principles simulations and the fitting procedure,
present viable alternatives for obtaining the parameters required in second-principles simulations. Direct
calculation provides the most accurate parameter values, but it is computationally expensive, especially
for large systems. On the other hand, the fitting procedure offers greater computational efficiency by
selecting the most relevant parameters, although it does not achieve the same level of precision as direct
calculation. The appropriate method is selected by the necessary trade-off between accuracy and effi-
ciency for the given problem.

Supercell for the training set calculations

The two methodologies described previously require a set of single-point first-principles calculations to
determine the model parameters. Regardless of the selected approach, this collection of calculations is
referred to as the training set.

A crucial initial decision in the construction of the training set is the selection of the simulation box
where the first-principles calculations are going to be performed. This simulation box can be the unit
cell (defined in Sec. 5.1) or a cell composed by periodic replicas of the unit cell, leading to a supercell of
the unit cell. In the MODELMAKER code, this simulation box is referred to as the supercell.

The role of this supercell in the model construction is crucial. Although the model Hamiltonian matrix
elements hab [Eq. (4.37)] are defined for the conventional unit cell—where the Wannier function χa

is centered within the unit cell—the electron-lattice parameters incorporate the contributions of atoms
within the supercell. Likewise, the electron-electron interaction terms involve Wannier functions χa′ and
χb′ , which also are defined in the supercell. It is important to note that the training set can typically
be restricted to atomic and electronic configurations that are compatible with small supercells. This
aligns with the fact that, when expressed in a basis of localized Wannier functions, the non-electrostatic
interactions in most materials are short-ranged. Next, we outline the key reasons why the construction
of a supercell is necessary.

Figure 5.1: Geometric phases of a perovskite associated with structural distortions characterized by phonon modes
at the Γ, M, and R points of the Brillouin zone. The Γ mode represents the perovskite in its cubic, centrosymmetric
phase. The M mode corresponds to antiphase rotations of the octahedra within the plane. The R mode involves
antiphase rotations of the octahedra along all three Cartesian directions.
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Firstly, several systems exhibit instabilities in different phases, including those involving phonon modes
characterized by k⃗ ̸= Γ. These phases often require larger supercells to capture atomic distortions that
cannot be accommodated within the unit cell. Since the resulting models must accurately simulate the
system’s characteristic phases, the choice of supercell size depends on the phases under study and must
be selected to properly account for these structural modulations.

For example, in the case of ABO3 systems, beyond their ferroelectric properties [177], ABO3 perovskites
exhibit a broader range of structural phase transitions. In particular, they frequently undergo non-polar
structural distortions associated with different tilts of the oxygen octahedra. These distortions, which
correspond to finite wave vectors k⃗ ̸= Γ, require larger simulation cells. To accurately capture such
structural instabilities, the supercell size must be chosen to match the periodicity dictated by the phonon
wave vector.

For example, the antiferrodistortive phase k⃗ = M characterized by in-phase octahedra rotations along
the z-axis and antiphase rotations in the plane, see Fig. 5.1, requires a supercell with 20 atoms, while
antiferrodistortive phase at the k⃗ = R point with antiphase rotations along different axes, see Fig. 5.1,
requires a 40-atom supercell. This phase is particularly relevant in SrTiO3. In the specific case of SrTiO3,
the material undergoes a phase transition from a paraelectric cubic phase to a non-polar antiferrodistortive
(AFD) tetragonal phase (I4/mcm, No. 140) at a critical temperature TC ≈ 105 K [178]. This AFD phase
emerges due to rotations of the oxygen octahedra around the tetragonal axis, preserving the overall non-
polar character of the crystal.

'

Figure 5.2: a) The simulation box selected as the unit cell for constructing the second-principles model using
the MODELMAKER code. (b) Displacement of the atom λ relative to the Wannier function χa within the unit
cell leading to electron-lattice coupling quantified by the electron-lattice parameter f⃗aa,λ. (c) Displacements of
atoms λ and υ relative to the Wannier function χa within a 2× 2 supercell, leading to electron-lattice coupling
characterized by the electron-lattice parameter

↔
gaa,λυ . (d) Interaction between Wannier functions χa and χa′ in a

2×2 supercell, resulting in the formation of electron-electron interaction parameters Uaa,a′a′ and Iaa,a′a′ .

When selecting the supercell, it is essential not only to consider the specific phases to be simulated, but
also to ensure that the supercell is sufficiently large to accurately capture atomic displacements and their
effects on the system. To demonstrate this, we consider a two-dimensional schematic system where the
primitive cell (which coincides with the conventional cell) is depicted in Fig. 5.2(a) and is defined by
a motif consisting of two atoms. The motif comprises a white atom located at (0, 0) and a red atom
positioned at (0.5, 0.5) in fractional coordinates. Now, a Wannier function centered on the white atom is
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selected, characterized by a p-orbital symmetry.

First, we define the unit cell of the system as the conventional cell, following the guidelines outlined in
Sec. 5.1.

Now, if we consider the unit cell itself as the supercell, it is possible to account for the effect of the
displacement of atom λ, illustrated in Fig. 5.2(b), on the on-site interaction of Wannier function χa.

However, if we aim to consider the displacement of the atom υ as depicted in Fig. 5.2(c) (which is not
sufficiently distant to disregard its effect on the Wannier function χa), it is not feasible. In this case, it
would not be possible to define f⃗aa,υ [expressed in accordance with Eq. (3.121)].

Analogously, if instead of considering the displacement of a single atom, we aim to assess the effect of
the simultaneous displacement of both λ and υ atoms, represented in Fig. 5.2(c), selecting the unit cell
as the supercell is not feasible. At a minimum, a supercell of size 2× 2 is required. For instance, the
quadratic parameter

↔
gab,λυ could not be defined in this context.

A similar rationale applies to the interaction between Wannier functions in the consideration of electron-
electron interactions. If the cell is not sufficiently large, certain interactions between Wannier functions,
as the one depicted in Fig. 5.2(d) between χa and χa′ leading to the Uaa,a′a′ may be omitted from the
model, effectively being approximated as zero. By employing a larger supercell, these interactions can
be properly accounted for, thus enhancing the accuracy of the model.

Figure 5.3: Displacement of the atom λ and its periodic replicas when: (a) The selected supercell (shaded in
yellow) is identical to the unit cell, i.e., the conventional cell of the system. (b) The selected supercell (shaded in
yellow) is a 2×2 supercell of the unit cell, comprising four conventional cells of the system.

Secondly, if the selected supercell is too small, the displacement of an atom and its periodic images
can lead to artificial interactions, resulting in erroneous or misleading results. For instance, considering
the previous system, we select as supercell the primitive cell, shaded in yellow in Fig. 5.3(a). Now, we
aim to assess the effect of displacing the atom λ on the on-site interaction of the Wannier function χa.
Owing to the implementation of periodic boundary conditions in the simulation, the displacement of
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atom λ simultaneously results in the displacement of all its periodic replicas, as illustrated in Fig. 5.3(a).
Consequently, in a small simulation box, when we displace the atom λ and evaluate the effect of its
displacement on the Wannier function, we are effectively measuring the influence not only of the atom
λ but also of its periodic replicas. However, by considering a sufficiently large supercell for building
the training set, in this case, a 2× 2 supercell as indicated by the yellow-shaded region in Fig. 5.3(b),
displacing the atom λ ensures that its periodic images are adequately spaced. Given the inherently
localized nature of the Wannier functions, the impact of periodic images of atom λ on the Wannier
function becomes negligible, thereby mitigating artificial interactions and enhancing the accuracy of the
calculations.

In particular, for simulations involving polarons, training the system on large enough cells is essential to
avoid the interaction between the defect and its periodic images.

For the SrTiO3 system studied in this work, a 2×2×2 supercell of the primitive cell has been selected.
The use of a 222 supercell for the training set can be justified in light of Machine Learning lattice models
showing that, for phonon band structures, such a cell already captures the essential lattice dynamics
even for polar materials, including ferroelectric instabilities and its chain-like character, that have been
typically though as long-range effects. While longitudinal optical modes are not accurately reproduced,
these models show a very good performance in describing the phase diagram of polar materials even
when trained on relatively short supercells [179]. These findings, though focused on lattice models,
hint that the nearsightedness principle might also extend to our case and suggest that a similarly sized
cell could suffice for a qualitatively correct description of the electronic structure. However, further
investigation would be required to confirm this in the electronic context.

After determining the size of the supercell, i.e., the simulation box used for first-principles calculations
to construct the training set, the subsequent step involves the careful selection of atomic and electronic
configurations that will comprise the training set. It is crucial to ensure the inclusion of all necessary
calculations to comprehensively capture the physical characteristics of the system. These configurations
play a fundamental role in the identification and computation of the model parameters.

For instance, if the electronic bands of the system under investigation exhibit pronounced sensitivity to
structural distortions, the training set should encompass calculations for various geometric configurations
to adequately capture this dependence. As relevant example is systems that exhibit different phases,
such as those previously described for ABO3 perovskites, where atomic distortions influence the band
structure, leading to breaking of degeneracies and changes in band curvature.

Similarly, when examining the effects of electron or hole doping on the properties of a material, the
training set should incorporate DFT simulations of the system in a charged state to accurately capture
these influences. In the case of magnetic systems, it is crucial for the training set to include simulations
with various spin configurations, as this will enable the accurate capture of the mechanisms underlying
magnetic interactions.
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After introducing the methodologies available for computing model parameters and highlighting the ne-
cessity of a training set, we now provide a detailed examination of these approaches. We first introduce
the parameter fitting methodology previously developed in SCALE-UP [37] to provide context for the
existing approach. We will refer to this procedure as previous methodology. The present work aims
to improve upon it by developing an alternative approach for obtaining model parameters using MOD-
ELMAKER. Accordingly, two methodologies have been explored. The first approach, methodology I,
involves an advanced parameter fitting technique, which, compared to direct parameter computation, of-
fers the advantage of incorporating only the most relevant degrees of freedom while requiring a training
set with minimal computational cost. Despite its advantages, challenges encountered in the implemen-
tation of this technique required the development of a second methodology. This alternative approach,
methodology II, is based on the direct calculation of electron-lattice parameters, providing a more explicit
and efficient means of parameter determination.

5.6.1 Previous methodology

In this Section, we present the methodology employed in Ref. [37] for the calculation of the parameters
that define the model. Here, the objective is to establish the initial state of the approach, highlight its
limitations, and identify the challenges that have been addressed in this work.

The original methodology consisted of several sequential steps which are detailed in the subsequent
sections. First, the following section presents the employed training set, which comprised representative
atomic and electronic configurations. These configurations served as the basis for computing the model
parameters through a fitting procedure. Once the training set was generated, the next step involved
filtering the pairs of Wannier functions, denoted as {(a,b)}, that would be considered for constructing
the Hamiltonian matrix elements hab. Given the large number of potential parameters, the subsequent
step focused on identifying the most relevant ones to be included in the model. This step was crucial in
determining the simplest model capable of accurately reproducing the first-principles calculations within
the training set. Additionally, this stage involved defining the matrices required for parameter fitting,
procedure which constituted the final step of the methodology.

In the concluding part we address the limitations of this approach, providing the necessary context to
introduce the two developed methodologies proposed in this study.

5.6.1.1 Training set

Electron-electron training set

The construction of the training set for the calculation of electron-electron parameters was carried out
changing the electronic configuration of the system from the RED considering the underlying physics
of the compound. The training set was system-dependent, composed by representative configurations
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and there was no established procedure to compute it in a systematic way. For instance, the training set
for a magnetic system included first-principles calculations of several spin arrangements to accurately
capture the magnetic couplings. In the case of an optically active insulator system, the first-principles
calculations had to be associated with excitations from the valence band to the conduction band. Below
we show both examples.

As an illustrative example of a magnetic compound, we consider the NiO system with a rock-salt crystal
structure. This system belongs to the class of transition metal oxides and exhibits magnetic properties.
NiO is a correlated electron system with many competing magnetic phases. Specifically, three magnetic
phases are separated by energy differences on the order of tenths of electron-volts per formula unit.

Figure 5.4: Training set used for the calculation of electron–electron interaction parameters in the magnetic NiO
system, modeled in its experimentally observed cubic phase. Nickel (Ni) atoms are depicted as blue spheres, while
oxygen (O) atoms are shown as magenta spheres. The first-principles simulations in the training set involve alter-
ing the magnetization of Ni2+ ions by imposing various spin configurations to model the magnetic ordering of the
system. The magnetic orderings illustrated include: antiferromagnetic type 2 (AFM-2), in panel (a), characterized
by alternating spin polarity across ferromagnetic [111] diagonal planes; ferromagnetic (FM) in panel (b); antifer-
romagnetic type 1 (AFM-1) in panel (c), similar to AFM-2 but with alternating planes oriented along the [001]
direction.

Regarding the spin order, the ground state of NiO is the AFM-2 phase, characterized by alternating
planes of spin-up and spin-down polarized nickel atoms along the [111] direction [Fig. 5.4(a)]. However,
this crystal structure also allows for other spin arrangements that compete with the AFM-2 phase, such
as the ferromagnetic phase [Fig. 5.4(b)] and the AFM-1 phase [Fig. 5.4(c)]. The latter is characterized
by alternating planes of spin-up and spin-down polarized nickel atoms along the [001] direction. Due
to the small energy differences between these magnetic phases–in particular the antiferromagnetic phase
AFM-2 is more stable than the ferromagnetic phase by 89 meV per formula unit (f.u.)–it was necessary to
study all three in the fitting of parameters. Consequently, in the training set related to electron-electron
interactions, the NiO compound had to include these three spin arrangements with different Daa [Eq.
(4.10)] occupations to accurately represent the competing magnetic phases of the system. A more com-
prehensive study of this example concerning the electron-electron training set and parameters is provided
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in Ref. [37].

If, instead, the system under study were hBN crystal, an insulator whose optical spectrum exhibits highly
localized excitons [180] as shown in Fig. 5.5, the training set selection criteria would differ. The optical
spectrum of hBN crystal reveals peaks at energies lower than the bandgap energy. These peaks had
been attributed to interactions between holes in the top of the valence band and electrons in the bottom
of the conduction band leading to the formation of excitons. These interactions are generated through
optical absorption, leading to the appearance of additional spectral lines not predicted by conventional
band theory and associated to the excitonic interaction. In SCALE-UP, optical excitations correspond
to changes in the electronic configuration: during an absorption event from the valence band to the
conduction band, the system transitions from its RED to a new electronic configuration. Consequently,
to accurately capture these effects, the training set for the hBN compound had to include calculations that
accounted for changes in the electronic configuration in the form of excitations from the valence band to
the conduction band, without introducing distortions in the RAG.

To summarize, the selection of the training set for computing electron-electron parameters was inherently
system-dependent and had to be performed manually. The methodology for determining the training set
was user-defined, adapting to the specific characteristics of each system under investigation. In particular,
for the two systems we considered, while in the case of NiO calculations changing the spin arrangement
played a crucial role, in the case of hBN crystal the calculations were characterized by first-principles
simulations where excitations were essential.

Figure 5.5: Absorption spectrum of the hBN crystal. A strong absorption is observed around 6.1 eV, indicating the
presence of an exciton and an interband transition. Figure adapted from [180].

Electron-lattice training set

In the previous methodology, the training set for fitting the electron-lattice parameters was composed
by first-principles calculations in which the atomic geometry was systematically distorted relative to the
RAG while maintaining the system within the designated RED.

The calculations comprising the training set were characterized by the displacement of individual atoms
along a single spatial component relative to their positions in the RAG, while the remaining atoms
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retained their original positions. Consequently, for each calculation in the training set related to the
electron-lattice contribution, denoted as A, there existed a unique component displacement satisfying
uλα(A) ̸= 0, where α designated a specific Cartesian direction.

Due to the absence of a symmetry implementation, the training set for the electron-lattice interaction was
constructed using a large number of first-principles calculations to explicitly account for the system’s
symmetry.

5.6.1.2 Selection of one-electron Hamiltonian

Once the electron-electron and electron-lattice training sets were generated, the methodology applied
a selection criterion of Hamiltonian matrix elements to reduce computational cost. Specifically, only
pairs of Wannier functions (a,b) whose interaction term hs

ab(A) obtained from a calculation A in the
training set exceeded a predefined energy cutoff δεh, were considered. This cutoff value was user-
defined. Explicitly, the pair (a,b) was selected if

|hs
ab(A)|> δεh, for at least one A in the TS. (5.13)

For diagonal elements hs
aa, however, all terms were always included regardless of their magnitude in

first-principles calculations.

The selection of a Wannier function pair (a,b) implied that, in constructing the parametric Hamilto-
nian hs

ab [Eq. (4.37)], at least the parameters associated with the RAG, γ
sr,RAG
ab , were included in the

Hamiltonian matrix elements.

This cutoff criterion has been consistently applied in the two novel methodologies proposed and analyzed
in this work, methodology I and methodology II, in the form of a distance cutoff, as will be discussed in
following sections.

Returning to the previous methodology, subsequently, the electron-electron and electron-lattice param-
eters were selected and generated for a subset of Wannier function pairs chosen from those retained in
this step.

5.6.1.3 Selection of electron-electron parameters

In the previous methodology, the electron-electron parameters were determined by ensuring that the con-
structed model accurately reproduced the Hamiltonian matrix elements of the electron-electron training
set, hs

ab(A).

As described above, the training set used for fitting the electron-electron parameters consisted of config-
urations in which the RED of the system was modified while maintaining the atomic positions fixed in
the RAG. Knowing the training set, the first step involved selecting the most significant electron-electron
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parameters. To accurately determine these parameters, it was necessary to isolate their contributions.
For this purpose, the Hamiltonian matrix elements hU

ab and hI
ab, depending on U and I respectively, were

defined according to the following expressions.

Firstly, in order to eliminate dependence on I, the matrix element hU
ab was defined as

hU
ab(A) =

h↑ab(A)+h↓ab(A)
2

= γab+ ∑
a′b′

DU
a′b′(A)Uab,a′b′ . (5.14)

Although this expression removed the dependence on I, the one-electron parameters γab remained present.
To extract this dependence, the quantity h̄U

ab was introduced representing the average of the Hamiltonian
matrix element hU

ab over the electron-electron training set (i.e., over the RAG configurations in the train-
ing set, conforming a total of NRAG simulations),

h̄U
ab =

1
NRAG

∑
A

hU
ab(A) = γab+ ∑

a′b′
D̄U
a′b′Uab,a′b′ . (5.15)

The deviation of hU
ab(A) from its average value was then quantified as

∣∣hU
ab(A)− h̄U

ab

∣∣= ∣∣∣∣∣∑
a′b′

[
DU
a′b′(A)− D̄U

a′b′
]
Uab,a′b′

∣∣∣∣∣ , (5.16)

depending exclusively on the U parameter. Similarly to Eq. (5.15), the Hamiltonian matrix element hI
ab,

incorporating only the I parameters was defined as

hI
ab(A) =

h↑ab(A)−h↓ab(A)
2

= ∑
a′b′

DI
a′b′(A)Iab,a′b′ . (5.17)

It was expected that the most significant U and I parameters corresponded to those associated with pairs
of Wannier functions whose Hamiltonian matrix elements hU

ab and hI
ab exhibited the strongest depen-

dence on the training set. Consequently, the Wannier function pairs contributing to electron-electron
interactions were selected if they satisfied, for at least one training set configuration, either of the follow-
ing conditions, ∣∣hU

ab(A)− h̄U
ab

∣∣= ∣∣∣∣∣∑
a′b′

[
DU
a′b′(A)− D̄U

a′b′
]
Uab,a′b′

∣∣∣∣∣> δεee, (5.18)

or ∣∣hI
ab(A)

∣∣= ∣∣∣∣∣∑
a′b′

DI
a′b′(A)Iab,a′b′

∣∣∣∣∣> δεee, (5.19)

where δεee represented an energy cutoff fixed by the user. Given that applying only δεee did not suf-
ficiently reduce the number of potential parameters in certain cases, a second cutoff was introduced to
further refine the list of potentially significant U and I parameters for the fitting process. Then, once
the pairs {(a,b)} that met the criteria in Eqs. (5.18)-(5.19) were identified, this additional cutoff was
applied to limit the selection. The new cutoff was enforced to the difference density matrix, ensuring
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that a variable Uab,a′b′ or Iab,a′b′ was included only if the pair of Wannier functions (a′,b′) satisfied the
criterion for one calculation in the electron-electron training set. Specifically, for the U variables,

|DU
a′b′(A)− D̄U

ab|> δD, (5.20)

and, analogously, for the I variables,
|DI

a′b′(A)|> δD. (5.21)

5.6.1.4 Selection of electron-lattice parameters

In the theoretical framework of SCALE-UP, summarized in Chapter 4, electron-lattice interactions are
considered in hs

ab exclusively through the one-electron parameters γab and do not influence the two-
electron contribution δhs,ee

ab [Eq. (4.32)]. In the short-range contribution of those one-electron parameters,
γsr
ab [Eq. 4.24], the dependence of the Hamiltonian matrix elements with the geometry is included through

the incorporation of the electron-lattice parameters f⃗ and
↔
g .

Thus, in the previous methodology, in order to select the electron-lattice parameters which play a crucial
role in the system, the electron-lattice coupling was quantified by measuring the deviations of the one-
electron parameters γab of distorted geometries belonging to the training set from their corresponding
values in the RAG within the RED, denoted as γ

sr,RAG
ab . To systematically evaluate these deviations, for

each calculation in the electron-lattice training set, labeled as A, and characterized by the displacement
uλα(A) of atom λ along the Cartesian direction α , each Hamiltonian matrix element hab(A) was com-
pared against the Hamiltonian matrix element of the RAG, hRAG

ab , which coincides with γ
sr,RAG
ab . The

electron-lattice parameters f⃗ab,λυ and
↔
gab,λυ associated with a given atom λ were selected to be in-

cluded in the electronic model if the following condition was met for at least one configuration in the
training set,

1
|uλα |

|hab(A)−hRAG
ab |> δ fe−l. (5.22)

Here, δ fe−l represented an energy cutoff expressed in eV/Å and A was the first-principles calculation
belonging to the electron-lattice training set associated to the displacement uλα of the λ atom.

