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Resumen

La tesis consta de dos partes diferenciadas. La primera parte, formada por los
caṕıtulos 1, 2, 3 y 4, continúa la ĺınea de investigación del TFM sobre realización
del multiasociaedro.

Sean k, n ∈ N con n > 2k. Un k-cruce es un conjunto de k diagonales del
n-gono convexo que se cruzan. Una k-triangulación es un subconjunto maximal

de
(
[n]
2

)
sin (k + 1)-cruces. El k-asociaedro o multiasociaedro ∆k(n) es el complejo

simplicial de los subconjuntos de
(
[n]
2

)
sin (k + 1)-cruces, y cuyas facetas son las k-

triangulaciones; ignorando las aristas de longitud ≤ k, que no pueden formar parte
de un (k + 1)-cruce, se obtiene el complejo reducido ∆k(n).

Jonsson [70] demostró que ∆k(n) es una esfera shellable y conjeturó que era
politopal. Esta conjetura se ha demostrado en los casos n = 2k + 1 (el polito-
po es un punto), n = 2k + 2 (es un śımplice), n = 2k + 3 (es un politopo
ćıclico) y (k, n) = (2, 8) [11]. En el caṕıtulo 2 demostramos esta conjetura para
(k, n) ∈ {(2, 9), (2, 10), (3, 10)}. La demostración usa técnicas de teoŕıa de la rigi-
dez. Concretamente, se demuestra que estas esferas son politopales tomando como
posiciones de los puntos las filas de una matriz de rigidez de cofactores.

La matriz de rigidez de cofactores de n puntos en el plano, q = (q1, . . . , qn) ⊂
R2, es una matriz con una fila por cada par de puntos, y d columnas por cada punto,
donde d es un parámetro. La forma exacta está en la ecuación (4). Para d = 2k,
esta matriz tiene el mismo rango que la cardinalidad de una k-triangulación y, por
lo tanto, sus filas pueden usarse como coordenadas de los vértices de ∆k(n). Que
esta matriz realice o no el complejo reducido ∆k(n) como un politopo depende
de ciertas condiciones de signos y de la factibilidad de un programa lineal (véase
sección 2.2.2).

Los resultados principales son los siguientes:

• Para (k, n) ∈ {(2, 9), (2, 10), (3, 10)}, ∆k(n) es una esfera politopal, y
∆4(13) se puede realizar como abanico simplicial completo (Teorema 2.1).

• Las 2-triangulaciones son isostáticas con d = 4 para posiciones genéricas
en la cónica (Teorema 2.3).

• Si lo anterior se cumple para cualquier posición en la cónica, entonces to-
das esas posiciones realizan el multiasociaedro como un abanico (Teorema
2.5).

• Hay 3-triangulaciones en 9 puntos que no son isostáticas para d = 6 en
posición arbitraria (Teorema 2.6).

• Ninguna posición convexa realiza el multiasociaedro como un abanico para
k ≥ 3 y n ≥ 2k + 6 (Teorema 2.7).
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6 RESUMEN

El caṕıtulo 3 explora relaciones entre el multiasociaedro y la variedad Pfk(n)
formada por las matrices antisimétricas de rango menor o igual que 2k. Esta va-
riedad está generada por los polinomios llamados pfaffianos: hay uno por cada
subconjunto de tamaño 2k + 2 de [n] y tiene un término por cada emparejamiento
perfecto de dicho subconjunto. Los vectores de pesos fp-positivos, es decir, aquellos
que dan peso máximo al emparejamiento que forma un (k + 1)-cruce en cada pfaf-
fiano, hacen que estos polinomios sean base de Gröbner del ideal que generan, y el
cono de Gröbner Grobk(n) de los (k+1) cruces contiene (estrictamente si k ≥ 2) al
cono de los vectores fp-positivos. Esto implica que las k-triangulaciones son bases
de la matroide algebraica de Pfk(n) (Corolario 3.20), lo que a su vez tiene varias
implicaciones:

• Por un lado, relaciona el hecho de no tener (k + 1)-cruces, o de contener
una k-triangulación, con el problema de completación de matrices de rango
menor o igual que 2k [8, 77]: véase teorema 3.3.

• Por otro lado, esta matroide algebraica resulta ser la matroide de hiper-
conectividad genérica, de donde se deduce que las k-triangulaciones son
isostáticas en dicha matroide de hiperconectividad en dimensión 2k: véase
corolario 3.22. La hiperconectividad es otra matroide de rigidez, definida
por Kalai [74].

Después dirigimos la atención a la tropicalización de Pfk(n). La operación de
tropicalización consiste en sustituir, en un polinomio, las sumas por máximos, los
productos por sumas, y eliminar los coeficientes. Si se realiza esta operación con los
pfaffianos, los puntos para los que el máximo se alcanza dos veces en cada pfaffiano

forman la prevariedad tropical Pfk(n) ⊂ R(
[n]
2 ). Este conjunto contiene la variedad

tropical trop(Pfk(n)), que se obtiene tropicalizando todos los polinomios del ideal
generado por los pfaffianos (en lugar de solo los generadores), pero en general no
coincide (Teorema 3.29).

La parte de Pfk(n) de mayor interés para nosotros es la contenida dentro del
cono Grobk(n), a la que llamamos Pf+k (n). Nuestros resultados al respecto son:

• Pf+k (n) = Grobk(n) ∩ trop(Pfk(n)) ⊂ trop+(Pfk(n)) (Teorema 3.4).

• Pf+k (n) es isomorfo al multiasociaedro como abanico (Corolario 3.5).

El caṕıtulo termina conectando el último resultado con la realización del aso-
ciaedro con g-vectores [66].

Finalmente, el caṕıtulo 4 trata los mismos temas que los caṕıtulos anteriores,
pero desde una nueva perspectiva: se introduce una operación de bipartización que
permite convertir las multitriangulaciones en grafos bipartitos. Estos grafos pueden
tratarse con otra forma de rigidez, que vuelve a ser la hiperconectividad pero res-
tringida a grafos bipartitos [75], y la dimensión es k en lugar de 2k. Los resultados
principales son:

• Las bipartizaciones de k-triangulaciones son bases de la matroide de hi-
perconectividad genérica en dimensión k (Teorema 4.2).

• Si la bipartización de un grafo E es independiente en la matroide de
hiperconectividad genérica en dimensión k, entonces E es independiente
en la matroide de hiperconectividad genérica en dimensión 2k (Teorema
4.3).
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• Conocemos posiciones expĺıcitas para n = 2k + 2 y n = 2k + 3 para
las que las filas de la matriz de hiperconectividad bipartita realizan el
multiasociaedro como un abanico completo (Teoremas 4.6 y 4.7).

• Hay 3-triangulaciones en 9 puntos cuyas bipartizaciones no son isostáticas
para d = 3 en posición arbitraria (Teorema 4.4).

• Si k = 3 y n ≥ 12, o si k ≥ 4 y n ≥ 2k+4, ninguna posición de puntos en la
curva de momentos realiza el multiasociaedro como un abanico (Teorema
4.8).

También se aborda el problema desde un punto de vista algebraico: la matroi-
de de hiperconectividad bipartita es también una matroide algebraica, cuyo ideal
resulta ser un ideal inicial del ideal de los pfaffianos. Esto permite reutilizar la
maquinaria introducida en el caṕıtulo anterior.

La segunda parte de la tesis, también publicada como [27, versión 1] (salvo
reordenamiento de algunos contenidos y cambios expositorios para hacer la tesis
más accesible), consta de los caṕıtulos 5, 6, 7, 8 y 9, y está dedicada a encontrar
un equivalente p-ádico de la famosa clasificación de Weierstrass-Williamson de ma-
trices y luego aplicar dicha clasificacion para determinar todos los modelos lineales
posibles de las singularidades de un sistema integrable p-ádico en una variedad
anaĺıtica simpléctica de dimensión 4.

En 1858 Weierstrass [136] demostró que toda matriz definida positiva puede ser
diagonalizada por una matriz simpléctica, esto es, una matriz S tal que STΩ0S =
Ω0, donde Ω0 es la matriz diagonal por bloques con todos los bloques iguales a(

0 1
−1 0

)
.

Este resultado fue generalizado en 1936 por Williamson [142], quien dio un conjunto
de formas normales de matrices tales que para cualquier matrizM existe una forma
normal N y una matriz simpléctica S tales que STMS = N . Si bien no todas las
formas normales de Williamson son expĺıcitas, śı lo son en el caso particular en el
que los valores propios de Ω−1

0 M son diferentes.
La clasificación de Weierstrass-Williamson puede usarse para clasificar pun-

tos cŕıticos de sistemas integrables. Concretamente, dada una variedad simpléctica
(M,ω), un sistema integrable F : (M,ω) → Rn y un punto cŕıtico m de F , siempre
existen coordenadas simplécticas lineales (x1, ξ1, . . . , xn, ξn) con origen en m tales
que

F − F (m) = B ◦ (g1, . . . , gn) +O(3),

donde las gi pueden ser componentes eĺıpticas, hiperbólicas, foco-foco o regulares.
Después de deducir algunos resultados auxiliares en el caṕıtulo 6, en el caṕıtulo

7 recuperamos la clasificación de Weierstrass-Williamson usando una nueva estra-
tegia, consistente en resolver primero el problema en los complejos, donde es más
fácil al ser algebraicamente cerrado, y luego “bajar” a los reales.

En el caṕıtulo 8 se usa la misma estrategia para deducir el equivalente de
esta clasificación en el caso donde el cuerpo R se sustituye por el cuerpo de los p-
ádicos Qp, donde p es un número primo. El cuerpo R se puede construir como una
completación de Q con el valor absoluto usual |x| = máx{x,−x}. El cuerpo Qp es
una completación de Q con un valor absoluto distinto, definido a partir del orden de
p en x. En este caṕıtulo se deduce la clasificación de Weierstrass-Williamson en el
caso p-ádico para dimensiones 2 y 4, y en el caṕıtulo 9 se aplica esta clasificación a
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sistemas integrables p-ádicos, con especial mención a la versión p-ádica del sistema
de Jaynes-Cummings estudiada en [26].

Hay importantes diferencias entre la clasificación real deWeierstrass-Williamson
y su equivalente p-ádico:

• En dimensión 2, en el caso real hay solo dos familias infinitas de formas
normales con un grado de libertad (de la forma rM donde r ∈ R y M es
una matriz fija) y dos formas normales aisladas. En el caso p-ádico hay 5,
7 u 11 familias infinitas con un grado de libertad y 4 u 8 formas normales
aisladas, dependiendo de p (Teorema 5.30).

• Como las familias infinitas corresponden a formas normales de puntos
cŕıticos no degenerados de sistemas integrables, el número de estas formas
normales en el caso p-ádico también es de 5, 7 u 11 dependiendo de p
(Corolario 9.6) frente a solo 2 en el caso real.

• En dimensión 4, en el caso real hay 4 familias infinitas de formas normales
con dos grados de libertad (de la forma r1M1 + r2M2 donde r1, r2 ∈ R
y M1 y M2 son matrices fijas), 7 familias con un grado de libertad y 5
formas normales aisladas. En el caso p-ádico hay 32, 49 o 211 familias con
dos grados de libertad, 27, 35 o 103 con un grado de libertad, y 20 o 72
formas aisladas (Teorema 5.34).

• Una vez más, las familias infinitas con dos grados de libertad correspon-
den a formas normales de puntos cŕıticos no degenerados de rango 0 de
sistemas integrables, luego el número de estas formas normales en el caso
p-ádico es de 32, 49 o 211 dependiendo de p (Teorema 5.22), frente a solo
4 en el caso real. El número de formas para puntos de rango 1 es de 5, 7
u 11, frente a 2 en el caso real.

• En dimensión arbitraria, en el caso real no degenerado, el número de fami-
lias de formas normales de matrices, y por lo tanto el de formas normales
de sistemas integrables, es cuadrático en la dimensión. En el caso p-ádico,
este número es casi exponencial en la dimensión (Teoremas 5.26 y 5.37).

Como se ve, la geometŕıa simpléctica p-ádica resulta ser mucho más rica que
la real: muchos de los fenómenos que aparecen en estos casos no tienen equivalente
real.
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Part 1

Multitriangulations and the
multiassociahedron





CHAPTER 1

Preliminaries

1.1. Multitriangulations

The starting point for this part is my master thesis [24], whose second part
was about multitriangulations. The results in this part have been published in
[25, 29, 30]. Let us recall the definition of a multitriangulation.

Triangulations of the convex n-gon P (n > 2), regarded as sets of edges, are
the facets of an abstract simplicial complex with vertex set(

[n]

2

)
:= {{i, j} : i, j ∈ [n], i < j}

and defined by taking as simplices all the non-crossing sets of edges. This simplicial
complex, ignoring the boundary edges {i, i+1}, is a polytopal sphere of dimension
n − 4 dual to the associahedron. (Here and all throughout the thesis, indices for
vertices of the n-gon are regarded modulo n).

A similar complex can be defined if, instead of forbidding pairwise crossings,
we forbid crossings of more than a certain number of edges. More precisely:

Definition 1.1 ([24, Definición 2.1.1]). Two disjoint elements {i, j}, {k, l} ∈(
[n]
2

)
, with i < j and k < l, of

(
[n]
2

)
cross if i < k < j < l or k < i < l < j. That is,

if they cross when seen as diagonals of a cyclically labeled convex n-gon.

A k-crossing is a subset of k elements of
(
[n]
2

)
such that every pair cross. A

subset of
(
[n]
2

)
is (k + 1)-crossing-free if it doesn’t contain any (k + 1)-crossing. A

k-triangulation is a maximal (k + 1)-crossing-free set.

Observe that whether two pairs {i, j}, {k, l} ∈
(
[n]
2

)
cross is a purely combinato-

rial concept, but it captures the idea that the corresponding diagonals of a convex
n-gon geometrically cross.

The length of an edge {i, j} ∈
(
[n]
2

)
, is min{|j − i|, n − |j − i|}. That is, the

distance from i to j measured cyclically in [n]. Edges of length at most k cannot
participate in any k+1-crossing and, hence, all of them lie in every k-triangulation.
We call edges of length at least k + 1 relevant and those of length at most k − 1
irrelevant. The “almost relevant” edges, those of length k, are called boundary edges
and, although they lie in all k-triangulations, they still play an important role in
the theory (see Proposition 2.13(3)).

By definition, (k+1)-crossing-free subsets form an abstract simplicial complex

on the vertex set
(
[n]
2

)
, whose facets are the k-triangulations and whose minimal

non-faces are the (k + 1)-crossings. We denote this complex ∆k(n). Since the kn
irrelevant and boundary edges lie in every facet, it makes sense to consider also
the reduced complex ∆k(n). Technically speaking, we have that ∆k(n) is the join
of ∆k(n) with the irrelevant face (the face consisting of irrelevant and boundary

13



14 1. PRELIMINARIES

edges). We call ∆k(n) the multiassociahedron or k-associahedron. See Section 2.2.1
for more precise definitions, and [105, 106, 128] for additional information.

Multitriangulations were studied (under a different name) by Capoyleas and
Pach [16], who showed that no (k + 1)-crossing-free subset has more than k(2n −
2k − 1) edges. Then it was proved in [88, 42] that every k-triangulation of the
n-gon has exactly k(2n − 2k − 1) edges. That is, ∆k(n) is pure of dimension
k(2n− 2k− 1)− 1, hence ∆k(n) has dimension k(n− 2k− 1)− 1. The main result
about ∆k(n) for our purposes is the following theorem of Jonsson, also a particular
case of a theorem of Knutson and Miller:

Theorem 1.2 (Jonsson [70], Knutson-Miller [78]). ∆k(n) is a vertex-decomposable
(hence shellable) sphere of dimension k(n− 2k − 1)− 1.

Remember that all polytopal spheres are shellable, so shellability can be consid-
ered evidence in favor of polytopality. Vertex-decomposability is a stronger notion
introduced by Provan and Billera [110] implying, for example, that the diameters
of these spheres satisfy the Hirsch bound.

Conjecture 1.3 (Jonsson). For every n ≥ 2k + 1 the complex ∆k(n) is a
polytopal sphere. That is, there is a simplicial polytope of dimension k(n−2k−1)−1
and with

(
n
2

)
− kn vertices whose lattice of proper faces is isomorphic to ∆k(n).

The first appearance of this statement, as a question rather than a conjecture, is
the 2003 preprint [70]. The conjecture then appeared explicitly in Jonsson’s hand-
written abstract after his talk in an Oberwolfach Workshop the same year [91,
71] (but it did not appear in the shorter abstract published in the Oberwolfach
Reports). It was also included in the unpublished manuscript by Dress, Grünewald,
Jonsson, and Moulton [41], before appearing in papers by other authors [106, 128].

Remark 1.4. The question of polytopality of ∆k(n) is quite natural, since
it generalizes the associahedron (the case k = 1) which admits many different
constructions as a polytope [20, 109]. One would expect that, as happens in the
case of the associahedron, having explicit polytopal constructions of ∆k(n) would
uncover interesting combinatorics. If, in the contrary, it turns out that ∆k(n) is
not always polytopal, it would also be interesting to know it; it would probably be
the first family of shellable spheres naturally arising from a combinatorial problem
and that are proven not to be polytopal.

Interest in this question comes also from cluster algebras and Coxeter combi-
natorics. Let w ∈ W be an element in a Coxeter group W and let Q be a word of
a certain length N . Assume that Q contains as a subword a reduced expression for
w. The subword complex of Q and w is the simplicial complex with vertex set [N ]
and with faces the subsets of positions that can be deleted from Q and still contain
a reduced expression for w. Knutson and Miller [78, Theorem 3.7 and Question
6.4] proved that every subword complex is either a vertex-decomposable (hence
shellable) ball or sphere, and they asked whether all spherical subword complexes
are polytopal. It was later proved by Stump [128, Theorem 2.1] that ∆k(n) is a
spherical subword complex for the Coxeter system of type An−2k−1 and, moreover,
it is universal : every other spherical subword complex of type A appears as a link
in some ∆k(n) [107, Proposition 5.6]. In particular, Conjecture 1.3 is equivalent
to a positive answer (in type A) to the question of Knutson and Miller.

Versions of k-associahedra for the rest of finite Coxeter groups exist, with the
same implications [19].
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Conjecture 1.3 is easy to prove for n ≤ 2k+3. ∆k(2k+1) is indeed a −1-sphere
(the complex whose only face is the empty set). ∆k(2k + 2) is the face poset of a
(k − 1)-simplex, and ∆k(2k + 3) is (the polar of) the cyclic polytope of dimension
2k − 1 with n vertices (Lemma 8.7 in [106]). The only additional case for which
Jonsson’s conjecture is known to hold is k = 2 and n = 8 [11]. In some additional
cases ∆k(n) has been realized as a complete simplicial fan, but it is open whether
this fan is polytopal. This includes the cases n ≤ 2k + 4 [7], the cases k = 2 and
n ≤ 13 [84] and the cases k = 3 and n ≤ 11 [7].

1.2. Rigidity

Several definitions and results here follow [24, section 1.2.1].
Let p = (p1, . . . , pn) be a configuration of n points in Rd, labelled by [n].1 Their

bar-and-joint rigidity matrix is the following
(
n
2

)
× nd matrix:

(1) R(p) :=



p1 − p2 p2 − p1 0 . . . 0 0
p1 − p3 0 p3 − p1 . . . 0 0

...
...

...
...

...
p1 − pn 0 0 . . . 0 pn − p1

0 p2 − p3 p3 − p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 − pn pn − pn−1


.

Since there is a row of the matrix for each pair {i, j} ∈
(
[n]
2

)
, rows can be considered

labeled by edges in the complete graph Kn. The matrix is a sort of “directed
incidence matrix” of Kn, except instead of having one column for each vertex
i ∈ [n] we have a block of d columns, and instead of putting a single +1 and −1 in
the row of edge {i, j} we put the d-dimensional (row) vectors pi − pj and pj − pi.

An important property of R(p) (Lemma 11.1.3 in [141], see also [24, Teorema
1.2.5]) is that if the points p affinely span Rd then the rank of R(p) equals

(2)

{(
n
2

)
if n ≤ d+ 1,

dn−
(
d+1
2

)
if n ≥ d.

(Observe that the two formulas give the same result for n ∈ {d, d+1}.) If the points
span an r-dimensional affine subspace, the same formulas hold with r substituted
for d.

A pair (G,p) where G is a graph on n vertices and p is a set of n points in
Rn (positions for the vertices) is usually called a framework. Seeing this framework
as a bar-and-joint structure, the coefficients of any linear dependence among the
rows of R(p) can be interpreted as forces acting along the bars (edges) with the
property that the resultant force on every vertex cancels out. These systems of
forces are called self-stresses of equilibrium stresses. We will denote Z(R(p)) the
space of self-stresses of p.

In the same manner, a linear dependence among the columns of R(p) can be
understood as an infinitesimal motion of the vertices (that is, an assignment of
velocity vectors to the joints) that preserves the length of all bars. This is called an

1By a configuration we mean an ordered set of points or vectors, usually labelled by the first
n positive integers. For this reason we write p as a vector rather than a set.
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infinitesimal flex of the framework. We do not introduce a particular notation for
flexes since our main interest is in the vector configuration, and matroid, of rows of

R(p). To this end, for any E ⊂
(
[n]
2

)
we denote by R(p)|E the restriction of R(p)

to the rows or elements indexed by E.

Definition 1.5 (Rigidity). Let E ⊂
(
[n]
2

)
be a subset of edges of Kn (equiva-

lently, of rows of R(p)). We say that E, or the corresponding subgraph of Kn, is
self-stress-free or independent in the position p if the rows of R(p)|E are linearly
independent, and rigid or spanning if they are linearly spanning (that is, if they
have the same rank as the whole matrix R(p)).

Put differently, self-stress-free and rigid graphs are, respectively, the indepen-
dent and spanning sets in the linear matroid of rows of R(p). We call this matroid
the bar-and-joint rigidity matroid of p and denote it R(p). It is a matroid with

ground set
(
[n]
2

)
and, for points affinely spanning Rd, of rank given by Equation (2).

See, for example, [57, 141] for more information on rigidity matrices and their ma-
troids. Let us remark that, although rigidity theory usually deals only with R(p)
as an (unoriented) matroid, its definition as the linear matroid of a configuration of
real vectors produces in fact an oriented matroid. Orientations will be important
for us in Section 2.4, in the light of the results of Section 2.2.2.

The following two matrices and matroids reminiscent of R(p) are of interest:

• The hyperconnectivity matroid of the configuration p = (p1, . . . , pn) in
Rd, denoted H(p), is the matroid of rows of

(3) H(p) :=



p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1


• For points q = (q1, . . . , qn) in R2 and a parameter d ∈ N, the d-dimensional

cofactor rigidity2 matroid of the points q1, . . . , qn, which we denote Cd(q),
is the matroid of rows of

(4) Cd(q) :=



c12 −c12 0 . . . 0 0
c13 0 −c13 . . . 0 0
...

...
...

...
...

c1n 0 0 . . . 0 −c1n
0 c23 −c23 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n


,

where the vector cij ∈ Rd associated to qi = (xi, yi) and qj = (xj , yj) is

cij :=
(
(xi − xj)

d−1, (yi − yj)(xi − xj)
d−2, . . . , (yi − yj)

d−1
)
.

2This form of rigidity is usually called Cd−2
d−1 -cofactor rigidity, since it is related to the exis-

tence of piecewise linear splines of degree d− 1 and of type Cd−2. The definition we give here is
not the same as in [24, section 1.3.1], but it is equivalent.
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For d = 1 this is independent of the choice of q and equals the directed
incidence matrix of Kn. For d = 2 we have C2(q) = R(q).

The matroids R(p) and Cd(q) are invariant under affine transformation of the
points, and H(p) under linear transformation. (More generally, although we do not
need this, R(p) and Cd(q) are invariant under projective transformation in RPd and
RP2 as compactifications of Rd and R2, and H(p) under projective transformation
in RPd−1 as a quotient of Rd \ {0}). We say that the points chosen are in general
position for R (respectively for C or for H) if no d + 1 of them lie in an affine
hyperplane (respectively no three of them in an affine line or no d of them in a linear
hyperplane). In the three cases, general position implies that the corresponding
matroid has the rank stated in Equation (2) and that every copy of the graph Kd+2

is a circuit. Nguyen [89] showed that the matroids on
(
[n]
2

)
with these properties

are exactly the abstract rigidity matroids introduced by Graver in [56].
Clearly, in the three cases and for each choice of the “dimension” d there is

a unique most free matroid that can be obtained, in the sense that the indepen-
dent sets in any other matroid will also be independent in this one, realized by
sufficiently generic choices of the points. We call these the generic bar-and-joint,
hyperconnectivity, and cofactor matroids of dimension d on n points, and denote
them Rd(n), Hd(n), Cd(n). (Observe, however, that this generic matroid may strat-
ify into several different generic oriented matroids; this is important for us since we
will be concerned with the signs of circuits, by the results in Section 2.2.2).

In [28] we prove that these three rigidity theories coincide when the points p
or q are chosen along the moment curve (for bar-and-joint and hyperconnectivity)
and the parabola (for cofactor). More precisely:

Theorem 1.6 ([28], [24, Teorema 1.3.11]). Let t1 < . . . < tn ∈ R be real
parameters. Let

pi = (1, ti, . . . , t
d−1
i ) ∈ Rd, p′i = (ti, t

2
i , . . . , t

d
i ) ∈ Rd, qi = (ti, t

2
i ) ∈ R2.

Then, the three matrices H(p1, . . . , pn), R(p
′
1, . . . , p

′
n) and Cd(q1, . . . , qn) can be

obtained from one another multiplying on the right by a regular matrix and then
multiplying rows by some positive scalars.

In particular, the rows of the three matrices define the same oriented matroid.

Proof. This follows from the proofs of Lemma 2.3 and Theorem 2.5 in [28].
Although the statements there speak only of the matroids of rows, the proofs show
that dividing each row (i, j) of R(p′1, . . . , p

′
n) by tj − ti and that of Cd(q1, . . . , qn)

by (tj − ti)
d−1 one obtains matrices that are equivalent to H(p1, . . . , pn) under

multiplication on the right by a regular matrix. □

Definition 1.7 (Polynomial rigidity). We call the matrix H(p1, . . . , pn) in
the statement of Theorem 1.6 the polynomial d-rigidity matrix with parameters
t1, . . . , tn. We denote it Pd(t1, . . . , tn), and denote Pd(t1, . . . , tn) the corresponding
matroid.

Among the polynomial rigidity matroids Pd(t1, . . . , tn) there is again one that
is the most free, obtained with a sufficiently generic choice of the ti. We denote it
Pd(n) and call it the generic polynomial d-rigidity matroid on n points. Theorem 1.6
implies that we can regard Pd(n) as capturing generic bar-and-joint rigidity along
the moment curve, generic hyperconnectivity along the moment curve, or generic
cofactor rigidity on a conic.
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We do not know whether Pd(n) equals Hd(n), but we do know that Hd(n),
Rd(n) and Cd(n) are different for d ≥ 4 and n large enough. For example:

• Kd+1,d+1 is a circuit in Pd(n) and Hd(n), but independent in Rd(n) and
Cd(n) for every d ≥ 2 (More strongly, Kd+1,(d+1

2 ) is a basis in both, [141,

Theorem 9.3.6 and Example 11.3.12]).
• K6,7 is a basis in C4(n) and dependent in R4(n) for n ≥ 13 [141, Sections

11.4 and 11.5]. (The example generalizes to show that Cd(n) ̸= Rd(n) for
n− 9 ≥ d ≥ 4).

See [28] for a recent account of these and other relations among these matroids,
including some questions and conjectures. See [90] for a comprehensive study of
bar-and-joint and cofactor rigidities.

1.3. Pfaffians and tropical varieties

In the case k = 1, one way of realizing the associahedron is as the positive part
of the space of “tree metrics”, which coincides with the tropicalization trop(Gr2(n))
of the Grassmannian Gr2(n) (see [124, 125], or Remark 3.34). More precisely:

Theorem 1.8 ([125, Section 5]). The totally positive tropical Grassmannian
trop+(Gr2(n)) is a simplicial fan isomorphic to (a cone over) the extended associ-
ahedron ∆1(n).

Let us briefly recall what the tropicalization of a variety, and its positive part,
are. (See also [13]). Let I ⊂ K[x1, . . . , xN ] be a polynomial ideal and let V =
V (I) ⊂ KN be its corresponding variety. Each vector v ∈ RN , considered as giving
weights to the variables, defines an initial ideal inv(I), consisting of the initial forms
inv(f) of the polynomials in f . For our purposes we take the following definitions.
(These are not the standard definitions, but are equivalent to them as shown for
example in [125, Propositions 2.1 and 2.2]):

Definition 1.9. The tropical hypersurface trop(f) of a polynomial f ∈ K[x1, . . . , xN ]
is the collection of weight vectors v ∈ RN for which inv(f) is not a monomial. Put
differently, the weight vectors for which the maximum weight among monomials in
f is attained at least twice. It is a polyhedral fan, namely the codimension one
skeleton of the normal fan of the Newton polytope of f .

If V is the algebraic variety of an ideal I, the tropicalization of V equals

trop(V ) := ∩f∈I trop(f).
A finite subset B ⊂ I such that trop(V ) = ∩f∈B trop(f), which always exists,

is called a tropical basis of I. Not every generating set of I (not even a universal
Gröbner basis of I, see [10, Example 10] or [83, Example 2.6.1]) is a tropical
basis. In general, a finite intersection of tropical hypersurfaces is called a tropical
prevariety, while the tropicalization of a variety is a tropical variety [83, Definitions
3.1.1 and 3.2.1]. The tropical prevariety defined by a finite set of polynomials
{f1, . . . , fn} contains, but is sometimes not equal to, the tropical variety of the
ideal (f1, . . . , fn) generated by them.

Pachter and Sturmfels [94, p. 107] hint at the fact that the relation between
the associahedron and Gr2(n) extends to a relation between the multiassociahedron
∆k(n) and the tropical variety of Pfaffians of degree k + 1.

The complete graph on a set of vertices U ⊂ [n] of size 2k has (2k − 1)!!
matchings (by which we always mean a perfect matching), one of which is the
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unique k-crossing with vertex set U . The parity of a matching E is the parity of
the number of pairwise crossings among the edges in E. This parity coincides with
the parity as a permutation, when the pairs of matched vertices are written one
after another, in increasing order within each pair. By swapping two pairs {a, b}
and {c, d} in a matching E we mean removing them and inserting one of the other
two matchings of {a, b, c, d} instead. Observe that one of the three matchings of
{a, b, c, d} has a crossing (that is, it is odd) and the other two are crossing-free
(hence even).

Lemma 1.10. A swap changes parity if and only if one of the two pairs of edges
in the swap (the pair removed or the pair inserted) is a crossing.

Proof. Let {a, b} and {c, d} be the initial pairs and {a, d} and {b, c} the new
pairs. Any other edge from the matching crosses the cycle abcda an even number
of times. Hence, the only change in the number of crossings comes from whether
the edges in the swap cross. □

Recall that an antisymmetric matrix of odd size n has zero determinant because

det(M) = det(M t) = det(−M) = (−1)n det(M).

For even size there is the following classical result:

Theorem 1.11 (Cayley 1852 [18]). Let M be a size 2k antisymmetric matrix.
Then

(5) detM =

 ∑
E matching

s(E)
∏

(i,j)∈E,i<j

mij

2

where the sum is taken over the matchings of [2k] and s(E) = ±1 according to the
parity of E.

The expression inside the parenthesis in this theorem, that is, the square root
of the determinant of an antisymmetric matrix, is called the Pfaffian of M .

For each n ≥ 2k+2, let Ik(n) be the ideal in K[xi,j , {i, j} ∈
(
[n]
2

)
] generated by

all the Pfaffians of degree k+1. Let Pfk(n) ⊂ K(n2) be the corresponding algebraic
variety. That is, points in Pfk(n) are antisymmetric n×n matrices with coefficients
in K and of rank at most 2k. It is well-known and easy to see that Pf1(n) equals the
Grassmannian Gr2(n) in its Plücker embedding and, as pointed out in [94], Pfk(n)
equals the k-th secant variety of it.

For k = 1, Pfaffians are a universal Gröbner basis of Ik(n) [94, 124]. For k > 1
they are not (see Example 3.16), but it is known that they are a Gröbner basis for
certain choices of monomial orders: in [61] it is proved that this happens for a v
that selects as initial monomial in each Pfaffian the (k + 1)-nesting and in [73] for
one that selects the (k + 1)-crossing.

For each subset U of [n] of size 2k+2, the corresponding Pfaffian has as tropical

hypersurface the set of vectors v ∈ R(
[n]
2 ) for which the maximum{ ∑

{i,j}∈E

vij : E matching in U
}
,

is attained at least twice. We denote by Pfk(n) the intersection of all these tropical

hypersurfaces for the different U ∈
(
[n]
2k

)
. We call it the tropical Pfaffian prevariety.



20 1. PRELIMINARIES

It contains the tropicalization trop(Pfk(n)) of Pfk(n) and it is known to coincide
with it in the following cases:

• If n = 2k + 2, since then we have a single Pfaffian defining trop(Pfk(n)).
• If k = 1, by the results in [124] and the fact that Pf1(n) coincides with
the Grassmannian Gr2(n) (see Remark 3.34 below).



CHAPTER 2

The multiassociahedron via rigidity

In this chapter we explore Conjecture 1.3 both in its polytopality version and
in the weaker version where we want to realize ∆k(n) as a complete fan.

Our method is to use as rays for the fan the row vectors of a rigidity matrix of n
points in dimension 2k, which has exactly the required rank k(2n−2k−1) for ∆k(n).
There are several versions of rigidity that can be used, most notably bar-and-joint,
hyperconnectivity, and cofactor rigidity. Among these, cofactor rigidity seems the
most natural one because it deals with points in the plane; the “dimension” 2k of
this rigidity theory relates to the degree of the polynomials used.

Our results are of two types. On the one hand we show new cases of multias-
sociahedra ∆k(n) that can be realized, be it as fans or as polytopes, with cofactor
rigidity taking points along the parabola (which is known to be equivalent to bar-
and-joint rigidity with points along the moment curve). On the other hand we show
that certain multiassociahedra, namely those with k ≥ 3 and n ≥ 2k+6 cannot be
realized as fans with cofactor rigidity, no matter how we choose the points.

2.1. Statement of results

Using a (human guided) computer search, we find explicit embeddings of ∆k(n)
for additional parameters, be it as a polytope or only as a complete fan. We list
only the ones that were not previously known:

Theorem 2.1. (1) For (k, n) ∈ {(2, 9), (2, 10), (3, 10)}, ∆k(n) is a poly-
topal sphere.

(2) ∆4(13) can be realized as a complete simplicial fan.

Adding this to previous results, we have that ∆k(n) can be realized as a fan
(which for us always means a complete fan) if n ≤ max{2k + 4, 13} except maybe
for (n, k) = (3, 12) and (3, 13), and as a polytope if n ≤ max{2k + 3, 10}.

Our method to realize ∆k(n) is via rigidity theory. We now explain the con-

nection. The number k(2n − 2k − 1) = 2kn −
(
2k+1

2

)
of edges in a k-triangulation

of the n-gon happens to coincide with the rank of abstract rigidity matroids of
dimension 2k on n elements. This numerical coincidence (plus some evidence) led
[106] to conjecture that all k-triangulations of the n-gon are bases in the generic
bar-and-joint rigidity matroid of n points in dimension 2k.

Apart of its theoretical interest, knowing k-triangulations to be bases can be
considered a step towards proving polytopality of ∆k(n), as follows. For any given
choice of points p1, . . . , pn ∈ R2k in general position, the rows of their rigidity matrix
(see Section 1.2) give a real vector configuration V = {pij}i,j of rank k(2n− 2k − 1).

The question then is whether using those vectors as generators makes ∆k(n) be a

21
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fan, and whether this fan is polytopal. Being bases is then a partial result: it says
that at least the individual cones have the right dimension and are simplicial.

All the realizations of ∆k(n) that we construct use this strategy for positions
of the points along the moment curve {(t, t2, . . . , t2k) ∈ R2k : t ∈ R}. The reason
to restrict our search to the moment curve is that, as stated in the introduction, for
points along the moment curve, the vector configuration obtained with bar-and-
joint rigidity coincides (modulo linear isomorphism) with configurations coming
from hyperconnectivity along the moment curve and cofactor rigidity along the
parabola. This is useful in our proofs and it also makes our realizations more
“natural”, since they can be interpreted in the three versions of rigidity.

In fact, we pose the conjecture that positions along the moment curve realizing
∆k(n) as a basis collection exist for every k and n:

Conjecture 2.2. k-triangulations of the n-gon are isostatic (that is, bases)
in the bar-and-joint rigidity matroid of generic points along the moment curve in
dimension 2k.

This conjecture implies the one from [106] mentioned above, but it would imply
the same for the generic cofactor rigidity matroid and for the generic hyperconnec-
tivity matroid. (The latter is known to hold by Corollary 3.22.) As evidence for
the conjecture we prove the case k = 2, already in [24, Teorema 2.2.5]:

Theorem 2.3. 2-triangulations are isostatic in dimension 4 for generic posi-
tions along the moment curve.

In fact, our experiments make us believe that in this statement the word
“generic” can be changed to “arbitrary”.

Conjecture 2.4. 2-triangulations of the n-gon are isostatic (that is, bases) in
the bar-and-joint rigidity matroid of arbitrary (distinct) points along the moment
curve in dimension 4.

This conjecture has an apparently much stronger implication:

Theorem 2.5. If Conjecture 2.4 is true, then all positions along the moment
curve realize ∆2(n) as a fan (hence, Conjecture 1.3 would almost be true for k = 2).

So far we have discussed whether k-triangulations are bases in the rigidity
matroid, but for the polytopality question we are also interested in the oriented
matroid, which tells us the orientation that each k-triangulation has as a basis of
the vector configuration. The first thing to notice is that now there is a priori not
a unique “generic” oriented matroid; different generic choices of points may lead to
different orientations of the underlying generic matroid.

Since our points lie in the moment curve, we can refer to each point (t, . . . , t2k)
via its parameter t. The parameters proving Theorem 2.1 are as follows:

• For k = 2, the standard positions (ti = i for each i) realize ∆2(n) as a
polytope if and only if n ≤ 9. For k = 2 and n ∈ {10, 11, 12, 13} they still
realize it as a fan, but not as a polytope. Modifying a bit the positions to
(−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) we get a polytopal fan for ∆2(10) (Lemma 2.54).

• Equispaced positions along a circle, mapped to the moment curve via a
birational map, realize ∆k(n) as a fan for every (k, n) with 2k + 2 ≤
n ≤ 13 except (3, 12) and (3, 13), and they realize ∆3(10) as a polytope
(Lemma 2.55).
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Our experiments show a difference between the case k = 2, in which all the
positions along the moment curve that we have tried realize ∆k(n) at least as a fan,
and the case k ≥ 3, in which we show that the standard positions do not realize
∆k(2k + 3) as a fan (realizing ∆k(n) for n < 2k + 3 is sort of trivial):

Theorem 2.6. The graph K9 − {16, 37, 49} is a 3-triangulation of the n-gon,
but it is a circuit in the cofactor rigidity matroid C6(q) if the position q makes the
lines through 16, 37 and 49 concurrent. This occurs, for example, if we take points
along the parabola with ti = i.

This shows that Conjecture 2.4 fails for k ≥ 3, and we prove that it fails in the
worst possible way. We consider this our second main result, after Theorem 2.1:

Theorem 2.7. If k ≥ 3 and n ≥ 2k + 6 then no choice of points q ∈ R2 in
convex position makes the cofactor rigidity C2k(q) realize the k-associahedron ∆k(n)
as a fan. The same happens for bar-and-joint rigidity and for hyperconnectivity with
any choice of points along the moment curve.

Let us explain this statement. Cofactor rigidity, introduced by Whiteley fol-
lowing work of Billera on the combinatorics of splines, is related to the existence of
(d−2)-continuous splines of degree d−1, for a certain parameter d. For this reason

it is usually denoted Cd−1
d−2 -rigidity, although we prefer to denote it Cd-rigidity since,

as said above, it induces an example of abstract rigidity matroid of dimension d.
Since this form of rigidity is based on choosing positions for n points in the plane,
it is the most natural rigidity theory in the context of k-triangulations; for any
choice q of n points in convex position in the plane, we have at the same time a
convex n-gon on which we can model k-triangulations and a 2k-dimensional rigidity
matroid C2k(q) whose rows we can use as vectors to (try to) realize ∆k(n) as a
fan. For n = 2k + 3 we show that this realization, taking as points the vertices
of a regular n-gon, always realizes ∆k(n) as a fan (Corollary 2.40), but the above
statement says that for n ≥ 2k + 6 (and k ≥ 3) no points in convex position do.
As said above, C2k(q) with points along a parabola is equivalent to bar-and-joint
rigidity and to hyperconnectivity with points along the moment curve in R2k.

Remark 2.8. Theorem 2.7 still leaves open the possibility of realizing ∆k(n)
for n ≥ 2k+6 ≥ 12 via bar-and-joint rigidity or via hyperconnectivity, but it would
need to be with a choice of points not lying in the moment curve. We have not
explored this possibility because we cannot think of a “natural” choice of n points
in R2k.

Also, observe that for k ∈ {3, 4} this theorem and Theorem 2.1 (or, rather, its
more precise version Lemma 2.55) completely settle realizability of ∆k(n) as a fan
via cofactor rigidity: it can be done for n ≤ 2k + 5 and it cannot for n ≥ 2k + 6.

From a computational viewpoint, our methods have three parts (see more de-
tails in Section 2.4.3):

(1) First, for given k, n, we enumerate all the k-triangulations of the n-gon.
To do this we have adapted code by Vincent Pilaud which uses the re-
lations between k-triangulations and sorting networks [105]. Although
computationally easy, this is the bottleneck of the process because of the
large number of k-triangulations. (Jonsson [70] proved that the number of
k-triangulations of the n-gon is a Henkel determinant of Catalan numbers,
hence growing as Cn

k times a rational function of degree 2k in n, where
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Cn denotes the n-th Catalan number). In all cases where we have been
able to enumerate all k-triangulations, we have also been able to decide
whether given positions realize the fan and/or the polytope.

(2) Then, our code tests whether, for given positions, the rigidity matrix real-
izes the fan or not. We have always used points along the parabola/moment
curve (for which the three rigidity theories are equivalent), but the code
would work for arbitrary positions and for the three theories. The running
time is essentially linear in the number of k-triangulations, with a factor
depending on k and n since we are doing linear algebra in Rk(2n−2k−1).

(3) Finally, when the second step works, deciding whether the fan (in the
obtained realization) is polytopal is equivalent to feasibility of a linear
program with one variable for each ray of the

(
n
2

)
diagonals of the n-gon

and k(n− 2k − 1) constraints for each k-triangulation.

To choose the positions for the points we use a bit of trial and error. By default
we start with equispaced points along the parabola and along the circle, and when
both of them fail we modify the positions.

2.2. Auxiliary results

2.2.1. Multitriangulations. The following lemma shows that the realizabil-
ity question we want to look at is monotone; if we have a realization of ∆k(n) then
we also have it for all ∆k′(n

′) with k′ ≤ k and n′ − 2k′ ≤ n− 2k. Remember that
the link of a face F in a simplicial complex ∆ is

lk∆(F ) := {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆} = {σ \ F : σ ∈ ∆, F ⊂ σ}.

In a shellable d-sphere the link of any face of dimension d′ is a shellable d− d′ − 1-
sphere.

Lemma 2.9 (Monotonicity). Let n ≥ 2k+1. Then, both ∆k(n) and ∆k−1(n−1)
appear as links in ∆k(n+ 1). More precisely:

(1) ∆k(n) = lk∆k(n+1)(Bn+1), where Bn+1 := {{n− k+ i, i} : i = 1, . . . , k} ∈(
[n]
2

)
is the set of edges of length k + 1 leaving n+ 1 in their short side.

(2) ∆k−1(n−1) ∼= lk∆k(n+1)(En+1), where En+1 = {{i, n+1} : i ∈ [k+1, n−
k]} ∈

(
[n+1]

2

)
is the set of relevant edges using n+ 1.

Proof. By Theorem 1.2, the three complexes ∆k(n), ∆k−1(n−1) and ∆k(n+
1) are spheres, of the appropriate dimensions. For example,

dim(∆k(n+ 1)) = k(n+ 1− 2k − 1)− 1 = k(n− 2k)− 1.

Since the link of a face of size j in a shellable sphere is a sub-sphere of codimension
j, the right-hand sides in both equalities are spheres of respective dimensions

dim(∆k(n+ 1))− k = k(n− 2k)− 1− k = k(n− 2k − 1)− 1 = dim(∆k(n))

in part (1) and

dim(∆k(n+ 1))− (n− 2k) = k(n− 2k)− 1− (n− 2k)

= (k − 1)(n− 2k)− 1 = dim(∆k−1(n− 1))

in part (2). Two simplicial spheres of the same dimension cannot be properly con-
tained in one another, so in both equalities we only need to check one containment
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Figure 1. The black edges are the irrelevant edges in ∆2(12).
The link of the blue edges in the left is isomorphic to ∆2(11) and
the link of those in the right is isomorphic to ∆1(10).

(with a relabelling of the complex allowed in part (2)) and the other containment
then follows automatically.

In part (1) we show ∆k(n) ⊂ lk∆k(n+1)(Bn+1). That is, for every k-triangulation

T of the n-gon with vertices [n] we need to check that T ∪Bn+1 is (k+1)-crossing-
free. This is because all the edges in Bn+1 have length k+1 and have n+1 in their
short side, so any (k + 1)-crossing involving one of them needs to use the vertex
n+ 1. But T ∪Bn+1 has no (relevant) edge using n+ 1.

For part (2), we consider the following map

ϕ :

(
[n]

2

)
→
(
[n− 1]

2

)
{i, j} 7→ {i, j − 1}, 1 ≤ i < j ≤ n.

The map ϕ is a bijection between the k-relevant edges in
(
[n+1]

2

)
not using n + 1

and the (k − 1)-relevant edges in
(
[n−1]

2

)
. Moreover, the map reduces crossing of

pairs of edges. More precisely, ϕ(e) and ϕ(f) cross if and only if e and f crossed
and were not of the form {i, j + 1}, {j, ℓ+ 1} for some 1 ≤ i < j < ℓ ≤ n.

Hence, if T is a k-triangulation in ∆k(n + 1) containing En+1 then its image
ϕ(T \En+1) is (k+1)-crossing-free. We need to check that it is also k-crossing-free.
For this, consider a (k + 1)-crossing C in T \ En+1. Two things can happen:

• C uses an edge of En+1, so it is no longer a (k+1)-crossing in ϕ(T \En+1).
• C does not use any edge of En+1. Then, C is of the form {{ai, bi} : i ∈
[k + 1]} with 1 ≤ a1 < . . . < ak+1 < b1 < . . . < bk+1 ≤ n. But we need
b1 = ak+1+1, or otherwise C ∪{{ak+1+1, n+1}} is a (k+2)-crossing in
T \En+1. Hence, ϕ(C) is no longer a (k+1)-crossing because ϕ({a1, b1})
and ϕ({ak+1, bk+1}) do not cross.

□

This result, in particular part 2, is much easier to see on the subword complex
interpretation of the multiassociahedron. See Figure *** for an illustration.

Being a sphere (more precisely, being a pseudo-manifold) has the following
important consequence:
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Proposition 2.10 (Flips [42, 88], see also [106, Lemma 5.1], [24, Corolario
2.1.20]). For every relevant edge f of a k-triangulation T there is a unique edge

e ∈
(
[n]
2

)
such that

T△{e, f} := T \ {f} ∪ {e}

is another k-triangulation.

We call the operation that goes from T to T△{e, f} a flip. The paper [106]
gives a quite explicit description of flips using for this the so-called stars:

Definition 2.11 (Stars). Let s0, s1, . . . , s2k ∈ [n] be distinct vertices, ordered
cyclically. The k-star S with this set of vertices is the cycle {{si, si+k} : 0 ≤ i ≤ 2k},
with indices taken modulo 2k + 1.

In classical terms, a k-star is sometimes called a “star polygon of type {2k +
1/k}” [31, 58]. Observe that every k-star S is (k + 1)-crossing-free but the set
S ∪ {t} where t is a bisector of S is never (k + 1)-crossing-free. Here, by bisector
we mean the following:

Definition 2.12 (Bisectors). An angle consists of two elements {a, b} and

{b, c} in
(
[n]
2

)
with a common end-point b. A bisector of the angle is any edge

{b, d} with d lying betwen a and c as seen cyclically from b. A bisector of a star
is a bisector of any of its 2k + 1 angles. That is, an edge of the form {si, t} such
that t lies between si−k and si+k for some si in the star (with the notation of
Definition 2.11).

In terms of stars and their bisectors, flips can be described as follows:

Proposition 2.13 (See also [24, section 2.1.2]). Let T be a k-triangulation of
the n-gon. Then:

(1) T contains exactly n− 2k k-stars [106, Corollary 4.4 and Theorem 3.5].
(2) Each pair of k-stars in T have a unique common bisector [106, Theorem

3.5].
(3) Every relevant edge e in T belongs to exactly two such k-stars, and every

boundary edge belongs to exactly one [106, Corollary 4.2].
(4) The k-triangulation obtained by flipping e in T is T△{e, f} where f is

the common bisector of the two k-stars containing e [106, Lemma 5.1].

In our next result we ask the following question. Suppose that F is a face in
∆k(n). That is, F is contained in some k-triangulation T . How big can the link of
F be? By “how big” we here mean how many vertices (of ∆k(n), that is, diagonals
of the n-gon) are used in the link.

Example 2.14. The three graphs below represent codimension-two faces of
∆2(7). In each drawing, blue edges are relevant and two more relevant edges are
needed to form a 2-triangulation. The link of the first face is a cycle of length 3,
consisting of the edges {15, 26, 47}. In the second, the length is 4: {15, 25, 36, 47}.
In the third the length is 5: {25, 26, 36, 37, 47}. (In each case, adding to the given
graph any two consecutive edges from the list we get a 2-triangulation, and all
2-triangulations containing that graph have this form.)
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Lemma 2.15. Let T ∈ ∆k(n) be a k-triangulation and F ⊂ T a subset of its
edges. Let S be the set of k-stars of T containing an edge in T \F . Then, all edges
used in lk∆k(n)

(F ) are either from T \F or common bisectors of two of the k-stars

in S.

Proof. Facets in the link correspond to k-triangulations containing F . As
the graph of each link is connected (because the multiassociahedron is a sphere)
they can all be obtained from T by iteratively flipping edges not belonging to F .
The edges so obtained are bisectors perhaps not of the original stars in T but
at least of new stars obtained along the way. However, we can give the following
characterization of them: At each vertex i of the n-gon, consider (locally) the union
of the angles of stars in S, seeing each angle as a sector of a small disk centered
at i. The bisectors of such a union with an endpoint at i are either bisectors (at
i) of one of the stars, or common edges of two stars. Now, this “union of stars” is
unchanged by flipping, because each flip removes two stars and inserts another two
but with the same union.

Thus, which possible edges are used can be prescribed by looking only at T .
They either are bisectors of pairs of stars in T or common edges of pairs of stars
in T . Among the latter we are only allowed to flip, or insert, those that are not in
F . □

Corollary 2.16. All links of dimension one in ∆k(n) are cycles of length at
most five.

Proof. Every such link is a sphere of dimension one, hence a cycle.
Let F be the face we are looking at, so that there are relevant edges {e, f} ∈(

[n]
2

)
\ F and a k-triangulation T with F = T \ {e, f}. The set S of stars in the

previous lemma has size at most four (two for e and two for f) but it may have size
three or two if e and f belong to one or two common stars. By the lemma, if |S| is
two or three then the length of the cycle is (at most) three or five, respectively.

If |S| = 4, then each of the flips leaves the two stars corresponding to the other
flip untouched. Hence, the two flips commute and the cycle is a quadrilateral,
consisting of T , its two neighbors by the flip at e or f , and the k-triangulation
obtained by performing both flips, in any order. □

2.2.2. Polytopality. Throughout this section ∆ will denote a pure simplicial
sphere of dimension D − 1 with vertex set V . We ask ourselves whether ∆ can be
realized as the normal fan of a polytope. That is, we ask whether there is a vector
configuration V = {vi : i ∈ V } ⊂ RD with the property that the family of cones

{cone(VF ) : F ∈ ∆}
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form a complete simplicial fan and whether this fan is the normal fan of a polytope.
Here we denote

VX := {vi : i ∈ X}
for each X ⊂ V and

cone(X) := {λ1x1 + · · ·+ λsxs : s ∈ N, λi ∈ [0,∞), xi ∈ VX}

is the cone generated by X.
The first obvious necessary condition is that we need VF to be linearly indepen-

dent for each F ∈ ∆. When this happens the cones cone(VF ) are simplicial cones
and V naturally defines a continuous map ϕ∆,V : |∆| → SD−1 where |∆| denotes
the topological realization of ∆ and SD−1 ⊂ RD is the unit sphere. The precise
definition of ϕ∆,V is as follows: First map |∆| to RD by sending each vertex i to its
corresponding vector vi, and extend this map to |∆| linearly within each F ∈ ∆.
The fact that each F is linearly independent ensures that the image of this map
does not contain the origin, so we can compose the map with the normalization
map RD → SD−1 which divides each vector by its L2-norm. We call this map
ϕ∆,V a pre-embedding of ∆. Slightly abusing notation we will also say that V is a
pre-embedding of ∆.

If the pre-embedding happens to be injective, then it is a continuous injective
map between two spheres of the same dimension, hence bijective, hence a homeo-
morphism. This implies that ∆ is a triangulation of V in the sense of [34] (see, e.g.,
Theorem 4.5.20 in that book). We can also say that, in this case, V is an embedding
of ∆ or that it realizes ∆ as a complete fan.

2.2.2.1. Conditions for a complete fan. Remember that the contraction of a
vector configuration V ⊂ RD at an independent subset I is the image of V \I under
the quotient linear map RD → RD/ lin(I) ∼= RD−|I|; it is denoted V/I. If V is a
pre-embedding (resp. an embedding) of ∆ then V/F is also a pre-embedding (resp.
an embedding) of lk∆(F ) for every F ∈ ∆. We can then consider a hierarchy of
embedding properties by asking V/F to be an embedding only for faces of at least
a certain dimension. The case where F is a facet is trivial. The next level in the
hierarchy, when F is a ridge, has received some attention in [34]:

Definition 2.17 (ICoP property). Let V ⊂ RD be a pre-embedding of a pure
(D−1)-complex ∆. We say that the pre-embedding has the the intersection cocircuit
property (ICoP) if the pre-embedding Vτ of lk∆(τ) is an embedding for every ridge
τ . That is to say, if the following two properties hold:

• τ is contained in exactly two facets σ1 and σ2.
• The cones Vσ1

and Vσ2
lie in opposite sides of the hyperplane spanned by

Vτ (which exists and is unique since τ is independent of size D− 1). This
is equivalent to saying that the unique (modulo a scalar multiple) linear
dependence in Vσ1∪σ2

has coefficients of the same sign in the two vectors
indexed by σ1 \ τ and σ2 \ τ .

Observe that the first condition is independent of V. When it holds, ∆ is said to
be a pseudo-manifold. The pseudo-manifold is strongly connected if its dual graph
is connected.1

1Sometimes strong-connectedness is considered part of the definition of pseudo-manifold, but
we do not take this approach.
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Every link in a pseudo-manifold is itself a pseudo-manifold. For example, the
link of a codimension-two face ρ is a disjoint union of cycles. We say that ρ is non-
singular if lk∆(ρ) is a single cycle and in this case we call this cycle the elementary
cycle with center at ρ.

When this happens for every ρ we say that the pseudo-manifold ∆ has no
singularities of codimension two. Being a pseudo-manifold with no singularities
of codimension two is computationally easy to check: In a pure complex the link
of every codimension-two face is a graph, and we only need to check that each of
these graphs is a cycle. All manifolds, hence all spheres, hence ∆k(n) have these
properties.

As seen in [34, Theorem 4.5.20], the (ICoP) property is almost sufficient for
∆ to be a triangulation of V, but something else is needed. We here express this
“something else” in topological terms, in two ways.

Our first characterization is in terms of links of codimension-two faces. Suppose
that ∆ has no singularities of codimension two, so that every face ρ of codimension
two defines an elementary cycle. Then, we have that V/ρ embeds lk∆(ρ) as a cyclic
collection of cones in R2, for which we can define its winding number : the number
of times the cycle wraps around R2 \ {0}. Homologically, this number is the image
in H1(R2 \{0},Z) ∼= Z of the elementary cycle as a generator of its homology group
H1(lk∆(ρ),Z) ∼= Z. We say that an elementary cycle is simple in V if its winding
number is ±1.

The second characterization is in terms of the degree of the pre-embedding,
which is a generalization of winding number to higher dimensions. The degree of a
continuous map ϕ : |∆| → SD−1 from an orientable (D − 1)-dimensional pseudo-
manifold ∆ to the sphere SD−1 can be defined as the image of the fundamental
cycle of HD−1(M,Z) ∼= Z in HD−1(S

D−1,Z) ∼= Z. If ϕ is injective in each facet (for
example, if it is a pre-embedding as defined above), the degree of ϕ can be computed
as the number (with sign) of preimages in ϕ−1(y) for a sufficiently generic point
y ∈ SD−1; “with sign” means that each preimage x ∈ ϕ−1(y) counts as +1 or −1
depending on whether ϕ preserves or reverses orientation in the facet containing x.

Observe that being a pre-embedding with the (ICoP) property implies ∆ to be
an orientable pseudo-manifold.

Theorem 2.18. Let V ⊂ RD be a pre-embedding of ∆ with the (ICoP) property.
Let ϕ∆,V : |∆| → SD−1 be the associated map. Then, the following conditions are
equivalent:

(1) ϕ∆,V is a homeomorphism; that is, V is a triangulation of ∆ or, equiva-
lently, V embeds ∆ as a complete simplicial fan in RD.

(2) Every sufficiently generic vector v ∈ RD is contained in only one of the
facet cones {cone(Vσ) : σ ∈ facets(∆)}.

(3) There is some vector v ∈ RD that is contained in only one of the facet
cones {cone(Vσ) : σ ∈ facets(∆)}.

(4) ∆ has no singularities of codimension two and all its elementary cycles
are simple in V.

(5) ϕ∆,V has degree ±1.

Proof. We only need to show that any of (4) and (5) implies one of (1), (2)
or (3), since the implications (1)⇒(2)⇒(3), (1)⇒(4) and (1)⇒(5) are obvious and
(3)⇒(1) is part of [34, Corollary 4.5.20].
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Let us see the implication (5)⇒(3). The property (ICoP) implies that the map
ϕ∆,V is consistent with orientations: either it preserves orientations of all facets or
reverses orientation of all facets. This implies that when we compute the degree
via a generic fiber there are no cancellations and, since the map has degree one,
every generic fiber has a single point. That is, ϕ∆,V is injective except perhaps in
a subset of measure zero (the (D − 2)-skeleton of |∆|), so (3) holds.

For the implication (4)⇒(1) we use induction on D. If D ≤ 2 there is nothing
to prove, so we assume D ≥ 3. Since elementary cycles are preserved by taking
links/contractions, the inductive hypothesis implies that lk∆(i) is a triangulation of
V/vi for every i ∈ V . In particular, lk∆(i) is topologically a sphere and, hence, ∆ is a
manifold. Moreover, again by the inductive hypothesis, the map ϕ∆,V : |∆| → SD−1

is a local homeomorphism. Every local homeomorphism between two manifolds is
a covering map. Now, D− 1 ≥ 2 implies that SD−1 is simply connected and, since
|∆| is connected, the covering map ϕ∆,V is a global homeomorphism. □

Now, by Corollary 2.16, elementary cycles in ∆k(n) have length bounded by
five. This suggests we study Theorem 2.18 in more detail for such cycles:

Proposition 2.19. Let V be a pre-embedding of ∆ with the (ICoP) property.
Then:

(1) All cycles of length ≤ 4 are automatically simple.
(2) Let ρ be a codimension-two face whose elementary cycle Z has length five.

Let i1, . . . , i5 ∈ V be the vertices of Z, in their cyclic order. Then, Z
is simple if and only if there are three consecutive elements i1, i2, i3 ∈ Z
such that the unique linear dependence among the vectors {vi : i ∈ ρ ∪
{i1, i2, i3}} has opposite sign in i2 than the sign it takes in i1 and i3.

Proof. Let us first explain the condition in part two. The (ICoP) property
implies that for every three consecutive vertices i1, i2, i3 in the elementary cycle (of
arbitrary length) of a codimension-two face ρ we have that i1 and i3 lie in opposite
sides of the hyperplane spanned by ρ ∪ {i2}. By elementary linear algebra (or
oriented matroid theory), this translates to the fact that the unique dependence
contained in ρ ∪ {i1, i2, i3} has the same sign in i1 and i3. Similarly, whether this
sign equals the one at i2 or not expresses whether i3 lies on the same or different
side of ρ ∪ {i1} as i2. Put differently, it tells us whether the dihedral angles of i1i2
and i2i3, as seen from ρ, add up to more or less than π. (If the dependence vanishes
at i2 then the angle is exactly π).

In general, if Z = i1i2 . . . ini1 is a cycle with center ρ and (after contraction
of the vector configuration at ρ) it is embedded in R2 with vectors w1, . . . , wn ∈
R2 \{0} for its generators, we can compute the winding number of Z by adding the
dihedral angles wiwi+1, taken with sign. This sum of angles is necessarily going to
be a multiple 2πα of 2π, and the the winding number equals the integer α.

Since each individual angle is, in absolute value, smaller than π, it is impossible
to get a sum of at least 4π with four angles or less. With five angles it is possible,
but not if two of them add up to less than π, as expressed by the condition in part
(2). Conversely, if no three consecutive elements in Z satisfy this condition, then
the sum of any two consecutive angles in the cycle is at least π, the sum of four of
them is at least 2π, and the sum of the five of them is more than 2π. □

Summing up, we have an easy way of checking whether a vector configuration
embeds ∆k(n) as a fan:
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Corollary 2.20. Let V = {vij}{i,j}∈([n]
2 )

⊂ Rk(2n−2k−1) be a vector configu-

ration. V embeds ∆k(n) as a complete fan in Rk(n−2k−1) if and only if it satisfies
the following properties:

(1) (Basis collection) For every facet (k-triangulation) T , the vectors {vij :
{i, j} ∈ T} are a linear basis.

(2) (ICoP) For every flip between two k-triangulations T1 and T2, the unique
linear dependence among the vectors {vij : {i, j} ∈ T1 ∪ T2} has the same
sign in the two elements involved in the flip (the unique elements in T1\T2
and T2 \ T1).

(3) (Elementary cycles of length 5) Every elementary cycle of length five
has three consecutive elements satisfying the sign condition in part (2)
of Proposition 2.19.

□

Example 2.21. The pictures below illustrate part (3) of Corollary 2.20. The
left picture shows a flip (the union of two triangulations) belonging to the elemen-
tary cycle of the codimension-two face ρ from the third picture of Example 2.14. In
the centre picture, blue and red represent the signs of the coefficients in the circuit,
that in this case is a K6, for a generic vector configuration V (see Section 2.3.1 to
understand why the signs have to be like this). The sign of 26 is opposite to 25 and
36, and this implies that, as two-dimensional vectors in V/ρ ⊂ R2, the vector 26 is
a positive combination of 25 and 36, as in the right part of the figure. Thus, the
angles in (25, 26) and (26, 36) add to less than π and the cycle cannot wind twice
around the origin.
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Observe that, computationally, what we need to do to apply the corollary is to
check that the determinant corresponding to any k-triangulation is nonzero and to
compute (the signs of) the linear dependence corresponding to each flip (plus some
book-keeping to identify which flips form an elementary cycle). We emphasize that
only the signs are needed because computing signs may sometimes be easier than
computing actual values.

2.2.2.2. Conditions for polytopality. Once we have a collection of vectors V =
{vi : i ∈ v} ⊂ RD that embeds a simplicial complex ∆ as a complete simplicial fan
in RD, saying that the fan is the normal fan of a polytope is equivalent to saying
the ∆ is a regular triangulation of V. (This is Theorem 9.5.6 in [34]).

Regular here means that there is a choice of lifting heights fi ∈ (0,∞)V for
the vertices i ∈ V of ∆ such that ∆ is the boundary complex of the cone in RD+1

generated by lifting the vectors vi ∈ RD to vectors (vi, fi) ∈ RD+1. That is to say,
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we need that for every facet σ ∈ ∆ the linear hyperplane containing the lift of σ
lies strictly below all the other lifted vectors.

We call such lifting vectors (fi)i∈V valid. The following lemma is a version of
[115, Theorem 3.7], which in turn is closely related to [34, Proposition 5.2.6(i)].

Lemma 2.22. Let ∆ be a simplicial complex with vertex set V and dimension
D− 1, and assume it is a triangulation of a vector configuration V ⊂ RD positively
spanning RD. Then, a lifting vector (fi)i∈V is valid if and only if for every facet
σ ∈ ∆ and element a ∈ V \ σ the inequality

(6)
∑
i∈C

ωi(C)fi > 0

holds, where C = σ∪{a} and ω(C) is the vector of coefficients in the unique (modulo
multiplication by a positive scalar) linear dependence in V with support in C, with
signs chosen so that ωa(C) > 0 for the extra element.

Proof. This is similar to Proposition 5.2.6(i) in [34]. For a facet σ and an
extra element that forms a circuit C, we need to prove that the extra element is
in the correct side via the lifting vector f . Let i be the extra element and f ′i the
last coordinate of the intersection point of vi × R with the hyperplane spanned by
(vj , fj)j∈C . We want that fi > f ′i . But obviously∑

j∈σ
ωj(C)fj + ωi(C)f

′
i = 0

so the condition is equivalent to fi > f ′i . □

Remark 2.23. Two remarks are in order:

(1) If we already know ∆ to be a triangulation of V, it is enough to check the
inequalities for the case when i is a neighbor of σ, because a locally convex
cone is globally convex. That is, checking validity amounts to checking
one linear inequality for each ridge in ∆: if τ is a ridge and τ ∪ {i} and
τ ∪{j} are the two facets containing it, we need to check inequality (6) for
the circuit C = τ ∪ {i, j} contained in τ ∪ {i, j}. (See, e.g., [34, Theorem
2.3.20 and Lemma 8.2.3]).

(2) If (fi)i∈V is a valid lifting vector and (wi)i∈V is the vector of values that
a certain linear functional takes in V then (fi+wi)i∈V is also valid. (See,
e.g., [34, Proposition 5.4.1]). In particular, when looking for valid vectors
we can assume, without loss of generality, that fi = 0 for all i in a certain
independent set S (we here say that S is independent if the vectors {vi}i∈S
are linearly independent).

