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Abstract
River ecosystem metabolism plays a significant role in the global carbon cycle. However, the limited spatial or tem-

poral scale of most river metabolism studies hinders our ability to draw general patterns, identify common drivers, and
make reliable global predictions. We developed Random Forest models for predicting daily metabolism rates using a
large database of more than 100 river reaches across the Iberian Peninsula covering a large environmental gradient. As
potential drivers, we included static variables (e.g., catchment area, distance to the sea), anthropogenic factors
(e.g., land uses), and short-term dynamic variables (e.g., light, water temperature, discharge) averaged over different
periods (from 0 to 40 d) to explore the role of shorter vs. longer-term environmental control on daily river metabolism
rates. Both daily gross primary production and ecosystem respiration rates responded more strongly to average envi-
ronmental conditions over the previous 40 d than to daily values. The 40-d average random forest models explained
up to 77% of gross primary production and 82% of ecosystem respiration variance. The most important drivers of GPP
were stage (depth), distance to the sea, and light, while the main predictors of ER were stage and GPP. Dynamic vari-
ables were generally the most important drivers of daily metabolic rates, although static ones such as distance to the
sea also played a role. Our results indicate that temporal patterns in river metabolism are influenced by a combination
of environmental conditions integrated over several weeks, seasonal timing, and to a lesser extent, topology.

Ecosystem metabolism integrates the flow of matter and
energy across ecosystem components via the assimilation of inor-
ganic carbon through photosynthesis (gross primary production
[GPP]) and the mineralization of organic carbon through respira-
tion (ecosystem respiration [ER]). Metabolism rates in terrestrial
and oceanic ecosystems have been comprehensively studied, as
these ecosystems are important carbon sinks that could mitigate
climate change (Field et al. 1998; Allen et al. 2005; Boscolo-
Galazzo et al. 2018). In contrast, the contribution of river

ecosystem metabolism to the global carbon cycle was considered
negligible and was thus overlooked in the past, although more
recent research has challenged this view (Cole et al. 2007;
Raymond et al. 2013; Battin et al. 2023). Nevertheless, studies
integrating river metabolism with its terrestrial and oceanic coun-
terparts are still scarce due to the lack of accurate global river
metabolism estimations. The difficulty of resolving regional and
global patterns and drivers of metabolism across biomes may be
rooted in two main causes: (1) the reliance of river metabolism
estimation upon local field measurements and (2) the complexity
of potentially interacting factors that may influence river metabo-
lism at broad scales (Bernhardt et al. 2018).

While remote sensing data have been applied to quantify
global terrestrial and oceanic productivity (Potter et al. 1993;
Buitenhuis et al. 2013; Bai et al. 2020), river metabolism esti-
mates are reliant on in situ continuous monitoring
(e.g., dissolved oxygen concentrations). Moreover, in the past,
the high cost of oxygen sensors and their maintenance con-
strained the spatial and temporal scale of river ecosystem
metabolism studies from a few days to a few weeks under good
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environmental conditions (Finlay 2011; Alnoee et al. 2015;
Bernhardt et al. 2018). Currently, the commercialization of
cheaper and more durable sensors, the installation of continu-
ous monitoring stations, and the development of new analyti-
cal tools, together with an increase in computing power, are
opening the door to long-term and large spatial-scale studies
(Appling, Read, et al. 2018; Savoy et al. 2019; Bernhardt
et al. 2022). However, the accurate extrapolation of these
results to other rivers in which field measurements are not
available remains difficult due to the complex spatiotemporal
interactions between river metabolism drivers.

Despite the technical limitations of river metabolism model-
ing, significant advances have been made in recent decades in
the characterization of river metabolic patterns and in the
description of the key drivers using local studies. These achieve-
ments have allowed for the development of simple conceptual
frameworks that define the most important direct and indirect
factors that shape metabolic rates, such as incident light,
hydrology, and water chemistry, but also a range of land-use
activities (Bernot et al. 2010; Bernhardt et al. 2022). Accord-
ingly, light and flow are thought to be the most important fac-
tors driving the spatiotemporal variability of GPP (Uehlinger
et al. 2003; Roberts et al. 2007; Izagirre et al. 2008), whereas ER
seems mainly related to water temperature, nutrient concentra-
tions, and organic matter quantity and quality (Young and
Huryn 1999; Izagirre et al. 2008; Segatto et al. 2021). Regional
drivers such as topography and catchment area may also affect
river ecosystem metabolism through their effect on local vari-
ables such as discharge and temperature (Finlay 2011; Savoy
et al. 2019). Other local variables, such as canopy cover, may
also regulate river metabolic rates in small streams by limiting
light reaching the water surface and thereby reducing GPP rates
(Bernhardt et al. 2018; Koenig et al. 2019), and by influencing
ER via allochthonous organic matter inputs (Roberts
et al. 2007; Griffiths et al. 2013; Bernhardt et al. 2018). More-
over, river metabolism also integrates anthropogenic impacts
within the broader catchment, which may interact in
non-linear ways, including hydrological alterations (Genzoli
and Hall 2016; Arroita et al. 2017; Chowanski et al. 2020),
land-use changes (Young and Huryn 1999; Bernot et al. 2010;
Fuß et al. 2017), pollution (Kosinski 1984; Aristi et al. 2016;
Arroita et al. 2019), and climate change (Boix Canadell
et al. 2021). Thus, unraveling the interplay among possible
factors becomes a rather complicated endeavor.

