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Abstract 
 

Bacterial relatedness measured using selected chromosomal loci forms the basis of 

public health genomic surveillance. While approximating vertical evolution through this 

approach has proven exceptionally valuable for understanding pathogen dynamics, it 

excludes a fundamental dimension of bacterial evolution, horizontal gene transfer. 

Incorporating the accessory genome is the logical remediation and has recently shown 

promise in expanding epidemiological resolution for enteric pathogens. Employing k-mer-

based Jaccard Index (JI) analysis, optionally complemented by a novel genome length 

distance metric (GLD), we computed pangenome relatedness for two serovars of Salmonella, 

Typhi and Hadar. This method simultaneously captures both vertical (homology-by-descent) 

and horizontal (homology-by-admixture) evolutionary relationships in a reticulate network. 

This dual perspective provided high-resolution stratification of closely related genomes and 

highlighted epidemiologically relevant subgroups that traditional core genome or gene-by-

gene methods may have overlooked. The addition of GLD further enhanced the detection of 

insertions and deletions in populations that harbor core genome variation. 

To investigate the pangenome of Salmonella enterica serotype Typhi, a pathogen of 

significant global public health concern, we analyzed the largest United States (U.S.) dataset 

to date, containing over 2,200 genomes. This analysis revealed a non-random structure in 

the Typhi pangenome primarily driven by the gain and loss of mobile genetic elements 

(MGEs). It confimed and expanded upon known epidemiological patterns, uncovered novel 

plasmid dynamics, and identified avenues for further genomic epidemiological exploration. 

Notably, our analysis elucidated the existence of two distinct IncY plasmids containing the 

blaCTX-M-15 gene that belong to different plasmid taxonomic units (PTUs). This finding 

challenges previous classifications that treated these plasmids as a single type and 

emphasizes the need for more detailed analyses that go beyond plasmid replicons and known 

antimicrobial resistance (AMR) genes. Further, JI-grouping robustly linked specific clusters 

to globally significant Typhi lineages, such as the 4.3.1 multi-drug resistant (MDR) and 

extensively drug-resistant (XDR) strains. Genomes harboring the blaCTX-M-15 gene integrated 

into the chromosome were separated from those in which the gene remained plasmid-borne. 

We further documented novel chromosomal integrations of blaCTX-M-15, highlighting the 

dynamic nature of resistance evolution in Typhi. Our results also confirmed known 

epidemiological patterns, including the emergence of XDR Typhi strains and their 



geographic associations with travel-related cases in regions like Pakistan, and extended these 

findings by demonstrating that the overall pangenome structure observed in U.S. isolates is 

generalizable to global populations. Moreover, analysis of pre-antibiotic era isolates showed 

that certain Typhi lineages were established before the advent of antibiotics and have 

circulated with minimal genetic change, underscoring the long-term persistence and 

evolutionary stability of these lineages. 

With public health applications in mind, this work highlights the diversity of the 

accessory genome and provides a valuable complement to traditional GenoTyphi typing by 

supplying an additional layer of genomic information that enhances strain discrimination 

and deepens our understanding of Typhi’s evolutionary dynamics. 

In the case of Salmonella enterica serotype Hadar, an emerging zoonotic pathogen 

in the U.S. linked to both commercial and backyard poultry, we explored the population 

structure and epidemiology in the U.S. using over 3,300 genomes. Between 2019 and 2020, 

U.S. Hadar populations experienced substantial shifts driven by the expansion of a lineage 

carrying a previously uncommon prophage-like element, which was detected in both 

backyard and commercial poultry. This emergent lineage likely gained a selective advantage 

through the acquisition of this novel prophage. While no distinct pangenomic differences 

were detected between strains isolated from backyard versus commercial poultry, we did 

observe a division within this lineage involving the presence or absence of a PTU-I1 plasmid. 

The JI-based clustering allowed for finer discrimination of closely related isolates, thereby 

facilitating more accurate linkage between human cases and putative exposure sources. 

Examination of non-U.S. Hadar populations revealed geographical variations in pangenome 

diversity, suggesting that factors such as poultry trade, farming practices, and regional 

ecology play significant roles in shaping global population structures. Additionally, our 

study highlighted that PTU-I1 plasmids are the most frequent plasmid type among Hadar 

genomes. Although resistance genes have not yet posed a major threat in Hadar, the presence 

of new AMR determinants on these broad-host range plasmids signals the potential for future 

horizontal gene transfer events that could lead to more problematic resistance profiles.  

Moreover, this work emphasizes that short-term population shifts in both Typhi and 

Hadar are frequently driven by the gain or loss of MGEs. As these elements continue to 

evolve, there is a clear need for consistent and updated genomic surveillance using flexible 

bioinformatic workflows capable of detecting newly emerging MGEs. Such efforts are 
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particularly important for tracking the evolution of antimicrobial resistance and the spread 

of novel plasmids and prophages across different environments and geographic regions. 

Incorporating accessory genome data into public health genomics deepens our understanding 

of pathogen adaptation and specialization. The demonstrated utility of the JI-based approach 

for both Typhi and Hadar underscores its potential for application in other pathogens.  
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Resumen 
 

El estudio de la relación genética entre bacterias a través de loci cromosómicos 

específicos constituye la base de la vigilancia genómica en salud pública. Aunque este 

enfoque basado en la evolución vertical ha sido sumamente valioso para descifrar la 

dinámica de los patógenos, deja de lado un aspecto crucial de la evolución bacteriana: la 

transferencia genética horizontal. La integración del genoma accesorio en el análisis 

genómico permite evaluar esta dimensión de la evolución, mostrando un notable potencial 

para aumentar la resolución epidemiológica en patógenos entéricos.  

Empleando un análisis basado en k-meros, el Índice de Jaccard (JI), complementado 

opcionalmente con una nueva métrica de distancia basada en la longitud del genoma (GLD), 

se ha calculado la relación del pangenoma para dos serovares de Salmonella, Typhi y Hadar. 

Este método permite capturar de manera simultánea las relaciones evolutivas verticales 

(homología por descendencia) y horizontales (homología por mezcla) en una red reticulada. 

Este enfoque dual ha permitido una estratificación de alta resolución de genomas 

estrechamente relacionados, destacando subgrupos epidemiológicamente relevantes que los 

métodos tradicionales basados en el genoma central o el análisis gen a gen habrían pasado 

por alto. La incorporación de GLD optimizó aún más la detección de inserciones y 

deleciones en poblaciones que presentaban variación en el genoma central. 

Para explorar el pangenoma de Salmonella enterica serotipo Typhi, un patógeno muy 

relevante para la salud pública global, se analizó el mayor conjunto de genomas aislados en 

Estados Unidos (EE. UU.) hasta la fecha, que comprende más de 2,200 genomas. Este 

análisis reveló una estructura no aleatoria en el pangenoma de Typhi, impulsada 

predominantemente por la ganancia y pérdida de elementos genéticos móviles (MGEs), lo 

cual confirma y amplía los patrones epidemiológicos conocidos, desvela nuevas dinámicas 

plasmídicas e identifica vías para futuras investigaciones en epidemiología genómica. 

Concretamente, se identificaron dos tipos de plásmidos IncY distintos que contienen el gen 

blaCTX-M-15 y pertenecen a diferentes unidades taxonómicas plasmídicas (PTUs). Este 

hallazgo desafía las clasificaciones previas que consideraban estos plásmidos como un único 

tipo y subraya la necesidad de análisis más detallados que trasciendan los replicones 

plasmídicos y los genes de resistencia a antibióticos conocidos. Asimismo, la agrupación 

basada en el JI vinculó grupos específicos a linajes globalmente significativos de Typhi, tales 



como las cepas 4.3.1 multirresistentes (MDR) y extensamente resistentes (XDR). Los grupos 

de genomas que portan el gen blaCTX-M-15 integrado en el cromosoma se distinguieron de 

aquellos en los que el gen estaba codificado en un plásmido. Además, se documentaron 

nuevas integraciones cromosómicas de blaCTX-M-15, subrayando la naturaleza dinámica de la 

evolución de la resistencia en Typhi. Los resultados de este estudio también confirmaron 

patrones epidemiológicos conocidos, incluida la vinculación de cepas XDR con viajes a 

regiones como Pakistán. Este trabajo demuestra que la estructura del pangenoma observada 

en los aislados de EE.UU. es representativa de las poblaciones a nivel mundial. Por otro 

lado, el análisis de aislados de la era pre-antibiótica evidenció que ciertos linajes de Typhi 

se establecieron antes de la introducción de los antibióticos y han circulado con mínimas 

modificaciones genéticas, destacando su persistencia a largo plazo y estabilidad evolutiva. 

Enfocado en aplicaciones en salud pública, este trabajo demuestra la diversidad del 

genoma accesorio y complementa la tipificación tradicional de GenoTyphi, aportando una 

capa adicional de información genómica que mejora la discriminación de cepas y profundiza 

el entendimiento de la dinámica evolutiva de Typhi. 

En el caso de Salmonella enterica serotipo Hadar, un patógeno zoonótico emergente 

en EE.UU. vinculado tanto a la avicultura comercial como a la doméstica, se exploró la 

estructura poblacional y la epidemiología en EE.UU., utilizando más de 3,300 genomas. 

Durante el período 2019-2020, las poblaciones de Hadar experimentaron cambios 

significativos, impulsados por la expansión de un linaje portador de un profago previamente 

poco común, identificado tanto en brotes relacionados con aves comerciales como con 

domésticas. Este linaje emergente podría haber adquirido una ventaja selectiva a través de 

la incorporación de este nuevo profago. Aunque no se detectaron diferencias pangenómicas 

distintivas entre cepas aisladas de aves domésticas y de entornos comerciales, se observó 

una diferenciación dentro de este linaje en función de la presencia o ausencia de un plásmido 

PTU-I1. Asimismo, la agrupación mediante el JI permitió una discriminación de aislados 

estrechamente relacionados, facilitando la vinculación entre casos humanos y las posibles 

fuentes de exposición. El análisis de poblaciones de Hadar fuera de EE. UU. ha revelado 

variaciones geográficas en la diversidad del pangenoma, sugiriendo que factores como el 

comercio avícola, las prácticas agrícolas y la ecología regional influyen en la configuración 

de las estructuras poblacionales globales. Además, el estudio destacó que los plásmidos 

PTU-I1 son el tipo de plásmido más frecuente entre los genomas de Hadar. Aunque los genes 

de resistencia aún no constituyen una amenaza en Hadar, la presencia de nuevos 
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determinantes de resistencia antimicrobiana en estos plásmidos de amplio rango de 

hospedador indica el potencial para futuros eventos de transferencia horizontal de genes, los 

cuales podrían derivar en perfiles de resistencia más problemáticos. 

Finalmente, este trabajo enfatiza que los cambios poblacionales a corto plazo en 

Typhi y Hadar se deben con frecuencia a la ganancia o pérdida de MGEs. Estos elementos 

continúan evolucionando y movilizándose, por lo que se necesita una vigilancia genómica 

constante y actualizada, apoyada en herramientas bioinformáticas flexibles capaces de 

detectar MGEs emergentes. Dichos esfuerzos son especialmente cruciales para el 

seguimiento de la evolución de la resistencia a los antimicrobianos y la diseminación de 

nuevos plásmidos y profagos a través de diversos entornos y regiones geográficas. En 

conclusión, la integración de datos del genoma accesorio en la genómica aplicada a la salud 

pública enriquece nuestra comprensión de la adaptación y especialización de los patógenos. 

La utilidad demostrada del enfoque basado en el JI tanto para Typhi como para Hadar resalta 

su potencial de aplicación en otros patógenos. 
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Graphical abstract 

 

The core genome reflects chromosomal phylogeny but does not account for accessory 

genome components. In contrast, JINA integrates all genomic information, revealing 

similarities that are invisible to traditional phylogenetic methods. The combination of these 

complementary approaches enabled the detailed stratification of two serovars of Salmonella 

enterica, Typhi and Hadar, revealing epidemiologically relevant subgroups that traditional 

core genome methods alone may overlook.
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 Bacterial pathogens population 
 

 Pathogenic bacteria pose a significant and growing threat to global public health, 

causing widespread disease outbreaks that demand effective monitoring and control 

strategies [1]. Their rapid evolution, coupled with increased global connectivity, complicates 

efforts to predict and mitigate infections. Consequently, accurately identifying and 

distinguishing pathogenic strains is essential, not only for epidemiological surveillance but 

also for the design of targeted public health interventions.   

An estimated 60% of all human pathogens have originated from other animal species 

[2]. Conversely, human-to-animal transmissions threaten sustainable livestock production 

[3,4], while emerging plant pathogens increasingly jeopardize crop yields and global food 

security. Therefore, a critical aspect of bacterial evolution is their ability to adapt to new host 

species, which represents a considerable risk to both human health and global ecosystems. 

Investigating these host transitions provides valuable insights into the evolutionary 

mechanisms enabling bacteria to establish themselves in new niches and may uncover novel 

targets for infection control and guide strategies to limit the emergence of new pathogens.  

Bacteria exist as complex communities or populations of organisms shaped by 

various selective pressures, including interactions with hosts (e.g. host immunity), 

environmental and ecological factors, and human interventions such as drug treatments. 

These factors drive changes in the genetic structure and the evolutionary trajectory of 

bacterial populations, leading to differences within and between species [5–7]. Studying the 

genetic diversity of bacterial pathogen populations can provide valuable insights into their 

evolutionary history, population dynamics, host interactions, and adaptive strategies. In turn, 

these insights help elucidate clinically important traits such as virulence, drug resistance, 

and antigenic variation, which are essential for designing effective medical and public health 

interventions [8]. 

 

 Evolution and variation in pathogen populations 
 

Bacterial diversity is a product of adaptation to specific ecological niches. Each host 

species (animal and plant kingdom) represents a unique collection of sub-niches that bacteria 

may colonize. When bacteria transfer to a new host, they frequently face new challenges, 

including interactions with the host and its microbiota. Such interactions require a balance 
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of survival, proliferation, and competition. The speed of adaptation depends on factors such 

as the frequency of beneficial mutations, the fitness advantage conferred by these mutations, 

the effective population size, or the capacity to acquire new genetic material (encoding 

beneficial traits) through horizontal gene transfer (HGT) [6,8]. Higher values for these 

factors can accelerate adaptation, giving certain strains a selective advantage and enabling 

them to establish themselves in the new host. This establishment can disrupt the balance of 

the resident microbiota, potentially leading to disease in the new host. 

The lifestyle of a pathogen, whether it is obligate, opportunistic, or accidental, also 

shapes its evolutionary trajectory and population structure [9]. Obligate pathogens rely on 

host infection for survival, while opportunistic pathogens can survive outside the host and 

may cause disease in some individuals but not others. Accidental pathogens, on the other 

hand, cause disease by chance without benefiting from it in terms of transmission.  

A crucial aspect of bacterial pathogens is the dynamic evolution of their genomes, 

which allows microorganisms to adapt to new environments and ecological niches. These 

evolutionary processes include the acquisition of new genes, homologous recombination, 

gene deletion, and point mutations [10,11].  

Gene gain may occur via duplication (duplications can emerge from errors in DNA 

replication or asymmetric recombination) or through HGT [11]. By contrast, gene loss 

involves the shedding of unnecessary genes to reduce metabolic costs [12]. Point mutations, 

which can arise spontaneously during DNA replication, constitute a fundamental source of 

genetic variation. Most of these mutations are neutral or slightly deleterious, but a small 

fraction may confer a selective advantage, promoting adaptation to new niches or enhancing 

resistance to external pressures [10,13]. When such mutations arise, they are passed on 

through vertical inheritance. Finally, homologous and non-homologous recombination 

events can rearrange or replace existing genetic material, further contributing to bacterial 

diversity (Figure 1.1) [11,14]. 
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Figure 1.1 | Scheme of the main evolutionary mechanisms in bacteria. The diagram illustrates 

key evolutionary processes in bacteria, including HGT, genetic recombination/rearrangement, 

mutations, and gene deletion through selection or genetic drift. 

 

1.1.1.1 Horizontal gene transfer 
 

Horizontal gene transfer is a major driver of bacterial evolution, enabling the 

acquisition of new genetic material, often in the form of mobile genetic elements (MGEs) 

like bacteriophages, pathogenicity islands, transposons, insertion sequences (ISs), and 

plasmids. MGEs can integrate into the bacterial chromosome or replicate autonomously as 

extra-chromosomal elements, facilitating the rapid acquisition of adaptive traits such as 

antibiotic resistance, virulence factors, and new metabolic capabilities, which greatly 

accelerate bacterial adaptation and diversification [15]. HGT occurs through several 

mechanisms: transformation, conjugation and transduction. In transformation, a bacterium 

takes up extracellular DNA release into the environment by a donor organism. During 

conjugation, direct contact between cells enables the transfer of plasmid DNA [16]. In 

transduction, DNA from a donor cell is delivered via a bacteriophage and integrated into the 

recipient genome as a prophage [17]. Prophage DNA may contain transposable elements 

that facilitate movement to other chromosomal locations [18]. Transformation and 

transduction events result in either homologous recombination, where DNA from another 

lineage replaces homologous sequences, or non-homologous recombination, which involves 

the insertion of novel genetic material [19,20]. 