2.3. Obstructions to realizability with cofactor rigidity

Our main goal in this chapter is to study whether one of the three forms of
rigidity from Section 1.2 provides, by choosing the configurations p in R2k or q
in R2 adequately, realizations of the k-associahedron ∆k(n). For positive results
(realizations) the strongest possible setting goes via the polynomial rigidity of Def-
inition 1.7, since that is a special case of the other three. For negative results
(obstructions to realization) we are going to use cofactor rigidity. This is stronger
than using polynomial rigidity, and is also the most natural setting for studying
k-associahedra since, after all, the combinatorics of a k-associahedron comes from
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thinking about crossings in the complete graph embedded with vertices in convex
position in the plane.

2.3.1. Some results on cofactor rigidity. In this section we present some
results about cofactor rigidity that we need later.

We first show that cofactor rigidity is invariant under projective transformation.
This, as some other results from this section, was already noticed by Whiteley [141],
but we develop things from scratch since we will not only be interested in the
cofactor rigidity matroid but also in the oriented matroid. Notice also that the
same projective invariance of the matroid is true and well-known for bar-and-joint
rigidity (see again [141]).

Throughout this section we work primarily with a vector configuration Q =
(Q1, . . . , Qn) in dimension three, that is, with Qi = (Xi, Yi, Zi) ∈ R3 \ {0}. We
normally assume that Q is in general position (every three of its vectors form a
linear basis) and sometimes that it is also in convex position: (a) each of the vectors
Qi generates a ray of

cone(Q) = {
∑
i

λiQi : λi ≥ 0},

and all these rays are different, and (b) the cyclic order of Q1, . . . , Qn equals their
order as rays of cone(Q).

In this setting, let us redefine the vectors cij that appear in the matrix Cd(q)
in terms of the vectors Qi as follows. We let

cij =
(
xd−1
ij , yijx

d−2
ij , . . . , yd−1

ij

)
,

where

xij = XiZj − ZiXj , yij = YiZj − ZiYj .

We define the matrix Cd(Q) exactly as in Equation (4), but with these new vectors
cij :

(7) Cd(q) :=



c12 −c12 0 . . . 0 0
c13 0 −c13 . . . 0 0
...

...
...

...
...

c1n 0 0 . . . 0 −c1n
0 c23 −c23 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n


.

Observe that the original definition of Cd(q) is a special case of this one, obtained
when we take all the Zi’s equal to 1 and we let qi = (Xi, Yi). Observe also that, if
d is odd, cij = cji, and if d is even, cij = −cji.

With the new definition, we have the following invariance:

Proposition 2.24. Let Q = (Q1, . . . , Qn) be a vector configuration in R3\{0}.
Then,

(1) The column-space of Cd(Q), hence the oriented matroid Cd(Q) of its rows,
is invariant under a nonsingular linear transformation of Q.

(2) The matroid Cd(Q) is also invariant under rescaling (that is, multiplica-
tion by non-zero scalars) of the vectors Qi. If the scalars are all positive
or d is odd then the same holds for the oriented matroid.
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Proof. For each vector Q ∈ R3\{0} let Cd−2
d−1 (Q) be the set of all three-variate

polynomials in R[X,Y, Z] that are homogeneous of degree d − 1 and such that all
their partial derivatives up to order d − 2 vanish at Q. This is a vector space of
dimension d. In fact, if we fix a Qi = (Xi, Yi, Zi) and consider Qj = (X,Y, Z) as
a vector of variables, then the d entries in the vector cij are a basis for the space

Cd−2
d−1 (Qi). In particular, the i-th block in the matrix Cd(Q) has as rows the vectors

obtained by evaluating that basis of Cd−2
d−1 (Qi) either at 0 (if the row does not use

the point i) or at one of the Qj ’s (if the row corresponds to the edge {i, j}).
Now, let Q = (Q1, . . . , Qn). A nonsingular linear transformation L : R3 → R3

induces, for each vector Qi, a linear map L̃i from the space Cd−2
d−1 (L(Qi)) to the

space Cd−2
d−1 (Qi), defined by L̃i(f) = f ◦ L.

Let Mi ∈ Rd×d be the matrix of L̃i in the bases of Cd−2
d−1 (L(Qi)) and C

d−2
d−1 (Qi)

described above. Let M ∈ Rdn×dn be the block-diagonal matrix with blocks of size
d× d and having in the i-th diagonal block the matrix Mi. Then we have that

Cd(L(Q)) = Cd(Q)M−1.

As L is nonsingular, this proves part (1).
For part (2): the effect of multiplying a Qi by a scalar λi is to multiply all the

rows of edges using i by the scalar λd−1
i . Hence, although the column space Cd(Q)

changes by rescaling, the matroid Cd(Q) does not, and the oriented matroid does
not either as long as the rescaling factors are all positive or d is odd. □

We now translate the above result to the original setting of a point configuration
q = (q1, . . . , qn) in R2:

Corollary 2.25. The matroid Cd(q) is invariant under projective transfor-
mation of q. If d is odd or the projective transformation sends conv(q) to lie in the
affine chart of RP2 (the subset of the projective points [X : Y : Z] with Z ̸= 0), the
same is true for the oriented matroid.

Proof. Starting with a point configuration q = (q1, . . . , qn) in the (affine)
plane we can consider the vector configurationQ = (Q1, . . . , Qn) withQi = (qi, 1) ∈
R3\{0}. A projective transformation in q amounts to a linear transformation in Q.
Moreover, if the projective transformation sends conv(q) to lie in the affine chart
of RP2 then all the Z ′

i in the transformed vector configuration are positive, so they
can be brought back to the form (x, y, 1) by a positive rescaling. □

Our next result is essentially [141, Theorem 11.3.3] and shows how examples
and properties of cofactor rigidity in dimension d can be lifted to dimension d+ 1
via coning. Recall that the contraction p/pi of a vector configuration at an element
pi was defined in Section 2.2.2.

Proposition 2.26 (Coning Theorem, [141, Theorem 11.3.3]). Let Q = (Q1, . . . ,
Qn+1) be a vector configuration in general position in R3. Then, Cd(Q1, . . . , Qn)

is the contraction to
(
[n]
2

)
of the matroid Cd+1(Q). If the vectors are in convex

position, the same is true for the oriented matroids.

Let us mention that the same result holds for the other two forms of rigidity, R
and H [141, Theorem 9.3.11], and [74, Theorem 5.1]. We call this statement “con-
ing theorem” because it implies that a graph G with vertex set [n] is d-independent
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or d-rigid when realized on (Q1, . . . , Qn) if and only if its cone G∗{n+1} is (d+1)-
independent or (d + 1)-rigid on (Q1, . . . , Qn, Qn+1). Here, the cone over a graph
G = ([n], E) is defined as the graph with vertex set [n+ 1] and with edges

E ∗ {n+ 1} := E ∪ {{i, n+ 1} : i ∈ [n]} .

Proof. By a linear transformation we can assume without loss of generality
that Qn+1 = (0, 1, 0) and that no other Qi lies in the “hyperplane at infinity”
{Z = 0}; hence, we can rescale them to have Zi = 1 for i = 1, . . . , n. This linear
transformation and rescaling do not affect the matroids. Moreover, if the original
vectors are in convex position, all of them are in a half-space whose delimiting
plane contains Qn+1. This implies that we can further assume that the linear
transformation sends this plane to Zi = 0 and after this step Zi > 0 for every i, so
that the rescaling is positive and does not affect the oriented matroids either.

Under these assumptions we have that

ci,n+1 = (0, 0, . . . , (−1)d−1).

In particular, the contraction of the elements {i, n + 1} in the matroid Cd+1(Q)
can be performed in the matrix Cd+1(Q) as follows: first, forget the last block
of columns (the one corresponding to Qn+1). This does not affect the oriented
matroid since the sum of the n blocks of Cd+1(Q) equals zero (that is, the columns
in each one block are linear combinations of the other blocks). After the block of
Qn+1 is deleted, the rows {i, n+1} that we want to contract have a single non-zero
entry, so the contraction is equivalent to deleting those rows and their corresponding
columns, namely the last column in the block of each Qi, i = 1, . . . , n.

The resulting matrix coincides with Cd(Q1, . . . , Qn) except that the row corre-
sponding to each edge {i, j} has been multiplied by the factor xij := XiZj−ZiXj =
Xi −Xj . General position (under the assumption Qn+1 = (0, 1, 0) and Zi = 1 for
every other i) implies Xi ̸= Xj for i ̸= j, so this factor xij does not affect the
matroid.

The factor could a priori affect the oriented matroid, but our assumption that
the vectors are in convex position with Qn+1 = (0, 1, 0) and with Z1 = · · · = Zn = 1
implies that X1 < . . . < Xn. Hence, the spurious factors xij are all of the same
sign (all negative) and do not change the oriented matroid. □

We now look at what happens if the point we add/delete is not the last one
Qn+1 but an intermediate one Qi. This is a mere cyclic reordering of the points
with respect to the previous result, but reordering has a non-trivial effect in the
cofactor matrix, because of a lack of symmetry in its definition. Indeed, the row of
an edge {i, j} with i < j has the shape

(. . . , cij , . . . ,−cij , . . . ).

If the reordering keeps i before j the row does not change; its entries simply get
moved around as indicated by the reordering. In contrast, if after reordering we
end up having j before i then the new row equals

(. . . , cji, . . . ,−cji, . . . ).

That is, we get cji where the “moving around” should give −cij and −cji where
we should get cij . The effect of this depends on the parity of d. If d is even, then
cji = −cij and the relabelling does not affect the oriented matroid. If d is odd,
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however, then cji = cij , so the relabelling globally changes the sign of that row of
the matrix. This implies:

Proposition 2.27. Let Q = (Q1, . . . , Qn+1) be vectors in R3 in general posi-
tion. Then the oriented matroid Cd(Q1, . . . , Qi−1, Qi+1, . . . , Qn+1) is obtained from
Cd+1(Q) by contracting at the elements {i, j} with j ∈ [n+1] \ {i}, and reorienting
the elements {j, k} with 1 ≤ j < i < k ≤ n+ 1.

Proof. Let us first relabel points cyclically so that the point i becomes n+1,
then apply Proposition 2.26, and finally relabel the points back to their original
labels. As noted above, relabelling does nothing if the dimension is even or to the
edges that keep their direction, but it reorients the edges that change their direction
(that is, the edges {j, k} with j < i < k) if the dimension is odd. Since we are
relabelling first in dimension d+1 and then in dimension d, exactly one of them is
odd. □

Now we prove a result about the number of sign changes in any dependence in
Cd(Q), with elements in convex position:

Lemma 2.28. Let Q = (Q1, . . . , Qn) be vectors in convex position. Let λ ∈ R(
n
2)

be a linear dependence among the rows of Cd(Q). For each i, consider the sequence
formed by {λij}j ̸=i, with values of j ordered cyclically from i. That is, with the
order (i+ 1, i+ 2, . . . , n, 1, . . . , i− 1). Then:

(1) If d is even, the sequence changes sign at least d times.
(2) If d is odd, the same happens for the sequence {−λij}j>i ∪ {λij}j<i.

Proof. Let us first assume that d is even. In this case, as mentioned above, a
cyclic relabelling does not change the oriented matroid, so we can assume without
loss of generality that i = n. Also, by linear transformation and positive rescaling
we can assume that Qn = (0, 0, 1) and that Zj = 1 and Xj > 0 for j ̸= i. Observe
that under these assumptions we have

cjn = (Xd−1
j , Xd−2

j Yj , . . . , Y
d−1
j ) = Xd−1

j (1,mj , . . . ,m
d−1
j ),

where mj := Yj/Xj is the slope of the segment from qn = (0, 0) to qj = (Xj , Yj).
Since the Xj are positive we can neglect them without changing the oriented ma-
troid, and convex position implies that the mj are increasing: m1 < . . . < mn−1.

Hence, the sequence (λjn)j∈[n−1] that we want to study is (at least regarding

its signs) a linear dependence among the vectors (1,mj , . . . ,m
d−1
j ) for an increasing

sequence of mj ’s. Put differently, it is an affine dependence among the vertices of
a cyclic (d − 1)-polytope. It is well-known that the circuits in the cyclic polytope
are alternating sequences with d+ 1 points [34, Theorem 6.1.11], hence they have
d sign changes. Since every dependence is a composition of circuits [34, Lemma
4.1.12, Corollary 4.1.13], it has at least the same number of changes.

For the case where d is odd all of the above remains true except the initial
cyclic relabelling reverses the sign of all the λij with j > i. □

2.3.2. The Morgan-Scott obstruction in cofactor rigidity. In this sec-
tion we show that the graph obtained from K6 by removing a perfect matching
(that is, the graph of an octahedron) is a circuit or a basis in the three-dimensional
cofactor rigidity C3, depending on whether the points are in “Desargues position”
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or not. This is well-known in the theory of splines, and usually called the Morgan-
Scott split or Morgan-Scott configuration [87]. We here rework it, following [139,
Example 4], since we need an oriented version of it. See also [90, Example 41, p.
90].

Definition 2.29 (Desargues position). Let q = (q1, . . . , q6) be a configuration
of six points in convex position in the plane. Let us call upper side of the line 25
the side containing the points 1 and 6, and lower side the other one. We say that
q is positively (resp. negatively) oriented if the intersection of the lines 14 and 36
lies in the lower (resp. upper) side of 25. We say that q is in Desargues position if
none of the two happens, that is, if the lines 14, 25 and 36 are concurrent.

See Figure 2 for an illustration of this concept, with points chosen along the
standard parabola. We call the concurrent case Desargues position since Desargues
theorem says that this concurrency is equivalent to the triangles q1q3q5 and q2q4q6
being axially perspective.
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Figure 2. Two configurations of six points in convex position,
chosen along the parabola. The configuration in the left is posi-
tively oriented, the one on the right is in Desargues position

Theorem 2.30. Consider the graph G = K6\{25, 36} embedded with six points
q in general position. Then,

(1) G is spanning in C3(q), hence it contains a unique dependence. This
dependence may not vanish at any edge other than 14.

(2) Assume q in convex position, and let (λij)ij ∈ R(
6
2) be this unique depen-

dence. Then λ15 ̸= 0 and the sign of λ14/λ15 is positive, negative, or zero,
if q is positively oriented, negatively oriented, or in Desargues position,
respectively.

This statement immediately implies:

Corollary 2.31. Consider the graph G = K6 \ {14, 25, 36} embedded with
six points q in convex position. Then, G is a circuit in C3(q) if the points are in
Desargues position, and a basis otherwise.

The proof of the first part of Theorem 2.30 is easy. Let G′ = G \ {ij} for an
edge ij different from 14. Without loss of generality assume i ̸∈ {1, 4}. Then G′

has degree three at vertex i and G′ \ i equals K5 minus one edge. Since K5 is a
circuit in C3 (for any choice of points in general position), G′ \ i is a basis, and
hence G′ is a basis too. In particular, G is spanning and contains a unique circuit,
and this circuit does not vanish at the edge ij.
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To prove part two, we follow the derivation in [139, Example 4]. There, the
following concept is introduced as a way to express the determinant of a submatrix
in the cofactor matrix C3 of a triangulated sphere.

Definition 2.32 (3-fan). Given a graph G = ([n], E0) and a bipartition of the
vertices [n] = V0 ∪ V1, a 3-fan in (V0, V1, E0) is an orientation of G such that the
vertices in V0 have out-degree 3 and those in V1 have out-degree 0.

For a 3-fan π and a vertex i ∈ V0, let π
i be the set of three edges that start at

the vertex i. The sign of π, denoted σ(π), is the sign of (π1, π2, . . .) as a permutation
of E0, with the three elements of each πi in increasing order, multiplied by (−1)r

where r is the number of edges oriented from a vertex to another with lower index.

In what follows, we will denote by Cd(q)|(E,V ) the restriction of the cofactor
matrix of q to the rows indexed by E and the column blocks indexed by V .

Definition 2.33 (Notation [qi; qjqkql]). For q : V → R2, we define [qi; qjqkql] =
detC3(q)|({(i,j),(i,k),(i,l)},i). This determinant can be shown to be equal to |qiqjqk| ·
|qiqjql| · |qiqkql|, where |abc| denotes the determinant of the three points (written
as (x, y, 1)).

The following statement summarizes the derivations in [139, pp.15–17]:

Lemma 2.34. Let (V,E) be the graph of a triangulated sphere and q : V → R2 a
position for the vertices that realizes the graph as planar. Let V0 the set of internal
vertices, V1 the three external vertices and E0 the internal edges of the graph. Then

detC3(q)|(E0,V0) =
∑

π 3-fan in {V0,V1,E0}

σ(π)[π1][π2] . . . [πn−3]

where [πi] stands for [qi; qjqkql] with π
i = {(i, j), (i, k), (i, l)}.

With this we can finish the proof of Theorem 2.30:

Proof of Theorem 2.30. The coefficients of a row dependence in an (N +
1)×N matrix are the complementary minors of each row with alternating signs. In
our case, our initial matrix C3(q) has size 13 × 18 and rank 12, but we can by an
affine transformation fix the positions of vertices 1, 2 and 3 (which implies no loss
of generality) and then delete the nine columns of their three blocks, plus the three
rows of the triangle they form. This leaves us with a 10 × 9 matrix whose unique
row-dependence we want to study. The coefficients λ14 and λ15 have the same sign
in the dependence if and only if their complementary minors have opposite sign.

To compute these two signs we use Lemma 2.34 with V0 = {4, 5, 6}, V1 =
{1, 2, 3}.

For the edge 15 this is easy because the remaining edges formK6\{12, 13, 23, 15,
25, 36}, in which the only possible 3-fan is {41, 42, 43, 53, 54, 56, 61, 62, 64}. This is
an even permutation in which there are 8 “reversed” edges, hence the sign of the
3-fan is positive.

By Lemma 2.34, the determinant is

[4; 123][5; 346][6; 124] = |412| |413| |423| |534| |536| |546| |612| |614| |624|

where i stands for qi. A determinant of three points is positive if they are ordered
counter-clockwise and negative otherwise. In this case the result is positive because
there are two negative determinants, 536 and 546. (Here and in the rest of the proof
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we assume without loss of generality that our points are not only in convex position
but also placed in counter-clockwise order along their convex hull.)

Now we compute the determinant for K6 \ {12, 13, 23, 14, 25, 36}. There are
two 3-fans here:

{42, 43, 46, 51, 53, 54, 61, 62, 65} and {42, 43, 45, 51, 53, 56, 61, 62, 64}

Both are even permutations, the first one with 8 reversed edges and the second
with 7. By Lemma 2.34 the determinant is

[4; 236][5; 134][6; 125]− [4; 235][5; 136][6; 124] =

=|423| |426| |436| |513| |514| |534| |612| |615| |625|
− |423| |425| |435| |513| |516| |536| |612| |614| |624|

=|126| |135| |145| |156| |234| |246| |256| |345| |346|
− |126| |135| |146| |156| |234| |245| |246| |345| |356|

=|126| |135| |156| |234| |246| |345| (|145| |256| |346| − |146| |245| |356|)

The factor |126| |135| |156| |234| |246| |345| is positive: since the points are in
convex counter-clockwise position every determinant |abc| with a < b < c is positive.
Hence, we ignore it. To further simplify the rest we use the Plücker relations

|145| |256| = |125| |456|+ |245| |156|, |146| |356| = |346| |156| − |546| |136|.

Hence, the last factor becomes:

|145| |256| |346| − |146| |245| |356|
=|125| |456| |346|+ |245| |156| |346| − |346| |245| |156|+ |546| |245| |136|
=|456| (|125| |346| − |136| |245|)

Dividing again by the positive factor |456| and by |245| |346| we get that the sign
of the determinant equals

|125|
|245|

− |136|
|346|

=
|120|
|240|

− |130|
|340|

,

where we call q0 (and abbreviate as 0) the intersection point of 25 and 36. This
last expression can be rewritten in term of the angles around q0, as follows:

(8)
|120|
|240|

− |130|
|340|

=
sin∠201
sin∠402

− sin∠301
sin∠403

=
sinα

sinβ
− sinα′

sinβ′ ,

where α, α′, β and β′ are displayed in Figure 3.
Looking at the figure we see that the configuration is positively oriented if, and

only if, α < β and α′ > β′, and it is negatively oriented if the opposite inequalities
hold. Hence:

λ14λ15 > 0 ⇔ the complementary determinants have opposite sign

⇔ the complementary determinant to 14 is negative

⇔ the value of (8) is negative

⇔ α < β and α′ > β′

⇔ the configuration is positively oriented. □
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Figure 3. Explanation of the last equivalence in the proof of The-
orem 2.30. Each of the inequalities α < β and α′ > β′ is equivalent
to the configuration being positively oriented.

Consider now the graphK6\{14, 25, 36}, with vertices in convex position. That
is, K6 minus a perfect matching, which is the graph of an octahedron. Since this
graph equals G \ {14}, Corollary 2.31 implies that K6 \ {14, 25, 36} is a circuit in
C3 in Desargues position, and a basis in non-Desargues position. In particular:

Corollary 2.35. The graph K6 without the matching {14, 25, 36} is a cir-
cuit in the polynomial rigidity matroid P3(1, 3, 4, 6, 7, 9), and a basis in the generic
matroid P3.

Proof. Applying a translation to the parameters ti along the parabola pro-
duces an affine transformation of the point configuration, hence it does not change
the oriented matroid P. So, the statement for P3(1, 3, 4, 6, 7, 9) is equivalent to
the same statement for the more symmetric P3(−4,−2,−1, 1, 2, 4). The latter is in
Desargues position, as seen in Figure 2. □

We can now prove that, for k = 3 and n = 9, there are positions where the rows
of the cofactor matrix do not realize the multiassociahedron as a basis collection:

Proof of Theorem 2.6. We start with the graph K6 − {16, 37, 49}, with
vertices labelled {1, 3, 4, 6, 7, 9}. Its coning at three vertices labelled 2, 5 and 8
is the graph K9 − {16, 37, 49}. The statement in the first sentence then follows
from Proposition 2.27 and Corollary 2.31. The second sentence follows from Corol-
lary 2.35. □

Even more strongly, we can show that in this “realization” not even the map
ϕ∆3(9),V : |∆3(9)| → S5 of Theorem 2.18 is well-defined:

Example 2.36. Let T be the 3-triangulationK9\{16, 37, 49}, and locate it with
a p in Desargues position, so that it contains a circuit. For example, embedding it
via P (1, 2, 3, 4, 5, 6, 7, 8, 9) in the parabola. By Theorem 2.6 T is a circuit in this
embedding. The vertices 1, 3, 4, 6, 7 and 9 have degree 7, so the edges incident
to each of them must have alternating signs in the circuit by Lemma 2.28. As a
result, the six relevant edges in T , which are {1, 5}, {5, 9}, {3, 8}, {4, 8}, {2, 7} and
{2, 9}, all have the same sign.

The fact that the circuit is positive in all relevant edges implies that the map
sending ∆3(9) to Rk(n−2k) = R6 (mapping each vertex to the corresponding row
vector of P(t1, . . . , t9) and extending linearly in each face) contains the origin in
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its image. Hence, it does not produce a well-defined map ϕ∆3(9),V : |∆3(9)| → S5.

Moreover, if we choose positions p′ and p′′ close to p that are sufficiently generic
to make T a basis but with opposite orientations, then the degrees of the maps
|∆3(9)| → S5 obtained will differ by one unit.

2.3.3. Cofactor rigidity does not realize ∆k(n), for n ≥ 2k + 6, k ≥ 3.
Although our main result in this section deals with the case n ≥ 2k + 6, for most
of the section we assume n = 2k + 3 and characterize exacty when does cofactor
rigidity C2k realize ∆k(2k+3) as a complete fan. (We already saw in Theorem 2.6
that it not always does).

With n = 2k + 3 there are exactly 2k + 3 relevant edges, namely those of the
form {a, a+ k + 1}, for a ∈ [n]. These edges form a (k + 1)-star S that we call the
relevant star. We will normally consider the relevant edges in their “star order”:
the cyclic order in which {a, a + k + 1} is placed right after {a − k − 1, a}. Put
differently, the edges of the relevant star, in their star order, are

S = {{1, k+2}, {1, k+3}, {2, k+3}, {2, k+4}, . . . , {k+1, 2k+3}, {k+2, 2k+3}}

Removing a number ℓ of edges of the relevant star results in ℓ paths counting as a
“path of length zero” the empty path between two consecutive edges removed.

A simple counting shows that k-triangulations with 2k + 3 vertices are of the
form K2k+3 \ {3 edges}. However, K2k+3 minus three relevant edges is not always
a k-triangulation. The necessary and sufficient condition is that the three paths
obtained removing these edges are even. This “evenness criterion” is the reason
why ∆k(2k + 3) is combinatorially a cyclic polytope of dimension 2k in 2k + 3
vertices.

In a similar way, the union of two adjacent k-triangulations is obtained remov-
ing two relevant edges from K2k+3. We call such unions circuits since we want to
realize them as circuits in the vector configuration. The two relevant paths in a
circuit C necessarily have different parity, and the k-triangulations contained in C
are obtained removing an edge that splits the odd path into two even paths. (For
this to be doable in more than one way the odd path in C must be of length at
least three. But if C equals K2k+3 minus two edges and the odd relevant path in
C has length one then C contains a (k+1)-crossing, so we are not interested in it).

Any codimension-two face F of ∆k(2k + 3), in turn, is of the form “K2k+3

minus five relevant edges”. Let {a, b, c, d, e} be the edges in star order, so that
the relevant star minus {a, b, c, d, e} consists of five paths (some of which may have
length zero, as remarked above). The length of the elementary cycle of F depends
on the parity of the five paths, as follows (see Example 2.14 for the first three cases
with k = 2):

• If the five paths are even, then the cycle has length five and the vertices of
the cycle (that is, the k-triangulations containing F ) are obtained adding
{a, b}, {b, c}, {c, d}, {d, e}, and {e, a}.

• If two consecutive paths, say (a, b) and (b, c), are odd, then the cycle has
length three and its vertices are formed with {a, b}, {b, c} and {c, a}.

• If two non-consecutive paths, say (a, b) and (c, d), are odd, then the cycle
has length four and the vertices are formed with {a, c}, {c, b}, {b, d} and
{d, a}.

• If only one path is even then no multitriangulation contains F . F is not
really a face.
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Hence, the only case with length 5 is the one with all intervals even.
We call a k triangulation of the (2k + 3)-gon octahedral if its three missing

edges have six distinct endpoints; equivalently, if the three relevant paths in it have
positive length. (Observe that this needs 2k + 3 ≥ 9, hence k ≥ 3). The reason for
this name is that any such k-triangulation is, as a graph, an iterated cone (an odd
number of times, greater than 1) over the graph of an octahedron.

Lemma 2.37. Consider a configuration q in convex position. Let 1 ≤ i1 < i2 <
i3 < i4 ≤ 2k + 3 be such that C := K2k+3 \ {{i1, i3}, {i2, i4}} is a circuit and let λ
be its unique (modulo a scalar factor) dependence in the cofactor matric C2k(q); in
particular, we assume that i3−i1, i4−i2 ∈ {k+1, k+2}. Let {i′1, i′3} be the first edge
in the odd path of S \{{i1, i3}, {i2, i4}} (which can be {i1±1, i3} or {i1, i3±1}) and
let {j1, j2} be another edge in the same path at a distance d from the first. Then,
we have that

sign(λj1j2) = (−1)d sign(λi′1i′3)

if and only if the triangle formed by the three edges {i1, i3}, {i2, i4} and {j1, j2} is
in the inner side of {i1, i3} and {i2, i4} (the side of length k + 2).

In particular, if all edges with d even satisfy the condition, then the condition
ICoP is satisfied by all flips contained in C.

Proof. Without loss of generality we can suppose that j1 < i1 < i2 < j2 <
i3 = i1 + k + 1 < i4 = i2 + k + 2. Then i′1 = i1 − 1, i′3 = i3, and by the definition
of star order, j1 + j2 = i′1 + i′3 − d = i1 + i3 − d− 1.

In the circuit, the degree of i3 is 2k + 1 and by Lemma 2.28,

sign(λi′1i′3) = sign(λi1−1,i3) = (−1)i1−j1−1 sign(λj1i3)

so the condition to be checked reduces to

sign(λj1j2λj1i3) = (−1)d+1+i1−j1 = (−1)i3−j2

The circuit is obtained by a repeated coning from the K6 without two edges,
so that the original six vertices become {j1, i1, i2, j2, i3, i4}. The sign of an edge is
inverted whenever we make a cone with the new vertex between the endpoints of
that edge. As a result, the sign of λj1j2λj1i3 is inverted i3 − j2 − 1 times exactly, so
in the graph at the beginning, we should have λ14λ15 < 0.

By Theorem 2.30, this happens when the triangle formed by 14, 25 and 36 is
negatively oriented. After making the cones, the configuration {j1, i1, i2, j2, i3, i4}
is negatively oriented and the triangle is in the side between i3 and i4, which is the
inner side of the two edges. □

Observe that a relevant edge with n = 2k+3 leaves k points of the configuration
on one side and k + 1 on the other side. We call the one with k + 1 points the big
half-plane defined by the relevant edge.

Theorem 2.38. Let q = (q1, q2, . . . , q2k+3) be a configuration in convex position
in R2. The following are equivalent:

(1) C2k(q) realizes ∆k(2k + 3) as a complete fan.
(2) For every octahedral k-triangulation T the big half-planes defined by the

three edges not in T have non-empty intersection.
(3) The relevant star has “non-empty interior” (that is, the big half-planes of

all relevant edges have non-empty intersection).
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Remark 2.39. It is interesting to note that, when condition (3) holds, any
point o taken in the “interior” of the relevant star makes the vector configuration
{q1 − o, . . . q2k+3 − o} be a Gale transform of the cyclic 2k-polytope with 2k + 3
vertices. That is to say, the theorem says that q realizes ∆k(2k+3) as a fan if and
only if there is a point o ∈ R2 such that q − o is the Gale transform of a cyclic
polytope. It seems to be a coincidence that the cyclic polytope in question is in
fact isomorphic to ∆k(2k + 3).

Proof. The implication (3)⇒(2) is trivial. Let us see the converse. First
observe that, by Helly’s Theorem, the intersection of all half-planes is non-empty
if, and only if, the intersection of every three of them is non-empty. So, we only need
to show that, when condition (3) is restricted to three half-planes, only the case
where the half-planes come from the missing edges in an octahedral triangulation
matters.

So, consider three relevant edges {{i1, i4}, {i2, i5}, {i3, i6}} and their corre-
sponding big half-planes. We look at the three paths obtained in the relevant
star when removing these three edges. If at least one path (and hence exactly two)
has odd length, then the intersection of the three big half-planes is automatically
non-empty: let the even interval be (i6, i1). Then the edge {i2, i5} crosses the other
two and leaves both i1 and i6 in its big half-plane, so we can always find a point
in the intersection of the three half-planes in a neighborhood of the intersection of
the lines containing {i1, i4} and {i3, i6}.

Similarly, if two of the three edges are consecutive (say i6 = i1), then the
intersection of their two half-planes is an angle of the relevant star. This angle
necessarily meets both of the half-planes defined by the third edge {i2, i5}, so the
intersection is again non-empty.

That is, the only case of three edges whose big half-planes might perhaps pro-
duce an empty intersection is when the three paths they produce are even and
non-empty. This is exactly the same as saying that they are the three missing
edges of an octahedral k-triangulation, which proves (2)⇒(3).

Now, the implication (1)⇒(2) follows from the previous lemma: if the com-
plete fan is realized, the condition ICoP is satisfied in the flips from an octahedral
triangulation, in particular, the flip from K2k+3 \{{i1, i3}, {i2, i4}, {j1, j2}} that re-
moves {i′1, i′3} and inserts {j1, j2}, with d even. By Lemma 2.37, this is equivalent
to saying that the big half-planes of {i1, i3}, {i2, i4} and {j1, j2} intersect, which
covers all the cases in (2). So it only remains to show that (2)⇒(1).

If (2), or equivalently (3), holds then we know, by the previous argument,
that flips from an octahedral triangulation satisfy ICoP. These are exactly the flips
whose two missing edges do not share a vertex. The other flips must be of the form
K2k+3 minus two edges with a common end-point. Hence, they contain a K2k+2, in
which the signs are as predicted by Lemma 2.28 and the ICoP property also holds
in them.

To finish the proof, we just need to check the condition about elementary cycles
of length 5. Given one of these cycles, adding three consecutive edges of the five in
the cycle gives the graph of a flip. If two edges in the cycle share a vertex, we can
add the other three edges to get the graph of a flip that contains a K2k+2, which
has the two flipping edges as diameters and the other edge with length k, so it has
opposite sign. Otherwise, the five edges are disjoint.
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Figure 4. Two subsets of nine vertices of the convex 12-gon. By
Theorem 2.38, in order to realize the face of the 3-associahedron
corresponding to each subset of nine points, the three lines in the
left should intersect in the opposite way to the three lines in the
right, which means it is impossible to realize both at the same
time.

In this case, let {a, b, c, d, e} be the edges. By the condition (3), their five big
half-planes have non-empty intersection. Without loss of generality, suppose that
b is a side of that intersection. Adding a, b and c, we get the graph of a flip. As
b is a side of the intersection, the triangle formed by b, d and e is inside the big
half-planes of d and e, so we can again apply Lemma 2.37 to get that b has opposite
sign to a and c, as we wanted to prove. □

Corollary 2.40. For every k there are point configurations q such that C2k(q)
realizes ∆k(2k + 3) as a fan. For example, the vertices of a regular (2k + 3)-gon.

Proof. The barycenter of the (2k + 3)-gon lies in the interior of the relevant
star. □

This theorem also implies Theorem 2.7. Cofactor rigidity with points in convex
position cannot realize ∆k(n) as a fan for n ≥ 2k + 6 and k ≥ 3:

Proof of Theorem 2.7. Let q = (q1, . . . , qn) be a configuration in convex
position. By Lemma 2.9 we only need to show the case n = 2k + 6.

Let I1 = [n] \ {4, k + 5, k + 9} and I2 = [n] \ {2, 6, k + 7}. Then q|I1 and q|I2
are configurations with 2k + 3 points, to which we can apply Theorem 2.38. We
consider their respective k-triangulations T1 = KI1 \{{1, k+4}, {3, k+6}, {5, k+8}}
and T2 = KI2 \{{1, k+4}, {3, k+6}, {5, k+8}}. This theorem tells us that in order
for qI1 to realize ∆k(2k + 3) we need (q1, q3, q5, qk+4, qk+6, qk+8) to be negatively
oriented, and in order for qI2 to realize it we need the same configuration to be
positively oriented. This is a contradiction, so one of the two does not realize
∆k(2k + 3). Lemma 2.9 implies that q does not realize ∆k(2k + 6). □

See Figure 4 for an illustration of the proof.

2.4. Positive results on realizability, for k = 2

In this section, we prove Conjecture 2.2 for k = 2 and Theorem 2.5.
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2.4.1. 2-triangulations are bases in P2(n). To prove Theorem 2.3 (that
is, Conjecture 2.2 for k = 2) we need operations that send a 2-triangulation in
n vertices to one in n + 1 vertices, and viceversa. These operations are called the
inflation of a 2-crossing, and the flattening of a star. They are defined for arbitrary
k in [106, Section 7], and also studied in [24, section 2.1.4], but we use only the
case k = 2.

An external 2-crossing is a 2-crossing with two of the end-points consecutive.
An external 2-star is one with three consecutive points. Equivalently, one using a
boundary edge (an edge of length two). Let u, v, w be three consecutive vertices of
the (n + 1)-gon, and consider the n-gon obtained by removing the middle vertex
v. The identity map on vertices then induces a bijection between external 2-stars
in the (n+ 1)-gon using the boundary edge {u,w} and external 2-crossings in the
n-gon using the vertices u,w. If, to simplify notation, we let [n+ 1] and [n] be our
vertex sets, with u = n, v = n+ 1 and w = 1, the bijection is

S = {{n, 1}, {1, c}, {c, n+ 1}, {n+ 1, b}, {b, n}} ↔ C = {{n, b}, {1, c}}.

From now on let us fix an external star S ⊂
(
[n+1]

2

)
and its corresponding

external crossing C ∈
(
[n]
2

)
, of the above form. Consider the set lk2(S)

0 (respectively

lk2(C)
0) of relevant edges that do not form a 3-crossing with S, (respectively, with

C); they are, respectively, the sets of vertices in lk∆2(n+1)(S) and in lk∆2(n)
(C).

Theorem 2.41 ([106, Section 7]). The following map is a bijection

ϕ : lk2(S)
0 → lk2(C)

0

{i, j} 7→ {i, j} if n+ 1 ̸∈ {i, j}

{i, n+ 1} 7→

{
{i, n} if 1 ≤ i < b

{1, i} if c < i ≤ n

and it induces an isomorphism of simplicial complexes

ϕ̂ : lk∆2(n+1)(S)
∼=−→ lk∆2(n)

(C).

Proof. The map is well defined because {i, n+ 1} is in lk2(S)
0 if and only if

i ̸∈ [b, c].
It is injective because the only edges that could have the same image are {i, n}

and {i, n+1} if 1 ≤ i < b or {1, j} and {j, n+1} if c < j ≤ n. But in the first case
{i, n} would form a 3-crossing with {b, n + 1} and {c, 1}, and in the second case
{1, j} would form a 3-crossing with {b, n} and {c, n+ 1}.

It is surjective because if {i, j} ∈
(
[n]
2

)
is not in the image of ϕ then the first

case in the definition implies {i, j} ̸∈ lk2(S)
0, but the only edges in

(
[n]
2

)
\ lk2(S)0

are those with 1 ≤ i < b and c ≤ j < n. Among these, the only ones in lk2(C)
0 are

those with i = b or j = c, which are in the image of ϕ.
To show that it induces an isomorphism of the complexes we need to check that

if T ⊂
(
[n+1]

2

)
is 3-crossing-free and contains S then ϕ(T \S)∪C is also 3-crossing-

free, and vice versa. These are essentially Lemmas 7.3 and 7.6 in [106]. □

Definition 2.42 (Flattening of a star, inflation of a crossing). Let e ∈
(
[n+1]

2

)
be a boundary edge, let S ⊂

(
[n+1]

2

)
be an external 2-star using e, and let T be a

2-triangulation containing S.
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Let ϕ̂ be the isomorphism of Theorem 2.41 (after a cyclic relabelling sending

e to {n, 1}). We say that the 2-triangulation ϕ̂(T ) is the flattening of e in T , and

denote it T e. We also say that T is the inflation of C in ϕ̂(T ).

The crucial fact that we need is, under certain conditions, inflation of a 2-
crossing is a particular case of a vertex split.

Definition 2.43 (Vertex d-split). A vertex d-split in a graph G = (V,E)
consists in changing a vertex u ∈ V , with degree at least d − 1, into two vertices
u1 and u2 joined by an edge and joining all neighbours of u to at least one of u1 or
u2, and exactly d− 1 of the neighbors to both.

Put differently, the graph G′ with vertex set V \{u}∪{u1, u2} is a vertex d-split
of a graph G on V if, and only if: G′ contains the edge u1u2, the contraction of
that edge produces G, and u1 and u2 have exactly d− 1 common neighbors in G′.

Lemma 2.44 ([106, proof of Theorem 8.7]). Inflation of a “doubly external”
2-crossing of the form C = {{n, b}, {1, n−1}} in a 2-triangulation T is an example
of vertex 4-split at n, with new vertices n and n + 1. The inflated star has four
consecutive vertices n− 1, n, n+ 1 and 1.

Proof. Let T ′ be the inflated 2-triangulation. Plugging c = n−1 in Theorem
2.41 gives

ϕ : lk2(S)
0 → lk2(C)

0

{i, j} 7→ {i, j} if n+ 1 ̸∈ {i, j}
{i, n+ 1} 7→ {i, n} if 1 ≤ i < b
{n, n+ 1} 7→ {1, n},

which implies that the relevant edges of T are indeed obtained from those of T ′

by identifying the vertices n and n + 1. The same happens for the irrelevant and
boundary edges (which are independent of T and T ′). It also implies that all the
neighbors of n in T are neighbors of at least one of n and n+ 1 in T ′.

Hence, we only need to check that n and n + 1 have exactly three common
neighbors in T ′. This holds since n − 1, 1 and b are common neighbors of n and
n+1 in T ′, and any additional common neighbour b′ would create a 3-crossing with
{n− 1, 1} and either {n, b} if b′ > b or {n+ 1, b} if b′ < b. □

That vertex d-splits preserve independence in both Rd(n) and Cd(n) is a clas-
sical result [141, pp. 68 and Remark 11.3.16]. Preserving independence holds also
in Hd(n) and Pd(n):

Proposition 2.45 ([28, Proposition 4.10], [24, Teorema 1.2.13]). Corank does
not increase under vertex d-split neither in Hd nor in Pd. Hence, vertex d-splits of
independent graphs are independent, both in Hd and Pd.

This has the following consequence. We only state and prove it for Hd(q)
(which includes the case of Pd(t) when points are chosen along the moment curve)
but the same statement, with the same proof, holds also for Rd(q) and Cd(q).

Corollary 2.46. Let q = (q1, q2, . . . , qn) be a configuration in Rd (resp. in
the moment curve) and assume that a certain graph G is a circuit in Hd(q). Let
G′ be a vertex d-split of G and consider it embedded in positions q′ that are generic
(resp. generic along the moment curve) and sufficiently close to q.

Then, G′ is either independent in Hd(q
′) or it contains a unique circuit. If the

latter happens, then the signs of the non-splitting edges are preserved.



2.4. POSITIVE RESULTS ON REALIZABILITY, FOR k = 2 47

Proof. First perturb q to be generic, which either makes it independent or
maintains it being a circuit. Proposition 2.45 implies that G′ is independent in the
first case and that it is either independent or it contains a unique circuit in the
second case.

So, we only need to show that if the latter happens then all the non-spliting
edges are part of the circuit and that they preserve their signs. That they are part
of the circuit follows again from the proposition: if e ∈ G′ is not a spliting edge
then it comes from an edge of G. Now, since G was a circuit, G\e was independent;
hence G′ \ e is also independent, so e belongs to the circuit.

To see that the signs are preserved, consider moving the points continuously
from q′ back to q. (At the end, the two vertices created in the split collide into the
same position but we can still consider them two different vertices of the graph G′,
with a degenerate embedding). Since the positions of q′ are taken sufficiently close
to those of q, this continuous motion can be made through positions at which G′

always has a unique dependence, and such that the signs of the dependence do not
change except perhaps at the end of the path, when we get to q. At the end of the
path the dependence must degenerate to the original (unique) dependence of G, in
the sense that the coefficients of non-splitting edges are the same in G and G′, and
the coefficients of the splitting edges in G′ add up to those in G. Now, since the
signs of the non-splitting edges are never zero along the path and still non-zero at
the end, by continuity they must be preserved. □

Dependence, however, is not preserved. See example after [28, Proposition
4.10].

Definition 2.47 (Ears). A star in a 2-triangulation is doubly external if it has
four consecutive vertices, like the ones that can be obtained in Lemma 2.44.

An ear of the 2-triangulation is an edge of length 3.

For every ear {a, a+3} in a 2-triangulation T there is a unique star in T using
the vertices a, a + 1, a + 2 and a + 3 (hence, a doubly external star), and it has
{a, a+2}, {a, a+3} and {a+1, a+3} as three consecutive sides. We call this star
the star bounded by the edge {a, a+ 3}.

Theorem 2.48 ([106, Corollary 6.2], [24, Corolario 2.1.15]). The number of
ears in a 2-triangulation is exactly 4 more than the number of internal stars.

Proof of Theorem 2.3. This is proved by induction in n. For n = 5, the
only 2-triangulation is K5, that is a basis in 4 dimensions.

Suppose the statement is true for n and take a 2-triangulation T ′ on n + 1
vertices. By Theorem 2.48, T ′ has at least four ears. Without loss of generality,
suppose one of them is {n− 1, 1}. Then it bounds a doubly external star with the
vertices n − 1, n, n + 1 and 1. Let b be the remaining vertex in the star. Then,
T ′ can be obtained from a 2-triangulation T in n vertices inflating the 2-crossing
{{n, b}, {1, n−1}}. By Lemma 2.44, this operation is a vertex 4-split, that preserves
independence by Proposition 2.45. □

2.4.2. Realizing individual elementary cycles. We now prove some re-
sults for realizability as a fan in the case k = 2. Among other things, we show that
for n ≤ 7 any position of the points in the plane will realize the multiassociahedron
∆2(n) as a fan via the cofactor rigidity matrix.
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Corollary 2.49. For n = 2k + 2, any choice of q1, . . . , q2k+2 ∈ R2 in convex
position makes the rows of the cofactor matrix realize ∆k(n) as a polytopal fan.

Proof. In this case, all the k-triangulations are K2k+2 minus a diameter. The
simplicial complex is in this case the boundary of a (k− 1)-simplex. We also know
that K2k+2 is a circuit, therefore all the k-triangulations are bases.

In this circuit, Lemma 2.28 implies that the sign of each edge coincides with
the parity of its length. The flipped edges in this case are two of the diameters,
that have all the same sign. Hence, the condition ICoP in Corollary 2.20 is true.
The condition on the elementary cycles is trivial because all of them have length
three.

This implies that every position of the points realizes the boundary of the
simplex as a complete fan. But realizing a simplex as a complete fan is equivalent
to realizing it as a polytope, so the corollary is proved. □

Corollary 2.50 ([24, Proposición 2.2.20]). For k = 2 and n = 7, any choice
of q1, . . . , q7 ∈ R2 in convex position realizes ∆2(7) as a fan.

Proof. By Theorem 2.38, the fact that a position realizes the fan is equiva-
lent to the interior of the 3-star formed by the seven points being non-empty. This
is equivalent to saying that the big half-planes of every three edges without com-
mon vertices have non-empty intersection, which is trivial, because any three such
edges are consecutive in the circle, and the seventh vertex will always be in the
intersection. □

We now look at the case k = 2 and n ≥ 8. We are going to show that for
each elementary cycle there are positions that make that cycle simple (and, in
particular, for every flip there is an embedding that makes ICoP hold for that flip).
Of course, this does not imply that ∆2(n) can be realized as a fan; for that we
would need fixed positions that work for all cycles, not one position for each cycle.
But this implication would hold if 2-triangulations were basis at arbitrary positions
(Theorem 2.5).

We need the fact that, in this case, neither a flip nor an elementary cycle of
length 5 can use all the doubly external stars in a 2-triangulation.

Lemma 2.51. Let T be a 2-triangulation on at least 8 vertices.

(1) For any relevant edge e in T there is a doubly external star in T \ {e}.
(2) If e and f are two relevant edges in T and the elementary cycle lk∆2(n)

(T \
{e, f}) has length five then there is a doubly external star in T \ {e, f}.

Proof. A star cannot be bounded by more than two ears, and if a star S is
bounded by two ears then its five vertices are consecutive. That is, the edges of S
are the two ears plus three boundary edges. We call such stars triply external.

Two triply external stars cannot have a common edge (except for n = 6, but
we are assuming n ≥ 8). This, together with the fact that T has at least four ears
(Theorem 2.48) implies part (1): if T has two triply external stars then (at least)
one of them does not use e, and if T has one triply external star, or none, then the
existence of four ears implies that there are at least three doubly external stars in
T , and only two of them can use e.

We now look at part (2) of the statement. By the proof of Corollary 2.16, for
the link of T \ {e, f} to have length five we need that there is a star S0 in T using
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both e and f , plus another two stars Se and Sf using each one of e and f . We want
to show that there is a doubly external star that is not any of these three. (These
three may or may not be doubly external, or external).

Suppose, to seek a contradiction, that no star other than these three is doubly
external. Then every ear bounds one of these three stars. Since only triply external
stars are bounded by two (and then only two) ears, the total number of ears is at
most three plus the number of triply external stars among S0, Se and Sf . The
three cannot be triply external (because S0 shares edges with both Se and Sf ), so
the number of ears is at most five. But five ears would imply Se and Sf to be triply
external, in particular e and f to be ears bounding them, and S0 to be doubly
external, bounded by the fifth ear, different form e and f . In particular, the five
edges of S0 would have to be two boundary edges and three ears, which can only
happen with n = 7 (because two of the ears would need to share a vertex and have
their other end-points consecutive).

So, there are at most four ears in T and, by Theorem 2.48, exactly four. More-
over, they all bound S0, Se or Sf . By Theorem 2.48 again, this implies that each of
the other n− 7 stars in T is an external star, but not a doubly external one. That
is, each of these n− 7 stars contains one and only one of the n− 7 boundary edges,
and the other seven boundary edges are distributed among S0, Se and Sf .

Let T0 be the 2-triangulation of the 7-gon obtained by flattening one by one the
n− 7 boundary edges not in S0, Se or Sf . Observe that, when we flatten a singly
external star, all other stars have the same number of boundary edges before and
after the flattening. In particular, the last star that was flattened was still singly
external before the flattening, so it becomes a singly external 2-crossing (that is, a
crossing of two relevant edges) in T0. At the end, in T0 only S0, Se and Sf survive,
and the edges e and f are such that their link is a cycle of length five (because all
throughout the process the link of T \{e, f} preserves its length, by Theorem 2.41).

The contradiction is that for the cycle to be of length five we need the two rele-
vant edges in T \ {e, f} to be non-crossing, as in the third picture of Example 2.14,
but those two edges must cross because they are the 2-crossing obtained form the
last star that was flattened. □

Theorem 2.52. (1) For each pair of adjacent facets in ∆2(n) there is
a choice of parameters for P4(t1, . . . , tn) that makes the corresponding
circuit of the polynomial rigidity matrix satisfy ICoP.

(2) For each elementary cycle with length 5 in ∆2(n) there is a choice of
parameters for P4(t1, . . . , tn) that makes the cycle simple.

This is stated in [24] as Teorema 2.2.11 and Teorema 2.2.17, but the proof
contains errors.

Proof. The proof goes by induction in n. For n ≤ 7 it is already proved in
corollaries 2.49 and 2.50, so suppose it is true for n and prove it for n+ 1 ≥ 8.

For the first part, let T1 and T2 be two 2-triangulations we are looking at, and
let e, f be the edges in T1 \ T2 and T2 \ T1, respectively. Part (1) of the previous
lemma implies that there is a doubly external star S ⊂ T1 \ {e} = T1 ∩ T2. By
Theorem 2.41, flattening S in T1 and T2 we get 2-triangulations T ′

1 and T ′
2 that still

differ by a flip, and by the inductive hypothesis the sign condition ICoP will hold
in the circuit T ′

1 ∪ T ′
2 for certain choice of the parameters ti. Now we return to the

flip graph in n+ 1 vertices by the reverse operation of flattening a doubly external
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star, which is a vertex split by Lemma 2.44. If we keep the two split vertices close
enough, the signs of the non-split edges (which include the flip edges e and f) will
not be altered (Corollary 2.46), and the ICoP condition still holds.

For the second part, let our elementary cycle be (the link of) T \ {e, f}, for a
2-triangulation T and relevant edges e, f ∈ T . By the previous lemma, there is a
doubly external star S ⊂ T \ {e, f}.

Again, we can flatten S, assume by the inductive hypothesis that the sign
condition in part (3) of Corollary 2.20 holds in the flattened 5-cycle, and return
to n + 1 vertices by a vertex split that will preserve the sign condition if the split
vertices are kept close enough. □

Proof of Theorem 2.5. Suppose, for a contradiction, that all positions re-
alize ∆2(n) as a basis collection, but there is a position t that does not realize it as
a fan. This implies that, at t, there is an elementary cycle with wrong signs. But,
by Theorem 2.52, there is another position t′ giving the right signs in that cycle.

Consider now a continuous transition between t and t′. At some point, the
signs need to change, either by attaining condition ICoP at a flip, or by making the
cycle simple. But any of the two ways would involve collapsing some cone to lower
dimension at that point, which does not happen by hypothesis. □

2.4.3. Experimental results. In this section we report on some experimen-
tal results. In all of them we choose real parameters t = {t1 < t2 < . . . < tn}
(actually we choose them integer, so that they are exact) and computationally
check whether the configuration of rows of P2k(t1, . . . , tn) realizes ∆k(n) first as
a collection of bases, then as a complete fan, and finally as the normal fan of a
polytope.

For the experiments we have written Python code which, with input k, n and
the parameters t, first constructs the set of all k-triangulations and then checks the
three levels of realizability as follows:

(1) Realizability as a collection of bases amounts to computing the rank of
the submatrix P2k(t)|T corresponding to each k-triangulation T .

(2) For realizability as a fan we first check the ICoP property, which amounts
to computing the signs of certain dependences among rows of P2k(t).
There is one such dependence for each ridge in the complex, so the total
number of them is ND/2 where N is the number of k-triangulations on
n points and D = k(n− 2k − 1) is the dimension of ∆k(n).

If ICoP holds then we check that a certain vector lies in the positive
span of a unique facet of the complex. We do this for the sum of rays
corresponding of a particular k-triangulation, the so-called greedy one.
This property, once we have ICoP, is equivalent to being realized as a fan
by parts (2) and (3) of Theorem 2.18.

The greedy k-triangulation is the (unique) one containing all the irrel-
evant edges and the edges in the complete bipartite graph [1, k]× [k+1, n],
and only those. It is obvious that these edges do not contain any (k+1)-
crossing and we leave it to the reader to verify that the number of relevant
ones is indeed k(n− 2k − 1).

(3) For realizability as a polytope we then need to check feasibility of the
linear system of inequalities (6) from Lemma 2.22.
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Here, without loss of generality we can assume that the lifting vector
fij is zero in all edges of a particular k-triangulation, and we again use the
greedy one. This reduces the number of variables in the feasibility problem
from n(n−2k−1)/2 to (n−2k)(n−2k−1)/2, a very significant reduction for
the values of (n, k) where we can computationally construct ∆k(n). Apart
of the computational advantage, it saves space when displaying a feasible
solution; in all the tables in this section we show only the non-zero values
of fij , which are those of relevant edges contained in [k+1, n]. Note that
taking all the fij ’s of a particular k-triangulation equal to zero makes the
rest strictly positive.

Remark 2.53. If a choice of parameters realizes ∆k(n) (at any of the three
levels) for a certain pair (k, n) then deleting any j of the parameters the same choice
realizes ∆k′(n− j) for any k′ with k − j/2 ≤ k′ ≤ k. This follows from Lemma 2.9
plus the fact that each of the three levels of realization is preserved by taking links.

Our first experiment is taking equispaced parameters. Since an affine trans-
formation in the space of parameters produces a linear transformation in the rows
of P2k(t), we take without loss of generality t = (1, 2, 3, . . . , n). We call these the
standard positions along the parabola.

For k ≥ 3 and n ≥ 2k + 3 we show in Theorem 2.6 that standard positions do
not even realize ∆k(n) as a collection of bases. Hence, we only look at k = 2.

Lemma 2.54. Let t = {1, 2, . . . , n} be standard positions for the parameters.
Then:

(1) Standard positions for P4(t) realize ∆2(n) as the normal fan of a polytope
if and only if n ≤ 9.

(2) The non-standard positions t = (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) for P4(t) realize
∆2(10) as the normal fan of a polytope.

(3) Standard positions for P4(t) realize ∆2(n) as a complete fan for all n ≤ 13.

Proof. For part (1), by Lemma 2.54 we only need to check that n = 9 works
and n = 10 does not. For n = 8, 9 Table 1 shows values of (fij)i,j that prove the
fan polytopal. For n = 10 the computer said that the system is not feasible (which
finishes the proof of part (1)), but modifying the standard positions to the ones in
part (2) it gave the feasible solution displayed in Table 2.

For part (3), the computer checked the conditions for a complete fan for n =
8, 9, 10, 11, 12, 13. Only the last one would really be needed; this last one took about
7 days of computing in a standard laptop. □

Let us mention that for n = 11 we have tried several positions besides the
standard ones. All of them realize the complete fan but none realizes it as polytopal.
Among the positions we tried are the “equispaced positions along a circle” that we
now explain.

The standard parabola is projectively equivalent to the unit circle. Since P2k(t)
is linearly equivalent to the cofactor rigidity matrix C2k(q) for the points q of the
parabola corresponding to the parameters t, it makes sense to look at the values
of t that produce equispaced points (that is, a regular n-gon) when the parabola
is mapped to the circle. We call those values of t, “equispaced along the circle”.
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i, j fij
3,6 3
3,7 14
3,8 36
4,7 3
4,8 16
5,8 6

i, j fij
3,6 7
3,7 29
3,8 76
3,9 165
4,7 9

i, j fij
4,8 33
4,9 95
5,8 6
5,9 42
6,9 16

Table 1. Height vectors (fij)i,j realizing ∆2(8) (left) and ∆2(9)
(right) as a polytopal fan with rays in P4(1, 2, . . . , n) (standard
positions).

i, j fij
3,6 44
3,7 161
3,8 424
3,9 1733
3,10 46398

i, j fij
4,7 45
4,8 260
4,9 1722
4,10 60296
5,8 106

i, j fij
5,9 1062
5,10 42019
6,9 196
6,10 13048
7,10 6146

Table 2. A lifting vector that leads to a polytopal realization of
the multiassociahedron for k = 2 and n = 10, with (ti)i=1,...,10 =
(−2, 1, 2, 3, 4, 5, 6, 7, 9, 20).

They are

(9) ti = tan

(
α0 +

i

n
π

)
, i = 1, . . . , n

for any choice of α0, with a symmetric choice being α0 = −(n+ 1)π/2n.
For k = 3, n = 10, we already know that standard positions do not even give

a basis collection. We have tried two strategies to realize ∆3(10): perturbing the
standard positions slightly we have been able to recover independence (that is, a
basis collection), but not the fan (the ICoP condition was not satisfied). Using
equispaced positions along the circle via Equation (9) the positions realize the
polytope.

For k = 3, n = 11 and for k = 4 and n = 12, 13 equispaced positions realize
the fan but not the polytope, even after trying several perturbations.

Lemma 2.55. (1) For the same positions t of Table 2, P6(t) realizes ∆3(10)
as the normal fan of a polytope. The following are valid values of f :

i, j fi,j
4,8 4
4,9 69
4,10 16074
5,9 14
5,10 10281
6,10 3948

(2) Equispaced positions along the circle realize ∆k(n) as a fan for (n, k) ∈
{(3, 11), (4, 12), (4, 13)}. □



CHAPTER 3

The multiassociahedron and tropical Pfaffians

In this chapter we explore relations between k-triangulations and the variety
Pfk(n). Our starting point is restricting Gröbner bases and tropicalization to weight
vectors satisfying the following “four-point positivity” conditions.

Definition 3.1. We say that a weight vector v ∈ R(
[n]
2 ) is four-point positive

(abbreviated fp-positive) if for all 1 ≤ a < a′ < b < b′ ≤ n we have that

va,b + va′,b′ ≥ max{va,a′ + vb,b′ , va,b′ + va′,b}.(10)

We denote by FPn the subset of R(
[n]
2 ) consisting of fp-positive vectors. That

is to say, v ∈ FPn if the maximum weight given by v to the three matchings among
four points is attained always for the matching that forms a 2-crossing.

Although the polyhedron FPn ⊂ R(
[n]
2 ) of fp-positive vectors (the solution set

of equations (10)) is defined by 2
(
n
4

)
inequalities, the following

(
n
2

)
−n alone are an

irredundant description of it, with indices considered cyclically:

va,b + va+1,b+1 − va,b+1 − va+1,b ≥ 0, ∀{a, b} ∈
(
[n]

2

)
with |a− b| > 1,(11)

The left-hand side coefficient vectors (that is, the facet normals of FPn) are lin-
early independent, so that FPn is linearly isomorphic to an orthant plus a lineality

space of dimension n. We like to think of FPn as the “positive orthant” of R(
[n]
2 )

regarding Pfaffians. It can be interpreted as the space of weights that represent
separation vectors among sides of the n-gon, or as the weights that are monotone
with respect to crossings among perfect matchings of each fixed even set U ⊂ [n].
See Proposition 3.10 and Corollary 3.11 for details.

Algebraically, fp-positive vectors are the monomial weight vectors for which the
leading form of every 3-term Plücker relation

xa,bxa′,b′ − xa,a′xb,b′ − xa,b′xa′,b, 1 ≤ a < a′ < b < b′ ≤ n,

contains the crossing monomial. These relations generate the ideal of the Grass-
mannian Gr2(n). In particular, fp-positive vectors are the (closed) Gröbner cone of
Gr2(n) producing as initial ideal the one generated by 2-crossings xa,bxa′,b′ .

Extending this, we denote by Grobk(n) ⊂ R(
[n]
2 ) the Gröbner cone consisting

of weights that select the (k + 1)-crossing as the leading monomial (or as one of
them) in every Pfaffian of degree k + 1. What we say above can then be stated as
Grob1(n) = FPn, and the result of [73] says that Grobk(n) has non-empty interior.
In Section 3.1 we show that FPn ⊂ Grobk(n) (Theorem 3.13) and give an explicit
description of Grobk(n), both by inequalities and by generators (Theorem 3.14).

Theorem 3.2 (Theorem 3.14). For any k > 2n + 2, Grobk(n) ⊂ R(
[n]
2 ) is a

simplicial cone with a lineality space of dimension n.

53
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(1) It is generated by:
• (lineality space) For each i ∈ [n], the line generated by the indicator
vector of the set {{i, j} : j ∈ [n] \ i}.

• (“short” generators) For each {i, j} ∈ [n] with 1 ≤ |i − j| ≤ k, the
negative basis vector corresponding to {i, j}.

• (“long” generators) For each {i, j} ∈ [n] with |i− j| ≥ k+ 2, the ray
of FPn corresponding to {i, j}.

(2) An irredundant facet description of it is given by the following
(
[n]
2

)
− n

inequalities:
• (“long” inequalities) For each {i, j} ∈ [n] with |i − j| ≥ k + 1, the
inequality (11) corresponding to {i, j}.

• (“short” inequalities) For each {i, j} ∈ [n] with 2 ≤ |i − j| ≤ k,
the sum of the inequalities (11) corresponding to all the {i′, j′} with
|i′ − j′| ≤ k+1 and with {i, j} contained in the short side of {i′, j′}.

In particular, Grobk(n) contains FPn for every k and n.

This description has the following combinatorial interpretation: modulo its
lineality space (of dimension n, equal to that of FPn), Grobk(n) is a simplicial cone

with one facet and generator corresponding to each of the
(
[n]
2

)
− n edges of length

at least two. The “long” facet-inequalities (those corresponding to relevant edges)
are the same as the corresponding ones in FPn, and the “short” ones are looser in
Grobk(n) than in FPn.

Moreover, we show that the monomial initial ideal of Ik(n) produced by any
generic weight vector v ∈ Grobk(n) equals the Stanley-Reisner ideal of ∆k(n). That

is, to say, the ideal in K[xi,j , {i, j} ∈
(
[2k]
2

)
] generated by (k + 1)-crossings. This,

in turn, implies that k-triangulations are bases of the algebraic matroid of Pfk(n)
(Corollary 3.20). We find this of interest for two reasons (see Section 3.1.3 for
details):

On the one hand, the algebraic matroid M(Pfk(n)) of Pfk(n) is closely related

to low-rank completion of antisymmetric matrices [8, 77]: given a subset T ⊂
(
[n]
2

)
of positions for entries in an antisymmetric matrix M of size n×n, a generic choice
of values for those entries can be extended to an antisymmetric matrix of rank ≤ 2k
if and only if T is independent in M(Pfk(n)). Thus:

Theorem 3.3. Let T ⊂
(
[n]
2

)
.

(1) If T is (k + 1)-free and K is algebraically closed, then for any generic
choice of values v ∈ KT there is at least one skew-symmetric matrix of
rank ≤ 2k with the entries prescribed by v.

(2) If T contains a k-triangulation then for any choice of values v ∈ KT there
is only a finite number (maybe zero) of skew-symmetric matrices of rank
≤ 2k with those prescribed entries.

On the other hand, the algebraic matroid of Pfk(n) coincides with the generic
hyperconnectivity matroid in dimension 2k defined by Kalai [74]. The fact that
k-triangulations are bases in it is closely related to the conjecture by Pilaud and
Santos [106] that they are bases in the generic bar-and-joint rigidity matroid in
dimension 2k.

In Section 3.2 we turn our attention to the tropicalization of Pfk(n). More

precisely, we denote Pfk(n) ⊂ R(
[n]
2 ) the intersection of the tropical hypersurfaces
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corresponding to Pfaffians of degree k. This is by definition a tropical prevariety.
It contains the tropical variety trop(Pfk(n)) but it does not, in general, coincide
with it, as we show in Theorem 3.29.

In the light of Theorem 3.2, it makes sense to look at the part of Pfk(n)
contained in the Gröbner cone Grobk(n). That is, we define

Pf+k (n) := Pfk(n) ∩Grobk(n).

Since the crossing monomial is the only positive monomial in each 3-term Plücker
relation, for k = 1 we have

trop+(Pf1(n)) = trop(Pf1(n)) ∩ FPn = Pf+1 (n).

One of our main results partially generalizes this to higher k:

Theorem 3.4 (See Theorem 3.31 and Corollary 3.33).

(1) Pf+k (n) = Grobk(n) ∩ trop(Pfk(n)) ⊂ trop+(Pfk(n)).
(2) Pf+k (n) is the union of the faces of Grobk(n) corresponding to (k+1)-free

graphs.

This theorem says that for a v ∈ Grobk(n), being in Pfk(n) is equivalent to the
fact that the “long inequalities” of Theorem 3.2 (that is, the inequalities (11) for
|a−b| ≥ k+1) are satisfied with equality except in a (k+1)-free set. Moreover, when
this happens v can be proved to be in trop(Pfk(n)), and in fact in trop+(Pfk(n)).

In part (2), by the face corresponding to a certain graph G ⊂
(
[n]
2

)
we mean the

intersection of the facets of Grobk(n) corresponding to
(
[n]
2

)
\G in the description

of Theorem 3.2. That is, we consider Grobk(n) as (a cone over) the simplex with

vertex set
(
[n]
2

)
, so that every simplicial complex on

(
[n]
2

)
is a subcomplex of its face

complex. Hence, Theorem 3.4 has the following interpretation:

Corollary 3.5. As a simplicial fan and modulo its lineality space, Pf+k (n) =
Grobk(n) ∩ trop(Pfk(n)) is isomorphic to (the cone over) the extended multiasso-
ciahedron ∆k(n).

Remark 3.6. Pf+k (n) is not equal to trop
+(Pfk(n)). Put differently, “four point

positivity” implies but is not the same as positivity in the sense of Definition 1.9.
See Example 3.35.

Theorem 3.4 suggests that one way to realize the multiassociahedron as a poly-

tope would be to find a projection R(
[n]
2 ) → Rk(2n−2k−1) that is injective on Pf+k (n).

This would embed ∆k(n) as a full-dimensional simplicial fan in Rk(2n−2k−1) whose
link at the irrelevant face would necessarily realize the multiassociahedron ∆k(n) as
a complete fan in Rk(n−2k−1). A second step is needed in order to show polytopality:
to find appropriate right-hand sides showing that the complete fan is polytopal.