Despite this progress, river metabolism studies, particularly
those capturing longer time series, have mostly focused on
temperate streams and rivers in the Northern Hemisphere and
thus are unlikely to include the diversity of metabolic regimes
and environmental conditions that occur worldwide. There-
fore, using long time-series of data (at least a year of daily met-
abolic rates) covering a wide spectrum of environmental
conditions, including rivers of varied sizes and different
biomes, represents an important next step in advancing our
understanding of the processes driving river ecosystems from

local to regional and larger scales (Rodríguez-Castillo
et al. 2019; Savoy et al. 2019; Bernhardt et al. 2022). Toward
this goal, we present and analyze long-term time series of
metabolism data from rivers that encompass a diverse range of
underexplored topographical and climatic conditions across
the Iberian Peninsula in Southern Europe.

Our assessment of daily metabolic rates follows a general con-
ceptual framework for river ecosystem metabolism prediction
where static, regional characteristics (catchment area, topogra-
phy, etc.), climate, and anthropogenic impacts (land use, pollu-
tion, hydrological alteration, etc.) shape metabolic rates by
regulating direct, dynamic factors (discharge, light, water temper-
ature, etc.). These dynamic variables, in turn, control daily river
GPP and ER, with primary production also regulating respiration
(Fig. 1). Additionally, our framework also includes the temporal
scales at which these dynamic variables influence daily metabolic
rates. With some exceptions (Rodríguez-Castillo 2017), studies of
daily river metabolism use same-day dynamic variables for driver
analysis (light, discharge, temperature, etc.). Therefore, in those
analyses, metabolic rates are only related to immediate environ-
mental changes, which may reflect instantaneous biological
responses. Yet, river metabolism integrates the biological activity
of all organisms (including multicellular organisms), which may
also be regulated by processes of growth and senescence affected
by longer-term environmental conditions and density-dependent
and stochastic factors (Munn et al. 2020; Blaszczak et al. 2023).
Studying the effect of longer-term (days to weeks) environmental
dynamics on daily metabolic rates may improve predictions and
expose the importance of the temporal dimension of river
metabolism.

The present study aims at (1) generating a model to accu-
rately predict daily GPP and ER rates using dynamic, regional,
and anthropogenic drivers across large environmental gradi-
ents to broaden our understanding of river metabolic regimes
and their controls; (2) identifying the main environmental
drivers of daily river ecosystem metabolism rates; (3) analyzing
the effect of the temporal inertia of dynamic environmental
variables (discharge, stage, light, water temperature, and water
chemistry) in daily river metabolic rates by integrating their
effect over different time periods. To achieve this, we used an
extensive monitoring network in Spain, which incorporates
more than 100 stations located in almost every large catch-
ment of the country. The Iberian Peninsula is a perfect setting
to analyze river ecosystem functioning patterns and their
main drivers, as well as to train statistical models, as it encom-
passes a large gradient of physical, chemical, and hydrological
conditions reflective of major transitions across temperate,
Mediterranean, and semi-arid climates (Peñas and Barquín
2019). We hypothesize that the main factors controlling
spatiotemporal patterns of daily river ecosystem metabolism
would be the dynamic variables, while static regional and
anthropogenic factors would show weaker effects due to their
indirect control over metabolism (Fig. 1). Moreover, we expect
that GPP would be associated with shorter time lapses of the
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dynamic variables, as it depends on instantaneous light avail-
ability and photosynthetic organisms, many of them charac-
terized by rapid growth rates. In contrast, ER is integrated by
community composition and the relative abundance of groups

of organisms with highly variable response times to changing
environmental conditions, from microbes (quick responses) to
fishes (slow responses). Moreover, ER is also governed by the
decomposition rates of allochthonous organic matter, which

Fig. 1. Conceptual framework of the main drivers of river ecosystem metabolism based on current knowledge. Static regional variables (land topogra-
phy, river topology, geology, etc.), climate and anthropogenic impacts (land uses, hydrological alteration, pollution, etc.) directly regulate short-term
dynamic variables (water temperature, discharge, light availability, and water chemistry). Then, these dynamic variables control daily rates by regulating
biological activity at different temporal scales. Moreover, regional static and anthropogenic impacts may also weakly affect river metabolism directly.
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presents highly variable biological reactivity depending on its
origin (Bertuzzo et al. 2022). Thus, we expect ER to be con-
trolled by dynamic variables integrated over longer periods.

Methods
Study area

The study area covers continental Spain, an area of more
than 0.5 million km2. Spain is located in southwest Europe,
surrounded by the Cantabrian Sea to the North, the Atlantic
Ocean to the West, and the Mediterranean Sea to the east.
The dominant climate is Mediterranean, with dry and hot
summers and mild and humid winters; although a small
northern area bordering the Cantabrian Sea and Atlantic
Ocean presents a temperate oceanic climate, with mild tem-
peratures and high precipitation all year long. The complex
topography of Spain, with a high plateau in the center sur-
rounded and crossed by various mountain ranges, as well as
the clash of climates, results in a wide variety of bioclimatic
conditions and ecosystems, from broadleaf forests in the north
to landscapes dominated by shrubs and deserts in the south-
east (Rivas-Martínez 1987). Consequently, rivers present high
flow variability due to these precipitation and temperature
regimes, with some rivers having a marked seasonality (Peñas
and Barquín 2019). The main river basins are, north to south:
Miño, Duero, Tajo, Guadiana, and Guadalquivir draining into
the Atlantic Ocean and Ebro and Júcar draining into the Medi-
terranean Sea. In addition, there is an important group of
smaller catchments draining the Cantabrian cordillera to the
north (Fig. 2).