Conjugation is arguably the most common mechanism of HGT [21], enabling the 

movement of large DNA fragments containing diverse adaptive traits [22]. These adaptive 
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traits are encoded either in autonomously replicating conjugative plasmids or in integrative 

conjugative elements (ICEs) inserted in the bacterial chromosome. Indeed, they are major 

vehicles for the spread of antimicrobial resistance (AMR) genes [23,24]. This is a process 

renowned for its promiscuity in transferring genetic material across diverse bacterial species, 

including those separated by significant phylogenetic distances [25]. 

Conjugative systems typically carry two modules: a mobility (MOB) module 

responsible for conjugative DNA processing and a mating pair formation (MPF) module that 

facilitates DNA delivery through the membranes of donor and recipient bacteria [22]. The 

MOB module includes an origin of transfer (oriT), a short DNA sequence required in cis for 

plasmid mobility, a relaxase to initiate conjugation and a type IV coupling protein (T4CP) 

to interconnect DNA processing with DNA transport. Meanwhile, MPF module encodes for 

a complex of proteins that build the type IV secretion system (T4SS) and the conjugation 

pilus. According to mobility, plasmids can be classified into three categories: conjugative, 

mobilizable and non-mobilizable. A conjugative plasmid contains the two sets of genes 

necessary for their own transfer, whereas a mobilizable plasmid lacks MPF genes, and 

generally the T4CP, and instead relies on these components from a co-resident, self-

transmissible element. Moreover, some mobilizable plasmids are even more streamlined, 

containing only the oriT, which is sufficient to initiate the DNA processing necessary for 

conjugation [26]. Non-mobilizable plasmids cannot be transferred by conjugation (Figure 

1.2). 

 

Figure 1.2 | Genetic organization of plasmids and key steps in the conjugation process. (A) 

Schematic view of the genetic elements involved in conjugation. (B) Scheme of interactions in the 

process of conjugation. The relaxase cleaves a specific site within oriT, and this step starts 
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conjugation. The DNA strand that contains the relaxase protein covalently bound to its 5′ end is 

displaced. The relaxase interacts with the T4CP and then with other components of the T4SS. As a 

result, it is transported to the recipient cell. Subsequently, the DNA is pumped into the recipient by 

the ATPase activity of the T4CP. Text adapted from the original legend and figure taken from [22].  

 

Relaxases are enzymes that play a central role in the transfer of plasmids and, as they 

are common to most conjugative elements, serve as excellent molecular markers for 

classification of plasmids [27]. Based on MOB sequences, mobilizable plasmids are 

classified into nine MOB families: MOBF, MOBH, MOBQ, MOBC, MOBP, MOBT, MOBB, 

MOBM, and MOBV [28]. The tool MOBscan enables the identification and classification of 

MOBs genes, which has provided crucial evolutionary insights in understanding the 

diversity of plasmid transfer processes across different bacterial populations. Another 

traditional approach for plasmid typing focuses on replicons, which are sequences within the 

plasmid that contain the origin of replication (ori), which is essential for the autonomous 

replication of the plasmid inside the host cell [29]. They determine the plasmid's ability to 

replicate independently of the bacterial chromosome and dictate its copy number, stability, 

and compatibility with other plasmids present within the same host. PlasmidFinder is a tool 

that uses replicon sequence data to identify and classify plasmids [30]. Both relaxase-based 

and replicon-based methods rely on detecting a single gene (the relaxase or the replicon) and 

therefore have inherent limitations [31]. However, recent advances in plasmid classification, 

as seen in systems like MOB-suite [32] and Plasmid Taxonomic Units (PTUs) [25], leverage 

the complete plasmid sequence to provide a more comprehensive and accurate grouping. 

These approaches offer a more robust framework for understanding plasmid evolution across 

diverse bacterial populations. 

 

1.1.1.2 Gene loss 
 

Although bacteria frequently acquire new genes, they also undergo gene loss to 

maintain optimal genome size and reduce metabolic burdens. Genes that confer no clear 

advantage in a stable niche may be lost over time. This “use it or lose it” phenomenon can 

be viewed as an adaptive strategy; by discarding unnecessary DNA, cells conserve resources 

and improve fitness [11,12]. 
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1.1.1.3 Vertical inheritance 
 

In addition to HGT, vertical inheritance also plays an important role in bacterial 

evolution [6,8,20,33]. Through vertical inheritance, genetic material is passed from parent 

to offspring, allowing evolutionary changes, such as mutations, to accumulate over 

generations. Point mutations involve the substitution of a few nucleotides or small insertions 

and deletions (indels). Mutations within protein-coding sequences can influence host 

adaptation by altering protein function and driving new evolutionary trajectories or by 

causing gene function loss. The majority of mutations in bacterial genomes are neutral, while 

some are detrimental and eliminated by purifying selection, and only a few increase fitness, 

spreading through the population via positive selection. 

The dynamics of recombination and mutation also influence the population structure 

of bacterial pathogens. Single nucleotide polymorphisms (SNPs) contribute to genome 

divergence, but recombination can reduce this divergence. Recombination rates vary 

significantly between lineages, complicating phylogenetic analysis [34]. The relative 

importance of SNP accumulation versus recombination in bacterial evolution is debated 

[20]. In clonal populations, mutations accumulate vertically, leading to the propagation of 

fixed lineages. In contrast, in populations with frequent recombination, genetic material is 

constantly reshuffled, resulting in higher genetic diversity and a non-clonal population 

structure [35].  

While vertical inheritance promotes gradual genetic changes, HGT introduces 

genetic material from unrelated individuals, facilitating the rapid acquisition of new traits. 

Therefore, HGT is a fundamental driver of bacterial evolution, introducing substantial 

genetic variability even within a single species. Unlike in eukaryotes, where genetic 

variation primarily arises from allelic differences, bacterial strains of the same species can 

possess entirely distinct genes and large genomic regions, acquired through HGT. This dual 

mechanism of vertical inheritance and HGT shapes the remarkable plasticity of bacterial 

genomes. 

 

 Bacterial pangenomes 
 

Bacterial genomic plasticity is reflected in the structure of their genomes, which are 

often divided into distinct components [36]. The core genome comprises genes shared by all 

strains of a species. The accessory genome includes genes found in only some strains, often 
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encoding traits that confer ecological or evolutionary advantages, such as antibiotic 

resistance. Together, the core and accessory genomes form the pangenome, which represents 

the full genetic repertoire of a species (Figure 1.3).  

Bacterial pangenomes can be classified as either open or closed [36,37]. Species with 

open pangenomes exhibit extensive gene content variability, largely driven by frequent HGT 

events and differential gene loss, with gene duplications playing a smaller role. In contrast, 

species with closed pangenomes show limited gene content variation (Figure 1.3). The size 

and nature of the pangenome of a species depend on the genetic diversity sampled and the 

number of genomes sequenced from that diversity. 

 

Figure 1.3 | Schematic representation of pangenomes as Venn diagrams. Each colored circle 

represents a bacterial genome, while the gray circle indicates the core genome. Text adapted from 

the original legend and figure taken from [36]. 

 

Different evolutionary forces shape the core and accessory genomes. The core 

genome evolves primarily through vertical inheritance, with mutations playing a major role 

in driving gradual genetic changes [20]. In contrast, the accessory genome is largely 

influenced by HGT [37]. This distinction highlights the complementary roles of vertical and 

horizontal evolutionary mechanisms in shaping bacterial genomes, with mutations 
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maintaining core functionality and HGT driving the dynamic plasticity of the accessory 

genome. 

 

 Methods for studying bacterial pathogen populations 
 

Accurately identifying and distinguishing pathogen strains is essential for 

understanding their population structure, tracking outbreaks, monitoring disease spread, and 

designing targeted interventions. Several methods have been developed to analyze bacterial 

population structures [38,39]. These include traditional techniques based on discriminatory 

markers, such as serotyping, phage typing, and pulsed-field gel electrophoresis (PFGE), 

which do not rely on DNA sequencing. More advanced genome methods rely on DNA 

sequencing and include multilocus sequence typing (MLST), core genome MLST 

(cgMLST), and whole genome MLST (wgMLST), as well as techniques focusing on SNPs 

and k-mer analysis.  

 

 Allele calling methods before Whole-Genome Sequencing (WGS) 
 

Despite the development of DNA sequencing methods in 1977, PFGE remained the 

standard for bacterial strain typing for many years [40]. PFGE involves digesting genomic 

DNA with restriction enzymes and separating fragments on a pulsed-field gel. Fragment 

sizes vary due to mutations, DNA gain/loss, and genomic rearrangements. However, PFGE 

may offer limited resolution. 

DNA sequencing gained popularity in the late 1980s with the advent of polymerase 

chain reaction (PCR), revolutionizing sequencing and enabling methods like MLST in 1998 

[41]. MLST typing involves the amplification of seven loci of housekeeping genes by PCR, 

followed by DNA sequencing of the PCR products. A single nucleotide variation at any of 

these loci defines a distinct allele, which is used to determine the sequence type (ST). 

However, MLST sometimes struggles to distinguish closely related strains during 

outbreaks. This limitation led to the development of multilocus variable-number tandem-

repeat analysis (MLVA) [42], which provides greater resolution by analyzing variations in 

tandem DNA repeats, offering a faster and more precise tool for tracking outbreaks. While 

methods like PFGE and MLVA transformed bacterial epidemiology, they still lacked the 

necessary resolution for evolutionary and spatiotemporal studies [38].  
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 The Post-WGS era 
 

Advances in next-generation sequencing technologies and the accumulation of large, 

diverse datasets have led to a significant transformation in the field of bacterial genomics. 

WGS can now be performed rapidly, offering a high resolution for differentiating closely 

related strains and enabling in-depth analysis like phylogenetics, outbreak tracing, and 

phenotype prediction [38]. However, this surge in data production has created new 

challenges: extracting biologically meaningful insights from large datasets demands 

sophisticated bioinformatics approaches and considerable computational power. 

One key benefit of WGS is its application in comparative genomics, where diverse 

isolates can be compared to trace outbreak sources and identify clonal strains. The process 

typically involves assessing genome similarity through various methods, followed by 

clustering to infer phylogenetic relationships. These methods include gene-by-gene 

approaches (e.g., cgMLST) and SNP-based analyses. 

 

 Allele calling methods in the post-WGS era 
 

Within the WGS framework, gene-by-gene approaches have evolved and expanded 

significantly. A key factor in designing typing schemes is determining the required 

resolution for distinguishing isolates, which depends on the specific question being 

addressed [43]. For example, high resolution is needed for outbreak detection and within-

patient variation studies, while lower resolution is sufficient for identifying the species 

causing an infection. 

One of the earliest gene-by-gene method is MLST. Although MLST was initially 

developed as a PCR-based method, WGS allows researchers to derive MLST data directly 

from assemblies and determine the ST without the need for traditional PCR-based workflows 

[43]. MLST is widely used in molecular epidemiology and has been adapted for numerous 

bacterial species, each supported by extensive online databases for easy querying. These 

resources facilitate the identification of population clusters, often by grouping related STs 

into minimum-spanning trees (MSTree), such as those produced by eBurst [44]. However, 

while MLST has greatly advanced our ability to track bacterial diversity, its low resolution 

(based on 7 housekeeping genes) limits its use in some cases (Figure 1.4). 
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To address MLST`s limitation, other MLST-based approaches have been developed, 

each utilizing different numbers of loci, such as cgMLST and wgMLST [43]. Numerous 

schemes for both cgMLST and wgMLST are available in EnteroBase [39,45], a software 

environment for identifying global population structures across multiple bacterial genera.  

cgMLST schemes analyze many more genes common to all isolates in a sample. This 

method combines the speed and ease of assigning indices to alleles with the increased 

resolution gained from using larger portions of the core genome. This method has proven 

useful in outbreak investigation [46,47]. However, cgMLST relies on predefined loci, which 

limits its ability to capture the full genetic diversity of bacterial populations. In Salmonella, 

for example, cgMLST involves 3,002 core genes that were found to be present in >=98%, 

intact in >=94%, of 3,144 representative Salmonella genomes (Figure 1.4) [39].  

To further enhance the resolution of cgMLST, wgMLST schemes have been 

developed to incorporate accessory genes in addition to core loci. The wgMLST approach 

is particularly useful for differentiating single-clone pathogens with closed pangenomes or 

for closely related variants within more diverse organisms [43]. For example, EnteroBase 

implements a wgMLST scheme for Salmonella based on 21,065 orthologs from 537 

complete genomes (Figure 1.4). However, the use of wgMLST for fine-scale 

epidemiological analysis has been questioned for several reasons [39]. Firstly, Salmonella 

has an open pangenome, and the number of orthologs in an open pangenome grows with the 

number of sequenced genomes. This growth necessitates continuous annotation of new loci, 

resulting in ever-evolving wgMLST schemes, a process that becomes computationally 

intensive for large databases. Alternatively, it might be sufficient to call genotypes on the 

basis of a frozen scheme, as is the case with EnteroBase. However, a frozen wgMLST 

scheme would lack any newly imported genes, such as those encoding AMR. Excluding 

these emerging loci reduces the scheme’s ability to detect critical genetic changes introduced 

by HGT, a key aspect of pathogen surveillance. 

The literature presents numerous conflicting claims about the best approaches for 

studying fine-scale epidemiology and tracing transmission chains. PulseNet International 

[48], a network of public health laboratories dedicated to tracking foodborne infections 

world-wide, now recommends wgMLST as the preferred tool for fine-scale epidemiology, 

replacing PFGE as its primary method. 
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Figure 1.4 | Schematic representation of the MLST approaches for Salmonella. The resolution 

increases from left to right, progressing from traditional MLST (7 loci of conserved housekeeping 

genes) to cgMLST (3,002 core gene loci) and finally to wgMLST (21,065 loci including core and 

accessory genes). 

 

 Single Nucleotide Polymorphisms (SNPs) for bacterial typing 
 

The identification of SNPs is another key approach for studying strain variation. 

SNPs are detected by mapping sequence reads or assemblies to a closely related reference 

genome and recording nucleotide differences [38]. A set of core SNPs, identified from 

positions covered by all query genomes, can be used to generate an SNP distance matrix for 

phylogenetic analysis, such as with neighbor-joining or maximum likelihood (ML) trees. 

This method has been successfully applied in resolving large-scale outbreaks [49,50].  

The choice of reference genome is critical, as a high-quality, closed reference 

provides more accurate SNP calling, while a distant reference or unrelated isolates may 

reduce the number of core SNPs. Specialized tools, like SAMtools [51] and Snippy 

(https://github.com/tseemann/snippy), facilitate the process of SNP calling.  

Phylogenetic trees can also be constructed by aligning the core genes of the bacterial 

genomes under study. This approach involves identifying the set of core genes shared among 

all query genomes and performing multiple sequence alignments on these conserved regions. 

Once the core genes are aligned, the SNPs identified within these alignments are extracted 

and used to generate a comprehensive SNP dataset. This dataset serves as the foundation for 

constructing phylogenetic trees. 
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Both MLST methods and SNP-based approaches generate distance matrices that are 

used to analyze genetic relatedness. Methods such as neighbor-joining, ML trees, MSTree, 

and hierarchical clustering are commonly employed to construct phylogenetic trees or 

visualize relationships between isolates (dendograms). The resulting groupings (e.g., 

clusters derived from SNP analysis or MLST methods) facilitate the interpretation of how 

closely related samples are [38,44]. 

 

 K-mer based methods 
 

In addition to the commonly used methods described in the previous sections, new 

computationally faster strategies have emerged to avoid the need for a reference genome or 

predefined schemes. Computational speed is achieved through alignment-free approaches 

[52], which quantify sequence similarity without generating alignments. These methods rely 

on breaking the genome into short nucleotide subsequences of defined length, called k-mers. 

Because they use the entire genome assembly, k-mer-based methods can capture both core 

and accessory genome variation. In practice, k-mer-based tools divide each genome 

sequence into all possible overlapping nucleotide segments of a specified length, k. The 

presence or absence of each k-mer in the sequences is recorded, generating a vector for each 

genome. Pairwise comparisons are then performed using these vectors, with dissimilarity 

between sequences quantified through the application of a distance function [38,52,53]. 

 

1.2.5.1 Split-k-mer methods 
 

One approach to inferring differences in SNPs involves the use of odd-length k-mers 

which can be divided into two smaller fragments around a variable middle base, forming a 

structure called a “split k-mer” [38]. This structure allows the left and right parts of the k-

mer to serve as local reference points for the position of the middle base. If the same left-

right k-mer combination appears in another strain with a different middle base, homology 

between the middle bases can be hypothesized, and the difference can be interpreted as a 

SNP. This approach enables alignment-free, reference-free comparisons between strains 

while maintaining the ability to map to a reference sequence for interpretation. However, in 

highly variable samples, closely spaced SNPs may disrupt k-mer matching, reducing 

accuracy. 
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The split k-mer approach was first introduced in the kSNP program [54] and later in 

SKA1 [55], offering improvements in efficiency and flexibility. kSNP is an open-source 

tool, currently in its fourth version (released in 2023) [56], designed to detect SNPs between 

strains and construct phylogenetic trees from those SNPs. It allows the user to adjust various 

parameters and customize outputs. For example, users can choose to analyze core SNPs or 

SNPs from the entire genome. It also provides options to generate different types of 

phylogenetic trees, including parsimony, neighbor-joining, and ML. While other programs 

either detect SNPs or build phylogenetic trees, kSNP is unique in that it does both [56]. 