We have achieved both steps for k = 1. We show that, for any seed triangulation

T , the projection R(
[n]
2 ) → R2n−3 that keeps only the coordinates corresponding to

edges in T is injective on Pf+1 (n) (Corollary 3.42). That is, we have an explicit
projection sending Pf+1 (n) to (the normal fan of) the associahedron. It was pointed
out to us by Vincent Pilaud that the embedding that we obtain is exactly the
so-called g-vector fan associated to the seed triangulation. g-vector fans can be
defined in an arbitrary cluster algebra of finite type and starting with any seed
cluster, and they were shown to be polytopal by Hohlweg, Pilaud and Stella [66].
See Section 3.3 for details.
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Theorem 3.7 (Corollary 3.47). For each seed triangulation T of the n-gon,
projection of Pf+1 (n) to the n − 3 coordinates of the edges in T gives a realization
of the (n− 3)-associahedron in Rn−3 isomorphic to the g-vector fan of T .

This would seem to open up the possibility of using these same ideas to find
polytopal realizations of ∆k(n) for higher k, by adapting to k-triangulations the
(quite simple) procedure used to define the g-vectors from a seed triangulation.
Unfortunately, our final result Corollary 3.50 says that this approach is doomed to
fail, under certain natural assumptions.

3.1. The variety of antisymmetric matrices of bounded rank

3.1.1. Four-point positive weight vectors. We now introduce certain term
orders for the variables that produce as initial ideal of Ik(n) the monomial ideal
generated by (k + 1)-crossings. For this, we need to introduce a change of basis in

R(
[n]
2 ), and a change of point of view on the n-gon.
Let us call a-th side of the n-gon the edge {a− 1, a} (with indices taken mod-

ulo n). Then, any choice of real numbers wi,j (with {i, j} ∈
(
[n]
2

)
) for the edges

connecting vertices of the n-gon induces a “separation” distance between each pair
of sides, as the sum of w’s of the edges separating those sides. That is:

Definition 3.8. Given a vector w ∈ R(
[n]
2 ), the separation vector d(w) ∈ R(

[n]
2 )

induced by w is defined as

(12) da,b(w) =
∑

(i,j)∈([n]
2 )

a≤i<b≤j<a

wij , ∀{a, b} ∈
(
[n]

2

)
,

Here the order symbols “<” and “≤” for indices are considered cyclically. E.g.,
a < b < c < a means that a, b, c are different and they appear in that cyclic order
along the n-gon.

Figure 1 shows an example of this transformation. To compute d26(w), where
a = 2 and b = 6 denote two sides of the octagon, we have to sum the wijs in the
complete bipartite graph on the two subsets of vertices separated by a and b.

• 0

• 1
•2

•3

•4

•
5 •

6

•
7

•a = 2

•
b = 6

Figure 1

The entries of d(w) are going to be used as weights for variables in our monomial
orders, but we want to have in mind the weight vector w from which they come. This
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is well-defined thanks to the following result, which implies that the transformation

from w to d(w) is a linear isomorphism in R(
[n]
2 ):

Proposition 3.9. For any w ∈ R(
[n]
2 ), and every {a, b} ∈

(
[n]
2

)
, we have

(13) 2wa,b = da,b(w) + da+1,b+1(w)− da,b+1(w)− da+1,b(w),

where da,a(w) = 0 by convention.

Hence, each v ∈ R(
[n]
2 ) can be expressed uniquely as d(w) for a certain w ∈

R(
[n]
2 ).

Proof. It is enough to check that the rest of wij cancel out when da,b(w) +
da+1,b+1(w)− da,b+1(w)− da+1,b(w) is computed via Eq.(12). □

That is, we can think of d(w) and w as different choices of linear coordinates

for R(
[n]
2 ).

Proposition 3.10. Let v ∈ R(
[n]
2 ) be a weight vector. The following conditions

are equivalent:

(1) v ∈ FPn. That is, it satisfies the positive four-point conditions (10) in
Definition 3.1.

(2) v satisfies the
(
n
2

)
− n inequalities (11).

(3) v = d(w) in the sense of Definition 3.8 for a w with wa,b ≥ 0 for all

{a, b} ∈
(
[n]
2

)
with |a− b| > 1.

(4) For every k ≥ 1 and every U ∈
(
[n]
2k

)
the weights given by v to matchings

in U are monotone with respect to swaps that create crossings.

(5) For every k ≥ 1 and every U ∈
(
[n]
2k

)
the maximum weight given by v to

matchings in U is attained by the k-crossing.

Proof. The equivalence of parts 1 and 4 is obvious and the equivalence of 2
and 3 follows from Proposition 3.9. The implications 5 ⇒ 1 ⇒ 2 are also trivial
because the inequalities in condition 1 are nothing but the case k = 2 of condition
5, and they contain the inequalities in condition 2 as a subset.

The implication 4 ⇒ 5 follows from the fact that every matching can monoton-
ically be converted into a full crossing by swaps that create crossings.

Finally, the implication 3 ⇒ 1 follows from the fact that if 1 ≤ a < a′ < b <
b′ ≤ n then Equations (12) give

va,b + va′,b′ =W1 +W2 +W3,

va,a′ + vb,b′ =W1 +W2,

va,b′ + va′,b =W1 +W3,

where

W1 =
∑

a≤i<a′≤j<b

wij +
∑

a′≤i<b≤j<b′
wij +

∑
b≤i<b′≤j<a

wij +
∑

b′≤i<a≤j<a′
wij ,

W2 =
∑

a≤i<a′,
b≤j<b′

wij ,

W3 =
∑

a′≤i<b,
b′≤j<a

wij .
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Since w is nonnegative (except perhaps for consecutive indices) we have thatW2,W3 ≥
0 and hence va,b + va′,b′ is greater or equal than both of va,a′ + vb,b′ and va,b′ +
va′,b. □

That is to say, FPn is essentially the positive orthant in the w coordinates,
except for one detail. Proposition 3.9 implies that the inequalities (11) from the
introduction are equivalent to

wa,b ≥ 0 ∀{a, b} ∈
(
[n]

2

)
with |a− b| > 1;

but the inequalities wa,a+1 ≥ 0 are not valid in FPn. The n-dimensional subspace
generated by the vectors with wa,b = 0 if |a − b| > 1 and wa,a+1 arbitrary can be
thought of as the “irrelevant” part of the w coordinates; in fact, is the lineality
space of FPn. This suggests we give it a name. We denote:

Ln :=
{
d(w) : w ∈ R(

[n]
2 ) and wi,j = 0 if |i− j| > 1

}
∼= Rn,

FP+
n :=

{
d(w) : w ∈ R(

[n]
2 )

≥0

}
∼= R(

[n]
2 )

≥0 .

Corollary 3.11. FPn = Ln + FP+
n , and it is linearly isomorphic to Rn ×

R(
[n]
2 )−n

≥0 .

Proof. By Proposition 3.9 the map w → d(w) is a linear automorphism in

R(
[n]
2 ); by Proposition 3.10, FPn is the image FP+

n of the positive orthant plus the
linear subspace Ln. □

3.1.2. Pfaffians as a Gröbner basis for four-point positive weights.
The following is the main result of J. Jonsson and V. Welker [73], although it is
also stated without proof in [94, p. 107].

Theorem 3.12 ([73]). There is a (lexicographical) term order for which inv(Ik(n))
is the monomial ideal generated by all (k + 1)-crossings.

The term order of Jonsson and Welker necessarily selects in each Pfaffian the
monomial corresponding to the (k+1)-crossing (in fact, it is designed to have that
property), and Pfaffians are a Gröbner basis for it since each Pfaffian contains one
and only one of the generators in the initial ideal. Once we know this, any term
order that selects this same monomial in each Pfaffian will produce the same initial
ideal by, for example, Exercise 8.4 in [23, p. 435]. Proposition 3.10(5) says that
this includes the order induced by any (generic) fp-positive vector v ∈ FPn. Hence,
we have the following statement, a bit more general than Theorem 3.12:

Theorem 3.13. Pfaffians of degree 2k + 2 are a Gröbner basis for Ik(n) with
respect to any monomial order that selects the k-crossing in each Pfaffian. In
particular, for the ordering of any fp-positive vector v ∈ FPn.

If the fp-positive vector is sufficiently generic then inv(Ik(n)) is the monomial
ideal generated by all (k + 1)-crossings.

The case k = 1 of this theorem is classical, via the equality Pf1(n) = Gr2(n), see
[94, Theorem 3.20] and Remark 3.34 below). In fact, in this case the last sentence
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in the theorem is an “if and only if”. Indeed, FPn is, by definition, the closed
Gröbner cone of I1(n) corresponding to the initial ideal generated by 2-crossings.

In general, let Grobk(n) be the Gröbner cone of Ik(n) corresponding to the
ideal of (k + 1)-crossings. For higher k it is no longer true that FPn = Grobk(n),
we only have the containement FPn ⊂ Grobk(n) which follows from the previous
theorem. Our next result explicitly describes Grobk(n).

For arbitrary k, the Gröbner cone is the intersection of the normal cones of each
(k + 1)-crossing in the Newton polytope of the corresponding Pfaffian. A priori,
this intersection is described by the following family of linear inequalities, running
over all the even cycles (i0, i1 . . . , i2l−1, i0) of length 2l that contain an l-crossing
contained in a (k + 1)-crossing, for l ≤ k + 1:

vi0i1 − vi1i2 + . . .− vi2l−1i0 ≥ 0(14)

But most of these inequalities are redundant. For example, for k = 1, Grob1(n) =
FPn which is defined by 2

(
n
4

)
four-point conditions, but only the

(
n
2

)
−n in Eqs.(11)

are irredundant. In fact, it turns out that for every k and every n ≥ 2k + 3, the
Gröbner cone is simplicial:

Theorem 3.14. For n ≥ 2k+3, Grobk(n) is, modulo the lineality space Ln, a
simplicial cone given by the following inequalities, one for each {i, j} with |j−i| ≥ 2:

wij ≥ 0 if |j − i| > k (long inequalities)(15) ∑
i′≤i<j≤j′≤i′+k+1

wi′j′ ≥ 0 if 2 ≤ |j − i| ≤ k (short inequalities)(16)

The ray opposite to the facet indexed by {i, j} is generated by:

• The basis vector indexed by {i, j} in the w coordinates if |j − i| ≥ k + 2,
and

• The negative basis vector indexed by {i + 1, j} in the v coordinates if
|j − i| < k + 2.

Observe that the “long” inequalities are also facet-defining for FPn and the
“short” ones are sums of facet-defining “short” inequalities in FPn.

Proof. First let us see that the inequalities are valid in the cone. The first
group (15) is obvious, because the (k+1)-crossing has higher weight than any swap.
For the second group, let {i, i+ ℓ} be an edge with ℓ ≤ k. For each set U of 2k+2
sides of the n-gon and each edge e ∈ T we call length of e with respect to U and
denote it ℓU (e) the smallest size of the two parts of U separated by e. (Equivalently,
it is the usual length of the edge as a diagonal of the n-gon when all the sides not
in U are contacted). For a matching M of U and an edge e we denote by cM (e)
the number of edges of M that cross e.

Consider the matching

M = {{i+ 1, i+ ℓ}, {i+ 2, i+ k + 3}, {i+ 3, i+ k + 4}, . . . , {i+ ℓ− 1, i+ k + ℓ},
{i− k + ℓ− 1, i+ ℓ+ 1}, {i− k + ℓ, i+ ℓ+ 2}, . . . , {i, i+ k + 2}}

This is a k-crossing plus the edge {i + 1, i + ℓ}. The coefficient of a w will be the
same in this matching than in the (k + 1)-crossing, that is, ℓU (e) = cM (e), except
for the edges {i′, j′} with i′ ≤ i < i+l ≤ j′ ≤ i′+k+1, for which cM (e) = ℓU (e)−2.
Hence the left hand side of (16) is half the difference between the weights, which
proves the inequalities.
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Once we know that the inequalities are valid, let Gij be the ray defined in the
statement. We only need to show that at each Gij all inequalities are equalities,
except for the one of index ij, and that the Gij indeed lie in Grobk(n).

Indeed, if |i − j| > k + 1 then Gij has all w coordinates equal zero except
wij > 0. it is clear that all inequalities of the form (16) are equalities (since they
only involve w’s of length ≤ k + 1) and all of type (15) except the one for ij
are equalities (by construction). If |i − j| ≤ k + 1, in Gij we have that the the
only nonzero v coordinate is vi+1,j , which is negative. We take it equal to −1.
Proposition 3.9 implies that in the w coordinates the only non-zero ones are

wi+1,j = wi,j−1 = −1

2
, wi+1,j−1 = wi,j =

1

2
.

Now, if j − i ≤ k, (15) gives always 0 and (16) gives 1/2 exactly for one sum,
the corresponding to {i, j}, and 0 for the rest. If j − i = k + 1, (16) gives always 0
and (15) gives 1 only for wi,j .

It remains to see that these rays are in Grobk(n):

• For the w basis vectors this follows from the fact that they are in FPn.
• For the negative v basis vectors, we are giving weight −1 to an irrelevant
edge and 0 to all the other edges; it is clear that every (k + 1)-crossing
gets weight zero, and every other matching gets nonpositive weight.

□

Remark 3.15. Theorem 3.14 fails for n = 2k + 2, but in this case it is easy
to describe Grobk(n). Since we have a single Pfaffian, the Gröbner fan is simply
the normal fan of its Newton polytope. In particular, none of the equalities (14)
is redundant and Grobk(n) has as many facets as there are matchings of [2k + 2]
whose symmetric difference with the k + 1-crossing is a single cycle. For example:

• For k = 2, n = 6, all matchings differ from the 3-crossing in a single cycle.
Thus, the Grob2(6) has (modulo its lineality space) dimension

(
6
2

)
−6 = 9

and 14 facets.
• For k = 3, n = 8, there are matchings differing from the 4-crossing in
two cycles of length four. There are exactly 12 of them, coming from
the three ways of partitioning the 4-crossing into two pairs of edges and
the two ways of completing each pair of edges into a four-cycle. Hence,
Grob3(8) has dimension

(
8
2

)
− 8 = 20 and it has 105− 1− 12 = 92 facets.

One difference between k = 1 and k > 1 is that for k = 1 Pfaffians are a
universal Gröbner basis for the ideal I1(n) (one proof is that every other Gröbner
cone of I1(n) can be sent to FPn by a permutation of [n], see [124, Theorem 4.3]).
The same is known to fail for higher Grassmannians (see e.g., [124, Section 7] or
[83, Example 4.3.10]) and it also fails for higher Pfaffians:

Example 3.16 (Pfaffians are not a universal Gröbner basis). Let n = 9 and
k = 2. Consider the vector with

v12 = v34 = v56 = v47 = v89 = 2,

v58 = v69 = 1,

v17 = v28 = v39 = 10,
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and the rest of entries equal to zero. We are going to show that, regardless of
the field K, Pfaffians are not a Gröbner basis for this choice of v (or any small
perturbation of it).

Call f and g the Pfaffians on the sets U = {1, 2, 3, 4, 5, 6} and V = {4, 5, 6, 7,
8, 9}, which have as matchings of highest weight {12, 34, 56} and {56, 47, 89}, both
of weight 6. That is,

in(f) = x12x34x56, in(g) = x56x47x89.

The following polynomial, which is nothing but the S-polynomial of f and g that
arises in Buchberger’s algorithm, lies in I3(9)

h := x12x34 g − x47x89 f.

The only monomials of weight > 6 in h are the initial terms of the two parts
x12x34 g and x47x89 f , which cancel out, and x12x34 x47x58x69, of weight 8. Hence,
we have that in(h) = x12x34 x47x58x69.

In particular, if Pfaffians were a universal Gröbner basis, there should be a
Pfaffian whose leading monomial divides in(h). That is, there should be a set
W ⊂ [9] of six elements whose matching M of maximum weight is contained in
{12, 34, 47, 58, 69}. This W does not exist. Indeed, W cannot contain any of the
pairs {1, 7}, {2, 8} or {3, 9}, because then its highest matching would have weight
≥ 10. And every set of three edges among {12, 34, 47, 58, 69} not containing any of
those pairs of vertices contains the edges {58, 69}, which cannot be in the leading
term of any Pfaffian since they produce smaller weight than their swap {56, 89}.

Remark 3.17. That Pfaffians are a Gröbner basis for the ideal Ik(n) they
generate was known before [73]. The earliest proof we are aware of is by Herzog
and Trung [61], who construct a lexicographic order for which the initial ideal
in<(Ik(n)) is generated by the (k + 1)-nestings. Here {a, d} and {b, c} are nested
if 1 ≤ a < b < c < d ≤ n.

This result was recovered by Sturmfels and Sullivant [129] as a special case of
a more general behaviour; Sturmfels and Sullivant study the relation between the
Gröbner bases of an ideal I and those of its secant ideals I{k}, and call a monomial
order “delightful” if the initial ideal of I{k} can be obtained from that of I by the
following simple combinatorial rule: the standard monomials in in<(I

{k}) are the
products of k standard monomials of in<(I). They then consider Ik(n) = I1(n)

{k}

as an example [129, Example 4.13], and show that the lexicographic order of Herzog
and Trung [61] is delightful.

It is worth noticing that fp-positive orders are not “delightful” in the sense
of [129]. Indeed, the maximal square-free standard monomials in our initial ideal
are the k-triangulations of the n-gon, and not every k-triangulation is the union of k
triangulations. For a trivial example observe that the complete graph on 5 vertices
is a 2-triangulation but it is not the union of two triangulations of the pentagon.
Related to this, see [106, Section 6].

Theorem 3.13 has a natural interpretation via (k + 1)-free sets and multitri-
angulations. Observe that k(2n− 2k − 1), the dimension of ∆k(n), coincides with
that of Pfk(n).

Corollary 3.18. If the weight vector v for the variables in K[xi,j , {i, j} ∈
(
[n]
2

)
]

lies in Grobk(n) (for example, if it is fp-positive) and generic then the initial ideal
of Ik(n) equals the Stanley-Reisner ideal of the extended k-associahedron ∆k(n).
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That is: it is the radical monomial ideal whose square-free standard monomials
form, as a simplicial complex, ∆k(n).

3.1.3. The algebraic matroid of Pfk(n) and low-rank matrix comple-
tion. Let I ⊂ K[x1, . . . , xN ] be a prime ideal. The algebraic matroid of I, which we
denote M(I), has the variables E := {x1, . . . , xN} as elements and a subset S ⊂ E
is independent if I does not contain any non-zero polynomial in K[S]. If K is al-
gebraically closed and V = V (I) is the irreducible variety of V , then dependence
and independence of a subset S of variables can be told via the natural projection
map πS : V ⊂ KN → KS , as follows. A set is independent in M(I) if, and only if,
the corresponding projection map πS : V → KS is dominant; that is, its image is
(Zariski) dense. We use [77, 113, 114] as our main sources for algebraic matroids.

Theorem 3.19. Let K be an algebraically closed field, I ⊂ K[x1, . . . , xN ] a
prime ideal and V its algebraic variety. For each S ⊂ [N ] denote by πS : K[N ] → KS
the coordinate projection to S. Then:

(1) S is independent in M(I) if and only if πS(V ) is Zariski dense in KS.
(2) The rank of S is equal to the dimension of πS(V ).
(3) S is spanning if and only if πS is finite-to-one: for every x ∈ KS the fiber

π−1
S (x) is finite (perhaps empty).

Proof. The first part is Theorem 15 in [114]. For the second, the rank of S
is the maximum size among independent subsets of S, which are the subsets T for
which πT (V ) = πT (πS(V )) has dimension |T |. The maximal ones are those which
have the same size as the dimension of πS(V ), so this is the rank.

The third part is a consequence of the second, because a projection has the
same dimension than the variety if and only if the fiber has dimension zero, and a
fiber has dimension zero if and only if it is finite. □

This statement has as a consequence that, over an algebraically closed field,
we can speak of the algebraic matroid of the irreducible variety V , and denote it
M(V ), instead of looking at the ideal.

We now turn our attention to the case of Pfk(n).

Corollary 3.20. (k+1)-free subsets of edges are independent in the algebraic
matroid of Pfk(n) and k-triangulations are bases.

After Proposition 3.21 we show examples of non-planar graphs that are inde-
pendent in Pf1(n). This implies that the converse of Corollary 3.20 is false; not
every basis of Pf1(n) is, after relabelling vertices, a triangulation.

Proof. Let S be a dependent set in the matroid. Then there is a polynomial
f in Ik(n) using only the variables in S and the initial monomial of f according to
any fp-positive weight also uses only variables in S. By Corollary 3.18 Ik(n) has an
initial ideal consisting only of (k+1)-crossing monomials, hence f has a monomial
with a (k + 1)-crossing, and S is not (k + 1)-free.

For the second part, it is enough to see that the rank of the matroid equals
2nk−

(
2k+1

2

)
. This is because points in Pfk(n) are antisymmetric matrices of rank

≤ 2k. In order to construct one such matrix M we can choose generic elements
in the first 2k rows above the diagonal and every other element Mi,j (i, j > 2k) is
uniquely determined by them. Indeed, the Pfaffian of the rows and columns indexed
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by [2k] ∪ {i, j} has the form AMi,j + B where A is the Pfaffian of [2k]. Since our
choice was generic, A ̸= 0. □

This proof already shows the relation between independence in the algebraic
matroid of Pfk(n) and low-rank completion of partially known antisymmetric ma-
trices. Suppose that we are given a matrix M ∈ Kn×n, of which we only know
a subset T of entries, we want to deduce the rest of entries with the restriction
that M needs to be antisymmetric and have at most range 2k. Corollary 3.20 then
immediately allows us to prove Theorem 3.3:

Proof of Theorem 3.3. Consider the projection πT : K([n]
2 ) → KT that

keeps only the coordinates of T . In part (1) we are saying that πT is almost
surjective (any element has a preimage except for a zero measure set) and in part
(2) that it is finite-to-one (every point x ∈ KT has a finite fiber π−1(x)). Both
parts follow from Corollary 3.20, via the characterization of algebraic matroids in
Theorem 3.19. □

It is worth mentioning that the algebraic matroid of Pfk(n) coincides with the
generic hyperconnectivity matroid in dimension 2k introduced by Kalai [74]. Let
us review this relation.

If an algebraic variety V is parametrized by a polynomial map T : RM →
V ⊂ RN , then the algebraic matroid of V equals the linear matroid of rows of the
Jacobian of T at a sufficiently generic point of RM [113, Proposition 2.5]. In our
case, Pfk(n) is parametrized by the following linear map:

T : (Rn)2k → Pfk(n) ⊂ R(
n
2)

(a1,b1, . . . ,ak,bk) 7→
k∑
l=1

(al,ibl,j − al,jbl,i)1≤i<j≤n ,(17)

where al = (al,1, . . . , al,n) and bl = (bl,1, . . . , bl,n). The Jacobian of T at a point
(a1,b1, . . . ,ak,bk) then coincides with the hyperconnectivity matrix of the config-
uration (p1, . . . ,pn) where

pi = (b1,i,−a1,i, . . . , bk,i,−ak,i).

As a consequence we get the following (known) result, which is implicit for
example in [94, Theorem 3.23]:

Proposition 3.21. The algebraic matroid of Pfk(n) coincides with the generic
hyperconnectivity matroid in dimension 2k.

With this result it is easy to construct non-planar graphs that are bases in
Pf1(n) = H2(n). Start with any non-planar graph and subdivide every edge into
two parts. The graph G obtained is independent in every two-dimensional rigidity
matroid, in particular in H2(n), because iteratively removing the new vertices,
which all have degree two, we get the empty graph. Hence, G can be extended
to a non-planar basis of H2(n). As a consequence, not every basis of Pf1(n) is a
triangulation.

Corollary 3.22. k-triangulations are bases in the generic hyperconnectivity
matroid of dimension 2k.
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3.2. The tropicalization of Pfk(n)

3.2.1. The tropical Pfaffian variety and prevariety. As already said, for
k = 1 and for n = 2k + 2 Pfaffians are a tropical basis of the ideal they generate.
The following example looks at the first open case:

Example 3.23. For k = 2 and n = 7, using Gfan [69] we have computed
Pf2(7) as the intersection of the seven hypersurfaces corresponding to Pfaffians.
The result is a non-simplicial fan of pure dimension 18 with 77 rays and a lineality
space of dimension 7 (as expected). It has 73395 maximal cones, all of them with
multiplicity 1. These cones correspond to 33 classes of symmetry via permutations
of variables. The 77 rays are:

• The 21 vectors in the standard basis of the coordinates v, and their 21
opposites. That is, for each {i, j} ∈

(
7
2

)
, the two vectors with vij = ±1

and vi′j′ = 0 otherwise.

• The 35 vectors obtained as follows: for each {i, j, k} ∈
(
7
3

)
, the vector with

vij = vik = vjk = 1 and vi′j′ = 0 otherwise.

7 of the 14 extremal rays of FP7 are among these vectors. In the w coordinates these
are the vectors with wij = 1 and all other entries equal to zero, for the fourteen
choices of non-consecutive i and j. The seven with i = j − 2 coincide (modulo the
lineality space) with the v-basis vectors with vj−1,j = −1, which are rays, and the
seven with i = j − 3 are the vectors with vj−2,j = vj−1,j = vj−2,j−1 = −1, that is,
the opposites to some rays, but they are not rays themselves. None of the other 77
rays computed by Gfan lie in FP7.

The cone corresponding to a given 2-triangulation cannot be in this prevariety,
because its rays are not among those rays. But it can be the result of intersecting
a cone from the prevariety with FP7, because, by Remark 3.15, the Gröbner cone
in which it is contained is a bit greater than FP7. In fact, a v coming from a 2-
triangulation is in the cone spanned by the rays vj−1,j = −1 for all j and vj−2,j =
−1 for {j − 3, j} in the 2-triangulation. The intersection of this cone with FP7 is
the cone in the 2-associahedron.

In this case, we want to check whether the tropical prevariety Pf2(7) coincides
with the variety trop(Pf2(7)). To do that, we need to compute the tropical variety
as a subfan of the Gröbner fan. However, it is not enough to check that the cones
in both fans are the same, because the tropical prevariety may not be a subfan of
the Gröbner fan.

trop(Pf2(7)) is a simplicial fan with 84420 cones, that belong to 35 equivalence
classes. The equality as sets for the two fans can now be checked by showing that
all the simplicial cones in trop(Pf2(7)) are contained in a cone of Pf2(7) and the
union of the cones contained in the same cone gives the whole cone.

The prevariety contains 71820 simplicial and 1575 non-simplicial cones. The
simplicial ones are also cones of the variety, so that part is correct. Now there are
12600 remaining cones in the variety, that correspond to the non-simplicial part.
The non-simplicial cones can be triangulated in two ways: in 8 cones and in 3 cones.
The triangulation in 8 cones of all them can be shown to match exactly the cones
of the variety, and we are done.

To better understand the difference between Pfk(n) and trop(Pfk(n)) we are
now going to relate them to two different notions of rank for a tropical matrix.
For this, it is convenient to extend R to the tropical semiring R := R ∪ {−∞},
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with the operations max as “addition” and + as “multiplication”. By a tropical
n1×n2-matrix we mean an n1×n2-matrix with entries in R. To distinguish between
tropical (pre)-varieties in Rn and Rn we denote V the extension to Rn of a tropical
variety or prevariety V ∈ Rn.

Clearly, for every family F of polynomials, the prevariety of F in Rn is topolog-
ically closed, so it contains the closure of the prevariety in Rn, and the same holds
for varieties. The converse is not always true, as the following example shows:

Example 3.24. Let I = (x1x3 + x2, x2x3 + x1). The tropical variety it defines

in R3 equals {(a, a, 0) : a ∈ R}, while the variety it defines in R3
contains that plus

the points {(−∞,−∞, b) : b ∈ R}.
Observe that this ideal is not prime, since it contains x1(x

2
3−1) but it does not

contain any of its factors x1, x3 + 1 or x3 − 1. We do not know whether for prime
ideals it is always true that the closure of V equals V .

The following two notions of rank were introduced in [36].

Definition 3.25 (Tropical rank, [83, Def. 5.3.3]). A square matrix M ∈ Rr×r

is tropically singular if the maximum in the tropical determinant

trop det(M) := max
σ∈Sr

r∑
i=1

miσ(i)

is attained at least twice, and tropically regular otherwise.
The tropical rank of a tropical matrix is the largest size of a tropically regular

minor in it.

Stated differently, the tropical rank of M is the largest r such that M is not in
the tropical prevariety of the r× r minors or, equivalently, the smallest r such that
M is in the tropical prevariety of the (r + 1)× (r + 1) minors.

Definition 3.26 (Kapranov rank, [83, Def. 5.3.2]). Let M ∈ Rn1×n2
be a

tropical matrix. The Kapranov rank of M over a valuated field K is the smallest

rank of a lift of the matrix, that is, a matrix M̃ ∈ K such that the degree of M̃ij is
mij .

The tropical variety of the (r+1)× (r+1) minors is the tropicalization of the
(classical) variety of the matrices with rank at most r. Hence, the Kapranov rank
is the smallest r such thatM is in the tropical variety of the (r+1)×(r+1) minors,
or the largest r such that M is not in the tropical variety of the r × r minors.

Observe that the Kapranov rank of M depends on the field K under consid-
eration, while the tropical rank does not. The relation of the two notions of rank
to the tropical variety and prevariety of minors readily shows that the Kapranov
rank is greater or equal than the tropical rank [36, Theorem 1.4]. Two small ex-
amples where the two notions do not coincide appear in [36, Section 7] (a 7 × 7
matrix of tropical rank three and Kapranov rank four) and [120] (a 6×6 matrix of
tropical rank four and Kapranov rank five). The two examples are reproduced in
[121, Section 4] where Shitov, completing work of Develin-Santos-Sturmfels [36],
Chan-Jensen-Rubei [21], and himself [122] shows that these two examples are the
smallest possible:

Lemma 3.27 ([121]). For given positive integers r, n1, n2 the following are
equivalent:
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(1) The (r+1)× (r+1) minors are a tropical basis for the variety of n1 ×n2
matrices of rank r (over any of the complex, real, or rational fields).

(2) r ≤ 2, or r = min{n1, n2}, or r = 3 and min{n1, n2} ≤ 6.

Since these notions of rank distinguish between the variety and prevariety of
minors, antisymmetric versions of them will distinguish between the variety and
prevariety of Pfaffians. (The same idea for the symmetric case is explored in [145]).

Let M ∈ Rn1×n2 be a tropical matrix and let n = n1 + n2. Let K ∈ R be a
sufficiently big constant. From M and K we construct the following n× n matrix:

Sym(M,K) :=

(
N1 M
M t N2

)
∈ Rn×n,

where (N1)ij = mi1 + mj1 − K and (N2)ij = m1i + m1j − K for i ̸= j, and

(N1)ii = (N2)ii = −∞. We have a corresponding vector v(M,K) ∈ R(
[n]
2 ) of entries

of Sym(M,K):

vij :=


mi,j−n1

if 1 ≤ i ≤ n1 < j.

mi1 +mj1 −K if 1 ≤ i, j ≤ n1.

m1,i−n1 +m1,j−n1 −K if i, j > n1.

For example, for the 2× 3 matrix

M =

(
1 2 3
4 5 6

)
we have

Sym(M, 10) =


−∞ −5 1 2 3
−5 −∞ 4 5 6
1 4 −∞ −7 −6
2 5 −7 −∞ −5
3 6 −6 −5 −∞


and

v(M, 10) = (−5, 1, 2, 3, 4, 5, 6,−7,−6,−5),

where the negative entries are obtained subtracting 10 from the sum of the two
corresponding elements from the first row or from the first column of M .

We also consider the matrix and vector Sym(M,∞) and v(M,∞) ∈ R(
[n]
2 )

obtained using ∞ instead of K. That is:

Sym(M,∞) :=

(
−∞ M
M t −∞

)
∈ Rn×n,

Lemma 3.28. Let M ∈ Rn1×n2
be a tropical matrix and K ∈ R. For the vector

v(M,K) ∈ R(
[n]
2 ) defined above we have:

(1) For K sufficiently large, v(M,K) ∈ Pfk(n) if and only if the tropical rank
of M is at most k.

(2) v(M,∞) ∈ trop(Pfk(n)) if and only if the Kapranov rank of M is at most
k.

Proof. For part (1), assume first that v(M,K) ∈ Pfk(n), and consider a

(k+1)× (k+1) minor of M . This corresponds to a set U ∈
(

[n]
2k+2

)
with half of the

elements in [1, . . . , n1] and the other half in [n1+1, . . . , n]. Since v(M,K) ∈ Pfk(n),
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there are at least two perfect matchings in U of maximum weight. Since we chose
K very big, none of these matchings come from the N1 or N2 parts of Sym(M,K).
This implies that the minor of M that we started with is tropically singular.

Conversely, assume that trop rankM ≤ k. Let U ∈
(

[n]
2k+2

)
and consider a

perfect matching E in U with maximal weight, which is a term in the Pfaffian of
U . We have three cases:

• If all the edges in E are between [n1] and [n1 + 1, n], E corresponds to a
permutation in M attaining the tropical determinant. As trop rankM ≤
k, there must be another permutation with the same weight.

• If all the edges in E except one are between [n1] and [n1 + 1, n], suppose
E = {{i1, j1}, . . . , {ik+1, jk+1}}, and i1, . . . , ik+1, j1 ≤ n1 < j2, . . . , jk+1

(the other case is symmetric). Then

w(E) = vi1j1 + · · ·+ vik+1jk+1
= mi11 +mj11 +mi2,j2−n1

+ . . .+mik+1,jk+1−n1
−K.

We have now two cases:
– If jl = n1 + 1 for some l, for example j2 = n1 + 1, then

w(E) = vi1i2 + vj1,n1+1 + vi3j3 + . . .+ vik+1jk+1
.

– If jl > n1+1 for all l, w(E)−mj11+K is the weight of the permutation
{i1, 1}, {i2, j2 − n1}, . . . , {ik+1, jk+1 − n1} in M . Since the tropical
rank of M is smaller than k + 1, there is another permutation with
weight greater or equal than w(E)−mj11 +K. That is,

w(E)−mj11 +K ≤ mi′11
+mi′2,j2−n1

+ . . .+mi′k+1,jk+1−n1

where (i′1, . . . , i
′
k+1) is a permutation of (i1, . . . , ik+1). Equivalently

w(E) ≤(mi′11
+mj11 −K) +mi′2,j2−n1

+ . . .+mi′k+1,jk+1−n1
=

=vi′1j1 + vi′2j2 + . . .+ vi′k+1jk+1
.

As E is maximal, this is an equality, and we have another matching
in U with the same weight.

• If there is more than one edge inside [n1] or inside [n1 +1, n], suppose for
example we have the edges {a, b} and {c, d} with a, b, c, d ≤ n1. Then any
of the two swaps among these four elements preserves weight, indeed:

va,b + vc,d = ma1 +mb1 +mc1 +md1 − 2K = va,c + vb,d = va,d + vb,c

In any case, there is another matching with the same weight as E, and this
finishes part (1).

For part (2), if M has Kapranov rank at most k then there is a lift M̃ of M of
rank k. Thus, (

0 M̃

M̃ t 0

)
is an antisymmetric lift of Sym(M,∞) of rank 2k.

Conversely, if v(M,∞) ∈ trop(Pfk(n)), consider an antisymmetric matrix in
Pfk(n) projecting to it, hence of rank 2k. This matrix necessarily has zero entries
in the places where v(M,∞) has −∞, so it is of the form(

0 M̃

M̃ t 0

)
,
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where M̃ is a matrix of rank at most k and projecting to M . □

Theorem 3.29. If there is a matrix M ∈ Rn1×n2 of tropical rank ≤ k and
Kapranov rank > k then Pfk(n) ̸= trop(Pfk(n)), where n = n1 + n2.

This happens, for example, for k = 3 and any n ≥ 14 and for any k ≥ 4 and
n ≥ 2k + 4.

Proof. Let M ∈ Rn1×n2 be a matrix of tropical rank ≤ k and Kapranov
rank > k. By Part (1) of Lemma 3.28 we have that v(M,K) ∈ Pfk(n) for every
sufficiently big K.

Also, by Part (2) of the Lemma, v(M,∞) ̸∈ trop(Pfk(n)). In particular,
v(M,∞) is not in the closure of trop(Pfk(n)), which implies it is not true that
v(M,K) ∈ trop(Pfk(n)) for all sufficiently big K.

Thus, Pfk(n) ̸= trop(Pfk(n)). □

Summing up, the cases where we do not know whether Pfk(n) = trop(Pfk(n))
are:

• k = 2 and n ≥ 8,
• k = 3 and n ∈ {9, 10, 11, 12, 13},
• k ≥ 4 and n = 2k + 3.

3.2.2. The k-associahedron as the fp-positive part of the tropical
Pfaffian variety. We are interested in the part of Pfk(n) contained in Grobk(n):

Definition 3.30. We define

Pf+k (n) := Pfk(n) ∩Grobk(n).

We call it the (k+1)-free part of the tropical Pfaffian variety of parameters n and k
for two reasons. On the one hand, the initial ideal corresponding to Grobk(n) is the
Stanley-Reisner ideal of the complex of (k + 1)-free sets. But, more significantly,
our results in this section say that Pf+k (n) coincides with the points of Grobk(n)
which, expressed in the w-coordinates, have (k + 1)-free support.

Theorem 3.31. Let v = d(w) ∈ Grobk(n) be a vector in the Gröbner cone.
This includes the case where w is non-negative (or, equivalently, v ∈ FPn). Then,

(1) v ∈ Pf+k (n) if and only if the support of w is (k + 1)-free.

(2) If the above holds, then for every subset U ⊂
(
[n]
2

)
of size 2k + 2 one of

the maximal matchings of U for v is the one producing a (k+1)-crossing,
and a second one is obtained from it by a swap of two consecutive edges
in the (k + 1)-crossing.

Proof. Let U = {a0, a1, . . . , a2k+1} written in cyclic order, and let E0 be the
(k+1)-crossing in it, that is, the matching that pairs ai with ak+1+i. As we already
know, the maximum weight given by v to matchings of U is attained at E0.

If the support of w is (k + 1)-free, there must be an l such that no edge
in the support of w has an end between sides al and al+1 and the other be-
tween al+k+1 and al+k+2. Then, let E1 = E0 \ {{al, al+k+1}, {al+1, al+k+2}} ∪
{{al, al+k+2}, {al+1, al+k+1}} has the same weight as E0, so that v ∈ Pf+k (n) and
part (2) holds.

Conversely, if the support of w contains a (k + 1)-crossing then there is a
U = {a0, a1, . . . , a2k+1} such that each ai lies in one of the 2k + 2 regions defined
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by that crossing, and then the matching E0 of U has weight strictly larger than
any other matching. In particular, v ̸∈ Pfk(n). □

We now want to show that Pf+k (n) is contained in trop(Pfk(n)). That is to say,
even if the tropical Pfaffian variety and prevariety may not coincide, their “(k+1)-
free parts” coincide. We need the following Lemma, the proof of which we postpone
to Section 3.2.3:

Lemma 3.32. Let v = d(w) ∈ Grobk(n) be sufficiently generic. Then, for every

subset U ∈
(

[n]
2k+2

)
we have that U has the same number of positive and negative

matchings of maximum weight with respect to v.

Corollary 3.33. Pf+k (n) ⊂ trop(Pfk(n)). Moreover, Pf+k (n) ⊂ trop+(Pfk(n)).

Let us point out that Pfk(n) and Pf+k (n) are independent of the field K, while
trop(Pfk(n)) and trop+(Pfk(n)) are (probably) not. The first statement is over
an arbitrary field. The second statement is stronger, but it makes sense only over
fields of characteristic zero.

Proof. Let v ∈ Pf+k (n). We want to show that v ∈ trop(Pfk(n)). In fact, it
is enough to show this under the assumption that v is sufficiently generic (within
Pf+k (n)), since trop(Pfk(n)) is closed. By Theorem 3.31, being generic in Pf+k (n) im-
plies that v = d(w) for a w with support equal to a k-triangulation. By Lemma 3.32
the latter implies that the initial form of every Pfaffian for the weight vector v
vanishes at the point (1, . . . , 1). Since Pfaffians are a Gröbner basis for v by Theo-
rem 3.13, we have that

(1, . . . , 1) ∈ V (inv(Ik(n))).

This clearly implies that inv(Ik(n)) contains no monomials (over an arbitrary field)
and that it does not contain polynomials with all coefficients real and of the same
sign (over fields of characteristic zero). □

Putting together Theorem 3.31 and Corollary 3.33 we conclude Theorem 3.4.

Remark 3.34. Since Pfaffians of degree two coincide with the 3-term Plücker
relations that generate the Grassmannian Gr2(n), we have that Pf1(n) = Gr2(n)
and that Pf1(n) equals the Dressian Dr2(n) (the tropical prevariety defined by
quadratic Plücker relations [83, Section 4.4]).

It was proven in [124] that Dr2(n) = trop(Gr2(n)) (equivalently, Pf1(n) =
trop(Pf1(n)), by showing that trop(Gr2(n)) also coincides with the space Treen of
tree metrics for trees with n leaves. The proof is reproduced in [83, Theorem 4.3.3]
and the idea of it is the following: The tropical hypersurface corresponding to the

Pfaffian of degree two (or the 3-term Plücker relation) of a certain U ⊂
(
[n]
4

)
equals

the solution set of:

vi,j + vk,l ≤ max{vi,k + vj,l, vi,l + vj,k}, ∀{i, j} ∈
(
U

2

)
.

These relations (taken for all U) are exactly the four-point conditions that charac-
terize tree metrics [14]. Hence, trop(Pf1(n)) ⊂ Pf1(n) = Treen. For the converse,
for any given (generic) v ∈ Treen = Pf1(n) there is a ternary tree T with nonnega-
tive weights w on its edges and realizing v as a tree metric. By relabelling its leaves,
we can assume that T is the dual tree of a certain triangulation of the n-gon. Hence,
v coincides (after relabelling, but this does not change trop(Pf1(n))) with the d(w)
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of Definition 3.8 for this choice of weights. Theorem 3.31 and Corollary 3.33 then
imply that v ∈ Pf+1 (n) ⊂ trop(Pf1(n)).

We do not have a concrete example showing that Pf2(n) ̸= trop(Pf2(n)) for
any n, nor Pfk(2k + 3) ̸= trop(Pfk(2k + 3)) for any k, but the above proof cannot
work for k ≥ 2 since not every cone in Pfk(n) can be sent to Pf+k (n) by a relabelling
of the vertices. This is illustrated in the following example.

Example 3.35. Let n = 6 and k = 2. Observe that Pf2(6) = trop(Pf2(6))
since it is a hypersurface.

Consider the v ∈ R(
[6]
2 ) defined by

v1,3 = v2,3 = v2,4 = v4,5 = v5,6 = v1,6 = 1,

and vi,j = 0 for every other i, j. This v lies in Pf2(6) since it gives maximum weight
to (exactly) two matchings, namely {13, 24, 56} and {23, 45, 16}.

Since the first matching is negative and the second one is positive, we have that
v ∈ trop+(Pf2(6)). Since the two matchings do not differ by a single swap, part (2)
of Theorem 3.31 implies that no relabelling sends v to Pf+2 (6).

The example also shows that trop+(Pfk(n)) is not contained in the Gröbner
cone of k + 1-crossings, but that is also easy to achieve with the following simpler
example: let v13 = 1 and every other vij = 0. For any k ≥ 2 and every n ≥ 6 this
gives a point in trop+(Pfk(n)) (in every maximum matching of size 3 we can swap
the two edges of weight zero to get a maximum matching of the opposite sign) that
is not in the Gröbner cone (in any U containing {1, 3} the matching using {1, 3}
has weight larger than the 3-crossing).

3.2.3. Proof of Lemma 3.32. In the following result we call an accordion

any sequence e1, . . . , em of edges from
(
[n]
2

)
such that: (a) For every i = 1, . . . , n−1,

ei and ei+1 share a vertex; (b) For every i = 2, . . . , n− 1, the endpoints of ei−1 and
ei+1 that are not in ei lie on opposite sides of the line containing ei.

The only property of k-triangulations that we need in what follows (apart from
the fact that they are (k + 1)-free) is:

Lemma 3.36. Let T be a k-triangulation of the n-gon, for some k. Then, every
two edges of T that do not cross are part of an accordion contained in T .

Proof. Let e = {a, b} and e′ = {a′, b′} be the two edges of T ; we assume
without loss of generality that 1 ≤ a ≤ a′ < b′ ≤ b ≤ n. We will use induction
on min{a′ − a, b − b′}, taking as base cases those with a = a′ or b = b′, which are
trivial. Hence, for the inductive step we suppose that e and e′ have no endpoints
in common.

If {a, b′} ∈ T , we are done, so we assume that {a, b′} /∈ T . Then there is a
k-crossing K in T that crosses that edge. That is, K ∪ {a, b′} is a (k + 1)-crossing
contained in T ∪ {a, b′}. Let e′′ be the edge next to {a, b′} in the positive direction
in this (k+1)-crossing. If e′′ crossed e (resp. e′), then every edge in K would cross
e (resp. e′), which would imply that T contains the (k+1)-crossing K ∪ {e} (resp.
K ∪{e′}). Thus, e′′ does not cross any of e or e′. Inductive hypothesis implies that
T contains an accordion from e to e′′ and an accordion from e′′ to e′, and the union
of these two accordions is an accordion from e to e′. □
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We now consider a subset U ∈
(

[n]
2k+2

)
(as a set of sides, not vertices, of the

n-gon) and v = d(w) ∈ Grobk(n) sufficiently generic. Genericity implies, by Theo-
rem 3.31, that the support of w is a certain k-triangulation T . For each edge e ∈ T
we call length of e with respect to U and denote it ℓU (e) the smallest size of the two
parts of U separated by e. If both parts are equal (that is, if ℓU (e) = k+1) we say
that e is a diameter of U .

For a matching M of U and an edge e of T we denote by cM (e) the number
of edges of M that cross e. Remember that, v being in the Gröbner cone, the
maximum weight among matchings of U is the weight of the (k + 1)-crossing.

Lemma 3.37. Let M be a matching of U . Then, M is of maximum weight with
respect to v if, and only if, for every e ∈ T we have that ℓU (e) = cM (e).

Proof. Observe that the equality ℓU (e) = cM (e) holds for the case when M
is the (k + 1)-crossing, and that, for arbitrary M , knowing which edges of T cross
each edge of M is enough to compute the weight of M . This shows the sufficiency
of ℓU (e) = cM (e).

Now suppose that ℓU (e) > cM (e) for some edge e ∈ T . Take a vector w′

obtained setting we to its minimum possible value while staying in Grobk(n). For
v′ = d(w′), the (k + 1)-crossing is still the maximum weight matching, so∑

e∈T
w′
ecM (e) ≤

∑
e∈T

w′
elU (e) ⇒

∑
e∈T

w′
e(lU (e)− cM (e)) ≥ 0

Our condition in w implies that we > w′
e, so∑

e∈T
we(lU (e)− cM (e)) > 0 ⇒

∑
e∈T

wecM (e) <
∑
e∈T

welU (e)

Hence, M is not of maximum weight. □

For the rest of this section, we collapse the n-gon to a (2k + 2)-gon by leaving
only the sides labelled by U ; that is, by contracting all edges e with ℓU (e) = 0. We
denote TU the subgraph of K2k+2 obtained from T after this collapse. We introduce
the following partial order among edges of TU (or, in fact, among edges of K2k+2):
e and f are incomparable if they either cross or are separated by a diameter of U ,
and if they are comparable then they are ordered according to their ℓU .

Observe that both ℓU (e) and cM (e) depend only on the class of e in TU . Thus,
Lemma 3.37 needs only to be checked in TU and not in T . (That is, only one
representative edge of T for each class in TU needs to be checked). But even more
is true. Let Tmax

U be the set of edges of TU that are maximal (within TU ) for this
order.

Lemma 3.38. Let M be a matching of U . If ℓU (e) = cM (e) holds for the edges
in Tmax

U then it holds for all edges in TU , hence in T .

Proof. Let e < e′ be two edges of TU and suppose that ℓU (e
′) = cM (e′).

Then, the edges of M that cross e′ match the ℓU (e
′) edges of the (2k + 2)-gon on

the shorter side of e′ to the same number of edges on the longer side (if e′ is a
diameter it does not matter which side we call “short”). By definition of e < e′,
the smaller side of e is contained in the smaller side of e′, so the same holds for e
and ℓU (e) = cM (e). □

This last lemma suggests we should look at properties of Tmax
U :
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Lemma 3.39. (1) Every two edges in Tmax
U either cross each other or

share a vertex.
(2) There is a vertex of the (2k + 2)-gon not used in Tmax

U .

Proof. For part (1) we use Lemma 3.36 and the observation that the passage
from T to TU preserves accordions. In particular, every two edges of TU that do
not cross are part of an accordion in TU . Only two of the edges of an accordion
contained in TU can be in Tmax

U , and they share a vertex; hence, every two edges
in Tmax

U that do not cross share a vertex.
This finishes the proof of part (1) and gives us two possibilities:

• If all the edges in Tmax
U mutually cross, then Tmax

U is a j-crossing for some
j < k + 1. Hence, at least one (in fact at least two) of the 2k + 2 vertices
of the (2k + 2)-gon are not used.

• If two edges e and e′ of Tmax
U share a vertex p, then none of them is a

diameter and, in fact, they are on opposite sides of the diameter using p.
Then the opposite vertex q of that diameter is not used in Tmax

U because
it is impossible for an edge with an end-point in q other than the diameter
itself to cross or share a vertex with both of e and e′.

In both cases we have a proof of part (2). □

Lemma 3.40. Let p be a vertex of the (2k+2)-gon not used in Tmax
U . Let a and

b be the elements of U next to p. Then, no maximal matching of U matches a to b.

Proof. To seek a contradiction, suppose that M is a maximal matching and
that {a, b} ∈ M . We claim that, for any other edge {c, d} ∈ M , no edge of Tmax

U

has a and b on one side and c and d on the other side. Suppose that there is such
an edge e. Then, by Lemmas 3.37 and 3.38, we have cM (e) = lU (e), and the swaps
{a, c}, {b, d} and {a, d}, {b, c} cross Tmax

U more often than the original pair of edges
{a, b}, {c, d}; that is, more often than the single edge {c, d} (since {a, b} does not
cross Tmax

U ). This implies that, after swapping, we have cM (e) > lU (e), which is
not possible. This proves the claim.

Now, since all edges of Tmax
U have a and b on the same side, we conclude that

this side must contain one of c or d for every {c, d} ∈ M other than {a, b}. In
particular, for every e ∈ Tmax

U the side of e containing a and b has length at least
k+2 (it contains a, b and one vertex of each of the other k edges in M). This gives
the following contradiction: Let p′ be one of the vertices of the (2k+2)-gon next to
p. The edge {p, p′} is in TU , since every boundary edge of the 2k+2-gon is. Hence,
there must be an edge in TU that is greater than {p, p′} in the partial order, and
that edge can have length at most k + 1 on the side containing a and b. □

We are now ready to prove Lemma 3.32:

Proof of Lemma 3.32. Let p be a vertex of the (2k + 2)-gon not used in
Tmax
U , which exists by Lemma 3.39. Let a and b be the first elements of U on both

directions starting at p.
Let us denote by M the set of matchings of U not using the edge {a, b}. This

contains all matchings of maximum weight by Lemma 3.40. Consider the map
ϕ : M → M that takes each matching M ∈ M and swaps in it the edges that
contain a and b in the way that does not produce the pair {a, b}. This map is
well-defined since there are three possible matchings among four vertices and we
are excluding one of them. We have that:
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• The map ϕ is obviously an involution.
• The map ϕ sends matchings of maximum weight to matchings of maximum

weight by Lemmas 3.37 and 3.38, since every edge of Tmax
U leaves a and b

on the same side.
• If a′ and b′ are the elements of U matched to a and b in a certain matching
M then the matching of of a, b, a′, b′ that has a crossing is involved in the
swap from M to ϕ(M) (because the matching that is not involved in the
swap is {a, b}, {a′, b′}, which does not have a crossing). Hence, M and
ϕ(M) have opposite parity, by Lemma 1.10.

Putting these facts together we conclude that ϕ restricts to a bijection between
the odd and the even matchings of U of maximum weight. □

3.3. Recovering the g-vector fan for k = 1.

In this section we look at the case k = 1 and show how to project Pf+1 (n) isomor-
phically to the associahedron ∆1(n). In doing so we recover the so-called g-vector
fan of the associahedron defined in the context of cluster algebras. Throughout the

section let T ⊂
(
[n]
2

)
be an arbitrary triangulation of the n-gon, that we call the

seed triangulation. Then:

Lemma 3.41. For every (vi,j)i,j ∈ Pf+1 (n), knowing the entries of v correspond-

ing to T we can recover all other entries. That is, the projection π : Pf+1 (n) → RT ∼=
R2n−3 that restricts each vector (vi,j)i,j to the entries with {i, j} ∈ T is injective.

Proof. Let v ∈ Pf+1 (n) and let us see that we can recover the entry vi,j for

any {i, j} ∈
(
[n]
2

)
, knowing the entries of v corresponding to edges of T .

The proof is by induction on the number of triangles of T crossed by {i, j}.
If only two triangles are crossed, then {i, j} is the only unknown entry from the
quadruple U = {i, j, k, l} consisting of those two triangles, and the edges {i, j} and
{k, l} cross. Since d ∈ Pf+1 (n), we have that the maximum weight among the three
matchings in U is attained by {ij, kl} and at least one of the other two matchings,
so we can write:

vi,j = max{vi,k + vj,l, vi,l + vj,k} − vk,l.

If {i, j} crosses more than two triangles, let {k, i, l} be the triangle incident to i
and crossed by {i, j}. By inductive hypothesis, all the entries among the 4-tuple
{i, j, k, l} are known except for the entry {i, j}, so we can recover vi,j with the same
formula as above. □

That is, π embeds Pf+1 (n) as a full-dimensional fan π(Pf+1 (n)) ⊂ RT ∼= R2n−3.
If we now compose it with a second projection

ϕ : RT → RT ∼= Rn−3

that sends the irrelevant face of π(Pf+1 (n)) to zero we will automatically have that
ϕ(π(Pf+1 (n))) is a fan isomorphic to the link of the irrelevant face in π(Pf+1 (n)),
that is, isomorphic to ∆1(n), the normal fan of the associahedron. Here, T denotes
the relevant part (the n− 3 diagonals) of T .

Corollary 3.42. The projection

ϕ ◦ π : Pf+1 (n) → RT ∼= Rn−3

gives a realization of the associahedron ∆1(n) as a complete fan. □
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Proof. This projection is conewise linear (linear in each cone). After normal-
izing, it becomes a continuous map from the (n − 4)-dimensional sphere ∆1(n) to
the unit sphere in Rn−3 and, by Lemma 3.41, it is injective. Since every injec-
tive continuous map from a sphere to itself is a homeomorphism, ϕ(π(Pf+1 (n))) is
complete. □

Remark 3.43. Lemma 3.41 and its Corollary 3.42 do not hold for k ≥ 2. In
fact, suppose we take T to be any k-triangulation containing all the edges of the
form (1, i) and (2, i), which exists since k ≥ 2. Consider now the cone corresponding
to a k-triangulation T ′ that does not use a certain edge (1, i). In this cone we have
w1,i = 0 and hence

v1,i + v2,i+1 = v1,i+1 + v2,i.

Thus, the projection π is not injective; it collapses the cone of T ′ to lower dimension.

We now want to give a more explicit description of the fan in 3.42; that is,

explicit coordinates in Rn−3 for the ray corresponding to each edge {i, j} ∈
(
[n]
2

)
.

For this, remember that T is embedded as a true triangulation using the vertices

of our n-gon, while the edges {a, b} ∈
(
[n]
2

)
corresponding to coordinates in our

ambient space correspond to pairs of sides. For any given edge δ we define the
following crossing sign of {a, b} with respect to δ and the g-vector of {a, b} with
respect to T as follows:

Definition 3.44 (See [66, Proposition 33] or [67, Definition 1.1]). Let δ be an

edge in T and {a, b} ∈
(
[n]
2

)
. Let q(δ) be the quadrilateral in T consisting of δ and

its two adjacent triangles. We define the crossing sign of {i, j} with respect to δ in
T

ε(δ ∈ T, {a, b}) :=


+1 if {a, b} crosses q(δ) as a Z (“zig”)

−1 if {a, b} crosses q(δ) as a Z(“zag”)

0 otherwise

We define the g-vector of {a, b} with respect to T as

g(T, {a, b}) := (ε(δ ∈ T, {a, b}))δ∈T
Remark 3.45. g(T, {a, b}) has the following interpretation: The edges of T

crossed by {i, j} form an accordion in the sense of Section 3.2.3. The signs in
the vector g(T, {a, b}) record at which edges the accordion turns left or right. In
particular, the g-vector is zero for edges of T that are not in the accordion, but
also for those in which the accordion ‘does not turn’.

This definition of g-vectors, which we have taken from Hohlweg, Pilaud and
Stella [66], is a specialization to the disc of the shear coordinates described for
arbitrary surfaces by Fomin and Thurston in [52]. They consider the g-vector fan
obtained considering as cones all the possible clusters (which, in type A are the
triangulations) and taking as generators the g-vectors for a fixed but arbitrary seed
triangulation T . The main result of [66] is that these fans are polytopal. It turns
out that these fans are linearly isomorphic to the ones of Corollary 3.42:

Theorem 3.46. In the basis of Rn−3 consisting of the rays corresponding to

the edges of T we have that for every {a, b} ∈
(
[n]
2

)
, the vector g(T, {a, b}) spans

the ray of im(ϕ ◦ π) corresponding to {a, b}.
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Proof. For each (i, j) ∈
(
[n]
2

)
let Wi,j be the generator of FPn corrresponding

to a certain {i, j}. That is,Wi,j = d(w) for the vector w with wi,j = 1 and wi′,j′ = 0
if {i′, j′} ≠ {i, j}. We think of Wi,j as the standard basis vector in the coordinates
wi,j , and let Vi,j be the standard basis vector in the coordinates vi,j that we have

been using so far. The Wi,j are also the generators for the fan structure in Pf+k (n),

so that ϕ ◦ π(Wi,j) is the corresponding generator of ϕ ◦ π(Pf+1 (n)).
The relations in Definition 3.8, which express the coordinates v in terms of the

coordinates w, get transposed to the following relations among the vectorsWi,j and
Va,b:

Wi,j =
∑

{a,b}∈([n]
2 )

i<b≤j<a≤i

Va,b.(18)

Observe that the projections π and ϕ are defined by their images at the vectors
V and W , respectively. π sends Vi,j to zero if {i, j} ̸∈ T , and ϕ sends π(Wi,i+1)

to zero for every i. For simplicity, for each vector V ∈ R(
[n]
2 ) we will denote by

V := ϕ(π(V )) ∈ Rn−3, and the same for W .
Let {i, j} be an edge of T . We then have

W i,j +W i+1,j+1 =W i,i+1 +W j,j+1 = 0,

where the first equality comes from Equations (18) taking into account that the
only edges of T crossing {i, j} or {i+ 1, j + 1} are those with an end-point in i or
j, and each of them crosses {i, j} and {i+1, j +1} the same number of times as it
crosses {i, i+1} or {j, j+1}. (Namely, they all cross once except for the edge {i, j}
which crosses twice). The second equality comes from the fact that ϕ(π(Wi,i+1) = 0
for every i. Thus we have

W i,j = −W i+1,j+1

for each edge {i, j} of T .
Now, let a and b be two sides of the n-gon and consider the accordion in T

between a and b. Let {i1, j1}, . . . , {iℓ, jℓ} be the edges of T at which the accordion
has an “inflection point” (it changes from turning left to turning right, or viceversa,
that is, {a, b} crosses {im, jm} as a Z or a Zalternatively). The statement we want
to prove is that

W a,b =
∑
δ∈T

ε(δ ∈ T, {a, b})W δ =
∑
m

ε({im, jm} ∈ T, {a, b})W im,jm(19)

Note that −W im,jm equals W im+1,jm+1, so we are taking the sum of the edges in
the zigzag turned in the direction of the path. Indeed, the sum in the right-hand
side includes three times the edges {im, jm}, twice the rest of edges in the accordion
and once the rest of edges with an end-point in vertices where an {im, jm} meets
the next one. Subtracting the irrelevant W ’s for these vertices, we get exactly once
the edges separating a and b, and only them. □

Corollary 3.47. Let T be any triangulation of the n-gon. The associahedral
fan im(ϕ ◦ π) in Rn−3 of Corollary 3.42 equals the g-vector fan of T . Hence, it is
polytopal.

Remark 3.48. From the perspective of cluster algebras, associahedra are the
type A case of the generalized associahedra that Fomin and Zelevinsky defined as
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simplicial spheres and F. Chapoton, S. Fomin and A. Zelevinsky [22] constructed
as polytopes, using the so-called d-vector fans for certain seed clusters. In type A,
this construction was generalized by Santos [20, Section 5] to obtain Catalan-many
associahedra by showing that any triangulation works as seed triangulation in the
d-vector construction.

The construction of generalized associahedra via g-vectors instead of d-vectors
was first achieved in various special cases by, among others, Hohlweg-Lange-Thomas [65],
Pilaud-Stump [108] and Stella [127], before the general case was settled by Hohlweg,
Pilaud and Stella in [66].

The associahedral fans obtained by Santos via d-vector fans and by Hohlweg-
Pilaud-Stella via g-vector fans from a seed triangulation T have certain similarities:

(1) For each of the n − 3 edges {i, j} ∈ T , the ray corresponding to {i, j} is
opposite to another ray. That is, the corresponding facets in the associa-
hedron are parallel.

(2) Every other ray can be expressed as a {+1, 0,−1} combination in the basis
given by those n− 3 rays.

However, they are not the same. In the g-vector fan the ray opposite to an
edge {i, j} of T is {i+ 1, j + 1} while in the d construction it is the edge inserted
in T by the flip of {i, j}.

One could think that there is a variant of g-vectors for k > 1. For example,
for k = 2 it is known that multitriangulations are complexes of 5-sided stars [106],
and a g-vector can be defined assigning different values for ε({i, j} ∈ T, {a, b})
depending on the position of {a, b} with respect to the two stars incident to {i, j}.
A priori, the problem would be how to define these ε({i, j} ∈ T, {a, b}) so that
they work. If the two edges cross, there are 4 possible positions for a and the same
number for b, giving 16 different positions, and the idea would be to use different
coefficients as ε depending on which of the 16 possibilities (or 10, if we mod out
symmetry) we are in.

However, this idea can not work for n big enough.

Theorem 3.49. For a k-triangulation T , with k > 1, if there is an edge whose
two endpoints are not vertices in the same pair of adjacent stars of T , it is impossible
to realize the k-associahedron as a g-vector fan with seed T , independently of the
values chosen for ε.

Proof. Let {a, b} be the edge. We will show that g(a, b) + g(a + 1, b + 1) =
g(a, b+1)+ g(a+1, b). Then, we can choose a k-triangulation that contains these
edges (for k > 1 it will exist), and its cone will not have full dimension.

This equality can be checked one coordinate at a time. For an edge {i, j} ∈ T ,
either a is not in the two stars delimited by {i, j} or b is not. In the first case,
ε({i, j} ∈ T, {a, c}) = ε({i, j} ∈ T, {a + 1, c}) for any c, concretely for c = b and
c = b+ 1, and the equality holds for this component. The same happens if b is not
in the two stars. □

Corollary 3.50. It is impossible to realize the k-associahedron as a g-vector
fan, independently of the values chosen for ε, for k > 1 and n big enough.

Proof. Suppose it is possible. Then all edges must be contained in a pair of
adjacent stars. There are as many pairs of adjacent stars as relevant edges in T ,
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that is, k(n− 2k− 1). Each pair contains at most 4k vertices that form
(
4k
2

)
edges,

so we get (
n

2

)
≤ k(n− 2k − 1)

(
4k

2

)
which is false for n big enough. □





CHAPTER 4

A bipartite formalism

The topic of this chapter is to study a bipartized version of multitriangulations
which can be studied using these same tools as the previous chapters, and reproduce
for them most of those results. The main advantage is that the “dimension” of the
involved rigidity is halved from the previous study.

For bipartite graphs, the vertex set will be denoted as [n1]∪ [n′2], where [n1] =
{1, 2, . . . , n1} are the vertices at one side of the graph and [n′2] = {1′, 2′, . . . , n′

2}
the vertices at the other side. The edge set can be identified now with a subset of
[n1]× [n2], so the pair (i, j) corresponds to the edge between i and j′.

Definition 4.1. Let G = ([n], E) be a simple graph on the vertex set [n]. The
bipartization of G is the bipartite graph with vertex set [n] ∪ [n′] and edge set

{(i, n+ 1− j) : {i, j} ∈ E, i < j}.

That is to say: each vertex i of G is split into two vertices i and (n + 1 − i)′,
the first incident to the edges that (in G) go from i to higher labels and the second
to the lower labels. As an example, in Figure 1 we show a 2-triangulation of the
7-gon and its bipartization.

•1=7’

•
2=6’

•
3=5’ •

4=4’

•
5=3’

•
6=2’

•7=1’

→

•1
•2
•3
•4
•5
•6
•7

•1’
•2’
•3’
•4’
•5’
•6’
•7’

→

•1

•2

•3

•4

•1’

•2’

•3’

•4’

Figure 1. A 2-triangulation (left), its bipartization (center) and
the reduced version of the latter (right).

The readers are encouraged to convince themselves that the bipartization of a
triangulation of the n-gon is a tree on the vertices [n− 1]∪ [(n− 1)′], together with
the two isolated vertices n and n′. The trees obtained can easily be related to the
non-crossing alternating trees on n− 2 vertices, known to be in bijection with tri-
angulations (see, e.g., [115]). Observe that trees are the bases of the 1-dimensional
rigidity matroid, which hints at the main topic of this chapter: relating bipartized
k-triangulations with rigidity in dimension k, as opposed to the dimension 2k from
the original setting.

The bipartization of a k-triangulation is a bipartite graph with 2n vertices in
which the vertices n − i and (n − i)′ have degree i, for i ≤ k. Since vertices of

79
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degree ≤ k are irrelevant in k-dimensional rigidity, we can delete them and obtain
the reduced bipartization of a k-triangulation. As an example, Figure 1 (right) shows
the reduced bipartization of the 2-triangulation in the left. In general, the reduced
bipartization of a k-triangulation is a graph on the vertex set [n − k] ∪ [(n − k)′]
and with

2kn−
(
2k

2

)
− k(k + 1) = 2kn− 3k2 − 2k = k(2n− 2k − 2)− k2

edges. This number coincides with the rank of the bipartite (k, k)-rigidity introud-
ced in [75], which is nothing but k-hyperconnectivity restricted to bipartite graphs.
We call it bipartite k-hyperconnectivity. Further exploiting this connection, in this
chapter we prove that:

Theorem 4.2. Reduced bipartizations of k-triangulations are bases in the generic
bipartite k-hyperconnectivity matroid, hence independent in the generic k-rigidity
matroid.

We also prove the following result relating 2k-dimensional rigidity of a graph
and k-dimensional rigidity of its bipartization. Observe that this result makes
Corollary 3.22 a corollary of Theorem 4.2.

Theorem 4.3. Let E ⊂
(
[n]
2

)
. If the bipartization of E is independent in the

generic hyperconnectivity matroid in dimension k, then E is free in the generic
hyperconnectivity matroid in dimension 2k.