If the condition in Eq. (5.22) was satisfied for the atom λ, linear and quadratic variables concerning
this atom were incorporated into the fitting procedure. It is important to highlight that the methodol-
ogy described in this Section for the calculation of the model parameters, referred to as the previous
methodology and outlined in Ref. [37], considered only the diagonal terms of the quadratic contribu-
tions,

↔
gab,λλ, due to the fact that each training set calculation involved a single atomic displacement, as

explained in Sec. 5.6.1.1.

5.6.1.5 Fitting procedure

The fitting procedure started with the selected set of parameters γab, Uab,a′b′ , and Iab,a′b′ . This procedure
was carried out in a sequence of steps:
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1. The Uab,a′b′ parameters were fitted to reproduce the matrices |hU
ab− h̄U

ab|, as described in Eq. (5.16).

2. The Iab,a′b′ parameters were determined to reproduce the matrices hI
ab, according to Eq. (5.17).

3. Once the values of the Uab,a′b′ parameters were commputed, the γab values were fitted by utilizing
the hU

ab matrix, as given in Eq. (5.15).

4. Knowing the values of γab, it was possible to fit the electron-lattice parameters f⃗ab,λυ and
↔
gab,λυ.

5.6.1.6 Limitations of previous methodology

The previous methodology presented several significant challenges, particularly in the selection of the
training set, the incorporation of symmetry, and the treatment of second-order parameters. One of the
primary issues was the lack of a formal, well-defined criterion for constructing the training set, especially
for electron-electron interactions. The training set was composed of so-called representative configura-
tions [37], which were inherently system-dependent. As a result, the training set selection was subjective,
user-defined, and lacked a rigorous and reproducible framework.

Beyond this ambiguity, establishing a systematic and physically meaningful training set required a pro-
found understanding of the underlying physics governing the system and the relevant computational
processes. This introduced an additional preparatory step in which the system had to be extensively
studied before generating the training set. Consequently, applying this methodology to previously un-
explored systems became impractical, particularly in the context of MODELMAKER calculations. The
dependence on prior expertise also meant that only users with deep knowledge of both MODELMAKER

and the specific system under investigation could effectively apply the methodology. Furthermore, since
each training set was uniquely tailored to a given system, direct comparisons among results obtained from
different training sets became unfeasible, as each training set contained system-specific characteristics
that were not standardized across studies.

Another major limitation of this approach was the absence of built-in symmetry enforcement within the
computational framework. Since symmetry was not intrinsically accounted for in the code, it had to be
imposed manually. For example, in the case of the electron-lattice training set, this was typically achieved
by including additional calculations in the training set to enforce symmetry, but this workaround signifi-
cantly increased computational costs. The need for extra calculations made the methodology inefficient,
particularly for complex systems where symmetry considerations play a crucial role.

In addition to these issues, the methodology did not fully account for second-order electron-lattice cou-
pling parameters. While it considered diagonal second-order parameters,

↔
gab,λλ, it neglected cross-term

contributions,
↔
gab,λυ for λ ̸= υ. This omission limited the accuracy and completeness of the model, as

cross-term interactions can be essential for capturing the full complexity of electron-lattice coupling.

Altogether, these limitations—ranging from the lack of a formalized training set selection process and
the computational burden of manual symmetry enforcement to the incomplete treatment of second-order
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parameters—compromised both the robustness and reproducibility of the methodology. Furthermore,
they restricted its applicability to new and complex systems, highlighting the need for a more systematic,
automated, and physically grounded approach.

Thus, in this work, two alternative methodologies have been studied with the objective of addressing and
overcoming the previously discussed issues related to parameter calculations. These methodologies aim
to improve various aspects of the process, including the construction of the necessary training set, the
criteria for parameter selection, and the computation of the parameters themselves. They are designed as
methodology I, based on the fitting of the parameters and methodology II focused on the calculation of
the electron-lattice variables.

5.6.2 Proposed methodology I: Fitting procedure

Methodology I is characterized by obtaining the model parameters through a fitting procedure using the
available first-principles data. In this methodology, prior to the fitting process, all potential variables
are identified (without computing its value) based on a set of predefined cutoff criteria, which will be
discussed in detail in the following sections. Subsequently, the fitting procedure is applied to determine
the values of one-electron parameters, electron-electron interaction terms, and electron-lattice coupling
terms. It includes the symmetry of the different elements conforming the model according to Sec. 5.4.
This methodology operates on the Hamiltonian matrix elements of the system, expressed within a Wan-
nier function basis, hab.

Starting from the DFT-calculated matrix elements, denoted as hDFT
ab , the primary objective is to construct

the second-principles Hamiltonian matrix elements, hab, which depend on a set of parameters {p}. In
the fitting procedure, the goal is to ensure that these matrix elements closely replicate the configuration
and behavior observed in the training set calculations {A}, presented later in Secs. 5.6.2.3 and 5.6.2.5,
which are characterized by the geometry and the electronic state of the system respectively. To achieve
this, the parameters are obtained by minimizing the discrepancy between the first-principles results and
the second-principles Hamiltonian, quantified through the quadratic error, known as the goal function
and presented in Sec. 5.5.

In order to preserve the intrinsic symmetries of the physical system, as governed by Eqs. (5.5)-(5.9),
these symmetry considerations are integrated into the optimization process as constraints. Specifically,
the symmetry constraints are incorporated into the goal function through the use of Lagrange multipliers,
ensuring their enforcement during parameter refinement. The final form of the goal function encapsu-
lates both the quadratic error and the symmetry constraints, representing the framework for parameter
extraction. The resulting goal-function to carry out the fitting of the parameters is

Θ({A},{p}) = ∑
ab

∑
A

[
hab(A,{p})−hDFT

ab (A)
]2−∑

C
λCSC({p}), (5.23)

where {C} is the set of all symmetry constraints, λC the Lagrange multiplier associated to each of them
and SC({p}) the Eqs. (5.5)-(5.9). Now, considering the splitting of the second-principles Hamiltonian
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matrix elements into short and long-range terms, regarding to Eq. (4.19),

hab(A,{p}) = hsr
ab(A,{p})+hlr

ab(A). (5.24)

The long-range contribution is computed using a multipolar expansion based on charges and dipoles.
Adding this division into Eq. (5.23),

Θ({A},{p}) = ∑
ab

∑
A

[
hsr
ab(A,{p})+hlr

ab(A)−hDFT
ab (A)

]2−∑
C

λCSC({p}). (5.25)

The minimization of the goal function Θ with respect to the parameters {p} = γRAG
ab , f⃗ab,λυ,

↔
gab,λυ,

Uab,a′b′ , Iab,a′b′ and the Lagrange multipliers λC leads to the following linear equation system,

∑
ab

∑
A

hsr
ab(A,{p})∂hsr

ab

∂ pi
(A)− 1

2 ∑
C

λC
∂SC

∂ pi
({p}) = ∑

ab
∑
A

[
hDFT
ab (A)−hlr

ab(A)
] ∂hsr

ab

∂ pi
(A), (5.26)

SC({p}) = 0. (5.27)

In this methodology, the term “goal function” can be used differently depending on the nature of the
training set. Specifically, we refer to the electron-lattice goal function when the training set consists
of calculations involving geometric distortions of the system. Conversely, the electron-electron goal
function term is employed when the training set exclusively captures variations in the electronic structure
while maintaining the lattice configuration as in the RAG.

5.6.2.1 One-electron parameters: Reference state Hamiltonian

The values of the one-electron parameters γ
sr,RAG
ab could be directly extracted from the output generated

by the WANNIER90 code (used as a post-processing tool of DFT calculations) for a calculation corre-
sponding to the system in its non-magnetic ground state (within the RED) at the RAG. However, fulfilling
the symmetry constrains, Eq. (5.5), precisely requires performing the DFT calculation setting many of
the usual computational variables, like the reciprocal space mesh, to very high accuracy, which is costly
in computational power. A more efficient way to proceed, as implemented in MODELMAKER, is to use
Eq. (5.5) to perform a weighted average of the Hamiltonian matrix elements obtained from WANNIER90
code inside a symmetry group. In this way, the symmetry constraints can be satisfied while maintaining
computational efficiency.

Another important aspect to consider is that the training set is computed within a supercell of the unit
cell, as previously stated. Therefore, it is essential that the Hamiltonian matrix elements obtained from
WANNIER90 for the supercell in the RAG are consistent with those obtained for the unit cell. The
unit cell consistency can be rigorously preserved by using explicit symmetry constraint on the unitary
transformation matrices [70]. The procedure for achieving this property has already been discussed in
Sec. 2.1.1. To verify the consistency between the elements obtained for the unit cell and those derived
from the supercell, the proposed methodology incorporates a validation step in which the code compares
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the Hamiltonian matrix elements γ
sr,RAG
ab obtained from the unit cell and the supercell for the RAG within

the RED configuration. If the difference between these values falls below a predefined threshold, the cor-
responding Hamiltonian matrix element in the supercell is assigned to the equivalent interaction in the
unit cell. However, if the discrepancy exceeds the established threshold, the code issues a warning mes-
sage. In such cases, modifications to the Wannierization procedure are required. Possible adjustments
include refining the k⃗-point mesh of the first Brillouin zone, modifying the energy windows of the man-
ifolds, or selecting alternative initial projector orbitals to generate a different set of Wannier functions.
For instance, in covalent systems, instead of projecting Wannier functions onto atomic orbitals, it may
be beneficial in some cases to construct Wannier functions that represent molecular orbitals, depending
on the specific characteristics of the system.

Once the parameters γ
sr,RAG
ab are obtained, a Hamiltonian distance cutoff, δ rh, is imposed to exclude

interactions between Wannier functions whose centroids are separated by a distance greater than δ rh.
The purpose of applying this distance cutoff is analogous to that of the energy cutoff δεh introduced in
the previous methodology. The criterion established by δ rh determines the selected pairs (a,b), including
all symmetry-related interactions, for constructing the Hamiltonian matrix elements hs

ab considered in
the model. Consequently, when constructing the parametric Hamiltonian hs

ab [Eq. (4.37)] for the pair
(a,b), at least the RAG-associated term, γ

sr,RAG
ab , is included. Later, the electron-lattice coupling and the

electron-electron interaction will be generated for a subset of Wannier function pairs chosen from those
selected in this step.

The possibility to impose this cutoff δ rh stems from the localized nature of the Wannier functions in
real space. Since the Hamiltonian matrix elements expressed in a WFs basis set decay rapidly with
increasing distance, only a limited number of Hamiltonian matrix elements are typically significant for
accurately describing the band structure of the RAG, as illustrated in Eq. (1.52). By implementing the
cutoff distances δ rh, our Hamiltonian is explicitly range-limited and local, a critical property for ensuring
that second-principles calculations scale linearly in computational power relative to system size.

A similar approach is applied to the position operator matrix elements, r⃗ab. Here, we include all diagonal
elements that define the position of the Wannier function centroid while discarding off-diagonal elements
(a ̸= b) whose |⃗rab| magnitude is below the distance cutoff δ rr.

5.6.2.2 Electron-lattice parameters

In the previous step, we selected the pairs of Wannier functions for which the one-electron Hamiltonian
matrix elements, hs

ab, are included in the model. As previously discussed, and following Eq. (4.37), these
elements incorporate the contribution from the undistorted system in the RED, γ

sr,RAG
ab . From this set of

Hamiltonian matrix elements, a subset will be selected to include the electron-lattice interaction, thereby
incorporating the electron-lattice coupling correction in relation to Eq. (4.24),

δγ
el
ab = ∑

λυ

[
− f⃗ T

ab,λυδ τ⃗λυ+ ∑
λ′υ′

δ τ⃗
T
λυ
↔
gab,λυδ τ⃗λυ

]
. (5.28)
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To determine which Wannier function pairs require an electron-lattice correction, it is necessary to con-
struct a training set that identifies the most relevant electron-lattice variables, prioritizing those for which
the goal function (which measures the quadratic error) exhibits the highest contributions.

Once the electron-lattice parameters to be included in the Hamiltonian matrix elements are selected,
their values are determined by solving the system of equations defined by Eqs. (5.26)–(5.27). This
process employs a modified version of the stepwise forward-selection procedure outlined in Ref. [51]
(see Sec. 5.6.2.7), adapted to the variables of the electronic model.

Thus, in order to select the electron-lattice parameters applying methodology I, the first step is to con-
struct the training set.

5.6.2.3 Electron-lattice training set

To select and fit the electron-lattice parameters, a training set is constructed from a collection of configu-
rations obtained through first-principles calculations in the chosen supercell. The first-principles calcula-
tions within this training set involve atomic distortions consisting of random displacements around their
reference positions (i.e., their positions in the RAG) within a sphere of a predefined radius, following a
uniform distribution, as illustrated in Fig. 5.6 for the SrTiO3 system. Notably, in these calculations, the
system’s RED remains unchanged.

Figure 5.6: Random displacements of O and Ti atoms around a sphere to generate calculations for the training set
of the SrTiO3 system.

This training set construction methodology is intended to activate all possible vibrational modes of the
system. Relying solely on predefined phases with high symmetry could leave certain modes unrepre-
sented, resulting in an incomplete characterization of electron-lattice interactions.

Cutoffs

Before the fitting procedure, MODELMAKER code generates a list of the potentially relevant f⃗ and
↔
g

variables to be considered in the model. This list can become excessively long due to the large number of
electron-lattice variables involved: these variables depend on the position of two Wannier functions and
two atoms. Although the number of free parameters is often reduced by the symmetry constraints, the
list may still require further trimming to manage the computational complexity of the second-principles
model.
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As a result, to enhance the efficiency of the model, while maintaining a reasonable level of accuracy,
specific cutoffs are introduced for the selection of the most relevant electron-lattice variables. On the
one hand, the cutoff-distance δ rel defines the maximum distance, measured in the RAG, between the two
atoms λ and υ to form a variable [represented in green in Fig. 5.7(a)]. To this cutoff distance, we have
to add δ rellat which establishes the maximum distance between the center of the Wannier functions χa

and χb and the position of the atoms λ and υ, measured in the RAG [represented in blue in Fig. 5.7(a)].
These distance thresholds are applied to refine the list of variables considered for the model. The appli-
cation of distance cutoff δ rellat is not restricted, given the localized nature of the Wannier functions, it
is reasonable to assume that atoms separated by large distances from Wannier functions are effectively
uncorrelated. In those cases, the electron-lattice coupling between them is sufficiently weak to be con-
sidered negligible. This approach allows for a significant reduction in computational complexity without
severely compromising the model’s accuracy.

(a) Electron-lattice distance cutoffs

|⃗raλ|< δ rellat

|⃗τλυ|< δ rel

χa

λ

χb

υ

|⃗rab|< δ rh

(b) Electron-electron distance cutoffs

|⃗raa′|< δ ree

|⃗rab|< δ rh

χa

χa′

χb

χb′

Figure 5.7: Distance cutoffs defined in MODELMAKER and controlled by the user. All cutoffs are measured
with respect to the positions of the Wannier functions and the atoms in the RAG. In panel (a), distance cutoffs
used in the selection of electron-lattice parameters { f⃗ab,λυ,

↔
gab,λυ}. The cutoff δ rh establishes the maximum

distance between pairs of Wannier functions (a,b). The cutoff δ rel defines the maximum distance between a
pair of atoms (λ,υ) for the formation of a variable. The cutoff δ rellat determines the maximum distance between
Wannier functions (a,b) and atoms (λ,υ) for the selection of electron-lattice parameters. In panel (b), distance
cutoffs used in the selection of electron-electron parameters {Uab,a′b′ , Iab,a′b′}. The cutoff δ rh establishes the
maximum distance between the two Wannier functions forming a pair: (a,b) and (a′,b′). The cutoff δ ree defines
the maximum distance between the pairs (a,a′), (a,b′), (b,a′), and (b,b′) for considering the pairs (a,b) and
(a′,b′) in the selection of an electron-electron variable.

The impact of electron-lattice interactions is inherently tied to the nature and symmetry of the Wannier
functions involved. As such, the Hamiltonian matrix elements hab will exhibit varying degrees of signifi-
cance for electron-lattice interactions. In some cases, the interaction may be negligible, while in others, it
plays a pivotal role. To streamline the calculations and reduce the number of electron-lattice parameters,
a novel energy cutoff, δεel, is introduced. This cutoff serves to identify and select symmetry groups for
which the electron-lattice interaction is most relevant.

For a given symmetry group G, its contribution to the electron-lattice goal function Θel, which is obtained
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from Eq. (5.23) when considering the electron-lattice training set calculations, is determined by assessing
the error that arises when the second-principles models are simply described by γab calculated in the
RAG for RED. The contribution is thus quantified as

Θ
G
el = ∑

Ael
∑

ab∈G

[
hDFT
ab (A)−

(
hRAG,sr
ab +hlr

ab

)]2
. (5.29)

Thus, if the contribution of the symmetry group G to Θel over the hole electron-lattice training set is
larger than δεel (measured in eV2), ΘG

el > δεel, then the electron-lattice parameters associated with pairs
of WFs (a,b), belonging to symmetry group G, are considered to form electron-lattice parameters. See
the results chapter, Chapter 6, for some examples.

5.6.2.4 Electron-electron parameters

To calculate the electron-electron parameters, we compute the derivative of the one-electron Hamiltonian,
Eq. (4.37), with respect to pi ∈ {Uab,a′b′ , Iab,a′b′} to derive the expression in Eq. (5.26) with respect to
the electron-electron parameters,

∂hs, sr
ab

∂Uab,a′b′
=Ds

a′b′+D−s
a′b′ , (5.30)

∂hs, sr
ab

∂ Iab,a′b′
=−

(
Ds
a′b′−D−s

a′b′
)
. (5.31)

With the equations introduced above, it becomes evident that (i) the parameters Uab,a′b′ and Iab,a′b′

quantify the sensitivity of the one-electron Hamiltonian, hs
ab, to variations in the charge and spin polar-

ization encoded in the density matrix elements Dab. It is important to emphasize that these quantities
do not represent pure electron-electron interactions. Instead, they describe the effective response of the
electronic structure to changes in the density matrix, incorporating not only electron-electron interactions
but also contributions from the electron kinetic energy and the electron-nuclear potential. (ii) Accurate
evaluation of these parameters requires explicit control over the electronic density—a task that, as pre-
viously discussed, is challenging to implement within standard first-principles frameworks. For this
reason, Uab,a′b′ and Iab,a′b′ are obtained in methodology I, as in the case of electron-lattice parameters,
by solving the fitting equations, Eqs. (5.26)–(5.27), using a modified stepwise regression algorithm with
forward selection, adapted from the method described in Ref. [51] to accommodate the variables of the
present electronic model.

After establishing the equations necessary for the fit, we need to determine which calculations can be
used to create an adequate training set to obtain Uab,a′b′ and Iab,a′b′ .

5.6.2.5 Electron-electron training set

According to previous equations it is possible to examine the fundamental characteristics of the electron-
electron variables. This preliminary analysis provides a deeper understanding of their nature and behav-
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ior, setting the stage for a more systematic exploration of the required computational data and delving
into the collection of first-principles calculations necessary to derive the electron-electron parameters.

From the preceding equations, it becomes possible to examine the fundamental properties of the electron-
electron variables. This initial analysis not only deepens our understanding of their inherent characteris-
tics but also lays the groundwork for a more systematic approach to analyzing the computational data and
selecting the appropriate set of first-principles calculations required to determine the electron-electron
parameters. Attending to Eqs.(5.30)-(5.31), the first-principles calculations employed to fit the electron-
electron parameters must be characterized by changes in density with respect to the RED, including both
changes in orbital occupations and spin polarization. Thus, the first-principles calculations included in
the training set can be classified into four distinct categories:

Figure 5.8: Training set employed for the calculation of electron–electron interaction parameters, based on vari-
ations in electron and hole populations, which in turn alter the total charge (Q) and total spin (S) of the system.
This approach enables the evaluation of electron–hole coupling, a key component for simulating excitonic effects.
Panel (a) illustrates electron doping of the system, panel (b) shows hole doping, and panel (c) depicts the excitation
of a valence electron to the conduction band, resulting in the formation of an electron–hole pair. Figure extracted
from Ref. [111].

Doping with electrons and holes: The variables Uab,a′b′ are specifically linked to the occupations of
the system, without accounting for spin polarization. Consequently, the first-principles calculations per-
formed within the selected supercell and included in the training set are characterized by electron and
hole doping relative to the chosen RED, distributed equally across the two spin channels.

For instance, in the case of an insulating system where the selected RED corresponds to the ground state,
some first-principles simulations involve doping the conduction band with electrons Fig. 5.8(a) and other
calculations focus on modifying the electronic configuration by introducing holes in the valence band,
Fig. 5.8(b). This approach ensures the accurate representation of the system’s response to variations in
occupation. The magnitude of doping is systematically varied, ranging from -0.3 e to 0.3 e in steps of
0.1 e. Here, negative values denote electron doping, while positive values correspond to the introduction
of holes. This controlled doping scheme captures the subtle effects of occupation changes on the system’s
electronic properties.
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Spin-polarization. The Iab,a′b′ variables are closely associated with the system’s behavior arising from
spin polarization. To account for this, the first-principles simulations used to capture the differences in
spin channel occupations are designed to include both electron and hole doping, with the key constraint
that the system is forced into a fully spin-polarized state. In other words, the charge introduced for doping
is entirely represented by the difference in occupations between the spin-up and spin-down channels.

This approach ensures that the calculations effectively capture the system’s behavior under spin polariza-
tion conditions, providing critical information about its magnetic and electronic properties in scenarios
where spin polarization plays a dominant role.

Excitations in the RAG: Furthermore, the training set for the electron-electron variables incorporates
first-principles simulations where the system remains neutral in charge, but where the spin momenta is
enforced to be different from zero, reflecting distinct occupations of the spin channels. This group of
calculations is specifically designed to explore optical properties, such as the formation of excitons. For
example, in the case of the hBN insulating system previously discussed, these simulations model the
excitation of electrons from the valence band to the conduction band, which results in the creation of
holes in the valence band, Fig. 5.8(c). As a consequence, the resulting model is capable of capturing the
excitonic properties of the system, providing a deeper understanding of its optical characteristics.