Another tool that employs the “split k-mer” approach is SKA1 [55], which has 

recently been updated to SKA2 [57]. It is a tool designed for fast and alignment-free SNP 

detection and comparison across genomic datasets. By leveraging split k-mers, SKA enables 

reference-free alignments, mapping to reference genomes, and the calculation of SNP 

distances, facilitating clustering and phylogenetic analysis [57]. Unlike kSNP, which 

directly generates a phylogenetic tree based on the core or pangenome SNPs, SKA2 provides 

detailed SNP data and distances but does not generate the tree itself. Instead, it outputs the 

necessary data for users to construct the phylogenetic tree or visualize the results using other 

tools.  

Although the split-k-mer method is effective for SNP detection, the current 

implementation is limited to detect SNPs only, and cannot identify indels or other structural 

variants. However, it is suggested that such variants could be inferred by performing the 

split-k-mer analysis at various split sizes and matching flanking bases across regions of 

different lengths [57]. 

 

1.2.5.2 Full k-mer similarity method: Jaccard Index 
 

Another widely used metric in k-mer-based approaches is the Jaccard Index (JI), 

which measures the fraction of shared complete k-mers between two datasets, rather than 

individual fragments of them as “split-k-mers” methods do. JI is a common proximity 

measurement used to compute the similarity between two objects, with wide use in numerous 

domains, such as ecology [58,59], text mining [60,61], and genome comparison [53,62–64]. 

The JI is defined as:  

����,�� = |
 ∩ �|
|
 ∪ �| 
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where 
 and � are the sets of � k-mers from two sequences.  

To further reduce computational resources, Mash [53], one of the most popular tools 

for k-mer based distance estimation, uses the MinHash technique. This technique allows 

approximation of the JI using a reduced set of k-mers called "sketches” which enables a 

significant reduction in memory usage and runtime, while preserving a reliable estimate of 

genomic similarity. More recent tools, such as BinDash [62] incorporate advanced MinHash 

variants that further reduce root-mean-square error, increase compression, lower memory 

consumption, and improve runtime efficiency. 

A tool that utilizes a k-mer based method for large-scale population analysis and 

bacterial strain clustering is PopPUNK (Population Partitioning Using Nucleotide K-mers) 

[65]. PopPUNK employs the Mash algorithm to calculate genome distances based on k-mer 

sketches, while specifically separating core and accessory genome k-mers. Core k-mers vary 

due to SNPs, while accessory k-mers reflect gene presence-absence variations. These two 

distances are plotted against one another and a machine learning algorithm (two-dimensional 

Gaussian Mixture Model (BGMM) or HDBSCAN) identifies components. The cluster 

closest to the origin (indicating minimal differences in both the core and accessory 

components) is interpreted as representing within-strain relationships, and pairwise distances 

within this cluster are used as thresholds to link samples and form the final PopPUNK 

cluster. The threshold for within-strain links is refined using a network score (transitivity 

and density) ensuring that the resulting network is sparse but highly clustered (Figure 1.5). 

The tool is optimized for certain species and provides reference databases 

(https://www.bacpop.org/poppunk/) with predefined models that include thresholds for 

cluster definition, allowing users to directly assign strains to new sets of isolates. 
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Figure 1.5 | Summary of the PopPUNK algorithm. Original legend “(Step 1) For each pairwise 

comparison of sequences, the proportion of shared k-mers of different lengths is used to calculate a 

core and accessory distance. Differences in gene content cause k-mers (examples highlighted in 

green) to mismatch irrespective of length, whereas point mutations distinguishing orthologous 

sequences cause longer k-mers to mismatch more frequently than shorter k-mers. (Step 2) The 

scatterplot of these core and accessory distances is clustered to identify the set of distances 

representing “within-strain” comparisons between closely related isolates. A network is then 

constructed from nodes, corresponding to isolates, linked by short genetic distances, corresponding 

to within-strain comparisons. Connected components of this network define clusters. (Step 3) The 

threshold defining within-strain links is then refined using a network score, ns, in order to generate 

a sparse but highly clustered network. (Step 4) Finally, the network is pruned by taking one sample 

from each clique. The distances between new query sequences and references are calculated, and 

within-strain distances used to add new edges. The clusters are then reevaluated as in Step 3, with 

the nomenclature being kept consistent with the original reference cluster names.” Taken from [65]. 

 

Despite its advantages, PopPUNK has limitations, particularly for species with low 

genetic diversity, where cluster boundaries may connect in non-transitive ways [66]. The 
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calculation of core and accessory distances will in theory work to any resolution. However, 

if there is no clear within-strain versus between-strain separation in the distances and instead 

just a cloud of points, the spatial clustering methods are not likely to converge on a good 

solution. Network-based model refinement is needed in this case, though it is likely to split 

the strain into many sub-strains. 

A recent version, called Iterative-PopPUNK [66] employs a multi-level clustering 

approach by applying several thresholds and saving the resulting clusters at each level. At 

higher thresholds, strains are grouped into parent clusters, while at lower thresholds, these 

same strains split into multiple subclusters (child clusters). All clusters are then integrated 

into a genealogical tree, where each cluster is nested as a child under its corresponding parent 

based on strain membership. For every node in the tree, the average core genome distance 

among the strains it contains is calculated, and its branch length relative to the root is set 

accordingly. This approach provides users with a tree representation of clustering results 

across multiple thresholds based on core distances, ultimately allowing them to select the 

most appropriate threshold for defining clusters according to the core distance between 

strains. 

 

 Pangenome analysis tools 
 

In the preceding sections, a variety of methods for typing and differentiating bacterial 

genomes has been presented. Specifically, these methods focus on differentiating strains 

based on specific markers or nucleotide sequences, typing or clustering them into sets of 

closely related isolates. However, they do not address the gene families contained within 

each strain, nor the shared or distinguishing genes across different populations. To fill this 

gap and provide a more comprehensive view of bacterial diversity, pangenome analysis tools 

identify, classify, and compare gene families on a broader scale. This section introduces 

various programs and approaches developed for this purpose. Some popular tools are Roary 

[67], PanACoTA [68], Panaroo [69], or PanX [70]. These pipelines typically start by 

identifying and annotating genes from the input genomes, producing a set of protein 

sequences for each isolate. Next, they use homology search methods to estimate the 

similarity between proteins using tools like DIAMOND [71], USEARCH [72], or CD-HIT 

[73], followed by clustering algorithms such as Markov clustering. The clustering step is 

computationally intensive, as it groups genes into families that are common across a set of 
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genomes. By mapping which gene families are common or unique, these tools offer a 

detailed view of pangenome structure and reveal key differences among strains. 

Programs like Roary [67], and PanX [70] remain among the most widely used tools 

for clustering gene families and constructing pangenome profiles. More recent tools, such as 

PATO (Pangenome Analysis Toolkit) [74] have introduced more efficient methods, using 

tools like MMseqs2 [75], MASH [53] or Minimap2 [76] to define core and accessory 

genome components. Moreover, it provides advanced visualization tools, and all its 

functionalities are integrated in an R package. Another recent tool, PanACoTA [68], 

provides a comprehensive pipeline for pangenome analysis, integrating steps such as 

genome gathering, quality control, alignment, core genome identification, and phylogenetic 

analysis. 

In contrast to the gene-based pipelines described above, PanGraph [77] takes a gene-

agnostic approach, relying solely on sequence homology. It uses sequence aligners such as 

Minimap2 [76] or MMseqs2 [75] to align genome sequences and extract blocks from 

homologous regions called “pancontigs”. These continuous segments of homologous 

sequence can be common to all genomes or exclusive to specific ones, enabling a detailed 

analysis of the pangenome structure.  

Once pancontigs are identified, PanGraph can create a pangenome graph, which is a 

compressed representation of the genomes. In this graph, each genome is represented as a 

path, that is, a list of pancontigs. This visualization highlights how genomes overlap or differ, 

with pancontigs serving as the fundamental unit of comparison (Figure 1.6). The output of 

PanGraph can be exported into various formats, making it suitable for further downstream 

analysis. 

One of the features of PanGraph is the ability to adjust two parameters (α and β) to 

modify the sensitivity of the alignments and the maximum sequence divergence allowed 

between homologous sequences in the same pancontig. These parameters allow users to fine-

tune the tool’s performance depending on the specific dataset and research goals [77].  
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Figure 1.6 | Schematic pangenome graph representation generated by PanGraph. Given a set 

of genomes (A, B and C), PanGraph will construct a pangenome graph by condensing all homologous 

sequences in pancontigs (colored the same), containing the alignment of these sequences. From these 

pancontigs, a consensus sequence is generated for each one, making it easily accessible for 

downstream analysis. Genomes can then be represented as paths through the graph, i.e., sequences 

of pancontigs. In this representation, a pangenome graph is essentially a collection of pancontigs and 

paths. Taken from [77]. 

 

 A prototype bacterial pathogen: Salmonella 
 

Salmonella is a bacterial genus that belongs to the family Enterobacteriaceae and 

includes many pathogens that can cause disease in humans and other animals. These bacteria 

are commonly found in the intestinal tract of many animals including reptiles, amphibians, 

and poultry [78–80]. Although human salmonellosis is primarily foodborne, it can also be 

acquired through direct or indirect contact with infected animals in settings such as homes, 

veterinary clinics, zoological gardens, and farms. Approximately 11% of Salmonella 

infections are attributed to animal exposure annually, making it important for healthcare 

providers to be aware of this zoonosis. Both clinically affected and healthy animals can shed 

Salmonella over extended periods, with the prevalence of shedding often being higher in 

sick animals [81,82].  
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The public health risk varies based on factors such as age and health status, with 

certain human populations at higher risk due to biological or behavioral factors. Efforts to 

control Salmonella are further complicated by environmental contamination and indirect 

transmission through contaminated food and water. Salmonella exemplifies the One Health 

paradigm, as it can be transmitted through multiple food products and environmental 

sources, with reservoirs in humans, animals, plants, and in the environment [83,84]. Several 

initiatives, such as those intended to eradicate poultry-specific Salmonella, highlight the 

importance of ecological principles in understanding pathogen niches, and emphasize the 

need for an integrated approach to address Salmonella infections [82]. 

 

 Classification and taxonomy 
 

The genus Salmonella is divided into two species, S. bongori and S. enterica [85]. 

Salmonella enterica is further divided into six subspecies: enterica, salamae, arizonae, 

diarizonae, houtenae and indica, which contain over 2,500 serovars or serotypes (Figure 

1.7) [85,86]. These subspecies divisions were initially classified by their biochemical 

properties and nucleotide similarity [85,87,88] and are supported by more recent sequence 

data [89]. The majority of the diseases associated with Salmonella are caused by serovars of 

S. enterica subspecies enterica [86].  

Serovars were originally classified based on their O (somatic) and H (flagellar) 

antigens, with antigenic formulae represented by O antigens and H (phase 1, phase 2) 

antigens [85]. Specific antibodies target the cell wall (O) and phase 1 and phase 2 flagella 

(H) antigens, and each unique combination of O:H1:H2 is designated as a serovar (or 

serotype) name. The official list of serovars, known as the Kauffmann-White scheme [86], 

is maintained and regularly updated by the WHO Collaborating Centre for Reference and 

Research on Salmonella. Most serovars are named after the geographic location from which 

they were first isolated. These names are written without italics and start with a capital letter 

[85]. The formal name includes the full taxonomy, such as Salmonella enterica subspecies 

enterica serovar Typhi. However, they are often shortened to S. enterica serovar Typhi, S. 

Typhi, or just Typhi. In this thesis, serovars of S. enterica subspecies enterica will be 

introduced with their full names but referred to by their serovar name for simplicity. 
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Figure 1.7 | General overview of the current classification of Salmonella [90]. 

 

However, genomic studies [90] suggests that serovar classification, despite its 

epidemiological utility, does not always reflect the true evolutionary relationships among S. 

enterica isolates. Analysis based on MLST, which assigns each isolate to a ST, have 

demonstrated that clusters of closely related ST, referred to as eBurst Groups (eBGs), 

represent clonal complexes derived from a common ancestor (Figure 1.8). For example, 

most Typhimurium isolates belong to eBG1, but certain monophasic variants and related 

serovars, such as Farsta and Hato, also fall within this group despite antigenic differences. 

These observations suggest that traditional serotyping often confounds genetically unrelated 

isolates and fails to capture natural evolutionary groupings. Building on these findings, 

Achtman et al. (2012) [90] argued that, because MLST provides a clearer view of 

evolutionary relationships than traditional serotyping, Salmonella classification should 

transition from serovar-based designations to MLST or equivalent methodologies. 
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Figure 1.8 | Minimum spanning tree (MSTree) of MLST data on 4257 isolates of S. enterica 

subsp. enterica. Each circle corresponds to one STs, with its size proportional to the number of 

isolates. The topological arrangement within the MSTree is dictated by its graphic algorithm, which 

uses an iterative network approach to identify sequential links of increasing distance (fewer shared 

alleles), beginning with central STs that contain the largest numbers of isolates. As a result, singleton 

STs are scattered throughout the MSTree proximal to the first node that was encountered with shared 

alleles. The serovar associated with most of the isolates in each eBG or singleton ST is indicated by 

color coding for the 28 most frequent serovars. Text adapted from the original legend and figure 

taken from [90]. 

 

To further confirm that MLST provides a more accurate framework for classifying 

Salmonella than serotyping, complementary methods have been employed [39]. For 

instance, ribosomal MLST (rMLST) clusters isolates into rBGs based on sequences from 51 

ribosomal protein genes, and these rBGs have largely confirmed the genetic groupings 

suggested by conventional MLST (Figure 1.9). 
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Figure 1.9 | Correspondence between eBGs from MLST and reBGs from rMLST. The figure 

shows a MSTree [91] from 118,391 Salmonella strains in EnteroBase. Each node corresponds to a 

single ST, with its size proportional to the number of isolates. The colours, reBG designations, 

dominant serovar, and numbers of genomic assemblies are indicated in the key (top left). Lines 

connect nodes that are single-locus variants. Text adapted from the original legend and figure taken 

from [39]. 

 

Additionally, another study [92] used cgMLST to generate core genome Sequence 

Types (cgSTs). Hierarchical clustering of these cgSTs (HCC) further refines this approach 

by grouping isolates into clusters. It was found that clusters that differed at less than 900 

genes were correlated with single serotypes and were called HC900 clusters (Figure 1.10). 

Thereby bridging traditional serotyping with robust genomic frameworks. HC900 clusters 

provide higher resolution than eBGs, 

In summary, while serovar nomenclature will continue to be used for initial 

identification and epidemiological reference, genomic classifications, such as those based 

on eBG, and HierCC clusters offer a more precise representation of the evolutionary 

relationships and genetic diversity within Salmonella enterica. 
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Figure 1.10 | Genomic diversity of Salmonella using HCC. The figure shows a neighbor-joining 

tree  of the numbers of different alleles between cgSTs as generated within EnteroBase using 

GrapeTree [91]. Nodes from 41 common HC900 clusters are indicated by distinct colors, HC900 

designations and predominant serovars. Lineages of HC900 clusters are indicated in yellow. Node 

sizes are proportional to the numbers of genomes they include. Scale bar: 300 alleles. Text adapted 

from the original legend and figure taken from [92]. 

 

 Host range 
 

The Salmonella serovars differ widely in their ability to infect different hosts and 

cause distinct disease syndromes [93]. They are classified into three groups based on their 

host range:  

• Host-generalist serovars, such as Typhimurium and Enteritidis, cause infections 

in both humans and animals. The primary symptoms they produce include acute 

and self-limiting gastroenteritis [94].   

• Host-adapted serovars are those that are prevalent in a particular host but can 

also colonize and potentially cause disease in other hosts. This group primarily 

causes systemic infections, such as Dublin in cattle and Choleraesuis in pigs but 

can also cause infections in humans and other animals [93,95,96].  
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• Host-specific serovars cause severe systemic infections in a specific host. 

Examples include Typhi and Paratyphi, which cause typhoid fever exclusively 

in humans and other primates [97]. In animals, notable examples include 

Typhisuis, which induces paratyphoid fever in pigs; Gallinarum, responsible for 

typhoid fever in poultry; and Abortusovis, which causes abortions in sheep [98]. 

The genetic differences between host-generalist, host-adapted, and specific 

Salmonella serovars provide insights into the factors that determine their host range [84]. 

Broad-host-range pathogens face selective constraints because they must survive in a variety 

of host environments, each with different physiological needs. Even minor fitness impacts 

can limit their ability to compete with other bacteria. In contrast, host-specific pathogens are 

adapted to a narrow niche, allowing them to grow slower but more effectively in a controlled 

environment. These pathogens have fewer selective pressures, enabling them to accumulate 

more loss-of-function mutations (pseudogenes) than broad-host-range serovars. Some of 

these pseudogenes help host-specific Salmonella strains evade immune responses and 

survive in specific hosts [99]. 

 

 The disease and its global burden 
 

Once transmitted to humans, the fate of Salmonella largely depends on the host's 

immune status and the serovar involved. The infection can be cleared by the immune system 

without causing disease, resulting in an asymptomatic carrier state, or it can lead to various 

types of illness [100]. Among these, we can differentiate between enteric fevers caused by 

typhoidal serovars and intestinal infections (enteritis and enterocolitis) caused by non-

typhoidal serovars. 

Non-typhoidal Salmonella (NTS) typically causes localized intestinal infections, 

including enteritis and enterocolitis [100,101]. These infections are characterized by acute 

inflammation of the gastrointestinal tract, often leading to symptoms such as nausea, 

vomiting, abdominal cramps, and diarrhea, which usually appear within 6-48 hours of 

ingestion. In healthy adults, the disease is typically self-limiting and resolves without the 

need for antibiotics, as the host's immune system can control and eliminate the infection. 