However, the converse is not true: K2k+2\{1, 2} is a basis in 2k-hyperconnectivity,
while its reduced bipartization isKk+1,k+1, which is a circuit in bipartite k-hyperconnectivity.

We then undertake the study of ∆k(2k + 3) in the context of bipartite rigid-
ity. For the usual rigidity the key to understanding which positions make all k-
triangulations bases was the so-called Morgan-Scott obstruction, related to 6-tuples
of points being in Desargues position or not. Here we have a similar obstruction.
The base case is k = 3 and n = 9. Observe that hyperconnectivity is projectively
invariant, so it makes sense to speak of the cross-ratio of four linear hyperplanes
with a common codimension-two intersection.

Theorem 4.4. The graph K9−{16, 37, 49} is a 3-triangulation of the 9-gon, but
its reduced bipartization is dependent in the bipartite rigidity matroid if and only if
the cross-ratio between the hyperplanes (12, 23; 24, 25) equals (2′4′, 2′3′; 1′2′, 2′5′).
This occurs, for example, if we take points along the moment curve with t =
(1, 3, 4, 5, 7; 1, 3, 4, 5, 7).

In order to have some control over the signs of the dependence, we will use
cyclic positions for the vectors, which include the positions in the moment curve
as a particular case. The reason for this choice is that every cyclic position realizes
the case 2k + 2.

Definition 4.5. A vector configuration p ⊂ Rk is in cyclic position if its
oriented matroid is the same than that of the cyclic polytope, that is, if a linear
dependence between any k + 1 of them has alternating signs.

Theorem 4.6. For n = 2k + 2, every configuration in cyclic position realizes
∆k(2k + 2) as a polytopal fan.

Now, we can state exactly when ∆k(2k+3) is realized with this kind of positions:
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Theorem 4.7. Let p be a configuration in cyclic position in Rk. The following
are equivalent:

(1) Hk(p) realizes ∆k(2k + 3) as a complete fan.
(2) For every k-triangulation T such that the three edges not in T do not share

a vertex, those three edges are correctly located (see Definition 4.48).

This leads to the following bipartite analog of Theorem 2.7. Observe that it is
a bit stronger, since for k ≥ 4 it applies to every n ≥ 2k + 4 instead of n ≥ 2k + 6.

Theorem 4.8. If k = 3 and n ≥ 12, or k ≥ 4 and n ≥ 2k+4, then no choice of
points t ∈ R2(n−k−1) in the moment curve makes the bar-and-joint rigidity matrix
Pk(t) realize the k-associahedron ∆k(n) as a fan.

We think that, in cyclic positions outside the moment curve, this obstruction
can be overcome.

4.1. Bipartite hyperconnectivity

4.1.1. Definition. For n1, n2, d ∈ N, let p = (p1, . . . , pn1
; p′1, . . . , p

′
n2
) be a

configuration1 of n1+n2 points in Rd. Their bipartite hyperconnectivity matrix (or,
less precisely, bipartite rigidity matrix ) is the following n1n2 × (n1 + n2)d matrix:

(20) H(p) :=



p′1 0 . . . 0 p1 0 . . . 0
p′2 0 . . . 0 0 p1 . . . 0
...

...
...

...
...

...
p′n2

0 . . . 0 0 0 . . . p1
0 p′1 . . . 0 p2 0 . . . 0
...

...
...

...
...

...
0 0 . . . p′n2

0 0 . . . pn1


In this matrix, there is a row for each pair (i, j), for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

This means that we can identify the rows with edges of the complete bipartite graph
Kn1,n2 . Given a realization of a bipartite graph ([n1] ∪ [n′2], E,p), we call HE(p)
the submatrix of H(p) with the rows corresponding to E.

Definition 4.9. We call bipartite hyperconnectivity matroid (or bipartite rigid-
ity matroid), and denote by H(p), the linear matroid of the rows of this matrix. In
particular, we say that a subset E ⊂ [n1] × [n2] of edges of Kn1,n2 is independent
or that it is spanning if it is so in this matroid. That is, E is independent if HE(p)
has rank |E|, and spanning if it has rank equal to the rank of H(p).

Independent and spanning sets of edges are also called self-stress-free and rigid,
respectively.

The terminology used above coincides with the usual of rigidity theory. In fact,
our setting is coincides with Kalai’s d-hyperconnectivity [74, Sect. 6] restricted
to bipartite graphs, and with Kalai et al’s bipartite rigidity [75, Definition 3.2],
restricted to the case where both parts are embedded in the same dimension (k = l,
in the notation of [75]).

Note also that, for a fixed E, the matrixHE(p) will attain its maximum possible
rank for generic p. So we can define the generic bipartite hyperconnectivity matroid

1By a configuration we mean an ordered and labeled set of points or vectors. For this reason
we use vector notation for p rather than set notation.
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as the matroid obtained taking as p any generic matrix in R(n1+n2)×d, and call it
Hd(n1, n2). (However, the oriented matroid will depend on the concrete choice of
p, even in the generic case.)

4.1.2. Properties. In [28] we prove that, for bipartite graphs, hyperconnec-
tivity is a special case of bar-and-joint rigidity, more concretely:

Theorem 4.10 ([28, Theorem 4.4]). Let G = ([n1]∪ [n′2], E,p) be a realization
of a bipartite graph, with p ⊂ Rd−1. Then, the following two d-dimensional rigidity
matroids coincide:

(1) the bar-and-joint matroid of the points {(pi, 0) : i ∈ [n1]} ∪ {(p′j , 1) : j ∈
[n2]}.

(2) the hyperconnectivity matroid of the points {(pi, 1) : i ∈ [n1] ∪ [n′2]}.

Note that, for a generic p, the first matroid mentioned is less free than generic
bar-and-joint rigidity in dimension d but more free than the same matroid for
dimension d− 1 (because it is a projection to the first d− 1 coordinates). On the
other hand, due to the scaling invariance of hyperconnectivity (Proposition 4.17),
the second matroid coincides with bipartite d-rigidity. This implies

Corollary 4.11. Generic bipartite d-rigidity is more free than bar-and-joint
rigidity in dimension d− 1 and less free than the same matroid in dimension d.

Our next property relates linear dependences in the bipartite rigidity matrix
to linear dependences between the vectors.

Lemma 4.12. Given a framework ([n1] ∪ [n2], E,p), the tensor product of two
linear dependences between the points in p gives a dependence in Hd(p).

Proof. Let (ci)i∈[n1] ∪ (c′j)j∈[n2] be the dependence. Then, for i ∈ [n1],∑
j∈[n2]

cic
′
jpj = ci

∑
j ̸=i

c′jpj = 0

and the same holds for j ∈ [n2]. □

Corollary 4.13. The Kd+1,d+1 graph on the nodes p1, p2, . . ., pd+1 and p
′
1, p

′
2, . . .,

p′d+1 is a circuit in the hyperconnectivity matrix, with the coefficients given as the
tensor product of the two linear dependences in the pi and the p′i.

With this, we can compute the rank of the bipartite rigidity matroid:

Theorem 4.14 ([74, Theorem 6.1], [28, Lemma 4.7]). Let G = Kn1,n2 be
a complete bipartite graph. Assuming that the positions chosen for each part of
vertices are in general position, the rank of G in the d-hyperconnectivity matroid
equals:

(1) n1n2 (that is, G is independent) if min{n1, n2} ≤ d.
(2) dn− d2 if min{n1, n2} ≥ d, where n = n1 + n2 is the number of vertices.

Proof. For part (1), the edges of a vertex of degree d or less are independent
of the rest, in an arbitrary graph. This is a common property of all abstract rigidity
matroids.

For part (2), as the matrix has n1n2 rows, we just have to find (n1−d)(n2−d)
dependences among them; that is, vectors orthogonal to every column. We consider
columns as living in Rn1⊗Rn2 and observe that every tensor product l⊗m of a linear
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dependence l among the points on one side and a linear dependence m among the
points on the other side is such an orthogonal vector. That is, we have the tensor
product of two linear spaces of dimensions n1 − d and n2 − d, which indeed has
dimension (n1 − d)(n2 − d). □

Remark 4.15. It is also easy to find d2 linear dependences among the nd
columns. Let A = {x1, x2, . . . , xn1

} ⊂ Rd, B = {y1, y2, . . . , yn2
} ⊂ Rd be the

positions for our vertices. For each pair (l, l′) ∈ [d]2, let U ∈ Rdn be the vector with
coordinates

uil = xil′ , i ∈ [n1]

u′jl′ = −yjl, j ∈ [n2],

where the uil are the coefficients for the first half of the columns and u′jl for the

second half. The coefficients uih or u′jh′ with h ̸= l or h′ ̸= l′ are zero. Then, U is
the vector of coefficients in the sought dependence.

Remark 4.16. The rank computed in Theorem 4.14 is strictly less than the
rank of an abstract rigidity matroid. This means that there are no bipartite bases
of the hyperconnectivity matroid, unlike both bar-and-joint and cofactor matroids,
in which Kd+1,(d+1

2 ) is a basis.

The next result is a bipartite version of the linear invariance of hyperconnec-
tivity ([28, Lemma 2.1]):

Proposition 4.17. Let n1, n2 ∈ N and p = (p1, . . . , pn1 , p
′
1, . . . , p

′
n2
) be a vector

configuration in Rd. Then,

(1) The column-space of H(p), hence the oriented matroid of its rows, that is,
the bipartite hyperconnectivity matroid, is invariant under a linear trans-
formation of the points (p1, . . . , pn1

) in one side of the graph.
(2) The matroid Hd(p) is also invariant under rescaling (that is, multiplica-

tion by non-zero scalars) of the vectors pi. If the scalars are all positive
then the same holds for the oriented matroid.

Proof. Both transformations consist in making linear operations in the ma-
trix: for the first, multiplying at the right by(

I 0
0 M

)
where I is the identity matrix with size n1d and M is a block-diagonal matrix
with n2 blocks, all equal to the matrix of the linear transformation. As we are
multiplying at the right, this does not change the column-space.

For the second, as already noted in [28, Lemma 2.1], if pi is rescaled to αipi,
the effect in the matrix is multiplying the rows for the edges in the vertex i by αi
and then dividing the columns for the vertex i by the same scalar. If the scalars
are positive, it does not affect the oriented matroid. □

We also need a bipartite version of the operation called coning. In this opera-
tion, a new vertex is added to the graph and connected to all the rest, but obviously
we cannot do this with a bipartite graph. However, there is an equivalent operation
with similar properties.
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Definition 4.18. Given a graph G = ([n1] ∪ [n2]
′, E), the bipartite coning of

G is the graph with vertex set [n1 + 1] ∪ [n2 + 1]′ where the two new vertices are
joined to all the previous ones in the opposite side.

It is proved in [75, Lemma 3.12] that the bipartite coning of G is independent
in the generic hyperconnectivity matroid in dimension d + 1 if and only if G is
independent in dimension d. Our next result is more precise in two aspects: we
deal with arbitrary, not necessarily generic, positions, and we include information
about the oriented matroid, not just the matroid. In fact, it is a bipartite version
of Proposition 2.26.

Theorem 4.19 (Coning). For any vector configuration V , the contraction of
the oriented matroid for Kn1+1,n2+1 in dimension d + 1 by the edges in vertices
n1 + 1, (n2 + 1)′ gives the oriented matroid for Kn1,n2

in dimension d, where the
vector configuration is contracted by the vectors for a and b.

Proof. Let G′ be the bipartite coning of G. Let us represent the two vertex
additions in the rigidity matrix as follows: Start with the (d + 1, d + 1)-rigidity
matrix and make a linear transformation to send the new vertex b to (1, 0, . . . , 0),
that we will suppose to be in the right side. Now delete a block of columns in that
side, which is redundant for the matroid because of the linear dependences in the
columns, so that the rows for the edges in b have only a nonzero entry. Thus, we
can delete those rows and the associated columns, which are the first columns in all
the blocks in the left side. The resulting matrix is the (d+ 1, d)-rigidity matrix for
G′ \ b and the configuration where the right vectors have lost the first coordinate,
that is, they have been contracted by b. Repeating this transformation with the
other side, we obtain the result. □

4.1.3. Points along the moment curve and other cyclic positions. We
are particularly interested in the bipartite rigidity with points in cyclic position
(see Definition 4.5). A particular case of it is the bipartite polynomial rigidity, as
in [28]: using (20) as a matrix but taking points along the moment curve. That

is, pi = (1, ti, . . . , t
d−1
i ) and p′j = (1, t′j , . . . , (t

′
j)
d−1), where ti, for i ∈ [n1], and t

′
j ,

for j ∈ [n2], are real parameters. It is easy to see that changing the order of the
points in p does not alter the matroid, not even the oriented one (it just permutes
the elements in the ground set), so we can suppose without loss of generality that
t1 < . . . < tn1

and t′1 < . . . < t′n2
.

By the main result in [28], when points are chosen along the moment curve the
bar-and-joint and hyperconnectivity rigidities coincide. In particular, we have that
the rank stated in Theorem 4.14 is the rank of bar-and-joint rigidity of a complete
graph with generic points along the moment curve. In fact, it is asked in [28,
Question 4.6] whether Pd and Hd coincide; that is, whether for hyperconnectivity
the moment curve is generic enough.

We want to see what happens with the oriented matroid of bipartite rigidity, in
cyclic position, in the coning procedure depending on the position where the new
point is inserted (not necessarily the last).

Corollary 4.20. Let C be a bipartite circuit in Hd(n1, n2). The bipartite
coning of C where the vertices i0 and j′0 are added is a circuit in Hd+1(n1+1, n2+1).
If the initial graph is embedded in cyclic position, the final circuit has the same signs
as if being in cyclic position, but multiplying the sign of an edge (i, j) by that of
(i− i0)(j − j0).
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Proof. This is a particular case of Theorem 4.19. Starting with a cyclic
embedding of Kn1+1,n2+1, we contract the left vertices by pi0 and the right vertices
by p′j0 . The result at each side is not a cyclic embedding, but it becomes cyclic
when we change sign the vectors with i < i0 and j < j0: the alternating sequences
of signs are again alternating after losing one element and reversing the sign of the
elements before it. This sign change multiplies the sign of an edge in the circuit by
that of (i− i0)(j − j0). □

The following result is about the number of sign changes in the sequence of
coefficients for the edges in a given vertex.

Lemma 4.21. Let λ ∈ Rn1n2 be a linear dependence in the bipartite rigidity
matroid in cyclic position and i a left vertex (resp. j′ a right vertex). The sequence
{λij}1≤j≤n2

(resp. {λij}1≤i≤n1
) of signs of the edges in i (resp. j′) change at least

d times.

Proof. As the points are in cyclic position, the linear circuits between the
points are alternating sequences with d+ 1 points. The circuits in the matroid are
a product of linear circuits between the points, hence the signs of the edges in a
vertex have d changes. Finally, every dependence is a composition of circuits, hence
it has at least the same number of changes. □

Corollary 4.22. In that setting, the signs of the edges in a vertex of degree
d+ 1 alternate. Moreover, for the circuit Kd+1,d+1, we have sign(λij) = (−1)i+j.

4.1.4. The graph of the 3-cube. Our next result is a bipartite analogue of
the Morgan-Scott obstruction [87] and its signed version from Section 2.3.2, but
using hyperconnectivity instead of cofactor rigidity and the cube instead of the
octahedron. Consider the bipartite graph obtained removing the perfect match-
ing 11′, 22′, 33′, 44′ from K4,4 in the vertices {1, 2, 3, 4} and {1′, 2′, 3′, 4′}, that we
suppose embedded in that order along an affine line in R2. This is the graph of
the cube and it is a basis in the bipartite hyperconnectivity matroid H2(4, 4): it
has one edge less than needed to be a basis in the hyperconnectivity matroid, but
none of the four diagonals of the cube can be added keeping independence, only
the diagonals of the faces, which would make the graph not bipartite.2

If we add the diagonal 11′ to the cube, we get a circuit in H2. In this circuit,
all the signs are fixed except for that of 11′.

Theorem 4.23. Let G = K4,4 \{22′, 33′, 44′}. In the hyperconnectivity matroid
H2 (for positions in linear general position), the coefficient of the edge 11′ in the
circuit has the same sign (respectively, opposite sign) as that of 12′ if and only if
the cross-ratio (1, 2; 3, 4) is less than (respectively greater than) the cross-ratio of
(1′, 2′; 3′, 4′). In particular, the coefficient of 11′ vanishes if and only if the two
cross-ratios coincide.

Proof. Let the position of the vertex i be xi and that of i′ be yi.
To compute the circuit, we will cancel the edge 22′ between the circuits in

the graphs {1, 2, 3} × {1′, 2′, 4′} and {1, 2, 4} × {1′, 2′, 3′}. Each one is a K3,3 in
which we know how to compute the signs: they are the tensor product of the two

2This is a difference with bar-and-joint rigidity, in which a cube plus any edge is a basis in
the generic 2-dimensional rigidity matroid.
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dependences. In this case, the dependences themselves have an easy expression: in
{1, 2, 3}, for example, the coefficients are the distances 23, 31 and 12, respectively.

Applying this to the first graph, the coefficient of 11′ is (x3 − x2)(y4 − y2), and
that of 22′ is (x1 − x3)(y1 − y4). Normalizing the coefficient of 22′ to 1, that of 11′

becomes
(x3 − x2)(y4 − y2)

(x1 − x3)(y1 − y4)
=

(x3 − x2)(y4 − y2)

(x3 − x1)(y4 − y1)

Doing the same in the second graph, we get analogously

(x4 − x2)(y3 − y2)

(x4 − x1)(y3 − y1)

The difference between the two dependences gives the circuit we want, because
the coefficients of 22′ are now the same. The sign of 31′ is the same as in the first
dependence (because this edge is not in the second one), and if we normalized 22′

to 1, 31′ will also be positive. So here we must have 21′ negative and 12′ positive.
Respect to 11′, we get

(x3 − x2)(y4 − y2)

(x3 − x1)(y4 − y1)
− (x4 − x2)(y3 − y2)

(x4 − x1)(y3 − y1)

=
(x3 − x2)(y3 − y2)

(x3 − x1)(y3 − y1)

(
(y3 − y1)(y4 − y2)

(y4 − y1)(y3 − y2)
− (x3 − x1)(x4 − x2)

(x4 − x1)(x3 − x2)

)
=

(x3 − x2)(y3 − y2)

(x3 − x1)(y3 − y1)
((1′, 2′; 3′, 4′)− (1, 2; 3, 4))

as we wanted. □

Note that the cross-ratio is the only projective invariant between four points in
a projective line. Hence:

Corollary 4.24. G = K4,4 \ {11′, 22′, 33′, 44′} (that is, the graph of a 3-
cube) is a circuit in H2 if, and only if, the two sets of four points are projectively
equivalent.

This, in turn, has Theorem 4.4 as a consequence:

Proof of Theorem 4.4. Let G′ be the bipartization of K9−{16, 37, 49}. G′

coincides with the bipartite coning of G in the vertices 2 and 2′. Hence, G′ will
be a circuit if and only if G is a circuit when embedded as the contraction of G′

by the points 2 and 2′. This happens exactly when the two sets of four points in
G are projectively equivalent, which, in terms of G′, means that the cross-ratios
(12, 23; 24, 25) and (2′4′, 2′3′; 1′2′, 2′5′) coincide. □

4.2. Hyperconnectivity of bipartized multitriangulations

4.2.1. Bipartized multitriangulations and stack polyominoes. As stated
in the introduction, the reduced bipartization of a triangulation is a bipartite graph
with n − k − 1 vertices in each side and with 2kn − k(2k + 1) − k(k + 1) =
2kn − 3k2 − 2k = k(2n − 2k − 2) − k2 edges. This is the rank of the bipartite
hyperconnectivity matroid, so there are chances that they are basis. In this section
we show that they indeed are. We will work in a more general framework that will
allow us to prove the independence of a larger class of graphs.

For n1, n2 ∈ N, consider the Cartesian product [n1]× [n2] as a poset, taking the
increasing order in [n1] and [n2]. Recall that an order ideal is a subset S ⊂ [n1]×[n2]
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so that for all (a, b) ∈ S we have that (a′, b′) ∈ S if (a′, b′) ≤ (a, b), that is, a′ ≤ a
and b′ ≤ b.

Definition 4.25. A Ferrers diagram is an order ideal in the poset [n1]× [n2].

Ferrers diagrams are a particular case of stack polyominoes [72].
In what follows, let S be a Ferrers diagram. Observe that this is equivalent

to the existence of positions x1 < . . . < xn1 and y1 > . . . > yn2 of the vertices
a ∈ [n1], b ∈ [n2] of Kn1,n2 along a line such that xa < yb if and only if (xa, yb) ∈ S.
If we consider the elements of [n1] × [n2] as the edges in the complete bipartite
graph, and locate the vertex a in the position xa and b′ in the position yb, the
edges in S are exactly those going right from a to b′.

For the reduced bipartization of a k-triangulation, n1 = n2 = n − k − 1, an
edge (a, b) can appear in the bipartized graph if and only if {a, n+1− b} is an edge
in the original graph, that is, a < n+ 1− b. So the set of valid edges is

Sk(n) := {(a, b) : a, b ∈ [n− k − 1], a+ b ≤ n}
For the reduced bipartized 2-triangulation in Figure 1, we can represent S2(7)

as a Ferrers diagram, formed by the “possible” edges, which will contain the edges
in the bipartized 2-triangulation itself. Here the edges in the graph are marked
with dots and the edges in S2(7) but not in the graph are empty squares.

•1

•2

•3

•4

• 1’

• 2’

• 3’

• 4’

4′ • • •
3′ • •
2′ • • •
1′ • • • •

1 2 3 4

Basically, the reason why the graph contains no 3-crossings, despite its ap-
pearance, is that the vertex 4 should be at the right of 4′, or, said differently,
(4, 4) /∈ S2(7). This leads us to the following definition.

Definition 4.26. A (k+1)-crossing in S is a set of k+1 incomparable elements
whose supremum (in [n1]× [n2]) belongs to S, that is, a set {(ai, bi)}i=1,...,k+1 ⊂ S
such that ai < ai+1 and bi > bi+1 for all i, and (ak+1, b1) ∈ S. A set, or bipartite
graph, is (k + 1)-free if it has no (k + 1)-crossing.

If we consider the elements of S as edges in a bipartite graph with the vertices
in a parabola and all edges going to the right, this definition of crossing is equivalent
to saying that the edges in question cross. In this way, (k+1)-crossings and (k+1)-
free sets generalize our previous definitions, that are obtained when S = Sk(n), and
a (bipartized) k-triangulation is a maximal (k + 1)-free graph in Sk(n).

Every Ferrers diagram S can be written as

S = {(a, b) : 1 ≤ a ≤ n1, 1 ≤ b ≤ sa}
for adequate integers n2 ≥ s1 ≥ s2 ≥ . . . ≥ sn1

≥ 1. With this notation, S has a
“greedy” subset T0 that is a maximal subset without (k + 1)-crossings, namely

T0 := {(a, b) ∈ S : a ≤ k or b ≥ sa − k + 1}.
Jonsson [72, Section 3] showed the following:
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Theorem 4.27. For every Ferrers diagram S, all maximal (k + 1)-free sets
have exactly the same size as T0.

Observe that the biggest possible size for T0 is k(n1 + n2)− k2, attained when
(k, n2), (n1, k) ∈ S; that is, sk = n2 and sn1

≥ k. When this happens we will say
that S is k-full. In what follows, we suppose that S is k-full, because the elements
in T contained in any row or column of S with less than k squares will not affect
(k+1)-freeness. (Essentially, that is what we are doing when we reduce a bipartized
graph.)

This result of Jonsson can be interpreted as saying that any induced subgraph
of a (k + 1)-free bipartite graph has the adequate number of edges to be itself
independent. In fact, taking a subset of the vertices is equivalent to delete rows or
columns of S, which will leave us with a Ferrers diagram of [n3]× [n4], for n3 ≤ n1
and n4 ≤ n2, to which we can apply Theorem 4.27.

Corollary 4.28. A maximal 3-free bipartite graph plus any edge is a basis in
the generic 2-rigidity matroid.

Proof. Any maximal 3-free set has 2(n1 + n2) − 4 edges, and any subgraph
induced by n3 + n4 vertices has at most 2(n3 + n4) − 4 edges. Adding any edge
to the graph, the resulting graph satisfies the so-called Laman condition, which is
equivalent to generic rigidity in dimension 2. □

This implies, of course, that 3-free graphs are independent in generic rigidity
in dimension 2. It does not imply that they are independent in generic hypercon-
nectivity.

However, precisely that will be the main result of this section:

Theorem 4.29. (k + 1)-free bipartite graphs defined in an arbitrary Ferrers
diagram S are independent in the bipartite hyperconnectivity matroid in dimension
k. Hence, (k+ 1)-free bipartite graphs with the maximum number of edges (k(n1 +
n2)− k2) are bases.

Applying Theorem 4.10, we get that these graphs are independent in the rigid-
ity matroid with the positions of the vertices in two hyperplanes. This has as a
consequence the generic independence of these graphs.

Corollary 4.30. (k + 1)-free bipartite graphs defined in an arbitrary Ferrers
diagram S are independent in the bar-and-joint rigidity matroid in dimension k.

Theorem 4.29 and Corollary 4.30 immediately imply Theorem 4.2. It also
implies, using Theorem 4.3, that the original multitriangulations are bases in the
2k-dimensional hyperconnectivity matroid (Theorem 3.22). It would be interesting
to prove the same for bar-and-joint rigidity, but we know no analogue to Corollary
4.3 that relates the bar-and-joint rigidity of a graph in dimension 2k and that of
its bipartization in dimension k.

4.2.2. Bipartite hyperconnectivity as an algebraic matroid. To take
up the proof of Theorem 4.29, we need some algebraic background. What we do is
similar to Section 3.1, but as we are now dealing with bipartite graphs, our matrices
have no symmetry, and we have something more similar to the determinantal variety
than to the Pfaffian variety. Also, we are only interested in a part of the matrix,
that corresponds to the Ferrers diagram S.
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Let Mk(n1, n2) ⊂ Rn1×n2 be the k-th determinantal variety, consisting of the
n1 × n2 matrices with rank at most k. Let IBk (n1, n2) ⊂ R[xij : i ∈ [n1], j ∈ [n2]]
the corresponding ideal, which is generated by the k + 1-size minors.

Theorem 4.31. The bipartite generic hyperconnectivity matroid for n1 + n2
vertices in dimension k coincides with the algebraic matroid of Mk(n1, n2).

Proof. Recall that if a variety V ⊂ RN is parametrized as the image of a
polynomial map f : RM → RN then the algebraic matroid of V coincides with the
linear matroid of the Jacobian of f at a generic point [113, Proposition 2.5].

In our case, Mk(n1, n2) is the image of

T : Rn1×k × Rk×n2 → Rn1×n2

where T is the matrix product. The entries in the Jacobian of T are as follows. Let
(A,B) ∈ Rn1×k × Rk×n2 and denote as a1, . . . , an1

the rows of A and b1, . . . , bn2

the columns of B. All of them are vectors in Rk. Then:
∂T (A,B)ij
∂(ar)s

=
∂(ai · bj)
∂(ar)s

= δir(bj)s,
∂T (A,B)ij
∂(bt)s

=
∂(ai · bj)
∂(bt)s

= δjt(ai)s,

where δij = 1 if i = j and 0 otherwise. That is, the row for the element ij is exactly
the corresponding row of the hyperconnectivity matroid, with the coordinates of A
sorted by rows and the coordinates of B by columns. □

Now let Mk(S) be the restriction of Mk(n1, n2) to a subset S of coordinates
that is a Ferrers diagram, and IBk (S) the ideal of this variety (which consists in the
(k+1)-size minors contained in S). Then, the algebraic matroid of Mk(S), for any
S, is precisely our bipartite hyperconnectivity matroid, and what we want to prove
is that the graphs lacking certain sets of edges (in this case, (k + 1)-crossings), are
independent in the matroid.

We also define Mk(n) := Mk(Sk(n)) and IBk (n) := IBk (Sk(n)). This result is
the core of the proofs in Chapter 3 and will be useful again in this setting.

Proposition 4.32. Let I ⊂ K[x1, . . . , xN ] be a prime ideal, v a weight vector,
B a Gröbner basis for I with respect to v and F ⊂ 2[N ] the set of the supports of
the leading terms (with respect to v) of the polynomials in B. Then, all subsets of
[N ] that do not contain any element of F are independent in the algebraic matroid
of I.

Proof. Suppose that T is dependent in the algebraic matroid. Then there is
a polynomial f ∈ I using only variables in T . In particular, T contains the support
of the leading term of f . As B is a Gröbner basis, this leading term is multiple of a
leading term of a polynomial in B, so T contains an element of F , as we wanted. □

That is, to prove independence of the (k + 1)-free sets, we need weight vectors
for which the minors are a Gröbner basis of the ideal they generate and that select
in each minor the term with the (k + 1)-crossing. For the standard set Sk(n), it
turns out that our ideal is a relabelling of an initial ideal of the Pfaffian ideal.

Let ϕ be the morphism K[xij ](i,j)∈Sk(n) → K[xij ]1≤i<j≤n given by ϕ(xij) =
xi,n+1−j . That is, a relabelling that reverses the order of the second indices.

Lemma 4.33. Let vPf be the weight vector that assigns to each edge (a, b) weight
equal to b− a. Then, ϕ(IBk (n)) = invPf

(Ik(n)).
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Proof. It is enough to see that the initial form of a Pfaffian of degree k + 1,
respect to vPf , coincides with the image by ϕ of a size k + 1 minor contained in
Sk(n), and all the possible minors are obtained this way. Let f be the Pfaffian of
{i1, . . . , i2k+2}, with i1 < . . . < i2k+2. Then, every term f1 in f corresponds to a
perfect matching in this set: {{a1, b1}, . . . , {ak+1, bk+1}}.

vPf (f1) =

k+1∑
j=1

(bj − aj) ≤
2k+2∑
j=k+2

ij −
k+1∑
j=1

ij

with equality if and only if {a1, . . . , ak+1} = {i1, . . . , ik+1} and {b1, . . . , bk+1} =
{ik+2, . . . , i2k+2}. The terms that attain this maximal weight are exactly the per-
mutations in the minor for the rows {i1, . . . , ik+1} and columns {ik+2, . . . , i2k+2},
so that minor is the initial form of f . As all the column indices are greater than
k+1 and ik+2 > ik+1, this minor is the image by ϕ of a minor contained in Sk(n).

On the other hand, if we start with a minor contained in Sk(n), after applying
ϕ, the first column is greater than the last row, and as already shown, it is the
initial form of a Pfaffian. □

Recall that the algebraic matroid of the Pfaffian ideal Ik(n) coincides with the
generic hyperconnectivity matroid of n vectors in dimension 2k. With this in mind,
Proposition 4.32 and Lemma 4.33 have as a consequence Theorem 4.3.

Proof of Theorem 4.3. Let E be dependent in dimension 2k and E1 the
bipartization of E. As we know, E is algebraically dependent in Ik(n), so there is
a polynomial f in Ik(n) using only variables in E. Then invPf

(f) = ϕ(g) where g

is a polynomial in IBk (n). If a variable xij is used in g, ϕ(g) uses xi,n+1−j , so f
also uses it and {i, n + 1 − j} ∈ E. By the definition of bipartization, (i, j) ∈ E1.
Hence, all the variables in g are in E1, and E1 is algebraically dependent in IBk (n),
that is, it is dependent in dimension k. □

In what follows, we will call GrobBk (S) the Gröbner cone of the (k+1)-crossing
terms of IBk (S) (that is, the cone of the vectors for which the (k+1)-crossing attains

the maximum weight in each A and B with size k+1), and GrobBk (n) analogously.
Also, let ϕ∗ be the linear projection

ϕ∗ : R(
[n]
2 ) → RSk(n)

eij 7→
{
ei,n+1−j if (i, n+ 1− j) ∈ Sk(n)
0 otherwise.

Note that, for v ∈ R(
[n]
2 ), an ideal I ∈ K[xij ](i,j)∈Sk(n), and a polynomial f ∈ I,

inv(ϕ(f)) is formed by the terms in ϕ(f) that have greater weight respect to v.
These terms come from corresponding terms in f , and the weight of the new terms
respect to v is the weight of the original terms respect to ϕ∗(v). This implies that

inv(ϕ(f)) = ϕ(inϕ∗(v)(f))

and

inv(ϕ(I)) = ϕ(inϕ∗(v)(I))

Theorem 4.34. For v ∈ R(
[n]
2 ), ϕ∗(v) ∈ GrobBk (n) if and only if vPf + ϵv ∈

Grobk(n) for ϵ > 0 small enough. Also, for weights in the interior of the cone, the
(k + 1)-size minors are a Gröbner basis.
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Proof. For the first part,

ϕ∗(v) ∈ GrobBk (n) ⇔ inϕ∗(v)(I
B
k (n)) is the ideal of (bipartite) (k + 1)-crossings

⇔ ϕ(inϕ∗(v)(I
B
k (n))) is the ideal of (circular) (k + 1)-crossings

⇔ inv(ϕ(I
B
k (n))) is the ideal of (k + 1)-crossings

⇔ inv(invPf
(Ik(n))) is the ideal of (k + 1)-crossings

⇔ invPf+ϵv(Ik(n)) is the ideal of (k + 1)-crossings

⇔ vPf + ϵv ∈ Grobk(n)

For the second, let f ∈ IBk (n) and v an interior vector of the cone. We need to see
that the leading term f0 of f (that is a single monomial because v is interior) is
multiple of a (k + 1)-crossing monomial. As ϕ(IBk (n)) is the initial ideal of Ik(n)
with weight vector vPf , ϕ(f) = invPf

(g) for a g ∈ Ik(n). Also, v = ϕ∗(w), for some

w ∈ R(
[n]
2 ). That is,

ϕ(f0) = ϕ(inv(f)) = ϕ(inϕ∗(w)(f)) = inw(ϕ(f)) = inw(invPf
(g)) = invPf+ϵw(g)

for ϵ small enough. Now we know that vPf + ϵw ∈ Grobk(n) and by Theorem 3.13,
Pfaffians are a Gröbner basis with respect to vPf + ϵw, so ϕ(f0) is multiple of a
circular (k + 1)-crossing monomial, and f0 is multiple of a bipartite one. □

Now the arguments will follow a similar path than in the case of Pfaffians:
fp-positive weight vectors are in the Gröbner cone.

Definition 4.35. For a Ferrers diagram S in [n1] × [n2], let S be the Ferrers
diagram in [n1 − 1]× [n2 − 1] obtained by deleting the elements of the form (1, j)
or (i, 1) and decrementing the rest of indices.

Let δ : RS → RS given by

δ(v)ij = vi,j+1 + vi+1,j − vij − vi+1,j+1

Proposition 4.36. δ(v) determines v except for a constant term added to each
row or column:

vij = vi1 + v1j − v11 −
i−1∑
r=1

j−1∑
s=1

δ(v)rs

Theorem 4.37. Let v ∈ RS be a weight vector for the variables of IBk (S). The
following are equivalent:

(1) All coordinates of δ(v) are nonnegative.
(2) For (i, j), (i′, j′) ∈ S, i < i′ and j < j′, vij′ + vi′j ≥ vij + vi′j′ .
(3) For any subsets A ⊂ [n1] and B ⊂ [n2] with the same size such that

A×B ⊂ S, the weights given by v to perfect matchings between them are
monotone with respect to swaps that increase crossings.

(4) For any subsets A ⊂ [n1] and B ⊂ [n2] with the same size such that
A×B ⊂ S, the maximum weight given by v to perfect matchings between
them is attained at the complete crossing.

A vector v satisfying any of these conditions will be called four-point positive or
fp-positive.
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Proof. Obviously we have 4 ⇒ 3 ⇔ 2 ⇒ 1: the part 2 is a particular case
of 4 when |A| = |B| = 2, and it is equivalent to 3 by the definitions of swap and
crossing, and in turn, part 1 is a particular case of 2 when i′ = i+1 and j′ = j+1.

Suppose that part 1 holds. Then, by Proposition 4.36 or directly from the
definition,

vij′ + vi′j − vij − vi′j′ =

i′−1∑
r=i

j′−1∑
s=j

δ(v)rs ≥ 0

and we have part 2.
Suppose now that part 3 holds. Then we can go from any matching between A

and B to the complete crossing by swaps that create crossings, and by part 3 this
process increases the weight in each step, so the complete crossing will have higher
weight and part 4 holds. □

Remark 4.38. This definition of fp-positive vectors is similar, but not exactly
equal, to the one found in Chapter 2. There, we define a coordinate w for each edge
{i, j}, and then show that the ones corresponding to sides of the polygon are in the
lineality space of the four-point positive cone, that is, there are

(
n
2

)
−n inequalities

defining four-point positive vectors, that have dimension
(
n
2

)
.

For δ(v) as defined here, it has no coordinates in the lineality space by Theorem
4.37, and its dimension is n1+n2−1 less than that of v, that is exactly the dimension
of the lineality space (given by constants added to each row or column). For the
standard case, the fp-positive vectors have dimension

(
n
2

)
−k(k+1) and are defined

by
(
n−2
2

)
− k(k − 1) inequalities. The lineality space is larger: it has dimension

2(n− k)− 3. That is, the projection of that cone is strictly contained in this cone.

Let ∆ : R(
[n]
2 ) → R(

[n]
2 ) be the morphism that sends the v coordinates to the w

coordinates as defined for the circular crossings (except by a factor 2 that appears
there):

∆(v)ij = vij + vi+1,j+1 − vi,j+1 − vi+1,j

where i and j are here taken modulo n, and vii = 0.

Lemma 4.39. For v ∈ R(
[n]
2 ), δ(ϕ∗(v)) = ϕ∗(π(∆(v))), where π is the projection

R(
[n]
2 ) → R(

[n−2]
2 ) that deletes the first and last elements, {i, i + 1} and {i, n}, in

row i, and decrements the second index for the rest. That is, the operation δ is the
bipartite analog of the circular operation ∆.

Proof. First note that the left-hand side is in RSk(n) and the right-hand side
is in RSk−1(n−2), which coincide because Sk(n) = Sk−1(n− 2).

Now take (i, j) ∈ Sk−1(n− 2). Then

δ(ϕ∗(v))ij = ϕ∗(v)i,j+1 + ϕ∗(v)i+1,j − ϕ∗(v)ij − ϕ∗(v)i+1,j+1

= vi,n−j + vi+1,n−j+1 − vi,n−j+1 − vi+1,n−j

= ∆(v)i,n−j = π(∆(v))i,n−j−1 = ϕ∗(π(∆(v)))ij

where, in the last step, n − j − 1 gets changed to j because the size of π(∆(v)),
seen as a matrix, is n− 2, not n. □

In the standard case where S = Sk(n), we can characterize exactly which
vectors are in the Gröbner cone. Let eij , for (i, j) ∈ S, be a vector in the standard

basis, and fij , for (i, j) ∈ S, the vector whose image by δ is eij .
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Theorem 4.40. GrobBk (n) is given by the following inequalities:∑
r≥i,s≥j,s−r≤k+1

δ(v)rs ≥ 0 if 2 ≤ i+ j ≤ k(21)

δ(v)ij ≥ 0 if k + 1 ≤ i+ j ≤ n− k − 1(22) ∑
r≤i,s≤j,s+r≥n

δ(v)rs ≥ 0 if n− k ≤ i+ j ≤ n− 2(23)

Its rays are:

• −eij with 2 ≤ i+ j ≤ k + 1
• fij with k + 2 ≤ i+ j ≤ n− k − 2
• −ei+1,j+1 with n− k − 1 ≤ i+ j ≤ n− 2

Proof. The cone we are looking for is the “link” of the smallest face containing
vPf in Grobk(n). The inequalities in the expression for Grobk(n) in Theorem 3.14
are

∆(w)ij ≥ 0 if |j − i| > k∑
i′≤i<j≤j′≤i′+k+1

∆(w)i′j′ ≥ 0 if 2 ≤ |j − i| ≤ k

Now we must take w := vPf + ϵv. Using the formula to compute ∆(vPf ), we get
that ∆(vPf )ij = 0 except if j = n, in which case

∆(vPf )in = n− i+ (i+ 1)− 1− n+ (i+ 1)− i+ 1 = 2.

That is, taking a point vPf +ϵv close to vPf is equivalent to setting the coordinates
{i, n} of ∆(w) to a value much bigger than the rest. By doing this, all inequalities
including a ∆(w)in become irrelevant, and for the rest we have ∆(w) = ϵ∆(v).
Hence the inequalities reduce to

∆(v)ij ≥ 0 if |j − i| > k, i, j ≤ n− 1∑
i′≤i<j≤j′≤i′+k+1

∆(v)i′j′ ≥ 0 if 2 ≤ |j − i| ≤ k, i, j ≤ n− 1

The ∆(v) appearing here can be replaced by π(∆(v)), because the remaining ele-
ments are not used. Using that δ(ϕ∗(v)) = ϕ∗(π(∆(v))), the first line gives (22),
and the second one gives (21) and (23).

The rays are deduced by setting all the inequalities to hold with equality except
one. If we do this with a coordinate in the range k + 2 ≤ i+ j ≤ n− k − 2, we get
just δ(v)ij > 0 and the rest equal to 0, which is fij . If the coordinate is outside
this range, the result is

δ(v)ij = −δ(v)i,j−1 = −δ(v)i−1,j = δ(v)i−1,j−1 > 0

and the rest 0, which leads exactly to −eij , or

δ(v)ij = −δ(v)i,j+1 = −δ(v)i+1,j = δ(v)i+1,j+1 > 0

which leads to −ei+1,j+1. □

Theorem 4.41. For any k-full set S, GrobBk (S) contains the four-point positive
cone. For weights in the interior of the cone, the (k+1)-size minors are a Gröbner
basis.
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Proof. The first sentence is a consequence of the point 4 of Theorem 4.37.
For the second one, Theorem 4.34 already proves it for S = Sk(n). Now we

will prove it for any other k-full S. In first place, it is easy to see that S can be
obtained from Sk(n) for some n by deleting rows and columns. In terms of IBk (n),
this is equivalent to restrict the ideal to a subset of variables.

Now, we can extend the weight vector v from S to Sk(n) interpolating linearly
the values in the new rows and columns. The effect of this in δ(v) is to divide
the value in a coordinate between several ones. This preserves positivity of the
coordinates, so we are still in the Gröbner cone. Applying Theorem 4.34 to this
case, we have that the minors are a Gröbner basis, so the restriction of the ideal
also is. □

Putting together Lemma 4.32 and Theorem 4.41, we get:

Corollary 4.42. (k + 1)-free bipartite graphs defined in a k-full set S are
independent in the algebraic matroid of Mk(S). Hence, the maximal of these graphs
(that have k(n1 + n2)− k2 edges) are bases.

This has two consequences. On one hand, together with Theorem 4.31, it
implies Theorem 4.29. On the other hand, we can apply to this case Theorem 3.19
to conclude

Corollary 4.43. Let T ⊂ [n1]× [n2].

(1) If T is (k + 1)-free and K is algebraically closed, then for any generic
choice of values v ∈ KT there is at least one matrix in Kn1×n2 of rank
≤ k with the entries prescribed by v.

(2) If T contains a maximal (k + 1)-free graph then for any choice of values
v ∈ KT there is only a finite number (maybe zero) of matrices in Kn1×n2

of rank ≤ k with those prescribed entries.

4.2.3. Tropical geometry. In Chapter 3, we prove that the tropical preva-
riety of antisymmetric matrices with size n and rank at most 2k contains a fan
isomorphic to the k-associahedron in n vertices. It turns out that the tropical pre-
variety of matrices with size n − k − 1 and rank at most k (projected to a subset
of the coordinates) also contains a fan isomorphic, in this case, to the (k − 1)-
associahedron in n− 2 vertices.

For the determinantal prevariety, we have defined Mk(S) as the projection of
the determinantal variety into a subset S of coordinates, and its particular case
Mk(n). So we can define Mk(n) as the tropical prevariety of IBk (n), GrobBk (n) the

Gröbner cone for the (k + 1)-crossings, and M+
k (n) = Mk(n) ∩ GrobBk (n). Then,

the following is true:

Theorem 4.44. Let v be a vector in GrobBk (n). Then, v ∈M+
k (n) if and only

if the support of δ(v) is k-free.

To prove this, we need the following lemma:

Lemma 4.45. For v ∈ R(
[n]
2 ), ∆(vPf ) + ϵv has (k + 1)-free support if and only

if ϕ∗(π(v)) has k-free support.

Proof. We already know that ∆(vPf )ij = 0 except if j = n, in which case
∆(vPf )in = 2 (see proof of Theorem 4.40).
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Suppose that there is a (circular) (k+1)-crossing in ∆(vPf )+ϵv, {a1, b1}, {a2, b2}, . . . , {ak+1, bk+1}
with a1 < . . . < ak+1 < b1 < . . . < bk+1 ≤ n. Then bk < n, and the first k elements
{a1, b1}, {a2, b2}, . . . , {ak, bk} are zero in ∆(vPf ) and consequently nonzero in v.
This is a k-crossing in v that will subsist when applying π, and will be converted
by ϕ∗ to a bipartite k-crossing.

Conversely, if there is a k-crossing in ϕ∗(π(v)), it translates to a (circular) k-
crossing in π(v). Let this be {a1, b1}, {a2, b2}, . . . , {ak, bk}. This makes {a1, b1 +
1}, {a2, b2 + 1}, . . . , {ak, bk + 1} a k-crossing in v that does not include n. This in
turn implies that {a1, b1+1}, {a2, b2+1}, . . . , {ak, bk+1}, {b1, n} is a (k+1)-crossing
in ∆(vPf ) + ϵv. □

Proof of Theorem 4.44. Let v ∈ GrobBk (n) and take w such that ϕ∗(w) =

v. As we already know, v = ϕ∗(w) ∈ GrobBk (n) is equivalent to vPf+ϵw ∈ Grobk(n)
for small ϵ.

v ∈M+
k (n) ⇔ inv(f) is not a monomial for any (k + 1)-size minor f

⇔ invPf+ϵw(g) is not a monomial for any Pfaffian g

⇔ vPf + ϵw ∈ Pf+k (n)

⇔ Supp∆(vPf + ϵw) is (k + 1)-free (as a subset of

(
[n]

2

)
)

⇔ Supp(∆(vPf ) + ϵ∆(w)) is (k + 1)-free

⇔ Suppϕ∗(π(∆(w))) is k-free (by the previous lemma)

⇔ Supp δ(ϕ∗(w)) is k-free

⇔ Supp δ(v) is k-free. □

Theorem 4.46. M+
k (n) ⊂ trop(Mk(n)). Moreover, M+

k (n) ⊂ trop+(Mk(n)).

Proof. If v ∈M+
k (n), vPf + ϵw ∈ Pf+k (n) for all w with ϕ∗(w) = v and some

ϵ > 0. By Corollary 3.33, vPf + ϵw ∈ trop(Pfk(n)), so invPf+ϵw(Ik(n)) contains

no monomials. But invPf+ϵw(Ik(n)) = inw(invPf
(Ik(n))) = ϕ(inϕ∗(w)(I

B
k (n))) =

ϕ(inv(I
B
k (n))), so v ∈ trop(Mk(n)). The proof of the second part is analogous. □

Theorems 4.44 and 4.46 are also true if we replace Sk(n) by any k-full S,
because all them can be obtained from Sk(n) for some n.

To conclude this section, we see that projecting theM+
k (n) to a complete fan, in

order to realize the multiassociahedron, is equivalent to projecting a link of Pf+k (n)
into a complete fan. This confirms Lemma 2.9, saying that the (k−1)-associahedron
in n− 2 vertices is a link of the k-associahedron in n vertices.

4.3. Realizability of the multiassociahedron with bipartite rigidity in
cyclic position

In this section we turn our attention to realizability of ∆k(n) as a complete fan
with the rows of the bipartite rigidity matrix in cyclic position (as a particular case,
in the moment curve) as vectors. As proved in Theorem 2.20, realizing a simplicial
complex as a fan with a given configuration of vectors is equivalent to checking
some sign conditions.
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4.3.1. The case n ≤ 2k+3. The case n = 2k+2 is easy with what we know:

Proof of Theorem 4.6. In this case all the triangulations are K2k+2 minus
a diameter. Bipartizing the complete graph, we get the complete bipartite graph
Kk+1,k+1. The diameters of the original graph become (1, k+1), (2, k), . . . , (k+1, 1)
after bipartizing. The condition ICoP means here that, in the linear dependence
given by the complete graph, those edges must have the same sign.

For a configuration in the moment curve, Corollary 4.22 predicts all the signs
of the circuit Kk+1,k+1: the sign of (i, j) is (−1)j−1 times the sign of (i, 1), which
is (−1)i−1 times the sign of (1, 1), giving a final sign of (−1)i+j . This implies that
the flipping edges have the same sign, so the condition ICoP is satisfied.

Respect to the condition about elementary cycles, there is nothing to prove
here because all them have length 3: removing two edges from a triangulation, the
resulting graph can be completed only by adding two of the three edges. So the fan
is realized in any position, and it is automatically polytopal because it is the fan of
a simplex. □

Now we will find necessary and sufficient conditions so that the complete fan
is realized for n = 2k+3. The bipartized graph for n = 2k+3 has k+2 vertices in
each side: only the central vertex k+2 is common to both sides (as the last in each
side), each vertex i < k + 2 becomes i in the left side, and each j > k + 2 becomes
2k + 4− j in the right side. The bipartization of K2k+3 gives Kk+2,k+2 minus the
edge (k+2, k+2). The k-triangulations are formed by removing three more edges
from this graph. These edges of course need to be relevant, that is, {i, i + k + 1}
or {i, i + k + 2}, which become after bipartizing (i, k + 3 − i) and (i, k + 2 − i)
respectively. The 2k + 3 relevant edges form initially a cycle

k + 2, 1, k + 3, 2, . . . , 2k + 2, k + 1, 2k + 3, k + 2,

which becomes a path

(k + 2)′, 1, (k + 1)′, 2, . . . , 2′, k + 1, 1′, k + 2.

However, not every three relevant edges can be removed to obtain a triangula-
tion. As stated in Section 2.3.3, the necessary and sufficient condition is that the
three paths resulting from removing them (in the graph before bipartizing, where
the relevant edges form a cycle) have even length (in what follows, “even length”
includes zero). After bipartizing, this condition still holds, as long as we identify
vertices k + 2 and (k + 2)′.

The union of two bipartized multitriangulations differing in one edge isKk+2,k+2

minus (k + 2, k + 2) and other two edges. Any two relevant edges can be removed,
and between the two paths of relevant edges (identifying k + 2 with (k + 2)′) that
remain one will have odd length. The multitriangulations contained in this graph
are obtained by removing one edge from that path so that it becomes two even
paths.

Respecting to the elementary cycles, they are obtained by removing two edges
in a triangulation, so that the result is Kk+2,k+2 minus six edges. In Section 2.3.3,
it is discussed how the length of this cycle depends on the different positions of the
edges. The conclusion is that the length is five if and only if the lengths of the five
paths that remain are all even.

Returning to the cyclic positions, we need now some definitions.
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Definition 4.47. Let S be a set of k+2 points in the projective space RPk−1

in general position and let a, b, c and d be four of them. Let T = S \ {a, b, c, d}.
The relative cross-ratio of a, b, c, d ∈ S, denoted as (a, b; c, d)S , is the cross-ratio of
the four points obtained by conical projection of a, b, c, d with center at T onto a
projective line. Equivalently, it equals the cross-ratio of the four planes spanned by
Ta, Tb, Tc, Td. That is,

(a, b; c, d)S =
|acT | · |bdT |
|adT | · |bcT |

where |xyT | denotes the k × k determinant whose rows are x, y and the points in
T .

In the case of points {ti : i ∈ [n]} in the moment curve, this formula simplifies
to

(a, b; c, d)t =
(tc − ta)(td − tb)

(td − ta)(tc − tb)

Definition 4.48. Given three relevant edges {il, jl}, l = 1, 2, 3 of the (2k+3)-
gon, where i1 < i2 < i3 < k + 2 < j1 < j2 < j3, and a position p, we will say
that the three edges are correctly located if (i1, i2; i3, k+2)p > (j′1, j

′
2; j

′
3, (k+2)′)p,

where j′l = 2k + 4− jl is the new index of vertex jl.

Note that, despite its asymmetric appearance, being correctly located is a
symmetric relation: if we reverse the order of the vertices, the relation becomes
(j′3, j

′
2; j

′
1, (k + 2)′)p > (i3, i2, i1, k + 2)p, which is equivalent to the previous one.

Lemma 4.49. Given four relevant edges el = {il, jl}, l = 1, 2, 3, 4 of the (2k+3)-
gon, where i1 < i2 < i3 < i4 < k + 2 < j1 < j2 < j3 < j4, if {e1, e2, e3}
and {e2, e3, e4} are correctly located, {e1, e2, e4} are also correctly located (and, by
symmetry, {e1, e3, e4}, but we do not need that).

Proof. We can make a conical projection by the points not in {i1, i2, i3, i4, k+
2} to the projective plane, followed by a projective transformation so that the
positions pij , for j = 1, 2, 3, 4, become [0 : 0 : 1], [1 : 1 : 1], [1 : 0 : 0], [0 : 1 : 0], and
the same for the other side with {j′1, j′2, j′3, j′4, (k + 2)′}. After that, the only point
that is in different position is k + 2.

Now let pk+2 = [x : y : 1], p′k+2 = [x′ : y′ : 1]. By convexity we have y < x < 0
and y′ < x′ < 0.

As {e1, e2, e3} are correctly located,

([0 : 1], [1 : 1]; [1 : 0], [x : 1]) > ([0 : 1], [1 : 1]; [1 : 0], [x′ : 1])

which gives x > x′, and as {e2, e3, e4} are correctly located,

([1 : 1], [1 : 0]; [0 : 1], [x : y]) > ([1 : 1], [1 : 0]; [0 : 1], [x′ : y′])

which gives y/x > y′/x′. These two imply y > y′, that is

([0 : 1], [1 : 1]; [1 : 0], [y : 1]) > ([0 : 1], [1 : 1]; [1 : 0], [y : 1])

and {e1, e2, e4} are correctly located. □

Lemma 4.50. Let 1 ≤ i1 < i2 < k + 2 < j1 < j2 ≤ 2k + 3 be such that the
bipartization of C := K2k+3 \ {{i1, j1}, {i2, j2}} is a circuit. Consider a configura-
tion p in cyclic position for the vertices of this bipartization and let λ be the unique
(modulo a scalar factor) dependence for C in the bipartite rigidity matrix Hk(p).
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Let {i3, j3} be the first edge in the odd path delimited by {i1, j1} and {i2, j2} (that
is, {i1 ± 1, j1} or {i1, j1 ± 1}), and let {i0, j0} be another edge in the same path at
a distance d from the first. Then, we have that

sign(λi0j0) = (−1)d sign(λi3j3)

if and only if {{i0, j0}, {i1, j1}, {i2, j2}} are correctly located.

Proof. Suppose first that i0 < i1 < i2 < j0 < j1 = i1+k+1 < j2 = i2+k+2.
Then, by the structure of the path, i3 = i1 − 1, j3 = j1, i0 + j0 = i1 + j1 − d− 1.

Bipartizing the circuit, we get Kk+2,k+2 minus three edges. In the resulting
graph, the degree of j1 is k + 1 and by Lemma 4.21,

sign(λi1−1,j1) = (−1)i1−i0−1 sign(λi0j1)

so the condition to be checked reduces to

sign(λi0j0λi0j1) = (−1)d+1+i1−i0 = (−1)j1−j0

The circuit can be obtained by a repeated bipartite coning from the graph of
K4,4 minus three edges, so that the original eight vertices become {i0, i1, i2, k + 2}
in the left side and {j′2, j′1, j′0, (k + 2)′} in the right side. That is, the three missing
edges are 22′, 31′ and 44′ before the coning. By Corollary 4.20, the condition
reduces to sign(λ12λ13) = −1, because this sign is inverted i3 − j2 − 1 times (once
for each vertex added between j2 and i3).

Rearranging (via a projective transformation of the line) the vertices 1′ and 3′

will not alter the signs in the first three vertices, because this is a linear transfor-
mation in dimension 2 followed by a rescaling that has the same sign in these three
vertices (Proposition 4.17). After the change, we are in the situation of Theorem
4.23, and the condition is now sign(λ11λ12) = −1. This happens if and only if
(1, 2; 3, 4) > (1′, 2′; 3′, 4′). As contracting does not change the relative cross-ratios,
this means (i1, i2; i3, k + 2)p > (j′1, j

′
2; j

′
3, (k + 2)′)p, as we want.

The remaining cases lead, analogously, to (i2, i3; k+2, i1)p > (j′2, j
′
3; (k+2)′, j′1)p

and (i3, k + 2; i1, i2)p > (j′3, (k + 2)′; j′1, j
′
2)p. The third condition is the same as

the first one, and the second one is also equivalent, because of the order of the
vertices. □

We are now ready to prove the main result for n = 2k + 3. We call octahedral
a triangulation whose three missing edges are disjoint.

Proof of Theorem 4.7. If (1) holds, the condition ICoP is satisfied in all
the flips. In particular, with the notations of the previous Lemma, it is satisfied
in the flip from K2k+3 \ {{i0, j0}, {i1, j1}, {i2, j2}} that removes {i3, j3} and inserts
{i0, j0}, with d even, that is, the edges {i3, j3} and {i0, j0} have the same sign in
the dependence contained in the union of the two triangulations. By Lemma 4.50,
this implies that the three edges {i0, j0}, {i1, j1}, {i2, j2} are correctly located and
(2) holds.

Now suppose that (2) holds. Then, there are two types of flips: those whose
two missing edges share a vertex and the rest. For the first case, the bipartization
contains a Kk+1,k+1 and we already know that this graph is a circuit where the
signs of the edges in the only (k+1)-crossing coincide, so this case is solved. For the
second, the two missing edges are disjoint. If one of them contains the vertex k+2,
the bipartization contains again a Kk+1,k+1. Otherwise, we are in the conditions of
Lemma 4.50. Applying it to all edges with d even, that are exactly the edges that
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can be removed from the graph to get a triangulation, we obtain that all of them
have the same sign, hence the condition ICoP also holds here.

It only remains to see the condition about elementary cycles. Let {e1, e2, e3, e4, e5}
be an elementary cycle of length 5, which means that all the paths left between
the edges are even. If two edges share a vertex, for example e1 and e2, the flip
K2k+3 \ {e1, e2} contains a Kk+1,k+1, and the signs of the other three edges are
automatically correct. The same happens if k + 2 is a vertex of any edge.

In the remaining cases, {e1, e2, e3} and {e2, e3, e4} are correctly located by
hypothesis. By Lemma 4.49, {e1, e2, e4} is also correctly located. By Lemma 4.50,
in the flip K2k+3 \ {e1, e2}, e4 has opposite sign to e3 and e5, and we are done. □

Corollary 4.51. • For k = 2 and n = 7, any choice of points (p1, p2, p3, p4; p
′
1, p

′
2, p

′
3, p

′
4)

in cyclic position realizes ∆2(7) as a fan.
• For any k > 2, there is a choice of points in cyclic position that realizes
∆k(2k + 3) as a fan, and a choice that does not.

Proof. For k = 2, the condition of the previous theorem trivially holds in any
position because there are no octahedral triangulations.

For the second part, it is easy to find a position that does not realize the
fan: just choose an octahedral triangulation, and locate the points in such a way
that they violate the condition in Theorem 4.7. To find a position that realizes
the fan, take the positions in the moment curve with tk+2 and t′k+2 very big,
tk+1 = t′k+1 = 1, tk = t′k = 0 and ti lexicographically smaller than ti+1. Then,
for any octahedral triangulation, in the corresponding inequality the left hand side
(i1, i2; i3, k + 2)t is large and the right hand side (j′1, j

′
2; j

′
3, (k + 2)′)t is close to 1

(because j′1 and j′2 are relatively close). □

For k ≥ 3, we can now prove Theorem 4.8, because, if 2k + 4 vertices realize
the fan, any subset with 2k + 3 vertices should also realize it.

Proof of Theorem 4.8. First suppose that k = 3 and n = 12. This will
account for all cases with n ≥ 12, because all of them contain ∆3(12).

Consider the subconfiguration formed by the 9 vertices 1, 2, 3, 5, 6, 7, 8, 9, 10,
where 6 is the central vertex and {1, 7}, {3, 8} and {5, 10} are three missing edges
in an octahedral 3-triangulation. If there is a position which realizes the fan, by
Theorem 4.7, the three edges are correctly located, that is:

(1, 3; 5, 6) > (6′, 5′; 3′, 7′)

(the numbers refer to positions of vertices of K8,8, so 6′, 5′, 3′, 7′ are respectively
7, 8, 10, 6 before bipartizing). In terms of the parameters,

(t5 − t1)(t6 − t3)

(t6 − t1)(t5 − t3)
>

(t′7 − t′5)(t
′
6 − t′3)

(t′7 − t′6)(t
′
5 − t′3)

Using that the parameters are in increasing order, this implies

t6 − t3
t5 − t3

>
t′6 − t′3
t′5 − t′3

Now we repeat the argument with the subconfiguration symmetric to the previous
one, so the t’s get swapped with the t′’s, and we get

t′6 − t′3
t′5 − t′3

>
t6 − t3
t5 − t3
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This is a contradiction.
Now we will get a similar contradiction for k ≥ 4 and n ≥ 2k + 4. As before,

we can take n = 2k + 4.
Consider the subconfiguration formed by the first 2k+3 vertices. The complete

graph in those vertices minus the three edges {2, k+3}, {3, k+5} and {k+1, 2k+2}
is an octahedral k-triangulation (note that, as k ≥ 4, 2k + 2 > k + 5).

Same as before, the three edges are correctly located and

(2, 3; k + 1, k + 2) > ((k + 2)′, k′; 3′, (k + 3)′)

(tk+1 − t2)(tk+2 − t3)

(tk+2 − t2)(tk+1 − t3)
>

(t′k+3 − t′k)(t
′
k+2 − t′3)

(t′k+3 − t′k+2)(t
′
k − t′3)

This implies
tk+2 − t3
tk+1 − t3

>
t′k+2 − t′3
t′k − t′3

>
t′k+2 − t′3
t′k+1 − t′3

and we are done by applying symmetry. □

This proof does not apply in general to cyclic positions outside the moment
curve. The reason for this is that the cross-ratios (a, b; c, d)p involved depend in
all the parameters in p. In the moment curve, most of them cancel out, and only
ta, tb, tc, td remain, but in general the points in p different from a, b, c, d may affect
the value of (a, b; c, d)p.

4.3.2. Experimental results. In this section we report on some experimen-
tal results. In all of them we choose real parameters t = {t1 < t2 < . . . <
tn−k−1, t

′
1 < t′2 < . . . < t′n−k−1} and computationally check whether the config-

uration of rows of Pk(t) realizes ∆k(n) first as a collection of bases, then as a
complete fan, and finally as the normal fan of a polytope, as in Section 2.4.3.

We first look at k = 2. Our first experiment is taking equispaced parameters.
Since an affine transformation in the space of parameters produces a linear transfor-
mation in the rows of Pk(t), we take without loss of generality t = (1, 2, 3, . . . , n).
We call these the standard positions along the parabola.

Lemma 4.52. Let t = {1, 2, . . . , n} be standard positions for the parameters.
Then:

(1) Standard positions for P2(t) realize ∆2(n) as the normal fan of a polytope
if and only if n ≤ 8.

(2) The near-lexicographic positions ti = 2(i−1)2 for P2(t) realize ∆2(10) as
the normal fan of a polytope.

(3) Standard positions for P2(t) realize ∆2(n) as a complete fan for all n ≤ 13.

Proof. (1) For n = 8, Table 1 shows values of (fij)i,j that prove the fan
polytopal. This implies the same for n < 8.3 For n = 9 the computer said that the
system is not feasible, and that implies the same for n > 9.

(2) Near-lexicographic positions for n = 10 gave the feasible solution displayed
in Table 1.

(3) The computer checked the conditions for a complete fan for n = 13. This
took about 2 days of computing in a standard laptop. □

3In order to check polytopality we can arbitrarily fix the right-hand side variables fi,j cor-

responding to one particular k-triangualtion. In both cases we have chosen f1,j = f2,j = 0 for all

j, corresponding to the greedy 2-triangulation
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i, j fij
3,6 16
3,7 35
3,8 59
4,7 11
4,8 36
5,8 37

i, j fij
3,6 2097152
3,7 2116197
3,8 2116816
3,9 2116875
3,10 2116899

i, j fij
4,7 1094032
4,8 1133231
4,9 1136343
4,10 1137410
5,8 5949943

i, j fij
5,9 6427739
5,10 6575138
6,9 166833470
6,10 237316440
7,10 120253293274

Table 1. Height vectors (fij)i,j realizing ∆2(8) (left)
as a polytopal fan with rays in standard positions
(P2(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)), and ∆2(10) (right) with rays in

P2(t), with ti = 2(i−1)2 .

For k ≥ 4 our results 4.6, 4.7 and 4.8 completely describe what choices of
parameters realize the associahedron as a complete fan: any choice if n ≤ 2k + 2,
no choice if n ≥ 2k + 4, and the choices specified in Theorem 4.7 if n = 2k + 3.

For k = 3 our results are a bit less complete; for n ∈ {10, 11} we cannot
characterize what particular choices realize the fan. But we do know by Theorem
4.7 that there are choices that do not realize it, and we have verified that the choice
(0, 1, 31, 32, 42, 67, 100) at both sides realizes the fan for n = 11 and, hence, also for
n = 10 (deleting any of the points).
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CHAPTER 5

Preliminaries

In a recent lecture [82] Lurie commented that “roughly speaking p-adic geom-
etry, or rigid analytic geometry, is a version of the theory of complex manifolds
where instead of using complex numbers you use something like p-adic numbers”.
In this part of my thesis, also published as a paper in [27], we attempt to start
studying this direction for the closely related class of symplectic manifolds: we will
concentrate on the local linear theory of integrable systems with p-adic coefficients,
on p-adic analytic symplectic manifolds.1

More concretely, for any prime number p, the p-adic numbers Qp form an
extension field of the rational numbers Q which plays a prominent role in various
parts of geometry, as seen for instance in the aforementioned recent lecture by Lurie
and Scholze-Weinstein’s lectures [118].

Here we take a first step in introducing p-adic methods in symplectic geometry
of integrable systems. We focus on p-adic matrix theory and p-adic linear symplectic
geometry and applying them to fully describe the local linear theory of p-adic
integrable systems F = (f1, f2) : (M,ω) → (Qp)2 on p-adic analytic symplectic
4-manifolds (M,ω), as part of a general approach to this new field proposed ten
years ago by Pelayo, Voevodsky and Warren [98, Section 7]. Our techniques are
primarily algebraic and rely on the theory of p-adic extension fields.