Excitations in distorted geometries: The study of polarons and excitons from second-principles repre-
sents one of the key objectives in understanding optical properties in solid-state physics. Therefore, the
inclusion of first-principles calculations that describe excitations into the training set is particularly sig-
nificant. However, when these calculations are integrated while maintaining the system in the RAG, the
excited charge tends to remain delocalized within the crystal. This localization prevents the development
of a second-principles model capable of simulating polaronic effects, as the parameters fail to capture the
response of Wannier functions to effectively localize the charge. Consequently, in order to address this
limitation and incorporate both excitonic and polaronic effects, the current approach involves modifying
both the electron density and the atomic geometry with respect to the RED and the RAG, respectively,
during the training set calculations. This fact deviates from the initial goal of producing a fully automated
code. It is expected that, over time, this type of problem can be resolved.

Cutoffs

The Uab,a′b′ and Iab,a′b′ parameters represent integrals which depend on the position of four WFs. As
a result, the number of electron-electron parameters is typically too large to be able to determine all of
them, a problem that becomes more severe due to the inability to perturb specific density matrix elements
through the training set described above. Thus, akin to the selection of electron-lattice parameters, we
establish two criteria to determine which integrals will be fitted to the data. The first one is based on
the distance between Wannier functions, δ ree, that sets the maximum separation between the centroids
of any pair of WFs involved in the four-center integral, measured in the RAG [see Fig. 5.7(b)]. The
second is an energy cutoff, δΘ, which is based on the contribution of a given symmetry group G to the
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electron-electron goal function, ΘG
ee, built from Eq. (5.25) considering the electron-electron training set

calculations, when the second-principles models are simply described by the γab calculated at the RAG
for the RED,

Θ
G
ee = ∑

Aee
∑

ab∈G

[
hDFT
ab (A)−

(
hRAG,sr
ab +hlr

ab

)]2
. (5.32)

Thus, if the contribution to ΘG
ee over the whole electron-electron TS of any group G is larger than δΘ

(measured in eV2) then electron-electron parameters associated with (a,b) pairs of WFs of that group
are considered to form four-center integrals that will be included in the model.

5.6.2.6 Determining the variables: linear problem

Considering the final Hamiltonian formulated for our model, it depends linearly with the parameters
aimed to fit, {pi}1≤i≤P. So that, for each configuration we can write the Hamiltonian as

hab(A) = ∑
i

θAi pi (5.33)

where θAi is a configuration-dependent constant that contains the correlation between the parameter pi

and DFT Hamiltonian element for a particular configuration A. The goal function can be then expressed
in terms of the Eq. (5.33),

Θ({A},{pi}) = ∑
A

[
hDFT
ab (A)−∑

i
θAi pi

]2

. (5.34)

Regarding the geometrical representation of Θ, it is a P-dimensional parabola which always satisfies
Θ ≥ 0. Since the goal function is positive semi-define, the eigenvalue of the associated Hessian will be
always positive or zero. As a result, a critical point of Θ must be a minimum.

The extrema of the goal function satisfy ∂Θ/∂ pi = 0 ∀i. Applying this equation for the P parameters,
we obtain the linear system for the calculation of the {pi} parameters,

∑
k

Aik pk = bi, (5.35)

where

Aik = ∑
A

θiAθkA, (5.36)

and

bi = ∑
A

θiAhDFT(A). (5.37)

However, there may be linear dependencies in our system of equations leasing to a overdetermined
model. Then we need to find which are the significant variables of our model. This problem is addressed
in the following section.
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5.6.2.7 Finding the best model of p variables

In the preceding sections, we introduced the electronic degrees of freedom within the second-principles
framework through the electron-lattice and electron-electron interaction parameters. We have detailed
the methodology for generating these parameters, emphasizing the pivotal role of the selected training
sets and the various cutoffs in their determination. As a consequence, it becomes evident that even with
a realistic cutoff, the number of independent parameters remains orders of magnitude too large to be
fitted in full. Achieving a sufficient number of data points from ab initio calculations to constrain all
parameters would be computationally prohibitive. Moreover, an excessive number of parameters in the
Hamiltonian matrix elements would undermine our objective of constructing a computationally efficient
model. Additionally, fitting the entire set of parameters would result in an overfitted model, which would
fail to generalize beyond the specific training set.

To address this issue, a systematic reduction of the parameter space is necessary, selecting only the most
relevant parameters from the full set. Our objective is to develop a model that captures the essential
physical trends rather than one that overfits the training set, thereby incorporating noise and specific
fluctuations. An algorithmic approach for this selective parameterization was introduced by Escorihuela-
Sayalero et al. [51] and has been reimplemented in MODELMAKER.

The advanced fitting algorithm implemented in MODELMAKER consists of two key components: first,
the selection of relevant model parameters from the complete set of possibilities, and second, the de-
termination of these parameters through a least-squares fitting procedure. The fitting is performed by
minimizing the goal function, as defined in Eq. (5.25). In this approach, the fitted quantities correspond
to the ab initio data from the training set.

In the following, we outline the step-by-step fitting procedure used to obtain the model parameters.

We consider XP as the set of all the parameters generated by the code, a collection of P parameters
(considering the training set and the different cutoffs) which determine all the possible interactions in
the system of interest. Now, from the complete set of P parameters, we define a p-model as a model of
p parameters: Xp ⊂XP. We need a procedure to build the best p-model, i.e., a criterion to choose the p
parameters that minimizes the goal function. The first idea to solve this problem consists on computing
all the possible combinations of p parameters of a set of P parameters and compare the resultant goal
functions. However, this method is quite inefficient. For example, if we have a model with P = 500
parameters and we want to built a p−model such that p = 20, we have about 1035 different combinations
of parameters, i.e, 1035 different models. As a result, although we have selected an efficient strategy
to calculate the parameters of a p-model, the analysis of so many combinations is unfeasible from the
computational point of view.

In order to overcome this problem, the model search is restricted by a step wise procedure with forward
selection. The method starts considering p= 1 and building all the P possible 1-model candidates with its
respective goal functions. Let X1 represents all the possible 1-models associated with the goal function
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Θ1(pi), which considers only one parameter. The next step is focused on selecting the best 1-model by
minimizing Θ1(pi) according to Eq. (5.34). Comparing the Θ1(pi) ∀i, we choose the smallest one. At
this point, we can identify the first parameter of our model, p∗1 which composes the set X ∗

1 . Then, we
move to p+ 1 and we consider all the possible (p+ 1)-models which contains the variables of the best
p−model, i.e, we study all the p+1-models with the constraint X ∗

p ⊂Xp+1. Keeping the p parameters
of the best p-model, the p+1-models are built adding one by one the P− p remaining variables. Again,
we build the goal function Θp({{p∗j}, pi}) ∀ j≤ p, ∀pi ̸= p∗j and it is minimized according to Eq. (5.34).
Then, we select the parameter pi which makes minimum Θp({{p∗j}, pi}) ∀ j ≤ p, ∀pi ̸= p∗j .

Below, the parameters with the star in p+1-model come from the best p-model. It should be noted that,
in the p+1 model, only the variables from the p-model are introduced, while their values are determined
through optimization at each iteration.

• Build best model 1 variable : {p1}

• Build best model 2 variables : {p∗1, p2}

• Build best model 3 variables : {p∗1, p∗2, p3}

• . . .

Different parameters will be included in the model until the objective function falls below a predefined
threshold.

5.6.2.8 Problems of the fitting procedure

The methodology I, based on the fitting procedure, presents several intrinsic challenges that must be
addressed to ensure the robustness and reliability of the model. The various challenges are associated
with the electron-lattice variables. These difficulties stem from the characteristics of the training set, the
selection of relevant variables, and the underdetermined nature of the fitting equations.

One of the main issues arises in the construction of the electron-lattice training set. As previously noted,
this set is generated by introducing random atomic displacements within a predefined radius. However,
this stochastic approach prevents the exact reproduction of model calculations. Furthermore, once a
model has been generated, incorporating additional calculations into the electron-lattice training set—
even while maintaining the original dataset—modifies the selection of the most relevant variables iden-
tified in the initial fitting procedure, affecting subsequent minimization levels. In other words, the mere
addition of a single calculation to the electron-lattice training set leads to the emergence of new variables
in the fitting process, thereby introducing inconsistency. This shift in variable selection complicates the
verification process.

Another related issue with the electron-lattice fitting procedure encountered during model calculations
pertains to the indeterminacy in selecting fitting variables. Specifically, when using the same dataset
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of first-principles calculations, the variables chosen during the fitting process were not always identi-
cal. This inconsistency arises because the fitting procedure involves solving an underdetermined system
of equations, where the number of model parameters (or degrees of freedom) exceeds the range of the
system. As previously stated, this issue primarily concerns the electron-lattice parameters, particularly
those associated with the linear terms. According to the definition in Eq. (3.119), the linear terms f⃗ab,λ
depend on a single atom. However, the methodology introduces an artificial dependence on two atoms,
resulting in modified linear variables f⃗ab,λυ in Eq. (4.24). This modification is implemented to automat-
ically enforce the Acoustic Sum Rule (ASR). However, it results in an increased number of parameters
relative to the available equations, thereby exacerbating the underdetermined nature of the system. This
issue will be explicitly addressed in Sec. 5.6.3.

To solve these challenges, it is required to develop an improved methodological framework for the de-
termination of parameters.

As discussed in the introduction of the Sec. 5.6, the parameters within a second-principles framework
can either be explicitly calculated or fitted [36; 37; 51]. At first glance, the fitting procedure has been
selected due to the inherent complexity of directly implementing a rigorous computational methodology
for determining electron-electron parameters. For instance, the direct calculation of electron-electron
parameters, Uab,a′b′ and Iab,a′b′ , is particularly challenging, as employing a finite-difference method
would necessitate precise control over the density matrix within a DFT framework [see Eq. (4.36) and
Eqs. (5.30)-(5.31)]. While this could, in principle, be achieved using constrained DFT [181], its direct
implementation falls beyond the scope of this work and is not readily transferable between different DFT
codes.

However, due to the presented inconsistencies in the obtained results related to the electron-lattice contri-
bution, direct parameter calculation may be preferable in the case of these parameters, as it often provides
clearer physical interpretations. In contrast to electron-electron variables, the computation of electron-
lattice parameters via finite-difference methods employing their definition in Eqs. (3.119)-(3.120) is fea-
sible. This is because the derivatives of the Hamiltonian with respect to these parameters depend solely
on atomic positions rather than on the density matrix. Consequently, these parameters capture variations
in hab induced by atomic displacements within the RAG—a perturbation that is trivial to implement in
first-principles calculations.

Therefore, we adopt a hybrid approach: electron-lattice parameters, f⃗ab,λυ,
↔
gab,λυ, are extracted from

WANNIER90 and they are are explicitly calculated considering the symmetry constraints, while those
associated with electron-electron interactions— Uab,a′b′ and Iab,a′b′—are determined via fitting. The
parameter γ

sr,RAG
ab are obtained according to Sec. 5.6.2.1.

In the following Section, we establish the new methodology for computing electron-lattice parameters
through direct calculation. This methodology is referred in this work as methodology II. In this ap-
proach, the electron-lattice parameters are determined directly by accounting for atomic displacements,
u⃗λ. However, the impact of strain has not been thoroughly investigated within this framework. Future
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research will address this aspect in detail.

5.6.3 Proposed methodology II: Calculation of electron-lattice parameters

As discussed in Chapter 3, a fundamental aspect of many physical phenomena is the dependence of
material properties on the geometric configuration of the system. In the framework of second-principles
density functional theory (SPDFT), this effect is accounted for by expanding the one-electron parameters,
γsr
ab, as a function of atomic coordinates. Accordingly, the variation of γsr

ab with respect to geometry was
initially expressed as Eq. (4.24),

γ
sr
ab = γ

sr,RAG
ab +∑

λυ

[
− f⃗ T

ab,λυ ·δ τ⃗λυ+δ τ⃗
T
λυ ·

↔
gab,λυ ·δ τ⃗λυ

]
, (5.38)

where δ τ⃗λυ measures the difference of displacements of atoms λ and υ,

δ τ⃗λυ =
←→
η

(
R⃗ϒ− R⃗Λ + τ⃗

(0)
υ − τ⃗

(0)
λ

)
+ u⃗υ− u⃗λ. (5.39)

Due to the dependence of Eq. (5.38) on the difference between the displacements of atoms λ and υ, the
acoustic sum rule is automatically satisfied, as previously discussed in Sec. 4.2.2. Moreover, attending to
Eq. (5.38), the linear variables exhibit a dependence on two atoms rather than a single atom, as defined
in Eq. (3.119).

While trying to systematically fit all the electron-lattice parameters according to Eq. (5.38) we found
large inconsistencies in the values of f⃗ab,λυ when two different sets of reference calculations were used,
as already commented. The issue becomes clear when comparing Eq. (5.38) and the direct expansion of
the one-electron parameter of the Hamiltonian matrix elements in terms of the atomic coordinates,

γ
sr
ab = γ

RAG,sr
ab −∑

λ

f⃗ T
ab,λ ·δ τ⃗λ+∑

λυ

δ τ⃗
T
λ ·
↔
gab,λυ ·δ τ⃗υ, (5.40)

where
δ τ⃗λ =

←→
η

(
R⃗Λ + τ⃗

(0)
λ

)
+ u⃗λ. (5.41)

At this point we compare both expressions: Eq. (5.38) and Eq. (5.40). It is clear that δ τ⃗λυ, τ⃗λ and δ τ⃗υ

are related through
δ τ⃗λυ = δ τ⃗υ−δ τ⃗λ. (5.42)

Examining the linear terms, we observe that if the system contains Nat atoms, Eq. (5.40) requires fitting
3Nat independent parameters, accounting for the three Cartesian coordinates. In contrast, analyzing
the previously employed expression, Eq. (5.38), we find that the number of parameters to be fitted is
significantly larger, specifically (3Nat)

2− 3Nat, where the subtraction accounts for the diagonal terms.
Notably, the linear terms in both formulations are related through the following expression,

f⃗ab,λ =−2∑
υ

f⃗ab,λυ. (5.43)
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Relation between one-atom linear terms, f⃗ab,λ, and two-atoms linear terms, f⃗ab,λυ.

Proof. To prove the relation in Eq. (5.43), we consider the linear contribution to the one-electron param-
eters in Eq. (5.38),

−∑
λ

∑
υ

f⃗ T
ab,λυ ·δ τ⃗λυ = ∑

λ
∑
υ

f⃗ T
ab,λυ · (δ τ⃗λ−δ τ⃗υ) = ∑

λ
∑
υ

f⃗ T
ab,λυ ·δ τ⃗λ− f⃗ T

ab,λυ ·δ τ⃗υ. (5.44)

A reasonable constraint is,
f⃗ab,λυ =− f⃗ab,υλ. (5.45)

By incorporating this constraint, Eq. (5.45), into Eq. (5.44),

∑
λ

∑
υ

f⃗ T
ab,λυ ·δ τ⃗λ− f⃗ T

ab,λυ ·δ τ⃗υ = ∑
λ

∑
υ

f⃗ T
ab,λυ ·δ τ⃗λ+ f⃗ T

ab,υλ ·δ τ⃗υ = 2∑
λ

∑
υ

f⃗ T
ab,λυ ·δ τ⃗λ. (5.46)

Now, if we equalize this expression with the corresponding one-atom notation in Eq. (5.40),

−∑
λ

f⃗ T
ab,λ ·δ τ⃗λ = 2∑

λ
∑
υ

f⃗ T
ab,λυ ·δ τ⃗λ, (5.47)

we arrive to Eq. (5.43).

As a result, the two-atoms linear constants f⃗ab,λυ are not well-defined, since there are many more of
these variables than f⃗ab,λ. Thus, it seems that using Eq. (5.40) is a better starting point to create second-
principles models than Eq. (5.38).

A key challenge when employing Eq. (5.40) is ensuring that the acoustic sum rule is properly satisfied.
By enforcing the physical requirement that the total energy remains invariant under a rigid translation of
the entire lattice, one obtains for the linear parameters the constraint

∑
λ

f⃗ab,λ = 0. (5.48)

The individual coefficients f⃗ab,λ can, in principle, be computed from first-principles by interpreting them
as the negative first derivative of γab with respect to atomic displacements [Eq. (3.119)] and evaluating
them using finite differences. A straightforward application of this approach—displacing a single atom
λ by a small distance d along a chosen direction and extracting the derivative—results in noticeable
violations of Eq. (5.48) due to the neglect of global translational invariance.

Figure 5.9: (a) Atoms of an equispaced one-dimensional linear chain, where the atom λ has been displaced by a
distance d from its equilibrium position. (b) The geometry in [a] is equivalent to a linear chain in which the atom
λ has been displaced by a distance αd, while the remaining atoms have been moved by a distance (1−α)d in the
opposite direction.
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A more robust finite-difference strategy involves displacing atom λ by a distance αd in a given direction
while simultaneously shifting all other atoms in the simulation cell by a distance (1−α)d in the opposite
direction. Here, α is a real parameter between 0 and 1. Since the relative displacements among atoms are
preserved, the computed value of f⃗ab,λ remains unchanged. In the following, we outline the reasoning
behind the development of our methodology and we extract the value of α . For simplicity, we perform
the derivation in a single spatial direction—the same reasoning applies equivalently to all three Cartesian
directions.

Consider an atom λ, displaced by a distance d in the x-direction, as illustrated in Fig. 5.9(a). This atomic
configuration is equivalent to an atomic geometry in which the atom λ is displaced by a quantity αd,
while all remaining atoms in the system are collectively shifted by (1−α)d in the opposite direction, as
show in Fig. 5.9(b).

In order to compute the value of α , we consider in the system of Fig. 5.9(b) does not move the center of
mass. At this point, the center of mass of the system satisfies

Natm
[−(Nat−1)(1−α)d +αd]

Natm
= 0, (5.49)

leading to

α =
Nat−1

Nat
. (5.50)

Once we have extracted the value of α , we return to the initial system, Fig. 5.9(a), to describe how this
methodology is going to be applied. We can extract the electron-lattice linear coefficients from finite
differences, denoted as f⃗ fd

ab,λ. The linear term f⃗ fd
ab,λ represents the force exerted by atom λ when it is

displaced by a distance d from equilibrium position. The equivalent scheme in which the ASR is strictly
enforced while still extracting the electron-lattice linear coefficients from finite differences, consists on
the following steps:

1. Consider the parameter α = (Nat−1)/Nat, where Nat is the total number of atoms in the simulation
box.

2. For each atom λ, we assign a linear electron-lattice coupling constant f⃗ab,λ = α f⃗ fd
ab,λ.

3. The remaining atoms υ ̸= λ are each assigned a value f⃗ab,υ =−(1−α) f⃗ fd
ab,λ.

This procedure ensures that the electron-lattice parameters are determined consistently while preserving
the physical constraints imposed by the system. Indeed, to demonstrate the equivalence between the
original formulation, Eq.(5.40), and the results obtained for the intermediate step, consider a scenario in
which each atom λ is displaced by the amount δτλ. Then, in the original formulation, the contribution
of the electron-lattice linear correction term to the Hamiltonian matrix elements hab is

∑
λ

( f⃗ fd
ab,λ)

T ·δ τ⃗λ. (5.51)
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Now, for each atom λ we introduce the equivalent situation described previously. Then, rather than
directly considering the expression in Eq. (5.51) we analyze the formulation with the assignment,

f⃗ab,λ = α f⃗ fd
ab,λ, and f⃗ab,υ =−(1−α) f⃗ fd

ab,λ. (5.52)

The resulting expression is

∑
λ

[
f⃗ T
ab,λ ·δ τ⃗λ+ ∑

υ ̸=λ

f⃗ T
ab,υ ·δ τ⃗υ

]
= ∑

λ

[
α( f⃗ fd

ab,λ)
T ·δ τ⃗λ+ ∑

υ ̸=λ

−(1−α)( f⃗ fd
ab,λ)

T ·δ τ⃗υ

]
. (5.53)

We will now establish that both expressions, Eq. (5.51) and Eq. (5.53), are equivalent from a theoretical
perspective. The second formulation explicitly incorporates the acoustic sum rule, as we will see later,
which justifies its use in the numerical implementation within the SCALE-UP code instead of the original
theoretical expression.

Mathematical correspondence between linear contributions in two equivalent geometries: single-
atom displacement and collective atomic displacement.

Proof. To verify both expressions Eq. (5.51) and Eq. (5.53) are equivalent, we must prove the following
equality,

∑
λ

( f⃗ fd
ab,λ)

T ·δ τ⃗λ = ∑
λ

[
α( f⃗ fd

ab,λ)
T ·δ τ⃗λ+ ∑

υ ̸=λ

−(1−α)( f⃗ fd
ab,λ)

T ·δ τ⃗υ

]
. (5.54)

We start from the right-hand side and we simplify it step by step,

∑
λ

[
α( f⃗ fd

ab,λ)
T ·δ τ⃗λ+ ∑

υ ̸=λ

−(1−α)( f⃗ fd
ab,λ)

T ·δ τ⃗υ

]
= ∑

λ

[
Nat−1

Nat
( f⃗ fd

ab,λ)
T ·δ τ⃗λ−

1
Nat

∑
υ ̸=λ

( f⃗ fd
ab,λ)

T ·δ τ⃗υ

]
.

(5.55)

By expanding and reordering the terms, we obtain,

∑
λ

[
Nat−1

Nat
( f⃗ fd

ab,λ)
T ·δ τ⃗λ−

1
Nat

∑
υ ̸=λ

( f⃗ fd
ab,υ)

T ·δ τ⃗λ

]
= ∑

λ

[
( f⃗ fd

ab,λ)
T ·δ τ⃗λ−

1
Nat

∑
υ

( f⃗ fd
ab,υ)

T ·δ τ⃗λ

]
.