However, in vulnerable populations such as children, the elderly, and immunocompromised 

individuals, the infection may progress to extraintestinal or focal infections, requiring 

antibiotic treatment.  
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Beyond diarrheal disease, NTS can invade sterile body sites, leading to severe 

conditions such as bacteremia, meningitis, and localized infections [102]. These more 

serious forms, collectively known as invasive non-typhoidal Salmonella disease (iNTS), are 

typically characterized by nonspecific febrile symptoms rather than diarrhea and are 

associated with significantly higher fatality rates [100]. Vulnerable groups are at an elevated 

risk of developing these invasive infections [102]. According to the Global Burden of 

Diseases, Injuries, and Risk Factors Study (GBD) 2017, NTS enterocolitis caused an 

estimated 95.1 million cases (95% uncertainty interval [UI]: 41.6-184.8 million), and 50,771 

deaths (95% UI: 2,824-129,736) in 2017 [103]. In Europe, NTS was the second most 

commonly reported foodborne gastrointestinal infection in 2023, with 77,486 confirmed 

human cases and 88 reported deaths [104]. In the United States (U.S.), NTS are estimated to 

cause 1.35 million infections and 420 deaths each year [105]. 

Typhoidal Salmonella infections, caused by S. enterica serovars Typhi and Paratyphi 

A, B, and C, pose significant public health challenges, particularly in regions with poor water 

supply and sanitation [106]. The transmission of Salmonella occurs via the fecal-oral route, 

where infected individuals excrete bacteria in their feces and urine. In unsanitary conditions, 

these pathogens can contaminate food or water, which may be ingested by others. Upon 

ingestion, the bacteria pass through the acidic environment of the stomach and reach the 

lower small intestine (ileum), where they invade the intestinal epithelium. This leads to an 

incubation period of 7-14 days, during which the bacteria are released into the bloodstream, 

causing bacteremia and the onset of symptoms like headache, cough, weight loss, and 

abdominal pain. If untreated, the infection can spread to other organs, such as the liver, 

spleen, bone marrow, and gallbladder, potentially resulting in serious complications like 

gastrointestinal bleeding, intestinal perforation, septic shock, and death [100,101,107]. 

These infections are particularly prevalent in South Asia, Southeast Asia, and sub-Saharan 

Africa, where they remain major contributors to mortality and disability, especially among 

children [106,108]. In 2017, an estimated 14.3 million cases of enteric fever occurred 

globally (95% UI: 12.5-16.3 million) and 135,000 (76.9-218.9) deaths. Of these cases, Typhi 

was responsible for 76.3% (95% UI: 71.8-80.5) [106]. Typhoid and paratyphoid fevers are 

relatively rare in Europe and in the U.S. and they are mainly acquired during travel to other 

countries, particularly South Asia. In 2020, there were 315 reported cases of Typhi infection 

in Europe [109], while in the U.S., Typhi causes an estimated 5,700 infections and 620 

hospitalizations each year [105]. 
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 Mechanisms of invasion and pathogenesis 
 

The pathogenicity of Salmonella is determined by the presence of virulence factors, 

many of which are encoded in specific genomic regions called Salmonella Pathogenic 

Islands (SPIs). These islands harbor genes for critical determinants, including Type 3 

Secretion Systems (T3SS), toxins, flagella, and capsules, that collectively enable the 

bacterium to invade and manipulate host cells [13,101,110] . 

The differences in disease outcomes between typhoidal and non-typhoidal 

Salmonella are largely due to variations in their invasion mechanisms and interactions with 

the host immune system. Both types of Salmonella use similar strategies to invade the host, 

but their ability to evade immune responses and the resulting inflammatory reaction differ 

significantly. 

After surviving the acidic environment of the stomach, Salmonella reaches the small 

intestine, where it invades the epithelial cells of the intestinal mucosa. The invasion process 

is mediated by the T3SS-1, encoded by SPI-1, which induces cytoskeletal rearrangements to 

facilitate bacterial uptake into enterocytes. The persistence of the bacteria inside these cells 

is due to Salmonella's ability to create a vacuole known as the Salmonella-containing vacuole 

(SCV), which allows it to survive and replicate within these cells. Following invasion, the 

bacterium expresses a second secretion system, T3SS-2, encoded by SPI-2. This system 

modulates the trafficking and maduration of the SCV, further enhancing intracellular 

survival and replication, and facilitating the systemic phase of infection. Thus, SPI-1 is 

mainly active when Salmonella is extracellular, enabling the invasion of non-phagocytic 

cells, while SPI-2 T3SS is active once internalized and promotes the development of the 

SCV inside the macrophages (Figure 1.11) [13,101,110]. 
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Figure 1.11 | Biology of Salmonella infection. Original legend: “Orally ingested Salmonella survive 

at the low pH of the stomach and evade the multiple defences of the small intestine in order to gain 

access to the epithelium. Salmonella preferentially enter M cells, which transport them to the 

lymphoid cells (T and B) in the underlying Peyer’s patches. Once across the epithelium, Salmonella 

serotypes that are associated with systemic illness enter intestinal macrophages and disseminate 

throughout the reticuloendothelial system. By contrast, non-typhoidal Salmonella strains induce an 

early local inflammatory response, which results in the infiltration of PMNs (polymorphonuclear 

leukocytes) into the intestinal lumen and diarrhoea.” Taken from [101]. 

 

The genetic and molecular differences between NTS and typhoidal Salmonella, 

which lead to different disease outcomes, remain an ongoing area of research. Non-typhoidal 

Salmonella infects many hosts, and therefore it is well-studied, with a clear understanding 

of the infection and invasion process in cells. In contrast, Typhi only infects humans, and 

there is no optimal animal model for studying its pathogenesis, leaving many aspects still to 

be elucidated. Much of the current research has focused on the differences between Typhi 

and Typhimurium, two of the most well-known serovars in each group. Despite sharing over 

96% DNA sequence identity in their genomes, Typhi and Typhimurium result in vastly 

different clinical manifestations and immune responses in humans [100,111]. Key 

differences that have been identified are the following.  
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Typhoid Salmonella is adapted to systemic infection and has evolved to evade the 

local immune responses in the intestines. In vitro studies showed that Typhi induces 

significantly lower levels of the neutrophil chemoattractant IL-8, preventing inflammatory 

diarrhea [112]. It is hypothesized that one factor that helps Typhi evade the immune system 

is the Vi capsular polysaccharide (ViCPS) encoded by SPI-7. ViCPS prevents phagocytosis 

and limits immune recognition by masking bacterial surface patterns, thus enhancing its 

survival in the host [112]. However, the role of ViCPS in pathogenesis is not the sole 

explanation for the differences in clinical presentation, as Paratyphi A does not contain it 

and can still cause typhoid-like illnesses in humans [113]. Furthermore, Typhi has 

approximately 200 pseudogenes compared to Typhimurium [114]. Many of these disrupted 

genes are involved in motility, chemotaxis, T3SS effectors, fimbriae, and adhesins (factors 

crucial for the bacterium’s pathogenicity). Additionally, Typhi also harbors other 

pathogenicity islands, such as SPI-15, SPI-17, and SPI-18, which are absent in 

Typhimurium. On the other hand, Typhi lacks SPI-14, which is specific to Typhimurium 

[107].  

In contrast, NTS serovars, such as Typhimurium, typically trigger a much stronger 

local inflammatory response in the intestines [101]. This inflammation helps the recruitment 

of immune cells like neutrophils to the site of infection, contributing to symptoms like 

diarrhea and abdominal pain. While NTS strains can survive within the SCV, they rely on 

the inflammation in the gut to facilitate their growth by using compounds like nitrate and 

tetrathionate, which are abundant during inflammatory conditions [115]. This preference for 

the inflamed gut contrasts with Typhi, which avoids such localized inflammation and instead 

spreads throughout the body [101]. 

 

 Treatment of salmonellosis, antibiotic resistance and vaccines 
 

The discovery of antibiotics initiated a period of innovation and the implementation 

of drugs in both human and animal health, as well as in agriculture. However, these 

discoveries were quickly overshadowed by the emergence of resistant microbes [116]. 

Infectious pathogens are capable of evolving rapidly, and many have developed resistance 

to currently prescribed antibiotics. When a pathogen becomes resistant, the antibiotic loses 

its effectiveness in combating the infection. As a result, the infected host does not receive 

the help of the treatment to fight the disease. Antibiotic resistance is an old, dynamic and 

growing problem. Some of the factors that contribute to this situation are overpopulation, 
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increased global migration, the growing use of antibiotics in clinics and animal production, 

selection pressure, poor sanitary conditions, the spread of wildlife, and deficiencies in 

wastewater disposal [117]. 

Antibiotic resistance in Salmonella Typhi 

The antibiotic chloramphenicol was introduced for the treatment of enteric fever and 

other bacterial diseases in 1948 (Figure 1.12) [118]. Chloramphenicol-resistant typhoid 

fever was reported two years later but was not common until the early 1970s, when a number 

of chloramphenicol-resistant typhoid outbreaks swept through Central and South America 

and Asia [119], even leading to a widespread epidemic in Mexico in 1972 [120]. This led to 

the replacement of chloramphenicol with a combination of ampicillin and co-trimoxazole 

from that point onward [121]. However, their prescription was also compromised by the 

emergence of multidrug-resistant (MDR) strains globally in the late 1980s (Figures 1.12 

and 1.13). Consequently, due to these complications, the possibility of using first-line 

antibiotics against this bacterium diminished [122]. 

 

Figure 1.12 | History of antibiotic efficacy studies and the emergence of antimicrobial resistance 

in Salmonella Typhi. MDR denotes multidrug-resistant, and TMP-SMX trimethoprim–

sulfamethoxazole. Strains noted to be “nonsusceptible” are intermediately or fully resistant. Taken 

from [123]. 

 

Following the emergence of MDR strains, fluoroquinolones (mainly ciprofloxacin) 

became the primary treatment for enteric fever for two decades. However, ciprofloxacin non-

susceptibility (CipNS), defined by a minimum inhibitory concentration (MIC) ≥0.06 mg/L, 

soon emerged and become widespread, now representing the majority of typhoid cases in 
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South Asia (Figure 1.13) [123,124]. This phenotype is primarily attributable to substitutions 

in the quinolone-resistance-determining region (QRDR) of the gyrA and parC genes or via 

plasmid-mediated quinolone resistance (PMQR) genes (e.g., qnrB, qnrD, qnrS), all of which 

impair fluoroquinolone binding. The addition of further QRDR mutations or the co-

occurrence of PMQR genes in strains already carrying a QRDR mutation can lead to 

clinically significant ciprofloxacin resistance (CipR), generally marked by MIC >1 mg/L 

[124,125]. 

 

Figure 1.13 | Prevalence of key antimicrobial resistance profiles by typhoid-endemic countries 

from 2010 to 2020. The percentage resistance values are shown for each country-drug combination 

and color-coded by categorical ranges to reflect escalating levels of concern for empirical therapy: 

(i) 0%, no resistance detected; (ii) >0% to ≤2%, resistance present but rare; (iii) 2-10%, emerging 

resistance; (iv) 10-50%, resistance is common; (v) >50%, resistance is well established. MDR, 

multidrug resistant; XDR, extensively drug resistant; CipNS, ciprofloxacin non-susceptible; CipR, 

ciprofloxacin resistant; CefR, ceftriaxone resistant; AziR, azithromycin resistant. Text adapted from 

the original legend and figure taken from [124]. 

 

Finally, and up to the present day, both Typhi and Paratyphi are treated with third-

generation cephalosporins (ceftriaxone) or azithromycin [121]. However, strains with 

resistances to these drugs have already emerged (Figures 1.12 and 1.13). In particular, an 
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outbreak in Pakistan in 2016 was caused by an extremely drug-resistant (XDR) Typhi strain 

(Figure 1.12), which subsequently spread through travelers to the United Kingdom (U.K.) 

and to the U.S. in 2018 [123,126]. This strain exhibited resistance to nearly all 

antimicrobials: ampicillin, chloramphenicol, co-trimoxazole, fluoroquinolones 

(ciprofloxacin), and third-generation cephalosporins, leaving azithromycin as one of the few 

remaining oral treatment options (Figure 1.12). Although CipNS is prevalent worldwide, 

strains exhibiting CipR, azithromycin resistance, or XDR remain predominantly confined to 

South Asia (Figure 1.13). 

Therefore, today, as treatment options for enteric fever become increasingly limited, 

the evaluation and monitoring of the re-emergence of strains susceptible to any of these 

agents should be controlled to assess their potential therapeutic applications. 

Antimicrobial resistance in Non-Typhoidal Salmonella 

Most cases of NTS infection are self-limiting and do not require antibiotics for 

resolution. However, when the infection progresses to more severe forms, typically in 

vulnerable population, antibiotic treatment becomes necessary. Historically, antibiotics used 

to treat NTS have included ampicillin, chloramphenicol, and co-trimoxazole. However, 

since the late 1980s, the emergence of antimicrobial resistance has also affected these 

serovars, primarily in sub-Saharan African countries by Typhimurium and Enteritidis [127]. 

Therefore, the distribution of MDR strains poses a major challenge for the treatment and 

management of the disease in Africa, as MDR is also associated with higher mortality rates 

and disease transmission.   

The MDR region is often encoded in Salmonella Genomic Island 1 (SGI1) which is 

integrated into the bacterial chromosome and can be transmitted vertically, remaining stably 

maintained even in the absence of selective pressure [128,129]. SGI1 and its variants have 

been described in a wide range of S. enterica serovars [130,131], and in other bacterial 

species such as in Proteus mirabilis [132], Acinetobacter baumannii [133], and in 

Escherichia coli (E. coli) [134]. In addition, several studies have demonstrated SGI1’s 

capacity to excise, circularize, and transfer horizontally with the assistance of an IncA/C 

conjugative plasmid [135,136]. Therefore, SGI1 is an important vehicle for disseminating 

this resistant phenotype. 

Consequently, alternative drugs such as ciprofloxacin and ceftriaxone have been 

increasingly used. However, these drugs are more expensive and less available in many 
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resource-limited settings across the continent [137], which presents a serious problem, 

especially considering that sub-Saharan Africa accounted for more than 79% of the global 

NTS cases diagnosed in 2017 [138]. 

Vaccines 

Typhoid vaccination is an important component in the prevention and control of 

typhoid fever, and it is recommended for public health programs in both endemic and 

outbreak settings [139]. Vaccines for Typhi have been in use for many years, with two main 

types: the live attenuated Ty21a vaccine and the injectable Vi polysaccharide vaccine. These 

vaccines have successfully reduced the incidence of typhoid fever, but their effectiveness is 

limited by factors such as serotype-specific protection. For example, the Ty21a vaccine 

provides protection primarily against the Typhi serotype, while the Vi polysaccharide 

vaccine is not as effective in young children. 

Recent developments in vaccine research have led to the introduction of new 

candidates, such as the conjugate Vi-TT vaccine [140]. This new vaccine demonstrated 

superior efficacy compared to older vaccines and offers broader protection, including in 

children under two years of age [141]. As a result, the conjugate Vi-TT vaccine is being 

increasingly used in endemic regions, particularly in countries with high rates of typhoid 

transmission and a signifiant disease burden.  

For NTS, no widely approved vaccines are currently available for humans. However, 

as they constitute a critical group of zoonotic pathogens, several vaccines have been 

developed for use in animals such as poultry, swine, and cattle. Vaccination not only 

decreases susceptibility and alleviates the clinical manifestations of salmonellosis but also 

reduces fecal shedding and subsequent environmental contamination [142]. Multiple 

vaccines, including inactivated, live attenuated or live recombinant, have been developed 

over the years [143,144]. Nevertheless, more efforts are still needed to develop more 

effective vaccines against NTS. In recent years, outer membrane vesicles (OMVs) have 

emerged as promising vaccine candidates [145]. Naturally released by Gram-negative 

bacteria, OMVs display multiple bacterial antigens and possess intrinsic properties, such as 

immunogenicity and self-adjuvant activity. These features make them attractive for 

developing vaccines not only for a broad range of pathogenic bacteria but also specifically 

for Salmonella [146,147]. 
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 Salmonella genetics and evolution 
 

Salmonella diverged from E. coli approximately 100 million years ago [148]. Both 

Salmonella and E. coli have circular chromosomes that are generally 4.5-5 Mb in size and 

encode around 4,500 genes. These genomes are highly similar, sharing approximately 70% 

of their genes, with 80% identity at the nucleotide level [149]. The differentiation between 

E. coli and Salmonella can be attributed to a variety of evolutionary, ecological, and genetic 

factors.  

E. coli evolved primarily as a commensal bacterium that thrives in the intestines of 

mammals, including humans. In this role, E. coli has developed a mutually beneficial 

relationship with its host, aiding in digestion, producing vitamins, and outcompeting harmful 

bacteria [150]. This commensal lifestyle does not require the bacterium to be pathogenic 

because its survival is supported by its presence in a stable and nutrient-rich environment 

(the intestines). However, some strains of E. coli, such as E. coli O157:H7, have developed 

pathogenic characteristics [150,151]. 