We have two closely related goals. One of the goals is to fully describe the local
symplectic geometry of p-adic integrable systems on symplectic 4-manifolds, that
is, we explicitly classify their local models and give a concrete list of their formulas.
In order to this, we first need to extend the seminal theory of Weierstrass [136]
and Williamson [142] concerning the diagonalization of real symmetric matrices by
means of symplectic matrices, to p-adic 4-by-4 matrices, which is our second goal.

More concretely, by the work of Weierstrass [136] any real symmetric positive
definite matrix is diagonalizable by a symplectic matrix. This was generalized in
an influential paper [142] by Williamson from 1936, where he shows that any sym-
metric matrix is reducible to a normal form by a symplectic matrix, and gives a
classification of all matrix normal forms. In Williamson’s approach, matrix reduc-
tions take place in the base field. In this paper we recover the real Wierstrass-
Williamson classification with a genuinely different strategy: we lift the problem to
suitable extension fields where the solution is simpler.

It is well known [119] that all Galois extensions over Qp have a solvable Galois
group, that is, the roots of all polynomials with p-adic coefficients can be expressed
algebraically by extraction of successive radicals. However, since the general equa-
tion of degree 5 is not solvable by radicals, there are no formulas, from degree 5

1The relation between complex and symplectic structures on manifolds already appears im-

plicitly in the pioneering work of Kodaira [79] and in a well known paper by Thurston [130], as
well as in many other contributions including for instance [6, 35, 44, 45, 51].

105



106 5. PRELIMINARIES

onwards, to express the roots in terms of successive radicals. In other words, all
our results are generalizable to any dimension with the same method we use here,
but without explicit formulas for the local normal forms on symplectic manifolds
of dimension 10 or higher. These forms will be explicit for dimensions 6 and 8,
though we do not carry this out because it includes hundreds and even thousands
of possibilities for the local models even in dimension 6.

All of the above results concerning matrices are stated in Section 5.3.2 (“Main
results concerning matrices: Theorems 5.28–5.37”) of the paper. These results can
be used as stepping stones to derive a complete classification of the local linear
models of p-adic analytic integrable systems in dimension 4, this being the second
main goal of this part of the thesis.

As an application of our results and the Hardy-Ramanujan formula [60] (ob-
tained also by Uspensky [131]) in number theory, we confirm that the number of

p-adic (2n)-by-(2n) matrix normal forms grows at least with eπ
√

2n/3/4
√
3n, which

in particular implies that the number of local linear normal forms of p-adic inte-
grable systems on 2n-dimensional symplectic manifolds at a rank 0 critical point
grows in the same way. This is in strong contrast with the real case, where the
number of normal forms of integrable systems at a rank 0 critical point is quadratic
in the dimension.

5.1. The p-adic numbers

5.1.1. Definition of Qp. The field of real numbers R is defined as a com-
pletion of Q with respect to the normal absolute value on Q. Analogously, the
field of p-adic numbers Qp can be defined as a completion of Q with respect to a
non-archimedean absolute value. Throughout this section we fix a prime number
p ∈ Z.

Following [55, Definitions 2.1.2 and 2.1.4], the p-adic valuation on Z is the
function

ordp : Z \ {0} → Z
defined as follows: for each integer n ∈ Z, n ̸= 0, let ordp(n) be the unique positive
integer satisfying

n = pordp(n)n′, with p ∤ n′.
We extend ordp to the field of rational numbers as follows: if x = a/b ∈ Q \ {0},
then

ordp(x) = ordp(a)− ordp(b).

Also, for any x ∈ Q, we define the p-adic absolute value of x by

|x|p = p− ordp(x)

if x ̸= 0, and we set |0|p = 0.
One can check that | · |p is a non-archimedean absolute value:

• |x|p > 0 for all x ̸= 0,
• |x+ y|p ≤ max{|x|p, |y|p} for all x, y ∈ Q,
• |xy|p = |x|p |y|p for all x, y ∈ Q.

Theorem 5.1 ([55, Theorem 3.2.13]). There exists a field Qp with a non-
archimedean absolute value | · |p, such that the following statements hold.

(1) There exists an inclusion Q ↪→ Qp, and the absolute value induced by | · |p
on Q via this inclusion is the p-adic absolute value.
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(2) The image of Q under this inclusion is dense in Qp with respect to the
absolute value | · |p.

(3) Qp is complete with respect to the absolute value | · |p.
The field Qp satisfying (1), (2) and (3) is unique up to isomorphism of fields pre-
serving the absolute values.

Following [55, Definition 3.3.3], the ring of p-adic integers Zp is defined by:

Zp = {x ∈ Qp | |x|p ≤ 1}.

Proposition 5.2 ([55, Proposition 3.3.4]). For any x ∈ Zp, there exists a
Cauchy sequence αn converging to x, of the following type:

• αn ∈ Z satisfies 0 ≤ αn ≤ pn − 1;
• for every n we have αn ≡ αn−1 mod pn−1.

The sequence (αn) with these properties is unique.

Proposition 5.2 implies that any p-adic number a can be written uniquely as
a =

∑∞
n=n0

anp
n where 0 ≤ an ≤ p−1 and an0

> 0, which is called p-adic expansion

of a. We have that the absolute value defined in Theorem 5.1, |a|p, coincides with
p−n0 . This motivates to define ordp(a) := n0 and call it order of a.

We also need some properties about squares in Qp. We start with a result
known as Hensel’s lifting:

Theorem 5.3 (Hensel’s lifting, [55, Theorem 3.4.1 and Problem 112]). Let
f be a polynomial in Zp[x]. Let α1 be a p-adic integer, r = ord(f(α1)) and s =
ord(f ′(α1)). If r > 2s, there exists α ∈ Zp such that ord(α − α1) ≥ r − s and
f(α) = 0.

A consequence which is useful for us is the following:

Corollary 5.4. For a, b ∈ Z2, such that 2 ∤ a, b, a ≡ b mod 2n or a ≡ −b
mod 2n if and only if a2 ≡ b2 mod 2n+1.

Proof. If a ≡ ±b mod 2n, a = ±b+ 2nt for some t ∈ Z2, and

a2 = b2 ± 2n+1bt+ 22nt2 ≡ b2 mod 2n+1.

Suppose now that a2 ≡ b2 mod 2n+1. We apply Hensel’s lifting to f(x) = x2 − a2

and α1 = b. We have

r = ord(b2 − a2) ≥ n+ 1

and

s = ord(2b) = 1,

so there is α with ord(α − b) ≥ n and α2 − a2 = 0. This implies α = ±a, so
ord(±a− b) ≥ n, as we wanted. □

Another consequence is the characterization of squares in Qp:

Corollary 5.5. (1) If p ̸= 2, a ∈ Qp is a square if and only if ord(a) is
even and the digit of x at the position ord(a) is a square modulo p.

(2) If p = 2, a ∈ Qp is a square if and only if ord(a) is even and a ends in

001 (that is, a/2ord(a) ≡ 1 mod 8).
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Proof. (1) For the implication to the right: if a = b2, ord(a) = 2 ord(b),
and the leading digit of a is the square of that of b modulo p.

For the implication to the left: If ord(a) is even and the leading digit is
square, let a0 = a/pord(a). Let c ∈ Z such that c2 ≡ a0 mod p. We apply
Hensel’s lifting to x2 − a0 with α = c. We have r = ord(c2 − a0) > 0,
because the leading digits of c2 and a0 coincide, and s = ord(2c) = 0.
Then, there is b0 ∈ Zp such that b20 = a0. Taking b = b0p

ord(a)/2, we have

b2 = a0p
ord(a) = a.

(2) If a = b2, we have again ord(a) = 2 ord(b). Let t = ord(b). Then b =
2t(1 + 2c) for some c ∈ Z2 and

a = b2 = 22t(1 + 4c+ 4c2) = 22t + 22t+2c(c+ 1)

As c is integer, c(c+ 1) is even, and this ends in 001.
If ord(a) is even and a ends in 001, let a0 = a/2ord(a). We apply

Hensel’s lifting to x2 − a0 with α = 1. We have r = ord(1− a0) ≥ 3, s =
ord(2) = 1, and there is b0 ∈ Zp such that b20 = a0. Taking b = b02

ord(a)/2,

we have b2 = a02
ord(a) = a. □

The topology of the p-adic field is very different from the reals, despite both
being completions of the rationals with different metrics.

Theorem 5.6 ([55, Corollaries 3.3.6 and 3.3.7]). The following statements hold.

• The p-adic metric on Qp given by dp(a, b) = |a− b| satisfies the inequality
dp(a, c) ≤ max{dp(a, b), dp(b, c)}. This makes Qp an ultrametric space.

• Qp is totally disconnected, that is, all sets with more than one element are
disconnected.

• The balls in the ultrametric space Qp are given by

Bϵ(x0) = {x ∈ Qp | |x− x0|p ≤ ϵ}.

Replacing x0 by any other point in the ball does not change the ball.
• All balls are compact and open (in particular, Zp is compact and open).
Qp is locally compact.

Corollary 5.7. An open subset of Qp is a disjoint union of balls.

Proof. This is a consequence of the previous theorem and [117, Lemma 1.4].
□

The following result is a consequence of the absolute value being non-archimedean.

Proposition 5.8 ([55, Corollary 4.1.2]). A series in Qp converges if and only
if the sequence of its terms converges to zero.

Now we define some concepts we need concerning the topology of (Qp)n.
• For any n ∈ N, we define the p-adic norm on (Qp)n by

∥v∥ = max
1≤i≤n

|vi|.

• The balls in (Qp)n are defined with this norm:

Bϵ(x0) = {x ∈ (Qp)n | ∥x− x0∥ ≤ ϵ}.

The resulting topology in (Qp)n is the n-th product of the topology in Qp.
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• For any n,m ∈ N, the limit of a function f : U → (Qp)m, where U is an

open set in (Qp)n, at a point x0 ∈ U , is equal to y0 if and only if, for any
ϵ > 0, there is δ > 0 such that f(Bδ(x0)∩U) ⊂ Bϵ(y0); we denote this by
limx→x0 f(x) = y0.

• f is continuous at x0 ∈ U if limx→x0 f(x) = f(x0).
• f is continuous at U if it is continuous in each x0 ∈ U (this is equivalent

to the standard definition of continuous function between two topological
spaces).

Because of Theorem 5.6, continuous functions look very different from their
real counterparts. For example, the functions x 7→ ord(x) and x 7→ |x| are both
continuous in Qp \ {0}, despite having discrete images.

p-adic differentiation is defined in analogy to the real case. Let U ⊂ (Qp)n be
an open set. (Actually, by Corollary 5.7, we can take U to be a ball.) A function
f : U → (Qp)m is differentiable at x ∈ U if there is a linear map df(x) : (Qp)n →
(Qp)m such that

lim
v→0

∥f(x+ v)− f(x)− df(x)(v)∥
∥v∥

= 0.

It is easy to check that if f : U → (Qp)m is differentiable at x, then the limit

∂f

∂xi
(x) := lim

t→0

f(x+ tei)− f(x)

t

exists and df(x)(v) =
∑n
i=1

∂f
∂xi

(x)vi. The derivatives of elementary functions give

the same result in the real and p-adic cases. For example, d
dxx

n = nxn−1 and
d
dx

√
x = 1

2
√
x
. The easiest way of seeing this is just taking the limits:

lim
t→0

(x+ t)n − xn

t
= lim
t→0

(nxn−1 +

(
n

2

)
xn−2t+ . . .) = nxn−1;

lim
t→0

√
x+ t−

√
x

t
= lim
t→0

x+ t− x

t(
√
x+ t+

√
x)

=
1

2
√
x
.

The previous results convey, at a formal level, that there is a high degree
of similarity between the real and p-adic cases. However, upon closer analysis,
one realizes that this is not necessarily the case. Indeed, consider the function
f : Qp → Qp given by f(x) =

∑∞
n=ord(x) anp

2n where x =
∑∞
n=ord(x) anp

n is the

p-adic expansion of x. We can check that |f(x+ t)− f(x)| = p− ord(f(x+t)−f(x)) =
p−2 ord(t) = |t|2 which implies that the function is continuous, and also that the
function has zero derivative everywhere. In the real case, such a function would
necessarily be constant. However, f is not only non-constant, but it is actually
injective.

5.1.2. p-adic initial value problems. It is not a good idea, at least in prin-
ciple, to use differentiable functions in general in the context of p-adic symplectic
geometry: for any differential equation, the solution will not be unique, not even
locally, because we could add an injective function with zero derivative to the so-
lution and we will have another solution. The workaround is to restrict to analytic
functions.

A power series in (Qp)n is given by f(x) =
∑
I∈Nn aI(x−x0)I where xI means

xi11 . . . x
in
n and aI are coefficients in Qp. The following result is well-known and will

be useful to us later.
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Proposition 5.9 ([55, Proposition 4.2.1]). Consider a power series f in one
variable in Qp. The convergence radius of the series is given by

ρ =
1

lim sup i
√
|ai|

= p−r where the convergence order is r = − lim inf
ord(ai)

i

Then:

• If ρ = 0 (that is, r = ∞), then f(x) converges only when x = x0.
• If ρ = ∞ (that is, r = −∞), then f(x) converges for every x ∈ Qp.
• If 0 < ρ < ∞ and limi→∞ |ai|ρi = 0 (that is, limi→∞ ord(ai) + ir = ∞),
then f(x) converges if and only if |x| ≤ ρ (that is, ord(x) ≥ r).

• If 0 < ρ <∞ and |ai|ρi does not tend to zero, then f(x) converges if and
only if |x| < ρ (that is, ord(x) > r).

Let U ⊂ (Qp)n be an open set. A function f : U → Qp is analytic [117, page
38] if U can be expressed as U =

⋃
i∈I Ui where Ui = xi + pri(Zp)n, for some

xi ∈ (Qp)n and ri ∈ Z, and there is a power series fi converging in Ui such that
f(x) = fi(x) for every x ∈ Ui.

Proposition 5.10 (p-adic analytic initial value problem). Let U, V be open
subsets of Qp. An initial value problem, of the form

dy

dx
= f(x, y)

y(x0) = y0

where f : U × V → Qp is analytic, x0 ∈ U and y0 ∈ V , has an analytic solution in
a neighborhood of x0. The solution is locally unique among analytic functions, that
is, any other solution coincides with it near x0.

Proof. We may assume without loss of generality (shrinking U if necessary)
that f is given by a power series in U , centered at x0. Take y(x) =

∑∞
i=0 ai(x−x0)i.

The initial value implies that a0 = y0. The differential equations give
∞∑
i=0

aii(x− x0)
i−1 = f(x,

∞∑
i=0

ai(x− x0)
i).

The degree k part at the left-hand side gives (k + 1)ak+1 and the right-hand side
gives a polynomial in a0, . . . , ak. Hence ak+1 is uniquely determined from the
previous ones. The resulting y(x) is a solution in a neighborhood of the origin (the
intersection of U with the convergence domain of the series), and it is locally unique
because any other analytic solution would have the same power series around x0
and so it coincides with y near this point. □

Remark 5.11. Proposition 5.10 implies that we can now speak of “the solution”
of an analytic differential equation, maybe not in the sense of “the unique solution”,
but in the sense of “the germ of every solution”.

5.1.3. p-adic analytic manifolds. Now we review some concepts for p-adic
differential geometry, which can be found in the literature (see for example [117]),
starting with the concept of a p-adic manifold. The following definitions are
straightforward extensions of the real case. Following [117, Sections 7-8], given
a Hausdorff topological space M and an integer n, an n-dimensional p-adic ana-
lytic atlas is a set of functions A = {ϕ : Uϕ → Vϕ}, where Uϕ ⊂M and Vϕ ⊂ (Qp)n
are open subsets, such that
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• ϕ is a homeomorphism between Uϕ and Vϕ;
• for any ϕ, ψ ∈ A, the change of charts ψ ◦ϕ−1 : ϕ(Uϕ∩Uψ) → ψ(Uϕ∩Uψ)
is bi-analytic, i.e. it is analytic with analytic inverse.

Such an M together with such an atlas is called an n-dimensional p-adic analytic
manifold. A maximal atlas for M has a chart for each open set. The integer n is
called the dimension of M .

Now let M and N be p-adic analytic manifolds of dimensions m and n respec-
tively, a map F :M → N is analytic if, for any u ∈M , there are neighborhoods Uϕ
of u and Uψ of F (u) such that ψ ◦F ◦ϕ−1 is analytic (as a function from a subset of
(Qp)m to a subset of (Qp)n). F is bi-analytic, or an isomorphism of p-adic analytic
manifolds, if it is bijective and F and F−1 are analytic.

Theorem 5.12 ([117, Proposition 8.6]). Let p be a prime number. For a p-adic
analytic manifold M the following conditions are equivalent.

(1) M is paracompact (any open covering can be refined to a locally finite
one).

(2) M is strictly paracompact (any open covering can be refined to one con-
sisting in pairwise disjoint sets).

(3) M is an ultrametric space (its topology can be defined by a metric that
satisfies the strict triangle inequality).

Corollary 5.13. Let p be a prime number. Any paracompact p-adic analytic
manifold is isomorphic to a disjoint union of p-adic analytic balls. Hence, a compact
p-adic analytic manifold is isomorphic to a finite disjoint union of p-adic analytic
balls.

Proof. This is a consequence of Theorem 5.12 and Corollary 5.7. □

Corollary 5.13 implies that, when defining an atlas for a manifold, we can take
the open sets in the atlas as disjoint, and the charts sending them to balls in (Qp)n.

The last part of Corollary 5.13 was strengthened by Serre [119]: two finite
disjoint unions of balls are isomorphic if and only if the corresponding numbers of
balls differ by a multiple of p− 1. That is, there are exactly p− 1 compact p-adic
manifolds, modulo isomorphism.

5.1.4. p-adic analytic functions, vector fields and forms. Throughout
this section p is a fixed prime number. The content of this section is directly
analogous to the real case, we include it here for completeness and also because it
gives us the chance to discuss some peculiarities of the p-adic case which do not
appear in the real case.

Given a p-adic analytic manifold M as defined in Section 5.1.3, a function
f : M → Qp is (p-adic) analytic [117, page 49] if it is analytic as a map between
manifolds, that is, for the charts ϕ of M , f |Uϕ

◦ ϕ−1 is analytic on ϕ(Uϕ). Let

Ω0(M) be the space of analytic maps M → Qp.
A tangent vector to q ∈M is a linear map v : Ω0(M) → Qp such that v(fg) =

v(f)g(q)+f(q)v(g) for all f, g ∈ Ω0(M). Let TqM be the space of tangent vectors to
q. IfM is a p-adic analytic manifold, then TM has also the structure of an analytic
manifold. An analytic vector field on M is an analytic map M → TM that assigns
a tangent vector to each point, or equivalently, a linear map X : Ω0(M) → Ω0(M)
such that X(fg) = X(f)g + fX(g) for all f, g ∈ Ω0(M). Let X(M) be the space
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of vector fields in M . An analytic k-form in M is a linear antisymmetric map
α : X(M)k → Ω0(M). Let Ωk(M) be the space of k-forms in M .

The pullback F ∗(f) of f ∈ Ω0(N) by F and the push-forward F∗(v) of a vector
v ∈ TqM are defined exactly as in the real case. Similarly, if F is bi-analytic, the
push-forward of a vector field X ∈ X(M) is defined as in the real case and denoted
by F∗(X) ∈ X(N). Similarly for the pullback of a form α ∈ Ωk(N), denoted as
usual by F ∗(α) ∈ Ωk(M).

In the linear case whereM is an open subset of (Qp)n, as (Qp)n is paracompact,
analytic functions can be given by a family of power series, each one converging in
an element U of a partition of M in open sets (actually, balls):

f(x1, . . . , xn) =
∑
I∈Nn

aI(x− x0)
I

for any x0 ∈ U and some coefficients aI . This allows us to define the vector field
∂/∂xi ∈ X(M), for M open in (Qp)n is given by

∂

∂xi
(f) =

∂f

∂xi
=
∑
I∈Nn

aI ij(x− x0)
Ij

for f ∈ Ω0(M), where I = (i1, . . . , in) and Ij is defined as (i1, . . . , ij − 1, . . . , in).
It follows that for any function f ∈ Ω0(M) and x0 ∈ M , there are functions
gi ∈ Ω0(M) such that

(24) f(x) = f(x0) +

n∑
i=1

(xi − x0i)g(x)

and g(x0) = ∂f
∂x (x0). Also, for any X ∈ X(M) and f ∈ Ω0(M), we have that

X(f) =
∑n
i=1X(xi)

∂f
∂xi

. This says that the vector fields ∂/∂xi form a basis of the

space X(M), or locally, that the vectors (∂/∂xi)q form a basis of the vector space
Tq(M).

In the real case, the proof of the formula (24) is usually done by a method
involving integrals (as for example in [54, Theorem 3.4]). One has to be careful
if one wants to derive it for p-adic smooth functions (which we have not defined,
since we are restricting to the analytic case, but the definition is the natural one)
because it is more delicate to work with integrals. However, the formula can still
be derived without integrals, by using induction on n. Supposing it is true for n,
to prove it for n+ 1 we only need to find gn+1 such that

f(x1, . . . , xn, xn+1) = f(x1, . . . , xn, x0,n+1)+(xn+1−x0,n+1)gn+1(x1, . . . , xn, xn+1).

The formula already gives the value of gn+1 for xn+1 ̸= x0,n+1. For xn+1 = x0,n+1

we take gn+1 to be the partial derivative of f with respect to xn+1 in those points.
By smoothness of f , this function is also continuous on those points, and in fact
smooth.

Finally, if M ⊂ (Qp)n and f ∈ Ω0(M), the differential form df is defined as
the map sending a vector field X to X(f). In particular, if

X =

n∑
i=1

fi
∂

∂xi
, fi :M → Qp,

we have dxi(X) = X(xi) = fi. Hence, the 1-forms dxi are a basis of Ω1(M), dual
to the basis of X(M).
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All of the previous definitions generalize to the context of p-adic analytic man-
ifolds. Indeed, let M be a p-adic analytic manifold and U = Uϕ an open set of
M . The vector field ∂/∂xi ∈ X(U) is defined as the push-forward by ϕ of the
corresponding vector field in (Qp)n, and the 1-forms dxi ∈ Ω1(U) are defined as
the pullback of the corresponding forms in (Qp)n. (With this definition, the vector
fields ∂/∂xi and the 1-forms dxi are again bases of their respective spaces.)

The wedge operation ∧ is defined as usual, and similarly for the differential
operator

d(f · dxI) := df ∧ dxI ,

extending linearly to all forms, where dxI is shorthand for dxi1 ∧ . . .∧dxik . A form
is closed if its differential is 0. Also, given a k-form ω and a vector field X, ı(X)ω
is defined as usual.

We can see df(m) as the vector whose coordinates are the partial derivatives
of f :

df(m)i =
∂f(m)

∂xi
In the same way, we define the Hessian of f , which we denote as d2f , the matrix

with the second derivatives of f as entries:

d2f(m)ij =
∂2f(m)

∂xi∂xj
.

A critical point of f :M → Qp is a point m ∈M such that df(m) = 0.

5.2. Symplectic geometry and the Weierstrass-Williamson classification

5.2.1. Real and p-adic symplectic geometry.

Definition 5.14. Let n be a positive integer.

• Given a field F , a symplectic vector space over F is a pair (V, ω) where
V is a 2n-dimensional vector space over F and ω : V × V → F is a non-
degenerate bilinear map such that ω(v, v) = 0 for all v ∈ V . We say that
ω is a linear symplectic form. If the characteristic of F is not 2, the last
condition is equivalent to ω being antisymmetric: ω(v, w) = −ω(w, v) for
all v, w ∈ V .

• A real symplectic manifold is a pair (M,ω) whereM is a real manifold and
ω is a closed non-degenerate 2-form on M . We say that ω is a symplectic
form. At each point, ω gives a linear symplectic form.

• Let p be a prime number. A p-adic analytic symplectic manifold is a
pair (M,ω) where M is a p-adic analytic manifold and ω is a closed non-
degenerate 2-form on M . We say that ω is a symplectic form. At each
point, ω gives a linear symplectic form. For example, if S is a p-adic
analytic manifold, then the canonical symplectic form on M = T∗S is
also analytic by construction.

Let us call Ω0 the matrix of the standard symplectic form ω0 on R2n, that is,
a block-diagonal matrix of size 2n with all blocks equal to(

0 1
−1 0

)
.

Definition 5.15. Let n be a positive integer.
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• Given a field F , a linear symplectomorphism between two symplectic vec-
tor spaces (V1, ω1) and (V2, ω2) over F is a linear isomorphism ϕ : V1 → V2
that preserves the symplectic form, that is, ϕ∗ω2 = ω1. In this case we
say that ω1 and ω2 are linearly symplectomorphic.

• A matrix S ∈ M2n(F ) is symplectic if STΩ0S = Ω0, that is, it leaves
invariant the standard symplectic form.

• Let (M1, ω1) and (M2, ω2) be real (resp. p-adic analytic) symplectic man-
ifolds. Let m ∈ M . A local linear symplectomorphism ϕ : U1 → U2

centered at m is a diffeomorphism (resp. p-adic analytic diffeomorphism)
between some open sets U1 ⊂ M1 and U2 ⊂ M2, such that m ∈ U1, and
which yields a linear symplectomorphism Tmϕ : TmM1 → Tϕ(m)M2.

• Let (M,ω) be a real or p-adic symplectic manifold. By linear symplectic
coordinates (x1, ξ1, ..., xn, ξn) with the origin a point m ∈ M we mean
coordinates given by a local linear symplectomorphism centered at m,
that is, ϕ∗ωm = ω0. In terms of matrices this last condition can be
formulated as STΩS = Ω0, where S, Ω and Ω0 are the matrices of ϕ, ωm
and ω0.

Remark 5.16. By definition, an automorphism of a symplectic space is a linear
symplectomorphism if and only if its matrix is a symplectic matrix.

Given a symplectic manifold (M,ω) (real or p-adic) and a function H : M →
Qp, there is a unique vector field that satisfies

(25) ı(XH)ω = dH.

As in the real case, XH is called the Hamiltonian vector field associated to H. We
recall the proof of this fact, which is the same in the real and the p-adic case. Let
q ∈M . We may assume that ωq has the form

dx1 ∧ dy1 + . . .+ dxn ∧ dyn

in coordinates (x1, y1, . . . , xn, yn) near q, and dH(q) =
∑n
i=1

(
∂H
∂xi

(q)dxi +
∂H
∂yi

(q)dyi

)
.

Hence XH(q) =
∑n
i=1

(
∂H
∂yi

(q) ∂
∂xi

− ∂H
∂xi

(q) ∂
∂yi

)
.

The Poisson bracket {·, ·} of two p-adic analytic functions f, g : M → Qp is
defined by

{f, g} = ω(Xf , Xg).

Definition 5.17 (Pelayo-Voevodsky-Warren [98, Definition 7.1], with a slight
change in item (2), for the p-adic case). Let p be a prime number and let (M,ω)
be a symplectic manifold (real or p-adic). We say that a map

F := (f1, . . . , fn) : (M,ω) → (Qp)n

is an integrable system if two conditions hold:

(1) The functions f1, . . . , fn satisfy {fi, fj} = 0 for all 1 ≤ i ≤ j ≤ n;
(2) The set where the n differential 1-forms df1, . . . ,dfn are linearly indepen-

dent is dense in M .

In [98, Definition 7.1], the definition used was slightly different because the
second condition was that the set where the n differential 1-forms are linearly
dependent has p-adic measure zero instead, as it is usually assumed in the real
case. We now think that this condition is too restrictive, because sets with measure
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zero are less frequent in the p-adic case than in the real case, which explains the
change in the definition.

5.2.2. The real Weierstrass-Williamson classification. For a symmetric
matrix M ∈ M2n(R) such that the eigenvalues of Ω−1

0 M are pairwise distinct, the
Weierstrass-Williamson classification says that there is a symplectic matrix S such
that STMS = N , where N is a block-diagonal matrix with each block equal to

(
ri 0
0 ri

)
,

(
0 ri
ri 0

)
or


0 ri+1 0 ri
ri+1 0 −ri 0
0 −ri 0 ri+1

ri 0 ri+1 0

 ,

for some ri ∈ R, 1 ≤ i ≤ n, which are called elliptic block, hyperbolic block and
focus-focus block.

Quite often the Weierstrass-Williamson classification is stated only for positive-
definite matrices: in fact the condition that all eigenvalues of Ω−1

0 M are pairwise
distinct is implied by M being positive definite, and in this case only the elliptic
block appears. (For applications to integrable systems the condition on Ω−1

0 M
“translates” to the notion of a critical point being non-degenerate; we’ll see this
later.) In fact, this is the particular case of what is often called Williamson’s
theorem (that is, what we call the Weierstrass-Williamson classification) which is
due to Weierstrass [136] (we learned this fact from the book by Hofer and Zehnder
[62, Theorem 8]).

Of course, the case which Williamson treats is much more complicated and
interesting: he is able to deal with the completely general situation in which the
eigenvalues are not necessarily pairwise distinct. The problem with this case is that
it is not feasible to write all the possibilities, for arbitrary dimension, in a compact
form because the size of the blocks which are needed can increase without bound.
However Williamson does provide a complete list of 4-by-4 matrix normal forms at
the end of his paper [142]. These are the possibilities, expressed in a different way
to align with the conventions of our paper:

0 r 0 0
r 0 0 0
0 0 0 s
0 0 s 0

 ,


0 0 0 0
0 a 0 0
0 0 0 s
0 0 s 0

 ,


0 0 0 0
0 a 0 0
0 0 0 0
0 0 0 b

 ,


0 r 0 0
r 0 1 0
0 1 0 r
0 0 r 0

 ,


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 a

 ,


0 r 0 0
r 0 0 0
0 0 s 0
0 0 0 s

 ,


0 0 0 0
0 a 0 0
0 0 s 0
0 0 0 s

 ,


r 0 0 0
0 r 0 0
0 0 s 0
0 0 0 s

 ,


a 0 0 r
0 0 −r 0
0 −r a 0
r 0 0 0

 ,


0 s 0 r
s 0 −r 0
0 −r 0 s
r 0 s 0

 ,

where r, s ∈ R and a, b ∈ {1,−1}. Since in the present paper we only provide a
classification of p-adic 4-by-4 matrices (also of p-adic 2-by-2 matrices, but this case
is simpler), it is precisely the list above which is most relevant to us.
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2 ) F

R2

R4

Figure 1. Normal forms of regular and critical points of elliptic-
elliptic, focus-focus and elliptic-regular type of an integrable sys-
tem F : R4 → R2. Some of these can be normal forms of Theorem
5.19 (see Remark 5.24).

5.3. Our results

5.3.1. Main results about integrable systems: Theorems 5.19, 5.22
and 5.26. In order to state our classifications we need to define the following
special sets of numbers. Recall that a quadratic residue modulo p is an integer
which is congruent to a perfect square modulo p; if this does not hold, then the
integer is called a quadratic non-residue2 modulo p. Quadratic non-residues play a
crucial role in our main theorems, for which we will need the following definition.

Definition 5.18 (Non-residue sets and coefficient functions). Let p be a prime
number. If p ≡ 1 mod 4, let c0 be the smallest quadratic non-residue modulo p.
We define the non-residue sets

Xp =


{1, c0, p, c0p, c20p, c30p, c0p2} if p ≡ 1 mod 4;

{1,−1, p,−p, p2} if p ≡ 3 mod 4;

{1,−1, 2,−2, 3,−3, 6,−6, 12,−18, 24} if p = 2.

Yp =


{c0, p, c0p} if p ≡ 1 mod 4;

{−1, p,−p} if p ≡ 3 mod 4;

{−1, 2,−2, 3,−3, 6,−6} if p = 2.

We also define the coefficient functions Cki : Yp×(Qp)4 → Qp and Dk
i : Yp×(Qp)4 →

Qp, for k ∈ {1, 2}, i ∈ {0, 1, 2}, by

C1
0(c, t1, t2, a, b) =

ac

2(c− b2)
, C1

1(c, t1, t2, a, b) =
b

b2 − c
, C1

2(c, t1, t2, a, b) =
1

2a(c− b2)
,

C2
0(c, t1, t2, a, b) =

abc

2(b2 − c)
, C2

1(c, t1, t2, a, b) =
c

c− b2
, C2

2(c, t1, t2, a, b) =
b

2a(b2 − c)
,

2For any prime p > 2, the number of quadratic non-residues modulo p is (p − 1)/2. For
example, if p = 17, the quadratic non-residues modulo 17 are 3, 5, 6, 7, 10, 11, 12 and 14.
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D1
0(c, t1, t2, a, b) = − t1 + bt2

2a
, D1

1(c, t1, t2, a, b) = −bt1−ct2, D1
2(c, t1, t2, a, b) = −ac(t1 + bt2)

2
,

D2
0(c, t1, t2, a, b) = −bt1 + ct2

2a
, D2

1(c, t1, t2, a, b) = −c(t1+bt2), D2
2(c, t1, t2, a, b) = −ac(bt1 + ct2)

2
.

The choice of c0 as the least quadratic residue is not essential, in the sense
that the normal forms that appear in the upcoming forms are “equivalent” (in the
precise sense of Propositions 8.3 and 8.14).

Now we state our main results about integrable systems, which concern non-
degenerate systems (for results about degenerate systems, which are more technical,
see Sections 9.2.2 and 9.2.4). We refer to Figures 2 and 3 for a depiction of some
of the cases covered by Theorem 5.19 and to Figure 1 for an illustration of the real
case.

Let (M,ω) be a p-adic analytic symplectic 4-dimensional manifold. In the
results below we use the following terminology. By linear symplectic coordinates
(x, ξ, y, η) with the origin at a point m ∈ M we mean coordinates given by a local
linear symplectomorphism ϕ : ((Qp)4, ω0) → (M,ω), centered at (0, 0, 0, 0) (that is,
such that ϕ(0, 0, 0, 0) = m and ϕ∗ωm = ω0), where ω0 is the standard symplectic
form on (Qp)4. In terms of matrices this means that STΩS = Ω0, where S, Ω and
Ω0 are the matrices of ϕ, ωm and the standard symplectic form ω0 (see Definition
5.14 for details). For the notion of critical point of p-adic integrable system and its
rank see Definition 9.10.

Theorem 5.19 (p-adic integrable local linear models in dimension 4). Let p be
a prime number. Let Xp, Yp, Cki ,Dk

i be the non-residue sets and coefficient functions
in Definition 5.18. Let (M,ω) be a p-adic analytic symplectic manifold of dimension
4 and let F : (M,ω) → (Qp)2 be a p-adic analytic integrable system. Let m be a
non-degenerate critical point of F . Then there exist linear symplectic coordinates
(x, ξ, y, η) with the origin at m and an invertible matrix B ∈ M2(Qp) such that in
these coordinates we have:

(26) B ◦ (F − F (m)) = (g1, g2) +O(3),

where the expression of (g1, g2) depends on the rank of m ∈ {0, 1}. If m is a rank
0 critical point then one of the following situations occurs:

(1) There exist c1, c2 ∈ Xp such that g1(x, ξ, y, η) = x2 + c1ξ
2, g2(x, ξ, y, η) =

y2 + c2η
2;

(2) There exists c ∈ Yp such that g1(x, ξ, y, η) = xη + cyξ, g2(x, ξ, y, η) =
xξ + yη;

(3) There exist c, t1 and t2 corresponding to one row of Table 1 and (a, b) ∈
{(1, 0), (a1, b1)}, where (a1, b1) is given in the row in question, such that

gk(x, ξ, y, η) =

2∑
i=0

Cki (c, t1, t2, a, b)xiy2−i +
2∑
i=0

Dk
i (c, t1, t2, a, b)ξ

iη2−i,

for k ∈ {1, 2}.
Otherwise, if m is a rank 1 point, then there exists c ∈ Xp such that g1(x, ξ, y, η) =
x2 + cξ2 and g2(x, ξ, y, η) = η.

Furthermore, if there are two sets of linear symplectic coordinates in which F
has one of these forms, then the pair (g1, g2) corresponding to the first set of linear
symplectic coordinates and the pair (g′1, g

′
2) corresponding to the second set of linear
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symplectic coordinates are in the same case; if it is case (2) or (3), or a rank 1
point, they coincide, and in case (1) they coincide up to ordering.

Remark 5.20. There are many more local linear models of p-adic integrable
systems than real ones, so from a physical viewpoint they should be able to model
physical or other phenomena beyond the applications with real coefficients, see for
example [59, 68, 76] and the references therein. For applications in biology see
[3, 40].

Remark 5.21. Identifying a Hessian with its quadratic form, the formula (26)
would be written d2F = (g1, g2). In the expression for g1 and g2 in any of the
cases above, if we change the values of the parameters, the resulting functions still
form an integrable system, but they are not a normal form. We can apply the
theorem to these new functions, resulting in a new normal form (g′1, g

′
2) linearly

symplectomorphic to (g1, g2), in the same or a different case.

Theorem 5.22 (Number of p-adic integrable local linear models, in dimension
4). Let p be a prime number. Let Xp, Yp, Cki ,Dk

i be the non-residue sets and co-
efficient functions in Definition 5.18. Let (M,ω) be a p-adic analytic symplectic
4-manifold. Then the following statements hold:

(1) If p ≡ 1 mod 4, there are exactly 49 normal forms for a rank 0 non-
degenerate critical point, and exactly 7 normal forms of a rank 1 non-
degenerate critical point, of a p-adic analytic integrable system F : (M,ω) →
(Qp)2 up to local linear symplectomorphisms centered at the critical point;

(2) If p ≡ 3 mod 4, there are exactly 32 normal forms for a rank 0 non-
degenerate critical point, and exactly 5 normal forms of a rank 1 non-
degenerate critical point, of a p-adic analytic integrable system F : (M,ω) →
(Qp)2 up to local linear symplectomorphisms centered at the critical point;

(3) If p = 2, there are exactly 211 normal forms for a rank 0 non-degenerate
critical point, and exactly 11 normal forms of a rank 1 non-degenerate
critical point, of a p-adic analytic integrable system F : (M,ω) → (Qp)2
up to local linear symplectomorphisms centered at the critical point.

In the three cases above, the normal forms for a rank 0 point are given by{
(x2 + c1ξ

2, y2 + c2η
2) : c1, c2 ∈ Xp

}
∪
{
(xη + cyξ, xξ + yη) : c ∈ Yp

}

∪
{( 2∑

i=0

C1
i (c, t1, t2, a, b)x

iy2−i +

2∑
i=0

D1
i (c, t1, t2, a, b)ξ

iη2−i,

2∑
i=0

C2
i (c, t1, t2, a, b)x

iy2−i +

2∑
i=0

D2
i (c, t1, t2, a, b)ξ

iη2−i
)
:

(a, b) ∈
{
(1, 0), (a1, b1)

}
, c, t1, t2, a1, b1 in one row of Table 1

}
and those for a rank 1 point are given by{

(x2 + cξ2, η) : c ∈ Xp

}
.
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p ≡ 1 mod 4

c t1 t2 a1 b1
c0 p 0 p 1/p

0 1 p 0

0 p p 0

p c0 0 1 1

0 1 c0 0
0 c0 c0 0

c0p c0 0 1 1
0 1 c0 0

0 c0 c0 0

p ≡ 3 mod 4

c t1 t2 a1 b1
−1 p 0 b0 a0/b0

a0 b0 p 0
pa0 pb0 p 0

p −1 0 1 1
0 1 −1 0

−p −1 0 1 1
0 1 −1 0

p = 2 ∧ c = −1

t1 t2 a1 b1
2 0 1 2

3 0 1 1

6 0 1 1

1 1 3 0

3 3 3 0

1 2 2 0

2 4 2 0

−1 3 2 0

−2 6 2 0

p = 2 ∧ c = 2

t1 t2 a1 b1
−1 0 1 2

3 0 1 1

−3 0 1 1

0 1 −1 0

0 3 −1 0

1 1 −1 0

3 3 −1 0

2 1 3 0

−2 −1 3 0

6 3 3 0

−6 −3 3 0

p = 2 ∧ c = −2

t1 t2 a1 b1
−1 0 1 1

3 0 1 −2

−3 0 1 1

0 1 3 0

0 3 3 0

1 1 −1 0

−1 −1 −1 0

−2 1 −1 0

2 −1 −1 0

p = 2 ∧ c = 3

t1 t2 a1 b1
−1 0 1 1

2 0 1 1

−2 0 1 3

0 1 2 0

0 2 2 0

1 1 −1 0

−1 −1 −1 0

3 1 −1 0

−3 −1 −1 0

p = 2 ∧ c = −3

t1 t2 a1 b1
−1 0 2 1/2

2 0 2 1/2

−2 0 1 −6

0 1 −1 0

0 2 −1 0

1 2 2 0

−1 −2 2 0

2 4 2 0

−2 −4 2 0

−6 1 −1 0

−12 2 −1 0

p = 2 ∧ c = 6

t1 t2 a1 b1
−1 0 1 1

3 0 1 6

−3 0 1 1

0 1 3 0

0 3 3 0

1 1 −1 0

−1 −1 −1 0

6 1 −1 0

−6 −1 −1 0

p = 2 ∧ c = −6

t1 t2 a1 b1
−1 0 1 −6

3 0 1 1

−3 0 1 1

0 1 −1 0

0 3 −1 0

1 1 −1 0

3 3 −1 0

−6 1 3 0

6 −1 3 0

−18 3 3 0

18 −3 3 0

Table 1. Parameters for the normal form (3) of Theorem 5.19. In
the table, for p ≡ 1 mod 4, c0 is the smallest quadratic non-residue
modulo p. For p ≡ 3 mod 4, a0 and b0 are such that a20+ b

2
0 ≡ −1

mod p. For p = 2 there are many more possible parameters, and
they are separated by the value of c.
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x = y = 0

ξ = η = 0

y = ix, η = iξy = −ix, η = −iξ

Figure 2. Symbolic representation of 2-dimensional fiber of focus-
focus model if p ≡ 1 mod 4, as a case of point (1) of Theorem 5.19,
which coincides with the elliptic-elliptic model. The four “cones”
are 2-dimensional planes in 4-dimensional space.

Remark 5.23. In the real case, there are exactly 4 normal forms for a rank 0
non-degenerate critical point:{

(x2 + ξ2, y2 + η2), (x2 + ξ2, yη), (xξ, yη), (xη − yξ, xξ + yη)
}

and exactly 2 normal forms for a rank 1 non-degenerate critical point:{
(x2 + ξ2, η), (xξ, η)

}
.

Remark 5.24. In the p-adic category, the elliptic-elliptic and elliptic-regular
points are normal forms of Theorem 5.19: the former is a rank 0 point in case (1)
with c1 = c2 = 1, and the latter is a rank 1 point with c = 1. The focus-focus point
may also appear as a normal form, in case (2) with c = −1, but only if −1 ∈ Yp,
which happens if p ̸≡ 1 mod 4. Actually, if p ≡ 1 mod 4, the normal form of a
focus-focus point is elliptic-elliptic; hence, the focus-focus and elliptic-elliptic points
are linearly symplectomorphic if and only if p ≡ 1 mod 4.

Definition 5.25. Let p be a prime number and let n be a positive integer. To
each partition P = (a1, . . . , ak) of n we associate the function

fP,p(x1, ξ1, . . . , xn, ξn) =

k∑
i=1

x2bi−1+1

2
+

bi−1∑
j=bi−1+1

ξjxj+1 +
pξ2bi
2

 ,

where b0 = 0 and bi =
∑i
j=0 aj , for i ∈ {1, . . . , k}.
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x = y = 0

ξ = η = 0

Figure 3. Symbolic representation of 2-dimensional fiber of focus-
focus model if p ̸≡ 1 mod 4, as a case of point (2) of Theorem 5.19,
which coincides with the fiber in the real case. The two “cones”
are actually 2-dimensional planes in 4-dimensional space that meet
at a point.

Theorem 5.26 (Number of p-adic integrable local linear models, arbitrary
dimension). Let n be a positive integer. Let p be a prime number. The number of
local linear normal forms of p-adic analytic integrable systems on 2n-dimensional
p-adic analytic symplectic manifolds at a rank 0 non-degenerate critical point, up
to local linear symplectomorphisms centered at the critical point, grows at least with

eπ
√

2n/3

4n
√
3
.

Explicitly, for any two partitions P and Q of n, any two p-adic analytic integrable
systems on a 2n-dimensional p-adic analytic manifold containing fP,p and fQ,p,
respectively, as a component of their corresponding local linear normal forms, are
not equivalent by local linear symplectomorphisms centered at the origin, where fP,p
is as given in Definition 5.25.

Remark 5.27. These results indicate that a global theory of p-adic integrable
systems, which will probably be based on gluing local models, will include a large
number of phenomena which do not occur in the real case. We have computed
explicit lower bounds of the number of normal forms in Table 2.
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2n R Q2 Q3 Q5 Q7

2 2 11 5 7 5
4 4 211 32 49 32
6 6 1883 123 234 129
8 9 21179 495 1054 525
10 12 161343 1595 4021 1787

Table 2. The number of families of normal forms of integrable
systems on R2n and (Qp)2n at a rank 0 critical point. Data is
extracted from Table 3. For the p-adic case in dimension greater
than 4, the numbers are only lower bounds. The actual number of
forms might be even larger.

5.3.2. Main results concerning matrices: Theorems 5.28–5.37. In this
section we state our main classification results concerning normal forms of p-adic
matrices in dimensions 2 and 4: Theorems 5.28–5.37. We will use these results as
stepping stones to prove the results concerning integrable systems (stated in Section
5.3.1), but they are also of independent interest and they can be read independently
of all the material concerning p-adic analytic integrable systems and p-adic analytic
functions.

The classification is completely different for p = 2 than p ̸= 2; for the latter
case, in turn, it depends on the class of p modulo 4.

Theorem 5.28 (p-adic classification, 2-by-2 case). Let p be a prime number.
Let M ∈ M2(Qp) be a symmetric matrix. Let Xp, Yp be the non-residue sets in
Definition 5.18. Then, there exists a symplectic matrix S ∈ M2(Qp) and either
c ∈ Xp and r ∈ Qp, or c = 0 and r ∈ Yp ∪ {1}, such that

STMS =

(
r 0
0 cr

)
.

Furthermore, if two symplectic matrices S and S′ reduce M to the normal form of
the right hand side of the equality above, then the two normal forms are equal.

In Theorem 5.28 we note that we are not saying that the value of (c, r) is unique
(which essentially is, but not quite), but that the canonical matrix obtained at the
right-hand side is unique.

In the statement below, and also Theorem 5.34, we use the following terminol-
ogy.

Definition 5.29. Let n be a positive integer. Let p be a prime number. We
say that two (2n)-by-(2n) matrices M and M ′ with coefficients in Qp are equal up
to multiplication by a symplectic matrix if there exists a (2n)-by-(2n) symplectic
matrix S with coefficients in Qp such that STMS =M ′ (same definition works for
arbitrary fields).

Theorem 5.30 (Number of inequivalent p-adic 2-by-2 matrix normal forms).
Let p be a prime number. Let Xp, Yp be the non-residue sets in definition 5.18.
Then the following statements hold.

(1) If p ≡ 1 mod 4, there are exactly 7 infinite families of normal forms of
2-by-2 p-adic matrices with one degree of freedom up to multiplication by
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a symplectic matrix:{{
r

(
1 0
0 c

)
: r ∈ Qp

}
: c ∈ Xp

}
,

and exactly 4 isolated normal forms, which correspond to c = 0:{(r 0
0 0

)
: r ∈ Yp ∪ {1}

}
.

(2) If p ≡ 3 mod 4, there are exactly 5 infinite families of normal forms of
2-by-2 p-adic matrices with one degree of freedom up to multiplication by a
symplectic matrix, with the same formula as above, and exactly 4 isolated
normal forms.

(3) If p = 2, there are exactly 11 infinite families of normal forms of 2-
by-2 p-adic matrices with one degree of freedom up to multiplication by
a symplectic matrix, also with the same formula, and exactly 8 isolated
normal forms.

This is in contrast with the real case, where there are exactly 2 families, elliptic
and hyperbolic, and 2 isolated normal forms. Here by “infinite family” we mean a
family of normal forms of the form r1M1 + r2M2 + . . .+ rkMk, where ri ∈ Qp are
parameters and k is the number of degrees of freedom.

Hence, already in dimension 2, the p-adic situation is much richer than its real
counterpart. The situation is even more surprising in dimension 4. This is the
classification in the case where Ω−1

0 M has all eigenvalues distinct, where Ω0 is the
same matrix as before for dimension 4:

Ω0 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


Theorem 5.31 (p-adic classification, 4-by-4, non-degenerate case). Let p be a

prime number. Let Ω0 be the matrix of the standard symplectic form on (Qp)4.
Let Xp, Yp be the non-residue sets in Definition 5.18. Let M ∈ M4(Qp) be a

symmetric matrix such that all the eigenvalues of Ω−1
0 M are distinct. Then there

exists a symplectic matrix S ∈ M4(Qp) and r, s ∈ Qp such that one of the following
three possibilities holds:

(1) There exist c1, c2 ∈ Xp such that

STMS =


r 0 0 0
0 c1r 0 0
0 0 s 0
0 0 0 c2s

 .

(2) There exists c ∈ Yp such that

STMS =


0 s 0 r
s 0 cr 0
0 cr 0 s
r 0 s 0

 .
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(3) There exist c, t1 and t2 corresponding to one row of the Table 1 such that
STMS is equal to the matrix

ac(r − bs)

c− b2
0

sc− rb

c− b2
0

0
−r(t1 + bt2)− s(bt1 + ct2)

a
0 −r(bt1 + ct2)− sc(t1 + bt2)

sc− rb

c− b2
0

r − bs

a(c− b2)
0

0 −r(bt1 + ct2)− sc(t1 + bt2) 0 ac(−r(t1 + bt2)− s(bt1 + ct2))


where (a, b) are either (1, 0) or (a1, b1) of the corresponding row.

Furthermore, if two matrices S and S′ reduce M to one of the normal forms in the
right-hand side of the three equalities above, then the two normal forms are in the
same case; if it is case (2) or (3), they coincide, and in case (1) they coincide up
to exchanging the 2 by 2 diagonal blocks.

See Figure 4 for a diagram of the classes in the statement of Theorem 5.31.

Definition 5.32 (Non-residue function). Let p be a prime number. If p ≡ 1
mod 4, let c0 be the smallest quadratic non-residue modulo p. We define the non-
residue function:

hp : Yp → Qp given by


hp(c0) = p, hp(p) = hp(c0p) = c0 if p ≡ 1 mod 4;

hp(−1) = p, hp(p) = hp(−p) = −1 if p ≡ 3 mod 4;

hp(−1) = hp(−2) = hp(3) = hp(6) = −1,

hp(−3) = hp(−6) = 2, hp(2) = 3 if p = 2.

For the cases where the eigenvalues of Ω−1
0 M are not pairwise distinct, we have:

Theorem 5.33 (p-adic classification, 4-by-4, degenerate case). Let p be a prime
number. Let Ω0 be the matrix of the standard symplectic form on (Qp)4. Let
Xp, Yp be the non-residue sets in Definition 5.18. Let hp : Yp → Qp be the non-
residue function in Definition 5.32. Let M ∈ M4(Qp) a symmetric matrix such

that Ω−1
0 M has at least one multiple eigenvalue. Then there exists a symplectic

matrix S ∈ M4(Qp) such that one of the following three possibilities holds:

(1) There exist r, s ∈ Qp and c1, c2 ∈ Xp ∪ {0} such that STMS has the form
in the case (1) of Theorem 5.31. Moreover, if c1 = 0 then r ∈ Yp ∪ {1},
and if c2 = 0 then s ∈ Yp ∪ {1}.

(2) There exists r ∈ Qp such that

STMS =


0 r 0 0
r 0 1 0
0 1 0 r
0 0 r 0


(3) There exist r ∈ Qp, c ∈ Yp and a ∈ {1, hp(c)} such that

STMS =


a 0 0 r
0 0 cr 0
0 cr a 0
r 0 0 0

 .
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Figure 4. A diagram of the normal forms of Theorem 5.31 for
p ≡ 1 mod 4 (first row), p ≡ 3 mod 4 (second row) and p = 2
(third to fifth row). Each point (if it is in a single cell) or line (if
it is in two cells) represents a normal form. The numbers below
the tables represent the first extension of Qp (the one containing

the squares of the eigenvalues of Ω−1
0 M) and those in the rows

and columns represent the second extension (for the eigenvalues
themselves). In the first table in each block, there are two such
extensions corresponding to the row and the column; in the other
ones, there is one extension obtained multiplying the numbers in
the row and column.



126 5. PRELIMINARIES

(4) There exists c ∈ Yp ∪ {1} such that

STMS =


c 0 0 0
0 0 0 −c
0 0 0 0
0 −c 0 0

 .

Furthermore, if two matrices S and S′ reduce M to one of these normal forms on
the right-hand side of the three equalities above, then the two normal forms are in
the same case; if it is case (2), (3) or (4), they coincide completely, and in case (1)
they coincide up to exchanging the 2 by 2 diagonal blocks.

Our proof method is different from Williamson’s method and in particular gives
another proof (self-contained, while Williamson’s is not, as his proof relies on some
applications of other substantial works which he cites in his paper [142]) of the
classical Weierstrass-Williamson classification in any dimension. We carry this out
in Chapter 7.

Theorem 5.34 (Number of 4-by-4 p-adic matrix normal forms). Let p be a
prime number. Let Xp, Yp be the non-residue sets in Definition 5.18. Let hp : Yp →
Qp be the non-residue function in Definition 5.32.

(1) If p ≡ 1 mod 4, there are exactly 49 infinite families of normal forms
of p-adic 4-by-4 matrices with two degrees of freedom, exactly 35 infinite
families with one degree of freedom, and exactly 20 isolated normal forms,
up to multiplication by a symplectic matrix.

(2) If p ≡ 3 mod 4, there are exactly 32 infinite families of normal forms
of p-adic 4-by-4 matrices with two degrees of freedom, exactly 27 infinite
families with one degree of freedom, and exactly 20 isolated normal forms,
up to multiplication by a symplectic matrix.

(3) If p = 2, there are exactly 211 infinite families of normal forms of p-adic
4-by-4 matrices with two degrees of freedom, exactly 103 infinite families
with one degree of freedom, and exactly 72 isolated normal forms, up to
multiplication by a symplectic matrix.

In the three cases above, the infinite families with two degrees of freedom are
given by

{{
r 0 0 0
0 c1r 0 0
0 0 s 0
0 0 0 c2s

 : r, s ∈ Qp
}
: c1, c2 ∈ Xp

}
∪
{{

0 s 0 r
s 0 cr 0
0 cr 0 s
r 0 s 0

 : r, s ∈ Qp
}
: c ∈ Yp

}

∪
{{


ac(r − bs)

c− b2
0

sc− rb

c− b2
0

0
−r(t1 + bt2)− s(bt1 + ct2)

a
0 −r(bt1 + ct2)− sc(t1 + bt2)

sc− rb

c− b2
0

r − bs

a(c− b2)
0

0 −r(bt1 + ct2)− sc(t1 + bt2) 0 ac(−r(t1 + bt2)− s(bt1 + ct2))


:

r, s ∈ Qp
}
: (a, b) ∈

{
(1, 0), (a1, b1)

}
, c, t1, t2, a1, b1 in one row of Table 1

}
,
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those with one degree of freedom are

{{
r 0 0 0
0 c1r 0 0
0 0 s 0
0 0 0 0

 : r ∈ Qp
}
: c1 ∈ Xp, s ∈ Yp∪{1}

}
∪
{{

0 r 0 0
r 0 1 0
0 1 0 r
0 0 r 0

 : r ∈ Qp
}}

∪
{{

a 0 0 r
0 0 cr 0
0 cr a 0
r 0 0 0

 : r ∈ Qp
}
: c ∈ Yp, a ∈ {1, hp(c)}

}
,

and the isolated forms are

{
r 0 0 0
0 0 0 0
0 0 s 0
0 0 0 0

 : r, s ∈ Yp ∪ {1}
}
∪
{

c 0 0 0
0 0 0 −c
0 0 0 0
0 −c 0 0

 : c ∈ Yp ∪ {1}
}
.

This is in contrast with the real case, where there are exactly 4 infinite families
with two degrees of freedom, exactly 7 infinite families with one degree of freedom
and exactly 5 isolated normal forms. Here by “infinite family” we mean a family of
normal forms of the form r1M1 + r2M2 + . . . + rkMk, where ri are parameters in
Qp and k is the number of degrees of freedom, and by “isolated” we mean a form
that is not part of any family.

Remark 5.35. Note that Theorems 5.30 and 5.34 refer to infinite families
of matrices, but Theorem 5.22 does not mention families. This is because the
equivalence between integrable systems we consider allows for a matrix B to appear,
as in equation (26).

We can give a lower bound for the number of blocks of size 2n that can appear
in the normal forms of the matrices. In the real case, taking into account only
the “non-degenerate case” where the eigenvalues of Ω−1

0 M are pairwise distinct,
there are two infinite families of blocks with size two (each one with one degree of
freedom), one family with size four (with two degrees of freedom) and no blocks
with size greater than four: this is due to the fact that all irreducible polynomials
in R have degree at most two, and has as a consequence that the number of families
of normal forms of size 2n is quadratic in n. For the p-adic case, however, one has:

Definition 5.36. Let p be a prime number and let n be a positive integer. For
each partition P = (a1, . . . , ak) of n, we define M(P, p) ∈ M2n(Qp) as the block
diagonal matrix whose blocks have sizes (2a1, . . . , 2ak) and each block has the form

1
1

1
1

1
. . .

. . . 1
1

p


.
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2n R Q2 Q3 Q5 Q7

blocks forms blocks forms blocks forms blocks forms blocks forms

2 2 2 11 11 5 5 7 7 5 5

4 1 4 145 211 17 32 21 49 17 32

6 0 6 2 1883 3 123 3 234 9 129

8 0 9 1 21179 2 495 4 1054 2 525

10 0 12 2 161343 3 1595 3 4021 3 1787

12 0 16 1 1374427 2 5111 4 14493 6 5874

14 0 20 2 9232171 3 14491 3 47462 3 17586

16 0 25 1 65570626 2 40244 4 148087 2 50614

18 0 30 2 397086458 3 103484 3 433330 9 137311

20 0 36 1 2469098766 2 259712 4 1217761 2 359463

Table 3. The number of families of real and p-adic normal forms
of matrices of order 2n. The numbers in the real case are exact,
and come from Remark 8.18. The numbers for the p-adic case, for
dimensions 2 and 4, come from Theorems 5.30 and 5.34. For the
rest of dimensions, the numbers of blocks are only lower bounds
coming from Lemma 8.17, and the numbers of forms are obtained
summing over the partitions of n. The actual number of forms
might be even larger.

Theorem 5.37 (Number of (2n)-by-(2n) p-adic matrix normal forms). Let p
be a prime number. Let n be a positive integer. The number of p-adic families
of non-degenerate normal forms of (2n)-by-(2n) matrices up to multiplication by a
symplectic matrix, each family being of the form r1M1 + . . .+ rnMn, where ri are
parameters in Qp, grows at least with

eπ
√

2n/3

4n
√
3
.

Explicitly, if P and P ′ are distinct partitions of n then the matrices M(P, p) and
M(P ′, p) in Definition 5.36 are not equivalent by multiplication by a symplectic
matrix.

We will later prove this result using the Hardy-Ramanujan formula [60]. We
have computed explicit lower bounds for the number of families in Table 3.

The field of p-adic geometry is extensive, see [117, 118] and the references
therein. p-adic geometry is also fundamental in mathematical physics and the
theory of integrable systems, see for example [26, 37, 38, 39, 59, 98, 133]. For
an introduction to different aspects of symplectic geometry, including its relations to
mechanics and Poisson geometry, we refer to the survey articles [48, 97, 137, 138]
and the books [5, 15, 62, 85, 86, 93]. The Weierstrass-Williamson theory of
matrices has crucial applications in many areas including the theory of quantum
states in quantum physics [32, 123, 135], hence this paper provides a new tool to
further explore p-adic analogues of these applications in symplectic geometry and
beyond.



CHAPTER 6

Results for general fields

We start by studying the classification problem of normal forms of matrices in
an algebraically closed field. This case is an essential ingredient of our strategy to
obtain general classifications in the real and p-adic cases later on. As we will see,
the problem in this case reduces to an equality of eigenvalues, and to an equality
of normal forms if there are multiple eigenvalues.

Definition 6.1. Let n be a positive integer. Let F be a field with multiplicative
identity element 1. We define Ω0 as the (2n)-by-(2n) matrix whose blocks are all(

0 1
−1 0

)
,

that is,

Ω0 =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


.

(It is also common to take Ω0 to have the blocks in the “other” diagonal.) Ω0 is
called the standard symplectic form on F 2n.

Proposition 6.2. Let n be a positive integer. Let F be an algebraically closed
field. Let Ω0 be the matrix of the standard symplectic form on F 2n. Let M1,M2 ∈
M2n(F ) be symmetric matrices,

Ai = Ω−1
0 Mi,

Ji the Jordan form of Ai, and let Ψi be such that Ψ−1
i AiΨi = Ji, for i ∈ {1, 2}.

Then there exists a symplectic matrix S such that STM1S = M2 if and only if
J1 = J2. Moreover, in that case S must have the form Ψ1DΨ−1

2 , where D is a
matrix that commutes with J1 = J2 and satisfies DTΨT1 Ω0Ψ1D = ΨT2 Ω0Ψ2.

Proof. Let Ai = Ω−1
0 Mi. Suppose first that such a S exists. Then,

S−1A1S = S−1Ω−1
0 M1S = S−1Ω−1

0 (ST )−1STM1S = Ω−1
0 M2 = A2

hence A1 and A2 are equivalent, and J1 = J2.
Let D = Ψ−1

1 SΨ2. We have that STΩ0S = Ω0, which implies

DTΨT1 Ω0Ψ1D = ΨT2 Ω0Ψ2.

Also,

J1D = Ψ−1
1 A1Ψ1D = Ψ−1

1 A1SΨ2 = Ψ−1SA2Ψ2 = DΨ−1
2 A2Ψ2 = DJ2 = DJ1.

129
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Now suppose that J1 = J2, let D be a matrix which satisfies the conditions and
let S = Ψ1DΨ−1

2 . The condition DTΨT1 Ω0Ψ1D = ΨT2 Ω0Ψ2 implies that STΩ0S =
Ω0, that is, S is symplectic. Moreover,

S−1A1S = Ψ2D
−1Ψ−1

1 A1Ψ1DΨ−1
2 = Ψ2D

−1J1DΨ−1
2 = Ψ2J1Ψ

−1
2 = A2

which implies

STM1S = STΩ0A1S = STΩ0SS
−1A1S = Ω0A2 =M2

as we wanted. □

In the case where the eigenvalues are pairwise distinct, the proposition above
can be simplified:

Lemma 6.3. Let n be a positive integer. Let F be an algebraically closed field
with characteristic different from 2. Let Ω0 be the matrix of the standard symplectic
form on F 2n and let M ∈ M2n(F ) be a symmetric matrix such that the eigenvalues
of Ω−1

0 M are pairwise distinct. Then there exists a basis {u1, v1, . . . , un, vn} of F 2n

such that ui and vi are eigenvectors of Ω−1
0 M with opposite eigenvalues and in

which Ω0 is block-diagonal with blocks of size two.

Proof. For ease of notation, we write the proof for n = 2, but the proof is the
same for any n.

Let A = Ω−1
0 M . We have that

det(λI −A) = det(λI − Ω−1
0 M)

= det(λI − (Ω−1
0 M)T )

= det(λI +MΩ−1
0 )

= det(λΩ0 +M) det(Ω−1
0 )

= det(λI +Ω−1
0 M)

= det(λI +A).

This implies that the eigenvalues of A must come in pairs, that is, if λ is an eigen-
value, −λ also is. In particular, 0 is not an eigenvalue, because it would be at
least double, contradicting the hypothesis. So the eigenvalues are λ,−λ, µ,−µ, for
λ, µ ∈ F ∗.

Now let w1 and w2 be two eigenvectors of A with eigenvalues α1 and α2, such
that α1 ̸= −α2. Then

α1w
T
1 Ω0w2 = (Ω−1

0 Mw1)
TΩ0w2

= wT1 M(−Ω−1
0 )Ω0w2

= −wT1 Mw2

= −wT1 Ω0Ω
−1
0 Mw2

= −α2w
T
1 Ω0w2.

As α1 ̸= −α2, this implies wT1 Ω0w2 = 0.
Let u1, v1, u2, v2 be the eigenvectors of λ,−λ, µ,−µ, respectively. By the pre-

vious result, wT1 Ω0w2 = 0 for any two vectors w1, w2 ∈ {u1, v1, u2, v2} which are
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not a pair ui, vi. We call Ψ the matrix with (u1, v1, u2, v2) as columns. Then,

ΨTΩ0Ψ =


0 uT1 Ω0v1 0 0

vT1 Ω0u1 0 0 0
0 0 0 uT2 Ω0v2
0 0 vT2 Ω0u2 0



=


0 uT1 Ω0v1 0 0

−uT1 Ω0v1 0 0 0
0 0 0 uT2 Ω0v2
0 0 −uT2 Ω0v2 0

 ,

as we wanted. □

The basis in Lemma 6.3 is almost but not quite a symplectic basis:

Definition 6.4. Let n be a positive integer. Let F be a field. We say that a
basis {u1, v1, . . . , un, vn} of F 2n is symplectic if, for any two vectors w1, w2 in the
basis, wT1 Ω0w2 = 1 if w1 = ui and w2 = vi for some i with 1 ≤ i ≤ n, and otherwise
wT1 Ω0w2 = 0. This condition is equivalent to saying that the matrix in M2n(F )
with u1, v1, . . . , un, vn as columns is symplectic.

Actually, we can rescale the vectors vi such that the basis becomes symplectic.
But this may break the structure of the eigenvectors: for example, if −λ = λ̄ for
some definition of the conjugate, we can take v1 = ū1, which will no more hold after
rescaling v1. We leave the lemma as such because we do not need that rescaling.

Corollary 6.5. Let n be a positive integer. Let F be an algebraically closed
field with characteristic different from 2. Let Ω0 be the matrix of the standard
symplectic form on F 2n. Given symmetric matrices M1,M2 ∈ M2n(F ) such that
Ω−1

0 Mi has pairwise distinct eigenvalues for i ∈ {1, 2}, there is a symplectic ma-
trix S such that STM1S = M2 if and only if Ω−1

0 M1 and Ω−1
0 M2 have the same

eigenvalues. Moreover, in this case S must have the form Ψ1DΨ−1
2 , where D is a

diagonal matrix such that

(27) d2i−1,2i−1d2i,2i =
(u2i )

TΩ0v
2
i

(u1i )
TΩ0v1i

,

u1i and v1i are those of Lemma 6.3 for the first form, u2i and v2i for the second form,
and for j ∈ {1, 2},

Ψj =
(
uj1 vj1 . . . ujn vjn

)
.

Proof. By Lemma 6.3, there are Ψ1 and Ψ2 such that Ψ−1
i AiΨi = Ji, where

Ji is the matrix in Proposition 6.2, and ΨTi Ω0Ψi has all elements zero except those
of the form (2i − 1, 2i) and (2i, 2i − 1). Moreover, in this case matrices J1 and J2
are diagonal and with all elements in the diagonal different. They are equal if and
only if A1 and A2 have the same eigenvalues.