(5.56)
The sum ∑υ( f⃗ fd

ab,υ)
T corresponds to the ASR condition. From a theoretical standpoint, it must be zero

according to Eq. (5.48), leading to

∑
λ

[
( f⃗ fd

ab,λ)
T − 1

Nat
∑
υ

( f⃗ fd
ab,υ)

T
]
·δ τ⃗λ = ∑

λ

( f⃗ fd
ab,λ)

T ·δ τ⃗λ, (5.57)

as we wanted to prove.

Once we have shown both expressions are equivalent, the following step consists on proving that the
ASR is satisfied automatically. Specifically, we aim to demonstrate that, by considering the previously
described intermediate step when taking into account the electron-lattice correction, we obtain an ex-
pression that depends on displacement differences, δ τ⃗λυ, rather than absolute displacements, δ τ⃗λ. If
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the contribution from the linear terms can be rewritten as a function of displacement differences, the
expression will inherently satisfy the acoustic sum rule. Then, we want to prove the equality

∑
λ

( f⃗ fd
ab,λ)

T ·δ τ⃗λ =
1

Nat
∑
λ

∑
υ

( f⃗ fd
ab,λ)

T ·δ τ⃗λυ. (5.58)

On the left-hand side, we have the contribution from the linear terms in Eq. (5.40), while on the right-
hand side, we obtain the target expression, which explicitly depends on δ τ⃗λυ.

Equivalence of linear coupling contribution expressions using one-atom displacement δ τ⃗λ and two-
atom displacement δ τ⃗λυ.

Proof. At this point, we are going to prove Eq. (5.58). Employing Eq. (5.54), proving the equality in
Eq. (5.58) is equivalent to prove

∑
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α( f⃗ fd

ab,λ)
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−(1−α)( f⃗ fd
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]
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1
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∑
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∑
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ab,λ)

T ·δ τ⃗λυ. (5.59)

Considering Eq. (5.55),
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(5.60)
Grouping the terms with the prefactor 1/Nat, we obtain
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(5.61)
From the first to the second line, we have added a sum over υ and then, the factor 1/Nat. The final ex-
pression gives the dependence of the linear contribution with the difference of displacements, satisfying
inherently the ASR.

Examining the second-order terms, we first observe that the number of
↔
gab,λυ variables in Eq. (5.38)

and Eq.(5.40) is identical. In fact, it can be easily verified, as we will show here, that the value of
↔
gab,λυ

in Eq. (5.38) is simply the corresponding value in Eq. (5.40) multiplied by −1.

To establish the relationship between the
↔
gab,λυ variables in Eq. (5.38) and Eq. (5.40), consider the

displacements of two atoms, λ and υ. Furthermore, attending to Eq. (5.40), we find that in order to
satisfy the ASR (which ensures no change in energy under a rigid shift of the atoms), the following
condition must hold for the quadratic terms,

∑
λ̸=υ

↔
gab,λυ =−↔gab,υυ. (5.62)
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Since the values of
↔
gab,λυ for λ ̸= υ can be easily computed using finite differences, imposing the ASR

in the second-principles framework via Eq. (5.62) is straightforward.

According to Eq. (5.40), the values of the second order terms
↔
gab,λυ correspond to the obtained value

from finite differences,
↔
g

fd
ab,λυ. Thus, the correction to the Hamiltonian matrix element considering

exclusively the second-order terms can be expressed as

∑
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∑
υ
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2
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δ τ⃗

T
λ ·
↔
g

fd
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υ ·
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T
λ ·
↔
g

fd
ab,λυ ·δ τ⃗υ+δ τ⃗

T
υ ·
↔
g

fd
ab,υλ ·δ τ⃗λ

]
. (5.63)

Now, our objective is to relate the quadratic contribution as a function of absolute displacements, Eq. (5.38)
and the expression associated to differences of displacements, Eq. (5.40).

Equivalence of quadratic coupling contribution expressions using one-atom displacement δ τ⃗λ and
two-atom displacement δ τ⃗λυ.

Proof. In order to compute the correction to the Hamiltonian matrix elements as a function of the dif-
ferences between atomic displacements, it is necessary to establish the relationship between the second-
order terms associated to absolute displacements

↔
g

fd
ab,λυ, and the values considering differences of dis-

placements,
↔
gab,λυ. At this point, we compute the correction to the Hamiltonian matrix elements in

terms of Eq. (5.38), i.e, considering differences of displacements,
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(5.64)
In the last step, the relation in Eq. (5.62) has been applied.
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Comparing expression Eq. (5.63) and Eq. (5.64), they are equivalent when the values of the second
expression satisfy

↔
gab,λυ =−↔g fd

ab,λυ. (5.65)

The final expression for the short-range one-electron parameters is

γ
sr
ab = γ

RAG,sr
ab − 1

Nat
∑
λ

∑
υ ̸=λ

( f⃗ fd
ab,λ)

T ·δ τ⃗λυ−∑
λ

∑
υ ̸=λ

δ τ⃗
T
λυ ·

↔
g

fd
ab,λυ ·δ τ⃗λυ. (5.66)

The symmetry relations established in Sec. 5.4 remain valid for this redefinition of the electron-lattice
parameters.

Building upon the previous reasoning, we have developed a methodology in which the electron-lattice
parameters directly correspond to the terms in the Taylor series expansion. Moreover, this approach
inherently incorporates the Acoustic Sum Rule (ASR) into the electron-lattice corrections. The method-
ology is based on the theoretical linear and quadratic terms, which can be systematically computed using
the finite difference method. At this stage, we present the procedure for determining these parameters
and describe the first-principles data required to construct the required training set.

5.6.3.1 Finite difference formulas for the calculation of parameters

Electron-lattice coupling terms are computed using finite-difference approximations applied to the one-
electron Hamiltonian obtained from density functional theory (DFT). Specifically, the x-component of
the linear electron-lattice coupling vector, f⃗ fd

ab,λ, is estimated using the central difference formula

f fd,x
ab,λ ≈−

hDFT
ab,λ+x−hDFT

ab,λ−x

2δx
, (5.67)

where the terms hDFT
ab,λ±x denote the DFT one-electron Hamiltonian matrix elements associated with the

Wannier functions (a,b). These elements correspond to geometries in which the atom λ is shifted by a
distance ±δx along the x-direction, relative to its reference geometry positions, remaining the rest of the
atoms fixed at their reference geometry positions. The displacement distance δx serves as the step size
for the finite difference formulas.

Similarly, the second-order parameters are computed following

gxy
ab,λυ ≈

hDFT
ab,λ+x υ+y−hDFT

ab,λ+x υ−y−hDFT
ab,λ−x υ+y +hDFT

ab,λ−x υ−y

4δxδy
. (5.68)

To compute the second-order terms, the first-principles calculations involve the simultaneous displace-
ment of two atoms, λ and υ. In this context, the DFT one-electron Hamiltonian matrix element for
the pair of Wannier functions (a,b), hab,λ±x υ±y, corresponds to the geometry in which the atom λ is
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displaced by a quantity ±δx along the x coordinate, while the atom υ is moved a value of ±δy along the
y-direction.

During the development of the computational framework for the quadratic variables, an alternative for-
mulation was implemented, wherein the calculations performed for the evaluation of the linear terms
were reutilized. This approach resulted in a reduction of the number of new first-principles calculations
required to compute

↔
g values. Specifically, the expression

gxy
ab,λυ ≈

hDFT
ab,λ+x υ+y−hDFT

ab,λ+x υ−hDFT
ab,λ υ+y +2hDFT

ab,λυ−hDFT
ab,λ−x υ−hDFT

ab,λ υ−y +hDFT
ab,λ−x υ−y

2δxδy
(5.69)

was employed. Nevertheless, this alternative method led to higher errors in the calculation of the second-
order electron-lattice coupling parameters.

5.6.3.2 Training set and distance cutoff

At this stage, it is required to build the training set for the electron-lattice parameters in methodology
II. As previously explained, the elements hDFT

ab,λ±x and hDFT
ab,λ±xυ±y necessary to compute the linear and

quadratic electron-lattice interactions are obtained from density function theory calculations in the se-
lected supercell (see Sec. 5.6). However, direct applications of formulas Eq. (5.67) and, particularly,
Eq. (5.68) would lead to a very large number of first-principles calculations. To generate these geome-
tries, several configurations are constructed starting from the reference atomic configuration, by displac-
ing one (linear terms) or two atoms (quadratic terms). These geometries are systematically created by
considering all possible combinations of displacements: taking into account the Cartesian axes and the
positive and negative senses of the displacement. The total number of geometry combinations (derived
from the number of atom pairs, Cartesian directions, and displacement senses) can result in a substantial
number first-principles calculations. For example, in the SrTiO3 system, using a 2×2×2 supercell with
five atoms per unit cell, the number of required first-principles calculations for the linear terms is

5 atoms/cell×8 cells×3 directions×2 senses = 2400 geometries.

Regarding to the quadratic terms, the amount of geometries is the square of the linear terms calculations.

We apply a strategy to reduce the number of first-principles calculations:

Firstly, given the geometry of a specific configuration required in the training set, the symmetry oper-
ations of the space group associated with the RAG are applied to identify all geometrically equivalent
configurations, avoiding then their explicit calculation (see Sec. 5.4).

Secondly, translational symmetry can be leveraged in the linear terms to further minimize the compu-
tational effort. The chosen approach for handling the linear variables involves generating, exclusively,
the specific geometries to compute the linear terms associated with the atoms in the reference unit cell.
Once these parameters are obtained, the corresponding values for atoms in the remaining unit cells of the
supercell are assigned through translational mapping of the selected unit cell.
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The third approach addresses the quadratic terms, which represent the most computationally demanding
components, even applying symmetry constraints, due to their scaling with the square of the number
of atoms. To mitigate this complexity, it is assumed that the displacements of two atoms separated by
a sufficiently large distance are uncorrelated, and their contributions can be effectively captured by the
linear terms. Based on this assumption, the computational framework introduces a cutoff distance that
defines the maximum separation (at the RAG) allowed between atom pairs in the supercell for evaluating
second-order terms. If the interatomic distance exceeds this cutoff , denoted as δ rel [represented in green
in Fig. 5.7(a)],

δ rel >
∣∣∣R⃗ϒ− R⃗Λ + τ⃗

(0)
υ − τ⃗

(0)
λ

∣∣∣ , (5.70)

the corresponding quadratic term is omitted and treated as negligible. Collectively, these three strategies
significantly reduce the number of first-principles calculations required to determine the electron-lattice
parameters while preserving the accuracy.

5.6.3.3 Energy cutoffs

Despite the previously implemented strategies to reduce the number of directly computed parameters, the
amount of linear and quadratic constants calculated in the procedure is still very large, with many of them
having a very small influence on the value of the hab elements. This sheer volume of parameters can
make second-principles calculations computationally demanding, primarily due to the extensive number
of linear and quadratic terms involved. Thus, when building a model, we only include vectors f⃗ab,λ and
matrices

↔
gab,λυ where any of its components are above the cutoffs δ f and δg measured, respectively,

in eV/Å and eV/Å2. In general we find that good results can be found when these cutoffs take values
around 0.1 eV/Å and 0.1 eV/Å2 (see the results chapter, Chapter 6, for more details).

Metals are more difficult to treat than insulators as their density matrix in the ground state changes with
the geometry. Thus, in these cases we first obtain the value of Uab,a′b′ (and also Iab,a′b′ , although this is
not always necessary) and correct the value of hDFT

ab as to avoid double-counting the effect of the change
of geometry and the density-change when obtaining f⃗ab,λ and

↔
gab,λυ.

5.6.4 Verification of the models

To evaluate the performance of our models, we employ an error function similar to Θ, defined in
Eq. (5.25), applied to a test-set of density functional theory (DFT) calculations, denoted as {A}. These
test sets consist of structures not included in the training set, selected to probe the model’s ability to
generalize to configurations representative of physically relevant distortions. Specifically, test geome-
tries are generated by displacing atoms randomly within a cube of side length 2d, centered at the relaxed
atomic geometry (RAG), where d is a parameter controlling the displacement amplitude. In Sec. 6.3
and Sec. 6.4, the error function Θ is evaluated by averaging over ten such randomly distorted geometries
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for each value of d. Additionally, when available, we assess model performance on alternative stable
phases not included in the training. For example, in the case of SrTiO3, we include both the displace-
ments present on the tetragonal I4/mcm phase and a ferroelectric phase stabilized under uniaxial strain,
keeping in the calculations the lattice in its cubic structure. In other systems, we explore the forma-
tion of polarons by introducing lattice distortions and comparing the resulting electronic and structural
responses—governed by both electron-lattice and electron-electron interactions—with those obtained
from DFT calculations.

The methodology presented in this Chapter is the result of a significant amount of work and sustained
effort, grounded in extensive testing and iterative refinement. Throughout its development, various strate-
gies were explored to identify the most suitable training set for the reliable extraction of model parame-
ters. Considerable attention was also devoted to designing and optimizing the methodology itself, with
a focus on improving both its accuracy and computational efficiency. Moreover, the approach was care-
fully constructed to incorporate key physical constraints, such as the acoustic sum rule and the symmetry
properties of the system, in order to preserve the intrinsic characteristics of the material under study.

In summary, this Chapter represents the culmination of a long process of trial and error, guided by both
physical insight and practical considerations. A selection of the tests performed and the results obtained
will be discussed in Chapter 6.
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Results

To demonstrate the application of the methodologies described above, we consider two representative
systems. The first is the semicovalent transition-metal perovskite SrTiO3, a material that exhibits strong
electron-lattice coupling arising from two key structural instabilities: the incipient ferroelectric distor-
tion [43; 182], and the antiferrodistortive octahedra rotations associated with the cubic-to-tetragonal
phase transition. The second example is LiF, a wide-band-gap insulator with the rock-salt structure. In
this system, the strong electron-hole interaction leads to prominent optical effects, including the forma-
tion of tightly bound excitons [183; 184; 185].

In this discussion, we present an analysis of the results obtained for the determination of the model
parameters, focusing on the methodologies outlined in Chapter 5. For the electron-lattice coupling pa-
rameters, two approaches are considered: methodology I, described in Sec. 5.6.2, which involves fitting
the parameters to reference data; and the methodology II, detailed in Sec. 5.6.3, in which the electron-
lattice parameters are computed directly from first-principles calculations. We will demonstrate how
methodology I fails to accurately reproduce certain relevant phases in the analysis of electron-lattice
coupling, thereby justifying the introduction of methodology II.

In contrast, for the electron-electron interaction parameters we apply methodology I.

The procedure to obtain the model parameters includes the selection of the relevant Wannier manifolds;
the choice of the Hamiltonian interaction distance cutoff, δ rh; the electron-electron interaction cutoff,
δ ree; and the corresponding goal-function convergence threshold, δΘ. For the electron-lattice interac-
tion, we additionally stablish the spatial and energy cutoffs according to the applied methodology.
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6.1 Computational details

Before presenting the obtained results, the computational details of the calculations are described in this
Section.

6.1.1 SIESTA

First-principles calculations were performed using SIESTA [38; 174], which is based on the standard
Kohn-Sham self-consistent formulation of density functional theory (DFT) and employs a numerical
atomic orbital (NAO) basis set.

In order to test the method we employed different exchange-correlation functionals for each of the stud-
ied systems. For SrTiO3 the exchange-correlation functional was approximated within the local density
approximation (LDA), adopting the usual Ceperley and Alder [186; 187] parametrization. In the case
of LiF, the exchange and correlation was treated using the Perdew-Burke-Ernzerhof (PBE) approxima-
tion [188].

For SrTiO3, the parameters that define the shape and spatial extent of the basis functions were determined
by computing the eigenfunctions of isolated atoms confined within the soft-confinement potential pro-
posed in Ref. [189]. We used a single-ζ basis set for the semicore states of Ti and Sr, and double-ζ plus
polarization for the valence states of all the atoms. For Sr an extra shell of 4d orbitals was added. All the
parameters that define the shape and the range of the basis functions for Sr, Ti, and O were obtained by
a variational optimization following the recipe given in Ref. [189].

For the LiF system, a double-ζ basis set was employed for the 2s and 2p orbitals of Li, while a double-ζ
polarized basis set was selected for F. In both cases, the spatial extent of the orbitals was defined using
the default parameters.

The core electrons were replaced by ab initio norm-conserving pseudopotentials [190]. The pseudopo-
tentials have been generated using the Troullier-Martins scheme [191] in the Kleinman-Bylander fully
non-local separable representation [192].

The electronic density, Hartree potential, and exchange-correlation potential, along with the correspond-
ing matrix elements between the basis orbitals, were computed on a uniform real-space grid [38]. To
accurately represent the charge density in both systems, an equivalent plane-wave cutoff of 600 Ry was
employed. For the reciprocal-space integration, considering the conventional cell geometries of the sys-
tems, the integrals were ensured to be well converged. In all cases, a Monkhorst-Pack mesh of equivalent
quality was utilized, specifically a 9×9×9 grid for the SrTiO3 system and a 8×8×8 grid for the LiF
system [71]. The RAG structure was relaxed for both systems until the maximum component of the
stress tensor was below 0.003 eV/Å3.

The second-principles code SCALE-UP and, by extension, the program generating the models, MOD-
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ELMAKER, employ a basis of Wannier functions [65; 68], as this provides a compact and short-range
basis that is ideal to create large-scale methods. These functions are constructed by projecting Bloch
states onto SIESTA’s atomic basis orbitals, which serve as initial guess functions, as implemented in the
WANNIER90 code [39; 40]. To avoid problems with the symmetry arising from the minimization of the
spread, the WFs were directly taken from these projections according to Sec. 1.4.5. A uniform 4×4×4
reciprocal-space mesh was used to compute the Wannier functions and evaluate relevant quantities in
real space.

6.1.2 MODELMAKER

MODELMAKER is a Python software package designed as an integrated tool for generating and utilizing
second-principles models—specifically, polynomial expansions—that incorporate various electronic de-
grees of freedom, enabling large-scale simulations of up to several hundred thousand atoms. It is released
as part of the SCALE-UP code [37] and employs the SIESTA code [38; 174], which includes an interface
with WANNIER90 [39], to perform the first-principles simulations in a basis of Wannier functions. The
first-principles calculations conform the training-set for both electron-lattice and electron-electron pa-
rameters and these simulations are stored in a database (mm_database). Since MODELMAKER employs
the results of ab initio DFT calculations conducted with SIESTA to generate second-principles models,
the code leverages the precision of SIESTA in electronic structure properties. While this initial implemen-
tation of MODELMAKER is linked to SIESTA, the code could be extended to any first-principles software
that integrates WANNIER90.

The output of MODELMAKER is a model which includes information on bands, and electron-lattice and
electron-electron interactions. The model is stored in human-readable .xml format for its use by the
second-principles code, SCALE-UP [37].

6.1.2.1 Input data and workflow of the code

The initial ingredients required to build an electronic model using the MODELMAKER software are a
Python script, run_mm.py, which controls the workflow of the code through its various stages, and a
folder, files, that stores the physical information characterizing the system under study. Below, we
provide an explanation of each of these components.

The Python script run_mm.py serves as (i) the interface where users specify SIESTA and SCALE-UP

executable files; (ii) the entry point where the user sets the cutoffs that regulate the model’s accuracy; (iii)
a mechanism for invoking MODELMAKER’s functions to build the second-principles model and define
the code workflow of the code. In this Section, we will focus on outlining the flowchart for building
second-principles models, as described in point (iii), while the selection and description of cutoffs are
addressed below.
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The execution of the MODELMAKER code begins with running the SIESTA calculation using the WAN-
NIER90 interface for the unit cell system in the RAG within the RED. This calculation is employed to
compute the reference Hamiltonian, expressed in the Wannier function basis set, which will be used in
several steps of the model generation process.

The second step consists of recalculating the reference atomic geometry (RAG) in the RED using SIESTA,
this time considering the selected supercell that will be employed to construct the training set.

Next, the collection of calculations composing the training set are computed employing the SIESTA soft-
ware. The configurations are run in the supercell. On one hand, the training set used to compute the
electron-lattice parameters is created by modifying the system’s geometry relative to the RAG, consid-
ering random atomic displacements if we want to fit the parameters, methodology I, or considering the
geometries required for the finite difference formulas, methodology II. These calculations are performed
while keeping the system in the RED. For methodology I, we establish the radii of the random displace-
ments as 0.1 Å and we vary the values of the δ rel and δ rellat cutoffs. In the case of methodology II, the
only variables that need to be selected are the finite difference step size, 0.04 Borhs, for both systems,
and the cutoff distance δ rel, which defines the maximum distance between atoms λ and υ for which a
↔
gab,λυ variable is computed.

On the other hand, the calculations that make up the training set for fitting the electron-electron parame-
ters are defined. These calculations are characterized by the density matrix, which is modified from the
RED. In the run_mm.py file, the net charge (doping with holes or electrons) in units of e− and the spin
of the system, which leads to a spin-polarized calculation, are specified.

Once the training set is built, the electron-lattice parameters are selected following methodology I (see
Sec. 5.6.2) according to the established electron-lattice cutoffs; or computed employing the finite differ-
ences procedure, methodology II, explained in Sec. 5.6.3. In addition, the symmetry of the system (see
Sec. 5.4) is considered. Regarding the electron-electron cutoffs, they determine the possible electron-
electron terms which will later be computed and fitted to the training set according to methodology I.

The next step involves calling the SCALE-UP code, using a model for the RAG and the RED to calculate
the long-range electrostatic corrections and the density matrix for the different calculations in the training
set.

Then, in the application of the methodology I, the electron-lattice and electron-electron parameters are
fitted to their training sets to identify the optimal model. If we are working on the methodology II
approach, the electron-lattice parameters are recalculated, incorporating the electrostatic corrections.

The final step involves generating the .xml file, in which the model stores various quantities that char-
acterize the physical properties of the system, extracted from the folder files. Additionally, it includes
the one-electron Hamiltonian expressed in the Wannier function basis set for the RAG and RED, the
system’s density matrix, and the electron-lattice and electron-electron parameters.

Once the MODELMAKER workflow has been explained, we will proceed to describe the data stored in
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folder files.