Time series acquisition and data preparation
The Spanish Automatic System of Water Quality Informa-

tion (SAICA for its Spanish abbreviation) is a network of
175 continuous monitoring stations (Fig. 2) managed by the
Government of Spain through the river basin authorities
established in the 2000s with the objective of monitoring
water quality characteristics in critical river reaches for water
management purposes (Ministry for the Ecological Transition
and the Demographic Challenge 2020). Thus, the location of
SAICA stations was based on the level of anthropogenic pres-
sure in the river reach (mainly water extraction and pollu-
tion). SAICA stations (from now on “sites”) provide
continuous data for some of the main variables needed for
river ecosystem metabolism estimation (dissolved oxygen,
water temperature, and discharge) at 15-min intervals. We dis-
carded sites located too close to upstream large dams (< 5 km)
as reservoirs may affect dissolved oxygen concentrations, vio-
lating modeling assumptions. When discharge data were
absent, we used discharge data from the nearest gauge station
(Center for Study and Experimentation of Construction
Works 2020) corrected by catchment area (Supporting Infor-
mation Fig. S2A). After dissolved oxygen modeling tests, some
results showed unrealistic metabolic estimates (negative GPP

or positive ER) due to high discharge; so, to reduce noise, we
removed days with discharge higher than three times the
median of the site for the study period (Supporting Informa-
tion Fig. S2D). After this selection process, we kept 106 sites
out of the original 175 (Fig. 2). The selected sites were located
in rivers of stream order equal to or greater than 5.

Accurate hydrological depth estimations were not available,
and due to a lack of data and high hydromorphological vari-
ability both between sites and within each site during the
study period, it could not be accurately assessed. Therefore, we
used stage as a proxy for water depth, as its relationship with
discharge was site-specific and the error at each site was gener-
ally constant, thus resulting in a more confident estimation of
intra-site river metabolism variability (for a detailed explana-
tion of our reasoning, see Supporting Information Heading
One). To fill in the gaps where stage or discharge were miss-
ing, we fitted site-specific power equations (Leopold and
Maddock 1953) using the available stage and discharge data at
each site and the R package aomisc (Supporting Information
Fig. S2B). Gaps up to 3 h in dissolved oxygen and water tem-
perature were linearly interpolated to 15-min intervals as in
Appling, Read, et al. (2018) using the na.approx function of
the zoo package (Zeileis et al. 2021) in R 4.0.2 (Supporting
Information Fig. S2C).

Dissolved oxygen models to estimate river ecosystem
metabolism also required two other variables not provided by
SAICA: atmospheric pressure and surface solar radiation down-
ward, which were needed to calculate the theoretical satura-
tion concentration of oxygen and photosynthetic photon flux
density (PPFD). We obtained hourly atmospheric pressure
(Pa) and surface solar radiation downward (J m�2) data series
from the Copernicus Climate Change Service (Muñoz
Sabater 2019), which provides reanalysis of remote sensing
data at a raster cell resolution of 9 km (Supporting Informa-
tion Fig. S2A). Pressure data were converted to millibar and
linearly interpolated to a 15-min resolution using the R pack-
age zoo. Surface solar radiation downward was also converted
to PPFD (μmol m�2 s�1) and interpolated to a 15-min resolu-
tion using the function calc_light_merged of the R package
streamMetabolizer (Supporting Information Fig. S2B, S2C;
Appling, Read, et al. 2018). We estimated the theoretical satu-
ration concentrations of O2 (O2sat) from atmospheric pressure
and water temperature data using the Garcia-Benson model
implemented in the streamMetabolizer function calc_DO_sat.

Time steps were transformed from local time to UTC, and
any days with gaps in any of the variables were removed from
the dataset prior to metabolism estimation (Supporting Infor-
mation Fig. S2B, S2C). All the different variables were merged
into a single file; so, at the end of the data preparation process,
we had 106 files (one per site) with the seven variables needed
for the estimation of river ecosystem metabolism: solar time,
dissolved oxygen concentration, water temperature, stage, dis-
charge, PPFD, and saturation concentration of oxygen
(Supporting Information Fig. S2B).
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Metabolism modeling from dissolved oxygen time series
and accompanying variables

River ecosystem metabolism estimation at each site was based
on the single-station open channel method (Odum 1956), using
an inverse Bayesian model with Markov chain Monte Carlo
implemented in the streamMetabolizer package to fit three
unknown parameters (daily GPP, ER, and K600; Hall and
Hotchkiss 2017) to the observed dissolved oxygen concen-
trations. For a detailed description of the methodology
used for daily metabolism estimation, see Supporting
Information Heading Two. Metabolism was estimated over
24-h windows starting at 4:00 a.m.–3:59 a.m. the following
day. Models were run in parallel on the Neptuno computing
cluster at IHCantabria using up to 100 cores at the
same time.

Model assessment and post-processing of river metabolism
estimates

Model fitting was assessed using different metrics
(Supporting Information Fig. S2F). First, MCMC chain conver-
gence was assessed using the Gelman-Rubin parameter (Ȓ) of
the standard deviation of the model process error and the stan-
dard deviation of K600 deviations from the K600 � Q relation-
ship (Appling, Read, et al. 2018) and only models with Ȓ < 1.2
in both these parameters were kept. Moreover, the relationship

between ER and K600 was assessed, and models with high corre-
lation between these two parameters were discarded (Spearman
correlation > 0.7) as it indicates poorly fitted estimates of both
(Appling, Hall, et al. 2018; Appling, Read, et al. 2018). The vari-
ability of K600 was also used to estimate model performance, as
it is a physically constrained parameter that should not vary
much. Models with a difference between the 5th and 95th qua-
ntiles of K600 > 50 were also discarded. After model quality
assessment, 103 sites were kept for further analysis, with a
mean of 1259 d of metabolism estimation per site (min. 238–
max. 3516), across a mean of 6.4 different years (2–13). Results
of GPP and ER with the wrong sign (GPP < �0.5 and ER > 0.5)
were deleted, while values lower than those thresholds were
replaced with zeros. Days with R2 < 0.7 (for the observed dis-
solved oxygen relative to the modeled dissolved oxygen, as cal-
culated by the streamMetabolizer model) were removed, as well
as days when the integrated reach distance was too large
(> 50 km) to yield reliable metabolic estimates (for integrated
distance estimation see Supporting Information Heading
Three). After that, a site with less than 1 week of data was dis-
carded (Supporting Information Fig. S2D).