A matrix D that commutes with J1 = J2 is necessarily diagonal, and the
relation

DTΨT1 Ω0Ψ1D = ΨT2 Ω0Ψ2

in this case reduces to (27). □

In the case where the eigenvalues are not all different, the situation is not so
simple, but we can do something similar to Lemma 6.3.
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Lemma 6.6. Let n be a positive integer. Let F be an algebraically closed field
with characteristic different from 2 and let M ∈ M2n(F ) be a symmetric matrix.
Let Ω0 be the matrix of the standard symplectic form on F 2n. Let A = Ω−1

0 M .
Then, the number of nonzero eigenvalues of A is even, that is, 2m for some integer
m with 0 ≤ m ≤ n, and there exists a set{

u1, v1, . . . , um, vm

}
⊂ F 2n

which satisfies the following properties:

• Aui = λiui + µiui−1 and Avi = −λivi + µi+1vi+1 for 1 ≤ i ≤ m, where
λi ∈ F , µi = 0 or 1, µ1 = µm+1 = 0, and µi = 1 only if λi = λi−1. (That
is to say, the vectors are a “Jordan basis”.)

• The vectors can be completed to a symplectic basis: given w1, w2 in the
set, wT1 Ω0w2 = 1 if w1 = ui, w2 = vi for some i with 1 ≤ i ≤ m, and
otherwise wT1 Ω0w2 = 0.

Proof. Let J be the Jordan form of A and Ψ such that Ψ−1AΨ = J . We
have that

J = Ψ−1AΨ

= Ψ−1Ω−1
0 MΨ

= Ψ−1Ω−1
0 MΩ−1

0 Ω0Ψ

= Ψ−1Ω−1
0 (−Ω−1

0 M)TΩ0Ψ

= Ψ−1Ω−1
0 (−ΨJΨ−1)TΩ0Ψ

= (ΨTΩ0Ψ)−1(−JT )ΨTΩ0Ψ.

But J can only be similar to −JT if for each block having λ in the diagonal there
is another having −λ in the diagonal, and with the same size. We can split the
blocks in three parts, that is, there is a Φ such that

(28) Φ−1AΦ =

J+ 0 0
0 J− 0
0 0 J0

 ,

for some matrices J+, J− and J0 in Jordan form, such that J+ and J− have opposite
eigenvalues and J0 has only 0 as eigenvalue. Let m be the size of J+ and J−. Now
2m is the number of nonzero eigenvalues.

Let the first m columns of Φ be u1, . . . , um. Because of (28), we have

Aui = λiui + µiui−1,

for adequate λi and µi, with µi = 0 or 1.
Now we change sign and transpose, getting

(29) −(Φ−1AΦ)T =

−JT+ 0 0
0 −JT− 0
0 0 −JT0


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The left-hand side equals

−ΦTAT (Φ−1)T = ΦTMΩ−1
0 (Φ−1)T

= ΦTΩ0AΩ
−1
0 (Φ−1)T

= ΦTΩ0A(Φ
TΩ0)

−1.

Again, let the first m columns of (ΦTΩ0)
−1 be v1, . . . , vm. By (29), we have

Avi = −λivi − µi+1vi+1.

It is left to prove that the 2m vectors form a partial symplectic basis. To do
this, first we see that uTi Ω0uj = 0 for any i, j, by induction on i+ j. The base case
is when i = j = 1, which is trivial. Supposing it true for (i− 1, j) and (i, j − 1), we
prove it for (i, j):

λiu
T
i Ω0uj = (Ω−1

0 Mui − µiui−1)
TΩ0uj

= uTi M(−Ω−1
0 )Ω0uj − µi · 0

= −uTi Muj

= −uTi Ω0Ω
−1
0 Muj

= −uTi Ω0(λjuj + µjuj−1)

= −λjuTi Ω0uj

which implies that uTi Ω0uj = 0 because λi ̸= −λj (the opposites of the eigenvalues
in the part J+ are all in J−). Analogously we prove that vTi Ω0vj = 0, making the
induction backwards.

Finally, uTi Ω0vj is the element in the position (i, j) of ΦTΩ0(Φ
TΩ0)

−1, which
is 1 if i = j and 0 otherwise, so the vectors are a partial symplectic basis. □

Lemma 6.6 allows us to separate the part of a matrix with nonzero eigenvalues
from the part with zero eigenvalues. Choosing a symplectic basis for the latter to
complete the partial basis in a way that we obtain a complete “Jordan basis” is
more complicated, but it can also be done, as the following theorem shows.

Definition 6.7. A tuple K = (k1, k2, . . . , kt) of natural numbers is called good
if the numbers are in non-increasing order, that is, ki ≥ ki+1 for every 1 ≤ i ≤
t − 1, and each odd number appears an even number of times in K. We define
fK : {1, . . . , t} → {1, . . . , t} as follows:

• If ki is even, fK(i) = i.
• If ki is odd, let i0 be the first index such that ki0 = ki. Then, fK(i) =
i+ (−1)i−i0 .

If K is good, fK is an involution that fixes the indices of even elements and pairs
those of odd elements.

Theorem 6.8. Let n be a positive integer. Let F be a field with characteristic
different from 2 and let M ∈ M2n(F ) be a symmetric matrix. Let Ω0 be the
matrix of the standard symplectic form on F 2n. Let A = Ω−1

0 M . Suppose that
the eigenvalues of A are all zero. Then, there is an integer t ≥ 1, a good tuple
K = (k1, . . . , kt) and a basis of F 2n of the form

(30)
{
u11, u12, . . . , u1k1 , . . . , ut1, ut2, . . . , utkt

}
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such that the following two conditions hold:

• For every 1 ≤ i ≤ t, 1 ≤ j ≤ kt, Auij = ui,j−1, where ui0 = 0.
• Given uij , ui′j′ in this basis, uTijΩ0ui′j′ ̸= 0 if and only if i′ = fK(i) and
j + j′ = ki + 1.

See Table 1, left, for an example of such a basis.
To prove this theorem, we need several intermediate results.

Definition 6.9. Given a tuple K = (k1, . . . , kt) such that ki ≥ ki+1 for 1 ≤
i ≤ t− 1, we call RK the set of tuples of the form (ℓ, i, j) where 1 ≤ ℓ ≤ t, ℓ ≤ i ≤
t, 1 ≤ j ≤ ki.

Given R ⊂ RK , we say that a basis is R-acceptable if, for each (ℓ, i, j) ∈ R, one
of these alternatives holds:

• j = 1, i = fK(ℓ), ℓ = fK(i), and uTℓkℓΩ0uij ̸= 0;

• j ̸= 1 or i ̸= fK(ℓ), and uTℓkℓΩ0uij = 0.

(Note that, if there exists (ℓ, i, j) ∈ R with j = 1, i = fK(ℓ) but ℓ ̸= fK(i), no basis
is R-acceptable.)

Given (ℓ, i, j), (ℓ′, i′, j′) ∈ RK , we say that (ℓ, i, j) < (ℓ′, i′, j′) if

• ℓ < ℓ′,
• ℓ = ℓ′ and j < j′, or
• ℓ = ℓ′, j = j′ and i < i′.

Note that < is a total order in RK .
For each s integer with 0 ≤ s ≤ |RK |, we call RK,s the set of the first s elements

of RK according to the order <.

Let J be the Jordan form of A. Since all eigenvalues of A are zero, J has all
entries equal to zero except some in the first diagonal above the main diagonal,
which are 1. That is, J is a block-diagonal matrix. Let k1, . . . , kt be the sizes of the
blocks, with ki ≥ ki+1, and K = (k1, . . . , kt). For this K, any Jordan basis satisfies
the first condition.

Lemma 6.10. If {uij} is a Jordan basis for A in the form (30), uTijΩ0ui′j′ =

−uTi,j−1Ω0ui′,j′+1. That is, the product uTijΩ0ui′j′ only depends on j+ j′, except for
the sign.

Proof. Using that M is symmetric and Ω0 is antisymmetric,

uTijΩ0ui′j′ = uTijΩ0Aui′,j′+1

= uTijMui′,j′+1

= −uTijATΩ0ui′,j′+1

= −uTi,j−1Ω0ui′,j′+1. □

Corollary 6.11. Let us assume the conditions of Lemma 6.10. If j + j′ ≤
max{ki, ki′}, uTijΩ0ui′j′ = 0.

Proof. Without loss of generality suppose that ki ≤ ki′ . Applying the previ-
ous lemma j times, we have

uTijΩ0ui′j′ = uTi0Ω0ui′,j+j′ = 0. □

Corollary 6.12. If a basis {uij} of the form (30) is R-acceptable for some R
which contains (ℓ, fK(ℓ), 1) or (fK(ℓ), ℓ, 1), then uTℓkℓΩ0ufK(ℓ),1 ̸= 0.
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u16
u15 u25 u35
u14 u24 u34 u44
u13 u23 u33 u43 u53 u63
u12 u22 u32 u42 u52 u62
u11 u21 u31 u41 u51 u61

→

u16
u15 u25 u35
u14 u24 u34 u44 + cu23
u13 u23 u33 u43 + cu22 u53 u63
u12 u22 u32 u42 + cu21 u52 u62
u11 u21 u31 u41 u51 u61

Table 1. Above: a basis B of F 26 in the form (30) for K =
(6, 5, 5, 4, 3, 3). Below: the basis B[2, 4, 2, c], for c ∈ F .

Proof. If (ℓ, fK(ℓ), 1) ∈ R, then the conclusion holds by definition.
If (fK(ℓ), ℓ, 1) ∈ R, then fK(ℓ) ≤ ℓ, which implies kℓ = fK(ℓ), and uTℓkℓΩ0ufK(ℓ),1 =

(−1)kℓ−1uTℓ1Ω0ufK(ℓ),kℓ ̸= 0. □

We will need this operation to change a basis:

Definition 6.13. Let B be a basis of F 2n of the form (30), 1 ≤ ℓ ≤ t, 1 ≤ i ≤
t, 1 ≤ j ≤ ki and c ∈ F . We call B[ℓ, i, j, c] the basis{

u′11, u
′
12, . . . , u

′
1k1 , . . . , u

′
t1, u

′
t2, . . . , u

′
tkt

}
where

u′i′j′ =


ui′j′ if i′ ̸= i,

uij′ if i′ = i, j′ < j,

uij′ + cuℓ,j′−j+1 if i′ = i, j′ ≥ j.

See Table 1 for an example.

Lemma 6.14. (1) If B is a Jordan basis for A, B[ℓ, i, j, c] is also a Jordan
basis.

(2) The only products of the form uTℓ′kℓ′Ω0ui′j′ which may be different in B

and B[ℓ, i, j, c] are those with i′ = i ̸= ℓ′ and j′ ≥ j, which vary in
cuTℓ′kℓ′Ω0uℓ,j′−j+1, those with ℓ′ = i ̸= i′, which vary in cuTℓ,ki−j+1Ω0ui′j′ ,

and those with ℓ′ = i′ = i, which vary in cuTikiΩ0uℓ,j′−j+1+cu
T
ℓ,ki−j+1Ω0uij′+

c2uTℓ,ki−j+1Ω0uℓ,j′−j+1 (understanding uij = 0 if j ≤ 0 in the last equal-

ity).

Proof. (1) We have that Aui′j′ = ui′,j′−1 and we need to see that
Au′i′j′ = u′i′,j′−1 for all indices 1 ≤ i′ ≤ t, 1 ≤ j′ ≤ ki′ . If i′ ̸= i, the

conclusion follows because the vectors do not change. If i′ = i and j′ < j,
the same happens. Otherwise, i′ = i and j′ ≥ j, and

Au′ij′ = A(uij′ + cuℓ,j′−j+1) = ui,j′−1 + cuℓ,j′−j = u′i,j′−1

where the last equality also holds if j′ = j and uℓ,j′−j = 0.
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(2) This follows from the definition of the new basis: to change the product
we need to change any of the two vectors. □

Lemma 6.15. For every s with 0 ≤ s ≤ |RK |, there is a Jordan basis for A
which is RK,s-acceptable.

Proof. We prove this by induction in s. For s = 0, RK,0 is empty and the
problem reduces to the existence of a Jordan basis.

Supposing it is true for s, we prove it for s+1. Let {(ℓ, i, j)} = RK,s+1 \RK,s,
that is, (ℓ, i, j) is the (s + 1)-th element of RK according to the order <. Let
B = {uij} be the RK,s-acceptable basis given by the inductive hypothesis.

There are several cases to consider.

(1) i = ℓ and kℓ − j is even. By Lemma 6.10, we have that

uTℓkℓΩ0uℓj = uTℓ,(kℓ+j)/2Ω0uℓ,(kℓ+j)/2 = 0.

Either j > 1 and we want a zero, or j = 1 with kℓ odd and we also want
a zero; in any case B itself is RK,s+1-acceptable.

(2) i = fK(ℓ), j = 1. This means that i is ℓ if kℓ is even and ℓ + 1 if kℓ is
odd (it cannot be ℓ − 1 because (ℓ, i, j) ∈ RK). If uTℓkℓΩ0ui1 ̸= 0, B is
RK,s+1-acceptable and we are done. Otherwise, since B is a basis, there
are 1 ≤ i1 ≤ t, 1 ≤ j1 ≤ ki1 such that uTℓ1Ω0ui1j1 ̸= 0. By Corollary 6.11,
j1 + 1 > max{kℓ, ki1} or equivalently j1 ≥ max{kℓ, ki1}. But this implies
ki1 ≥ j1 ≥ max{kℓ, ki1} ≥ kℓ, so j1 ≥ ki1 , which implies j1 = ki1 and
uTℓ1Ω0ui1ki1 ̸= 0.

By Lemma 6.10, uTℓ1Ω0uiki = (−1)ki−1uTℓkℓΩ0ui1 = 0, so i ̸= i1. If
i1 < i, either i1 < ℓ or i1 = ℓ with i = ℓ+1. In any case (i1, ℓ, 1) < (ℓ, i, 1),
and since B is RK,s-acceptable, u

T
ℓ1Ω0ui1ki1 = 0, a contradiction. Hence,

i1 > i ≥ ℓ. As the sequence K is non-increasing and ki1 ≥ kℓ, we must
have ki1 = ki = kℓ, and again by Lemma 6.10, uTℓkℓΩ0ui11 ̸= 0. If i = ℓ+1,
ki = kℓ together with fK(ℓ) = i implies that fK(i) = ℓ.

Let B′ = {u′ij} = B[i1, i, 1, 1]. This basis is RK,s-acceptable: by
Lemma 6.14, the conditions in RK,s that may break with this change are
(ℓ′, i, j′) with ℓ′ < ℓ (the only condition which may be in RK,s with ℓ

′ = ℓ
is (ℓ, ℓ, 1)). For these tuples,

(u′ℓ′kℓ′ )
TΩ0u

′
ij′ = uTℓ′kℓ′Ω0uij′ + uTℓ′kℓ′Ω0ui1j′ = 0

because (ℓ′, i, j′) and (ℓ′, i1, j
′) are in RK,s. Moreover, if i = ℓ+ 1,

(u′ℓkℓ)
TΩ0u

′
i1 = uTℓkℓΩ0ui1 + uTℓkℓΩ0ui11 = uTℓkℓΩ0ui11 ̸= 0,

so B′ is RK,s+1-acceptable, as we wanted.
If i = ℓ, we also define B′′ = {u′′ij} = B[i1, i, 1,−1]. Analogously to

what we said for B′, B′′ is RK,s-acceptable. Now we have

(u′ℓkℓ)
TΩ0u

′
i1 = uTℓkℓΩ0ui1+u

T
ℓkℓ

Ω0ui11+u
T
i1kℓ

Ω0ui1+u
T
i1kℓ

Ω0ui11 = 2uTℓkℓΩ0ui11+u
T
i1kℓ

Ω0ui11

and

(u′′ℓkℓ)
TΩ0u

′′
i1 = uTℓkℓΩ0ui1−uTℓkℓΩ0ui11−uTi1kℓΩ0ui1+u

T
i1kℓ

Ω0ui11 = −2uTℓkℓΩ0ui11+u
T
i1kℓ

Ω0ui11

where the second equality in each line is due to Lemma 6.10. If both results
were zero at the same time, that would imply uTℓkℓΩ0ui11 = 0, so one of
them must be nonzero, and one of B′ and B′′ must be RK,s+1-acceptable.
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(3) i = ℓ, j > 1 and kℓ − j is odd. We set

c = −
uTℓkℓΩ0uℓj

2uTℓkℓΩ0ufK(ℓ),1

and B′ = B[fK(ℓ), ℓ, j, c] (the denominator is not zero by Corollary 6.12,
because (ℓ, fK(ℓ), 1) ∈ RK,s or (fK(ℓ), ℓ, 1) ∈ RK,s). By Lemma 6.14, the
conditions that can break are (ℓ, i′, j′) with ℓ ≤ i′ ≤ t and 1 ≤ j′ ≤ j − 1,
and (ℓ′, ℓ, j′) with 1 ≤ ℓ′ ≤ ℓ − 1 and j ≤ j′ ≤ ki. For the first type, we
see that

(u′ℓkℓ)
TΩ0u

′
i′j′ = uTℓkℓΩ0ui′j′ + cuTfK(ℓ),kℓ−j+1Ω0ui′j′

The second term is 0 because kℓ − j + 1 + j′ ≤ kℓ = kfK(ℓ) (we are using
here that fK(fK(ℓ)) = ℓ because the basis is acceptable). For the second
type,

(u′ℓ′kℓ′ )
TΩ0u

′
ℓj′ = uTℓ′kℓ′Ω0uℓj′ + cuTℓ′kℓ′Ω0ufK(ℓ),j′−j+1

Both terms are zero because (ℓ′, ℓ, j′) and (ℓ′, fK(ℓ), j′−j+1) are in RK,s,
fK(ℓ′) ̸= fK(ℓ) and j′ > 1. It is only left to show that the new condition
is satisfied:

(u′ℓkℓ)
TΩ0u

′
ℓj = uTℓkℓΩ0uℓj+cu

T
ℓkℓ

Ω0ufK(ℓ),1+cu
T
fK(ℓ),kℓ−j+1Ω0uℓj+c

2uTfK(ℓ),kℓ−j+1Ω0ufK(ℓ),1

The last term is zero because kℓ − j + 1 + 1 ≤ kℓ. The second and the
third are equal because, by Lemma 6.10,

uTfK(ℓ),kℓ−j+1Ω0uℓj = −uTℓjΩ0ufK(ℓ),kℓ−j+1 = (−1)kℓ−j+1uTℓkℓΩ0ufK(ℓ),1 = uTℓkℓΩ0ufK(ℓ),1.

Hence

(u′ℓkℓ)
TΩ0u

′
ℓj = uTℓkℓΩ0uℓj + 2cuTℓkℓΩ0ufK(ℓ),1 = 0

as we wanted.
(4) i > ℓ and either j > 1 or i ̸= fK(ℓ). We set

c = −
uTℓkℓΩ0uij

uTℓkℓΩ0ufK(ℓ),1

and B′ = B[fk(ℓ), i, j, c] (the denominator is not zero by Corollary 6.12,
because (ℓ, fK(ℓ), 1) ∈ RK,s or (fK(ℓ), ℓ, 1) ∈ RK,s). By Lemma 6.14, the
conditions that can break are (ℓ′, i, j′) with 1 ≤ ℓ′ ≤ ℓ−1 and j ≤ j′ ≤ ki.
In these cases we have

(u′ℓ′kℓ′ )
TΩ0u

′
ij′ = uTℓ′kℓ′Ω0uij′ + cuTℓ′kℓ′Ω0ufK(ℓ),j′−j+1

Both terms are zero because (ℓ′, i, j′) and (ℓ′, fK(ℓ), j′−j+1) are in RK,s,
fK(ℓ′) ̸= fK(ℓ), and either j′ > 1 or i ̸= fK(ℓ). It is left to show the new
condition:

(u′ℓkℓ)
TΩ0u

′
ij = uTℓkℓΩ0uij + cuTℓkℓΩ0ufK(ℓ),1 = 0. □

With these results, we are ready to prove Theorem 6.8.

Proof of Theorem 6.8. We apply Lemma 6.15 with s = |RK | to obtain
a basis B which is RK-acceptable. Now we show that this B is the basis we
want. The first condition holds because B is a Jordan basis. For the second, if
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j+ j′ ≤ max{ki, ki′}, the product is zero by Corollary 6.11, as we want. Otherwise,
suppose i ≤ i′ and ki ≥ ki′ . By Lemma 6.10,

uTijΩ0ui′j′ = uTikiΩ0ui′,j+j′−ki = 0,

and the second condition also holds.
It is left to show thatK is good, but this is an immediate consequence ofB being

RK-acceptable: by definition, if fK(l) = i but fK(i) ̸= l for some (l, i, j) ∈ RK ,
there would not be any RK-acceptable basis. □

We can use Lemma 6.6 and Theorem 6.8 to give a classification in the case
where the field is algebraically closed. In particular, we can apply this to C.

Theorem 6.16. Let n be a positive integer. Let F be an algebraically closed
field with characteristic different from 2 and let M ∈ M2n(F ) be a symmetric
matrix. There exists a positive integer k, r ∈ F , a ∈ {0, 1}, with a = 1 only if
r = 0, and a symplectic matrix S ∈ M2n(F ) such that STMS is a block-diagonal
matrix whose blocks are of the form

Mh(k, r, a) =



r
r 1

1 r

r
. . .

. . . 1
1 r

r a


with 2k rows. Furthermore, if there are two matrices S and S′ which reduce M
to this form, then the two forms only differ in the order in which the blocks are
arranged.

Proof. (a) First we prove existence. We start applying Lemma 6.6. This
gives us a partial symplectic basis{

u1, v1, . . . , um, vm

}
,

which is also a partial Jordan basis of A corresponding to the nonzero
eigenvalues, and ui and vi correspond to opposite eigenvalues λi and −λi.
If {u1, v1, . . . , uk, vk} are the vectors of a block with eigenvalues r and
−r, for r ∈ F , these same vectors taken as columns of S give the matrix
Mh(k, r, 0).

For the other part of the Jordan form, we apply Theorem 6.8 to the
eigenspace of 0, resulting in a good multiset K = {k1, . . . , kt} and a basis{

u11, u12, . . . , u1k1 , . . . , ut1, ut2, . . . , utkt

}
.

This is not necessarily a symplectic basis as such, but it allows us to
construct one with the required properties:

• If ki = 2ℓi is even, we have that

uTijΩ0ui,ki+1−j = (−1)j+1ci

for some ci ∈ F . Let

ci = b2i
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for bi ∈ F . After dividing all the chain by bi, we can assume that
ci = (−1)ℓi . Now{

ui1, (−1)ℓiui,2ℓi ,−ui2, (−1)ℓiui,2ℓi−1, . . . , (−1)ℓi−1uiℓi , (−1)ℓiui,ℓi+1

}
is a partial symplectic basis which gives the form Mh(ℓi, 0, 1).

• If ki is odd and fK(i) = i+ 1, we have instead

uTijΩ0ui+1,ki+1−j = (−1)j+1ci

for some ci ∈ F . After dividing the elements of the second chain by
ci, we can assume that ci = 1. Now{
ui1, ui+1,ki ,−ui2, ui+1,ki−1, . . . , (−1)ki−1uiki , ui+1,1

}
is a partial symplectic basis which gives the form Mh(ki, 0, 0).

(b) Uniqueness follows from Proposition 6.2, because two matrices in normal
form have the same Jordan form if and only if they differ in the order of
the blocks. □

In the cases of greatest interest to us the matrices in the statement of Theorem
6.16 have coefficients in Qp. We can take F = Cp, but the resulting matrix S will
have the entries in Cp and not necessarily in Qp, and we want a symplectomorphism
of (Qp)n, which is given by a symplectic matrix with entries in Qp. To avoid this, we
need to manipulate adequately the symplectic basis, which translates to adjusting
the matrix D in Proposition 6.2. This problem also happens in the real case, but,
as we will see, the matrix S can always be adapted to have the entries in R instead
of C.

In dimension 2, the eigenvalues of Ω−1
0 M are the roots of a degree 2 polynomial

with coefficients in F , so they have the form λ and −λ. The case where the
eigenvalues are in the base field is the easiest one.

Proposition 6.17. Let F be a field of characteristic different from 2. Let Ω0 be
the matrix of the standard symplectic form on F 2. Let M ∈ M2(F ) symmetric and
invertible such that the eigenvalues of Ω−1

0 M are in F . Then there is a symplectic
matrix S ∈ M2(F ) and a ∈ F such that

STMS =

(
0 a
a 0

)
.

Proof. If the eigenvalues ±λ of Ω−1
0 M are in F , its eigenvectors are also in F ,

and the matrix Ψ1 of Corollary 6.5 is in F . In order to have the same eigenvalues
for

Ω−1
0

(
0 a
a 0

)
,

we need a = λ. The matrix S that we need is precisely Ψ1. □

If the matrix is not invertible, the case of the null matrix is already covered by
the previous result, with a = 0. The other case is solved in the next proposition.

Proposition 6.18. Let F be a field of characteristic different from 2. Let

M =

(
a b
b c

)
∈ M2(F )
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where b2 = ac. Let d ∈ F . There exists a symplectic matrix S such that

STMS =

(
d 0
0 0

)
if and only if ad is a square.

Proof. The second column of S must be (kb,−ka) for some k ∈ F . Let the
first column be (x, y), for x, y ∈ F . Then

d =
(
x y

)(a b
b c

)(
x
y

)
= ax2 + cy2 + 2bxy

and
ad = a2x2 + acy2 + 2abxy = a2x2 + b2y2 + 2abxy

is a square. Conversely, if ad is a square, we can take

S =

(
−kd kb
0 −ka

)
where k is chosen so that k2ad = 1. □

For the cases where λ /∈ F , we need some definitions.

Definition 6.19. Given an Abelian group G, we call Sq(G) the subgroup
formed by the squares in G.

Definition 6.20. Given a field F with additive identity 0 and c ∈ F , we call

DSq(F, c) =
{
x2 + cy2 : x, y ∈ F

}
\ {0}

and
DSq(F, c) = DSq(F, c)/Sq(F ∗).

Lemma 6.21. Let F be a field and c ∈ F . Then DSq(F, c) is a group with
respect to multiplication in F .

Proof. We just need to see that the product of two elements of DSq(F, c) is
in DSq(F, c) and the inverse of an element of DSq(F, c) is in DSq(F, c):

(x21 + cy21)(x
2
2 + cy22) = (x1x2 + c2y1y2)

2 + c(x1y2 − x2y1)
2

and
1

x2 + cy2
=

(
x

x2 + cy2

)2

+ c

(
y

x2 + cy2

)2

. □

The group DSq(F, c) can also be defined in terms of the Hilbert symbol:

(a, b)p =

{
1 if ax2 + by2 = 1 for some x, y ∈ Qp;
−1 otherwise.

With this definition, we have that

DSq(F, c) =
{
a ∈ Qp : (a,−c)p = 1

}
.

Lemma 6.21 is a consequence of the multiplicativity of the Hilbert symbol.
We have that

F ∗/DSq(F, c) ∼= (F ∗/ Sq(F ∗))/(DSq(F, c)/ Sq(F ∗))

= (F ∗/ Sq(F ∗))/DSq(F, c),
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that is, we have a group isomorphism in the rightmost part of the commutative
diagram

DSq(F, c) ↪→ F ∗ ↠ F ∗/DSq(F, c)
↓ ↓ ↓∼=

DSq(F, c) ↪→ F ∗/ Sq(F ∗) ↠ (F ∗/ Sq(F ∗))/DSq(F, c).

By definition, DSq(F, c) is the subset of the classes in F ∗/ Sq(F ∗) which contain
elements of the form x2 + c, for x ∈ F . Note also that DSq(F, c), and hence
DSq(F, c), only depend on the class of c modulo Sq(F ∗).

Now we can give a necessary and sufficient condition for a matrix to be sym-
plectomorphic to a normal form.

Proposition 6.22. Let F be a field of characteristic different from 2. Let
Ω0 be the matrix of the standard symplectic form on F 2. Let M ∈ M2(F ) be a
symmetric matrix such that the eigenvalues of Ω−1

0 M are of the form ±λ with λ /∈ F
but λ2 ∈ F . Let u be the eigenvector of value λ in Ω−1

0 M . Then for any a, b ∈ F
there is a symplectic matrix S such that

STMS =

(
a 0
0 b

)
if and only if λ2 = −ab and

2λa

uTΩ0ū
∈ DSq(F,−λ2).

Proof. The eigenvalues of

Ω−1
0

(
a 0
0 b

)
=

(
0 −b
a 0

)
are ±

√
−ab, so we must have λ2 = −ab.

The matrix Ψ2 of Corollary 6.5 has the form(
λ −λ
a a

)
.

The formula for S gives that

S = Ψ1

(
d1 0
0 d2

)( 1
2λ

1
2a

− 1
2λ

1
2a

)
.

The two columns of Ψ1 are the eigenvectors of λ and −λ. The first is u, and the
second is the conjugate ū (or, more precisely, can be taken as the conjugate).

If S has entries in F , let c1 and c2 be its columns. We get

c1 =
d1u− d2ū

2λ
∈ F 2;

c2 =
d1u+ d2ū

2a
∈ F 2;

d1u = ac2 + λc1, d2ū = ac2 − λc1 = d1u⇒ d2 = d̄1.

The numbers d1 and d2 must also satisfy (27), that is

(31) d1d2 =
(λ, a)Ω0(−λ, a)T

uTΩ0ū
=

2λa

uTΩ0ū
.
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Taking into account that d2 = d̄1, we can substitute d1 = r + sλ and d2 = r − sλ
in 31, giving

r2 − s2λ2 =
2λa

uTΩ0ū

so this is in DSq(F,−λ2). □

We can apply Proposition 6.22 to the real elliptic case, that is, the case of a
matrix in M2(R) whose eigenvalues are ±λ = ±ri. There, we want to achieve
a = b. λ is purely imaginary, so λ2 = −ab = −a2 determines exactly |a| = r.
DSq(R,−λ2) consists of all positive reals, so there is always a solution for a (we
know |a| and can take the adequate sign to make 2λa/uTΩ0ū positive). This is why
the real Weierstrass-Williamson classification in dimension 2 has just two cases.

For dimension 4 we have the analogous to the focus-focus normal form:

Proposition 6.23. Let F be a field of characteristic different from 2. Let Ω0 be
the matrix of the standard symplectic form on F 4. Let M ∈ M4(F ) be a symmetric
matrix such that the eigenvalues of Ω−1

0 M are of the form ±λ,±µ where λ, µ /∈ F
but all of them are in a degree 2 extension F [α] for some α. Then there are r, s ∈ F
and a symplectic matrix S ∈ M4(F ) such that STMS has the form of Theorem
5.31(2) for c = α2.

Proof. The condition in the statement is equivalent to say that µ = λ̄ and
both are in F [α]. Let λ = s+ rα and µ = s− rα, for r, s ∈ F .

Let

N =


0 s 0 r
s 0 rα2 0
0 rα2 0 s
r 0 s 0

 ,

which is the matrix in Theorem 5.31(2) for c = α2. The eigenvalues of

Ω−1
0 N =


−s 0 −rα2 0
0 s 0 r
−r 0 −s 0
0 rα2 0 s


are precisely ±s ± rα, that is, ±λ and ±µ, so we can apply Corollary 6.5. The
matrix Ψ2 has the form 

0 α 0 −α
1 0 1 0
0 1 0 1
α 0 −α 0


with the values in the order (λ,−λ, λ̄,−λ̄) as needed by Corollary 6.5, and the
resulting matrix S is

S = Ψ1


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4




0 1 0 1
α

1
α 0 1 0
0 1 0 − 1

α
− 1
α 0 1 0

 .

The condition (27) of Corollary 6.5 implies that

(32) d1d2 =
(0, 1, 0, α)Ω0(α, 0, 1, 0)

T

uTΩ0v
=

−2α

uTΩ0v
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and

(33) d3d4 =
(0, 1, 0,−α)Ω0(−α, 0, 1, 0)T

ūTΩ0v̄
=

2α

ūTΩ0v̄
,

where u and v are the eigenvectors for λ and −λ respectively.
We also want S to have entries in F . Let c1, c2, c3, c4 be its columns, which

should be vectors in F 4: 

c1 =
d2v − d4v̄

α
;

c2 = d1u+ d3ū;

c3 = d2v + d4v̄;

c4 =
d1u− d3ū

α
.

These expressions imply that

2d1u = c2 + αc4, 2d3ū = c2 − αc4 = 2d1u⇒ d3 = d̄1

and

2d2v = c3 + αc1, 2d4v̄ = c3 − αc1 = 2d2v ⇒ d4 = d̄2.

Now we can take d1 and d2 arbitrary such that (32) holds, and (33) will hold
automatically because d3d4 = d1d2. □

In the real case, this is enough to complete the Weierstrass-Williamson classi-
fication in all dimensions if the eigenvalues of Ω−1

0 M are pairwise distinct. Indeed,
these eigenvalues can be associated in pairs of the form {a,−a} or {ia,−ia} and
quadruples of the form {

a+ ib, a− ib,−a+ ib,−a− ib
}
.

We can apply respectively Propositions 6.17, 6.22 (we already explained why this
is always possible) and 6.23, giving the hyperbolic, elliptic and focus-focus normal
forms in Section 5.3.2.

In the p-adic case, such a classification is still not complete, even for 4-by-4
matrices. The reason for this difference is that, if α /∈ R with α2 ∈ R, this means
that α is an imaginary number and R[α] = C, which is algebraically closed. But
if α /∈ Qp with α2 ∈ Qp, Qp[α] is not algebraically closed. So it is possible that
λ2 /∈ Qp and simultaneously λ /∈ Qp[λ2].

To fix this issue, consider a degree four polynomial of the form t4 + At2 + B
(at the moment in an arbitrary field F ). Its roots are of the form λ,−λ, µ,−µ. If
λ2 and µ2 are not in F , they are conjugate in some degree 2 extension, that is,
λ2 = a + bα and µ2 = a − bα for some α ∈ F [λ2]. In turn, if λ and µ are not in
F [λ2], we have a hierarchy of fields:

F

F [α] = F [λ2] = F [µ2]

F [λ, µ]

2

2
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There is an automorphism of F [λ, µ] that fixes F and moves α to −α (an
extension of the conjugation in F [α]). We will denote this as x 7→ x̄. λ̄ must
be µ or −µ, without loss of generality we suppose that it is µ. There is another
automorphism of F [λ, µ] that fixes F [α] and changes λ to −λ and µ to −µ, which
we will denote as x 7→ x̂.

Proposition 6.24. Let F be a field with characteristic different from 2. Let
F [α] be a degree two extension of F and let F [γ, γ̄] be an extension of F [α] such
that γ2 ∈ F [α]. Let Ω0 be the matrix of the standard symplectic form on F 4. Let
t1, t2 ∈ F such that {

γ2 = t1 + t2α;

γ̄2 = t1 − t2α.

Let M ∈ M4(F ) be a symmetric matrix such that the eigenvalues of Ω−1
0 M are

of the form ±λ,±µ with

λ = (r + sα)γ

and

µ = (r − sα)γ̄,

for r, s ∈ F . Let a, b ∈ F . Let u be the eigenvector of λ. Then, there is a symplectic
matrix S ∈ M4(F ) such that STMS has the form of Theorem 5.31(3) with c = α2

if and only if

aαγ(b+ α)

uTΩ0û
∈ DSq(F [α],−γ2).

Proof. Let N be the matrix

aα2(r − bs)

α2 − b2
0

sα2 − rb

α2 − b2
0

0
−r(t1 + bt2)− s(bt1 + α2t2)

a
0 −r(bt1 + α2t2)− sα2(t1 + bt2)

sα2 − rb

α2 − b2
0

r − bs

a(α2 − b2)
0

0 −r(bt1 + α2t2)− sα2(t1 + bt2) 0 aα2(−r(t1 + bt2)− s(bt1 + α2t2))


.

We have that Ω−1
0 N is equal to

0
r(t1 + bt2) + s(bt1 + α2t2)

a
0 r(bt1 + α2t2) + sα2(t1 + bt2)

aα2(r − bs)

α2 − b2
0

sα2 − br

α2 − b2
0

0 r(bt1 + α2t2) + sα2(t1 + bt2) 0 aα2(r(t1 + bt2) + s(bt1 + α2t2))

sα2 − br

α2 − b2
0

r − bs

a(α2 − b2)
0


which has as set of eigenvalues{

± (r + sα)γ,±(r − sα)γ̄
}
=
{
λ,−λ, µ,−µ

}
,
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and the condition of Corollary 6.5 is satisfied. The matrix

Ψ2 =


(b+ α)γ −(b+ α)γ (b− α)γ̄ −(b− α)γ̄
aα aα −aα −aα

aαγ(b+ α) −aαγ(b+ α) −aαγ̄(b− α) aαγ̄(b− α)
1 1 1 1


and the columns of Ψ1 are the eigenvectors of λ,−λ, µ and −µ in that order, which
means that they are of the form u, û, ū and ˆ̄u. Let c1, c2, c3 and c4 be the columns
of S, which we want to be in F . We have that Ψ2S = Ψ1D, that is,

Ψ2

(
c1 c2 c3 c4

)
=
(
u û ū ˆ̄u

)
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

 =
(
d1u d2û d3ū d4 ˆ̄u

)
which expands to

d1u = (b+ α)γc1 + aαc2 + aαγ(b+ α)c3 + c4;

d2û = −(b+ α)γc1 + aαc2 − aαγ(b+ α)c3 + c4;

d3ū = (b− α)γ̄c1 − aαc2 − aαγ̄(b− α)c3 + c4;

d4 ˆ̄u = −(b− α)γ̄c1 − aαc2 + aαγ̄(b− α)c3 + c4;

that is

d2û = d̂1u⇒ d2 = d̂1;

d3ū = d1u⇒ d3 = d̄1;

d4 ˆ̄u = d̂3ū⇒ d4 = d̂3 = ˆ̄d1.

It only remains to apply the condition about D in Corollary 6.5. The result is

d1d2 = d1d̂1 =
4aαγ(b+ α)

uTΩ0û
;

d3d4 = d̄1
ˆ̄d1 =

−4aαγ̄(b− α)

ūTΩ0 ˆ̄u
.

Obviously, both conditions are equivalent. Putting d1 = 2(z1 + z2γ) with z1, z2 ∈
F [α], the first condition becomes

z21 − z22γ
2 =

aαγ(b+ α)

uTΩ0û

so this must be in DSq(F [α],−γ2). □

Proposition 6.24 reduces the problem of classifying this type of matrices to
classifying (adequate) degree 4 extensions of F . In our case F = Qp.

The values of α2 are given by

Q∗
p/Sq(Q∗

p),

because two values whose quotient is a square are equivalent. The squares in Qp
are the numbers with even order and with a leading digit in Sq(Fp), so the quotient
is {1, c0, p, c0p}, except if p = 2, where squares have even order and end in 001, and
the quotient is {1,−1, 2,−2, 3,−3, 6,−6}. The possible values of α2 are all except
1 (because α /∈ Qp). In each case, to find the normal form of M we still need to
know γ, a and b.
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In turn, the values of γ are given by the quotient

Qp[α]∗/Sq(Qp[α]∗).
So we need to determine which numbers are squares in Qp[α].

Lemma 6.25. Let F be a field with characteristic different from 2. Let F [α] be
a degree 2 extension of F . Let a, b ∈ F . Then a + bα is a square in F [α] if and
only if a2 − b2α2 is a square in F and one of the numbers

a±
√
a2 − b2α2

2
is also a square in F .

Proof. Suppose that a + bα = (r + sα)2. Then also a − bα = (r − sα)2,
multiplying a2 − b2α2 = (r2 − s2α2)2, and finally

a±
√
a2 − b2α2

2
=
r2 + s2α2 + r2 − s2α2

2
= r2.

Reciprocally, if both numbers are squares, they give r and s such that a + bα =
(r + sα)2: we get r from the previous formula, and then s from b = 2rs. □

By Proposition 6.24, for fixed values of α and γ, two normal forms for (a, b)
and (a′, b′) are equivalent if and only if the quotient between a(b+α) and a′(b′+α)
is an element of DSq(Qp[α],−γ2). Hence, the normal forms for fixed α and γ are
given by the classes in

Qp[α]∗/DSq(Qp[α],−γ2),
or equivalently in

(Qp[α]∗/ Sq(Qp[α]∗))/DSq(Qp[α],−γ2).
That is, we have reduced the problem of determining subgroups of Qp[α] to deter-
mining the subgroup

DSq(Qp[α],−γ2),
which is easier because this is a subgroup of a finite group (and in all cases of
interest, isomorphic to Fn2 for some n).



CHAPTER 7

The real Weierstrass-Williamson classification

In this chapter we give a new proof of the most general case of the Weierstrass-
Williamson classification theorem using the new strategy introduced in the previous
sections of this paper. In the simplest case, that is, for positive definite symmetric
matrices, the proof reduces only to a few lines.

Invertible and without multiple
eigenvalues

Possible blocks: Mh(1, r, 0),Me(1, r, 1)
and Mff(1, r, s), with r, s ∈ R, r, s ̸= 0

All blocks are different

Invertible and diagonalizable
Possible blocks: Mh(1, r, 0),Me(1, r, 1) and

Mff(1, r, s), with r, s ∈ R, r, s ̸= 0
Blocks may be repeated

Invertible
Possible blocks: Mh(k, r, 0),Me(k, r, a) and Mff(k, r, s), with

k ∈ N, a ∈ {−1, 1}, r, s ∈ R, r, s ̸= 0
Blocks may be repeated

General
Possible blocks: Mh(k, r, 0),Mh(k, 0, a),Me(k, r, a) and Mff(k, r, s), with

k ∈ N, a ∈ {−1, 1}, r, s ∈ R
Blocks may be repeated

Figure 1. Hierarchy of degeneracy levels of real matrices, accord-
ing to the properties of the block decomposition of their normal
forms (Theorems 7.2 and 7.3).
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7.1. The general case

In the real case, as already explained after Proposition 6.23, in the case where
the eigenvalues of Ω−1

0 M are different, the blocks up to dimension 4 are enough
to classify the matrix. Actually, a weaker condition is sufficient: see Theorem 7.2.
If the matrix is not diagonalizable or not invertible, the size of the blocks is not
limited to 2 or 4, but instead can grow indefinitely: see Theorem 7.3. See Figure 1
for a hierarchy of properties of the decomposition.

The explicit form of the blocks is as follows:

Definition 7.1. A diagonal block of hyperbolic type is any matrix of the form

Mh(k, r, a) =



r
r 1

1 r

r
. . .

. . . 1
1 r

r a


,

for some positive integer k, r ∈ R and a ∈ {−1, 0, 1} with a = 0 if r ̸= 0, and which
has a total of 2k rows. A diagonal block of elliptic type is any matrix of the form

Me(k, r, a) =


Me1(r) Me2(1, a)
Me2(1, a) Me1(r) Me2(2, a)

Me2(2, a)
. . .

Me1(r) M ′
e2(ℓ, a)

M ′
e2(ℓ, a)

T M ′
e1(r)


if k = 2ℓ+ 1 is odd, and

Me(k, r, a) =


Me1(r) Me2(1, a)
Me2(1, a) Me1(r) Me2(2, a)

Me2(2, a)
. . .

Me1(r) Me2(ℓ− 1, a)
Me2(ℓ− 1, a) Me1(r) +Me2(ℓ, a)


if k = 2ℓ is even, for some positive integer k, r ∈ R and a ∈ {−1, 1}, and which has
a total of 2k rows. A diagonal block of focus-focus type is any matrix of the form

Mff(k, r, s) =


Mff1(r, s) Me2(1, 1)
Me2(1, 1) Mff1(r, s) Me2(1, 1)

Me2(1, 1)
. . .

Mff1(r, s) Me2(1, 1)
Me2(1, 1) Mff1(r, s)

 ,

for some positive integer k and r, s ∈ R, and which has a total of 4k rows. In the
previous blocks the following sub-blocks are used:

Me1(r) =


0 0 0 r
0 0 −r 0
0 −r 0 0
r 0 0 0

 ,M ′
e1(r) =

(
r 0
0 r

)
,Mff1(r, s) =


0 s 0 r
s 0 −r 0
0 −r 0 s
r 0 s 0

 ,
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Me2(j, a) =


a 0 0 0
0 0 0 0
0 0 a 0
0 0 0 0

 if j is odd,


0 0 0 0
0 a 0 0
0 0 0 0
0 0 0 a

 if j is even,

M ′
e2(j, a) =


a 0
0 0
0 a
0 0

 if j is odd,


0 0
a 0
0 0
0 a

 if j is even.

Theorem 7.2. Let n be a positive integer. Let Ω0 be the matrix of the stan-
dard symplectic form in R2n. Let M ∈ M2n(R) be a symmetric and invertible
matrix such that Ω−1

0 M is diagonalizable. Then, there exists a symplectic matrix
S ∈ M2n(R) such that STMS is a block-diagonal matrix with blocks of hyperbolic,
elliptic type or focus-focus type with k = 1.

Proof. Applying Lemma 6.6, we can take a symplectic basis {u1, v1, . . . , un, vn}
of R2n such that all the vectors in the basis are eigenvectors of A, and ui and vi
have opposite eigenvalues λi and −λi. We can sort these vectors in such a way that
two λi’s which are conjugate appear with consecutive indices.

Taking as Ψ1 the matrix with these vectors as columns, the problem decomposes
into finding normal forms for each block of columns associated to eigenvalues of the
form {r,−r}, {ir,−ir} or

{r + is,−r − is, r − is,−r + is},

for r, s ∈ R∗. The first block, by Proposition 6.17, gives the hyperbolic block. The
second block, by Proposition 6.22 with a = b = r or a = b = −r (one of them will
always work), gives the elliptic block. The third block, by Proposition 6.23, gives
the focus-focus block. □

Theorem 7.3. Let n be a positive integer and let M ∈ M2n(R) be a symmetric
matrix. Then, there exists a symplectic matrix S ∈ M2n(R) such that STMS is a
block diagonal matrix with each of the diagonal blocks being of hyperbolic, elliptic
or focus-focus type, as in Definition 7.1.

Furthermore, if there are two matrices S and S′ such that N = STMS and
N ′ = S′TMS′ are normal forms, then N = N ′ except by the order of the blocks.

Proof. (a) First we prove existence. The proof starts as in Theorems
6.16 and 7.2, applying Lemma 6.6. This gives us a partial symplectic
basis {u1, v1, . . . , um, vm}. However, unlike Theorem 6.16, these vectors
only work for the hyperbolic blocks, giving Mh(k, r, 0); for the rest, the
blocks would not be real, so we need to recombine the vectors. We can
sort the blocks of the Jordan form in such a way that the blocks of two
λi’s which are conjugate appear with consecutive indices.

For an elliptic block, {u1, v1, . . . , uk, vk} are the vectors correspond-
ing to the values ir and −ir, for r ∈ R. We see that Me(k, r, 1) and
Me(k, r,−1) have this block as Jordan form, so we can apply Proposi-
tion 6.2. The columns of Ψ1 are {u1, v1, . . . , uk, vk}, which are part of
a symplectic basis, and u1 and vk are eigenvectors with values ir and
−ir, so vk = cū1 for some c ∈ C. Using that Auj = iruj + uj−1 and
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Avj = −irvj − vj+1, we deduce that vk+1−j = (−1)j−1cūj . Concretely,

cuT1 Ω0ūk = uT1 Ω0v1

= 1

= uTkΩ0vk

= (−1)k−1cuTkΩ0ū1

= (−1)k−1c̄ūTkΩ0u1

which implies c = (−1)k c̄, that is, c is real if k is even and imaginary if k
is odd.

The columns of Ψ2 have two nonzero entries, of the form

(. . . ,±1, 0,±i, . . .)

or

(. . . ,±a, 0,±ia, . . .),

except the two central ones if k is odd, which are (. . . , 1, i) or a similar
form. In any case, we have u′Tj Ω0v

′
j = 2a if k is even, and 2ia if k is odd.

We can take as D a diagonal matrix with the entries alternating be-
tween d1 and d2, that commutes with J . The condition

DTΩ0D = DTΨT1 Ω0Ψ1D = Ψ2Ω0Ψ2

implies that d1d2 = 2a for k even, and 2ia for k odd. As S must be a real
matrix, in SΨ2 = Ψ1D the first and last columns are conjugate and we
get d̄1 = cd2, that is, d1d̄1 = 2ac for k even and 2iac for k odd. We just
need to take a ∈ {1,−1} so that this is positive: note that a is unique.

For the focus-focus case, we have in the symplectic basis a block of
vectors {

u1, v1, . . . , uk, vk, u
′
1, v

′
1, . . . , u

′
k, v

′
k

}
,

where u1, vk, u
′
1 and v′k are eigenvectors for λ,−λ, λ̄ and −λ̄ respectively.

If λ = s+ ir, the matrix Mf(k, r, s) has the same Jordan form.
The columns of Ψ1 are the vectors ui, vi, u

′
i and v′i; we have that

u′1 = cū1 for some c ∈ C, which implies u′i = cūi for all i and, from
uTi Ω0vi = u′Ti Ω0v

′
i = 1, we deduce v′i = v̄i/c for all i. The columns of Ψ2

have now the form (0, 1, 0, i, . . .), (i, 0, 1, 0, . . .), (. . . , 0, 1, 0, i, . . .), and so
on, for a total of 2k, followed by their conjugates.

We can take as D a diagonal matrix with the values

d1, d2, . . . , d1, d2, d3, d4, . . . , d3, d4,

which commutes with J . The condition

DTΩ0D = DTΨT1 Ω0Ψ1D = Ψ2Ω0Ψ2

implies that d1d2 = −2i and d3d4 = 2i. Using that S is a real matrix, the
left and right halves of SΨ2 = Ψ1D are conjugate, which implies d̄1 = cd3
and cd̄2 = d4, so the condition d3d4 = 2i reduces to a consequence of
d1d2 = −2i, and we can take for example d1 = 1 and d2 = −2i.
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This finishes the treatment of the nonzero eigenspaces. For the other
part, we can use the same treatment as in Theorem 6.16, but in the even
case we cannot always make ci = 1; instead we make ci = ai. Now{

ui1, aiui,2ℓi ,−ui2, aiui,2ℓi−1, . . . , (−1)ℓi−1uiℓi , aiui,ℓi+1

}
is a partial symplectic basis which gives the form Mh(ℓi, 0, (−1)ℓiai).

(b) Finally we prove uniqueness. If N and N ′ are two normal forms which
are equivalent, by Proposition 6.2, they have the same Jordan form. This
means that the set of blocks is the same except for the values of ai. But
in the elliptic case we already saw that a is unique. This only leaves the
hyperbolic case with r = 0.

In this case, if a can be 1 and −1 at the same time, there is a chain{
u1, u2, . . . , u2k

}
such that Aui = ui−1, Au1 = 0, and uiΩ0u2k+1−i = (−1)i, and another
one {

u′1, u
′
2, . . . , u

′
2k

}
with the same properties except that

u′iΩ0u
′
2k+1−i = (−1)i+1.

In the space generated by these vectors there is only one vector in the
kernel, so u′1 = ku1 for some k ∈ R. As Aui = ui−1 and Au′i = u′i−1, we
have that u′i = kui for all i. This together implies that

(−1)i+1 = u′iΩ0u
′
2k+1−i = k2uiΩ0u2k+1−i = k2(−1)i

and k2 = −1, a contradiction. □

The matrix Ψ1 in the previous proof gives a complex symplectic basis in which
M has the block diagonal form of Theorem 6.16. The relation between this and
the final matrix S can be written in terms of vectors. In the hyperbolic case,
they are the same matrix. In the elliptic case, we first multiply the vectors by the
corresponding dj : uj :=

√
|2c|uj , vj :=

√
2/|c|vj . Then, the matrix Ψ2 indicates

how the vectors in the final basis relate to these uj and vj : each column has a ±1
entry, a ±i entry and the rest are 0, so we have ±u′h +±iu′ℓ = uj , for some indices
h and ℓ. As the new vectors u′h and u′ℓ must be real, this has a unique solution,
and the new vectors are the real and imaginary parts of the old ones (maybe with
the sign changed).

In the focus-focus case, we also start multiplying the vectors by the dj :

vj := −2ivj , u
′
j := u′j/c = ūj , v

′
j := 2icv′j = v̄j .

Then we apply Ψ−1
2 : now each column of the left half of Ψ2 has a 1 and an i, and

the right half has a 1 and a −i in the same positions. For every j with 1 ≤ j ≤ k,
the equations are v′′2j−1+iv′′2j = uj and iu′′2j−1+u

′′
2j = vj for the first half and their

conjugates for the second half, where u′′j and v′′j are the new vectors. The solution
consists of taking the real and imaginary parts of the new vectors.
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Corollary 7.4. Let M ∈ M4(R) be a symmetric matrix. Then there exists
r, s ∈ R, a, b ∈ {−1, 1}, and a symplectic matrix S ∈ M4(R) such that STMS is
one of the following ten matrices:

0 r 0 0
r 0 0 0
0 0 0 s
0 0 s 0

 ,


0 0 0 0
0 a 0 0
0 0 0 s
0 0 s 0

 ,


0 0 0 0
0 a 0 0
0 0 0 0
0 0 0 b

 ,


0 r 0 0
r 0 1 0
0 1 0 r
0 0 r 0

 ,


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 a

 ,


0 r 0 0
r 0 0 0
0 0 s 0
0 0 0 s

 ,


0 0 0 0
0 a 0 0
0 0 s 0
0 0 0 s

 ,


r 0 0 0
0 r 0 0
0 0 s 0
0 0 0 s

 ,


a 0 0 r
0 0 −r 0
0 −r a 0
r 0 0 0

 ,


0 s 0 r
s 0 −r 0
0 −r 0 s
r 0 s 0

 ,

Furthermore, if there are two matrices of this form equivalent to M , they are both
in the first or in the eighth case swapping r and s, or in the third case swapping a
and b.

Proof. They are in this order: two hyperbolic blocks with k = 1 and a = 0,
one with a = 0 and one with a ̸= 0, two with a ̸= 0, one hyperbolic block with
k = 2 and a = 0, the same with a ̸= 0, one hyperbolic with a = 0 and one elliptic,
the same with a ̸= 0, two elliptic blocks with k = 1, one elliptic block with k = 2,
and one focus-focus block. □

These are the same (up to symplectic transformations) that Williamson gives
in his paper [142, page 24] and which we gave in Section 5.3.2.

7.2. Example of application of our method for matrices of arbitrary
order

Consider the matrix

M =



1
1

1
1

1
. . .

. . . 1
1

1


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We have that

Ω−1
0 M =



−1
1

−1

1
. . .

−1
1

. . . −1
1


whose characteristic polynomial is λ2n + (−1)n, and the eigenvalues are λ = eπik/n

for 0 ≤ k ≤ 2n−1, if n is odd, and λ = eπi(2k+1)/2n for 0 ≤ k ≤ 2n−1, if n is even.
If n = 2m + 1 is odd, the normal form of this matrix contains a hyperbolic

block, which corresponds to the eigenvalues {1,−1}, and m focus-focus blocks, for
the eigenvalues {

eπik/n, eπi(n−k)/n, eπi(n+k)/n, eπi(2n−k)/n
}
,

for 1 ≤ k ≤ m:

STMS =


0 1
1 0

N(1)
. . .

N(m)

 , N(k) =


0 cos πkn 0 sin πk

n

cos πkn 0 − sin πk
n 0

0 − sin πk
n 0 cos πkn

sin πk
n 0 cos πkn 0

 .

On the other hand, if n = 2m is even, the normal form contains only m focus-focus
blocks N(k + 1/2), for 0 ≤ k ≤ m− 1. In this case, if we change any 1 entry in M
to −1, the normal form contains again the hyperbolic block, the focus-focus blocks
N(k) for 1 ≤ k ≤ m− 1 and also an elliptic block, corresponding to the eigenvalues
i and −i:

STMS =



0 1
1 0

1 0
0 1

N(1)
. . .

N(m− 1)


.

7.3. Positive-definite case

If the matrix is positive-definite, only the elliptic case may appear: this happens
because, if u is an eigenvector of A with value λ,

ūTMu = ūTΩ0Au = λūTΩ0u

The left-hand side is a positive real, and for ūTΩ0u we have

ūTΩ0u = uTΩ0ū = −ūTΩ0u,

so it is imaginary, and λ must be imaginary.
Also, it is impossible to obtain for these matrices the elliptic blocks with size

greater than 2: if such a block appeared, there would be an element in the diagonal
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of STMS equal to 0. Let k be its index and u the k-th column of S. Then
uTMu = 0, which contradicts M being positive definite. This means that any
positive definite symmetric matrix can be diagonalized by a symplectic matrix,
which is the result most often referred to as “Williamson theorem”.



CHAPTER 8

The p-adic Weierstrass-Williamson classification

8.1. Dimension 2

In this section we prove Theorems 5.28 and 5.30, that is, the p-adic version
of the Weierstrass-Williamson matrix classification in dimension 2. The strategy
consists of lifting the problem, when needed, to an extension field of order 2, and
then using the theorems in Chapter 6 to go back to the p-adic field.

8.1.1. Preparatory results. In the p-adic case, Propositions 6.17, 6.18 and
6.22 are still enough to achieve a complete Weierstrass-Williamson classification
in dimension 2, but it is more complicated than the real case. First we need to
compute DSq(Qp, c) for all values of c. Of course, “all values” means “all classes
modulo Sq(Q∗

p)”: by Corollary 5.5, this quotient is{
1, c0, p, c0p

}
,

where c0 is a quadratic non-residue modulo p, except if p = 2, in which case the
quotient is {

1,−1, 2,−2, 3,−3, 6,−6
}
.

We use the notation digiti(x) for the digit in the p-adic expansion of x which
is i positions to the left of the leading digit, that is, the digit of order ord(x) + i.
The value of DSq(Qp, c) can also be deduced from known facts about the Hilbert
symbol; however, this does not seem simpler than a direct proof.

Proposition 8.1. Let p be a prime number such that p ̸= 2 and c ∈ Q∗
p. Then

DSq(Qp, c) is given as follows (see Figure 1):

(1) If p ≡ 3 mod 4, then DSq(Qp, 1) = {u ∈ Qp : ordp(u) ≡ 0 mod 2} and
DSq(Qp, 1) = Qp otherwise;

(2) if p ≡ 1 mod 4, then DSq(Qp, c0) = {u ∈ Qp : ordp(u) ≡ 0 mod 2} and
DSq(Qp, c0) = Qp otherwise;

(3) for any value of the prime p, DSq(Qp, p) = {u ∈ Qp : digit0(u) ∈ Sq(F∗
p)};

(4) for any value of the prime p, DSq(Qp, c0p) = {u ∈ Qp : ordp(u) ≡ 0
mod 2,digit0(u) ∈ Sq(F∗

p)} ∪ {u ∈ Qp : ordp(u) ̸≡ 0 mod 2,digit0(u) /∈
Sq(F∗

p)}.

Proof. For the first point, we need to look at the possibilities modulo Sq(Q∗
p)

of numbers of the form x2+1. We can immediately get 1 and c0, the first by taking
x with high order and the second by taking it with order 0 and an adequate leading
digit. We can only get p and c0p if x2 can have −1 as a leading digit, which only
happens if p ≡ 1 mod 4.

155
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p ≡ 1 mod 4

p ≡ 3 mod 4

1 c0 p c0p

Figure 1. Top: DSq(Qp, c) for c ∈ Qp and p ̸= 2. In each group
of four circles, the upper circles represent even order numbers and
the lower circles odd order, and the right circles represent square
leading digits and the left circles non-square digits. Bottom: these
four classes depicted for p = 3. Each circle “contains” the points
with the same color and the black point at the right is 0.

For the second point, we need, analogously, to look at numbers of the form
x2+ c0. We immediately get the classes 1 and c0. We can only get p and c0p if −c0
is a square modulo p, that is, if p ≡ 3 mod 4.

For the last two points, numbers of the form x2 + p are in the classes 1 and
p, depending only in the order of x, and those of the form x2 + c0p are in 1 and
c0p. □

Proposition 8.2. DSq(Q2, c) is given as follows (see Figure 2):

(1) DSq(Q2, 1) = {u ∈ Q2 : digit1(u) = 0};
(2) DSq(Q2,−1) = Q2;
(3) DSq(Q2, 2) = {u ∈ Q2 : digit2(u) = 0};
(4) DSq(Q2,−2) = {u ∈ Q2 : digit1(u) = digit2(u)};
(5) DSq(Q2, 3) = {u ∈ Q2 : ord2(u) ≡ 0 mod 2};
(6) DSq(Q2,−3) = {u ∈ Q2 : ord2(u) + digit1(u) ≡ 0 mod 2};
(7) DSq(Q2, 6) = {u ∈ Q2 : ord2(u) + digit1(u) + digit2(u) ≡ 0 mod 2};
(8) DSq(Q2,−6) = {u ∈ Q2 : ord2(u) + digit2(u) ≡ 0 mod 2}.

Proof. Table 1 indicates the leading digits and the parity of the order of
a2 + cb2 depending on c and the difference ord2(b)− ord2(a). The result follows by
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ord2(b)− ord2(a)

c cb2 ≤ −2 −1 0 1 ≥ 2

1 001 even 001 even 101 even 01 odd 101 even 001 even

−1 111 even 111 even 011 even anything 101 even 001 even

2 001 odd 001 odd 011 odd 011 even 001 even 001 even

−2 111 odd 111 odd 001 odd 111 even 001 even 001 even

3 011 even 011 even 111 even 1 even 101 even 001 even

−3 101 even 101 even 001 even 11 odd 101 even 001 even

6 011 odd 011 odd 101 odd 111 even 001 even 001 even

−6 101 odd 101 odd 111 odd 011 even 001 even 001 even

Table 1. Leading digits and parity of the order of a2 + cb2 de-
pending on c and the difference ord2(b) − ord2(a). The number
a2 is always described as 001 even, cb2 depends exclusively on c,
and the result of the addition of both terms depends in the offset
between these digits. Note that the leading 1’s will add up to 0 if
the offset is 0, hence making the second digit the leading one in the
cases “01 odd” and “11 odd” (in these cases the order increases in
1), the third in the case “1 even” (the order increases in 2), and
giving any possible result when adding 001 and 111 at the same
position.

putting together the cases in the same row of the table. Note that a case such as
“011 even” covers all 2-adic numbers with even order and ending in 011. □

8.1.2. Proof of Theorems 5.28 and 5.30. First, note that Theorem 5.30
follows directly from Theorem 5.28: the isolated normal forms correspond to the
different values of r for c = 0, and each family of normal forms corresponds to a
value of c ∈ Xp with c ̸= 0. Now we prove Theorem 5.28.

(a) First we prove existence. The characteristic polynomial of Ω−1
0 M has two

opposite roots, which may or may not be in Qp. If they are in Qp and are
not 0, Proposition 6.17 implies that M can be converted to(

0 1
1 0

)
except by a constant factor. But the matrix

N =

(
r 0
0 cr

)
in Theorem 5.28, where c = 1 if p ≡ 1 mod 4 and c = −1 otherwise, has
also two eigenvalues in Qp, so it can be converted to the same matrix.

If the eigenvalues are 0, either the matrix is zero, and we are in the
same situation but with r = 0, or they are not zero, and Proposition 6.18
gives the same matrix but with c = 0. In this case r must be such that ar
is a square, where a is one of the coefficients. There is one and only one
r ∈ Yp ∪ {1} such that this happens.

Now suppose that the roots of the characteristic polynomial of Ω−1
0 M

are ±λ for λ /∈ Qp. In this case, we must have λ2 ∈ Qp. We have
N = STMS for a symplectic matrix S and some r and c if the two
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1 −1 2 −2

3 −3 6 −6

Figure 2. Top: DSq(Q2, c) for c ∈ Q2. In each group of eight cir-
cles, the upper circles represent even order numbers and the lower
circles odd order, the two rightmost circles in the row represent a
0 as second digit and the two leftmost circles a 1, and in each pair
of circles, the rightmost one has 0 as third digit and the leftmost
one has 1. Bottom: a depiction of the eight classes. Each circle
“contains” the points with the same color and the black point in
the lower left is 0.

conditions of Proposition 6.22 hold for some a and b = ac. The first
condition reads

λ2 = −a2c⇒ a2 = −λ
2

c
.

We must now split the proof into several cases.
• λ2 has even order. In order for −λ2/c to be a square, we need c of
even order. We also know that λ2 is not a square, so −c must not
be a square. The elements of Xp which satisfy these conditions are
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{c0, c0p2} if p ≡ 1 mod 4, {1, p2} if p ≡ 3 mod 4, and {1, 3,−3, 12}
if p = 2.
For p = 2, we also need that −λ2/c ends in 001, so the three last
digits in c must agree with those in −λ2, which will be 001, 101 or
011 (not 111, which would make λ2 a square). This narrows further
down the options to {1}, {−3} or {3, 12}, respectively.
Let C be the current set of options for c, which contains only the
singleton {c1} or the set of two values {c1, c1p2}. All of them satisfy
that −λ2/c is a square. We still need to apply the second condition,
that is, we need to choose a such that

2λa

uTΩ0ū
∈ DSq(Qp,−λ2) = DSq(Qp, c1).

Let

a1 =

√
−λ2
c1

.

In the two cases where C = {c1}, by Proposition 8.2(1) and (6), for
any x ∈ Qp, either x or −x is in DSq(Qp, c1). So, either a = a1 or
a = −a1 satisfies the condition, and c = c1 is valid.
If

C = {c1, c1p2},

by Proposition 8.1(1) and (2) and Proposition 8.2(5),

DSq(Qp, c1) =
{
u ∈ Qp : ordp(u) ≡ 0 mod 2

}
.

This implies that either a = a1 or a = a1/p satisfies the condition.
Hence, only one between c1 and c1p

2 is a valid value of c.
• λ2 has odd order. Now we need c to have odd order instead of even.
What happens next depends on p.

– If p ≡ 1 mod 4, the values of c with odd order are ck0p for k =
0, 1, 2, 3. The first condition implies that −λ2/ck0p is a square,
which is true for k = 0 and 2 or for k = 1 or 3, depending on
the leading digit of −λ2/p. Let c1 be the value which satisfies
this between p and c0p. Now the two candidates for c are c1
and c1c

2
0.

We define again a1 =
√
−λ2/c1. In this case, by Proposition

8.1(3) and (4), for any x ∈ Qp, either x or c0x is in DSq(Qp, c1).
Hence, either a = a1 or a = a1/c0 satisfies the condition, and
either c = c1 or c = c1c

2
0 is valid.

– If p ≡ 3 mod 4, the values of c with odd order are p and −p.
As −1 is not a square, only one will make −λ2/c a square. For

this value of c, we set a1 =
√

−λ2/c. By Proposition 8.1(3) and
(4), for any x ∈ Qp, either x or −x is in DSq(Qp, c1). Hence,
either a = a1 or a = −a1 is valid, and c is valid in any case.