In contrast, Salmonella evolved with a more aggressive approach to survival. While 

some Salmonella species can exist in the intestines of animals, they also evolved 

mechanisms to invade host cells and cause diseases such as gastroenteritis and systemic 

infections. A significant evolutionary event was the acquisition of the SPIs, which provide 

the genetic tools necessary for its survival and virulence in hosts [152]. For example, SPI1 

is found in both Salmonella bongori and Salmonella enterica, but it is absent in E. coli. This 

suggests that SPI1 was acquired by the common ancestor of all modern Salmonella species 

after their divergence from E. coli. Conversely, SPI2, which is involved in intracellular 

survival and virulence, is present only in S. enterica and not in S. bongori, indicating that it 

was acquired after the two species diverged (Figure 1.14). 
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Figure 1.14 | Model for the evolution of virulence in the genus Salmonella. The three phases in 

which virulence evolved since divergence from the Escherichia coli lineage are depicted. The 

subspecies of Salmonella enterica are designated as I-VI. Salmonella enterica subspecies I is an 

alternative designation for S. enterica subspecies enterica. The phylogenetic tree is not drawn to 

scale. Modified from [153]. 

 

Transmission routes significantly influence Salmonella evolution. Salmonella is 

often transmitted through contaminated food, water, or contact with infected animals 

[13,84]. This mode of transmission may have driven the bacterium to evolve enhanced 

mechanisms for survival outside of the host (e.g., in water or food). In contrast, E. coli 

typically remains within its host and is adapted to a more stable and confined ecological 

niche in the gut [150]. This ecological difference may have contributed to the diverging 

evolutionary paths. 

The genetic diversification within Salmonella is another important aspect and is 

driven by several complementary mechanisms. One contributing factor is the variation in 

antigen biosynthesis genes, which underlies the formation of distinct serovars [86]. On 

average, serovars share approximately 90% of their genes at >98% nucleotide identity [111]. 

Over time, these serovars have diversified further through point mutations, as well as through 

HGT [90,154]. These processes allow genes to be shared between different strains, blurring 

the boundaries defined by antigen synthesis gene variation and leading to further 

diversification of genetic material.  
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Consequently, differences in gene content and allelic variations influence both 

virulence and host range [130], leading to the emergence of highly pathogenic, and, in some 

cases, MDR strains. This continuous genetic evolution poses a significant public health 

challenge, particularly in regions with poor sanitation and limited access to medical care.  

As discussed in the 1.3.1 section, traditional serovar classifications, based primarily 

on surface antigen variation, may therefore conflate genetically unrelated isolates and fail to 

capture natural evolutionary groupings [90]. 

 

 The pangenome of Salmonella  
 

The growing integration of WGS into public health surveillance has created 

unprecedented opportunities to analyze the complete pangenome of Salmonella. As a result, 

the number of Salmonella genomic sequences has been increasing exponentially since 2015 

(Figure 1.15). Most of these genomic sequences have been deposited as short read archives 

[155]. 

 

Figure 1.15 | Exponential growth in bacterial genome sequences in EnteroBase databases. The 

figure illustrates the increasing number of bacterial genome sequences, categorized by species and 

data source (public sequence read archives and user uploads). The ‘other’ sections include the smaller 

databases (Vibrio, Helicobacter, Moraxella and Yersinia). Taken from [155]. 
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Despite this abundance, the global genetic diversity of this genus remains 

underexplored. This is primarily due to two factors. First, sequencing efforts have 

predominantly focused on human infections and domesticated animals. Second, analytical 

methods typically focus on the core genome, using SNPs analysis to build phylogenetic trees, 

while only overlaying elements of the accessory genome already cataloged in databases (e.g., 

plasmid replicons or AMR genes) [156,157]. For instance, in the analysis shown in Figure 

1.16 of Salmonella enterica serovar Reading genomes [156], a phylogenetic tree was 

constructed using core genome SNPs, and known accessory elements were then mapped 

onto the resulting tree. This revealed that strains closely related at the core genome level can 

exhibit substantial differences in accessory gene content. However, a limitation of this 

approach is that it can only detect accessory elements already present in known databases.  

 

Figure 1.16 | SNP-based phylogenetic tree of Salmonella Reading with accessory genome 

features. The figure depicts a SNP-based phylogenetic tree of Salmonella Reading isolates, grouped 
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into distinct clades (Emergent, Contemporary, Historical, and Basal) as indicated by the color-coded 

sidebar. The accessory genome features are displayed as heatmaps to the right of the tree. The green 

heatmap shows the presence of plasmid replicons, while the pink heatmap represents AMR genes 

and point mutations associated with AMR. Each row corresponds to an isolate, and each column 

represents a specific plasmid type or resistance gene/mutation. Taken from [156].  

 

Comparative genomic analyses have repeatedly demonstrated the fundamental role 

of HGT in the diversification of S. enterica. For example, studies of isolates of serovar 

Typhimurium [158] have reported core genome mutation rates ranging from 1.9 × 10⁻⁷ to 

1.49 × 10⁻⁶ substitutions per site per year. Similarly, studies of serovar Typhi [159] have 

reported a mutation rate of 1.42 × 10-7 substitutions per site per year. In contrast, the 

composition of accessory elements vary considerably even within the same clone. Such 

insights highlight the interplay between relatively slow core genome evolution (vertical 

inheritance) and faster-paced changes driven by MGEs (horizontal acquisition). 

 Recognizing the challenges, several pangenomic studies have begun to shed light on 

the structure and variability of the Salmonella genome beyond the core. One of the largest 

such analyses examined 4,893 Salmonella genomes [160], identifying a total pangenome of 

25.3 Mb. A “strict core” of 1.5 Mb was shared by all isolates, while a “conserved core” of 

3.2 Mb was found in at least 96% of them, indicating that a substantial fraction of the 

Salmonella genome is accessory.  In addition, several smaller-scale pangenomic studies have 

provided insights into the accessory genome. For instance, an investigation analyzing the 

pangenome of environmental Salmonella using a limited dataset (25 genomes) demonstrated 

that the accessory genome is highly abundant [161]. Similar studies of serovars Concord 

[162] and Reading [156] have highlighted that differences in accessory genetic elements, 

including plasmid acquisitions conferring AMR, phage-like sequences, virulence factors, 

correlate with the success of emergent subclades. The importance of including accessory 

genetic elements in genomic surveillance frameworks was also exemplified by the 2020 

outbreak of Salmonella enterica serovar Newport linked to red onions [163]. Although 

epidemiological investigations identified two farms as the likely contamination source, 

SNPs analysis of WGS data failed to conclusively link clinical isolates to environmental 

samples from these locations. Instead, analysis of the plasmid content provided evidence to 

connect the clinical isolates to the implicated farms, as the same plasmid was found in some 

clinical and environmental samples.  
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Further reinforcing the importance of the accessory genome, a recent study [164] 

applied machine learning models to evaluate the role of accessory genome variations in 

clustering epidemiologically related Salmonella cases. By analyzing genomes from 24 

outbreaks of food, animal, or environmental origin, their models found that polymorphisms 

and gain/loss events in MGEs were highly informative in defining outbreak clusters, 

particularly when core genome-based methods lacked resolution.  

Among the various MGEs, plasmids and prophages play a pivotal role in shaping 

Salmonella population structure and dynamics. A large-scale study using the MOB-suite 

toolset analyzed 150,767 publicly available Salmonella genomes across 1,204 serovars and 

reconstructed 183,017 plasmids, revealing that 22% of these carried at least one resistance 

gene [32]. The study also found that plasmid carriage varies widely among serotypes, with 

prevalence ranging from 17% to 99% in serotypes with more than 100 isolates and an overall 

average of 65%. Additionally, the mean number of plasmids per isolate varied from 1.0 to 

3.77 (average 1.88) and certain Salmonella serovars appear to be associated with specific 

types of plasmids [165,166].  

Prophages, the integrated forms of bacteriophage genomes within bacterial 

chromosomes, are also significant contributors to the evolution and adaptability of 

Salmonella. Their diversity is driven by both homologous and non-homologous 

recombination events, and they facilitate the transfer and acquisition of adaptive genes. 

Prophages are very frequent in Salmonella [167]. For example, a study of 21 genomes of 

Salmonella [168] estimated that each genome contain in average 5.29 prophages 

representing around 3.52% of the total gene content and nearly 30% of the accessory 

genome. In a more extensive analysis of nearly 300 Salmonella genomes from 254 unique 

serovars [169], prophage regions were found to account for an average of 3.7% of the total 

genomic content (ranging from 0.1% to 8.8%) in each isolate.  

Prophages are well known to encode virulence factors [170], but recent studies 

suggest that prophages also play broader roles in bacterial metabolism, regulation, resistance 

to heavy metals and modifications of cell surface structures [167,169]. Some prophages 

remain dormant and are transmitted vertically during bacterial replication, while others can 

be induced under stress, such as in the animal gut or during DNA damage. Interestingly, 

even defective prophages, which cannot form infectious particles, persist in Salmonella 

genomes, suggesting they may still provide evolutionary or physiological advantages to the 
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host [167]. This suggest a complex interplay between host and prophage which will be better 

understood as more bacterial genomes are sequenced and comprehensively analyzed. 

In parallel with these genomic advances (including pangenome analyses, plasmid 

characterization, and prophage studies), source attribution has emerged as a critical 

application of WGS data for public health [13,171,172]. The combination of high-resolution 

WGS and detailed metadata has revolutionized Salmonella epidemiology by enabling 

precise identification of outbreak clusters and transmission pathways. However, source 

attribution remains challenging, particularly in cases involving complex transmission routes 

or limited metadata availability. Efforts to overcome these challenges are increasingly 

leveraging computational approaches such as machine learning that integrate 

phylogeographical signals and genomic features to improve the accuracy of contamination 

source predictions.  

Several studies have explored novel genomic-based source attribution models for 

Salmonella. Zhang et al. [173] employed a random forest classifier, identifying 50 key 

genetic features, primarily accessory genes, sufficient for distinguishing livestock sources in 

Typhimurium strains. This highlights the role of the accessory genome in driving niche-

specific adaptations. Another recent approach [174] leveraged accessory genome data in a 

multinomial logistic regression classifier, demonstrating its potential to accurately predict 

sources of bacterial contamination. As WGS and subtyping methods continue to advance, 

source attribution models are becoming increasingly precise, ultimately contributing to 

improved public health interventions. 

Overall, Salmonella’s evolutionary diversification and niche adaptation are 

profoundly shaped by the accessory genome, which is highly variable [175]. While inclusion 

of accessory content is often thought to confound genomic epidemiological analyses 

[13,176], the accessory genome is not randomly structured, nor is it under neutral selection 

[36,175,177,178]. In fact, accessory genome have offered deeper epidemiological resolution 

for foodborne pathogen investigations [13,163,179,180]. However, the value of accessory 

genome data for differentiating related strains and pinpointing sources likely depends on the 

unique ecology of each Salmonella serovar and should be assessed within the context of 

serovar-specific population analyses. Such high-resolution analyses are particularly 

important for clonal Salmonella lineages that exhibit limited genomic variability or that are 

linked to multiple sources and transmission pathways. Moving forward, systematically 
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incorporating accessory genetic material into genomic surveillance frameworks holds 

considerable promise for deepening our understanding of Salmonella evolution, 

epidemiology, and control. This comprehensive perspective will be central to addressing the 

questions and objectives posed in this thesis. 
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This thesis presents a comprehensive pangenome-wide analysis of two Salmonella 

enterica serovars (Typhi and Hadar) using a Jaccard Index-based approach. It researches 

how vertical (core genome) and horizontal (accessory genome) processes shape population 

structure and drive short-term changes. The Results section is structured into two chapters, 

each focusing on either Typhi or Hadar and addressing distinct research questions relevant 

to their specific epidemiological and evolutionary challenges. 

1. Evaluate a Jaccard Index-based strategy to capture both core and accessory 

genome variations. 

2. Pangenome characterization: Characterize the genetic diversity within the largest 

U.S. datasets of Typhi and Hadar to date, and compare these findings with datasets 

from other geographic regions. 

3. Accessory genome dynamics: Demonstrate how the success or short-term shifts of 

pathogen populations can be largely attributed to changes in the accessory genome. 

4. Refinement of bacterial stratification: Refine bacterial stratification through 

pangenome analysis and evaluate how incorporating both known and uncharacterized 

MGEs enhances the resolution for distinguishing closely related strains. 

5. Epidemiological insights: Identify key epidemiological patterns and evolutionary 

dynamics that may be overlooked by core genome methods alone. 

6. Public health applications: Illustrate how pangenomic approaches can inform 

outbreak detection, source attribution, and targeted public health responses, 

highlighting the benefits of real-time surveillance that integrates accessory genome 

data.
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 Data collection 
 

Salmonellosis is a nationally notifiable disease in the U.S., and isolates obtained from 

patients are routinely submitted to public health laboratories (PHLs) as part of the national 

enteric disease surveillance network, PulseNet USA, coordinated by the Centers for Disease 

Control and Prevention (CDC) [181]. Since 2019, PHLs have performed WGS on all 

Salmonella isolates they receive and upload sequence data to a centralized national database 

for genetic analysis, including computed serotyping [181,182], and to the National Center 

for Biotechnology Information (NCBI) under the BioProject PRJNA230403. Additionally, 

public health departments routinely collect demographic information for all laboratory-

confirmed cases of salmonellosis. For cases included in multistate outbreak investigations, 

public health officials conduct additional patient interviews, whenever possible, with 

supplementary standardized questionnaires to obtain further details about foods eaten and 

animal contact before illness onset [183]. Approximately 5% of isolates detected by PHL 

also fall within the CDC arm of the National Antimicrobial Resistance Monitoring System 

(NARMS), a structured collection of enteric isolates from all 50 U.S. states used to monitor 

temporal trends in AMR (https://www.cdc.gov/narms/index.html). CDC NARMS has been 

routinely generating WGS data for this smaller subset of Salmonella isolates since 2016. 

All datasets from the U.S. used in this study were collected by our project 

collaborators, Kaitlin Tagg and Hattie Webb (CDC NARMS, U.S.). The collected datasets 

encompass Typhi and Hadar genomes and the following sections detail the data sources for 

each pathogen. 

 

 Salmonella enterica serovar Typhi 
 

An overview of all Salmonella Typhi genomes analyzed in this study is provided in 

Table 3.1, summarizing the data sources and the number of genomes included. The 

subsections (3.1.1.1 and 3.1.1.3) describe each dataset in more detail. 
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3.1.1.1 CDC and PulseNet dataset 
 

Since 2016, NARMS and PulseNet USA have routinely performed WGS on Typhi 

isolates [182]⁠. CDC’s National Typhoid and Paratyphoid Fever Surveillance system collects 

metadata on all Typhi cases reported to PHL, including history of international travel in the 

30 days before illness onset (https://www.cdc.gov/typhoid-fever/surveillance.html). 

A total of 2,272 Typhi isolates were collected from January 1st, 2008, through 

September 30th, 2021 (Table S1). The dataset is divided as follows: 

• 2008-2015 (prior to routine WGS): All Typhi isolates in the PulseNet national 

database with WGS data available were included (n=68).  

• 2016–2018: All Typhi isolates sent to NARMS for WGS were included (n=1,343), 

representing U.S. Typhi cases reported to CDC for these years.  

• 2019-2021: Due to logistics and delays in shipping for NARMS surveillance isolates, 

this period is represented by Typhi isolates in PulseNet with WGS data available 

(n=861), with expected underreporting due to Coronavirus disease 2019 (COVID-

19) pandemic-related factors.  
 

3.1.1.2 Sequencing methods 
 

All genomes were sequenced using WGS through NARMS and PulseNet, followed 

standard operating procedures for the Illumina Miseq platform 

(https://www.aphl.org/programs/global_health/Documents/PNL38_WGS%20on%20MiSe

q%20SOP_v4.pdf ). Reads with a base call quality score ≥28 and coverage ≥40 x were 

assembled using shovill v.1.0.9 (https://github.com/tseemann/shovill), and contigs with 

coverage below 10% average genome coverage were excluded from the final assemblies. 
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During this study, long-read sequencing was required to confirm specific genomic 

features identified in short-read sequencing data. Consequently, long-read sequencing 

followed by hybrid assembly was performed by NARMS for selected isolates: 

PNUSAS224101, PNUSAS195139, and PNUSAS198714. The first two isolates were 

selected to confirm the absence of Salmonella Genomic Island 11 (SGI11) and the disruption 

of the yidA gene, while the third was chosen to detect the integration of blaCTX-M-15 in SG11⁠. 

Corresponding Illumina short reads were generated from the same DNA extraction; libraries 

were prepared using the Illumina DNA Flex preparation kit following the PulseNet protocol 

(https://www.aphl.org/programs/global_health/Documents/PNL35%20Illumina%20DNA

%20Prep%20SOP_v5.pdf ) and sequenced on the Illumina MiSeq platform as described 

above. Hybrid assemblies were uploaded to the NCBI. 

 

3.1.1.3  Additional genomes 
 

3.1.1.3.1 RefSeq200 genomes 

One-hundred twenty Typhi genomes from NCBI RefSeq200 database (accessed on 

May 14th, 2020) were included in the analysis as reference genomes. These genomes were 

collected between 1916 and 2019 (Table S1). 

3.1.1.3.2 Indian subcontinent genomes 

A dataset comprising all Typhi genomes isolated in the Indian subcontinent available 

in Pathogenwatch (n=1,606, accessed on March 22nd, 2021) was generated for comparative 

analysis against the U.S. dataset. Specifically, this dataset included genomes linked to 

Bangladesh (n=637), India (n=487), Nepal (n=318), Pakistan (n=158), and Sri Lanka (n=3), 

or a combination of these countries (n=3) (Table S2). 