After applying these quality control criteria, 102 sites were
kept for further analysis. The mean number of valid days of
river ecosystem metabolism estimation per site was 966 (18–
2988), across a mean of 6.22 different years (1–13) over the

Fig. 2. Location of Spanish Automatic System of Water Quality Information (SAICA) stations in Spain and the SAICA stations selected for this study (solid
gray dots).
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period 2000–2020, with only five sites having less than
6 months of daily river metabolism data (Supporting Informa-
tion Fig. S3). Metabolism estimates were transformed to car-
bon estimates using the atomic and molecular weights of C
and O2, respectively, and the photosynthetic (1.2) and respira-
tory (0.85) coefficients (Bott 2007).

Identifying the main environmental controls of river
metabolism

To identify the relationship between the dynamic variables,
static factors, and anthropogenic impacts, we selected a set of
variables that describe the regional characteristics as well as the
short-term reach dynamics. Land uses were downloaded
(National Geographic Institute 2020) and estimated along the
river catchment using a spatially explicit Synthetic River
Network constructed from a Digital Elevation Map at 25 m
resolution and the software NetMap (Benda et al. 2007). Topo-
graphic and anthropogenic variables (catchment area, distance
to the sea, hydrological alteration, etc.) were also derived from
this synthetic network. We included explicit spatial and tempo-
ral variables (longitude, latitude, and day of the year) to
account for the possible effect of other factors not included in
this study. Site and year were not added to the models as Ran-
dom Forest cannot extrapolate outside the boundaries of the
calibration dataset, thus limiting the potential for extrapolation
to other reaches. Daily GPP was added to the ER model as an
explanatory variable, as autotrophic respiration may represent a
significant portion of total ecosystem respiration (Griffiths
et al. 2013; Demars et al. 2015; Arroita et al. 2019).

Outliers were identified and removed from the dynamic vari-
ables using boxplots, and pairwise collinearity between vari-
ables was assessed, removing variables with Spearman
correlation > 0.7 and variance inflation factor > 5. Three predic-
tive variables were discarded following these criteria (elevation,
atmospheric pressure, and day length). The selected predictors
(Supporting Information Table S1) included a set of dynamic
variables at a daily time scale, which characterize hydrology
(stage, discharge), light, and water quality (temperature, con-
ductivity, turbidity, pH). The rest of the variables were divided
into two groups: static regional characteristics, which included
geography and topography; and anthropogenic variables,
describing three types of human-related impacts (hydrological
alteration, land use, and water pollution).

Additionally, to study the effect of short- and long-term
environmental variability on daily river ecosystem metabo-
lism, we calculated the mean of the dynamic variables over
five different periods (0, 5, 10, 20, and 40 d) and used them as
explanatory variables in different models, following the work
of Rodríguez-Castillo 2017. We used the means instead of the
maximum or minimum value of the period to better integrate
multiday legacy effects. The different lags were selected
attending to the available data and the duration of different
processes, from short-term disturbances (5 and 10 d) to
longer-term growth and senescence dynamics (20–40 d).

Random forest (RF) was selected to explore the main
drivers of variability of GPP and ER variability due to its high
power and flexibility in analyzing large datasets. It is a super-
vised non-parametric machine learning algorithm that com-
bines different classification or regression trees, especially
indicated to find relationships in very large datasets with
numerous explanatory variables of different types (static,
dynamic, continuous, proportions, etc.), accepting non-
normal variables and effectively detecting non-linear and
partial relationships (Peñas et al. 2014; Rodríguez-Castillo
et al. 2019; Segatto et al. 2021). Random forest combines the
results of numerous decision trees developed using a random
subset of the data with replacement. Each tree is created by
sequentially splitting the data space by the best explanatory
variable at different sequential nodes until reaching a termi-
nal node (leaf) with the highest data purity. Although RF
models are flexible, they are still sensitive to variable autocor-
relation and heteroscedasticity (Breiman et al. 2018; Segatto
et al. 2021).

To avoid spatiotemporal biases, only river metabolism
data between 2004 and 2016 were selected as this period con-
tained the highest number of study sites. To reduce temporal
autocorrelation, random training datasets of 7500 metabo-
lism observations were selected for model calibration.
Another 2500 were selected for model prediction and over-
fitting testing (Diamond et al. 2021) while heteroscedasticity
was reduced by applying a logarithmic transformation (log10)
to GPP and ER. Overfitting was controlled by using an
ensemble of 500 trees (individual models) developed using a
random set of data points with replacement and a random
one-third of the explanatory variables available for data split-
ting at each tree node.