The folder files contains the following files:

• RAG of the system, stored in SystemLabel.XV. The reference geometry provided to MODEL-
MAKER should correspond to the smallest conventional cell considered. The selection of the con-
ventional cell (which sometimes coincides with the primitive cell) instead of the primitive cell is
crucial, as the symmetry relations are established based on the axes of the conventional cell. The
designation for this geometry is unit cell (see Sec. 5.1), abbreviated as uc. For example, considering
the SrTiO3 system, the chosen RAG is its cubic centrosymmetric paraelectric phase, characterized
by a lattice parameter of 3.874 Å. For the LiF system, the selected RAG is the conventional cell,
which corresponds to a face-centered cubic (FCC) structure with 8 atoms per unit cell. The lattice
parameter is 4.026 Å.

• SIESTA input file. A template of the SIESTA input file is defined for the system for which the
electronic model is going to be constructed. Specifically, for the crystals under study, the input
file includes the features outlined in Sec. 6.1.1. Additionally, this file specifies the instructions for
Wannierizing the band manifolds of interest. In the particular cases of SrTiO3 and LiF, the details
of these calculations are provided in Secs. 6.3 and 6.4 respectively.

• The required pseudopotentials for all the chemical species (.psf or .psml files) for the correspond-
ing functional and the selected basis set. According to the solid state systems under study, the
selected pseudopotentials are described in Sec. 6.1.1.

• The symmetry operations associated to the point group of the selected RAG. These symmetry opera-
tions are essential for establishing the symmetry relations between the Hamiltonian matrix elements
and the model parameters, according to Sec. 5.4. To get the symmetry operations, we shall make
use of the Bilbao Crystallographic Server [175] selecting the point group of the desired structure. In
particular, the point group of the SrTiO3 system is Pm-3m while the point group of LiF is Fm-3m.

• The Born effective charges of the atoms in the system, SystemLabel.born. The Born effective
charges quantify the coupling between atomic displacements and the macroscopic electric field in a
crystal. For each atom in the crystal, they can be computed employing the SIESTA code.

• The electronic dielectric tensor, SystemLabel.diel. The electronic dielectric tensor is required for
a proper treatment of the electrostatics of the system. It can be accessed from a DFPT calculation,
as implemented in the ABINIT code.

• A file pointing to all the previous files that MODELMAKER uses to generate the model, setup.yml
file. In addition, this file includes the size of the supercell where the training set calculations will be
performed, the type of the Bravais lattice and the number of electrons in the WFs.
For the SrTiO3 system, a 2× 2× 2 supercell is used to perform the training set calculations. A
supercell is necessary to accommodate certain phases that characterize this complex system, such as
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the oxygen octahedra rotations in the perovskite structure (antiferrodistortive phase), which cannot
be accurately modeled with a simulation box containing only five atoms per unit cell. In the case
of LiF, the selected unit cell serves as the supercell. As previously explained, in this system the
selected unit cell is the conventional cell which in this case represents a supercell 2× 2× 2 of the
primitive cell.
To establish the number of electrons in the Wannier functions, for both systems the WFs have been
derived from the Bloch states at the top of the valence band (VB) and the bottom of the conduction
band (CB). Since both crystals are insulating, the top of the valence band is fully occupied, with two
electrons per band, while the bottom of the conduction band remains unoccupied. As a result, the
total number of valence electrons in SrTiO3 is 18 electrons, as the top of the valence band consists
of 9 bands. Similarly, for LiF, 12 valence bands correspond to a total of 24 electrons.

6.2 Symmetry

The incorporation of symmetry in the MODELMAKER code, as compared to the implementation in
Ref. [37], represents a significant advancement in the efficiency and accuracy of second-principles mod-
els. Specifically, the inclusion of symmetry substantially reduces the computational cost associated with
model generation across multiple sections of the code.

Firstly, the application of the symmetry constraints explained in Sec. 5.4 allows us reducing the number
of calculations to obtain the electron-lattice matrix elements. In SrTiO3 for methodology II the number
of single-point calculations necessary to create the electron-lattice model is 57840 without the use of
symmetry. This is reduced to 15 when using symmetry and an electron-lattice cutoff δ rel = 2.0 Å, or
209 if δ rel = 5.6 Å (see Sec. 6.3). In LiF, a similar reduction is achieved going from 2353 single-point
calculations without symmetry to 21 considering the symmetry of the system and δ rel = 3.0 Å.

Secondly, the incorporation of symmetry enables the direct calculation of a subset of parameters, with
the remaining parameters being determined by applying the corresponding symmetry relations.

In addition to enhancing computational efficiency, the inclusion of symmetry also improves the accu-
racy of the results, such as the reproduction of degeneracies observed in first-principles electronic band
structures as we will show in the following sections.

6.3 SrTiO3

The first system we consider is SrTiO3, a widely studied transition-metal perovskite that serves as a
common substrate for the epitaxial growth of other perovskites, such as ferroelectric PbTiO3 [193; 194].
SrTiO3 is also a key component in the design of complex oxide superlattices exhibiting intricate polar-
ization patterns [195] and has been associated with emergent metallic behavior at interfaces [196].
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The reference atomic geometry (RAG) adopted for this study corresponds to the high-symmetry cubic
paraelectric phase (space group Pm-3m), which contains five atoms per unit cell. Using the SIESTA code
within the local density approximation (LDA), the equilibrium lattice parameter is found to be 3.874 Å.

The electronic structure of SrTiO3 is characterized by an insulating gap separating the O(2p)-derived
valence bands and Ti(3d)-derived conduction bands. As shown in Fig. 6.1, the top of the valence band
is dominated by O(2p) states, while the bottom of the conduction band consists primarily of Ti(3dxy),
Ti(3dxz), and Ti(3dyz) orbitals forming a t2g manifold, as expected for isolated TiO6 octahedra. While the
experimental indirect gap is approximately 3.25 eV [197], the DFT-LDA result yields a smaller value
near 1.7 eV (see Fig. 6.1). To construct a second-principles model capable of capturing essential phys-
ical phenomena in SrTiO3, including polaron formation, we build a Hamiltonian incorporating Wannier
functions that describe both the valence band and the t2g conduction manifold. In this context, as outlined
in Sec. 5.3, second-principles simulations require the construction of Wannier functions derived from the
Bloch states associated to two distinct manifolds. In the computational framework, the first manifold
corresponds to the top of the VB, associated to the 2p oxygen states (shown in blue in the PDOS rep-
resentation, Fig.6.1). It is reasonable to use the nine 2p orbitals associated with the three oxygen atoms
in the unit cell (three 2p orbitals per atom) as the basis for projection to obtain the Wannier functions.
The second manifold encompasses the energy range associated with the bottom of the CB, dominated by
a t2g character associated to Ti 3d (represented by green in the PDOS plot, Fig. 6.1). Then, dxy,dyz,dxz

orbitals are selected as seed to express the states of the conduction band in Wannier functions basis set.
Additionally, a third manifold is introduced, which integrates both the first and second manifolds. This
third manifold is essential for investigating the electronic transitions between the first and second man-
ifolds. As mentioned in Sec. 5.3 we employ SIESTA to wannierize the valence and conduction bands
individually and then combine both to calculate the position operator elements r⃗ab.

In defining the second manifold, a challenge arises due to the necessity of applying a disentanglement
procedure (see Sec. 1.6) [69]. As shown in Fig. 6.1, where the band structure of the RAG for the unit
cell is depicted, the t2g bands—belonging to the second manifold—overlap in energy within the Brillouin
zone with the eg bands, corresponding to Ti(3dz2), Ti(3dx2−y2) atomic orbitals. This overlap is particularly
evident in Fig. 1.8, which presents the RAG bands for a 2×2×2 supercell. At the Γ point, this crossing
is clearly visible.

To effectively separate the three t2g bands from the eg bands, two energy windows are defined: (i) the
inner energy window (frozen manifold), highlighted in Fig. 1.7, encompasses the three t2g bands within
the energy range of -6.0 eV to -3.0 eV. (ii) The outer energy window (disentanglement window) is se-
lected to include all five 3d bands, ensuring that the t2g bands remain frozen within the inner window.
This outer window spans an energy range from -6.0 eV to 2.0 eV. Since the third manifold contains the
second, a similar disentanglement procedure must be applied, represented in Fig. 6.1(a). In this case,
both the inner and outer energy windows must include both the valence band (VB) and conduction band
(CB). Consequently, the inner energy window extends from -15.0 eV to -3.0 eV, while the outer window
covers the range from -15.0 eV to 2.0 eV.
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Figure 6.1: (a) Electronic band structure of SrTiO3 at the cubic RAG where the valence band manifold with O(2p)
character is represented in blue and the conduction Ti[3d(t2g)] and Ti[3d(eg)] manifolds are displayed in green and
magenta, respectively. The global windows used during the Wannierization procedure are indicated with dashed
red lines. (b) Projected density of states.

Figure 6.2: Wannier functions of SrTiO3 used as the basis for second-principles models that accurately reproduce
the top of the valence band with predominant O(2p) character, as well as the lower conduction bands associated
with Ti(t2g) orbitals. Green, blue, and red spheres represent Sr, Ti, and O atoms, respectively.
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For Wannier function calculations and the evaluation of the Hamiltonian and position matrix elements in
real space, a k⃗-point sampling 4× 4× 4 of the Brillouin zone is employed for a unit cell. The Wannier
functions in this quasi-atomic representation, represented in Fig. 6.2, exhibit compact localization, with
spreads of 1.17 Å2 for O[2p(σ)] Wannier functions and 1.28 Å2 for O[2p(π)] Wannier functions. In
contrast, the t2g Wannier functions are less localized, with spreads of 1.74 Å2.

Figure 6.3: Black solid line (left axis): Decimal logarithm of the cumulative function H(r), quantifying the contri-
bution of one-electron Hamiltonian elements as a function of the inter-Wannier distance r. Red dashed line (right
axis): Decimal logarithm of the number of Hamiltonian matrix elements with centroid separation less than r. The
vertical dotted line marks the chosen one-electron Hamiltonian cutoff distance, δ rh = 9.0 Å, used in the SrTiO3

model to reproduce the band structure shown with dashed red lines in Fig. 6.1(a).

To determine an appropriate value for the one-electron interaction cutoff distance δ rh, we compute the
function

H(r) = ∑
|⃗rb−⃗ra|<r

h2
ab(r), (6.1)

which sums the squared Hamiltonian matrix elements between pairs of Wannier functions a and b with
centroids separated by less than distance r. We can observe in Fig. 6.3 that the analysis of the black curve
H(r) can be divided in four regions that we will define over the rest lines. In support of this explanation,
we shall employ Fig. 6.4. This picture illustrates a scheme of the SrTiO3 system projected in the z-plane.
By selecting the Ti atom of the home unit cell placed in the center of the drawing, we color different
shells in the z-plane classifying the interactions according to the neighbors’ distances (we neglect the Sr
atom which does not present Wannier functions in the active set). We expect that the Hamiltonian matrix
elements should decay fast with the distances between the Wannier functions. This effect is represented
in the figure by decreasing the intensity of the orange color with the distance.

RANGE 0–1.9 Å. This region encompasses distances from 0 Å to 1.9 Å. Within this range, the initial
goal function remains approximately flat over the entire interval. This behavior arises from the crystal
structure of SrTiO3. In the RAG, the lattice constant is a = 3.874 Å [198], resulting in a nearest-neighbor
distance of a/2 = 1.973 Å. Given the ionic character of the SrTiO3 crystal, the Wannier functions are
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strongly localized and centered on individual atoms. Consequently, for distances below a/2, interactions
between WFs centered on different atoms are negligible. In this short-range regime, only on-site interac-
tions—those occurring among WFs centered on the same atom—are relevant. This on-site terms range
is depicted in Fig. 6.4 as intense orange area, corresponding to the Ti atom in the reference unit cell.

Figure 6.4: Different shells classifying interaction of the Wannier functions of Ti atom in the home unit cell with
the Wannier functions of its neighbors. The more intense the orange color, the stronger the interaction between the
orbitals.

RANGE 1.9–4 Å. The second region spans from 1.9 Å to 4 Å, where a marked increase in the initial goal
function is observed. This sharp rise reflects the emergence of non-zero Hamiltonian matrix elements. In
particular, for the studied WFs [O (2p) and Ti (t2g) orbitals], the following interactions become relevant:

• FIRST NEIGHBOR SHELL: Interactions between WFs located on Ti and O atoms within the TiO6

complex, separated by a/2 = 1.973 Å.

• SECOND NEIGHBOR SHELL: Interactions between WFs on O atoms within the same unit cell, with
a separation of a/

√
2 = 2.739 Å.

• THIRD NEIGHBOR SHELL: Ti–Ti interactions between atoms located at [±1,0,0]a, [0,±1,0]a, and
[0,0,±1]a positions, corresponding to a distance of a = 3.874 Å.

• THIRD NEIGHBOR SHELL: Analogous O–O interactions at the same displacement vectors, also at
a = 3.874 Å.

In summary, within this distance range, first-, second-, and third-neighbor Hamiltonian elements become
non-zero, and their magnitudes are significant due to the spatial proximity of the involved WFs.

RANGE 4–9 Å. In the interval between 4 Å and 9 Å, additional non-zero interactions continue to emerge,
yet their contribution to the initial goal function remains comparatively small. This behavior can be
attributed to the strong localization of the WFs. Although the number of interaction terms increases
beyond 4 Å, the magnitude of the corresponding matrix elements hab decreases significantly due to the
rapid decay of the WFs and reduced spatial overlap.
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Based on the behavior of the goal function, a cutoff value of δ rh = 6 Å may appear sufficient. However,
a detailed analysis of the resulting band structure reveals residual discrepancies in the valence band near
the Γ point [see Fig. 6.5(b)].

RANGE > 9 Å. For interatomic distances beyond 9 Å, the Hamiltonian elements become negligibly
small, and the goal function resumes a nearly constant value, indicating the absence of further significant
interactions.

Based on this analysis, a cutoff radius δ rh = 9.0 Å is identified as a reasonable compromise. This value
ensures that all relevant short-range interactions are incorporated into the model. In Fig. 6.3, this cutoff
is represented by the vertical dotted blue line. It is important to note that increasing δ rh also leads to a
rapid growth in the number of Hamiltonian terms (see red curve in Fig. 6.3), which in turn increases the
computational cost associated to running second-principles calculations.

To study the influence of the cutoff parameter δ rh on the electronic band structure and to demonstrate
the ability of Hamiltonian matrix elements expressed in a Wannier function basis to accurately reproduce
first-principles results as δ rh increases, Fig. 6.5 presents the calculated bands for the RAG geometry and
in the RED for a range of cutoff values δ rh. In Fig. 6.5, the band structure for the RAG within the RED
obtained from full first-principles calculations using density functional theory (DFT), as implemented in
the SIESTA package, is shown in blue. Superimposed on this, we present the band structure computed
from the Hamiltonian matrix elements in the Wannier function basis (represented in red). These bands
are derived as described in Sec. 2.1.6, where the summation over lattice vectors R⃗ is truncated for pairs
of Wannier functions whose centers are separated by more than the specified cutoff distance δ rh.

From a model-building perspective, the cutoff distance δ rh directly determines which Hamiltonian ma-
trix elements hab are retained, effectively selecting the interacting Wannier function pairs (a,b) to be
included in the model. In this way, we construct four models characterized by cutoff values δ rh ∈ {4 Å,
6 Å, 8 Å, 9 Å}. In addition, since the system we aim to represent is not distorted from the reference
geometry and its electronic configuration remains in the ground state, the exclusive parameter which is
going to contribute to the hamiltonian matrix elements in Eq. (4.37) is γ

sh,RAG
ab .

Attending to the band diagram representation in Fig. 6.5, the corresponding cutoff values and the number
of retained one-electron interactions in each model are indicated at the top of the respective panels. These
values provide a basis to evaluate the size of the model and to estimate the computational cost required
to achieve an accurate representation of the electronic structure of the system.

By increasing δ rh, the accuracy of the band structure calculation improves systematically. As illustrated
in Fig. 6.5, the agreement between the model-derived and first-principles bands becomes progressively
better with larger values of the cutoff. A satisfactory compromise is achieved at δ rh = 9Å. Therefore,
this value is selected as the cutoff for the subsequent analysis, as previously anticipated.
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Figure 6.5: Representation of the bands of SrTiO3 in the centrosymmetric paraelectric cubic structure for various
values of the distance cutoff δ rh. Blue lines represent the bands obtained from first-principles, while the results
from the second-principles model are shown in red. On top of each plot we indicate the corresponding number of
hab matrix elements per unit cell that are included.

6.3.1 Electron-lattice parameters: methodology I

After establishing the adequate description of the RAG in the previous steps, we now move to determine
the electron-lattice coupling in the form of linear, f⃗ab,λυ, and quadratic,←→g ab,λυ terms, according to the
methodology I.

The methodology I was further evaluated for the SrTiO3 system. In this Section, we present a collection
of selected results along with a discussion of the challenges encountered during its development.

As described in Sect. 5.6.2, for this methodology, the training set employed consists of a collection of
calculations characterized by random atomic displacements. Each atom is randomly displaced from its
position in the RAG within a sphere of radius 0.1 Å.

Given the training set, the analysis of electron-lattice coupling begins with the identification of appro-
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priate cutoff parameters, a crucial aspect controlled by the user. Cutoffs determine which variables are
included in the fitting procedure based on two primary criteria: proximity in real space (useful due to
the localized nature of the Wannier functions) and the quadratic error generated by the electron-lattice
training set associated with each symmetry group—a set of pairs of Wannier functions which are related
by symmetry.

Then, following the generation of the training set, the next step involves identifying the symmetry groups
that introduce the largest errors. Groups with larger errors significantly influence the overall model
accuracy and are therefore prioritized, as the most critical parameters involve Wannier function pairs
dependent on the training set state. Specifically, a group G is selected for the generation of electron-
lattice variables if it satisfies the condition

Θ
G
el > δεel. (6.2)

where ΘG
el represents the goal function per symmetry group. Notably, in this step, the goal function is

independent of any electron-lattice or electron-electron model parameters.

Figure 6.6: Quadratic error generated by the electron-lattice training set is shown per group, ΘG
el (left y-axis), as

solid vertical blue lines. This error is computed in the absence of electron-lattice parameters. The groups are
ordered by distance. The cumulative sum of these errors is represented by the red curve, corresponding to the
right y-axis. The cutoff distance δ rh = 9Å is indicated by a vertical orange dotted line, while the cutoff energy
δεel = 2.0eV2 is represented by a horizontal green dotted line.

Figure 6.6 presents the obtained values of ΘG
el (blue vertical lines), illustrating the error contribution of

different groups. Since all interactions within a given group share the same interaction distance, the
groups can be ordered by increasing interaction range, as represented on the x-axis. The first groups are
associated with shorter distances while the last ones will be characterized by large interaction distances.
Additionally, the red curve in Fig. 6.6 represents the cumulative sum of errors (right y-axis), where its
final value corresponds to the total error contribution from all groups, given by Θel. In the figure, the
cutoff distance δ rh is depicted as a dotted vertical orange line, while the cutoff energy δεel is shown as a
dotted horizontal green line. The groups associated with error bars exceeding δεel are selected [Eq. (6.2)]
for the generation of electron-lattice variables. This visualization provides a clear understanding of the
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primary groups sources of error and their dependence on interaction distance, guiding the selection of
relevant variables for the model.

Thus, the selection of groups for electron-lattice variable generation depends on the value of δεel.
For instance, considering two models with a fixed cutoff distance δ rh = 9.0 Å. A cutoff energy of
δεel = 2.0 eV2 results in the selection of six groups. As δεel decreases, the number of selected groups
increases. When the cutoff energy is reduced to δεel = 0.5 eV2, the number of selected groups for
electron-lattice variable generation rises to twelve.

At this stage, we have identified the groups, specifically the pairs of Wannier functions (a,b), that will
be considered in the selection of electron-lattice parameters.

After selecting the pairs of Wannier functions, the next step is to pick the atoms involved in the formation
of electron-lattice variables f⃗ab,λυ and

↔
gab,λυ. In this methodology (methodology I) both variables

depend on two atoms as defined in Eq. (4.24). The list of atomic pairs consists of atoms whose distance
measured in the RAG is smaller than the chosen cutoff δ rel. For SrTiO3, the considered cutoff values
are 2.5 Å and 4.0 Å. In the cubic paraelectric geometry of SrTiO3 the lattice parameter is a = 3.874 Å.
Then, the cutoff δ rel = 2.5 Å includes first-neighbor atomic pairs, such as Ti-O, while δ rel = 4.0 Å adds
atomic pairs that are one periodic replica away, such as Ti-Ti and O-O. These longer-range interactions
are particularly significant in the context of octahedra rotations.

Considering the pairs of Wannier functions selected by δεel and the pairs of atoms defined by δ rel, the
final step involves the selection of electron-lattice variables. Specifically, if a pair of Wannier functions
(a,b) and a pair of atoms (λ,υ) satisfy the condition imposed by the cutoff δ rellat, then the variables
f⃗ab,λυ and

↔
gab,λυ are consider in the fitting procedure. In this study, the selected values for the electron-

lattice parameters are δ rellat = 4.0 Å and δ rellat = 6.0 Å. For larger cutoff distances δ rel and δ rellat, the
calculations become impractical.

After the selection of electron-lattice variables for a given model, the fitting procedure is initiated. In
this step, the most relevant electron-lattice parameters are selected from the generated set, and their
corresponding values are computed. This procedure aims to identify the optimal model by fitting the
electron-lattice variables to the training set (see Sec. 5.6.2.7). Figure 6.7 illustrates the goal function
(the error produced by the training set of the system) as a function of the number of variables included
in each step of the minimization in the different studied models.

The models under investigation are characterized by the following cutoffs:

a) δεel = 2.0 eV2, δ rel = 2.5 Å, δ rellat = 4.0 Å

b) δεel = 0.5 eV2, δ rel = 2.5 Å, δ rellat = 4.0 Å

c) δεel = 2.0 eV2, δ rel = 4.0 Å, δ rellat = 4.0 Å

d) δεel = 2.0 eV2, δ rel = 2.5 Å, δ rellat = 6.0 Å
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In Fig. 6.7, the dots represent electron-lattice variables, while the crosses correspond to electron-electron
variables, which will be addressed in the following section.