3.1.1.3.3 Globally representative genomes 

A collection of 1,804 globally representative Typhi genomes, used to develop the 

GenoTyphi typing scheme [184] ⁠ (Table S3), was included for comparative analysis against 

the U.S. dataset. These genomes are available at Pathogenwatch 

(https://pathogen.watch/genomes/all?collection=nti046ubbs7t-wong-et-al-

2015&genusId=590).  

3.1.1.3.4 Murray collection genomes 

Thirty-eight Typhi genomes from the Murray collection [185] were included to 

compare contemporary genomes with those isolated in the pre-antibiotic era. These genomes 
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are ⁠ available at the European Nucleotide Archive at 

(https://www.ebi.ac.uk/ena/browser/view/PRJEB3255) (Table S4). 

 

 Salmonella enterica serovar Hadar 
 

A total of 3,384 U.S. Hadar genomes were included in this analysis (Table S5), 

collected between 1990 and 2023 (August 30th), from U.S. surveillance systems and ad hoc 

sampling. Hadar genomes from ill humans with exposure information available were 

categorized as follows:  

• Backyard poultry contact: when contact occurred within seven days of illness onset. 

Contact is defined as direct interaction with chickens, ducks, turkeys, geese, guinea 

fowl, or quail; direct exposure to the environment where backyard poultry live and 

roam; consumption of eggs or meat obtained from backyard poultry; or living with a 

household member who directly interacted with backyard poultry [186]. 

• Turkey consumption: when ground turkey was consumed within seven days before 

illness onset. 

• Unknown: when exposure information was unavailable, or when neither backyard 

poultry contact nor turkey consumption was reported.  

Genomes from non-human sources were categorized according to the commodity 

from which they were sampled, for example, “commercial poultry” or “swine”. The category 

“Other” was used for samples from unknown food, animal, or environmental sources. 

An overview of all the Hadar genomes analyzed in this study is provided in Table 

3.2, summarizing the data sources and the number of genomes included. The subsections 

(3.1.2.1, 3.1.2.2 and, 3.1.2.4) describe each dataset in more detail.  
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3.1.2.1 United States surveillance systems 
 

3.1.2.1.1 CDC NAMRS and PulseNet  

WGS data for 2,494 Hadar isolates collected through the CDC NARMS from patients 

between January 1st
, 2016, and August 30th, 2023, were included in this analysis (Table S5). 

For years prior to routine WGS (2005–2015), all Hadar isolates in PulseNet USA’s national 

database with WGS data available were included (n=55); these represent isolates that were 

sequenced for various special interest projects. 

3.1.2.1.2 FDA NARMS retail meats 

The U.S. Food and Drug Administration (FDA) arm of NARMS routinely collects 

WGS data on Salmonella isolated from retail meats (chicken, ground turkey, ground beef, 

pork) purchased from U.S. grocery stores (https://www.fda.gov/animal-veterinary/national-

antimicrobial-resistance-monitoring-system/about-narms). This data, along with source 

information, is uploaded to the NCBI under the BioProject PRJNA292661. As of August 

30th, 2023, an NCBI Pathogen Detection query identified 300 Hadar genomes (Table S5). 

3.1.2.1.3 USDA-FSIS 

The U.S. Department of Agriculture’s Food Safety and Inspection Service (USDA-

FSIS) routinely collects WGS data on Salmonella isolated from regulated food and animal 

products within U.S. food processing facilities (https://www.fsis.usda.gov/science-

data/sampling-program/sampling-results-fsis-regulated-products). Sequencing data and 
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source information are uploaded under NCBI BioProject PRJNA242847. On August 30th 

2023, NCBI Pathogen Detection query identified 367 Hadar genomes (Table S5). 

3.1.2.1.4 USDA-FSIS NARMS 

Additionally, the USDA-FSIS arm of NARMS routinely collects WGS data from 

Salmonella isolated from the intestinal content of food animals at slaughter 

(https://www.fsis.usda.gov/science-data/national-antimicrobial-resistance-monitoring-

system-narms). These data are uploaded under NCBI BioProject PRJNA292666. The above 

NCBI Pathogen Detection query (August 30th, 2023) identified 102 Hadar genomes (Table 

S5). 

3.1.2.2 Ad hoc sampling systems 
 

To expand source type representation along the farm-to-fork continuum, Hadar 

genomes isolated from North America were included from ad hoc sampling systems. The 

FDA’s Office of Regulatory Affairs (ORA), Center for Food Safety and Applied Nutrition 

(CFSAN), and Center for Veterinary Medicine (CVM) perform ad hoc WGS on human food 

and animal food (including imported) product sampling and upload sequencing data to the 

GenomeTrakr project at NCBI (BioProject PRJNA186035). Twenty genomes (Table S5) 

collected between 2003 and 2022 were selected and included in this analysis. An additional 

nine isolates representing all sequenced Hadar collected from sick animals as part of FDA-

CVM’s Veterinary Laboratory Investigation and Response Network (Vet-LIRN) AMR 

monitoring program were also included. 

USDA’s Animal and Plant Health Inspection Service (APHIS) provides ongoing 

animal disease surveillance and animal disease diagnostic services through the National 

Veterinary Services Laboratories (NVSL; https://www.aphis.usda.gov/labs/about-nvsl) and 

the National Animal Health Laboratory Network (NAHLN; 

https://www.aphis.usda.gov/labs/nahln). Thirty-two Hadar genomes (Table S5) collected 

from chickens or turkeys from 2018 until 2023 as part of on farm monitoring or for 

diagnostic purposes were included in this analysis. Three Hadar genomes previously 

sequenced and published by USDA’s Agricultural Research Service (ARS) [187], and two 

Hadar genomes collected from wild ducks by the National Wildlife Health Center were also 

included (Table S5). Additional Hadar genomes were available on NCBI, but source 



Chapter 3: Materials and Methods 

55 
 

information availability (through NCBI or personal communication) was a requirement for 

inclusion in this analysis. 

3.1.2.3 Sequencing methods 
 

All genomes were sequenced using WGS, performed through NARMS and PulseNet, 

as indicated in section 3.1.1.2. 

During this study, long-read sequencing was necessary to obtain reference genomes 

from each Jaccard Index group (JI-group) (see 3.3 section). Long-read sequencing was 

requested in this study to be performed by NARMS on 53 selected isolates from each JI-

group, chosen strategically to maximize connectivity to other internal nodes and to best 

achieve JI-group representation [188]. Thirty-six Hadar isolates from people or food 

products were sequenced on the Oxford Nanopore GridION sequencing platform; reads were 

assembled using a pipeline previously described [188,189]. Seventeen isolates collected 

from food or animal samples were sequenced on PacBio Sequel (Pacific BioSciences, CA), 

using the 10-kb SMRTLink template preparation protocol, as previously described [190]. 

Long-read data were uploaded under BioSample numbers listed in Table S6. 

 

3.1.2.4 Additional genomes 
 

A dataset of global non-U.S. Hadar genomes was obtained from EnteroBase [45] for 

comparative analysis against the pangenome of the U.S. collection. All genomes with 

predicted serotype “Hadar” (EnteroBase employs SISTR1 [191] and SeqSero2 [192]) 

isolated in any country other than the U.S. were downloaded (n=1,145) (accessed on 

December 21st, 2023) (Table S7). 

Antother dataset of 259 PTU-I1 plasmids from RefSeq200 was used to compare with 

the PTU-I1 plasmids identified in the Hadar genomes of this study (Table S8). 
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 Genomic characterization  

 Salmonella serotyping 
 

The serotype of Salmonella isolates was determinad in silico using SeqSero 2.0 

v1.2.1 [192]. This tool employs a database containing the rfb cluster genes involved in the 

synthesis of O antigens, as well as the fliC and fliB genes, which encode the first- and second-

phase flagelar antigens. 

 Allele-based typing 
 

Allele-based typing involves clustering isolates by identifying the different alleles 

present in a population for a given set of genes. ST were assigned using classical MLST 

(https://github.com/tseemann/mlst), which analyzes seven conserved housekeeping genes 

[90]. 

For higher resolution analysis, cgMLST [39,43] comprising 3,002 loci was employed 

to generate phylogenetic relationships and allele codes. The cgMLST allele codes were 

collapsed to the third digit (e.g., allele codes SALM1.0-6771.1.1.30.1.21 and SALM1.0-

6771.1.1.30.1.44 would be collapsed into SALM1.0–6771.1.1), to simplify representation of 

allele codes. Genomes of the same condensed allele code are expected to differ by less than 

~15 allele loci. 

For Salmonella Typhi, typing was performed using the updated GenoTyphi scheme 

v1.9.1 [193] (https://github.com/katholt/genotyphi), which provides a phylogenetically 

informative nomenclature specific for lineages of Salmonella Typhi. 

 Characterization of known accessory genomic elements 
 

Known accessory genome elements were characterized using a combination of 

bioinformatics tools. PlasmidFinder [30]⁠ was used to identify plasmid replicons with 

databases downloaded on July 31st, 2019 for Typhi analysis and on May 27th, 2023 for Hadar. 

This analysis was conducted using thresholds of 90% identity and 60% gene coverage. 

MOBscan [28] identified conjugative relaxases using as thresholds a HMM coverage >60%, 

and e-value < 0.01, while CONJScan [194] ⁠was employed to detect complete conjugative 

systems with databases downloaded on May 30th, 2019 for Typhi analysis and on February 

24th, 2023 for Hadar. Bakta v1.9.1 [195] was used for gene annotation. Phage-related 
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elements were detected and annotated using PhageScope [196] or PHASTEST [197]. 

Easyfig [198] was used to perform linear comparisons between prophage sequences, further 

supporting the analysis of genomic organization and sequence similarities. 

 Antimicrobial resistance (AMR) determinants 
 

AMR determinants, including acquired genes and chromosomal mutations, were 

detected using staramr, v.0.4.0 [199] ⁠, which employs the ResFinder database (updated on 

30th July, 2020; 90% identity, 50% gene coverage) and the Salmonella spp. PointFinder 

scheme  (https://github.com/phac-nml/staramr). Predicted AMR was determined by staramr 

according to ResFinder and PointFinder results.  

Typhi genomes were defined as MDR if they contain genes conferring resistance to 

ampicillin, chloramphenicol and co-trimoxazole. These resistance genes are typically 

acquired within an IS1-mediated composite transposon encoded in SGI11 [122,200] ⁠. XDR 

Typhi was defined as MDR with the addition of a ciprofloxacin resistance mechanism 

(quinolone resistance determining region [QRDR] mutation and/or plasmid-mediated 

quinolone resistance [PMQR] gene), and a ceftriaxone resistance gene (typically blaCTX-M-

15) [126,201]. 

Chromosomal integration events of AMR-containing regions were detected using the 

typing mode of ISMapper v.2.0.2 [202] ⁠ to identify acquisition of an IS relative to a reference 

chromosome. To detect the integration sites of blaCTX-M-15, its mobilizer, ISEcp1, was used 

as a bait against a reference chromosome (Typhi 311189_291186, NZ_CP029894.1). 

Integration of SGI11 was detected using IS1 as a bait element, and Typhi CT18 

(NC_003198) as the reference chromosome. 

 

 Detection of plasmid-associated contigs in short read sequencing 

data 
 

Draft Illumina contigs were assigned to plasmids or chromosomes using either 

MOB-suite v3.1.9 [32] or PLACNETw [203]. PLACNETw integrates assembly and 

plasmid-specific analysis. The tool performs BLAST searches to identify proteins within 

each contig and generates scaffold graphs. Based on the results and user expertise, contigs 
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are manually pruned to distinguish plasmids from chromosomes according to their protein-

content. 

MOB-suite is a toolkit that includes MOB-recon, a tool designated to assign Illumina 

contigs to plasmids or chromosomes [32]. Specifically, MOB-recon identifies plasmid 

contigs by searching for known plasmid replicons and relaxases using BLAST, detecting 

circularity, and comparing contigs to a curated database of complete plasmids. Contigs 

meeting any of these criteria are classified as plasmid-related, while the remaining contigs 

are assigned to the chromosome. 

 

 Plasmid analysis and classification 
 

Plasmids were classified into PTUs [25] using COPLA [204]. This classification 

facilitates the categorization of plasmids based on their genetic content. 

AcCNET [205] was used to build the plasmid ORFeome network. Homologous 

protein clusters (HPCs) were generated using kClust [206] ⁠, with thresholds of >=80% 

protein identity, >=80% alignment coverage and clustering e-value < 1E-14. All edges were 

assigned equal weights. The network layout was visualized in Gephi v10 [207] using the 

force-directed continuous algorithm ForceAtlas2 [208]. The network consists of two types 

of nodes: HPCs and their corresponding plasmids. Edges connect both types whenever a 

plasmid contains a member in a given protein cluster (Figure 3.1). 
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Figure 3.1 | Graphical representation of AcCNET. The protein set of all plasmids to be compared 

is clustered based on sequence similarity. The HPCs and their corresponding plasmids are the two 

kinds of nodes represented in the network and edges connect both types whenever a plasmid contains 

a member in a given protein cluster. Figure modified from [209]. 

 

The comparative sequence analysis of the different plasmids was carried out with 

BRIG [210] using default parameters. BRIG visualizes sequence similarity between each 

query with the chosen reference. Nucleotide identity ≥50% is indicated by color-coded 

bands, with the darker shading corresponding to higher sequence similarity. Blank regions 

indicate <50% nucleotide identity. Predicted coding sequences (CDS) of the reference 

genome are displayed in the outermost black ring.  

 

 Jaccard Index Network Analysis  
 

Jaccard Index Network Analysis (JINA) was developed to explore genomic 

relationships through an integrated network-based approach. This workflow combines 

existing tools, including JI [62], Gephi v10 [207], BLAST v2.6 [211], and PanGraph v0.7.3 

[77], alongside the newly introduced Genome Length Distance (GLD) metric. By integrating 

these methodologies into a unified framework, JINA enables efficient visualization and 

stratification of genomic data, facilitating the identification of meaningful patterns, groups, 

and associations within bacterial populations. The use of JI ensures precision in capturing 

genomic variation including SNPs, insertions and deletions. While JINA does not implement 

Gephi, Blast, and PanGraph directly in a single software, it guides their coordinated use to 

analyze and interpret genomic data effectively. 

The JINA workflow proceeds through the following steps, which are detailed in 

subsequent sections. The process begins with the collection of genomes, followed by the 

calculation of the JI (and GLD if needed) and the construction of an adjacency matrix to 

represent pairwise genome similarities. The next step involves visualizing the adjacency 

matrix as an undirected network. To identify groups of genomes with high sequence 

similarity, an optimized JI threshold is applied to filter the network. A clustering algorithm 

is then used to detect these groups, referred to as “JI-groups”. The final threshold-filtered 

network can then be mapped with relevant metadata. Lastly, the differences between JI-

groups are further examined to detect indels (Figure 3.2).  
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Figure 3.2 | Overview of the Jaccard Index Network Analysis workflow. This schematic 

summarizes the key steps of the workflow, from genome collection and pairwise similarity 

computation to network visualization, threshold filtering, clustering, metadata mapping, and 

subsequent analysis of genomic differences.  

 

 Jaccard Index calculation 
 

I would like to acknowledge Santiago Redondo-Salvo for his work in developing the 

equivalences of the Jaccard Index (JI) in terms of SNPs, indels, and replacements described 

in this section. It is included in this thesis to facilitate the reader’s understanding of the JI. 

The exact JI was used as a measure of similarity between all genome pairs. First, the 

complete assembly of each genome was converted into a set of k-mers. JI was calculated as 

the ratio of shared k-mers over the total number of different k-mers between the two sets 

(including shared k-mers, SNP k-mers differing by a single base pair, and indel k-mers 

differing between the datasets and excluding duplicated k-mers). JI considers only once those 

identical k-mer between both sets disregarding genome differences due to sequence 

repetitions. The JI value ranges from 0 to 1, where 1 indicates 100% k-mer similarity and 0 

indicates no k-mers shared. The formula to calculate JI between genomes A and B is shown 

in Equation 1. 

����,�� = |
 ∩ �|
|
 ∪ �| = |
 ∩ �|

|
| � |�| � |
 ∩ �| 

Eq. 1 
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 BinDash v1 [62] was employed to calculate JI, using parameters minhashtype=-1, 

ensuring exact JI computation by considering the complete set of k-mers instead of an 

estimated JI based on a k-mer subset. The k-mer length (k=21) was selected as previously 

determined to be optimal in [53] ⁠.  

JI is a symmetrical measure, that is, JI(A,B) = JI(B,A). A closely related notion, the 

Jaccard Distance, measures the dissimilarity of two datasets, as defined by Equation 2: 

�����,�� = 1 � ����,�� = |
 ∪ �| � |
 ∩ �|
|
 ∪ �| = |
 ∆ �|

|
 ∪ �| 

Eq. 2 

At first glance, applying JI to compare genomic sequences may seem like a 

straightforward exercise of counting shared k-mers between sequences. However, two key 

characteristics of DNA can influence JI estimation. First, the molecular topology of DNA 

sequences, whether linear or circular, affects k-mer computation at contig edges (as shown 

in Equation 3): 

# of � mers = � �,  ! " #"$%&# "'() * '! + ,- �
   � � � � 1,  ! % (-&# "'() * '! + ,- � 

Eq. 3 

Second, the double-stranded nature of DNA complicates JI estimation, as it is 

impossible to determine the strand orientation in a draft genome. To overcome this, k-mers 

must be extracted from both the original contig sequence and its reverse complement. An 

alternative approach is to use canonical k-mers, which are defined as the lexicographically 

smaller sequence between a k-mer and its reverse complement. By using canonical k-mers, 

the strand direction of the assembled contigs can simply be ignored, ensuring the validity of 

Eq. 3. However, a drawback of this method is that it effectively halves the k-mer space and, 

thus doubling the probability of random k-mer duplication for a given k value. To mitigate 

this issue, an adequately large k value must be chosen. 