Five different RF models were fitted for GPP and ER, one
using the dynamic variables of the same day (Lag 0) while the
other four models were calibrated with the mean value of
the different sets of days explained above (Lags 5, 10, 20, 40).
Five hundred regression trees were generated for each RF
model by drawing a random subsample of the training
dataset. One-third of the explanatory variables were selected
at each node split. We started with an RF including all explan-
atory variables, and we sequentially simplified it by removing
the least important explanatory variable (the one with the
least node purity on the model) and retraining the model
until we reached the model presenting the lowest root mean
square error (RMSE) on the test dataset. Variable importance
was assessed using the mean increase in node purity (i.e., how
well the variable splits the data at a node), measured by the
residual sum of squares. Additionally, the spatiotemporal
dependence of dynamic variables was analyzed using RF, with
the objective of determining the relative importance of tem-
poral and spatial gradients in river ecosystem metabolism
(Supporting Information Heading Four). All models were per-
formed using the R package randomForest (Breiman
et al. 2018).
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Results
River ecosystem metabolism showed high variability

among sites. Mean daily GPP across all sites was
1.02 � 0.76 g C m�2 d�1; the average per site ranged from
0.01 � 0.01 to 3.61 � 1.26 g C m�2 d�1. By comparison,
mean daily ER across all sites was �2.30 � 1.32 g C m�2 d�1;
the average per site ranged from �0.04 � 0.02
to �5.39 � 1.80 g C m�2 d�1. Net ecosystem production
ranged from �4.26 � 1.84 to 1.46 � 1.64 g C m�2 d�1 with
a mean of �1.27 � 1.12 g C m�2 d�1 across all sites. Most
sites (94%) were heterotrophic, that is, net ecosystem
production < 0 (Supporting Information Fig. S4C). High
GPP (i.e., > 4 g C m�2 d�1) was more common on northern
sites in comparison to central and southern catchments
(Supporting Information Fig. S4C, S6D), while ER seemed
more randomly distributed across the study region
(Supporting Information Fig. S4B). Due to the higher GPP,
sites in the north of Spain were less heterotrophic than in
the rest of the area (Supporting Information Fig. S4C).

The Lag 40 GPP model had the highest explained variance
and smallest RMSE (Table 1), although the difference in RMSE
among the models was small and the additional explained
variance in the Lag 40 compared to Lag 0 models was 9.5%.
This increase was reflected in a slight improvement in the fit
between observations and predictions, reducing the underesti-
mation of GPP daily rates (the slopes of the linear models
increased from 0.74 to 0.82), especially at their upper range
(Supporting Information Fig. S8A, S8C). Likewise, the Lag
40 model explained the largest ER variance with the smallest
RMSE. Here, the percentage of variance explained by the ER
models steadily increased from 61.09% to 82.28% (a 34.7%
increase) with the integration of longer periods, surpassing
the variance explained by the Lag 40 GPP model (Table 1).
This increase in explained variance was reflected in a large
decrease in the prediction error across the whole range of
observations (Supporting Information Fig. S8B, S8D), although
the Lag 40 model still slightly underestimated the ER rates.
The number of variables retained by the simplified model as
well as their order of importance were similar in all the RF
models fitted for GPP and ER (Table 1).

The Lag 40 simplified GPP model retained more explana-
tory variables than the ER one (16 vs. 11) but explained less
variance. The main predictor for GPP was mean stage, closely
followed by distance to the sea and light. Agricultural land use
in a 200 m buffer at each bank and day of the year were the
fourth and fifth most important drivers (Supporting Informa-
tion Fig. S5A). Variables related to water quality (conductivity,
pH, turbidity) were also important, as well as the proportion
of human land uses (agriculture and urban lands). For ER,
stage and GPP were the most important drivers followed by
water conductivity and pH. Static variables such as distance to
the sea and latitude were important but less relevant than the
first three variables. Turbidity, water temperature, and dis-
charge were also important, while anthropogenic factors were
less important predictors of ER (Supporting Information
Fig. S5B).

Mean hydrology (stage and discharge) of the previous 40 d
positively influenced GPP until it reached a peak at a stage of
� 1 m and discharge of � 20 m3 s�1. At higher discharges and
stages, GPP decreased (Fig. 3a, h). On the other hand, distance
to the sea negatively affected GPP, with an abrupt decrease in
GPP in sites > 200 km from the sea (Fig. 3b). The relationship
between GPP and light was positive, with a saturation point at
high light intensities (> 500 μmol m�2 s�1; Fig. 3c). Gross pri-
mary production was also highly influenced by the day of the
year, with productivity rising in the spring and peaking in
the summer, then declining in the autumn and reaching a
low point at the beginning of winter (Fig. 3e). The relation-
ship of GPP with pH was logistical, with an abrupt increase
around pH 7 and reaching saturation at pH 8 (Fig. 3f). Gross
primary production increased abruptly with conductivity, fol-
lowing an inverse exponential curve until it reached a satura-
tion point around 1000 μS cm�1 (Fig. 3g). Gross primary
production decreased with higher turbidity values (Fig. 3i),
while water temperature was a positive driver of GPP, follow-
ing a logistical relationship with a plateau in productivity at
20–25�C (Fig. 3j). Additionally, GPP was also impacted by agri-
cultural land uses, decreasing abruptly when the percentage of
agricultural lands surrounding the river reach exceeded 25%
(Fig. 3d). GPP also decreased with the percentage of urban

Table 1. Number of variables retained in the model, percentage of variance explained, and root mean square error (RMSE) on the test
dataset of the five random forest (RF) models created for gross primary production (GPP) and ecosystem respiration (ER). The models
with the smallest RMSE are presented in bold.

RF model

GPP ER

N variables % Var. expl RMSE N variables % Var. expl RMSE

Lag 0 20 70.39 0.28 24 61.09 0.29

Lag 5 25 68.66 0.30 15 71.49 0.22

Lag 10 22 71.18 0.29 15 75.96 0.19

Lag 20 21 73.64 0.28 21 78.53 0.18

Lag 40 16 77.09 0.25 11 82.28 0.17
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lands in the upstream watershed (Fig. 3k); yet other anthropo-
genic impacts had negligible effects despite being retained by
the model (Supporting Information Fig. S6B, S6C).