Figure 6.7: Total goal function, Θ, as a function of the number of variables included in the model during the fitting
procedure represented by in blue. Blue dots indicate that the corresponding selected variable is an electron-lattice
variable. The red dashed line represents the error associated with the optimal model that can be constructed given
the chosen cutoffs δ rh and δεel. Each panel corresponds to a different set of electron-lattice cutoff parameters,
which are specified at the top of the respective plots leading to different models.

As shown in Fig. 6.7, the total goal function quickly decreases with the inclusion of variables, with
the most significant reductions occurring with the incorporation of the first (most relevant) variables.
However, as more variables are added, the reduction in error becomes less pronounced, particularly for
the last variables selected.

When adjusting the cutoffs to improve the model, it is evident that the number of considered electron-
lattice variables increases. For instance, when changing the energy cutoff from δεel = 2.0 eV2 [Fig. 6.7(a)]
to a smaller cutoff, δεel = 0.5 eV2, which allows for the formation of electron-lattice variables for groups
associated to smaller ΘG

el error, [Fig. 6.7(b)], the number of variables increases from 14 to 19. When
adding atomic pairs at larger distances, the number of selected variables increases further. Comparing

175



Chapter 6. Results

Fig. 6.7(a), characterized by δ rel = 2.5 Å, with Fig. 6.7(c), characterized by δ rel = 4.0 Å, the number of
selected variables increases to 22. Finally, when the cutoff δ rellat is increased from 4.0 Å to 6.0 Å, the
number of selected variables rises to 28.

While adjusting the cutoffs improves the model, it does not lead to a significant reduction in the quadratic
error. It is apparent that beyond the 14th variable, the curve flattens. This indicates that the decreasing in
the goal function is minimal, and the final selected variables do not exhibit a clear priority over others.
Indeed, we observe that with the inclusion of additional variables when “improving” the cutoffs, the curve
becomes flat, showing little enhancement in the reproduction of the training set. Therefore, although we
may improve the cutoffs and attempt to create a less computationally intensive model, these adjustments
do not significantly reduce the error. We can just compare the different plots, all of them reduce the error
until 20 eV2 approximately.

By employing the previously generated models—which integrate the one-electron parameters along with
the electron-lattice coupling corrections—it becomes possible to analyze the improvements introduced
by the electron-lattice interaction in representing the training set used to fit the model. For the different
models, the quadratic error associated with each symmetry group can be compared before and after the
inclusion of the electron-lattice coupling terms. Figure 6.8 presents a plot analogous to that shown in
Fig. 6.6 for model (a) characterized by δεel = 2.0 eV2, δ rel = 2.5 Å, δ rellat = 4.0 Å. In this case, the
vertical dashed blue lines indicate the quadratic error per group obtained without incorporating electron-
lattice coupling (i.e., the values shown in Fig. 6.6), whereas the solid vertical blue lines represent the
corresponding errors after the inclusion of electron-lattice terms, that is, with the final model. The four
models yield similar plots in which the changes are negligible. Therefore, in this work, we have presented
only one representative example.

Figure 6.8: Quadratic error generated by the electron-lattice training set is shown per group, ΘG
el (left y-axis), as

solid vertical blue lines. This error is computed after incorporating the electron-lattice parameters, which account
for geometry distortions. The groups are ordered by distance. The cumulative sum of these errors is represented
by the solid red curve, corresponding to the right y-axis. Dashed blue vertical lines represent the initial quadratic
error (the ones shown in Fig. 6.6). The cumulative sum of the initial errors is represented by the dashed red curve,
corresponding to the right y-axis. The cutoff distance δ rh = 9Å is indicated by a vertical orange dotted line, while
the cutoff energy δεel = 2.0eV2 is represented by a horizontal green dotted line.
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At this point, we are going to validate the accuracy of our proposed strategy. In order to check the
method, we will discuss its application to different configurations of the SrTiO3 system out of the training
set. Moreover, for the purpose of building the best model regarding a balance between accuracy and
efficiency, we explore different values for the cutoff variables. Here, the validation of the models is based
on the comparison of the band diagram representations obtained from first-principles calculations versus
second-principles calculations. The latter take advantage of the models. The first-principles bands data
have been obtained from calculations with the SIESTA code based on density-functional theory by local
density approximation (LDA). In the representation, they are shown in blue while the band diagrams from
second-principles calculations are colored in red. Let us now discuss the predictions for the electronic
band structure that our obtained models yield for SrTiO3’s ferroelectric and antiferrodistortive phases.
It is worth noting that in the study of electron-lattice parameters, the effect of strain has not yet been
incorporated. Therefore, when referring to the different phases, we are actually referring to the atomic
displacements that characterize these phases within the cubic cell.

In Fig. 6.9 we compare the full first-principles bands for a SrTiO3 unit cell in a ferroelectric phase with
those obtained by second-principles from models corresponding to δεel = 2.0 eV2, δ rel = 2.5 Å and
δ rellat = 6.0 Å.

Figure 6.9: Representation of the bands of ferroelectric SrTiO3. Blue lines show the bands obtained from first-
principles and the red ones, the results from the second-principles models.

The incipient ferroelectricity observed in SrTiO3 along the z-axis induces a spontaneous polarization and
drives the system into a tetragonal phase, accompanied by atomic displacements that break the inversion
symmetry. While the x and y directions remain equivalent, the z-axis becomes distinct, lowering the
overall symmetry of the crystal. In particular, in Fig. 6.9 we have considered exclusively the atomic
displacements, without including the effect of the strain. This structural distortion is reflected in the
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electronic band structure. In the high-symmetry paraelectric cubic phase, the three lowest conduction
bands, primarily characterized by t2g states, are degenerate at the Γ point. However, upon transitioning to
the ferroelectric phase, this degeneracy is lifted: two of the bands, corresponding to the x and y directions,
remain degenerate, while the third band shifts downward in energy. This results in an energy splitting of
∆Et2g = 0.15 eV between the non-degenerate z-oriented state and the x-y doublet.

The symmetry breaking and the associated band splitting arise from a strong coupling between the elec-
tronic states and lattice distortions—an interaction that is not only central to ferroelectricity but also plays
a crucial role in the formation of polarons. In this context, the lowered symmetry and anisotropic band
structure enhance the localization tendencies of charge carriers. Indeed, electron-doped SrTiO3, with its
high lattice polarizability and low-energy conduction bands, provides a prototypical setting for examin-
ing electron-phonon interactions and polaron formation in perovskites. As an example, the formation
of small polarons has been observed experimentally through a substantial enhancement of the electron’s
effective mass [199]. As a result, reproducing the observed splitting through electron-lattice correction
terms constitutes one of the primary objectives of our models. However, when applying methodology
I, achieving an accurate value of this splitting became a significant challenge. The models constructed,
some of them presented above, tended to underestimate the splitting, yielding values ∆Et2g between 0.05
and 0.07 eV, as shown in the band structure representation, Fig. 6.9.

In an attempt to reproduce the splitting, several models were generated in which both the training set
and the cutoffs were varied. However, due to the inability to accurately reproduce this splitting, the
analysis shifted to studying the interactions between Wannier functions in the ferroelectric phase, aiming
to investigate the quantitative origin of the splitting. Specifically, the focus was on determining the range
of distances that needed to be considered between two Wannier functions generated for the ferroelectric
phase in order to accurately reproduce the observed splitting. The ferroelectric phase was wannierized,
resulting in Wannier functions that were perturbed from those obtained for the cubic centrosymmetric
phase due to changes in hybridization caused by the geometric distortions.

Then, a model was built where the selected RAG was the ferroelectric phase (without electron-lattice
parameters). Subsequently, a study was performed to assess the variation of the splitting as a function of
the cutoff δ rh, as summarized in Tab. 6.1. Since the study focuses on the conduction bands associated
with the t2g states of the titanium atoms, the choice of δ rh in this table was based on the interactions
between a titanium atom and its periodic replicas. According to the table, the first column specifies the
number of neighboring cells considered by the model for constructing the bands. The second column
represents the hopping (expressed in terms of the lattice vectors of a unit cell) between the titanium atom
in the home unit cell and the titanium atoms in a neighbor cell R⃗, determining the selected cutoff δ rh.
The third column provides the corresponding value of the cutoff δ rh needed to include the neighboring
cell, while the fourth column shows the resulting splitting of the conduction band.

From the results, it is evident that accurately reproducing the splitting requires incorporating the effects
of Wannier functions up to the fourth nearest neighbors.

178



6.3. SrTiO3

If we return to a model where the selected reference atomic geometry (RAG) is the cubic centrosym-
metric phase, the changes in the Wannier functions of the ferroelectric phase, compared to those of the
RAG, should be captured by the electron-lattice coupling correction. To accurately capture the interac-
tion between two Wannier functions at the fifth nearest neighbors the cutoff δ rh must be at least 9 Å.
Additionally, this requires considering electron-lattice parameters associated with pairs of Wannier func-
tions (a,b) and pairs of atoms (λ,υ) that are 9 Å apart. As a result, δ rellat should be set to a minimum
of 9 Å, making the use of methodology I computationally prohibitive.

The introduction of methodology II is motivated by these challenges, particularly the difficulty in repro-
ducing the ferroelectric phase at a manageable computational cost. Moreover, methodology II aims to
address the need for a methodology in which the fitting process of electron-lattice variables is fully de-
termined. To this end, the new methodology removes the cutoff δ rellat, instead introducing energy-based
cutoffs that filter electron-lattice parameters according to their energy values, rather than the distance
between Wannier functions and the involved atoms.

Ti-Ti neighbor cell Rx Ry Rz δ rh (Å) ∆Et2g (eV)

on-site 0 0 0 1.0 0.016

1st-neigh 0 1 0 4.0 0.073

2nd-neigh 1 1 0 5.5 0.104

3rd-neigh 1 -1 -1 7.0 0.101

4th-neigh 2 0 0 8.0 0.120

5th-neigh 0 2 1 9.0 0.146

6th-neigh 1 -2 1 9.5 0.144

7th-neigh 2 2 0 11.0 0.149

8th-neigh 2 -2 1 12.0 0.149

Complete 2 2 2 50.0 0.150

Table 6.1: Table displaying hopping parameters, cutoff distances, and corresponding splitting values.

Once the atomic displacements on the ferroelectric phase have been studied with methodology I, we con-
sider the atomic distortions in the antiferrodistortive geometry (see Fig. 6.10). As previously mentioned,
the strain is not included in the phase.

Electronic band structure of a SrTiO3 antiferrodistortive geometry is obtained from first-principles and
second-principles calculations. This phase is simulated in a supercell 2× 2× 2 since the antiphase
rotation of the octahedra can’t be reproduced by translations of the unit cell with 5 atoms. For this
geometry, the electronic band structures corresponding to the previously defined models were calculated
using the second-principles framework, with the results shown as red curves in Figs. 6.11(a)–6.11(d).
For comparison, the corresponding first-principles band structure is shown in blue.
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Figure 6.10: Representation of the rotations of oxygen octahedra in the SrTiO3 antiferrodistortive phase, char-
acterized by octahedra rotations about the z-axis. The octahedra rotate in anti-phase along the three Cartesian
directions. The figure shows the rotational pattern of the four octahedra in each titanium atomic layer, denoted
as “Layer 1” and “Layer 2”. The octahedra rotations alternate between clockwise (indicated by purple arrows)
and anti-clockwise (indicated by orange arrows). These rotations result from displacements of oxygen atoms: by
∆O = 0.2Å along the x-direction within the Y -plane, and by ∆O = 0.2Å along the y-direction within the X-plane,
with the senses represented in the scheme.

Figure 6.11: Electronic band structure of SrTiO3 system characterized by a geometry with the atomic displace-
ments in the antiferrodistortive SrTiO3 phase. Blue lines represent the bands obtained from first-principles, while
the results from the second-principles models, characterized by a collection of cutoffs, are shown in red. At the top
of each plot, we indicate the corresponding cutoff values.
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6.3. SrTiO3

Analyzing the different electronic band structures, we observe neither the model associated to Fig. 6.11(a)
nor the model improving δεel, Fig. 6.11(b), are able to reproduce the band diagram of this geometry. The
main and obvious discrepancies with the first-principles calculations are the band gap and the energies
obtained for the conduction band in the R symmetry point. On the one hand, the band gap from second-
principles is larger that the one obtained from first-principles. This fact shifts the conduction band with
respect the blue bands. On the other hand, from first-principles calculations the energies at R point
are degenerate for the conduction band. Looking at second-principles calculations, this degeneration is
splitted into two energies. Now, attending to models where the distance cutoffs δ rel and δ rellat have been
increased leading to Fig. 6.11(c) and Fig. 6.11(d), respectively, we observe a clear improvement of the
matching between red and blue bands. In such cases, the band gap and the degeneration of the R point
in the conduction band are perfectly reproduced. The large amount of bands in the valence band makes
it difficult to compare the results for the two calculations. By analyzing the conduction band, we can see
how the bands from the different calculations fit quite well. As consequence, the cutoffs δ rellat and δ rel

play a decisive role in the construction of the SrTiO3 model, since when these cutoffs are increased, the
model incorporates variables associated with two oxygen atoms that are periodic replicas, representing a
critical interaction in the rotational dynamics of the octahedra.

6.3.2 Electron-lattice parameters: methodology II

We now move to compute the electron-lattice coupling applying the methodology II. Firstly, we pro-
ceed to determine the electron-lattice coupling terms—specifically, the linear couplings f⃗ab,λ and the
quadratic couplings←→g ab,λυ. We begin by defining the electron-lattice interaction cutoff distance, δ rel,
which sets the maximum separation (at the RAG) between atoms participating in the quadratic electron-
lattice coupling. It is important to emphasize that increasing δ rel significantly impacts on the computa-
tional cost, both in terms of the number of DFT calculations required to generate the training set and the
resulting size of the second-principles model, which in turn affects its efficiency in simulations.

To evaluate the impact of different δ rel values, we construct a test set composed of 10 randomly distorted
geometries, as described in Sec. 5.6.4, characterized by an atomic displacement parameter d. The result-
ing second-principles energies are compared against their DFT counterparts, and the average error per
calculation in testing set is plotted in Fig. 6.12(a) as a function of d. The black curve corresponds to a
model without any electron-lattice correction, while the olive green curve includes only linear electron-
lattice terms. The remaining curves (purple, blue, and orange) incorporate quadratic corrections for
increasing values of δ rel: 2.0 Å which includes only nearest-neighbor Ti–O interactions; 4.0 Å cap-
turing interactions between atoms spanning a full five-atom unit cell; and 5.6 Å which incorporates
longer-range contributions beyond a single unit cell.

To clearly identify the errors introduced by the models with the inclusion of electron-lattice coupling,
Fig. 6.12(b) presents the same set of curves as in the previous plot (a), excluding the errors associated
with the model in the absence of electron-lattice interaction. As shown in Fig. 6.12(b), the model with
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δ rel = 2.0 Å exhibits a more rapid accumulation of error compared to the models with δ rel = 4.0 Å
and 5.6 Å which yield nearly indistinguishable results. This behavior underscores the importance of
including quadratic oxygen–oxygen interactions within a single TiO6 octahedron in order to accurately
capture the modifications to the Hamiltonian induced by strong electron-lattice coupling in SrTiO3. To
reduce the number of electron-lattice coupling terms and thereby simplify the model, we introduce cutoff
thresholds δ f and δg for the inclusion of linear and quadratic coupling constants, respectively. The effect
of these thresholds on model accuracy is presented in Fig. 6.13. For large thresholds (δ f = 0.5 eV/Å,
δg = 0.5 eV/Å2), the error increases rapidly with the displacement d. Reducing both δ f and δg by a
factor of five (δ f = 0.1 eV/Å, δg = 0.1 eV/Å2) leads to a fourfold reduction in error for d = 0.17 Å.
These errors can be further reduced until we reach thresholds that are one order of magnitude smaller,
δ f = 0.01 eV/Å, δg = 0.01 eV/Å2, where we seem to find the limit for the quadratic coupling approxi-
mation employed here.

As before, to clearly identify the errors introduced by the models with the inclusion of electron-lattice
coupling, Fig. 6.13(b) presents the same set of curves as in the previous plot (a), removing the curve
associated with the model in the absence of electron-lattice interaction.
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Figure 6.12: (a) Goal function Θ for SrTiO3 measuring the average error per calculation in test set consisting of ten
configurations with increasing random displacements d from the RAG. The cutoff values for the electron-lattice
force constants are fixed at δ f = 0.1 eV/Å and δg = 0.1 eV/Å2. The black curve corresponds to a model without
electron-lattice coupling; the olive green curve includes only linear terms. The purple, blue and orange curves
include both linear and quadratic terms, with electron-lattice cutoffs δ rel = 2.0 Å, δ rel = 4.0 Å, and δ rel = 5.6 Å,
respectively. The blue and orange curves are indistinguishable. In panel (b), the results corresponding to the model
without the electron-lattice coupling correction have been excluded to enable a focused view of the remaining data.
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Figure 6.13: (a) Goal function Θ for SrTiO3 measuring the average error per calculation in test set consisting of ten
configurations with increasing random displacements d from the RAG. The curves measure the effect of varying
the cutoff thresholds δ f and δg on Θ, for fixed δ rel = 4.0 Å. The green, blue, and red curves correspond to (δ f ,
δg) values of (0.5 eV/Å, 0.5 eV/Å2), (0.1 eV/Å, 0.1 eV/Å2), and (0.01 eV/Å, 0.01 eV/Å2), respectively. In panel
(b), the results corresponding to the model without the electron-lattice coupling correction have been excluded to
enable a focused view of the remaining data.

To assess how these errors affect the electronic structure, Fig. 6.14 presents band structures for SrTiO3

including error bars. These error bars represent the statistical deviation of the second-principles model
predictions from the DFT results for a test set with d = 0.17 Å. Similar trends are observed for smaller
displacements, as presented in Fig. 6.15 for d = 0.1Å, although in those cases the errors are much smaller
than the one presented in Fig. 6.14. To examine the influence of the electron-lattice cutoff δ rel, we com-
pare the results of the test set for different cutoff values. Figure 6.14(a) shows the band structure in the ab-
sence of any electron-lattice coupling, while Figs. 6.14(b)–6.14(d) present results for δ rel = 2.0, 4.0, and
5.6 Å respectively. A key result of this analysis is the essential role of electron-lattice coupling parame-
ters in accurately reproducing the electronic band structure across different atomic configurations. Both
the linear electron-lattice contributions and the quadratic terms associated with first-neighbor Ti–O inter-
actions are found to be critical. This is demonstrated by the substantial reduction in the error bars of the
electronic structure when progressing from a model without any electron-lattice coupling [Fig. 6.14(a)]
to those incorporating linear and quadratic terms for increasing values of δ rel [Figs. 6.14(b)–6.14(d)].
Although the inclusion of linear terms and first-neighbor Ti–O interactions significantly improves the
agreement with the reference calculations, the remaining discrepancies in Fig. 6.14(b) indicate that this
level of approximation is insufficient for full accuracy.

A more detailed comparison between Figs. 6.14(b) and 6.14(c) underscores the necessity of incorporat-
ing longer-range electron-lattice interactions. In particular, extending the interaction range to include
atoms across an entire five-atom unit cell yields a marked reduction in error bars, highlighting the impor-
tance of non-local effects. Notably, interactions between oxygen atoms and their periodic images within
a single unit cell are especially relevant, as they are closely tied to octahedra rotation modes. For in-
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stance, when analyzing the geometry of the antiferrodistortive phase represented in Fig. 6.10, including
octahedra rotations characterized by in-plane oxygens displacements ∆O = 0.2Å, the choice of a cutoff
parameter δ rel smaller than the cubic lattice parameter becomes a critical consideration, as evidenced
in the band structures shown in Fig. 6.16. The model defined by δ rel = 2.0Å produces band structures
with significant deviations along the Γ−X path, which are rectified by incorporating oxygen-oxygen
interactions. The remaining discrepancies will be examined in further analysis.

Γ X M R Γ
12

10

8

6

4

2

Γ X M R Γ
12

10

8

6

4

2

Γ X M R Γ
12

10

8

6

4

2

Γ X M R Γ
12

10

8

6

4

2

Figure 6.14: Electronic band structures of SrTiO3 with error bars (red) indicating the statistical deviation of second-
principles simulations from DFT results over a test set of ten geometries characterized by d = 0.17 Å. Panel (a)
corresponds to a model without electron-lattice coupling. Panels (b)–(d) include both linear and quadratic electron-
lattice interactions with increasing interaction range characterized by δ rel = 2.0, 4.0, and 5.6 Å, respectively. All
models employ threshold parameters δ f = 0.1 eV/Å and δg = 0.1 eV/Å2.
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Figure 6.15: Electronic band structures of SrTiO3 with error bars (red) indicating the statistical deviation of second-
principles simulations from DFT results over a test set of ten geometries characterized by d = 0.1 Å. Panel (a)
corresponds to a model without electron-lattice coupling. Panels (b)–(d) include both linear and quadratic electron-
lattice interactions with increasing interaction range characterized by δ rel = 2.0, 4.0, and 5.6 Å, respectively. All
models employ threshold parameters δ f = 0.1 eV/Å and δg = 0.1 eV/Å2.

At this stage, by adopting larger electron-lattice cutoffs, we observe that quadratic interatomic interac-
tions beyond δ rel = 4Å have a negligible impact on the electronic structure. This is seen in Fig. 6.14(d)
and in the overlap of orange and blue curves in Fig. 6.12. Therefore, we find that δ rel = 4.0Å strikes a
balanced trade-off between computational efficiency and accuracy.

Regarding the accuracy of the model, it is noteworthy that the errors in the valence and conduction
bands remain small, even when atomic displacements reach the relatively large magnitude of 0.17 Å, as
represented in Fig. 6.14. These errors are significantly smaller than the typical separation between band
lines, further validating the robustness of the model.