 JI captures both SNPs and gene content differences that arise as the result of gain 

and loss of genetic material (indels) (Figure 3.3). When two genomes differ by L nucleotides 

(e.g., SNPs), the number of different k-mers will be approximately Lk, assuming SNPs are 

infrequent enough that their co-occurrence within the same k-mer is negligible. The insertion 

of a DNA sequence in one genome contributes L + k – 1 new k-mers, while a deletion results 
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in k – 1 new k-mers in the deleted genome and L + k – 1 in the non-deleted genome. 

Additionally, the acquisition of a plasmid of size L introduces L new k-mers.  

 

3.3.1.1 Influence of SNPs in the Jaccard Index 
 

Let A and B be two genomes of equal size N. If a mutation is introduced in a position 

of sequence B, the number of different canonical k-mers between the two sequences will be 

k. Therefore, the JI between both sequences is obtained from Equation 4: 

����,�� = |
 ∩ �|
|
 ∪ �| = � � �

� � � 

Eq. 4 

In the case of multiple SNPs, if the number of SNPs (L) is very small relative to the 

genome size (N), and assuming that SNPs follow a Poisson distribution [53], the probability 

of two SNPs occurring within the same k-mer (i.e. closer than k base pairs) can be 

disregarded. Under these conditions, JI can be calculated using the formula: 

����,�� = |
 ∩ �|
|
 ∪ �| = � � .�

� � .� 

Eq. 5 

Equation 5 can be illustrated with a simple example: genomes A and B are identical 

circular sequences of length N=22 (where length is defined as the total number of k-mers 

and k=5). Three SNPs (L=3) were introduced in the sequence of genome B (Figure 3.3a).  

The number of different k-mers between the two sequences will be Lk. Therefore, the JI 

between both sequences is: 

����,�� = � � .�
� � .� = 0.19 

In the case of SNP hotspots, each SNP influences fewer than k k-mers. Figure 3.3b 

illustrates this scenario.  

As the number of SNPs gets larger the probability of two SNPs occurring in the same 

k-mer cannot be dismissed, thus Eq. 5 is not a good JI estimator. In general, with the sole 

assumption of a Poisson distribution of SNPs, equation 4 from the MASH paper [53] can be 

applied to estimate JI as a function of the sequence dissimilarity (D = L / N): 

����,�� = 1 �2-34 � 1�⁄ = 1 62-37 8⁄ � 19⁄  

Eq. 6 
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3.3.1.2 Influence of Indels in the Jaccard Index 
 

The acquisition of a plasmid of size L by a genome A of size N is simply a particular 

case of sequence insertion not affected by the k-mer length, and its contribution to the JI is 

defined in Equation 7: 

����,�� = |
 ∩ �|
|
 ∪ �| = �

� � . = 1 � .
� � . 

Eq. 7 

Sequence insertion in a genome is slightly more complex. Let A be a genome with a 

sequence of length N, and B a genome identical to A, except for an inserted sequence of 

length L (making the total size of genome B = N + L). Assuming no duplicated k-mers due 

to random repetitions or duplication events, genome B will contain all k-mers shared with A 

plus L + k – 1 new k-mers (see Figure 3.3c). Meanwhile, in genome A, k – 1 k-mers 

surrounding the insertion site will be unique to this genome. Therefore, JI between sequences 

A and B can be calculated as follows: 

����,�� = |
 ∩ �|
|
 ∪ �| = � � �� � 1�

� � . � � � 1 = 1 � . � 2� � 2
� � . � � � 1 » 1 � .

� � . 

Eq. 8 

When k << L k-mer size effect on Equation 8 can be neglected, simplifying it into 

Eq. 7. This can be illustrated with a simple example: let genome A be a circular genome of 

length N=22, and B a genome identical to A, except for a 7 bp insertion (L=7). JI between 

sequences A and B, using k-mers of length k=5, is calculated as follows: 

����,�� = � � � � 1
� � . � � � 1 = 0.55 

For the case of plasmid loss, the formula (Equation 9) is slightly different from the 

plasmid gain scenario described in Equation 7: 

����,�� = |
 ∩ �|
|
 ∪ �| = � � .

� = 1 � .
� 

Eq. 9 

Equation 10 allows JI calculation when a sequence is deleted in one of the genomes 

(Figure 3.3d). When k << L, the result of Eq. 10 converges with that of Eq. 9. 
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����,�� = |
 ∩ �|
|
 ∪ �| = � � �. � � � 1�

� � � � 1 = 1 � . � 2� � 2
� � � � 1 » 1 � .

� 

Eq. 10 

Equation 9 can be illustrated with the following example: let genome A be a circular 

sequence of length N=22 and genome B be identical to A except for a 7 bp deletion (L=7). 

The JI, using k-mers of length k=5, between both sequences can be estimated as follows: 

����,�� = � � . � � � 1
� � � � 1 = 0.42 

 

Table 3.3 shows the impact of increasing SNP counts on the JI, using typical values 

observed in real cases of bacterial genome comparisons and it also presents the equivalent 

insertion lengths (in bp) corresponding to these JI values. 

 

Table 3.3: Discrimination of SNPs by using the Jaccard Index with k=21 and k=31 and 

equivalent insertion lengths (bp) in a sequence of length N=5x106.  
 

SNPS SNPS/MB INSERTION A %ID = 1 - D B JI21 C JI31 D 

50 10 2060 0.99999 0.99958 0.99938 

100 20 4161 0.99998 0.99916 0.99876 

500 100 20982 0.9999 0.99581 0.99383 

1000 200 42048 0.9998 0.99165 0.98771 

1440 288 60623 0.99971 0.98801 0.98238 

2050 410 86431 0.99959 0.98300 0.97506 

5000 1000 212180 0.999 0.95928 0.94076 

5880 1176 250000 0.99882 0.95237 0.93088 

10000 2000 428903 0.998 0.92099 0.88658 
A | Estimated length (bp) of an insertion computed with JI using k = 21. Data obtained with 

Equation 8.  
B | Percentage of sequence identity.  
C | JI computed with k = 21.  
D | JI computed with k = 31. 

In orange, the row corresponding to JI=0.988, the threshold used to sparsify the Hadar 

network. In green, the row corresponding to JI=0.983, the threshold used to sparsify the 

Typhi network. In blue, the row corresponding to 5,880 SNPs, which results in the same JI 

as a 250 kb insertion in a 5 Mb genome (see Figure 3.3f)  
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3.3.1.3 Influence of sequence replacement in JI 
 

A special case arises when a DNA stretch of length L bp is substituted (Figure 3.3e). 

This scenario includes clusters of closely located SNPs, where the distance between each 

successive pair is less than k nucleotides. The formula to calculate JI in this case is given by: 

����,�� = |
 ∩ �|
|
 ∪ �| = � � 6. � �� � 1�9

� � �. � � � 1� � �. � � � 1� � �. � � � 1� = � � . � � � 1
� � . � � � 1 ≈ � � .

� � . 

Eq. 11 

Equation 11 can be illustrated with the following example: let A and B be circular 

genomes of length N=22 that differ in a sequence stretch of 7 bp (L=7). JI between sequences 

A and B is calculated as follows: 

����,�� = � � . � � � 1
� � . � � � 1 = 0.58 

 

3.3.1.4 JI vs sequence identity 
 

A graphical representation of the influence of a variety of genome differences in the 

JI is shown in Figure 3.3f. 
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Figure 3.3 | Influence of SNPs and indels in JI. (a) Influence of SNPs between two sequences. 

Each genome sequence is split into k-mers of length k=5. Genomes A and B differ in L=3 SNPs 

(colored in red in genome B). These SNPs alter the k-mers in which they appear, leading to 

differences in shared k-mers between the two genomes. k-mers not shared between both genomes 

(Lk for each genome) are shaded in gray. (b) Influence of neighboring SNPs. The sequence of each 

genome is split into k-mers of length k=5. Both genomes differ in two SNPs (colored in red in genome 

B) located within k base pairs. p means the distance between SNPs, and it is calculated as the 

difference between the nucleotide position of each SNP (in this case, p=3). Because of their 

proximity, these SNPs affect fewer unique k-mers than if they were spread further apart. k-mers not 

shared between both genomes are shaded and they correspond to 2k-p-1 k-mers for each genome. (c) 
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Influence of sequence insertion. The sequence of each genome is split into k-mers of length k=5. 

Genome B is equal to genome A, except for an L=7 bp insertion (highlighted in red). k-mers that are 

not shared by both genomes are shaded in gray, and they correspond to k-1 unique k-mers in genome 

A and L+k-1 new k-mers in genome B. (d) Influence of sequence deletion. The sequence of each 

genome is split into k-mers of length k=5. Genome B is identical to genome A, except for a L=7 bp 

deletion. The k-mers that spanned across the deleted region are lost in genome B. k-mers that are not 

shared between both genomes are shaded in gray, and they correspond to L+k-1 unique k-mers in 

genome A and k-1 unique k-mers in genome B. (e) Influence of sequence replacement. Each genome 

sequenceis split into k-mers of length k=5. Genome B differs from genome A by a substitution of 

L=7 bp, which is indicated in red letters. k-mers that are not shared between both genomes are shaded 

in gray, and they correspond to L+k-1 k-mers for each genome. Since the entire replaced sequence 

introduces new k-mers without preserving any from the original, the same number of k-mers is unique 

to each genome. (f) Relationship between JI and % id. Each curve represents the comparison of a 

5Mb reference genome with a second genome. x-axis represents both the percent identity (%id) 

between the genomes and the corresponding number of different base pairs between them. y-axis 

represents JI, calculated using k-mers of 21 bp. The cases analyzed were the following: 1. Randomly 

distributed SNPs: The second genome differs from the reference only by SNPs allocated using a 

Poisson model, according to Eq. 6 (JI=0.21208 for id=0.95%). SNPs scattered throughout the 

genome significantly impact JI; 2. SNPs with a Minimum Distance of k Base Pairs: The second 

genome differs only by SNPs. When SNPs are spaced exactly k base pairs apart, no k-mers are shared 

(Eq. 5 results in JI=0 for id=0.95%). A discontinuous vertical orange line indicates the % id threshold 

beyond which SNPs no longer satisfy the spacing condition (id=0.95238%=1-(1/k)); 3. The second 

genome contains insertions, Eq. 8 (JI=0.95237 for id=0.95%). Since the inserted sequence adds new 

k-mers but does not remove any, the JI remains relatively high. A discontinuous horizontal magenta 

line indicates the JI value for which 5,880 random SNPs (id=0.99882%, case 1) are equivalent to a 

250 kb sequence insertion (id=0.95%); 4. The second genome differs by sequence deletions, Eq. 10 

(JI=0.94999 for id=0.95%). The effect is similar to insertions since most of the original k-mers are 

retained; and 5. The second genome differs by sequence substitutions, and this replacement produces 

entirely new k-mers, Eq. 11 (JI=0.90475 for id=0.95%). This has a greater impact on JI compared to 

insertions or deletions because the original k-mers are lost. 

 

 Genome length distance calculation 
 

Genome length was estimated based on the number of unique k-mers in a genome 

(S). The upper k-mer length limit in Jellyfish v.2.2.6 62⁠ (k=27) [212] was used to generate 

k-mers from each genome sequence, as a greater k-mer length reduces the probability of 
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random k-mer repetition and improves the accuracy of genome length estimation. S was 

computed by counting the occurrences of identical k-mers only once, that is, unique k-mers. 

To obtain a relative measure of genome size, the unique k-mer count is divided by one 

million base pairs (S /1000000). For each genome pair (A and B), the difference between 

their unique k-mer counts is recorded as the GLD value (Equation 12). 

?.@��,�� = |A
 � A�|
1000000  

Eq. 12 

Taking into account that contig ends affect k-mer count, a correction described by 

Equation 13 was applied in draft genomes, considering S, k, and the number of contigs of 

the assembly (C). 

?.@��,�� = |A
 � �� � 1�B
 � �A� � �� � 1�B�|
1000000  

Eq. 13 

The difference between the unique k-mer counts of two given genomes is used as a 

proxy for genome size variation. The lowest GLD value is 0, meaning the genomes 

compared do not differ in size. The theoretical upper limit to GLD depends on the size 

difference between the smallest and largest genomes analyzed. For example, two genomes 

with GLD=0.05 would differ in 50 kb (0.05 x 1,000,000 bp), whereas GLD=2.0 would 

correspond to a difference of at least 2 Mb between them (excluding sequence duplications). 

Thus, the GLD value is not determined by the absolute genome sizes but rather by the 

difference in size between them. 

Pairwise GLD values can be used on top of a given JI threshold to emphasize 

differences in genome size as a proxy for indels. Without the GLD filter, the difference in 

genome size is not considered for clustering, which is equivalent to setting the GLD 

threshold at its upper limit. On the other extreme, when GLD=0, only genomes fulfilling the 

JI threshold and having equal size will be linked. As SNPs do not alter the total genome 

length, whereas indels change genome size, the GLD filter ensures that any pair of genomes 

exceeding a given threshold of indel-derived size difference is also separated, even if they 

meet the JI requirement. For instance, applying only a JI threshold of ≥0.983 could explain 

between-group differences as either 86 kb (from indels), 2,050 SNPs, or a combination of 

both. However, by applying both the JI ≥0.983 threshold and the GLD filter (GLD ≤0.05), 

any pair of genomes differing by more than 50 kb of indels will also be separated, regardless 
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of whether it fulfills the JI threshold. This approach enhances genome separation based on 

size variations while minimizing the influence of SNPs. 

 

  Network visualization  
 

This step involves visualizing genomic relationships as an undirected network, which 

is constructed using the adjacency matrix. Gephi v10 [207] was employed for network 

visualization, applying the ForceAtlas2 algorithm for layout. 

This network visualization enables the exploration of clusters and relationships based 

on genetic similarities and genome size differences. Pairwise genome similarities can be 

represented in an undirected network, where nodes (genomes) are connected if the pairwise 

JI equals or exceeds the specified JI threshold (and GLD threshold, if applied). At the initial 

network stage, genomes sharing any JI value greater than 0 will be linked by an edge, 

resulting in most genomes forming a single connected component. By increasing the 

stringency of the JI threshold, separate connected components emerge (Figure 3.4). 

 

Figure 3.4 | Example of a network representation based on pairwise genome similarities. Nodes 

represent genomes, and edges are drawn when the pairwise JI value meets or exceeds the defined 

threshold. The initial network includes all genomes connected by any JI value above 0, forming a 

single component, while increasing the JI threshold (0.7, 0.8 and 0.96) results in the emergence of 

separate connected components. 
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 Analysis of network parameters 
 

To define the final components to study, referred to as JI-groups, a range of JI 

thresholds must be assessed for a given application. In the studied datasets, no distinct valley 

was observed in the distribution of JI values. We thus evaluated multiple statistical measures 

to optimize the network sparsification. Specifically, we considered transitivity, which 

indicates groups of nodes with strong internal connections, quantifying how likely it is that 

two neighbors of a node are also neighbors of each other. We also evaluated the number of 

communities (with sizes either smaller or larger than five members), and the proportion of 

genomes within these two types of communities. 

The optimal threshold depends on the specific study population and research 

objectives. To reduce complexity in this study, we recommend setting a threshold that results 

in a manageable number of JI-groups. Ideally, the number of clusters should not exceed the 

natural logarithm of the total genomes, ensuring the largest possible grouping while 

maintaining high transitivity and alignment with relevant genetic determinants, if available. 

The different network properties (transitivity, number of communities and proportion of 

clustered genomes) were calculated using the igraph v2.0.1 package in R 

(https://r.igraph.org/articles/igraph.html). 

 

 Clustering algorithm for detecting JI-groups 
 

The Louvain method was used to define JI-groups. This algorithm optimizes 

modularity to detect communities with dense internal connections while minimizing links 

between groups. The resolution parameter is key to controlling the granularity of the clusters. 

The Louvain method implemented in Gephi, was used with a resolution of 1.5. A similar 

implementation of this method is available in the igraph package in R 

(https://r.igraph.org/articles/igraph.html); however, due to the inverse relationship of the 

resolution parameter in igraph, a resolution of 0.55 was used to obtain the same grouping 

results. Once the main JI-groups are defined (each containing at least five genomes), they 

can be further subdivided into several subgroups within the network using a more stringent 

JI and the same community detection algorithm. The resulting JI-groups were named 

alphabetically. For JI-subgroups, the parent group's letter is followed by a number, with the 

largest subgroup labeled as JI-A1. 
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 Mapping metadata into the network 
 

The network nodes, representing genomes, can be colored based on metadata and 

genetic determinants of interest. This mapping allows for the visual evaluation of 

associations between the identified groups and various epidemiological data, genetic factors, 

or other relevant variables. By integrating these layers of information, the network 

visualization can reveal potential correlations and patterns, highlighting relationships that 

may guide further analyses. Moreover, metadata can assist in selecting the optimal JI 

threshold. 