Ecosystem respiration was positively related to the mean
stage of the prior 40 d following an inverse exponential curve
with a plateau around 1.5 m (Fig. 4a). Similarly, ER also pres-
ented a positive relationship with the mean 40-d GPP, with ER
reaching a plateau at � 4 g O2 m�2 d�1 (1.25 g C m�2 d�1) of

GPP (Fig. 4b). ER was also positively related to conductivity,
reaching a maximum at � 1200 μS cm�1 (Fig. 4c). On the other
hand, ER was negatively related to pH, with an abrupt decrease
of respiration beyond a pH of � 7.5 (Fig. 4d). ER rates were
lower closer to the sea (< 50 km, Fig. 4e), and increased further
inland, while also showing a negative relationship with latitude
(Fig. 4f), with lower rates observed in the most northern catch-
ments. The relationship between ER and discharge was also

Fig. 3. Partial dependence plots of the 11 variables that explained up to 80% of the increase in node purity in the Lag 40 model for gross primary pro-
duction (GPP), sorted from most important (top left corner) to least important (bottom right corner). The partial dependence plots for rest of the vari-
ables retained by the model are available in the Supporting Information Fig. S6. (a) A 40-d mean stage (mean.stage.40, m); (b) distance to the sea
(DistSea, km); (c) 40-d mean PPFD (mean.light.40, μmol m�2 s�1); (d) proportion of agricultural lands in a 200 m buffer surrounding the river reach
(BF_AGR); (e) day of the year (yday); (f) 40-d mean pH (mean.pH.40); (g) 40-d mean conductivity (mean.conductivity.40, μS cm�1); (h) 40-d mean dis-
charge (mean.discharge.40, m3 s�1); (i) 40-d mean turbidity (mean.turbidity.40, NTU); (j) 40-d mean water temperature (mean.temp.40, �C); (k) pro-
portion of urban lands in the upstream catchment (URB). Ticks in the x-axis of the plots indicate the deciles for the explanatory variable.
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positive, with ER peaking at � 20 m3 s�1 and declining thereaf-
ter (Fig. 4g). Contrarily to GPP, ER was positively related to tur-
bidity (Fig. 4h). ER increased steadily through spring, reaching
a peak in summer and then abruptly decreased during autumn
(Fig. 4i). ER was not strongly influenced by temperature,
although rates increased sharply between 6�C and 7�C, before
leveling off at temperatures beyond 10�C (Supporting Informa-
tion Fig. S7A). Land uses and human impacts did not have a

substantial effect in the ER model, with the proportion of
broadleaf forests in the upstream river basin being the only var-
iable kept by the model (Supporting Information Fig. S7B).

Discussion
Our study is the first attempt to model river ecosystem

metabolism at large spatiotemporal gradients in the Iberian

Fig. 4. Partial dependence plots of the nine variables that account for 80% of the increase in node purity in the Lag 40 model for daily ecosystem respi-
ration (ER) rates, sorted from most important (top left corner) to least important (bottom right corner). The partial dependence plots of the other two
variables retained by the model are available in the Supporting Information Fig. S7. (a) 40-d mean stage (mean.stage.40, m); (b) 40-d mean gross pri-
mary production (mean.gpp.40, g O2 m�2 d�1); (c) 40-d mean conductivity (mean.conductivity.40, μS cm�1); (d) 40-d mean pH (mean.pH.40); (e) dis-
tance to the sea (DistSea, km); (f) latitude; (g) 40-d mean discharge (mean.discharge.40, m3 s�1); (h) 40-d mean turbidity (mean.turbidity.40, NTU); (i)
day of the year (yday). Ticks in the x-axis of the plots indicate the deciles for the variable.
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Peninsula, using environmental variables collected by auto-
matic monitoring stations and remote sensing resources. The
generated models can predict metabolism rates consistently
across a wide range of environmental conditions. This predic-
tive ability is highly valuable for large spatiotemporal studies
that require interpolation of incomplete time series, extrapola-
tion of river metabolism in space and time, or global change
predictions. Our results indicate that RF is a good tool for the
study of river ecosystem metabolism drivers and patterns in
large environmental gradients. However, as RF models are not
able to extrapolate outside the range of the input variables, it
is necessary to develop large datasets including very diverse
environmental conditions to ensure accurate river metabolism
predictions.

Overall, our findings showed that dynamic variables were
more important for river ecosystem metabolism control, but
static variables (distance to the sea and day of the year) were
also highly influential drivers of GPP. Further, average envi-
ronmental conditions over longer periods showed stronger
relationships to metabolic rates than same-day conditions,
particularly for ER. Such delays suggest that metabolic rates
are also linked to longer-term dynamics of biomass accrual,
senescence, and community succession. Yet, there are also
limitations to consider in our analysis, a main one being the
use of stage as a proxy for depth in metabolism calculation,
which may result in an under- or overestimation of metabolic
rates. We also lack information about the methodology used
for stage-discharge calibration at each SAICA site, adding
uncertainty to our results. Furthermore, due to lack of data,
our analysis did not include important drivers of metabolic
rates such as nutrients, dissolved organic matter, or biomass
estimations. Finally, despite the high predictive power of our
Lag 40 models, high metabolic rates were still underestimated,
although this bias may be reduced by using higher predictor
integration times (lags > 40 d). Nevertheless, our approach
produced reasonable metabolism predictions at large spatio-
temporal scales and thus seems promising for application to
other regions with a different set of environmental gradients.