Once the electron-lattice distance cutoff has been determined and analyzed, it is possible to ensure the
convergence of the energy cutoffs. Specifically, for a fixed δ rel = 4 Å, we can reduce the error present
in Fig. 6.15(b) to become almost negligible by setting δ f = 0.01 eV/Å and δg = 0.01 eV/Å2. These
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results demonstrate that systematic improvements in model accuracy can be achieved by tightening the
cutoffs on the electron-lattice coupling terms.
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Figure 6.16: Electronic band structure of SrTiO3 a phase characterized by in-plane octahedra rotations, with lattice
parameters fixed to their cubic values. First-principles (DFT) results are shown in blue, while second-principles
results appear in red. Panels (a) and (b) correspond to models constructed with electron-lattice interaction cutoff
distances δ rel = 2.0 and 4.0 Å, respectively. Green arrows highlight band features whose energies exhibit strong
sensitivity to δ rel, underscoring the importance of including extended quadratic interactions.

Figure 6.17: (a) Fat band representation of the conduction band for the cubic lattice with the associated atomic
displacements of the antiferrodistortive phase of the SrTiO3 system, computed using a 2×2×2 supercell. The fat
bands representation for the bottom of the conduction band is provided, highlighting 24 bands with t2g character
(corresponding to three d-orbitals per titanium atom across eight titanium atoms) and 16 bands with eg character
(arising from two d-orbitals per titanium atom across eight titanium atoms), shown in magenta. Panels (b) and (c)
show the isolated contributions from the t2g and eg orbitals, respectively.

Analysis of the error-bar plots reveals that the largest deviations occur near the Γ point for both valence
and conduction bands, and around the R point for the conduction band. This behavior can be traced to
the narrow energy range over which the t2g and eg bands overlap in the RAG geometry. As shown in
Fig. 6.1, the t2g bands at R overlap energetically with the eg bands at Γ. Although these manifolds exhibit
weak entanglement in the high-symmetry RAG configuration, the octahedra rotations characteristic of
the antiferrodistortive phase introduce mixing between the σ -like eg and π-like t2g states (see Fig. 6.17).
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This enhanced entanglement leads to the increased errors observed near the R point in Fig. 6.14. Since
the discrepancies appear at relatively high energies—approximately 5 eV above the valence band max-
imum—their impact on the prediction of optical properties below the vacuum ultraviolet range, or on
phenomena such as polaronic behavior, is expected to be minimal. We have explored the possibility of
mitigating this error by explicitly including the eg bands in the model. This approach indeed improves
the agreement between second-principles and DFT results in the energy range where the eg and t2g mani-
folds overlap. However, due to the strong entanglement of the eg states with higher-energy bands that are
not incorporated into the model, this extension leads to large and unphysical errors at elevated energies.
Therefore, we conclude that increasing the number of Wannier functions to include the eg bands does not
offer a viable path toward improving the accuracy of the model.

Finally, the results for the cubic lattice with the displacements characteristic of the ferroelectric phase
SrTiO3 are shown in Fig. 6.18. Here, we present the bands computed using two different models, both
with δ rel = 4Å. In Fig. 6.18(a), the model parameters are δ f = 0.1eV/Å and δg = 0.1eV/Å

2
, whereas

in Fig. 6.18(b), they are δ f = 0.01eV/Å and δg = 0.01eV/Å
2
.
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Figure 6.18: Band structure of SrTiO3 for considering off-center displacements (associated to the ferroelectric
phase) while keeping the lattice parameters to their cubic values. DFT and second-principles bands are shown in
blue and red, respectively. In (a) the energy cutoffs are δ f = 0.1eV/Å and δg = 0.1eV/Å

2
while in (b) they are

δ f = 0.01eV/Å and δg = 0.01eV/Å
2

controlling the magnitude of electron-lattice interactions.

With the methodology II, where the electron-lattice parameters are computed instead of fitted, we are
able to accurately reproduce the splitting in the Γ point for the t2g band states because of the break of the
symmetry along the z-direction.

The reproduction of the splitting with the new methodology is a consequence of two facts. Firstly, the
new methodology is able to consider the effect of neighbors further than fifth neighbors through the
linear constants. Secondly, the model is completely deterministic. Since the variables are computed and
not fitted, we do not have to solve a system which is undeterminated. Thus, the electron-lattice variables
included in the model for the same step of the finite differences and cutoffs are going to be always the
same.
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6.3.3 Electron-electron parameters: methodology I

We now proceed to determine the electron-electron interaction parameters, Uab,a′b′ and Iab,a′b′ , which
quantify the variation of the Hamiltonian matrix elements hab under changes in the total electronic den-
sity (sum over both spin channels) and the spin polarization (difference between spin channels), respec-
tively. The standardized training set introduced in methodology I Sec. 5.6.2 incorporates both electron
and hole doping, as well as magnetized configurations. This allows us to probe how the occupancy
of both titanium and oxygen orbitals affects the electronic structure and assess the material’s tendency
toward spin polarization.

Figure 6.19: (a) Decomposition of the goal function for the electron-electron training set into contributions from
each group of symmetry-equivalent hab matrix elements (blue line), along with the cumulative goal function Θ

(red line). The dashed vertical line represents δ rh. (b) Evolution of Θ as electron-electron interaction parameters
are progressively introduced into the second-principles model.

To apply the fitting protocol described in Sec. 5.6.2.4, we introduce a cutoff parameter, δΘ, which de-
fines the set of WF index pairs (a,b) to be included in the fitting of Uab,a′b′ and Iab,a′b′ . Figure 6.19(a)
displays the contribution of each symmetry-related group of interactions to the electron-electron goal
function. The red line represents the total error contribution as a function of group index, ordered by
increasing WF separation. We observe a steep rise in the goal function for the initial groups, correspond-
ing to interactions between closely located Wannier functions. This trend quickly saturates, indicating
that the dominant electron-electron interactions are intra-atomic, while inter-atomic terms contribute sig-
nificantly less. Notably, the strongest contributions stem from interactions involving Ti-centered 3d-like
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WFs, consistent with the localized nature of these orbitals. Based on this analysis, we set the cutoff
δΘ = 0.2 eV2, as indicated by the green horizontal line in Fig. 6.19(a). This value captures the most
significant variations in the Hamiltonian elements, specifically the diagonal terms haa involving Ti(3d),
O(2pσ ), and O(2pπ ) orbitals, as well as the intra-atomic off-diagonal interactions, hab, between O(2pσ )
and O(2pπ ).

Following the inclusion of U and I terms in the model, we observe a substantial reduction in the goal
function quantifying the difference between DFT and second-principles results, as shown in Fig. 6.19(b).
The most significant reduction—from approximately 170 eV2 to 40 eV2—is obtained by including the
diagonal terms Uaa,aa and Iaa,aa, where a corresponds to Ti (t2g) WFs. The second most impactful
reduction, amounting to approximately 23 eV2, results from incorporating similar diagonal terms for
O(2pπ ) orbitals. A third significant reduction is achieved by introducing intra-atomic off-diagonal terms
between O(2pπ ) and O(2pσ ) WFs. All remaining variables contribute less than 0.5 eV2 to the goal
function and can be safely neglected in the final model.

In the preceding sections, we have demonstrated that a comprehensive electronic model for SrTiO3, a
prototypical transition-metal perovskite, can be constructed in a quasi-automated manner. The method-
ology presented here requires the user to select only a small set of threshold parameters, enabling the
generation of accurate second-principles models with relatively modest computational resources.

The training set typically consists of a few hundred single-point calculations (on the order of 100–300)
performed on a medium-sized supercell; in the present case, the supercell contains 40 atoms. When
combined with a second-principles lattice model constructed following Refs. [36; 51], the result is a
fully parameterized model capable of describing both structural and electronic properties.

Importantly, the current electronic model can be coupled with the recently developed real-time time-
dependent second-principles DFT (SPDFT) method [173] to compute optical spectra. These predictions
show excellent agreement with direct DFT calculations performed using the same exchange-correlation
functional employed in the training.

A more challenging application is the description of polaron formation and dynamics in SrTiO3. In this
regard, we attempted to induce polaron formation by doping the system with electrons. However, these
efforts did not result in charge localization. Benchmark DFT calculations on large supercells indicate that
this failure is likely due to the lack of self-interaction correction in the LDA functional, which inhibits
polaron formation.

To overcome this limitation, future work will focus on constructing second-principles models based on
hybrid functionals. In particular, we plan to exploit the recent implementation of hybrid functionals in
SIESTA [174] to develop SrTiO3 models trained using the HSE06 functional [200], which offers a more
accurate treatment of electron localization and should enable a realistic description of polaronic effects.
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6.4 LiF

In this second example, we consider lithium fluoride (LiF), a prototypical strongly ionic compound
whose optical spectrum is characterized by highly localized excitonic states [183; 184; 185]. The pres-
ence of a pronounced Stokes shift [184] further indicates significant electron-phonon coupling in the ex-
cited state. This unique combination of features makes LiF an ideal candidate for investigation within the
second-principles framework, particularly using the recently developed time-dependent propagation for-
malism [173]. To enable such simulations, however, it is first necessary to construct an accurate second-
principles model capable of describing the band structure, electron-lattice coupling, and electron-electron
interactions across the valence and conduction manifolds. In this case, the reference atomic geometry
(RAG) corresponds to the face-centered cubic (FCC) structure with space group Fm3̄m, characteristic of
the rock-salt lattice. A conventional unit cell comprising eight atoms and a lattice constant of 4.026 Å is
employed for the simulations.

Figure 6.20: (a) Electronic band structure of LiF at the cubic RAG geometry, as obtained from DFT (blue) and
second-principles simulations (red). (b) Corresponding projected density of states (PDOS), indicating that the
valence bands are predominantly composed of F(2p) orbitals, while the conduction bands exhibit mainly Li(2s)
and Li(2p) character. In SIESTA, both the valence and conduction manifolds are disentangled from other states and
used to construct the second-principles model.

Figure 6.20 presents the electronic band structure of LiF, computed for the conventional unit cell used to
train the second-principles model, using the generalized gradient approximation (GGA) as implemented
in SIESTA. The valence bands, primarily of F(2p) character, are relatively narrow, while the conduction
bands are significantly more dispersive and exhibit dominant contributions from Li(2s) and Li(2p) or-
bitals. When comparing the band structure obtained with SIESTA to that produced by a plane-wave-based
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code, good agreement is observed for both the valence bands and the lower portion of the conduction
manifold. At higher energies, however, notable differences emerge: while the plane-wave calculation
yields fully entangled conduction bands, the localized basis set used in SIESTA results in a spurious gap
between band manifolds. Although this separation is an artifact of the more limited basis set, the lower
conduction bands remain reliable due to their close correspondence with the plane-wave results. This
separation is advantageous for model construction, as it simplifies the definition of a smooth and con-
sistent Hamiltonian under perturbations such as structural deformations or doping. In contrast, the use
of disentanglement procedures can introduce discontinuities in the extracted Hamiltonian parameters,
compromising their transferability. Therefore, the naturally disentangled character of the conduction
manifold in SIESTA represents a significant benefit for second-principles modeling, enabling a direct and
robust evaluation of electron-lattice coupling parameters via finite-difference methods, as described in
Sec. 5.6.3.

Figure 6.21: Wannier functions of LiF used as the basis for second-principles models that accurately reproduce the
top of the valence band with predominant F (2p) character, as well as the lower conduction bands associated with
Li(2s) and Li(2p). Green and grey spheres represent Li and F atoms, respectively.

To construct the Wannier functions (WFs) from the DFT data, we project the Bloch wavefunctions of
the valence band onto F(2p) atomic orbitals, and those of the conduction band onto Li(2s) and Li(2p)
orbitals. Following the procedure used for SrTiO3, we employ the H(r) function [Eq. (6.1)] to determine
a suitable cutoff distance for the Hamiltonian interactions, δ rh, as illustrated in Fig. 6.22. In this case,
the spatial extent of the Hamiltonian matrix elements is somewhat larger than that found in SrTiO3.
Nevertheless, adopting δ rh = 8.0 Å yields an accurate reproduction of the DFT band structure, with
the exception of the uppermost conduction bands located approximately 20 eV above the valence band
maximum. These high-energy states lie well beyond the spectral range typically relevant for optical
or ultraviolet studies, and also fall within the regime where the accuracy of SIESTA’s band structure is
limited by the basis set employed.
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Figure 6.22: Logarithmic plot of the H(r) function (black, left axis) and the number of one-electron Hamiltonian
matrix elements as a function of distance (red, right axis). The vertical dashed line indicates the chosen Hamilto-
nian cutoff distance, δ rh = 8Å, used to construct the second-principles model for LiF. This choice corresponds to
the band structure shown in red lines in Fig.6.20(a).

6.4.1 Electron-lattice parameters: methodology II

Next, as in the case of SrTiO3, we extend the applicability of the electronic model for LiF beyond the
reference atomic geometry (RAG) by incorporating electron-lattice interactions. To this end, we analyze
the sensitivity of the model to the electron-lattice cutoff distance, δ rel, which determines the range of
atomic pairs contributing to the electron-lattice coupling, as well as the thresholds δ f and δg used to
discard weak linear and quadratic interactions, respectively. Figure 6.23(a) shows the variation of the
goal function as a function of the distortion amplitude d (defined in Sec. 5.6.4) for two different cutoff
values, δ rel = 2.1 Å and 3.0 Å. The former includes only first-neighbor Li–F interactions, while the
latter also captures second-neighbor Li–Li and F–F interactions. Even for relatively large distortions
(d ≈ 0.17 Å), characteristic of thermal motion at approximately 400 K, the total goal function remains
low (Θ ≈ 1 eV2), summed over 11964 terms. The model with δ rel = 3.0 Å yields an error roughly
60 % smaller than that with δ rel = 2.1 Å. However, due to the overall small magnitude of the error,
this improvement is of limited practical significance, indicating that the dominant contributions arise
from short-range linear interactions. To further reduce the model size, we assess the effect of pruning
weak interactions based on the thresholds δ f and δg. In Fig. 6.24, we evaluate the model accuracy for
several threshold values. A noticeable increase in the goal function is observed when δ f = 0.5 eV/Å and
δg = 0.5 eV/Å2, compared to the results obtained for δ f = 0.1 eV/Å, δg = 0.1 eV/Å2, and the more
stringent δ f = 0.01 eV/Å, δg = 0.01 eV/Å2. These findings confirm, in line with the SrTiO3 case, that
accurate and compact models can be constructed using δ f = 0.1 eV/Å and δg = 0.1 eV/Å2 as standard
pruning thresholds.
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Figure 6.23: Goal function Θ for LiF, measuring the average error per calculation in test set comprising ten con-
figurations with increasing atomic displacements d from the reference atomic geometry (RAG). (a) The thresholds
are fixed at δ f = 0.1 eV/Å and δg = 0.1 eV/Å2. The black line corresponds to a model excluding electron-lattice
interactions; the olive green line includes only linear couplings. Models incorporating both linear and quadratic
terms are shown in orange and blue, corresponding to cutoff distances of δ rel = 2.1 Å and δ rel = 3.0 Å, respec-
tively. In panel (b), the results corresponding to the model without the electron-lattice coupling correction have
been excluded to enable a focused view of the remaining data.
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Figure 6.24: Goal function Θ for LiF, measuring the average error per calculation in test set comprising ten configu-
rations with increasing atomic displacements d from the reference atomic geometry (RAG). (a) The electron-lattice
cutoff is fixed at δ rel = 3.0 Å, while different pruning thresholds are explored: δ f = 0.5 eV/Å, δg = 0.5 eV/Å2

(green), δ f = 0.1 eV/Å, δg = 0.1 eV/Å2 (blue), and δ f = 0.01 eV/Å, δg = 0.01 eV/Å2 (red). In panel (b), the
results corresponding to the model without the electron-lattice coupling correction have been excluded to enable a
focused view of the remaining data.

To assess the distribution of distortion-induced errors across the electronic band structure, we analyze
the band-resolved deviations for atomic configurations with a maximum displacement of d = 0.17 Å, as
shown in Fig. 6.25. These results illustrate how the inclusion of electron-lattice interaction terms pro-
gressively improves the model accuracy as the cutoff parameter δ rel is increased. Figure 6.25(a) shows

193



Chapter 6. Results

the error bars obtained in the absence of electron-lattice corrections, while Figs. 6.25(b) and 6.25(c)
correspond to models including electron-lattice interactions with δ rel = 2.1 Å and δ rel = 3.0 Å, respec-
tively. The comparison indicates that the dominant contributions to the electron-lattice coupling arise
from linear terms and nearest-neighbor Li–F interactions, while the inclusion of second-neighbor Li–Li
and F–F couplings yields only modest additional accuracy. Furthermore, we find that the valence bands
and the lower part of the conduction manifold exhibit minimal errors across all cases. The largest devi-
ations appear in the upper conduction bands; however, these states lie well above the vacuum ultraviolet
range and are thus of limited relevance for most physical applications. Overall, the model demonstrates
high reliability for the prediction of spectroscopic and dynamical properties in realistic conditions.
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Figure 6.25: Band structures illustrating the statistical error of the second-principles model across a test set of
ten distorted geometries. The error bars (in red) represent the standard deviation of the energy levels relative to
the reference DFT values. Panel (a) shows results obtained using a second-principles model without electron-
lattice interactions. Panels (b) and (c) include linear and quadratic electron-lattice coupling terms with cutoff
distances δ rel = 2.1 Å and 3.0 Å, respectively. All models were generated using thresholds δ f = 0.1 eV/Å and
δg = 0.1 eV/Å2.

6.4.2 Electron-electron parameters: methodology I

As in the case of SrTiO3 (see Sec. 6.3), the training set for LiF includes electron and hole doping at levels
of 0.1, 0.2, and 0.3 electrons, both under spin-restricted (non-magnetic) and spin-polarized conditions.
These configurations are used to fit the U and I parameters associated with the valence and conduction
bands. Given the known importance of electron-hole interactions in accurately describing the optical
properties of LiF, we further include spin-polarized calculations on the neutral system, constraining the
total magnetization to 0.5, 1.0, 1.5, and 2.0 electrons. These configurations effectively promote electrons
from the valence to the conduction band, enabling a more precise characterization of electron-hole cou-
pling. This comprehensive training strategy allows MODELMAKER to fit interaction terms of the form
Uab,a′b′ and Iab,a′b′ that couple Wannier functions (WFs) from both the valence and conduction mani-
folds. When plotting the total goal function Θ for a model that excludes electron-electron interactions, we
observe a pattern similar to that found in SrTiO3: the dominant contributions to the error originate from
a limited number of interaction groups, primarily associated with intra-atomic interactions [Fig. 6.26(a)].
However, in LiF, we additionally identify several groups corresponding to longer-range interactions that,
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while smaller, yield non-negligible contributions to Θ. As in the previous case, we adopt a threshold of
0.2 eV2 to filter relevant electron-electron terms. Beyond the expected intra-atomic contributions, we find
that several F(2p)-F(2p) Hamiltonian matrix elements exhibit sensitivity to the electronic state. Fitting
the U and I constants corresponding to these indices leads to a substantial reduction of the goal function,
as shown in Fig. 6.26(b). The most significant improvements stem from three interaction variables: an
intra-atomic interaction on Li (contributing 279 eV2), and two centered on F (together contributing 116
eV2). Notably, we also identify a significant inter-atomic interaction involving Uaa,bb and Iaa,bb terms,
where WF χa has F(2p) character and WF χb corresponds to a first-neighbor Li(2s) orbital. This inter-
action alone reduces Θ by approximately 4.5 eV2, confirming the presence of non-negligible inter-site
electron-hole coupling. All other terms contribute less than 0.8 eV2 to the reduction of the goal function.
These results confirm that the method successfully captures strong electron-hole interactions in LiF, in
agreement with experimental observations of highly localized excitons in this material [184].

Figure 6.26: (a) Decomposition of the goal function for the electron-electron training set in LiF. The contributions
from each group of symmetry-equivalent Hamiltonian matrix elements hab are shown as a blue curve, Θgroup;
while the cumulative goal function Θ is plotted in red. The dashed vertical line represents δ rh. (b) Evolution of Θ

as successive electron-electron interaction terms are incorporated into the second-principles model.
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Over the past few decades, computational methods have become a cornerstone in the design and devel-
opment of advanced materials for technological applications. These include the optimization of battery
performance, the design of microelectronic components such as transistors and hard drives, innovations
in spintronics, improvements in photovoltaic efficiency, and advances in superconductivity relevant to ap-
plications like magnetic resonance imaging and magnetic levitation transport. Within this context, first-
principles simulations have revolutionized our ability to predict materials properties from fundamental
physical principles. These methods allow the computation of structural, electronic, and thermodynamic
properties with remarkable accuracy. However, their practical application remains limited by computa-
tional constraints, restricting simulations to small system sizes and short timescales. To overcome these
limitations, second-principles methods have emerged as powerful tools that balance quantum-mechanical
accuracy with computational efficiency. These methods enable large-scale simulations by systematically
constructing effective models based on first-principles data, preserving essential physics while extending
reach in both space and time.

This thesis has aimed to contribute to the advancement of second-principles methodologies, particularly
in the treatment of electronic degrees of freedom. The work focuses on the development of a robust,
quasi-automated framework for constructing second-principles Hamiltonians expressed in a Wannier
function basis set, trained on high-fidelity DFT data. Through innovations in training set generation,
symmetry handling, and interaction hierarchy, the proposed approach enhances the scalability, accuracy,
and interpretability of model construction with respect to the existing methodology [37]—paving the
way for predictive simulations of technologically relevant materials.

The first step in this process has been to study the properties and characteristics of Wannier functions,
as the methodology relies on expressing the Hamiltonian matrix elements in this basis. For this rea-
son, it has been essential to understand and demonstrate both the fundamental properties of these func-
tions—particularly their real-space localization—and the procedure to obtain the Hamiltonian matrix
elements within this basis. Accordingly, we have shown that the interpolated band structures computed
with WANNIER90 methodology converge asymptotically to the ab initio bands as the density of the k⃗-
point mesh increases, provided it is sufficiently fine for the system under study. Throughout the thesis,
we have emphasized the localized character of Wannier functions, illustrating the decay of interaction
terms as a function of the distance between them. This localization is a cornerstone in second-principles
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methodologies: for the resulting models to remain computationally tractable, the interaction parameters
must decay with distance. Shorter interaction ranges enable smaller, more efficient training sets, thereby
reducing the computational cost of the derived models.