– If p = 2, the values of c with odd order are 2, −2, 6, −6, −18
and 24. −λ2/c must end in 001, so c must agree with −λ2
in the last three digits, that in this case can have all possible
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values: 001, 101, 011 and 111. The valid c’s in each case are,
respectively,

{2}, {−6}, {6, 24}, {−2,−18}.
Let C be this set, c1 the element of less absolute value (in the

real sense) in C, and a1 =
√
−λ2/c1.

If C has only one element, by Proposition 8.2(3) and (8), for
any x ∈ Qp, either x or −x is in DSq(Qp, c1), and again c1 is
valid in any case.
If C = {−2,−18}, by Proposition 8.2(4), for any x ∈ Qp, either
x or 3x is in DSq(Qp,−2) (because digit1(x) = 1 − digit1(3x)
and digit2(x) = digit2(3x)). Hence, either a = a1 or a = a1/3
works and c = −2 or c = −18, respectively, works.
Finally, if C = {6, 24}, by Proposition 8.2(7), for any x ∈ Qp,
either x or 2x is in DSq(Qp, 6). So either a = a1 or a = a1/2
works and c = 6 or c = 24, respectively, works.

(b) Now we prove uniqueness. In the case where the roots of the characteristic
polynomial are in Qp, the rest of c’s in the lists do not lead to a matrix
with the eigenvalues in Qp, because their opposites are not squares. In all
the other cases, we have seen that there is one and only one valid value
of c. If two matrices S and S′ bring M to normal form, c must coincide,
hence r also coincides because the eigenvalues of the normal forms must
be the same.

Recall that, in the real case, there are two normal forms: elliptic and hyperbolic.
To give them the form (

r 0
0 cr

)
,

we need c = 1 and c = −1, respectively. In the p-adic case, these two matrices are
equivalent by multiplication by a symplectic matrix if and only if p ≡ 1 mod 4:
the list for this case is the only one that does not contain −1.

Proposition 8.3. All choices of quadratic residue in Definition 5.18 (including
the least of all, which is used in the definition) lead to the same normal form in
Theorem 5.28, up to multiplication by a symplectic matrix. That is, if c0, c

′
0 are

two quadratic residues modulo p then the normal forms corresponding to c0 and the
normal forms corresponding to c′0 are equivalent by multiplication by a symplectic
matrix. (The order of the forms, however, may vary: for example, taking c′0 ≡ c30
mod p results in the new form with c = c′0p being taken as the one which had
previously c = c30p.)

Proof. By Theorem 5.28, the normal forms of matrices in the first set are
equivalent to one and only one normal form in the second set, so the two sets are
different representatives of the same classes. □

8.2. Dimension 4

We will now provide the p-adic classification of 4-by-4 matrices. Some cases
are a consequence of the previous results: the characteristic polynomial of Ω−1

0 M
has the form

At4 +Bt2 + C
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and the roots are λ, −λ, µ and −µ. If λ2 is in Qp, then µ2 is also in Qp. If λ ̸= µ,
we can multiply M by a symplectic matrix to separate it into two components,
one with the eigenvalues λ and −λ, and the other with µ and −µ, and apply to
each component Theorem 5.28. In the real case this results in three rank 0 normal
forms: elliptic-elliptic, elliptic-hyperbolic and hyperbolic-hyperbolic. In the p-adic
case, we have to combine analogously the normal forms for dimension 2, getting a
total of

(
8
2

)
= 28 forms for p ≡ 1 mod 4,

(
6
2

)
= 15 for p ≡ 3 mod 4, and

(
12
2

)
= 66

for p = 2.
The other case is when λ2 /∈ Qp. In this case, λ2 and µ2 are conjugate roots in a

degree two extension L of Qp. If λ2 is a square in L, that is, λ ∈ L, we have µ2 = λ2

and µ = λ̄ is also in L. We will now see that, in this case, the necessary condition
of having the same eigenvalues is also sufficient to be linearly symplectomorphic.

8.2.1. Case p ̸= 2. We start with the case p ≡ 1 mod 4. This subdivides in
three cases, depending on whether α2 is c0, p or c0p. The following result gives a
characterization of the squares in Qp[α] in each case.

Proposition 8.4. Let p be a prime number such that p ≡ 1 mod 4. Let c0 be
a quadratic non-residue modulo p. Then the following statements hold.

(1) Sq(Qp[
√
c0]

∗) = {a + b
√
c0 : a, b ∈ Qp, ordp(a) ≤ ordp(b), ordp(a) ≡ 0

mod 2, a2 − b2c0 ∈ Sq(Q∗
p)}.

(2) Sq(Qp[
√
p]∗) = {a + b

√
p : a, b ∈ Qp, ordp(a) ≤ ordp(b),digit0(a) ∈

Sq(F∗
p)}.

(3) Sq(Qp[
√
c0p]

∗) = {a + b
√
c0p : a, b ∈ Qp, ordp(a) ≤ ordp(b), ordp(a) ≡ 0

mod 2,digit0(a) ∈ Sq(F∗
p)} ∪ {a + b

√
c0p : ordp(a) ≤ ordp(b), ordp(a) ̸≡ 0

mod 2,digit0(a) /∈ Sq(F∗
p)}.

Proof. (1) Suppose that a+ b
√
c0 is a square in Qp. By Lemma 6.25,

a2 − b2c0 = (r2 − s2c0)
2

for some r, s ∈ Qp. In particular, a2 − b2c0 is a square in Qp. If ord(a)
was higher than ord(b), that would make

digit0(a
2 − b2c0) = digit0(−b2c0) /∈ Sq(F∗

p).

So ord(a) ≤ ord(b). We also have that a = r2 + s2c0, and by Proposition
8.1(2), ord(a) is even.

Suppose now that a and b satisfy the three conditions. Then the first
condition in Lemma 6.25 is satisfied. Let t1 and t2 be the two candidates
for r2. Note that t1t2 = b2c0/4.

The leading terms cannot cancel simultaneously in a+
√
a2 − b2c0 and

a−
√
a2 − b2c0. Without loss of generality, suppose that t1 has no cancel-

lation. Then ord(t1) = ord(a), which is even, and ord(t2) = ord(b2c0/4t1)
is also even. But their product t1t2 = b2c0/4 is a non-square, hence one of
t1 and t2 is a square (because the product of two even-order non-squares
is a square).

(2) Suppose that a+ b
√
p is a square in Qp. By Lemma 6.25,

a2 − b2p = (r2 − s2p)2

for some r, s ∈ Qp. This implies that ord(a2 − b2p) is even, so ord(a) ≤
ord(b). Here a = r2 + s2p, so by Proposition 8.1(3), digit0(a) ∈ Sq(F∗

p).
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Reciprocally, if a and b satisfy the conditions, a2 − b2p is a square

because a2 is. t1 = (a +
√
a2 − b2p)/2 has the same order and leading

digit than a, so if a is a square, t1 is also a square. Otherwise, a is p times
a square and the same applies to t1, and t2 = b2p/4t1 is a square.

(3) Suppose that a+ b
√
c0p is a square in Qp. By Lemma 6.25,

a2 − b2c0p = (r2 − s2c0p)
2

for some r, s ∈ Qp. This implies that ord(a2 − b2c0p) is even, so ord(a) ≤
ord(b). Now we have a = r2 + s2c0p, which by Proposition 8.1(4) implies
that either the order of a is even and its leading digit is square, or the
order is odd and the leading digit is non-square.

Reciprocally, if a and b satisfy the conditions, a2 − b2c0p is a square
because a2 is. In the first case

t1 =
a+

√
a2 − b2c0p

2
is a square. In the second case, a is p times an even order non-square, t1
is the same, and

t2 =
b2c0p

4t1
is a square. □

Corollary 8.5. Let p be a prime number such that p ≡ 1 mod 4. Let c0 be
a quadratic non-residue modulo p. Then the following statements hold.

(1) Qp[
√
c0]

∗/Sq(Qp[
√
c0]

∗) = {1, p,√c0, p
√
c0}.

(2) Qp[
√
p]∗/ Sq(Qp[

√
p]∗) = {1, c0,

√
p, c0

√
p}.

(3) Qp[
√
c0p]

∗/ Sq(Qp[
√
c0p]

∗) = {1, c0,
√
c0p, c0

√
c0p}.

Proof. (1) Given an element a + b
√
c0 in Qp[

√
c0]

∗, if ord(a) > ord(b)
or they are equal and a2 − b2c0 is not a square, we multiply it by

√
c0.

This guarantees that ord(a) ≤ ord(b) and a2 − b2c0 is a square, because
√
c0(a+ b

√
c0) = a

√
c0 + bc0

and
b2c20 − a2c0 = c0(a

2 − b2c0)

so if a2 − b2c0 was non-square, it is now square. Hence, if the order of a
is odd, we multiply the element by p, and we obtain a square.

(2) Given an element a + b
√
p in Qp[

√
p]∗, if ord(a) > ord(b), we multiply it

by
√
p, so that it has ord(a) ≤ ord(b). Now, multiplying it by c0 if needed,

we ensure that digit0(a) is a square.
(3) Given an element a+ b

√
c0p in Qp[

√
c0p]

∗, if ord(a) > ord(b), we multiply
it by

√
c0p, so that it has ord(a) ≤ ord(b). Now, multiplying it by c0 if

needed, we ensure that digit0(a) is a square or a non-square, depending
on the order. □

The element γ is the square root of an element in this set, but different from
1, which would lead to the case of Proposition 6.23. So there are three possible γ’s
for each α. Also, note that γ2 always is in Qp or α times an element of Qp: this
means that γ̄2 is γ2 or −γ2, that is, γ̄ is γ or iγ. In any case, γ̄ ∈ Qp[γ] (here it
is important that p ≡ 1 mod 4 so that i ∈ Qp), or in other words, the extension
Qp[γ, γ̄] is the same as Qp[γ], which is different for each γ.
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α2 all classes γ2 attainable classes a b a(b+ α) [a(b+ α)]

c0 1, p,
√
c0, p

√
c0 p 1, p 1 0

√
c0

√
c0

p 1/p 1 + p
√
c0 1√

c0 1,
√
c0 1 0

√
c0

√
c0

p 0 p
√
c0 p

√
c0

p
√
c0 1, p

√
c0 1 0

√
c0

√
c0

p 0 p
√
c0 p

√
c0

p 1, c0,
√
p, c0

√
p c0 1, c0 1 0

√
p

√
p

1 1 1 +
√
p 1√

p 1,
√
p 1 0

√
p

√
p

c0 0 c0
√
p c0

√
p

c0
√
p 1, c0

√
p 1 0

√
p

√
p

c0 0 c0
√
p c0

√
p

c0p 1, c0,
√
c0p, c0

√
c0p c0 1, c0 1 0

√
c0p

√
c0p

1 1 1 +
√
c0p 1√

c0p 1,
√
c0p 1 0

√
c0p

√
c0p

c0 0 c0
√
c0p c0

√
c0p

c0
√
c0p 1, c0

√
c0p 1 0

√
c0p

√
c0p

c0 0 c0
√
c0p c0

√
c0p

Table 2. Values of a and b for Proposition 6.24 with F = Qp, p ≡
1 mod 4. The second column shows the classes of Qp[α] modulo a
square, the fourth shows the classes attainable as x2+γ2, the fifth
and sixth show values of a and b, the seventh shows the resulting
a(b+ α), and the eighth shows its class. These classes, multiplied
by the “attainable classes”, should cover the set of “all classes”.
(It is interesting that the attainable classes are always 1 and γ2.
This may have to do with the field being non-archimedean.)

The next step is to determine

DSq(Qp[α],−γ2),

or equivalently

DSq(Qp[α], γ2),
because −1 is a square. This consists of seeing which classes of Qp[α]∗ modulo a
square are attainable by elements of the form x2 + γ2 for different x. Once this is
done, the quotient of Qp[α]∗/ Sq(Qp[α]∗) by this subgroup will give us the necessary
a and b. The computations are shown in Table 2.

Now we make the analogous treatment with p ≡ 3 mod 4. The values of α
are the same as in the previous case, but now we can take c0 = −1 to simplify the
formulas, so we have α = i,

√
p or i

√
p.

Proposition 8.6. Let p be a prime number such that p ≡ 3 mod 4. Then the
following statements hold.

(1) Sq(Qp[i]∗) = {a + ib : a, b ∈ Qp,min{ordp(a), ordp(b)} ≡ 0 mod 2, a2 +
b2 ∈ Sq(Q∗

p)}.
(2) Sq(Qp[

√
p]∗) = {a + b

√
p : a, b ∈ Qp, ordp(a) ≤ ordp(b),digit0(a) ∈

Sq(F∗
p)}.

(3) Sq(Qp[i
√
p]∗) = {a + ib

√
p : a, b ∈ Qp, ordp(a) ≤ ordp(b), ordp(a) ≡ 0

mod 2,digit0(a) ∈ Sq(F∗
p)} ∪ {a + ib

√
p : ordp(a) ≤ ordp(b), ordp(a) ̸≡ 0

mod 2,digit0(a) /∈ Sq(F∗
p)}.
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Proof. Parts (2) and (3) have the same proof as the corresponding parts of
Proposition 8.4, so we focus on part (1).

Suppose that a + ib is a square. By Lemma 6.25 a2 + b2 = (r2 + s2)2 for
r, s ∈ Qp. In particular, a2 + b2 is a square. By Proposition 8.1(1), r2 + s2 has
even order, so 4 | ord(a2 + b2). As p ≡ 3 mod 4, we cannot have a cancellation in
a2 + b2, so

ord(a2 + b2) = min
{
ord(a2), ord(b2)

}
= 2min

{
ord(a), ord(b)

}
.

As this is a multiple of 4, min{ord(a), ord(b)} is even.
Now suppose that a and b satisfy the conditions. We have the first condition

in Lemma 6.25. To check the second, let t1 and t2 be the two candidates for r2 and
suppose, without loss of generality, that t1 = (a+

√
a2 + b2)/2 does not cancel the

leading terms. Then

ord(
√
a2 + b2) = min

{
ord(a), ord(b)

}
is even. The order of a is either higher than this (if b has lower order) or the same,
and in any case ord(t1) is even. t2 = −b2/4t1 has also even order, and their product
−b2/4 is not a square (because p ≡ 3 mod 4). This implies that either t1 or t2 is
a square. □

Corollary 8.7. Let p be a prime number such that p ≡ 3 mod 4. Let a0, b0 ∈
Zp such that a20 + b20 ≡ −1 mod p. (This pair exists by Proposition 8.1(1).) Then
the following statements hold.

(1) Qp[i]∗/ Sq(Qp[i]∗) = {1, p, a0 + ib0, p(a0 + ib0)}.
(2) Qp[

√
p]∗/ Sq(Qp[

√
p]∗) = {1,−1,

√
p,−√

p}.
(3) Qp[i

√
p]∗/Sq(Qp[i

√
p]∗) = {1,−1, i

√
p,−i

√
p}.

Proof. Again, parts (2) and (3) are similar to the corresponding ones in Corol-
lary 8.5, so we focus on part (1).

Given a number in the form a + ib, we first ensure that a2 + b2 is a square
multiplying by a0+ib0 if needed (this changes a2+b2 mod p to the opposite). Then
we have to ensure that min{ord(a), ord(b)} is even, multiplying by p if needed, and
we have a square because multiplying by p multiplies a2 + b2 by p2 and it will still
be a square. □

Now we have determined the possible γ’s. In this case, it is not always true
that γ̄ ∈ Qp[γ]:

• If γ2 = −1 or p, then γ̄ = γ.
• If γ2 = a0 + ib0 or p(a0 + ib0), the product γ2γ̄2 is a20 + b20 or p2(a20 + b20)
respectively. But a20 + b20 ≡ −1 mod p implies that −γ2γ̄2 is a square
in Qp, so γγ̄ is i times an element of Qp, and in this case we also have
γ̄ ∈ Qp[γ].

• Otherwise, γ̄ = −γ, which is a different class.

Hence, the five cases p, −1, a0+ib0 and p(a0+ib0) give different extensions Qp[γ, γ̄]
and the other four cases give only two extensions, one for ±√

p and the other for
±i

√
p.

The next step is to determine DSq(Qp[α],−γ2) for each possible α and γ, and
make the quotients. The computation is in Table 3.
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α2 all classes γ2 attainable classes a b a(b+ α) [a(b+ α)]

−1 1, p, a0 + ib0, p(a0 + ib0) p 1, p 1 0 i 1
b0 a0/b0 a0 + ib0 a0 + ib0

a0 + ib0 1, a0 + ib0 1 0 i 1
p 0 ip p

p(a0 + ib0) 1, p(a0 + ib0) 1 0 i 1
p 0 ip p

p 1,−1,
√
p,−√

p −1 1,−1 1 0
√
p

√
p

1 1 1 +
√
p 1√

p 1,−√
p 1 0

√
p

√
p

−1 0 −√
p −√

p

−p 1,−1, i
√
p,−i

√
p −1 1,−1 1 0 i

√
p i

√
p

1 1 1 + i
√
p 1

i
√
p 1,−i

√
p 1 0 i

√
p i

√
p

−1 0 −i
√
p −i

√
p

Table 3. Values of a and b for Proposition 6.24 with F = Qp, p ≡
3 mod 4. The second column shows the classes of Qp[α] modulo a
square, the fourth shows the classes attainable as x2−γ2, the fifth
and sixth show values of a and b, the seventh shows the resulting
a(b+ α), and the eighth shows its class.

8.2.2. Case p = 2. It only remains to make the analysis for p = 2. This case
is different from the rest because we now have seven values of α2 instead of three:
−1, 2,−2, 3,−3, 6 and −6.

Lemma 8.8. Let k, ℓ ∈ N with k ≥ ℓ. Let a, b, r ∈ Z2 such that ord2(2r−a) = ℓ.
Then we have that

a±
√
a2 − b2α2

2
≡ r mod 2k

if and only if (
b

2

)2

α2 ≡ r(a− r) mod 2k+ℓ.

Proof. The first equation is equivalent to a ±
√
a2 − b2α2 ≡ 2r mod 2k+1,

which itself is equivalent to

±
√
a2 − b2α2

2ℓ
≡ 2r − a

2ℓ
mod 2k+1−ℓ.

Since the right-hand side is odd, this is equivalent to all the following identities:

a2 − b2α2

22ℓ
≡ (2r − a)2

22ℓ
mod 2k+2−ℓ ⇔

a2 − b2α2 ≡ (2r − a)2 mod 2k+ℓ+2 ⇔

−b2α2 ≡ 4r2 − 4ra mod 2k+ℓ+2 ⇔(
b

2

)2

α2 ≡ r(a− r) mod 2k+ℓ,

as we wanted. □

Proposition 8.9. The following statements hold.
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(1) Sq(Q2[i]
∗) = {a + ib : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 2, ord2(a) ≡ 0

mod 2, b/4a+digit1(a)+digit2(a) ≡ 0 mod 2}∪{a+ib : a, b ∈ Qp, ord2(a)−
ord2(b) ≥ 2, ord2(b) ≡ 1 mod 2, a/4b+ digit1(b) + digit2(b) ≡ 0 mod 2}.

(2) Sq(Q2[
√
2]∗) = {a + b

√
2 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 1,digit2(a) =

0, b/2a+ digit1(a) ≡ 0 mod 2}.
(3) Sq(Q2[i

√
2]∗) = {a + ib

√
2 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 1,digit1(a) =

digit2(a), b/2a+ ord2(a) + digit1(a) ≡ 0 mod 2}.
(4) Sq(Q2[

√
3]∗) = {a + b

√
3 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 2, ord2(a) ≡ 0

mod 2, b/4a + digit2(a) ≡ 0 mod 2} ∪ {a + b
√
3 : a, b ∈ Qp, ord2(a) −

ord2(b) = 1, ord2(a) ≡ 0 mod 2,digit1(a) + digit1(b) + digit2(b) ≡ 0
mod 2}.

(5) Sq(Q2[i
√
3]∗) = {a + ib

√
3 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 2, ord2(a) ≡ 0

mod 2,digit1(a) = 0}∪{a+ ib
√
3 : a, b ∈ Qp, ord2(a) = ord2(b), ord2(a) ≡

1 mod 2,digit1(a) = 1, a2 + 3b2 ∈ Sq(Q∗
2)}.

(6) Sq(Q2[
√
6]∗) = {a + b

√
6 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 1, ord2(a) +

digit1(a) + digit2(a) ≡ 0 mod 2, b/2a+ digit2(a) ≡ 0 mod 2}.
(7) Sq(Q2[i

√
6]∗) = {a + ib

√
6 : a, b ∈ Qp, ord2(b) − ord2(a) ≥ 1, ord2(a) +

digit2(a) ≡ 0 mod 2, b/2a+ digit1(a) ≡ 0 mod 2}.

Proof. The first condition in Lemma 6.25 implies that a2 − α2b2 is a square,
so it has even order and ends in 001. This depends on α2 ∈ {−1, 2,−2, 3,−3, 6,−6}
as well as in the difference ord2(b)−ord2(a), in the way described in Table 1 (where
c = −α2). The valid values are as follows:

(i) α2 is odd and ord2(b)−ord2(a) ≥ 2. Then
√
a2 − b2α2 has the same order

than a, and without loss of generality we suppose that digit1(
√
a2 − b2α2) =

digit1(a) (otherwise choose the other square root).
We have that t1 or t2 is a square, so it has even order, and t1t2 =

b2α2/4, which has even order, so both t1 and t2 have even order. But, as

ord2(
√
a2 − b2α2) = ord2(a) and digit1(

√
a2 − b2α2) = digit1(a),

ord2(2t1) = ord2(a+
√
a2 − b2α2) = ord2(a) + 1

which implies ord2(t1) = ord2(a). As this is even, a has even order.
To simplify the computation, we divide a and b by some power of 4

so that ord2(a) = 0. (Obviously, dividing by 4 does not affect being a
square.) Now ord2(t1) = 0.

If t1 is a square, it must be 1 modulo 8. By Lemma 8.8, using that in
this case ord2(2− a) = 0, this is equivalent to(

b

2

)2

α2 ≡ a− 1 mod 8.

If ord2(b) = 2, this implies 4α2 ≡ a − 1 mod 8, and, using that α is
odd, 4 ≡ a − 1 mod 8, so a ≡ 5 mod 8. Otherwise, ord2(b) ≥ 3 and
a ≡ 1 mod 8. In any case, t1 is square if and only if digit1(a) = 0 and
b/4a+ digit2(a) is even.

If t2 is a square, as t2 = b2α2/4t1, α
2/t1 is also a square and has order

0, so it must be 1 modulo 8 and t1 ≡ α2 mod 8. Now ord2(2α
2 − a) = 0
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again, so this is equivalent to(
b

2

)2

α2 ≡ α2(a− α2) mod 8,

that is (
b

2

)2

≡ a− α2 mod 8.

The left-hand side is equivalent to 4 modulo 8 if ord2(b) = 2 and 0 oth-
erwise. If α2 = −1, a must be 3 or 7 respectively, so digit1(a) = 1 and
b/4a+digit2(a) is odd. If α

2 = 3, a is 7 or 3 respectively, so digit1(a) = 1
and b/4a+ digit2(a) is even. Finally, if α

2 = −3, a is 5 or 1 respectively,
digit1(a) = 0 and b/4a+ digit2(a) is odd. Putting this together with the
results for t1, we obtain the first set in the cases (1), (4) and (5).

(ii) α2 = −1 and ord2(b)−ord2(a) ≤ −2. Now a2+b2 has the order of b2, and

a±
√
a2 + b2 has the same order as b, so ord2(t1) = ord2(t2) = ord2(b)−1

and ord2(b) is odd. By dividing a and b by a power of 4, we assume that
ord2(b) = 1 and ord2(t1) = ord2(t2) = 0.

If ti is square, ti ≡ 1 mod 8. Now ord2(2 − a) = 1 (because a is
multiple of 4) and Lemma 8.8 implies that this is equivalent to(

b

2

)2

≡ 1− a mod 16.

The left-hand side is 1 if digit3(b
2) is 0, that is, if digit1(b) + digit2(b) is

even, and 9 otherwise, so a is 0 or 8 modulo 16, respectively. Putting this
together, we obtain the second set in case (1).

(iii) α2 = 3 and ord2(b) − ord2(a) = −1. a2 − 3b2 has the order of b2, and

a±
√
a2 − 3b2 has the order of b, so again ord2(t1) = ord2(t2) = ord2(b)−1

and ord2(b) is odd. By dividing a and b by a power of 4, we assume that
ord2(b) = 1, ord2(a) = 2 and ord2(t1) = ord2(t2) = 0.

If ti is square, ti ≡ 1 mod 8. Now ord2(2− a) = 1 again, and this is
equivalent to

3

(
b

2

)2

≡ a− 1 mod 16.

The left-hand side is 3 if digit3(b
2) is 0, that is, if digit1(b) + digit2(b) is

even, and 11 otherwise, so a is 4 or 12 modulo 16, respectively. Putting
this together, we obtain the second set in case (4).

(iv) α2 = −3 and ord2(b) = ord2(a). In this case ord2(
√
a2 + 3b2) = ord2(a)+

1 and ord2(t1) = ord2(t2) = ord2(a) − 1, so ord2(a) is odd. By dividing
a and b by a power of 4, we assume that ord2(a) = ord2(b) = 1 and
ord2(t1) = ord2(t2) = 0.

If ti is square, ti ≡ 1 mod 8. In this case, as ord2(a) = 1, ord2(2− a)
is at least 2, and

3

(
b

2

)2

≡ 1− a mod 32.

The left-hand side is 3, 27, 11 or 19 if b is ±2, ±6, ±10 or ±14 modulo
32 respectively, so a is 30, 6, 22 or 14 modulo 32. These are exactly the
cases where a2+3b2 is a square and digit1(a) = 1 (the opposite remainder
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modulo 32 for a also makes a2 + 3b2 a square, but has digit1(a) = 0). So
we obtain the second set in case (5).

(v) α2 is even and ord2(b)−ord2(a) ≥ 1.
√
a2 − b2α2 has the same order than

a, and without loss of generality we suppose that digit1(
√
a2 − b2α2) =

digit1(a) (otherwise choose the other square root).
We have that t1t2 = b2α2/4, which has odd order, so one of t1 and t2

has even order and the other has odd order. But, as ord2(
√
a2 − b2α2) =

ord2(a) and digit1(
√
a2 − b2α2) = digit1(a),

ord2(2t1) = ord2(a+
√
a2 − b2α2) = ord2(a) + 1

which implies ord2(t1) = ord2(a). That is, if a has even order t1 is a
square and otherwise t2 is a square.

To simplify the computation, we divide a and b by some power of 4
so that ord2(a) is 0 or 1.

If t1 is a square, then ord2(a) = ord2(t1) = 0, so t1 ≡ 1 mod 8, and
ord2(2− a) = 0, so(

b

2

)2

α2 ≡ a− 1 mod 8.

If ord2(b) = 1, this implies α2 ≡ a − 1 mod 8: for α2 = 2 or −6, a ≡ 3
mod 8, and otherwise a ≡ 7 mod 8. If ord2(b) ≥ 2, as α is even, we get
a ≡ 1 mod 8. In any case, t1 is square if and only if digit2(a) = 0 and
b/2a + digit1(a) is even, if α2 = 2 or −6, or digit1(a) = digit2(a) and
b/2a+ digit1(a) is even, otherwise.

If t2 is a square, then ord2(a) = ord2(t1) = 1, t2 = b2α2/4t1, α
2/t1

is also a square and has order 0, so it must be 1 modulo 8 and t1 ≡ α2

mod 16. Now ord2(2α
2 − a) = 1, so(

b

2

)2

α2 ≡ α2(a− α2) mod 32,

that is, (
b

2

)2

≡ a− α2 mod 16.

The left-hand side is equivalent to 4 modulo 16 if ord2(b) = 2 and 0
otherwise. If α2 = 2, a must be 6 or 2 respectively, so digit2(a) = 0 and
b/2a + digit1(a) is even. If α2 = −2, a must be 2 or 14 respectively, so
digit1(a) = digit2(a) and b/2a + digit1(a) is odd. If α2 = 6, a is 10 or 6
respectively, so digit1(a) ̸= digit2(a) and b/2a+digit2(a) is even. Finally,
if α2 = −6, a is 14 or 10 respectively, digit2(a) = 1 and b/2a + digit1(a)
is even. Putting this together with the results for t1, we obtain the result
for the cases (2), (3), (6) and (7). □

Now we need the analogous result to Corollaries 8.5 and 8.7. As it turns out,
the quotient group has now 16 elements, instead of 4 like for the other primes, so it
will be given as the list of generators. The notation G = ⟨g1, . . . , gn⟩ means that G
is generated by the elements g1, . . . , gn ∈ G. For example, the group {1, c0, p, c0p}
can be described as ⟨c0, p⟩.

Corollary 8.10. The following statements hold.
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(1) Q2[i]
∗/ Sq(Q2[i]

∗) = ⟨2, 3, 1 + i, 1 + 2i⟩.
(2) Q2[

√
3]∗/ Sq(Q2[

√
3]∗) = ⟨−1, 2,

√
3, 1 +

√
3⟩.

(3) Q2[i
√
3]∗/ Sq(Q2[i

√
3]∗) = ⟨−1, 2, i

√
3, 1 + 2i

√
3⟩.

(4) Q2[α]
∗/ Sq(Q2[α]

∗) = ⟨−1, 3, α, 1 + α⟩, for α2 ∈ {2,−2, 6,−6}.

Proof. In all cases, the quotient can be computed, as with other primes, by
starting with an arbitrary number in Qp[α] and proving that it can be multiplied
by some generators to make it a square.

(1) First we ensure that ord2(a) ̸= ord2(b) multiplying by 1+i if needed. Then
we ensure that the orders are not consecutive, multiplying by 1+2i if they
are (such operation will increment the highest order). Then we ensure that
the order of a is even, if ord2(a) < ord2(b), and that the order of b is odd,
otherwise, multiplying by 2 if needed. Finally, we ensure the condition on
the digits of a or b, multiplying by 3 if needed (in general, multiplying a
2-adic number x by 3 preserves digit2(x) and inverts digit1(x)).

(2) First we ensure that ord2(a) ̸= ord2(b) multiplying by 1 +
√
3 if needed.

Then we ensure that the difference ord2(b)− ord2(a) is correct (−1 or at

least 2), multiplying by
√
3 if needed (this inverts the difference). Then we

multiply by 2 if needed so that the order of a is even. Finally, we ensure
the condition on digits by multiplying by −1: both conditions involve an
odd number of digits, so they will invert on multiplication by −1.

(3) This will be split in two cases.
(a) If ord2(a) = ord2(b), we first make digit2(a

2 + 3b2) = 0 multiplying

by 1 + 2i
√
3:

(1 + 2i
√
3)(a+ bi

√
3) = a− 6b+ (b+ 2a)

√
3

and

(a− 6b)2 + 3(b+ 2a)2 = 13(a2 + 3b2).

As 13 ≡ 5 mod 8, this inverts digit2(a
2 + 3b2). Now we make

digit1(a
2 +3b2) = 0 multiplying by i

√
3, which will analogously mul-

tiply a2 + 3b2 by 3. So now a2 + 3b2 is a square. Next we multiply
by 2 to make the order odd, and by −1 to make digit1(a) = 1, all
without affecting a2 + 3b2.

(b) If ord2(a) ̸= ord2(b), we first make ord2(a) < ord2(b) multiplying by

i
√
3 if needed, then ord2(b) − ord2(a) ≥ 2 multiplying by 1 + 2i

√
3,

then by 2 to make ord2(a) even, and finally by −1 to make digit1(a) =
0.

(4) First we ensure ord2(b) ≥ ord2(a) multiplying by α and then ord2(b) >
ord2(a) multiplying by 1 + α. In each of the four cases, there are two
conditions left, both related to digit1(a) and digit2(a). We set digit2(a)
to the required value, multiplying by −1 if needed, and finally digit1(a),
multiplying by 3. □

A depiction of the 16 classes can be found at Figure 3 for α2 = −1, at Figure
4 for α2 = 2, at Figure 5 for α2 = −2, at Figure 6 for α2 = 3, at Figure 7 for
α2 = −3, at Figure 8 for α2 = 6, and at Figure 9 for α2 = −6.

Now we have to compute which of the classes are “paired” in the sense of being
the classes of γ2 and γ̄2, so that they give the same extension Qp[γ, γ̄]. In general,
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if γ = t1 + t2α,

γ2γ̄2 = (t1 + t2α)(t1 − t2α) = t21 − t22α
2

which is always in Q2, so two paired classes differ in a factor in Q2. In the last
column of Tables 4 to 10 we give the pair of each class. After identifying the
paired classes, if α2 ∈ {−1,−2, 3, 6}, 9 classes remain (not counting 1), and if
α2 ∈ {2,−3,−6}, 11 classes remain.

The next step in order to achieve the classification is to compute the classes of

DSq(Q2[α],−γ2)

for each possible α and γ. For the other primes this meant three different α’s and
two or three γ’s for each one, but here we need seven α’s and nine or eleven γ’s
for each one. To simplify what would otherwise be a very long and error-prone
computation, we will now use the Hilbert symbol for Q2[α].

Lemma 8.11. The Hilbert symbol (a, b)F in any field F (concretely F = Q2[α])
has the following properties:

(1) (1, u)F = (u,−u)F = 1 for any u.
(2) (u, v)F = (v, u)F .
(3) (u, v)F = 1 if and only if v ∈ DSq(F,−u).
(4) (u, v1v2)F = (u, v1)F (u, v2)F .

We define a subset

Sα ⊂ (Q2[α]
∗/ Sq(Q2[α]

∗))2

for different values of α: Si is defined in Table 4, S√
2 in Table 5, Si

√
2 in Table 6,

S√
3 in Table 7, Si

√
3 in Table 8, S√

6 in Table 9, and S√
−6 in Table 10.

Lemma 8.12. Let F = Q2[α] be a degree 2 extension of Q2. If (u, v)F = 1
for all (u, v) ∈ Sα and there exists (u, v) ∈ (Q2[α]

∗)2 such that (u, v)F = −1, then
(u, v)F = −1 for all (u, v) /∈ Sα.

Proof. In all cases, the set {v : (u, v) ∈ Sα} for a fixed u ̸= 1 is a multiplicative
subgroup of the quotient Q2[α]

∗/ Sq(Q2[α]
∗) with eight elements. If all them have

(u, v)F = 1 and other v has (u, v)F = −1, then by multiplicativity all the other v
have (u, v)F = −1. □

Proposition 8.13. For all degree 2 extensions F = Q2[α], (u, v)F = 1 if and
only if (u, v) ∈ Sα.

Proof. We use Lemma 8.12 for each possible α. For some values (u, v) ∈ Sα,
it can be easily computed that they have (u, v)F = 1, and this can be deduced for
the rest of Sα by Lemma 8.11. Then we just need to prove that there is (u, v) such
that (u, v)F = −1, and we are done.

• Case α = i: since we have that 3 − 2 = 1, 2(1 + 2i) − 2(1 + i) = 2i,
6(−1 + 3i) + 6(1 + 2i) = 30i, (2 + 2i)− 2 = 2i and 4(1 + 2i)− 3 = 1 + 8i,
all of which are squares, all elements of Si have (u, v)F = 1. Now we
prove that (2, 1 + 2i)F = −1, for which we have to see that x2 − 2 will
never be 1 + 2i times a square, for any x. Suppose this happens. Then, if
x2 = a+ bi, the orders of a and b must differ in at least 2 and the orders
of a − 2 and b differ in 1. This implies that a − 2 and a have different
order. There are two possibilities:
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– ord2(a − 2) = 1 and ord2(a) > 1. Then, b has order 0 or 2. Since
a+ bi is a square, ord2(a) is at most 0, a contradiction.

– ord2(a− 2) > 1 and ord2(a) = 1. Since a+ bi is a square, b has odd
order at most −1, but it should differ in 1 with ord2(a − 2), also a
contradiction.

• Case α =
√
2: now the pairs that add up to a square are 3−2 = 1, 5−4 = 1,

(1+
√
2)−

√
2 = 1, (2+

√
2)− (1+

√
2) = 1, 4(1+

√
2)− 3 = 1+4

√
2 and

3 + 2
√
2 = 3 + 2

√
2. We prove that (−1,

√
2)F = −1, for which we have

to see that x2 + 1 will never be
√
2 times a square. Suppose it is. Let

x2 = a+ b
√
2. We have ord2(a) < ord2(b) < ord2(a+1), which is possible

only if a has order 0 and ends in 11. But then b must have order 1 and a
ends in 011, so a+ 1 has order 2, and a+ 1 + b

√
2 cannot be

√
2 times a

square (the difference in order between a+ 1 and b should be at least 2).

• Case α = i
√
2: now the pairs that add up to a square are 2−1 = 1, 5−4 =

1, (1+i
√
2)−i

√
2 = 1, 3(1+i

√
2)−3(−2+i

√
2) = 9, −1+2i

√
2 = −1+2i

√
2

and 2(1 + i
√
2) − 3 = −1 + 2i

√
2. We prove that (−1, 1 + i

√
2)F = −1,

for which we have to see that x2 +1 will never be 1+ i
√
2 times a square.

Suppose it is. Let x2 = a+bi
√
2. We have ord2(a) < ord2(b) = ord2(a+1),

which is possible only if ord2(a) = 0. Also, b/2a+digit1(a) is odd, so that

ord2(a+ 1) = ord2(b). This makes a+ bi
√
2 not a square.

• Case α =
√
3: now the pairs that add up to a square are 2−1 = 1, 5−4 = 1,

(1 +
√
3)−

√
3 = 1, 2(3 +

√
3)− 2(1 +

√
3) = 4, 2(3 +

√
3)− 2 = 4 + 2

√
3

and −1 +
√
3(4 + 2

√
3) = 5 + 4

√
3. We prove that (−1, 1 +

√
3)F = −1,

for which we have to see that x2 + 1 will never be 1 +
√
3 times a square.

Suppose it is. Let x2 = a+ b
√
3.

– If ord2(b) − ord2(a) ≥ 2, ord2(a) = 0 and a must end in 11 so that
ord2(a + 1) = ord2(b). Also, b/4a + digit2(a) is odd. This makes

a+ b
√
3 not a square.

– If ord2(a) − ord2(b) = 1, ord2(a) must be even, so it is impossible
that a+ 1 and b have the same order.

• Case α = i
√
3: now the pairs that add up to a square are 2 − 1 = 1,

3 − 2 = 1, (1 + 2i
√
3) − 2i

√
3 = 1, (1 + 2i

√
3) − 2(−6 + i

√
3) = 13,

2 + 2i
√
3 = 2 + 2i

√
3 and 2(−6 + i

√
3) + 14 = 2 + 2i

√
3. We prove that

(−1, i
√
3)F = −1, for which we have to see that x2 + 1 will never be i

√
3

times a square. Suppose it is. Let x2 = a+ bi
√
3.

– If ord2(b) − ord2(a) ≥ 2, ord2(a) = 0 and a must end in 11 so that

ord2(a+ 1) ≥ ord2(b), but then a+ bi
√
3 is not a square.

– If ord2(a) = ord2(b), they must be odd, and ord2(a + 1) cannot be
greater than ord2(b), so they must be equal, and ord2(a) = ord2(a+
1) = ord2(b) < 0. If the order is −3 or less,

(a+ 1)2 + 3b2 = a2 + 3b2 + 2a+ 1

must be three times a square in Q2, but ord2(a
2 + 3b2) ≤ −4 and

digit1((a+ 1)2 + 3b2) = digit1(a
2 + 3b2) = 0, so it is impossible.

If the order is −1, let a1 = 4a, b1 = 4b. We want a1 + 4 + b1i
√
3 to

be i
√
3 times a square. Let a2 + b2i

√
3 be this square. All of a1, b1,

a2 and b2 have order 1, and

a1 + 4 + b1i
√
3 = i

√
3(a2 + b2i

√
3)
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1 1 + i 1 + 2i −1 + 3i
1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1

2 • • • • • • • • 1 2 2

3 • • • • • • • • 1 1 3
6 • • • • • • • • 1 1 6

1 + i 1 • • • • • • • • 3 0 2

2 • • • • • • • • 3 0 1
3 • • • • • • • • 3 0 6
6 • • • • • • • • 3 0 3

1 + 2i 1 • • • • • • • • 2 0 3
2 • • • • • • • • 2 0 6

3 • • • • • • • • 2 0 1
6 • • • • • • • • 2 0 2

−1 + 3i 1 • • • • • • • • 2 0 6
2 • • • • • • • • 2 0 3
3 • • • • • • • • 2 0 2

6 • • • • • • • • 2 0 1

Table 4. Si as a subset of (Q2[i]
∗/ Sq(Q2[i]

∗))2. For each row
except the first, we need two normal forms to cover all the classes:
a = 1, b = 0 and a = a1, b = b1. The last column indicates the
second index of the class that pairs with each class; the first index
is always the same.

implies that a1 + 4 = −3b2 and b1 = a2. Hence, digit1(b1) =
digit1(a2) = 1. a1 is 30, 6, 22 or 14 modulo 32 exactly when b1 can
take those remainders, so a1 ≡ b1 mod 32, and

−3b2 = a1 + 4 ≡ b1 + 4 = a2 + 4 mod 32

But now a2 is 30, 6, 22 and 14 when b2 is ±2,±6,±10 and ±14 re-
spectively, and the equation does not hold in any case.

• Case α =
√
6: now the pairs that add up to a square are 2−1 = 1, 5−4 = 1,

(1 +
√
6)−

√
6 = 1, 3(1 +

√
6)− 3(6+

√
6) = −15, −1+ 2

√
6 = −1+ 2

√
6

and 2(1 +
√
6)− 3 = −1 + 2

√
6. We prove that (−1, 1 +

√
6)F = −1, for

which we have to see that x2 + 1 will never be 1 +
√
6 times a square.

Suppose it is. Let x2 = a+b
√
6. We have ord2(a) < ord2(b) = ord2(a+1),

which is possible only if ord2(a) = 0. Also, b/2a+digit1(a) is odd, so that

ord2(a+ 1) = ord2(b). This makes a+ b
√
6 not a square.

• Case α = i
√
6: now the pairs that add up to a square are 2−1 = 1, 3−2 =

1, (1+ i
√
6)− i

√
6 = 1, (−6+ i

√
6)− (1+ i

√
6) = −7, 3+2i

√
6 = 3+2i

√
6

and 6(1+i
√
6)−3 = 3+6i

√
6. We prove that (−1, i

√
6)F = −1, for which

we have to see that x2 + 1 will never be i
√
6 times a square. Suppose it

is. Let x2 = a+ bi
√
6. We have ord2(a) < ord2(b) < ord2(a+ 1), which is

possible only if a has order 0 and ends in 11. But then b must have order
1 and a ends in 011, so a+1 has order 2, and a+1+ bi

√
6 cannot be i

√
6

times a square (the difference in order between a + 1 and b should be at
least 2). □

After finding the values of the Hilbert symbol for each α, we have DSq(Q2[α],−γ2):
it is the row indexed by γ2 of the corresponding table. It always contains eight
classes, so we need two pairs (a, b) to cover all classes: we can always take one of
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Figure 3. The 16 classes of Table 4. Each class contains the
points x + yi with a given symbol, where x and y are the hori-
zontal and vertical coordinates. The circles, triangles, squares and
diamonds correspond to the four values of the first index (here 1,
1 + i, 1 + 2i and −1 + 3i), and the colors red, green, purple and
blue to the four values of the second index (here 1, 2, 3 and 6).

1
√
2 1 +

√
2 2 +

√
2

1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 1 2 −1
3 • • • • • • • • 1 1 3

−3 • • • • • • • • 1 1 −3√
2 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1
3 • • • • • • • • −1 0 −3

−3 • • • • • • • • −1 0 3

1 +
√
2 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1
3 • • • • • • • • −1 0 −3

−3 • • • • • • • • −1 0 3

2 +
√
2 1 • • • • • • • • 3 0 1

−1 • • • • • • • • 3 0 −1

3 • • • • • • • • 3 0 3

−3 • • • • • • • • 3 0 −3

Table 5. S√
2 as a subset of (Q2[

√
2]∗/ Sq(Q2[

√
2]∗))2.

them (1, 0), and the other is (a1, b1) such that the class of a1(b1 +α) is marked (in
the row of γ2) if and only if that of α is unmarked. A possibility is included at the
right of the corresponding row.
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Figure 4. The 16 classes of Table 5.

1 i
√
2 1 + i

√
2 −2 + i

√
2

1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 1 1 −1
3 • • • • • • • • 1 −2 3

−3 • • • • • • • • 1 1 −3

i
√
2 1 • • • • • • • • 3 0 −1

−1 • • • • • • • • 3 0 1

3 • • • • • • • • 3 0 −3
−3 • • • • • • • • 3 0 3

1 + i
√
2 1 • • • • • • • • −1 0 3

−1 • • • • • • • • −1 0 −3
3 • • • • • • • • −1 0 1

−3 • • • • • • • • −1 0 −1

−2 + i
√
2 1 • • • • • • • • −1 0 −3

−1 • • • • • • • • −1 0 3

3 • • • • • • • • −1 0 −1
−3 • • • • • • • • −1 0 1

Table 6. Si
√
2 as a subset of (Q2[i

√
2]∗/ Sq(Q2[i

√
2]∗))2.

8.2.3. Proof of Theorem 5.31.

(a) First we prove existence. Let λ,−λ, µ,−µ be the eigenvalues of Ω−1
0 M . If

λ2 is in Qp, µ2 is also in Qp. Let {u1, v1, u2, v2} be the associated basis.
By Corollary 6.5, there is a matrix S with entries in Qp[λ, µ] such that
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Figure 5. The 16 classes of Table 6.

1
√
3 1 +

√
3 3 +

√
3

1 −1 2 −2 1 −1 2 −2 1 −1 2 −2 1 −1 2 −2 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 1 1 −1
2 • • • • • • • • 1 1 2

−2 • • • • • • • • 1 3 −2√
3 1 • • • • • • • • 2 0 −1

−1 • • • • • • • • 2 0 1
2 • • • • • • • • 2 0 −2

−2 • • • • • • • • 2 0 2

1 +
√
3 1 • • • • • • • • −1 0 −2

−1 • • • • • • • • −1 0 2
2 • • • • • • • • −1 0 −1

−2 • • • • • • • • −1 0 1

3 +
√
3 1 • • • • • • • • −1 0 2

−1 • • • • • • • • −1 0 −2
2 • • • • • • • • −1 0 1

−2 • • • • • • • • −1 0 −1

Table 7. S√
3 as a subset of (Q2[

√
3]∗/ Sq(Q2[

√
3]∗))2.

STΩ0S = Ω0 and

STMS =


r 0 0 0
0 c1r 0 0
0 0 s 0
0 0 0 c2s


if and only if λ = r

√
−c1 and µ = s

√
−c2. There are always r, s ∈ Qp and

c1, c2 ∈ Xp such that this is possible; moreover, there may be two valid
values of c1 or c2.
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Figure 6. The 16 classes of Table 7.

1 i
√
3 1 + 2i

√
3 −6 + i

√
3

1 −1 2 −2 1 −1 2 −2 1 −1 2 −2 1 −1 2 −2 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 2 1/2 −1
2 • • • • • • • • 2 1/2 2

−2 • • • • • • • • 1 −6 −2

i
√
3 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1
2 • • • • • • • • −1 0 −2

−2 • • • • • • • • −1 0 2

1 + 2i
√
3 1 • • • • • • • • 2 0 1

−1 • • • • • • • • 2 0 −1
2 • • • • • • • • 2 0 2

−2 • • • • • • • • 2 0 −2

−6 + i
√
3 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1

2 • • • • • • • • −1 0 −2
−2 • • • • • • • • −1 0 2

Table 8. Si
√
3 as a subset of (Q2[i

√
3]∗/ Sq(Q2[i

√
3]∗))2.

A matrix S with this property must have the form Ψ1DΨ−1
2 , where

Ψ1 =
(
u1 v1 u2 v2

)
,Ψ2 =


λ −λ 0 0
1 1 0 0
0 0 µ −µ
0 0 1 1


and D is a diagonal matrix. As Ψ−1

2 is “box-diagonal”, the first two
columns of S come from the first two of Ψ1 and the last two of S come
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Figure 7. The 16 classes of Table 8.

1
√
6 1 +

√
6 6 +

√
6

1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 1 1 −1

3 • • • • • • • • 1 6 3
−3 • • • • • • • • 1 1 −3√

6 1 • • • • • • • • 3 0 −1
−1 • • • • • • • • 3 0 1
3 • • • • • • • • 3 0 −3

−3 • • • • • • • • 3 0 3

1 +
√
6 1 • • • • • • • • −1 0 3

−1 • • • • • • • • −1 0 −3

3 • • • • • • • • −1 0 1
−3 • • • • • • • • −1 0 −1

6 +
√
6 1 • • • • • • • • −1 0 −3

−1 • • • • • • • • −1 0 3
3 • • • • • • • • −1 0 −1

−3 • • • • • • • • −1 0 1

Table 9. S√
6 as a subset of (Q2[

√
6]∗/ Sq(Q2[

√
6]∗))2.

from the last two of Ψ1. That is to say, the existence of a D for which
Ψ1DΨ−1

2 has entries in Qp is equivalent to the existence of D1 and D2

such that(
u1 v1

)
D1

(
λ −λ
1 1

)
and

(
u2 v2

)
D2

(
µ −µ
1 1

)
have entries in Qp.

By Theorem 5.28, there are always c1 and c2 in Xp for which D1 and
D2 exist, so this leads to case (1).
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Figure 8. The 16 classes of Table 9.

1 i
√
6 1 + i

√
6 −6 + i

√
6

1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 1 −1 3 −3 a1 b1 pair

1 1 • • • • • • • • • • • • • • • • 1
−1 • • • • • • • • 1 −6 −1

3 • • • • • • • • 1 1 3
−3 • • • • • • • • 1 1 −3

i
√
6 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1
3 • • • • • • • • −1 0 −3

−3 • • • • • • • • −1 0 3

1 + i
√
6 1 • • • • • • • • −1 0 −1

−1 • • • • • • • • −1 0 1
3 • • • • • • • • −1 0 −3

−3 • • • • • • • • −1 0 3

−6 + i
√
6 1 • • • • • • • • 3 0 1

−1 • • • • • • • • 3 0 −1
3 • • • • • • • • 3 0 3

−3 • • • • • • • • 3 0 −3

Table 10. Si
√
6 as a subset of (Q2[i

√
6]∗/Sq(Q2[i

√
6]∗))2.

Now suppose that λ2 /∈ Qp. If λ ∈ Qp[λ2], we are in the situation of
Proposition 6.23. λ and µ are in a degree 2 extension Qp[α], and M is
equivalent by multiplication by a symplectic matrix to the matrix of case
(2) for some r, s ∈ Qp. The possible values of α2 are the classes of Q∗

p

modulo squares, that is, precisely the elements of Yp, and we have case
(2).
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Figure 9. The 16 classes of Table 10.

Finally, if λ /∈ Qp[λ2], we are in the situation of Proposition 6.24: we
have a hierarchy of extensions

Qp ⊊ Qp[α] ⊊ Qp[γ, γ̄],

andM is equivalent by multiplication by a symplectic matrix to the matrix
in case (3), for some r, s ∈ Qp, which depends on the parameters α2, t1,
t2, a and b. The only ones that are not fixed by the extension are a and
b: a choice of them is valid if and only if

aαγ(b+ α)

uTΩ0û
∈ DSq(F [α],−γ2).

The denominator is a constant, which implies that the valid values form
a class modulo DSq(F [α],−γ2) in F [α]. These classes are as described in
Tables 2 to 10, depending on p and α2. After substituting c = α2 and
extracting t1, t2, a1 and b1 from these tables, we obtain case (3) of the
theorem.

(b) Finally we prove uniqueness. Let N and N ′ be the two normal forms.
The case (1), (2) or (3) of the normal form is determined uniquely by the
eigenvalues of A = Ω−1

0 M , so both N and N ′ are in the same case. Now
we split between the three cases.

• In case (1), there are two eigenvalues of A composing the first block
of the normal form and two eigenvalues composing the second one.
Hence, by Theorem 5.28, the normal form is unique up to changing
the order of the blocks.

• In case (2), the extension which contains the eigenvalues is different
for each c, hence N = N ′.
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• In case (3), analogously, the extension is different for each c, t1 and
t2, so these parameters must coincide. If a and b do not coincide,
we have a number in Qp[α] which is in DSq(Qp[α],−γ2) and which
cannot be there by previous results (Tables 2 to 10), so a and b must
also coincide and N = N ′.

8.2.4. Proof of Theorem 5.33.

(a) First we prove existence. Suppose first that the eigenvalues of A are λ,
λ, −λ and −λ, with λ ̸= 0. If A is diagonalizable, Lemma 6.6 implies
that there is a symplectic basis {u1, v1, u2, v2} such that Aui = λui and
Avi = −λvi. This means we are in the first case of Theorem 5.31, that is,
case (1) of this theorem, and we can proceed from there.

If A is not diagonalizable, we can also apply Lemma 6.6, getting a
symplectic basis {u1, v1, u2, v2}, or equivalently a symplectic matrix Ψ1,
such that

Ψ−1
1 AΨ1 = J =


λ 0 1 0
0 −λ 0 0
0 0 λ 0
0 −1 0 −λ

 .

If λ ∈ Qp, we can rearrange the coordinates to make J equal to

Ω−1
0 M2, where M2 is the matrix in case (2) with r = λ. As Ψ1 is sym-

plectic, rearranging its columns in the same way gives the S we need.
Otherwise, we can write λ = rα, with α =

√
c for some c ∈ Yp. Let

M2 be the matrix in case (3) and A2 = Ω−1
0 M2. We have Ψ−1

2 A2Ψ2 = J ,
where

Ψ2 =


0 αz1 −αz1 0
1 0 0 1
0 z1 z1 0
α −t1 t1 −α

 ,

where

z1 =
2α

a(1− α2)
, t1 =

1 + α2

r(1− α2)
.

A matrix that commutes with J has the form

D =


d1 0 d2 0
0 d3 0 0
0 0 d1 0
0 d4 0 d3

 .

We apply the condition DTΨT1 Ω0Ψ1D = ΨT2 Ω0Ψ2 of Proposition 6.2.
As Ψ1 is symplectic, ΨT1 Ω0Ψ1 = Ω0 and the condition becomes d1d3 =
−2αz1 and d1d4 + d2d3 = 0.

We also want that S has the entries in Qp. The first and fourth
columns of Ψ1 are the eigenvectors of A with value λ and −λ, which are
conjugate up to a multiplicative constant: we call them u and kū. The
second and third columns correspond to v and v′ such that Av = λv + u
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and Av′ = −λv′ − kū. This implies Av̄ = −λv̄+ ū, that is, v′ = −kv̄, and
SΨ2 = Ψ1D

=
(
u −kv̄ v kū

)
D

=
(
d1u −d3kv̄ + d4kū d2u+ d1v d3kū

)
.

If we call ci the i-th column of S, we have

c2 + αc4 = d1u, c2 − αc4 = d3kū⇒ d3k = d̄1;

αz1c1 + z1c3 − t1c4 = −d3kv̄ + d4kū = d̄1v̄ + d4kū;

−αz1c1 + z1c3 + t1c4 = d2u+ d1v.

Changing sign and conjugating

αz1c1 + z1c3 − t1c4 = d̄1v̄ − d̄2ū,

so we have d4k = −d̄2. We can take d2 = d4 = 0, and the condition
reduces to find d1 such that

(34) d1d̄1 =
−4α2k

a(1− α2)
.

So we need (34) to be in

DSq(Qp,−α2) = DSq(Qp,−c),
which is possible for a value of a in Q∗

p/DSq(Qp,−c). This quotient is
exactly the set called {1, hp(c)} in the statement.

Now suppose that the eigenvalues are λ,−λ, 0, 0 for λ ̸= 0. By Lemma
6.6, we can choose u1 and v1 as eigenvectors with values λ and −λ such
that uT1 Ω0v1 = 1 and they are Ω0-complementary to the kernel of A. We
then complete to a symplectic basis {u1, v1, u2, v2}, with Au2 = Av2 = 0.
At this point we are again in case (1) of Theorem 5.31, with c2 = 0.

The only case left is that all the eigenvalues of A are 0. Then Theorem
6.8 gives a good tuple K with sum 4 and a basis. The possible cases for
K are (4), (2, 2), (2, 1, 1) or (1, 1, 1, 1).

• If K = (1, 1, 1, 1), M = 0 and the result follows trivially.
• If K = (2, 1, 1), the basis is {u11, u12, u21, u31}. We can multiply
u11 and u12 by a constant so that uT11Ω0u12 = 1/r for r ∈ Yp ∪ {1},
and u31 so that uT21Ω0u31 = 1. Taking as S the matrix with the
columns {ru12, u11, u21, u31}, we are in case (1) of Theorem 5.31,
with c1 = c2 = 0.

• If K = (2, 2), the basis is {u11, u12, u21, u22}. We multiply u11 and
u12 by a constant and u21 and u22 by another constant so that
uTi1Ω0ui2 = 1/ri for ri ∈ Yp ∪ {1}, i = 1, 2. Taking as S the ma-
trix with columns {r1u12, u11, r2u22, u21}, we are in the same case as
before.

• IfK = (4), the basis is {u1, u2, u3, u4}. Let k = uT1 Ω0u4 = −uT2 Ω0u3.
We can multiply the four vectors by a constant so that 1/k ∈ Yp∪{1}.
Taking S with the columns {u3/k, u2, ku1, u4/k2}, we are in case (4)
of this theorem, with c = 1/k.

(b) Finally we prove uniqueness. If there are two normal forms N and N ′, by
Proposition 6.2, they must have the same Jordan form. The matrices in
each case have different Jordan forms, so N and N ′ are in the same case.
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• If it is case (1), by Theorem 5.28 we have N = N ′, except perhaps
for the order of the blocks.

• If it is case (2), the equality of eigenvalues implies N = N ′.
• If it is case (3), each c corresponds to a different extension, so the
equality of eigenvalues implies c = c′ and r = r′. It is left to prove
a = a′. Suppose on the contrary that a = 1 and a′ = hp(c). Applying
the proof of existence, we have that

−4α2k

1− α2
∈ DSq(Qp,−c) and

−4α2k

hp(c)(1− α2)
∈ DSq(Qp,−c).

As DSq(Qp,−c) is a group, we also have hp(c) ∈ DSq(Qp,−c), which
is a contradiction.

• If it is case (4), again by equality of eigenvalues we have c = c′.

Proposition 8.14. Proposition 8.3 also holds for dimension 4, that is, the
choice of c0 only affects the choice of representatives of each class of matrices up
to multiplication by a symplectic matrix. The same happens for a0 and b0.

Proof. Applying Theorems 5.31 and 5.33 to the normal forms of one set gives
for each one and only one form of the other set which is equivalent. □

8.2.5. Proof of Theorem 5.34. From Theorem 5.31, if p ≡ 1 mod 4, case
(1) leads to

(
8
2

)
= 28 normal forms (there are seven possible values for c1 and c2),

case (2) to 3 normal forms, and case (3) has 9 possibilities for c, t1 and t2, each
one with two possible a and b. Hence, there is a total of 49 normal forms if p ≡ 1
mod 4. Analogously, there is a total of

(
6
2

)
+ 3 + 7 · 2 = 32 normal forms if p ≡ 3

mod 4, and a total of
(
12
2

)
+ 7 + (9 + 11 + 9 + 9 + 11 + 9 + 11) · 2 = 211 normal

forms if p = 2 (7 possibilities for c, some of them with 9 options for t1 and t2 and
others with 11, and 2 for a and b).

From Theorem 5.33, case (1) produces 7 · 4 = 28 families of normal forms with
one degree of freedom if p ≡ 1 mod 4, 5 · 4 = 20 if p ≡ 3 mod 4 and 11 · 8 = 88 if
p = 2, case (2) produces one such family and case (3) produces 6, 6 and 14 families,
respectively. Case (1) produces 16, 16 and 64 isolated forms, and case (4) produces
4, 4 and 8 such forms.

8.3. Comments on the p-adic classification in higher dimensions and
proof of Theorem 5.37

Our strategy for the 4-dimensional case extends to any dimension, using the
fact that all algebraic extensions of Qp are extensions by radicals (though it would
be needed to take higher order radicals) but for brevity we do not deal with those
cases (we expect hundreds or even thousands of possibilities for the model matrices
already in dimension 6, see Table 3). In dimension 10 or higher, however, the class
of a given matrix cannot be determined by a formula involving radicals, as the
general equation of degree five or greater is not solvable by radicals.

8.3.1. Preparatory lemmas. In order to prove Theorem 5.37, we need some
lemmas.

Lemma 8.15. Let p be a prime number and let n be a positive integer. The
polynomial

P (x) = xn − ap,
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where ordp(a) = 0, is irreducible in Qp.

Proof. The roots of P have order 1/n. If P was reducible, a factor should
have a subset of the roots whose product has integer order, but this would need all
the n roots. □

Lemma 8.16. Let p be a prime number and let n be a positive integer. Let
a, b ∈ Qp such that ordp(a) = 0 and ordp(b) = 1. If a is an n-th power in Qp[b1/n],
then it is an n-th power in Fp.

Proof. Suppose that a = cn for c ∈ Qp[b1/n]. We can write

c = c0 + c1b
1
n + . . .+ cn−1b

n−1
n

where ci ∈ Qp for all i. Raising this to the n-th power, we have cn = a at the
left, and cn0 plus terms of positive order at the right. Then, a − cn0 has positive
order, and as it is in Qp the order must be at least 1, and a ≡ cn0 mod p, as we
wanted. □

Lemma 8.17. Let p be a prime number and let n be a positive integer. There
are at least gcd(2n, p − 1) + gcd(n, p − 1), if n is odd, and gcd(2n, p − 1), if n
is even, infinite families of blocks of size 2n in the normal form of a matrix up to
multiplication by a symplectic matrix, where each family is of the form r1M1+ . . .+
rnMn.

Proof. Consider the polynomial P (x) = x2n − ap where ordp(a) = 0. This is
irreducible by Lemma 8.15, so it will give a block of size 2n in the normal form. This
block may not be unique up to multiplication by a symplectic matrix (as happens
in Propositions 6.22 and 6.24), but, in analogy with the proofs of those results, two
blocks corresponding to different a will be in the same family only if the roots of
the polynomials are in the same extension of Qp. Suppose that this happens for a1
and a2. In particular, (a1p)

1/2n and (a2p)
1/2n are in the same extension, that is,(

a2
a1

) 1
2n

∈ Qp[(a1p)
1
2n ]

By Lemma 8.16, a2/a1 must be a 2n-th power in Fp. This implies that the number
of families of blocks is at least the cardinality of F∗

p modulo 2n-th powers, which is
gcd(2n, p− 1), because that group is cyclic of order p− 1.

If n is odd, we also consider

Q(x) = x2n − a2p2 = (xn + ap)(xn − ap).

The two factors are again irreducible and it also gives a block of size 2n (one factor
comes from changing the sign of x in the other). Two blocks for a1 and a2 are in
the same family only if (a1p)

1/n and (a2p)
1/n are in the same extension, that is,(

a2
a1

) 1
n

∈ Qp[(a1p)
1
n ]

(note that choosing −ap instead of ap gives the same extension because (−1)1/n =
−1). Again by Lemma 8.16, a2/a1 is an n-th power in Fp. So the number of families
is now the cardinality of F∗

p modulo n-th powers, which is gcd(n, p− 1). □
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Remark 8.18. Concerning the number of families of normal forms (instead of
just blocks), in the real case, supposing that there are k focus-focus blocks, there
are 2n− 4k variables left, which can be distributed between hyperbolic and elliptic
blocks in n− 2k + 1 ways. The total number of forms is

m∑
k=0

2m− 2k + 1 = 2m2 −m(m+ 1) +m+ 1 = m2 + 1

if n = 2m and
m∑
k=0

2m+ 1− 2k + 1 = m(2m+ 1)−m(m+ 1) +m+ 1 = m2 +m+ 1

if n = 2m+ 1.

8.3.2. Proof of Theorem 5.37. Lemma 8.17 tells us that there is at least
one block with each even size. Hence, the number of normal forms is at least the

number of partitions of n in positive integers, that grows with eπ
√

2n/3/4n
√
3 by the

Hardy-Ramanujan formula [60]. In order to find the exact formulas of the matrices,
we need to devise, for each partition, a matrix in M2n(Qp) with the product of
the corresponding factors as characteristic polynomial. This can be done with the
same strategy as in Section 7.2, and gives the matrix M(P, p) for each partition P .

8.3.3. Remarks and applications. Theorem 5.37 could be strengthened by
using that there is not only one block of each size, but this would imply making a
sum over the partitions. We do not know how to make that for general n, but we
can do it for small n, obtaining the results in Table 3.

From the point of view of symplectic geometry and topology of integrable sys-
tems, which is the main motivation of the authors to write [27] and this part of
the thesis, currently the only known global symplectic classifications of integrable
systems which include physically intriguing local models (that is, essentially non-
elliptic models) concern dimension 4 [95, 99, 100] in the real case. These real
classifications include for example the coupled angular momentum [81] and the
Jaynes-Cummings model [102]. Hence, in the p-adic case, with hundreds of local
models (Theorem 5.22), we expect that the 4-dimensional case is already extremely
complicated and that the 2n-dimensional case, n ≥ 3, is out of reach (since it is
out of reach in the real case with only a very small proportion of local models in
comparison, see Theorem 5.26).

In dimension 4 the authors analyzed one of these systems, the p-adic Jaynes-
Cummings model [26], whose treatment is very extensive compared to its real
counterpart, as expected. Although as we said, a classification of p-adic integrable
systems in dimension 4, extending [95, 99, 100], seems out of reach, the present
paper settles completely the first step: understanding explicitly p-adic local models.
The proofs of [95, 99, 100] are based on gluing local models.



CHAPTER 9

Application to p-adic singularities and integrable
systems

9.1. Application to normal forms of p-adic singularities

The Weierstrass-Williamson’s classification of matrices can be used to classify
critical points of p-adic analytic functions.

Theorem 9.1. Let F be a field and n be a positive integer. Every symplectic
form on F 2n is linearly symplectomorphic to the form ω0 which has as matrix

Ω0 =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


.

Hence, every two linear symplectic forms on F 2n are actually symplectomorphic.

Proof. What we want to prove is that there is a basis with respect to which
ω has the matrix Ω0. Then, the symplectomorphism that sends this basis to the
canonical one will send ω to ω0.

We go by induction on n. As ω is non-degenerate, there are u1 and v1 with
ω(u1, v1) = 1. Of course, ⟨u1, v1⟩ is symplectic, so its complement ⟨u1, v1⟩ω is also
symplectic. Applying induction to this complement, we get a basis {u2, v2, . . . , un, vn}.
Now, {u1, v1, . . . , un, vn} is the basis we are looking for. □

We refer to section 5.1.4 for the definition of analytic function and critical point
of a function on a p-adic manifold. It does not make sense to talk about the rank
of such a critical point, because there is only one function and consequently only
one differential form.