Dynamic variables
As reflected in our conceptual framework and previous

studies, river metabolism across the Iberian Peninsula was
mainly controlled by dynamic variables, with GPP primarily
related to light availability and stage (Young and Huryn 1996,
1999; Mulholland et al. 2001; McTammany et al. 2007). The
high relative importance of stage may be an artifact of metab-
olism estimation, as this is one of the main variables used in
the Bayesian model. Our results suggested that GPP reached
an ecosystem-level saturation point at a daily mean PPFD of
� 500 μmol m�2 s�1. This leveling off of GPP may be deter-
mined by many different factors, such as self-shading, envi-
ronmental stress, composition and abundance of the
autotrophic community, or even photoinhibition (Acuña
et al. 2004; Townsend et al. 2018; Boix Canadell et al. 2021).

The relationship between GPP and light availability was also
mediated by day of the year, as light availability was highly
seasonally dependent (Supporting Information Heading Four,
Table S2, Fig. S9A, S11A; Savoy et al. 2019; Savoy and
Harvey 2021).

The relationship of GPP and ER with stage was also posi-
tive, reaching a maximum and then stabilizing. Because high
discharge events that caused biofilm scouring were eliminated
prior to analysis, this result may imply that GPP is limited by
the capacity of light to penetrate the water column (Kirk
et al. 2021), which changes spatially and temporally
(Supporting Information Heading Four, Figs. S10B, S10C,
S13A, S13B) with river size and discharge due to turbidity
(Uehlinger et al. 2003; Blaszczak et al. 2019; Chowanski
et al. 2020). This turbidity could be caused by high sediment
and organic matter loads, or by the increase of algal
concentration in the water column, producing a density-
dependent control on GPP. On the other hand, turbidity was
positively related to ER at the lower end of the range, perhaps
because turbidity is also related to higher nutrient and organic
matter availability, which might boost ER (Young and
Huryn 1996; Palmer and Ruhi 2019). Discharge was also an
important variable in daily river metabolism dynamics
(Figs. 3h, 4g), behaving similarly to water stage for GPP and
ER, which is consistent as both stage and discharge change
with river size and precipitation regimes (Uehlinger
et al. 2003; Acuña et al. 2004).

After stage, the second most important driver of ER was
GPP. Although the relationship between GPP and ER may be
due to their dependence on the same environmental variables,
this may also suggest that autotrophic organisms are a major
source of respiration (Alnoee et al. 2015) or that they provide
organic matter in the biofilm for heterotrophic consumption.
Disentangling the contribution of both autotrophic and het-
erotrophic respiration to ER is a difficult task and beyond the
objectives of this study. Further research is needed to fully
understand the relationship between autotrophic and hetero-
trophic community dynamics and river ecosystem metabolism
(Munn et al. 2020; Segatto et al. 2020). Regardless, other
recent studies in large rivers indicate a close coupling between
GPP and ER (Roley et al. 2023), and our findings suggest that
this may similarly be true for rivers across the Iberian
Peninsula.

While less important than light and stage, variation in
water chemistry also influenced metabolic patterns across
sites. For example, GPP tended to increase with pH, while ER
showed the opposite relationship (Figs. 3f, 4d). However, the
observed variation in pH may be a result of metabolic rates, as
ER produces CO2, lowering pH, while photosynthesis con-
sumes CO2, consequently raising pH (Caldeira and
Wickett 2003). Both lower pH and higher ER may also be
related to higher dissolved organic carbon, although we did
not have the data to test this hypothesis. Despite pH being, at
least in part, a result of metabolic activity, it is an important
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predictor in both GPP and ER models, and thus, its inclusion
may improve model predictions. Rates of GPP and ER also
increased across sites with conductivity. This relationship
exhibited a prominent spatial dependency (Supporting Infor-
mation Heading Four, Table S2, Figs. S10A, S12) as conductiv-
ity depends on catchment geology and increases with
catchment size. These findings collectively suggest that larger
rivers tend to accumulate more dissolved ions and nutrients
from their surrounding terrestrial ecosystems, and these inputs
boost rates of metabolic activity.

Water temperature exhibited a positive relationship with
both GPP and ER, with a saturation point at � 20�C and
� 12�C, respectively. ER increased abruptly around � 5�C
while GPP increased more gradually (Fig. 3j and Supporting
Information Fig. S7A). The different water temperature sensi-
tivities of GPP and ER may help explain their different sea-
sonal patterns, with ER being less sensitive to colder
temperatures than GPP, which could have implications for
river carbon cycling under changing climate conditions (Song
et al. 2018). Due to the abrupt increase of ER at cold tempera-
tures, a potential increase in temperature may skew the
GPP/ER balance toward respiration, thus transitioning meta-
bolic activity toward higher heterotrophy in a large fraction of
the river network length (i.e., headwaters and small tribu-
taries; Song et al. 2018). Water temperature variability in the
Iberian Peninsula, as well as light, was highly seasonally
dependent, increasing toward summer and decreasing in win-
ter (Supporting Information Heading Four, Figs. S9B, S11B).
Thus, the relationship observed between metabolic rates and
temperature was mainly caused by seasonal cycles and not
spatial environmental variability.

Static variables: Regional characteristics and
anthropogenic impacts

The third most important factor explaining GPP variability
was distance to the sea, such that GPP reached its peak closer
to the river mouth, with an abrupt decrease at distances larger
than 200 km (Fig. 3b). These patterns are consistent with
other studies in Spain reporting increases in GPP downstream
(Rodríguez-Castillo et al. 2019). More broadly, such patterns
are consistent with the river continuum concept (Vannote
et al. 1980), which predicts that GPP should increase in a
downstream direction; yet this general pattern can vary in
response to other factors, such as land use in the catchment
(Rodríguez-Castillo et al. 2019). Moreover, in the case of the
Iberian Peninsula, this pattern could also reflect a geographical
bias as reaches in smaller Cantabrian river basins (northern
Spain) are located more closely to the sea and are generally
very productive.