Once the characteristics of the basis functions underlying the method were established, we proceeded to
highlight the most important results of the thesis regarding the developed methodology.

In pursuit of the main objective of this thesis, considerable effort has been dedicated to the develop-
ment of a quasi-automated methodology for constructing second-principles electronic models, enabling
efficient and physically grounded parametrization of complex materials. Beyond the methodology used
to compute model parameters, the selection of the training set has represented a critical component in
ensuring both the efficiency and accuracy of the method.

A major limitation of the previous methodology [37] was the absence of a well-defined systematic ap-
proach to the construction of the training set, particularly for electron-electron interactions. The process
was system-dependent, leading to parameters that were highly reliant on the specific, non-reproducible
training set used. Additionally, creating a meaningful and consistent training set required a deep under-
standing of the system’s physics and computational details. In this work, we have been able to address
these limitations by establishing a well-defined and systematic framework for training set construction.
For the electron-lattice interaction parameters—computed using finite-difference techniques—the train-
ing set is rigorously defined, encompassing all symmetry-nonequivalent displacements of one or two
atoms along the three Cartesian directions and in both positive and negative senses. This ensures com-
pleteness and consistency in the representation of physical perturbations. Regarding electron-electron
interactions, although the parameters are computed by a fitting procedure, the training set has been gen-
erated through a systematic and reproducible set of calculations, characterized by different charges and
spin configurations providing a more robust foundation for parameter extraction.

Furthermore, the implemented methodology accounts for the symmetry properties of the system. This
aspect is critical for avoiding numerical artifacts, such as the spurious splitting of energy bands at high-
symmetry points in the Brillouin zone where degeneracies are enforced by symmetry. Additionally, the
incorporation of symmetry significantly improves the efficiency of the model calculations. As we have
seen, its implementation leads to a reduction by several orders of magnitude in both the number of re-
quired calculations for the training set and the number of independent parameters that must be computed
within the model. In SrTiO3, the number of single-point calculations required to construct the electron-
lattice model is 57840 without symmetry. This number decreases to 15 when symmetry is applied with
an electron-lattice cutoff of δ rel = 2.0 Å, or 209 for a cutoff of δ rel = 5.6 Å. Similarly, in LiF, the
calculations reduce from 2353 without symmetry to 21 with symmetry and a cutoff of δ rel = 3.0 Å.

In this thesis, the validity of the proposed methodology has been rigorously assessed through compar-
isons with first-principles simulations considering different configurations. The results demonstrate that
the model accuracy depends primarily on the character of the electronic states and the magnitude of the
applied perturbations. Nonetheless, the valence bands and the lower part of the conduction band-those

198



Conclusions and future work

most relevant for optical and transport phenomena-are consistently well reproduced, even under substan-
tial structural distortions. These results have emerged from the analysis of two representative systems
used to validate the proposed methodology: the semicovalent transition-metal perovskite SrTiO3 and the
wide-band-gap insulator with a rock-salt structure, LiF. In both cases, the study confirmed the essential
role of electron-lattice coupling parameters in accurately capturing the evolution of the electronic band
structure across a variety of atomic configurations. Furthermore, the incorporation of electron-electron
interaction parameters into the model resulted in a marked reduction of the goal function—which quan-
tifies the quadratic error—highlighting their critical importance in achieving quantitative agreement with
first-principles data.

Beyond demonstrating efficiency and accuracy—since both electron-lattice and electron-electron correc-
tions are crucial for reliably reproducing systems with geometric distortions and variations in electronic
configurations—the developed methodology also reveals additional potential. With respect to electron-
lattice coupling, the systematic refinement of models via variation of cutoffs demonstrates two major
advantages: (i) it enables a controlled trade-off between computational cost and accuracy, as less restric-
tive cutoffs yield more accurate models, and (ii) it provides insights into the relevant physical interac-
tions within the system. For instance, in the case of SrTiO3, our analysis of the interatomic distance
cutoff, δ rel, revealed that, in addition to the linear electron-lattice coupling parameters, quadratic contri-
butions—particularly those involving first-neighbor Ti–O interactions—are essential. Moreover, while
including Ti–O couplings is necessary, it is not sufficient for full accuracy. For example, we have found
that, in order to properly capturing the effects of strong electron-lattice coupling—particularly in octa-
hedra rotation modes—it is essential to include quadratic oxygen–oxygen interactions within individual
TiO6 octahedra. These results underline the need to go beyond pairwise interactions limited to nearest
neighbors in the five-atom unit cell. In the case of LiF, our methodology identified the dominant con-
tributions as arising from short-range linear interactions, particularly between nearest-neighbor Li and F
atoms. The inclusion of second-nearest-neighbor interactions, such as Li–Li and F–F couplings, results
in only modest improvements in accuracy, indicating their secondary importance.

The analysis of the developed models has also identified the dominant contributions to electron-electron
and electron-hole interactions, which are of critical importance for understanding phenomena such as
optical absorption or highly localized excitons in LiF material, considering experimental evidence [184].
In particular, our results demonstrate that intra-atomic interactions are the primary contributors to the
electron-electron terms in both systems under study. In the case of the SrTiO3, the methodology captures
the highly localized nature of the Ti-centered 3d-like Wannier functions, as these contribute most signif-
icantly to the electron-electron interaction terms. In LiF, intra-atomic interactions also play a major role,
although inter-site electron-hole couplings are found to be non-negligible.

An additional advantage of the proposed method is its use of clearly defined cutoff thresholds and a hier-
archical model construction, ensuring that larger models systematically improve both predictive accuracy
and physical interpretability in comparison to simpler ones. Indeed, this represents a key improvement
over the initial implementation in Ref. [37] as well as over machine learning models.
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In the current context of model development, it is worth reflecting on the increasing popularity of
machine-learning (ML) techniques for materials modeling. ML models have demonstrated impressive
accuracy and efficiency, particularly in molecular dynamics and electronic structure predictions. How-
ever, these approaches face important limitations relative to physically motivated models. First, ML
models typically act as black boxes, lacking transparent traceability between inputs and outputs. Second,
their parameters often lack direct physical interpretation, hindering microscopic insight. For example,
our linear electron-lattice couplings f⃗aa,λ directly quantify the force on a Wannier function χa due
to the motion of atom λ, providing an intuitive connection between model and physics. Third, and
most critically, ML models lack standardized metrics for transparency or model comparison. In con-
trast, our method uses clearly defined cutoff thresholds and hierarchical model construction, ensuring
that expanded models systematically improve upon simpler ones—both in predictive power and physical
interpretability.

The future work outlined in this thesis has three clear and ambitious directions.

Firstly, theoretical extensions as the model construction algorithm is poised for further refinement, in-
cluding the incorporation of strain effects and improved treatment of electron-electron interactions.

While this thesis has primarily focused on capturing the effects of geometric distortions due to atomic
displacements in electron-lattice interactions, one of the key areas for future development is the incorpo-
ration of strain effects into the methodology. Strain is a crucial factor in materials such as ferroelectric
perovskite oxides (e.g., BaTiO3 and PbTiO3). Incorporating strain effects into the model generation will
enable accurate capture of the electron-lattice interactions in these materials, which are vital for predict-
ing their functional properties. For instance, variations in the Ti–O bond length influence the magnitude
and symmetry of the crystal field splitting, while changes in Ti–O–Ti bond angles govern the strength and
sign of magnetic superexchange interactions. When combined with a second-principles lattice model, as
discussed in Refs. [36; 51], the resulting fully parameterized model will be capable of describing both
structural and electronic properties, including those arising from strain effects.

Regarding electron-electron interactions, while electron-lattice couplings can be directly computed from
first-principles by analyzing the changes in specific Hamiltonian matrix elements, hab, under targeted
atomic displacements, direct calculation of electron-electron interaction terms, such as Uab,a′b′ , are not
yet available, primarily due to the challenges in controlling charge density perturbations in a physically
meaningful manner. Advancements in this area could also lead to improvements in DFT+U methodolo-
gies and related approaches.

The second direction of the future work is focused on application of the methodology to new materials.
This work has focused on studying semicovalent and ionic crystals, yet an open avenue for future research
is validating the methodology in covalent crystals such as silicon, which exhibits an indirect gap relevant
for optical spectrum observations, and in metals such as lithium.

Finally, the third direction for future work aims at expanding the methodology to tackle new challenges.
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In comparison to earlier SPDFT formulations [37], this methodology represents a substantial advance-
ment in terms of generality, automation, and physical interpretability. Our goal, however, extends beyond
merely reproducing DFT results. We aim to develop models capable of reliably predicting properties not
included in the training data, such as many-body interactions and finite-temperature effects, which are
typically challenging to address with first-principles methods. To achieve this, we propose employing
the complementary real-time, time-dependent SPDFT framework developed by our group [173], which
allows the computation of dynamic observables such as currents induced by time-dependent electric
fields. This framework is particularly well-suited for studying emergent quasiparticles such as polarons
and excitons, whose behavior arises from strong electron-lattice and electron-electron (or electron-hole)
interactions. A particularly challenging application of this approach is the description of polaron forma-
tion in SrTiO3, where conventional functional LDA fails to capture polaronic behavior due to the lack
of self-interaction correction. Future work will focus on constructing second-principles models based on
hybrid functionals, such as the recently implemented HSE06 functional [200] in SIESTA software, which
provides a more accurate treatment of electron localization. This will enable more realistic simulations
of polaron formation and dynamics. Although the analysis of these effects falls outside the scope of
this thesis, the models developed here have already demonstrated their potential in describing optical
phenomena in the studied materials.

In summary, the framework presented here opens a path toward efficient, transparent, and physically
insightful second-principles modeling. We anticipate that these tools will prove valuable in the prediction
and interpretation of complex phenomena across a wide range of materials in the near future.
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Durante las últimas décadas, los métodos computacionales se han consolidado como una herramienta
fundamental en el diseño y desarrollo de materiales avanzados con aplicaciones tecnológicas. Entre es-
tas se incluyen la optimización del rendimiento de baterías, el diseño de componentes microelectrónicos
como transistores y discos duros, innovaciones en espintrónica, mejoras en la eficiencia fotovoltaica y
avances en superconductividad, relevantes para aplicaciones como la resonancia magnética y el trans-
porte por levitación magnética. En este contexto, las simulaciones de primeros principios han revolu-
cionado nuestra capacidad para predecir propiedades de materiales a partir de principios físicos funda-
mentales. Estos métodos permiten calcular propiedades estructurales, electrónicas y termodinámicas con
notable precisión. Sin embargo, su aplicación práctica está limitada por el elevado coste computacional,
lo que restringe su uso a sistemas de pequeño tamaño y escalas de tiempo reducidas. Para superar estas
limitaciones, han surgido los métodos de segundos principios como herramientas potentes que equilibran
la precisión cuántica con una mayor eficiencia computacional. Estos métodos permiten simulaciones a
gran escala mediante la construcción sistemática de modelos efectivos basados en datos de primeros
principios, conservando la física esencial al tiempo que amplían el alcance en espacio y tiempo.

El objetivo principal de esta tesis ha sido contribuir al desarrollo de metodologías de segundos princi-
pios, con un enfoque específico en el tratamiento de los grados de libertad electrónicos. El trabajo se
centra en la elaboración de un marco robusto y cuasi-automatizado para la construcción de hamiltonianos
de segundos principios en una base de funciones de Wannier, entrenados con datos precisos obtenidos
mediante DFT. A través de innovaciones en la generación del conjunto de entrenamiento, el manejo
de simetrías y la jerarquía de interacciones, la metodología propuesta mejora la escalabilidad, la pre-
cisión y la interpretabilidad de los modelos, abriendo el camino a simulaciones predictivas de materiales
tecnológicamente relevantes.

El primer paso de este proceso ha sido el estudio de las propiedades y características de las funciones de
Wannier, ya que la metodología se basa en expresar los elementos de matriz del hamiltoniano en dicha
base. Ha sido esencial comprender y demostrar tanto las propiedades fundamentales de estas funciones
—particularmente su localización en el espacio real— como el procedimiento para obtener los elemen-
tos de matriz del hamiltoniano en esta representación. Se ha demostrado que las bandas interpoladas
obtenidas mediante la metodología implementada en WANNIER90 convergen asintóticamente a las ban-
das ab initio al incrementar la densidad de la malla de puntos k⃗, siempre que esta sea suficientemente fina
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para el sistema en estudio. A lo largo de la tesis se ha enfatizado el carácter localizado de las funciones
de Wannier, ilustrando cómo los términos de interacción decaen con la distancia entre ellos. Esta local-
ización es fundamental en los métodos de segundos principios: para que los modelos resultantes sean
computacionalmente manejables, los parámetros de interacción deben decaer con la distancia. Rangos
de interacción más cortos permiten conjuntos de entrenamiento en superceldas más pequeñas y por lo
tanto con un impacto computacional más eficiente.

Una vez establecidas las características de las funciones base del método, se presentan los resultados más
relevantes de la metodología desarrollada.

En pos del objetivo principal de esta tesis, se ha dedicado un esfuerzo considerable al desarrollo de una
metodología cuasi-automatizada para la construcción de modelos electrónicos de segundos principios,
permitiendo una parametrización eficiente y físicamente fundamentada de materiales complejos. Más
allá de la metodología utilizada para calcular los parámetros del modelo, la selección del conjunto de
entrenamiento ha sido un componente crítico para garantizar tanto la eficiencia como la precisión del
método. Una de las principales limitaciones de metodologías previas [37] era la ausencia de un proced-
imiento sistemático bien definido para construir el conjunto de entrenamiento, especialmente en lo que
respecta a las interacciones electrón-electrón. El proceso dependía del sistema y conducía a parámetros
altamente sensibles a conjuntos específicos y poco reproducibles. Además, construir un conjunto de en-
trenamiento significativo y coherente requería un conocimiento profundo de la física del sistema. En este
trabajo, se han superado estas limitaciones mediante el establecimiento de un marco sistemático y bien
definido para la construcción del conjunto de entrenamiento. Para los parámetros de interacción electrón-
red —calculados mediante técnicas de diferencias finitas—, el conjunto de entrenamiento está definido
por el método, incluyendo todos los desplazamientos simétricamente no equivalentes de uno o dos áto-
mos en las tres direcciones cartesianas y en ambos sentidos. Esto garantiza una representación completa
y coherente de las perturbaciones físicas. En cuanto a las interacciones electrón-electrón, aunque los
parámetros se obtienen mediante un procedimiento de ajuste, el conjunto de entrenamiento se ha gener-
ado de forma sistemática y reproducible, utilizando configuraciones con diferentes cargas y estados de
espín, proporcionando una base más robusta para la extracción de parámetros.

Además, la metodología implementada tiene en cuenta las propiedades de simetría del sistema. Este
aspecto es fundamental para evitar problemas numéricos, como la ruptura de la degeneración de las
bandas de energía en puntos de alta simetría del espacio recíproco, donde las degeneraciones existentes
están impuestas por la simetría del sistema. La incorporación de la simetría mejora notablemente la
eficiencia del cálculo de modelos. Como se ha demostrado, su implementación reduce en varios órdenes
de magnitud tanto el número de cálculos necesarios en el conjunto de entrenamiento como el número
de parámetros independientes. Por ejemplo, en SrTiO3, el número de cálculos necesarios para construir
el modelo electrón-red es de 57840 sin simetría, mientras que se reduce a 15 al aplicar simetría con un
corte de δ rel = 2.0 Å, o a 209 con un corte de δ r_el = 5.6 Å. De forma análoga, en LiF los cálculos se
reducen de 2353 a 21 con simetría y un corte de δ r_el = 3.0 Å.
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La validez de la metodología propuesta se ha evaluado rigurosamente mediante comparaciones con simu-
laciones de primeros principios para diferentes configuraciones. Los resultados muestran que la precisión
del modelo depende principalmente del carácter de los estados electrónicos y de la magnitud de las per-
turbaciones aplicadas. Sin embargo, las bandas de valencia y la parte baja de la banda de conducción
—aquellas más relevantes para fenómenos ópticos y de transporte— se reproducen consistentemente
bien, incluso ante distorsiones estructurales significativas. Estos resultados se han obtenido del análisis
de dos sistemas representativos: el perovskita de transición semicovalente SrTiO3 y el aislante iónico
con estructura tipo sal-gema LiF. En ambos casos, se confirma el papel esencial de los parámetros
de acoplamiento electrón-red para describir adecuadamente la evolución de la estructura de bandas en
diversas configuraciones atómicas. La incorporación de interacciones electrón-electrón también ha con-
tribuido significativamente a reducir la función objetivo —que cuantifica el error cuadrático—, lo cual
resalta su importancia para lograr una concordancia cuantitativa con los datos de primeros principios.

Más allá de su eficiencia y precisión, la metodología desarrollada también presenta un gran potencial
adicional. En relación al acoplamiento electrón-red, el refinamiento sistemático del modelo mediante la
variación del parámetro de corte revela dos ventajas clave: (i) permite ajustar el compromiso entre coste
computacional y precisión, y (ii) proporciona información física sobre las interacciones relevantes del
sistema. En el caso de SrTiO3, el análisis del parámetro de corte δ rel ha mostrado que, además de los
términos lineales, es esencial incluir contribuciones cuadráticas, particularmente aquellas que involucran
interacciones Ti–O de primeros vecinos. Además, se ha evidenciado que incluir solo interacciones Ti–O
no es suficiente; es imprescindible considerar también interacciones cuadráticas oxígeno–oxígeno dentro
de cada octaedro TiO6.

En el caso de LiF, la metodología ha identificado como dominantes las interacciones lineales de corto
alcance, especialmente entre átomos de Li y F de primeros vecinos. La inclusión de interacciones de
segundos vecinos como Li–Li y F–F aporta mejoras marginales, indicando su menor relevancia.

El análisis de los modelos también ha permitido identificar las principales contribuciones a las interac-
ciones electrón-electrón y electrón-hueco, fundamentales en fenómenos como la absorción óptica o la
formación de excitones localizados en LiF, en concordancia con la evidencia experimental [184]. En
ambos sistemas, se ha encontrado que las interacciones intraatómicas son las contribuyentes principales.
En SrTiO3, la metodología capta la naturaleza altamente localizada de las funciones de Wannier tipo 3d
centradas en Ti. En LiF, las interacciones intraatómicas también son dominantes, aunque se detectan
acoplamientos intersitio electrón-hueco no despreciables.

En el contexto actual, vale la pena reflexionar sobre la creciente popularidad de los enfoques de apren-
dizaje automático (ML) en la modelización de materiales. Aunque los modelos ML han demostrado gran
precisión y eficiencia, especialmente en dinámica molecular y predicciones de estructura electrónica, en-
frentan limitaciones significativas frente a modelos físicamente motivados. Primero, actúan como cajas
negras, dificultando la trazabilidad entre entrada y salida. Segundo, sus parámetros carecen general-
mente de una interpretación física directa. Por ejemplo, los acoplamientos lineales de nuestros modelos
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faa,λ cuantifican directamente la fuerza sobre una función de Wannier χa provocada por el desplaza-
miento del átomo λ , estableciendo un vínculo claro entre modelo y física. Tercero, los modelos ML
carecen de métricas estandarizadas para evaluar su transparencia o comparabilidad. En contraste, nues-
tra metodología garantiza la mejora sistemática de los modelos mediante umbrales definidos y jerarquías
estructuradas.

En relación a lo anterior, una ventaja adicional del método propuesto es el uso de umbrales de corte bien
definidos y una construcción jerárquica del modelo, asegurando que modelos más complejos mejoren
sistemáticamente tanto la precisión predictiva como la interpretación física respecto a versiones más
simples. Esto representa una mejora sustancial con respecto a implementaciones previas [37] y frente a
modelos basados en técnicas de aprendizaje automático.

El trabajo futuro atendiendo a los avances realizados en esta tesis contempla tres direcciones ambi-
ciosas. La primera se orienta al perfeccionamiento teórico del algoritmo de construcción del modelo,
incluyendo la incorporación de efectos de deformación (strain) y una mejor descripción de las interac-
ciones electrón-electrón. Aunque esta tesis se ha centrado en desplazamientos atómicos, los efectos de
strain son cruciales en materiales como perovskitas ferroeléctricas. Su incorporación permitirá capturar
variaciones en la simetría del campo cristalino y en las interacciones magnéticas de superintercambio.
Junto con modelos de red de segundos principios [36; 51], se obtendrán modelos completos capaces de
describir tanto propiedades estructurales como electrónicas.

En cuanto a las interacciones electrón-electrón, aún no se dispone de cálculos directos para los términos
Uab,a′b′ debido a la dificultad de controlar perturbaciones en la densidad de carga de forma físicamente
significativa. Avances en este aspecto también podrían beneficiar metodologías como DFT+U .

La segunda dirección futura se enfoca en la aplicación de la metodología a nuevos materiales. Aunque
esta tesis ha abordado cristales semicovalentes e iónicos, queda abierta la validación en materiales cova-
lentes como el silicio o metálicos como el litio.

Finalmente, la tercera dirección de trabajo futuro consiste en extender la metodología a nuevos desafíos,
como predecir propiedades fuera del conjunto de entrenamiento, incluyendo efectos de muchos cuerpos y
de temperatura finita. Para ello, se propone utilizar el marco complementario desarrollado recientemente
por nuestro grupo [173], basado en SPDFT dependiente del tiempo en tiempo real. Este enfoque permite
calcular observables dinámicos, como corrientes inducidas por campos eléctricos, y es adecuado para
estudiar cuasipartículas emergentes como polarones y excitones. Un reto particularmente desafiante es
la formación de polarones en SrTiO3, donde los funcionales convencionales (LDA) no los describen
adecuadamente. En el futuro se desarrollarán modelos de segundos principios basados en funcionales
híbridos, como HSE06 [200], recientemente implementado en SIESTA, lo que permitirá simulaciones
más realistas de formación y dinámica de polarones.

En resumen, el marco metodológico presentado en esta tesis abre una vía prometedora hacia una mod-
elización eficiente, transparente y físicamente fundamentada basada en segundos principios. Se anticipa
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que estas herramientas serán valiosas en el futuro próximo para la predicción e interpretación de fenó-
menos complejos en una amplia gama de materiales.
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