Definition 9.2 (Non-degenerate critical point of p-adic analytic function, sym-
plectic sense). Let n be a positive integer. Let p be a prime number. Let (M,ω)
be a 2n-dimensional p-adic analytic symplectic manifold. Let f : M → Qp be a
p-adic analytic function and let m ∈ M be a critical point of f (i.e. df(m) = 0).
Let Ω be the matrix of ω. We say that m is non-degenerate if the eigenvalues of
Ω−1d2f(m) are all distinct.

This is not the usual notion of non-degenerate critical point (which states that
the Hessian of f is invertible), but the two are related as the following proposition
shows.

185
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Proposition 9.3. Let n be a positive integer. Let p be a prime number. Let
M be a p-adic analytic 2n-dimensional manifold, f : M → Qp a p-adic analytic
function, and m a critical point of f . Then the following are equivalent:

(1) m is a non-degenerate critical point of f in the usual sense;
(2) There exists a linear symplectic form ω such that m is a non-degenerate

critical point of f : (M,ω) → Qp in the symplectic sense (Definition 9.2).
(3) There exist infinitely many linear symplectic forms ω such that m is a

non-degenerate critical point of f : (M,ω) → Qp in the symplectic sense.

Proof. Suppose (2) holds. Let Ω be the matrix of ω. Then Ω−1d2f(m) has all
eigenvalues distinct. Applying Lemma 6.3 to the Hessian, if zero was an eigenvalue,
it would be at least double, contradicting (2). So Ω−1d2f(m) is invertible, which
implies d2f(m) is invertible and (1) holds.

Now suppose (1) holds. Let H = d2f(m). We first solve the problem for H
diagonal and then the general case.

If H is diagonal, (1) means that all diagonal elements are nonzero. Let hi be
the i-th diagonal element. We will take Ω−1 with ai in the row 2i− 1 and column
2i, −ai in the row 2i and column 2i− 1, and 0 the rest. After multiplying Ω−1 by
H, ai becomes aih2i−1 and −ai becomes −aih2i. The eigenvalues are

±ai
√

−h2i−1h2i for 1 ≤ i ≤ n.

Since Qp is infinite, it is always possible to choose ai so that these values are all
different, independently of whether they are in Qp or not (just choose each ai in
turn, and there will always be a possible value).

In the general case, we can apply Gram-Schmidt orthogonalization to the
canonical basis to obtain a basis {v1, . . . , vn} such that vTi Hvj ̸= 0 if and only
if i = j. Taking these vectors as columns, we have a matrix M such that MTHM
is diagonal. Applying the diagonal case to this matrix, we obtain an antisymmetric
Ω such that Ω−1MTHM has all eigenvalues different. This matrix is similar to
MΩ−1MTH, so this has also all eigenvalues different, and MΩ−1MT is the matrix
we want.

That (3) implies (2) is trivial. If (2) holds, Ω−1M has all eigenvalues different
and the same happens for any perturbation of Ω, hence (3) holds. □

In the following when we speak of non-degenerate critical points of a function
we always de it in the symplectic sense of Definition 9.2.

In the real case, as a consequence of the Weierstrass-Williamson classification,
it is always possible to choose linear symplectic coordinates (x1, ξ1, . . . , xn, ξn) with
the origin at any m ∈M such that

f =

n∑
i=1

rigi +O(3)

for some ri ∈ R, where gi : V → R has one of the following forms: (x2i + ξ2i )/2
(elliptic component), xiξi (hyperbolic component), or xiξi+1 − xi+1ξi with the next
function equal to xiξi + xi+1ξi+1 (focus-focus component). In the p-adic case we
are also able to make this conclusion.

Lemma 9.4. Let n be a positive integer. Let p be a prime number. LetM be a p-
adic analytic manifold of dimension 2n and let m be a non-degenerate critical point
of a p-adic analytic function f :M → Qp. Then there exists an open neighborhood
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U of m and coordinates (x1, . . . , xn) with the origin at m such that the restriction
of f to U , that is, f |U : U → Qp is given by a power series∑

I∈Nn,i1+...+in≥2

aIx
i1
1 . . . x

in
n .

Moreover, the matrix in M2n(Qp) with the coefficient of xixj in the row i and
column j, for i ̸= j, and the coefficient of x2i multiplied by 2 in the row and column
i, is exactly the Hessian of f at m in the coordinates x1, . . . , xn.

Proof. By definition, f is given by a power series converging in some open
set U which contains m. The center of the power series can be arbitrarily chosen
in U , which means that we can choose m as center. The degree 1 terms are 0
because m is a critical point, and the degree 2 terms are of the form xTHx/2 for
some matrix H ∈ M2n(Qp). Differentiating twice, we get that the Hessian of f is
precisely H. □

Corollary 9.5 (Normal form of critical points in dimension 2). Let p be a
prime number. Let (M,ω) be a p-adic symplectic manifold of dimension 2 and let
f : M → Qp be a p-adic analytic function. Let m ∈ M be a critical point of f .
Then there are linear symplectic coordinates (x, ξ) with the origin at m such that
f − f(m) coincides with r(x2 + cξ2) up to order 2, for some r ∈ Qp and c ∈ Xp, or
r ∈ Yp ∪ {1} and c = 0. Furthermore, if f − f(m) has this form for two different
linear symplectic coordinates with the origin at m, then the two forms coincide.

Proof. By Theorem 9.1, we can assume without loss of generality that ωm =
ω0.

Applying Theorem 5.28 to d2f , we get a symplectic matrix S, which is the
matrix of a linear symplectomorphism ϕ, such that

d2(ϕ∗f) = STd2fS =

(
r 0
0 cr

)
= d2(rx2 + crξ2).

By Lemma 9.4, f has the desired form. Uniqueness follows from the same theorem.
□

Corollary 9.6. Let p be a prime number. Let (M,ω) be a p-adic analytic
symplectic 2-manifold. Let Xp, Yp be the non-residue sets in Definition 5.18. Then
the following statements hold.

(1) If p ≡ 1 mod 4, there are exactly 7 families of local linear normal forms
for a non-degenerate critical point of a p-adic analytic analytic function f :
(M,ω) → Qp up to local linear symplectomorphisms centered at the critical
point, where the normal forms in each family differ by multiplication by
a constant r, and exactly 4 normal forms for a degenerate critical point
which only differ in the constant r.

(2) If p ≡ 3 mod 4, there are exactly 5 families of local linear normal forms
for a non-degenerate critical point of a p-adic analytic analytic function f :
(M,ω) → Qp up to local linear symplectomorphisms centered at the critical
point, where the normal forms in each family differ by multiplication by
a constant r, and exactly 4 normal forms for a degenerate critical point
which only differ in the constant r.
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(3) If p = 2, there are exactly 11 families of local linear normal forms for
a non-degenerate critical point of a p-adic analytic analytic function f :
(M,ω) → Qp up to local linear symplectomorphisms centered at the critical
point, where the normal forms in each family differ by multiplication by
a constant r, and exactly 8 normal forms for a degenerate critical point
which only differ in the constant r.

In the three cases the above normal forms for a non-degenerate point are given
by {{

r(x2 + cξ2) : r ∈ Qp
}
: c ∈ Xp

}
and those for a degenerate point are given by{

rx2 : r ∈ Yp ∪ {1}
}
.

Proof. This follows from Theorem 5.30 and Corollary 9.5. □

Corollary 9.7 (Normal form of non-degenerate critical points in dimension
4). Let p be a prime number. Let Xp, Yp, Cki ,Dk

i be the non-residue sets and co-
efficient functions in Definition 5.18. Let (M,ω) be a p-adic symplectic manifold
of dimension 4 and let f : M → Qp be a p-adic analytic function. Let m ∈ M be
a non-degenerate critical point of f . Then there are linear symplectic coordinates
(x, ξ, y, η) with the origin at m such that in these cordinates we have:

f − f(m) = rg1 + sg2 +O(3),

where g1 and g2 have one of the following forms:

(1) g1(x, ξ, y, η) = x2 + c1ξ
2 and g2(x, ξ, y, η) = y2 + c2η

2, for c1, c2 ∈ Xp.
(2) g1(x, ξ, y, η) = xη + cyξ and g2(x, ξ, y, η) = xξ + yη, for c ∈ Yp.
(3)

gk(x, ξ, y, η) =

2∑
i=0

Cki (c, t1, t2, a, b)xiy2−i +
2∑
i=0

Dk
i (c, t1, t2, a, b)ξ

iη2−i,

for k ∈ {1, 2}, where c, t1 and t2 correspond to one row of Table 1 and
(a, b) are either (1, 0) or (a1, b1) of the corresponding row.

If f − f(m) has this form for two different linear symplectic coordinates, then the
two forms coincide, except perhaps for swapping g1 and g2 at point (1).

Proof. Analogously to proof of Corollary 9.5, we apply Theorem 5.31 to the
Hessian of f , and by Lemma 9.4, f has the desired form. The three cases (1),
(2) and (3) for the resulting matrix correspond to the three cases of this corollary,
because

d2(ϕ∗f) = STd2fS = rd2g1 + sd2g2 = d2(rg1 + sg2). □

Corollary 9.8 (Normal form of degenerate critical points in dimension 4).
Let p be a prime number. let Xp, Yp be the non-residue sets in Definition 5.18.
Let hp : Yp → Qp be the non-residue function in Definition 5.32. Let (M,ω) be a
p-adic symplectic manifold of dimension 4 and let f :M → Qp be a p-adic analytic
function. Let m ∈ M be a degenerate critical point of f . Then there are linear
symplectic coordinates (x, ξ, y, η) with the origin at m such that f − f(m) coincides
with one of the following forms up to order 2:
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(1) r(x2 + c1ξ
2)/2+ s(y2 + c2η

2)/2, for some c1, c2 ∈ Xp ∪ {0} and r, s ∈ Qp.
If c1 = 0, r can be taken in Yp ∪ {1}, and if c2 = 0, s can be taken in
Yp ∪ {1}.

(2) r(xξ + yη) + yξ, for some r ∈ Qp.
(3) r(xη + cyξ) + a(x2 + y2)/2, for some r ∈ Qp, c ∈ Yp, a ∈ {1, hp(c)}.
(4) c(x2/2 + ξη), for some c ∈ Yp ∪ {1}.

Furthermore, if f − f(m) has this form for two different linear symplectic coordi-
nates, then the two forms coincide, except perhaps for swapping (r, c1) and (s, c2)
at point (1).

Proof. It is analogous the previous two proofs, but with Theorem 5.33. □

Corollary 9.9. Let p be a prime number. Let (M,ω) be a p-adic analytic
symplectic 4-manifold. Let Xp, Yp, Cki ,Dk

i be the non-residue sets and coefficient
functions in Definition 5.18. Let hp : Yp → Qp be the non-residue function in
Definition 5.32. Then the following statements hold.

(1) If p ≡ 1 mod 4, there are exactly 49 infinite families of local linear normal
forms with two degrees of freedom for a critical point of a p-adic analytic
function on a 4-dimensional p-adic symplectic manifold f : (M,ω) → Qp
up to local linear symplectomorphisms centered at the critical point, exactly
35 infinite families with one degree of freedom, and exactly 20 isolated
normal forms.

(2) If p ≡ 3 mod 4, there are exactly 32 infinite families of local linear normal
forms with two degrees of freedom for a critical point of a p-adic analytic
function on a 4-dimensional p-adic symplectic manifold f : (M,ω) → Qp
up to local linear symplectomorphisms centered at the critical point, exactly
27 infinite families with one degree of freedom, and exactly 20 isolated
normal forms.

(3) If p = 2, there are exactly 211 infinite families of local linear normal
forms with two degrees of freedom for a critical point of a p-adic analytic
function on a 4-dimensional p-adic symplectic manifold f : (M,ω) → Qp
up to local linear symplectomorphisms centered at the critical point, exactly
103 infinite families with one degree of freedom, and exactly 72 isolated
normal forms.

In the three cases above, the infinite families with two degrees of freedom are
given as {{

r(x2 + c1ξ
2) + s(y2 + c2η

2) : r, s ∈ Qp
}
: c1, c2 ∈ Xp

}
∪
{{

r(xη + cyξ) + s(xξ + yη) : r, s ∈ Qp
}
: c ∈ Yp

}
∪
{{

r

(
2∑
i=0

C1
i (c, t1, t2, a, b)x

iy2−i +

2∑
i=0

D1
i (c, t1, t2, a, b)ξ

iη2−i

)

+s

(
2∑
i=0

C2
i (c, t1, t2, a, b)x

iy2−i +

2∑
i=0

D2
i (c, t1, t2, a, b)ξ

iη2−i

)
:

r, s ∈ Qp
}
: (a, b) ∈

{
(1, 0), (a1, b1)

}
, c, t1, t2, a1, b1 in one row of Table 1

}
,
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those with one degree of freedom are{{
r(x2+c1ξ

2)+sy2/2 : r ∈ Qp
}
: c1 ∈ Xp, s ∈ Yp∪{1}

}
∪{{r(xξ+yη)+yξ : r ∈ Qp}}

∪
{{

r(xη + cyξ) + a(x2 + y2)/2 : r ∈ Qp
}
: c ∈ Yp, a ∈ {1, hp(c)}

}
,

and the isolated forms are{
(rx2 + sy2)/2 : r, s ∈ Yp ∪ {1}

}
∪
{
c(x2/2 + ξη) : c ∈ Yp ∪ {1}

}
.

Here by “infinite family” we mean a family of normal forms of the form r1f1+r2f2+
. . .+ rkfk, where ri are parameters and k is the number of degrees of freedom, and
by “isolated” we mean a form that is not part of any family.

9.2. Application to normal forms of singularities of integrable systems

TheWeierstrass-Williamson classification is one of the foundational results used
in the symplectic theory of integrable systems (in particular in Eliasson’s lineariza-
tion theorems [49, 50]). A consequence of the Weierstrass-Williamson classification
states that, given an integrable system F = (f1, . . . , fn) : (M,ω) → Rn and a non-
degenerate critical point m of F (in a precise sense which we will define shortly), it
is always possible to choose linear symplectic coordinates (x1, ξ1, . . . , xn, ξn) with
the origin at m such that in these coordinates

B ◦ (F − F (m)) = (g1, . . . , gn) +O(3),

where B is a n-by-n matrix of reals and each gi, i ∈ {1, . . . , n} has one of the
following forms: ξi (regular component), (x2i + ξ2i )/2 (elliptic component), xiξi
(hyperbolic component), or xiξi+1 − xi+1ξi with the next function equal to xiξi +
xi+1ξi+1 (focus-focus component). See Figure 1 for a representation.

9.2.1. Non-degenerate critical points of integrable systems. As we see
next, the classification theorems for critical points of functions on symplectic man-
ifolds can be applied to classify critical points of integrable systems. In order to do
this, first we recall the notion of non-degeneracy for a critical point of an integrable
system F : (M,ω) → (Qp)n on a p-adic analytic symplectic manifold which we use
in the paper, and which in the real case is equivalent to the usual definition in Vey’s
paper [132], see for example [101, Section 4.2.1] and [46, Lemma 2.5].

Definition 9.10. Let n be a positive integer. Let p be a prime number.
Let (M,ω) be a p-adic analytic symplectic manifold of dimension 2n. Let F =
(f1, . . . , fn) : (M,ω) → (Qp)n be a p-adic analytic integrable system. A point
m ∈ M is a critical point of m if the 1-forms df1(m), . . . ,dfn(m) are linearly
dependent. The number of linearly independent forms among df1(m), . . . ,dfn(m)
is called the rank of the critical point.

In the following definition, a subspace U of a symplectic vector space (V, ω) is
said to be isotropic if ω(u, v) = 0 for any u, v ∈ U .

Definition 9.11 (Non-degenerate critical point of p-adic analytic integrable
system). Let n be a positive integer. Let p be a prime number. Let (M,ω) be a
p-adic analytic symplectic manifold. Let Ω be the matrix of the linear symplectic
form ωm on the vector space TmM . A rank 0 critical point m of a p-adic analytic
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integrable system F = (f1, . . . , fn) : (M,ω) → (Qp)n is non-degenerate if the
Hessians evaluated at m:

d2f1(m), . . . ,d2fn(m)

are linearly independent and if there exist a1, . . . , an ∈ Qp such that the matrix

Ω−1
n∑
i=1

aid
2fi(m)

has n different eigenvalues.
If m has rank r, then the vectors Xf1(m), . . . , Xfn(m) obtained by evaluating

the Hamiltonian vector fields Xf1 , . . . , Xfn of f1, . . . , fn at m, form an isotropic
linear subspace L of TmM , whose dimension is r; suppose that Xf1(m), . . . , Xfr (m)
are linearly independent. Then dfr+1, . . . ,dfn descend to Lω/L in such a way that
the origin is a rank 0 critical point of the integrable system induced by F on Lω/L.
We say that the point is non-degenerate if the origin is a non-degenerate critical
point of this induced integrable system.

Remark 9.12. Definition 9.11 in the p-adic case is motivated by the fact that in
the real case the notion of being non-degenerate for a critical point on an integrable
system can also be defined in this way. Indeed, the usual definition is given in terms
of Cartan subalgebras as follows: if (M,ω) is a real symplectic manifold of dimension
2n and F = (f1, . . . , fn) : M → Rn is an integrable system, a critical point m of
F of rank 0 is non-degenerate if the Hessians d2f1(m), . . . ,d2fn(m) span a Cartan
subalgebra of the symplectic Lie algebra of quadratic forms on the tangent space
(TmM,ωm).

A p-adic analytic integrable system (f1, . . . , fn) : (M,ω) → (Qp)n is non-
degenerate if all of its critical points are non-degenerate.

9.2.2. Degenerate critical points in the real case. In the real case, very
little is known about degenerate singularities. In the literature only some results are
available for some special kinds of degenerate points, see for instance [143, 144].
We give here a partial classification for real integrable systems (which must be
smooth but need not be analytic).

Theorem 9.13. Let (M,ω) be a real symplectic 4-manifold and let F = (f1, f2) :
(M,ω) → R2 be a real integrable system. Let m ∈M be a degenerate critical point
of F . Then one of the following two statements holds:

(1) There exist a1, a2 ∈ R and a linear combination g = a1f1 + a2f2, such
that the four eigenvalues of Ω−1d2g(m) are zero.

(2) For all linear combinations g = a1f1 + a2f2, where a1, a2 ∈ R, two of the
eigenvalues of Ω−1d2g(m) are zero.

Proof. As m is a degenerate critical point, Ω−1d2f1(m) has a multiple eigen-
value. There are three cases to consider:

• All the eigenvalues of Ω−1d2f1(m) are zero. We are immediately in case
(1).

• Two eigenvalues of Ω−1d2f1(m) are zero. Let gk = f1 + kf2. The eigen-
values of Ω−1d2gk(m) vary continuously with k, and they must include a
multiple eigenvalue for any k. For k = 0, two eigenvalues are zero and
the other two are opposite and nonzero. This implies that, for |k| suffi-
ciently small, Ω−1d2gk(m) has also two zero eigenvalues. The values of k
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for which this happens are either finitely many or all R, hence, it must
happen for all k ∈ R.

This means that the condition of case (2) holds when a1 = 1, which
trivially implies the same for all a1 ̸= 0. For a1 = 0, the result follows by
continuity.

• Ω−1d2f1(m) is invertible. By Lemma 6.6, the eigenvalues of Ω−1d2f1(m)
are either of the form

{r, r,−r,−r}

or

{ri, ri,−ri,−ri},
for some r ∈ R with r ̸= 0, and the matrix can be brought by a transfor-
mation Ψ to Jordan form, which is one of the forms

λ 0 0 0
0 −λ 0 0
0 0 λ 0
0 0 0 −λ

 or


λ 0 1 0
0 −λ 0 0
0 0 λ 0
0 1 0 −λ

 ,

where λ is r or ri. We call this matrix D1. The same Ψ must bring
Ω−1d2f1(m) to a form that commutes with D1: we call it D2. We have
that

D2 =


µ1 0 µ2 0
0 µ5 0 µ6

µ3 0 µ4 0
0 µ7 0 µ8


and

ΨTd2f2Ψ = ΨTΩ0ΨΨ−1Ω−1
0 d2f2Ψ =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

D2

for some a, b ∈ C, must be a symmetric matrix, which implies µ1 = −µ5,
µ4 = −µ8, aµ2 = −bµ7 and bµ3 = −aµ6. The last two equalities together
imply µ2µ3 = µ6µ7.

If D1 has the non-diagonal form, D1D2 = D2D1 implies that µ3 =
µ6 = 0, µ1 = µ4 and µ5 = µ8. We can make a linear combination of the
two matrices where the diagonal is 0, and whose eigenvalues will all be
zero, and we are done. Now we suppose that D1 is diagonal.

If D1 is real, the matrix Ψ is and consequently D2 are real. Otherwise,
we have Ω−1

0 d2f2Ψ = ΨD2 and the columns of Ψ have the form (u, ū, v, v̄),
this gives

Ω−1
0 d2f2

(
u ū v v̄

)
=
(
µ1u+ µ3v µ5ū+ µ7v̄ µ2u+ µ4v µ6ū+ µ8v̄

)
which implies that

µ1u+ µ3v = µ5ū+ µ7v̄

and

µ2u+ µ4v = µ6ū+ µ8v̄,
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and as u and v are linearly independent, we must have µ̄1 = µ5 = −µ1

and µ̄4 = µ8 = −µ4. That is, the diagonal of D2 is real if D1 is real, and
imaginary if D1 is imaginary.

Let µ1 = r1α and µ4 = r2α, for r1, r2 in R and α ∈ {1, i}. By adding
a multiple of D1, we can make r2 = −r1, so that D2 has the form

r1α 0 µ2 0
0 −r1α 0 µ6

µ3 0 −r1α 0
0 µ7 0 r1α

 ,

and its characteristic polynomial is

(t2 − r21α
2 − µ2µ3)(t

2 − r21α
2 − µ6µ7) = (t2 − r21α

2 − µ2µ3)
2.

We now prove that r21α
2 + µ2µ3 must be 0, that is, the characteristic

polynomial is t4 and the conclusion follows. Suppose, for a contradiction,
that it is not 0. Then D2 has double eigenvalues different from zero, in
the form

{s, s,−s,−s}
or

{si, si,−si,−si},
and each pair of double eigenvalues has an element coming from each
factor.

Consider the matrix D3 = D2+kD1, where k is a real number close to
zero. The characteristic polynomial of D3 is still a product of two factors,
but now they are different. For small enough k, the only way to have
multiple eigenvalues is to have the same form as in D2, that is, two real or
imaginary pairs with an element from each factor. But this is not possible
if the two factors are different. □

9.2.3. Proof of Theorems 5.19, 5.22 and 5.26. By Theorem 9.1, we may
assume without loss of generality that M = (Qp)4 and ωm = ω0.

For a rank 1 critical point, we can take dη in the direction of the nonzero
differential, and the problem reduces to classify the critical point in Lω0/L. This
is a system with one function (the linear combination of f1 and f2 with differential
0) in dimension 2, so we apply Corollary 9.5 and get the result.

For a rank 0 critical point, first we prove existence. The fact that f1 and f2
form an integrable system implies that {f1, f2} = 0, that is,

(df1)
TΩ−1

0 df2 = 0.

Differentiating this twice, evaluating at m and using that df1(m) = df2(m) = 0,

d2f1(m)Ω−1
0 d2f2(m) = d2f2(m)Ω−1

0 d2f1(m)

We define Ai = Ω−1
0 d2fi(m). The previous expression implies that A1 and A2

commute.
Let u ∈ (Cp)4 be an eigenvector of A1, where Cp is the field of complex p-adic

numbers. Then

A1A2u = A2A1u = λA2u

for λ ∈ Cp. This implies that A2u is also an eigenvector of A1 with value λ. But
the critical point is non-degenerate, which means that the only eigenvector with
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value λ is u. Hence, A2u = µu for some µ ∈ Cp, and u is also eigenvector of A2.
So A1 and A2 have the same eigenvectors.

In the proof of Theorem 5.31 (Section 8.2.3), the case in which the Hessian of
f falls and the values of the parameters (c1, c2, c, a, etc.) in the normal form are
determined by the eigenvectors. This means that S is the same matrix for f1 than
for f2, and the resulting normal forms are r1g1 + s1g2 and r2g1 + s2g2, for some
r1, r2, s1, s2 ∈ Qp and g1 and g2 are among the possibilities of Corollary 9.7. As
the Hessians are linearly independent, the matrix(

r1 s1
r2 s2

)
changing (g1, g2) to (f1, f2) can be inverted, giving the matrix B that we need, and
the proof of existence of Theorem 5.19 is complete. Uniqueness follows directly
from Corollary 9.7.

Theorems 5.22 and 5.26 follow from applying Theorems 5.34 and 5.37, respec-
tively, to the Hessians of the components of the system: each normal form of the
matrix gives a normal form of the integrable system, and the Hessian of fP,p is
exactly the matrix M(P, p).

9.2.4. Degenerate critical points in the p-adic case. Based on Theorem
5.33, a version of Theorem 5.19 can also be deduced for degenerate singularities (a
topic of growing interest in real symplectic geometry; see for instance [46, 47, 63]
and the references therein) but the statement will be more complicated than that
of Theorem 5.19. The reason is that, while for non-degenerate singularities the
types (in the sense of Corollary 9.7) of f1 and f2 must coincide if these functions
Poisson-commute, this does not happen for degenerate singularities. For example,
the function of type (1) in Corollary 9.8 with r = s = 1 and c1 = c2 = −1 Poisson-
commutes with the one of type (2) in the same list with r = 1. Hence, a full
classification will need many more cases. We can give a partial result analogous to
Theorem 9.13:

Theorem 9.14. Let p be a prime number. Let (M,ω) be a 4-dimensional p-
adic analytic symplectic manifold. Let F = (f1, f2) : (M,ω) → (Qp)2 be a p-adic
analytic integrable system and let m ∈ M be a degenerate rank 0 critical point of
F . Then one of the following two statements holds:

(1) There are a1, a2 ∈ Qp and a linear combination g = a1f1+a2f2, such that
all four eigenvalues of Ω−1d2g are zero;

(2) For all linear combinations g = a1f1 + a2f2, where a1, a2 ∈ Qp, two
eigenvalues of Ω−1d2g are zero.

Proof. This proof follows the same strategy as in the real case (Theorem
9.13), we include it here for completeness.

As m is degenerate, for every linear combination g = a1f1 + a2f2, m is a
critical point of g with repeated eigenvalues. Concretely this happens for f1 and f2
themselves. There are three cases to consider:

• Ω−1d2f1 has all eigenvalues zero, and we are in case (1).
• Ω−1d2f1 has exactly two eigenvalues zero. Since the other two are nonzero,
they are opposites.

Consider gk = f1 + kf2, for k ∈ Qp. Since m is degenerate, Ω−1d2gk
has a multiple eigenvalue for any k. If k is small enough, the only way to
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have a multiple eigenvalue is that the same two that coincide for k = 0
keep coinciding. But as they must be opposites, they must still coincide
at zero. This means that Ω−1d2gk has two eigenvalues equal to zero for
all k small enough. But the values of k for which this happens are either
finitely many or all Qp, so it must happen for all k.

It follows that case (2) holds when a1 = 1, and can be extended
trivially to all a1 ̸= 0. For a1 = 0, it must also hold by continuity.

• Ω−1d2f1 is invertible. By Corollary 9.8, we can bring f1 to a normal form
where ωm = ω0. The ones with an invertible Hessian are in case (1) with
c1 ̸= 0 and c2 ̸= 0, case (2) with r ̸= 0, and case (3) with r ̸= 0. In the
three cases, the eigenvalues are of the form {λ, λ,−λ,−λ}, where λ2 ∈ Qp
(in some of them λ ∈ Qp and in others it is in a degree two extension).

By Lemma 6.6, we can bring the matrix Ω−1
0 d2f1 to Jordan form by

a transformation Ψ, which is one of the two forms
λ 0 0 0
0 −λ 0 0
0 0 λ 0
0 0 0 −λ

 or


λ 0 1 0
0 −λ 0 0
0 0 λ 0
0 1 0 −λ

 .

We call this matrix D1. The matrix Ω−1
0 d2f2 will become, by the

same transformation Ψ, a matrix D2 that commutes with D1, so it has
the form 

µ1 0 µ2 0
0 µ5 0 µ6

µ3 0 µ4 0
0 µ7 0 µ8

 .

We have that ΨTd2f2Ψ is symmetric, which leads to µ1 = −µ5, µ4 = −µ8,
and µ2µ3 = µ6µ7.

If D1 has the second form above, D1D2 = D2D1 also implies µ3 =
µ6 = 0, µ1 = µ4 and µ5 = µ8. Adding an adequate multiple of D1 to D2,
we can make µ1 = µ4 = µ5 = µ8 = 0, so that this new matrix has all
eigenvalues zero, and we are done. Now we suppose that D1 has the first
form.

If λ ∈ Qp, the matrix Ψ is in Qp, so D2 is also in Qp. If λ /∈ Qp, we
have Ω−1

0 d2f2Ψ = ΨD2. Taking the columns of Ψ in the form (u, ū, v, v̄),
as happens in the real case but now ū means the conjugate in Qp[λ], we
arrive at µ̄1 = µ5 = −µ1 and µ̄4 = µ8 = −µ4. This means that the
elements in the diagonal of D2 are multiples of λ with coefficients in Qp,
independently of whether λ is in Qp or not.

Let µ1 = r1λ and µ4 = r2λ, for r1, r2 in Qp. By adding a multiple of
D1, we can make r2 = −r1, and D2 has now the form

r1λ 0 µ2 0
0 −r1λ 0 µ6

µ3 0 −r1λ 0
0 µ7 0 r1λ

 .

The characteristic polynomial of this matrix is

(t2 − r21λ
2 − µ2µ3)(t

2 − r21λ
2 − µ6µ7) = (t2 − r21λ

2 − µ2µ3)
2.
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We now prove that r21λ
2+µ2µ3 must be 0, from which the conclusion will

follow. Suppose, for a contradiction, that it is not 0. Then D2 has double
eigenvalues different from zero, and each pair of double eigenvalues has an
element coming from each factor.

Consider the matrixD3 = D2+kD1, where k is a small p-adic number.
The characteristic polynomial of D3 is still a product of two factors. Since
the point m is degenerate, for small enough k we must have the same
behavior of the eigenvalues as in D2, that is, two pairs with an element
from each factor. But this cannot hold because the two factors are not
equal. □

Corollary 9.15. Let p be a prime number. Let Xp, Yp be the non-residue sets
in Definition 5.18. If the p-adic analytic integrable system F : (M,ω) → (Qp)2
falls in the first case of Theorem 9.14, then the linear combination g = a1f1 + a2f2
therein can be brought to one of the following forms by a linear symplectomorphism:

(1) (rx2 + sy2)/2 +O(3), for r, s ∈ Yp ∪ {0, 1}.
(2) yξ +O(3).
(3) c(x2/2 + ξη) +O(3), for c ∈ Yp ∪ {1}.

Proof. It follows directly from Theorem 9.14 and Corollary 9.8. The selected
forms are precisely those having all eigenvalues zero. □

In principle, Corollary 9.15 can be a first step towards making a classification
analogous to Theorem 5.19 for degenerate critical points, but such a classification
will be more complicated than the non-degenerate one, so we will not follow this
direction in the paper.

Remark 9.16. There is an extensive theory of quadratic forms over different
types of fields, we refer to the classical treatment [92] and the more recent works
by Alsina-Bayer [2], Bhargava [9], Casselman [17] and Lam [80] and the references
therein. In Theorem 5.19 and Theorem 9.14 we have presented a list of local normal
forms of integrable systems up to linear symplectic transformations, given by sums
of binary quadratic forms, but we have not carried out a further analysis of the
structure/properties of these forms since this does not appear to us as applicable
in our context of symplectic geometry of integrable systems.

9.2.5. Symplectic dynamics of integrable systems and their level sets.
We now calculate the vector fields generated by the integrable systems of Theorem
5.19.

Proposition 9.17. The vector fields generated by the integrable systems of
Theorem 5.19 are as follows:

(1) Xg1 = (2c1ξ,−2x, 0, 0), Xg2 = (0, 0, 2c2η,−2y).
(2) Xg1 = (cy,−η, x,−cξ), Xg2 = (x,−ξ, y,−η).
(3)

Xg1 =

(
− t1 + bt2

a
ξ − (bt1 + ct2)η,

acx− by

b2 − c
,−ac(t1 + bt2)η − (bt1 + ct2)ξ,

y − abx

a(b2 − c)

)
,

Xg2 =

(
−bt1 + ct2

a
ξ − c(t1 + bt2)η,

cy − abcx

b2 − c
,−ac(bt1 + ct2)η − c(t1 + bt2)ξ,

acx− by

a(b2 − c)

)
.
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Proof. All fields are calculated applying directly the equation ıXf
ω0 = df .

□

We can check that, in each system, g1 and g2 Poisson commute, which is equiv-
alent to checking that, if Ai = Ω−1

0 d2gi, we have A1A2 = A2A1. This matrix is
zero in case (1), 

0 0 c 0
0 0 0 1
1 0 0 0
0 c 0 0


in case (2), and 

ct2 0 t1
a 0

0 ct2 0 act1
act1 0 ct2 0
0 t1

a 0 ct2


in case (3).

We can also calculate the fibers of the systems.

Proposition 9.18. The fibers F−1(0, 0) of the integrable systems of Theorem
5.19 with a critical point of rank 0 are as follows:

(1) {(±d1ξ, ξ,±d2η, η) : ξ, η ∈ Qp} if −c1 = d21 and −c2 = d22, {(±d1ξ, ξ, 0, 0) :
ξ ∈ Qp} if −c1 = d21 and −c2 is not a square, and {(0, 0, 0, 0)} if −c1 and
−c2 are not squares.

(2) {(x, 0, y, 0) : x, y ∈ Qp} ∪ {(0, ξ, 0, η) : ξ, η ∈ Qp}.
(3) {(0, 0, 0, 0)}.

For those in which the origin has rank 1, the fibers are {(±dξ, ξ, y, 0) : ξ, y ∈ Qp}
if −c = d2 and {(0, 0, y, 0) : y ∈ Qp} otherwise.

Proof. The part about rank 1 is immediate from the formula (x2 + cξ2, η).
For the rank 0 part, we have:

(1) This follows from making x2 + c1ξ
2 = y2 + c2η

2 = 0.
(2) We make xη + cyξ = xξ + yη = 0. Considering this a system in (ξ, η), we

have two possible cases:
• The determinant of the coefficient matrix is 0. Then cy2 − x2 = 0.
Since c is not a square, x = y = 0.

• The determinant of the coefficient matrix is not 0. Then ξ = η = 0.
(3) We consider the coordinate change given by Ψ2 in Proposition 6.24:

x
ξ
y
η

 = Ψ2


x′

ξ′

y′

η′

 .

We have that the first column of Ψ2 is the hat-conjugate of the second,
the same happens for the third and fourth, and the original coordinates
are all in Qp and they are their own conjugates, hence

x
ξ
y
η

 =


x̂

ξ̂
ŷ
η̂

 = Ψ̂2


x̂′

ξ̂′

ŷ′

η̂′

 = Ψ2


ξ̂′

x̂′

η̂′

ŷ′


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which implies ξ′ = x̂′ and η′ = ŷ′. Now, if (x, ξ, y, η) is a point in the
fiber,

0 =
(
x ξ y η

)
M


x
ξ
y
η

 =
(
x′ ξ′ y′ η′

)
ΨT2MΨ2


x′

ξ′

y′

η′


whereM is the matrix of the normal form. We know that Ψ2 diagonalizes
Ω−1

0 M , so

ΨT2MΨ2 = ΨT2 Ω0Ψ2Ψ
−1
2 Ω−1

0 MΨ2

=


0 4aαγ(b+ α) 0 0

−4aαγ(b+ α) 0 0 0
0 0 0 −4aαγ̄(b− α)
0 0 4aαγ̄(b− α) 0



λ 0 0 0
0 −λ 0 0
0 0 µ 0
0 0 0 −µ



= −4aα


0 γ(b+ α)λ 0 0

γ(b+ α)λ 0 0 0
0 0 0 γ̄(b− α)µ
0 0 γ̄(b− α)µ

 .

Putting this together, we get

0 = γ(b+ α)λx′ξ′ + γ̄(b− α)µy′η′ = γ2(b+ α)(r + sα)x′x̂′ + γ̄2(b− α)(r − sα)y′ŷ′

This must hold for all r, s ∈ Qp. Putting (r, s) = (1, 0) and (0, 1),

γ2(b+ α)x′x̂′ + γ̄2(b− α)y′ŷ′ = αγ2(b+ α)x′x̂′ − αγ̄2(b− α)y′ŷ′ = 0

These two equations imply x′x̂′ = 0 and y′ŷ′ = 0, that is, x′ = y′ = 0,
which in turn implies ξ′ = η′ = 0 and the vector is zero. □

In analogy with the real case, a submanifold N of a 2n-dimensional p-adic
analytic symplectic manifold (M,ω) is said to be isotropic if the tangent space at
each point of N is an isotropic subspace of the tangent space of M , that is, if
ω(u, v) = 0 for any two vectors u, v ∈ TmN . It is called Lagrangian if it is isotropic
and with dimension n.

The fibers of regular points of real integrable systems are Lagrangian, and
homeomorphic to tori (for this reason, it is called a singular Lagrangian torus fibra-
tion). For p-adic integrable systems the situation is more complicated to describe in
general, even for concrete examples (such as the Jaynes-Cummings model treated
in our paper [26]). However, there is a common point:

Proposition 9.19. Let n be a positive integer. Let p be a prime number. Let
(M,ω) be a 2n-dimensional p-adic symplectic manifold. Let F : (M,ω) → (Qp)n
be a p-adic analytic integrable system. Suppose that the components of F are either
regular components ξi or given by one of the normal forms of Theorem 5.19. Then
the fiber F−1(0) is a union of isotropic subspaces intersecting at the origin, and if
all the components are regular, then the fiber is a Lagrangian subspace.

Proof. For the regular case, where the system is (ξ1, . . . , ξn), clearly the fiber
of 0 is a Lagrangian subspace. Otherwise, it is enough to prove the statement for the
dimension 2 and 4 normal forms, and the conclusion follows by multiplying, because
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Regular Transversally Transversally
elliptic hyperbolic

Elliptic- Elliptic- Hyperbolic- Focus-focus
elliptic hyperbolic hyperbolic

Figure 1. Images of some normal forms for the real case and the
p-adic case with p ̸≡ 1 mod 4. In the real case, the positive and
negative sides of the axes represent, as usual, positive and negative
numbers; if p = 2, the “positive” and “negative” sides represent
numbers whose second digit is 0 and 1, respectively; finally, if
p ≡ 3 mod 4, the “positive” and “negative” sides represent even-
order and odd-order numbers, respectively. (The points on the axes
themselves have, as usual, a zero coordinate.) In each drawing, the
green region represents regular values, the blue points are rank 1
critical values, and the red points are rank 0 critical values. An
elliptic component has c = 1 in the notation of Corollary 9.5, a
hyperbolic one has c = −1, and a focus-focus one has c = −1 in
part (2) of Theorem 5.19.

the symplectic form ω0 does not mix the coordinates of different components. For
the normal forms, the result reduces to checking that

ω0((±d1, 1, 0, 0), (0, 0,±d2, 1)) = ω0((1, 0, 0, 0), (0, 0, 1, 0))

= ω0((±d, 1, 0, 0), (0, 0, 1, 0)) = 0. □

From the point of view of integrable systems and symplectic singularity theory,
the fibers and images of the local models in the p-adic case are very interesting and
include for example the images displayed in Figures 1 and 2 and the fibers displayed
in Figures 2 and 3.

We could define a p-adic version of the “Williamson type” defined for the real
case at [12, p. 41]. In the real case, it consists of a tuple of integers (ke, kh, kf) that
count the number of elliptic, hyperbolic and focus-focus components of the normal
form. The problem with this approach is that the components of the normal forms
are associated to blocks in the normal forms of matrices, which in the real case take
only three possible forms. In the p-adic case, by Lemma 8.17, there can appear
countably many different blocks, so the Williamson type will be a sequence (with
a finite number of elements different from zero) instead of a tuple.
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Regular Transversally Transversally
elliptic hyperbolic

Elliptic- Elliptic- Hyperbolic- Focus-focus
elliptic hyperbolic hyperbolic

Figure 2. Images of the same normal forms for p ≡ 1 mod 4.
The slopes of the blue lines in the last image are i and −i. Note
that the images of the systems with the same rank coincide, except
perhaps for a coordinate change, because now the singular compo-
nents of the systems belong to the same class: part (1) of Theorem
5.19, with c1 = c2 = 1.

For example, for p = 2, the first 11 elements of the sequence count the number
of components with each possible c in Corollary 9.5 (associated to blocks of size
two), the next 145 elements count the number of pairs of components with each
possible form in parts (2) and (3) of Theorem 5.19 (associated to blocks of size
four), after which come the counts of trios of components associated to blocks of
size six, and so on.

We close this section with a mention of the Eliasson-Vey’s linearization theorem
[49, 50, 116, 132, 134], which in the real case states that any smooth integrable
system can be brought to its Williamson normal form by a symplectomorphism.
The analytic case of this theorem is due to Rüßmann [116] for two degrees of
freedom and Vey [132] in arbitrary dimension. In the real case Eliasson’s Theorem
(assuming that there are no hyperbolic components) says that there is a local
diffeomorphism φ and symplectic coordinates ϕ−1 = (x, ξ, y, η) such that F ◦ ϕ =
φ(g1, g2), where gi is one of the elliptic, real or focus-focus models. The p-adic
equivalent of this theorem is well beyond the scope of this paper, and we state it
as a question.

Question 9.20 (A p-adic Eliasson-Vey’s theorem?). Let n be a positive inte-
ger. Let p be a prime number. Given a 2n-dimensional p-adic analytic symplectic
manifold (M,ω), an integrable system F : (M,ω) → (Qp)n and a non-degenerate
critical point m of F , determine under which conditions on the Williamson type of
the critical point m there are open sets U ⊂ M and V ⊂ (Qp)2n, a p-adic analytic
symplectomorphism ϕ : V → U and a local diffeomorphism φ of (Qp)n such that
ϕ(0) = m and

(F − F (m)) ◦ ϕ = φ ◦ (g1, . . . , gn),
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where (g1, . . . , gn) is the Williamson normal form of F in m. (In the real case it is
enough that there are no hyperbolic blocks.)

Remark 9.21. It is important to understand that the results of this section do
provide a normal form of the functions involved in a neighborhood of the critical
point, but do not give a normal form of the symplectic form in the entire neigh-
borhood, only at the tangent space at the point. The question of whether such a
normal form exists in the entire neighborhood and what shapes it may take is a
completely different non-linear problem which we have not attempted to answer in
this paper (this would be a Darboux type theorem for p-adic analytic symplectic
manifolds, which would be a preliminary step to answer Question 9.20).

9.3. Application to classical mechanical systems

In this section we explain how Theorem 5.19 can be applied to further study the
p-adic Jaynes-Cummings model introduced and studied in [26]. We recommend the
books by Abraham-Marsden [1] and de León-Rodrigues [33] for an introduction to
the mathematical study of mechanics and its connections to symplectic/differential
geometry.

In our paper [26] we studied the Jaynes-Cummings model with p-adic coeffi-
cients (see Figure 3 for the fibers in the real case and Figure 4 for a fiber in the
p-adic case). The system was defined therein, in analogy with the real case, as
follows. For any number p, first we consider the product p-adic analytic manifold
S2p × (Qp)2 with the p-adic symplectic form ωS2

p
+ du ∧ dv. Here we recall that

S2p =
{
(x, y, z) ∈ Q2

p : x
2 + y2 + z2 = 1

}
and ωS2

p
is the area form in the sphere given by

ωS2
p
= −1

z
dx ∧ dy =

1

y
dx ∧ dz = − 1

x
dy ∧ dz.

The p-adic Jaynes-Cummings model is given by the p-adic analytic map

F = (J,H) : S2p × (Qp)2 → (Qp)2,

where 
J(x, y, z, u, v) =

u2 + v2

2
+ z;

H(x, y, z, u, v) =
ux+ vy

2
,

where (x, y, z) ∈ S2p and (u, v) ∈ (Qp)2.
By [26, Proposition 2.5], at m1 = (0, 0,−1, 0, 0), there is a p-adic linear sym-

plectomorphism changing the local coordinates to (x, ξ, y, η) in which the p-adic
symplectic form is given by ω = (dx ∧ dξ + dy ∧ dη)/2 and

(35) F1(x, ξ, y, η) =
1

2
(x2 + ξ2, y2 + η2) +O((x, ξ, y, η)3).

Here F1 = B ◦ (F − F (0, 0,−1, 0, 0)) with

B =

(
1 2
1 −2

)
.
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Figure 3. Image and fibers of the real Jaynes-Cummings model.
The red curve consists of rank 1 critical points, and the two blue
points are rank 0. The Jaynes-Cummings model is an example of a
class of integrable systems called semitoric systems. The fibers of
this system are a point, circles, 2-tori (generic fiber) and a pinched
torus.

At m2 = (0, 0, 1, 0, 0), after the change, the p-adic symplectic form is also given by
ω = (dx ∧ dξ + dy ∧ dη)/2 and

(36) F2(x, ξ, y, η) = (xη − yξ, xξ + yη) +O((x, ξ, y, η)3).

Here F2 = B ◦ (F − F (0, 0, 1, 0, 0)) with

B =

(
2 0
0 4

)
.

Hence we have the following consequence of Theorem 5.19.

Corollary 9.22. Let p be a prime number. Then there exist open sets U1

and U2 such that m1 ∈ U1 and m2 ∈ U2 and a local linear symplectomorphism
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Figure 4. Fiber F−1(72, 1) of the 5-adic Jaynes-Cummings
model. The blue points are values of z for which the coordinates
(x, y, u, v) form two p-adic circles, at the green points they only
form one circle, at the purple point z = j = 72 they have dimen-
sion 1 but they are not a circle, and the values of z which appear
in grey are not in the fiber.

ϕ : U1 → U2 centered at m1, such that

F2(ϕ(x, ξ, y, η)) = F1(x, ξ, y, η) +O((x, ξ, y, η)3)

for (x, ξ, y, η) ∈ U1, if and only if p ≡ 1 mod 4, where F1 and F2 are as described
in (35) and (36).

Proof. By Theorem 5.19, F1 and F2 are linearly symplectomorphic to one of
the possibilities listed in its statement, so it is enough to see that it is the same for
p ≡ 1 mod 4 and different otherwise. For the first normal form F1, we have that

Ω−1
0 d2(rJ1+ sH1) =


0 −2 0 0
2 0 0 0
0 0 0 −2
0 0 2 0



r 0 0 0
0 r 0 0
0 0 s 0
0 0 0 s

 =


0 −2r 0 0
2r 0 0 0
0 0 0 −2s
0 0 2s 0


whose eigenvalues are ±2ir and ±2is. If p ≡ 1 mod 4, we are in the situation of
Proposition 6.17, so this is in case (1) of Theorem 5.19 linearly symplectomorphic
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to x2 + ξ2. Otherwise, we are in the situation of Proposition 6.22, and for λ = 2ir,

uTΩ0ū =
(
i 1 0 0

)
0 1

2 0 0
− 1

2 0 0 0
0 0 0 1

2
0 0 − 1

2 0



−i
1
0
0

 = i

and
2λa

uTΩ0ū
= 4ra.

We need to find a and b such that ab = 4r2 and 4ra ∈ DSq(Qp, 1), or equiv-
alently r/a ∈ DSq(Qp, 1). Taking b = ac, we have that c = 4r2/a2 is a square;
moreover, if p ≡ 3 mod 4, r/a has even order, hence 4 | ordp(c), and in the set{

1,−1, p,−p, p2
}
,

the c that we need is 1. If p = 2, the only c that is square is 1. The same reasoning
holds for s instead of r, so this critical point is in case (1) with c1 = c2 = 1.

Respecting to F2, we get

Ω−1
0 d2(rJ2+sH2) =


0 −2 0 0
2 0 0 0
0 0 0 −2
0 0 2 0



0 s 0 r
s 0 −r 0
0 −r 0 s
r 0 s 0

 =


−2s 0 2r 0
0 2s 0 2r

−2r 0 −2s 0
0 −2r 0 2s


has as eigenvalues ±2s ± 2ir. If p ≡ 1 mod 4, this is again in case (1) with
c1 = c2 = 1, otherwise it is in case (2) with c = −1. □

More information about the Jaynes-Cummings model and other models of in-
terest in physics can be found at [1, 33].

9.4. Examples

In this section we show examples which illustrate our theorems, so that they
can be understood more concretely.

9.4.1. Examples with matrices.

Example 9.23. This example follows the method given in the proof of Theorem
5.31 in order to find the normal form of a symmetric matrix. LetM be the following
symmetric matrix:

M =


1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10

 .

The characteristic polynomial of A = Ω−1
0 M is t4 − 6t2 − 2. We start with

p = 2. In order to classify M , we need to find two things: the family of the normal
form, and the normal form itself. We first calculate

λ2 =
6±

√
36 + 8

2
= 3±

√
11.

As 11 ≡ 3 mod 8, λ2 /∈ Q2 and we are in case (2) or (3) of Theorem 5.31 with

c = 3. In order to find which one, we need to check whether 3 ±
√
11 is a square
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in Q2[
√
3]: it can be written as 3 ±

√
11/3

√
3, where

√
11/3 ∈ Q2. Applying the

criterion on Proposition 8.9(4), we see that

ord(3) = ord(
√

11/3) = 0,

so it is not a square and we are in case (3).

The next step is to find t1 and t2: this is the class of 3+
√
11 in Q2[

√
3] modulo

squares. This can be found with the procedure in the proof of Corollary 8.10(2):

we need to multiply by 1 +
√
3 to make ord(a) ̸= ord(b), which gives

(3 +

√
11

3

√
3)(1 +

√
3) = 3 +

√
33 +

(
3 +

√
11

3

)
√
3.

Writing this again in the form a+ b
√
3, it leads to ord(b)− ord(a) = 2, ord(a) ≡ 1

mod 2 (so we have to multiply by 2) and b/4a+ digit2(a) ≡ 1 mod 2 (so we have

to change sign). The class is −2(1 +
√
3), that is, t1 = t2 = −2. This is not a class

in the table, so we need to take its pair, t1 = 1 and t2 = 1.
It is only left to find a and b. The two possible classes have b = 0, but one

has a = 1 and the other a = −1. To find the correct one, we go to the formula in
Proposition 6.24.

aαγ(b+ α)

uTΩ0û
=

aα2γ

uTΩ0û
=

3a
√
−2(1 +

√
3)

uTΩ0û
∈ DSq(Q2[

√
3], 2(1 +

√
3)).

The class of this number, with a = 1, is −(1 +
√
3). As we see in Table 7, the

position in row γ2 = −2(1+
√
3) and column −(1+

√
3) is unmarked, which means

that the number is not in

DSq(Q2[
√
3], 2(1 +

√
3)),

and we need to take a = −1. This finishes the classification of the family of the
normal form:

r


−1 0 0 0
0 1 0 −3
0 0 − 1

3 0
0 −3 0 3

+ s


0 0 1 0
0 3 0 −3
1 0 0 0
0 −3 0 −9

 .

To find the concrete normal form, we need to put λ in the form (r+ sα)γ, and the
result is

r =
1

2

√−3 +
√
11 + 3

√
3−

√
33

2
+

√
−3−

√
11− 3

√
3−

√
33

2


s =

1

2
√
3

√−3 +
√
11 + 3

√
3−

√
33

2
−

√
−3−

√
11− 3

√
3−

√
33

2


This is a common pattern in this example and the following two: the family of nor-
mal forms is very simple, but the concrete normal form is much more complicated.

Example 9.24. Now we classify the same matrix with p = 3. 11 is still not a
square in Q3, so we are in case (2) or (3) with c = −1. We write λ2 as 3 + i

√
−11,

where
√
−11 ∈ Q3, and we need to check whether this is a square in Q3[i]. We use

Proposition 8.6(1): min{ord(a), ord(b)} ≡ 0 mod 2 and a2 + b2 = −2 is a square
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in Q3, so λ
2 is a square in Q3[i] and we are in case (2). In this case c = −1 is the

only parameter we need. This is the focus-focus family
0 s 0 r
s 0 −r 0
0 −r 0 s
r 0 s 0


with

r =

√
3 +

√
11−

√
3−

√
11

2i
, s =

√
3 +

√
11 +

√
3−

√
11

2

Example 9.25. For the same matrix and p = 5, we see that λ2 = 3+
√
11 ∈ Q5,

so we are in case (1). c1 is given by the class of λ2 modulo a square in Q5.

λ2 = 3 +
√
11 ≡ 3 + 1 = 4 mod 5

is a square, so c1 = 1 (actually, c1 is in the class of −λ2, but as p ≡ 1 mod 4 it is
equivalent to take λ2). Analogously

µ2 = 3−
√
11 ≡ 3− 1 = 2 mod 5

so c2 = 2 (which is c0 for p = 5) or c2 = 2p2 = 50. To know which one, we go to
Proposition 6.22:

2µa

uTΩ0ū
= . . . 203033a ∈ DSq(Q5, 2)

which means, by Proposition 8.1(2), that a has even order, and since ord(ab) = 0,

ord(c2) = ord(b)− ord(a) = −2 ord(a)

is multiple of 4, so this leaves c2 = 2. The normal form is
r 0 0 0
0 r 0 0
0 0 s 0
0 0 0 2s


with

r =

√
3 +

√
11, s =

√√
11− 3

2
.

Example 9.26. Let M be the following matrix:

M =


2 6 −2 −3
6 11 1 −5
−2 1 −6 −2
−3 −5 −2 3


The characteristic polynomial of A = Ω−1

0 M is (t2−5)2, so this matrix has repeated
eigenvalues:

{
√
5,
√
5,−

√
5,−

√
5}.

For p = 5,
√
5 /∈ Q5, hence it is in case (3) of Theorem 5.33. We need to write

λ = r
√
c for c ∈ Yp: this leads to c = 5 and r = 1. The value of a must be 1 or 2,
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and from (34) we obtain that a = 1 gives the result in DSq(Q5,−5). So the normal
form is 

1 0 0 1
0 0 5 0
0 5 1 0
1 0 0 0

 .

Example 9.27. The same matrix with p = 11: now
√
5 ∈ Q11, so it is in case

(2) of Theorem 5.33, with r = λ =
√
5:

0
√
5 0 0√

5 0 1 0

0 1 0
√
5

0 0
√
5 0

 .

9.4.2. Examples with functions and integrable systems.

Example 9.28. The matrices from Examples 9.23 and 9.26 can be translated
to functions with a critical point in the origin (the first one is non-degenerate and
the second one is degenerate):

f1(x, ξ, y, η) =
x2

2
+ 2xξ + 3xy + 4xη +

5

2
ξ2 + 6ξy + 7ξη + 4y2 + 9yη + 5η2

f2(x, ξ, y, η) = x2 + 6xξ − 2xy − 3xη +
11

2
ξ2 + ξy − 5ξη − 3y2 − 2yη + 3η2

The class of the critical point of f1 is that of Corollary 9.7(3), with c = 3, t1 =
t2 = −2, a = −1, b = 0, for p = 2, that of part (2) with c = −1 for p = 3, and that
of part (1) with c1 = 1 and c2 = 2 for p = 5.

The class of the critical point of f2 is that of Corollary 9.8(3) with c = 5 for
p = 5, and that of part (2) for p = 11.

Example 9.29. Let p be a prime number such that p ≡ 1 mod 4. Then the
functions

Fee, Feh, Fhh, Fff : ((Qp)4, ω0) → (Qp)2

and the symplectic form ω0 = dx ∧ dξ + dy ∧ dη on Q4
p:

• Elliptic-elliptic: Fee(x, ξ, y, η) = (x
2+ξ2

2 , y
2+η2

2 );

• Elliptic-hyperbolic: Feh(x, ξ, y, η) = (x
2+ξ2

2 , yη);
• Hyperbolic-hyperbolic: Fhh(x, ξ, y, η) = (xξ, yη);
• Focus-focus: Fff(x, ξ, y, η) = (xη − yξ, xξ + yη),

are non-degenerate p-adic analytic integrable systems. Furthermore, all four sys-
tems are p-adically linearly symplectomorphic. This follows from Theorem 5.19.

Example 9.30. Let p be a prime number such that p ̸≡ 1 mod 4. Then any
two distinct systems among those four are not linearly symplectomorphic. This
follows from Theorem 5.19.

Remark 9.31. In Corollary 9.5, the elliptic function corresponds to c = 1. The
hyperbolic one, by Proposition 6.17, corresponds to c = 1 for p ≡ 1 mod 4 and
c = −1 otherwise. That is, six of the seven forms for p ≡ 1 mod 4, three of the
five for p ≡ 3 mod 4, and nine of the eleven for p = 2, have no real equivalent.

In Theorem 5.19, the elliptic-elliptic model corresponds to (1) with c1 = c2 = 1.
Changing elliptic components to hyperbolic results in changing the corresponding
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ci to −1, except if p ≡ 1 mod 4, where there is no change. The focus-focus model
is the same for p ≡ 1 mod 4, and otherwise it is (2) with c = −1. The vast majority
of p-adic normal forms, including all those in point (3), have no real equivalent.

We now comment on the S1p-actions on Q2
p induced by those systems (we refer

to [26, Appendix C] for a review of the concept of p-adic action), where we recall
that S1p is defined by

S1p =
{
(x, y) ∈ Q2

p : x
2 + y2 = 1

}
.

Remark 9.32. Let p be a prime number.

(1) The elliptic function fe(x, ξ) = x2+ξ2

2 induces on Q2
p an S1p-action given

by

(u, v) · (x, ξ) =
(
u v
−v u

)(
x
ξ

)
,

for (u, v) ∈ S1p and (x, ξ) ∈ Q2
p.

(2) The first component f1(x, ξ, y, η) = xη − yξ of the focus-focus system
Fff induces on Q4

p an action with a similar formula to the previous one,
simultaneously on the plane (x, y) and the plane (ξ, η):

(u, v) · (x, ξ, y, η) =


u 0 −v 0
0 u 0 −v
v 0 u 0
0 v 0 u



x
ξ
y
η

 ,

for (u, v) ∈ S1p and (x, ξ, y, η) ∈ Q4
p.

Indeed, by [26, Corollary 4.5], there is a subgroup of S1p isomorphic to pZp
by the correspondence t 7→ (cos t, sin t) that contains all elements near the origin.
We need to prove that, if ψt(x, ξ) = (cos t, sin t) · (x, ξ), the vector field Xt of this
flow (in the sense that d

dtψt(x, ξ) = Xt(ψt(x, ξ))) satisfies Hamilton’s equations
ıXtω0 = dfe.

We have

d

dt
ψt(x, ξ) =

d

dt

(
cos t sin t
− sin t cos t

)(
x
ξ

)
=

(
− sin t cos t
− cos t − sin t

)(
x
ξ

)
so Xt(x, ξ) = (ξ,−x), and

ıXtω0 = xdx+ ξdξ = dfe,

as we wanted.
For the focus-focus action, we have analogously thatXt(x, ξ, y, η) = (−y,−η, x, ξ),

and

ıXt
ω0 = ηdx− ydξ − ξdy + xdη = df1,

as we wanted.

9.5. Circular symmetries of the p-adic models

Here we generalize the content of Remark 9.32 and analyze the problem of
existence of circle actions for arbitrary models. In the real case, for a fixed sym-
plectic space (V, ω), most multiples of a Hamiltonian that admits a circle action
do not admit it. This happens because a smooth circle action over V is defined
by a smooth map h : S1 × V → V , satisfying h(g1, h(g2,m)) = h(g1g2,m) and
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h(1,m) = m, for g1, g2 ∈ S1 and m ∈ V . Concretely, considering g : R → S1 given
by g(t) = (cos t, sin t), we must have

h(g(t+ t′),m) = h(g(t)g(t′),m) = h(g(t), h(g(t′),m))

and h(1,m) = m, for t, t′ ∈ R and m ∈ V . The induced vector field for this action,
that is, Xh(t) given by

d

dt
h(g(t),m) = Xh(t)(h(g(t),m)),

must coincide with Xf induced by the Hamiltonian f via the Hamilton equation
ıXf

ω0 = df . When f is multiplied by a constant k, that is, f ′ = kf , we also have
Xf ′ = kXf , so Xh must also be multiplied by k:

d

dt
h′(g(t),m) = Xh′(t)(h′(g(t),m))

= kXh(t)(h
′(g(t),m))

= kXh(kt)(h
′(g(t),m))

(the last equality happens because Xh(t) = Xf is independent of t). This equation
is solved by h′(g(t),m) = h(g(kt),m), that is, the action is accelerated by a factor
of k. As we must have h′(g(2π),m) = h′(1,m) = m, in general this is only possible
if k is integer.

This will not happen in the p-adic case, because the p-adic circle is not closed
(there is no t ̸= 0 such that g(t) = 1). So getting a circle action is much easier
in this case, and actually any “small enough” multiple of a Hamiltonian admits a
circle action.

Proposition 9.33. Let n be a positive integer and let p be a prime number.
Let Ω0 be the matrix of the standard symplectic form on (Qp)2n. Given a p-adic
analytic Hamiltonian f : (Qp)2n → Qp such that f(m) = mTMm/2, for a matrix
M ∈ M2n(Qp), f admits a p-adic analytic S1p-action (that is, there exists h : S1p ×
(Qp)2n → (Qp)2n analytic such that h(g1, h(g2,m)) = h(g1g2,m) and h(1,m) = m,
for g1, g2 ∈ S1p and m ∈ (Qp)2n) if and only if ord(λ) ≥ 0 for all λ which is an

eigenvalue of Ω−1
0 M .

Proof. Suppose that f admits a circle action h and let ψ(t, v) = h(g(t), v)
and A = Ω−1

0 M . Hamilton’s equation ıXf
ω0 = df results in

Xf (m)TΩ0v = df(m)(v) = mTMv ⇒ Xf (m) = −Ω−1
0 Mm = −Am.

Substituting in the flow equation,

d

dt
ψ(t,m) = −Aψ(t,m)

and ψ(0,m) = m, which solves as

ψ(t,m) = exp(−tA)m

where exp denotes the matrix exponential. This must exist for all t in the domain
of g(t) = (cos t, sin t), that is, such that |t|p ≤ kp, where kp = 1/p for p ̸= 2 and
k2 = 1/4. The exponential of −tA exists if and only if the eigenvalues µ of −tA
satisfy |µ|p ≤ kp, which implies

| − tλ|p = |t|p|λ|p ≤ kp.
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As it must exist when |t|p = kp, we have |λ|p ≤ 1.
Conversely, suppose that |λ|p ≤ 1 for all eigenvalues of A. Then, for all t in the

domain of g,
| − tλ|p = |t|p|λ|p ≤ kp

and exp(−tA) exists. This means that ψ(t,m) is well defined, and h(g0,m) exists
for g0 ∈ Im(g). By [26, Corollary 4.5], the quotient S1p/ Im(g) is a discrete group,
so we can define its action arbitrarily without affecting the flow equation, and we
have an action of S1p. □

Remark 9.34. Often symplectic classifications of group actions in equivariant
symplectic geometry include the assumption that the action is effective, as it is the
case for example in Delzant’s classification, Duistermaat-Pelayo [43] and Pelayo
[96]. With this restriction (being effective), no multiple of a Hamiltonian which
admits a circle action also admits an action. However, as Proposition 9.33 shows,
in the p-adic case all small multiples of any Hamiltonian admit an effective action.

However, if we want the action to have the form h(g,m) = h((u, v),m) =
(uI + vB)m, like the actions in Remark 9.32, the situation changes completely.

Proposition 9.35. Let n be a positive integer and let p be a prime number. Let
Ω0 be the matrix of the standard symplectic form on (Qp)2n. Given a p-adic analytic
Hamiltonian f : (Qp)2n → Qp such that f(m) = mTMm/2, for a matrix M ∈
M2n(Qp), f admits a p-adic analytic S1p-action of the form h((u, v),m) = (uI +

vB)m if and only if the eigenvalues of Ω−1
0 M are i and −i, both with multiplicity

n. In that case, B = −Ω−1
0 M .

Proof. The flow equation implies

d

dt
h((cos t, sin t),m) = −Ah((cos t, sin t),m),

that is
d

dt
(cos tI + sin tB)m = (− sin tI + cos tB)m = −A(cos tI + sin tB)m,

which implies AB = I and B = −A. Hence, the action exists if and only if A2 = −I.
If this happens, the only possible eigenvalues are i and −i, and since they must come
in opposite pairs, each one appears n times. Conversely, if the eigenvalues of A are
i and −i, those of A2 are −1, which implies that A2 = −I. □

Of the normal forms in Theorem 5.19, those with a circle action of this form
are the following:

• At point (1), only the elliptic component gives eigenvalues i and −i. The
remaining ones have different eigenvalues. Hence, we recover Remark
9.32(1).

• At point (2), only the focus-focus component, if p ̸≡ 1 mod 4, has eigen-
values (i, i,−i,−i). We recover Remark 9.32(2).

• At point (3), t1 + t2
√
c is the square of an eigenvalue, so we must have

t1 = −1 and t2 = 0 to have this kind of circle action.
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[26] L. Crespo, Á. Pelayo: The p-adic Jaynes-Cummings model in symplectic geometry, preprint,

arXiv:2406.18415.
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[43] J.J. Duistermaat, Á. Pelayo: Symplectic torus actions with coisotropic principal orbits,

Annales de l’Institut Fourier 57 (2007), 2239–2327.
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at http://home.imf.au.dk/jensen/software/gfan/gfan.html

[70] Jakob Jonsson. Generalized triangulations of the n-gon. Unpublished manuscript (2003).
[71] Jakob Jonsson. Generalized triangulations of the n-gon, Lecture Notes in Mathematics, vol.

132, p. 281, Mathematisches Forschungsinstitut Oberwolfach, 05.01.-24-05.2003. (Handwrit-
ten abstract for the workshop [91])

[72] Jakob Jonsson. Generalized triangulations and diagonal-free subsets of stack polyominoes.

J. Comb. Theory Ser. A 112 (2005), 117–142.
[73] Jakob Jonsson, Wolkmar Welker. A spherical initial ideal for Pfaffians. Illinois Journal of

Mathematics 51(4) (2007), 1397–1407.
[74] Gil Kalai. Hyperconnectivity of Graphs. Graphs Comb., 1 (1985), 65–79.
[75] Gil Kalai, Eran Nevo, Isabella Novik. Bipartite rigidity. Trans. of the Amer. Math. Soc..

368(8) (2016), 5515–5545. doi:10.1090/tran/6512

[76] A. Khrennikov, K. Oleschko, M. d. J. C. López: Applications of p-adic wavelets to model
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[95] J. Palmer, Á. Pelayo, X. Tang: Semitoric systems of non-simple type, Revista de la Real

Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A. Matemáticas 118, 161 (2024).
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[102] Á. Pelayo, S. Vũ Ngo.c: Hamiltonian dynamics and spectral theory for spin-oscillators.
Comm. Math. Phys. 309 (2012) 123–154.
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Mathématique de France 42 (2014), 95–110.
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