River metabolism was not substantially affected by human
activities, although our study may not have captured signifi-
cant undisturbed–impacted gradients as SAICA sites are
located in large rivers typically affected by a variety of anthro-
pogenic impacts. Anthropogenic impacts may also impact

metabolic rates in an indirect way, by affecting local variables,
such as light, water temperature, or discharge, which our
study approach was not suited to detect. The most important
anthropogenic impacts for river metabolism were land uses,
mainly agriculture. The proportion of agricultural land sur-
rounding the river reach had an important negative effect on
GPP (Fig. 3d), contrary to the results of previous studies. Other
studies conclude that the loss of riparian forest together with
the increased nutrient loads due to agriculture practices may
result in higher GPP rates (Bernot et al. 2010; Griffiths
et al. 2013; Alnoee et al. 2015). However, opposite patterns
may appear due to interactions among several drivers altered
by agricultural activity, including elevated nutrient concentra-
tions, which can boost metabolic rates (Aristi et al. 2016) but
also inputs of herbicides and pesticides (Kosinski 1984; Morin
et al. 2010; Aristi et al. 2016) and/or increases in fine sedi-
ments and turbidity, all of which may reduce GPP and ER
(Atkinson et al. 2008; Matthaei et al. 2010). These contradic-
tory results may reflect an incomplete understanding of the
effect of agriculture on river metabolism (Finlay 2011;
Bernhardt et al. 2018).

Integration of temporal environmental variability
Our models indicated that GPP temporal variability was

better captured by light and stage variation integrated over
longer time periods, as shown by the lowest RMSE in the Lag
40 RF model. The Lag 40 model was less prone to underesti-
mate higher GPP rates (> 4 g C m�2 d�1; Supporting Informa-
tion Fig. S8A, S8C), suggesting higher GPP rates were the
result of longer-term biomass growth dynamics, which were
better captured by integrating environmental conditions
over longer periods. However, the increase in explained vari-
ance between the worst (Lag 0) and best model (Lag 40) was
only 9.5%, which may indicate that a mixture of short-term
and long-term variables is driving daily GPP rates (e.g., daily
light availability and autotroph growth dynamics). A previ-
ous study also found a relationship between GPP and light
over the previous week (Blaszczak et al. 2019) mediated by
biomass growth. The small improvement from the Lag 0 to
the Lag 40 model also suggests GPP was mainly controlled by
simple organisms (e.g., unicellular algae) with short life
cycles, high growth rates, and quick recovery times after per-
turbations (Uehlinger 2006; Acuña et al. 2015).

Likewise, ER variability was best captured by variables inte-
grating larger time periods, with the Lag 40 RF model being
the one with the lowest RMSE, improving the explained vari-
ance of the worst model (Lag 0) by almost 35%. These findings
indicate that daily ER rates are likely controlled by a more
complex set of longer-term environmental drivers than GPP,
increasing respiration resistance to short-term fluctuations
(Rodríguez-Castillo 2017). The longer response period may
indicate that ER is more dependent on the seasonal deposition
of organic matter, coupled with the delayed response of bio-
mass growth and decay of a diverse array of simple organisms
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(bacteria, algae, etc.), presenting different growth rates and
sensitivity to perturbation (Munn et al. 2020; Bertuzzo
et al. 2022). Despite its high predictive power, the Lag
40 model still consistently underestimated higher ER rates
(< �5 g C m�2 d�1), suggesting that higher biomass growth
integration periods (> 40 d) may be needed to estimate these
respiration peaks accurately. Nevertheless, this result is a
promising avenue of new research on the temporal variability
of river metabolic rates in relation to river ecosystem resilience
and resistance to changing environmental conditions. How-
ever, our data had gaps and did not allow us to analyze larger
time frames (60 – 365 d) and describe the effects of seasonal
environmental patterns, which should be a next step in our
understanding of legacy effects on metabolism.

Conclusions
This study presents a modeling approach that can more

accurately predict daily river metabolism across large environ-
mental gradients by integrating potential predictors over lon-
ger periods. Improving metabolism prediction accuracy, even
by small amounts, is essential to reduce the prediction error of
metabolic rates at regional or global scales. Here, the models
that included longer environmental legacies considerably
improved the prediction accuracy and were less prone to
underestimating metabolic rates, highlighting the integrative
nature of river ecosystem metabolism. Long-term biomass
dynamics should be further explored to unravel their relative
contributions to riverine metabolism rates.

Moreover, this study shows for the first time the key driv-
ing factors of river metabolism in larger Iberian rivers (stream
order ≥ 5). As expected, dynamic variables were generally the
most important predictors of river ecosystem metabolism,
although distance to the sea also shaped spatial patterns along
river networks. Therefore, daily metabolic rates depended on a
mix of dynamic variables integrated over weeks, regulated by
spatial and temporal patterns such as position in the river net-
work and season. These spatiotemporal patterns may help
describe general metabolism regimes in entire river networks
and find common drivers at regional and even global scales.

Our study also suggests that RF models may be effective
tools for predicting river metabolism across large environmen-
tal gradients. Our overall approach requires two main ele-
ments: a deep understanding of river ecosystem metabolism
patterns and drivers, and large databases with continuous oxy-
gen records from rivers spanning gradients in size and envi-
ronmental condition, for which monitoring networks are
essential. Despite the large environmental dataset used, this
work still presents some sampling biases, as it is skewed
toward small and mid-sized rivers (when put in a global con-
text) in a temperate–Mediterranean climatic gradient affected
by diverse anthropogenic impacts (water abstraction, agricul-
ture, etc.). Further study on the geographical and temporal
complexity of metabolic factors in other river types is needed

to extrapolate general trends if we want to characterize river
ecosystem metabolism patterns at a global scale.
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