 

  Detection of insertions and deletions between JI-groups 
 

The identification of indels, including MGEs and other accessory genome regions, 

between JI-groups was carried out using two distinct approaches. The first approach, applied 

to Typhi, was initially employed due to unavailability of the second method at the time of 

analysis. The second approach, introduced later, was specifically designed for pangenome 

analysis. 

 

3.3.7.1 BLASTn-based indel detection 
 

The first approach involves BLAST v. 2.6 [211] to compare reference genomes from 

each JI-group. Reference genomes refer to complete genomes retrieved from a public 

databases or genomes sequenced using long reads. For those JI-groups without an available 

reference genome, a representative genome was reconstructed using PLACNETw [203] or 

MOB-suite [32]. The BLASTn searches using a cutoff e-value of 10-5 were conducted 

between all possible reference pairs from different JI-groups to detect regions present in one 

genome but absent in the other. Following this step, the identified regions were mapped 

against all genomes using another round of BLASTn searches using a cutoff e-value of 10-

5. This step ensures that the detected regions were present in >=90% of the genomes within 

the specific JI-group from which they originated (Figure 3.5). 
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Figure 3.5 | Detection of JI-group specific indels using BLASTn. (A) BLASTn was performed 

between the reference genomes of each JI-group. (B) BLASTn searches between all possible 

reference genome pairs enabled the identification of regions present in one genome but absent in the 

other. (C) The identified regions were further validated through a second round of BLASTn searches, 

where they were confirmed to be present in at least 90% of the genomes within the corresponding 

JI-group. 

 

3.3.7.2 PanGraph-based indel detection 
 

PanGraph v0.7.3 [77] identifies blocks of homologous sequence and was used to 

detect indels specific to each JI-group. PanGraph was run on all genomes using parameters 

`α=20` and `β=20`. The α parameter controls the cost of splitting a block into smaller units, 

with a value of 20 chosen to minimize excessive fragmentation of the graph. The β 

parameter, which regulates the diversity cost, was set to 20, allowing a sequence diversity 

threshold of 20%. Only homologous sequences (pancontigs), larger than 250 bp, present in 

≥85% of the members of a given JI-group but absent from all JI-groups, were retained as 

“core” pancontigs. Core pancontigs of each JI-group were then mapped with BLASTn 

against a reference genome (preferably sequenced with long-read technology) from their 

respective JI-group. This step ensured proper ordering of the pancontigs and the 

identification of the regions they form. This is particularly important because accessory 

genome elements often consist of multiple consecutive pancontigs. The continuity provided 

by long-read sequencing ensures accurate reconstruction and ordering of these regions 

(Figure 3.6). 
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Figure 3.6 | Detection of JI-group specific indels using PanGraph. (A) Run PanGraph. (B) 

Presence/Absence matrix: A matrix is generated to display the presence (green cells) or absence (gray 

cells) of pancontigs across all genomes. (C) Classification into JI-groups: Genomes are classified by 

the JI-groups they belong to. Pancontigs that meet the threshold for defining “core” pancontigs in 

each JI-group are retained for further analysis. This process generates a matrix, where the core 

pancontigs of each JI-group are indicated (green cells). (D) Mapping core pancontigs to a reference 

genome: The core pancontigs are mapped with BLASTn against a reference genome to determine 

their order and identify the regions they form. For example, pancontig_2 and pancontig_6 are found 

to be consecutive, so they are considered to form an accessory element, in this case, prophage 1. 
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3.3.7.3 Classification of the detected regions 
 

The indels detected when analyzing the differences between the JI-groups were 

classified as follows. Chromosomally-integrated region containing at least five phage-

related genes according to PhageScope [196] or PHASTEST [197] were classified as a 

prophage. Regions of unknown function (also dentoted as “Region” or “RUF” for simplicity) 

were designated for sequences with no clearly defined function; however, if they contained 

a MPF system, this was noted in the name. Regions with multiple genes associated with 

specific traits were labeled accordingly, such as AMR-encoding transposons. Integrative and 

Mobilizable Elements (IME) were identified when they contained relaxase genes (MOB 

genes), while ICEs were classified when they carried both MPF system genes and MOB 

genes. Regions classified as plasmids were assigned to the corresponding PTU when 

available, or labeled "NA" (not assigned) if the PTU could not be determined. 

 

 Complementary genomic similarity metrics 

 FastANI 
 

FastANI v1.34 [213] uses alignment-free approximate sequence mapping to 

calculate Average Nucleotide Identity (ANI) between pairs of genomes, providing a rapid 

and accurate estimation of genetic relatedness. For this study, pairwise ANI values were 

computed for all genome pairs within each JI-group to estimate and compare the results 

obtained from the JI analysis, using default parameters. 

 

 PopPUNK 
 

PopPUNK v2.7 [66] was employed to generate a k-mer sketch database of the 

analyzed genomes (poppunk --create-db), with a sketch size of 100,000 to improve the 

accuracy of JI calculations. This approach enabled an independent assessment of core and 

accessory genome variation, offering a comprehensive overview of genomic diversity in 

both compartments. 
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 Pangenome comparison and gene prediction 
 

For pangenome comparison between U.S. and non-U.S. Hadar genomes, gene 

prediction of the assembled genomes was performed with Prokka v1.14.5 [214]. Annotated 

assemblies in GFF3 format were used as input for pangenome calculation using Roary v3.13 

[67], with 80% minimum percent identity and coverage. Pangenome gene categories were 

defined as: core genes (shared by 80–100% of the genomes); shell genes (15–79%); and 

cloud genes (0–14%). Heaps’ law was used to evaluate pangenome openness and closeness, 

using the script available at https://github.com/SethCommichaux/Heap_Law_for_Roary. 

 

 Phylogenetic analysis 
 

The methods used for phylogenetic reconstruction were guided by the type of genetic 

data and the specific objectives of each analysis. WGS and plasmid sequences require 

different approaches due to differences in genome structure and variation patterns. The 

strategies employed focused either on SNPs derived from the core genome or leveraged 

existing phylogenetic frameworks such as cgMLST. All the phylogenetic trees generated in 

this study were visualized with iTol v5-6 [215,216]. 

 

 SNP-based phylogenetic analysis 
 

The detection of SNPs is essential for reconstructing accurate phylogenies. These 

SNPs can be identified in different regions of the genome, but for the purpose of this analysis, 

we focused on SNPs from the core genome. Two approaches were used for SNP detection: 

3.6.1.1  K-mer-based method 
 

SNPs were identified by analyzing the k-mer patterns from the WGS using kSNP 3.0 

[217]. The optimal k-mer size was determined using the Kchooser tool implemented within 

kSNP3. The resulting phylogenetic trees were generated using the maximum parsimony 

method, which is the default tree type in kSNP3. For this analysis, we specifically used the 

“-core” option to extract SNPs from the core genome. 
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3.6.1.2  Core genome alignment-based methods 
 

This approach focuses on generating core genome alignments and extracting the 

SNPs for phylogenetic reconstruction. Two strategies were employed to obtain these 

alignments.  

(1) Reference-based mapping and variant calling: assemblies were mapped to a 

reference genome, and SNPs were identified using the variant-calling tool Snippy v4.6 

(https://github.com/tseemann/snippy). When SNPs were called for multiple isolates against 

the same reference genome, a “core SNP” alignment was generated. This alignment 

represents genome positions (core sites) present across samples, which may either be 

identical in all samples (monomorphic) or show variation across samples (polymorphic or 

variant). By focusing on polymorphic core sites and excluding complex variations like 

insertions and deletions, a core SNP genome alignment was produced.  

(2) Multi-sequence alignment and SNP-sites: core genome alignments were 

generated using PanACoTA v1.3.1 [68]. In this study, the pangenome and corepers modules 

were used to identify and align the core genes. Genes were considered as core if present in 

at least 80% of the genomes. Briefly, the process began by constructing the pangenome 

through clustering all protein sequences using MMseqs2 [75], applying a protein identity 

threshold of  >80%. From the resulting pangenome, the core genome was subsequently 

retrieved. Multiple sequence alignments of the core genes families were performed using the 

align module, which uses MAFFT v7.467 [218]. These amino acid alignments were then 

back-translated to nucleotide alignments. Finally, the nucleotide alignments were 

concatenated to create a unified core genome alignment.  

In both cases, the alignments were used to reconstruct Maximum Likelihood (ML) 

phylogenies using IQ-TREE2 v2.2.2.1 and v2.2.2.3 [219] with the ultra-fast bootstrap option 

(-bb 1000 bootstraps) [220]. The best fitting model estimated using ModelFinder Plus (-

MFP) [221] and selected based on the Bayesian Information Criterion (BIC). All these 

phylogenetic trees were midpoint-rooted. 
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 Multi-locus sequence typing scheme 
 

cgMLST of Salmonella is a well-established framework that analyzes 3,002 loci 

within the core genome [39]. The cgMLST-based phylogenetic tree was generously 

generated by our collaborator, Kaitlin Tagg, using BioNumerics v7.6.3 [222]. 

 

 MGE removal to assess the contribution of MGEs in the JI-

groups 
 

To explore the contribution of MGEs to JI-group clustering, MGE (plasmids and/or 

SGI11) sequences were manually removed from the nucleotide fasta files of selected 

genomes. The resulting “cured” sequences were then used to compute JI and generate 

networks, following the methodology explained in the 3.3 section. 

 

 Statistical analysis 
 

I acknowledge Kaitlin Tagg for computing all statistical analysis detailed in this 

section. Each dataset required a different approach based on its specific aims, and the details 

of these analyses are described in the following subsections.  

 

 Statistical analysis of the Salmonella Typhi dataset 
 

The varpart function implemented in the vegan Community Ecology R package 

(https://search.r-project.org/CRAN/refmans/vegan/html/varpart.html) was used to partition 

the variance in JI-groups with respect to GenoTyphi lineages and MOB relaxase genes using 

an adjusted R2 value. Chi-squared tests of independence were performed to examine 

geographic signals associated with JI-groups.  

 

 Statistical analysis of the Salmonella Hadar dataset 
 

Statistical analyses were performed using genomes collected through NARMS 

(CDC, FDA, FSIS), PulseNet (CDC), and FSIS U.S. surveillance systems from years 2016 

through 2023, aligning with the introduction of routine sequencing for NARMS, PulseNet, 

and FSIS surveillance isolates. Corrected Cramer’s V was used to measure the strength of 
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associations between all categorical variables [223]; chi-squared tests of independence were 

used to test associations between specific epidemiological and genomic variables 

(Bonferroni adjusted significance value: p < 0.005). Odds ratios (OR) (95% confidence 

intervals (CI)) were used to quantify the strength and direction of significant associations. 

For statistical tests involving a specific JI-group, the comparison group was always “all other 

JI-groups”. All tests were conducted using the stats subpackage of SciPy v1.14.1 

implemented in Python v3.11.7 (https://docs.scipy.org/doc/scipy/reference/stats.html). JI-

groups with less than 20 genomes were not analyzed for statistical associations. Only 

NARMS surveillance data collected by CDC, FDA, and FSIS (cecal sampling) were used to 

assess shifts in pangenome group abundance over time. The NARMS dataset was 

systematically collected and more resistant to large outbreaks and regulatory testing changes 

than the PulseNet and FSIS product sampling datasets. 

 

 Data availability 
 

All supplementary tables (Table S1 to Table S8) are available at the following 

Google Drive link:  

https://drive.google.com/drive/folders/1zgdx6FQfu2mLsS1J0n9DZ5BcDt8XsB5x?usp=sh

aring. These tables contain all genomes, accession numbers, and associated metadata for the 

genomes analyzed in this thesis. 

Script for the Jaccard Index calculation using BinDash are available in the public 

repository: https://github.com/PenilCelis/Salmonella_Typhi_JINA 

The scripts used to generate most of the figures, created using R or Python, are 

available at the following Google Drive link:  

https://drive.google.com/drive/folders/1qvA52_AzAo3lkGPTrQldlHcLBbJK02P0?usp=sh

aring. Each file corresponds to a script used to generate a figure, and the filename matches 

the figure number as referenced in this thesis. Whenever possible, the scripts include data 

loading, analysis, and plotting in a self-contained manner. Additional information or data 

sources (if applicable) are described in comments within each script. 
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SALMONELLA ENTERICA SEROVAR TYPHI 
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Graphical abstract 

 

Salmonella enterica serovar Typhi (Typhi) is a human-restricted pathogen and the causative agent 

of typhoid fever, a major global public health concern. Antimicrobial treatment is essential for 

disease management, but the rise of antimicrobial resistance in Typhi threatens effective control 

efforts. This study integrates two complementary genomic frameworks, GenoTyphi and Jaccard 

Index Network Analysis (JINA) to resolve population structure and uncover hidden diversity among 

Typhi isolates from the United States (U.S.). GenoTyphi defines the phylogenetic lineage structure 

based on core genome SNPs, while JINA provides additional resolution by distinguishing strains 

based on mobile genetic elements (MGEs). Notably, strains within the same GenoTyphi type may 

belong to different JINA groups if they carry distinct MGEs. All MDR and XDR strains fall within 

GenoTyphi clade 4, yet JINA uncovers finer substructure based on mobile elements. These two 

complementary perspectives reveal distinct layers of genomic diversity. The U.S. Typhi isolates 

reflect broad global diversity, with most JINA groups overlapping between local and international 

datasets, reinforcing the global relevance of these findings. 
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 Background and specific objectives 
 

Salmonella enterica subsp. enterica serovar Typhi (Typhi) is a human-restricted 

bacterial pathogen that causes typhoid fever, a serious systemic illness associated with high 

morbidity and mortality [108]. In 2017 [106], approximately 14 million cases of enteric fever 

were reported globally, resulting in an estimated 135,000 deaths. It is transmitted primarily 

through the fecal-oral route, typically through ingestion of contaminated food or water. 

Typhi is prevalent in regions with poor sanitation and hygiene, including urban slums in 

South Asia and sub-Saharan Africa. 

Antimicrobials are essential for the effective treatment of typhoid fever. However, the 

emergence and spread of AMR in Typhi pose a significant threat to disease control 

[122,200]. As noted in the Introduction chapter, the widespread emergence of MDR strains 

rendered first-line antibiotics ineffective. Subsequently, fluoroquinolones (particularly 

ciprofloxacin) became the primary oral treatment for typhoid fever. However, their use led 

to the emergence and dissemination of fluoroquinolone-resistant strains. More recently, 

XDR Typhi (defined by resistance to fluoroquinolones, third-generation cephalosporins, and 

MDR phenotypes) has emerged, leaving azithromycin as one of the few remaining oral 

treatment options (Figure 4.1) [123,126].  

 

Figure 4.1 | Trends in antimicrobial resistance among Salmonella Typhi isolates, 1983–2020. 

Percentage of Typhi isolates resistant to selected antibiotics over time, based on data from 

TyphiNET, which included 11,836 genomes at the time the figure was generated. Resistance is 
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shown for ceftriaxone (purple), ciprofloxacin non-susceptible (NS, yellow), ciprofloxacin-resistant 

(R, blue), multidrug-resistant (MDR, red), extensively drug-resistant (XDR, black), and 

pansusceptible (gray) strains. Figure taken from https://www.typhi.net/. 

 

Moreover, azithromycin-resistant Typhi has been documented in Bangladesh [224], 

Pakistan [225], Nepal [226], India [227], and the U.S. [189]. A recent report described a 

clinical case in Pakistan involving XDR Typhi resistant to both carbapenems and 

azithromycin [225], highlighting the potential emergence and expansion of untreatable 

typhoid with current oral antimicrobials. Such a scenario would impose significant costs on 

healthcare systems and exacerbate challenges in resource-limited settings. 

Typhi is a pathogen with low genetic variability, a slow mutation rate, and infrequent 

recombination events [159,228]. Despite its limited genetic diversity, Typhi is 

phylogenetically informative for tracking antimicrobial resistance and understanding 

transmission dynamics [124,229–231]. An early SNP-based genotyping scheme (based on a 

limited number of genes) [228] identified 85 haplotypes, providing a foundational 

framework for epidemiological studies. Notably, this study was the first to report the 

expansion of the highly clonal MDR haplotype H58. With the advent of WGS, a more 

comprehensive genotyping approach, the GenoTyphi scheme [184,193], was developed in 

2016. Derived from an analysis of nearly 2,000 Typhi genomes spanning more than 60 

countries, this scheme employed 68 marker SNPs to classify Typhi into 4 primary clades, 

16 clades, and 49 subclades. Primary clade 1 is subdivided into clades 1.1 and 1.2; clade 1.1 

is further subdivided into subclades 1.1.1, 1.1.2, 1.1.3, and so on. The median divergence 

between genomes decreases from primary clades to subclades: 243 SNPs for genomes 

contained in the same primary clade, 109 within the clades, and 25 within the subclades. 

This framework has played a crucial role in identifying key epidemiological trends, 

including the global dissemination of the MDR-associated H58 clade, designated as 

genotype subclade 4.3.1 [159,232].  

GenoTyphi was expanded in 2021 [193] to include new genotypes that address regional 

diversity and emerging AMR. For instance, subclade 4.3.1 was divided into three lineages 

(4.3.1.1, 4.3.1.2, and 4.3.1.3), with additional designations for epidemiologically significant 

populations, such as 4.3.1.1.P1 (the XDR Typhi strain from Pakistan) and 4.3.1.3.Bdq (a 

fluoroquinolone-resistant lineage from Bangladesh) sublineages (Figure 4.2). Notably, 

these new sublineages (4.3.1.1.P1, 4.3.1.3.Bdq) were defined based on specific AMR 
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profiles or geographic distribution rather than differences in the core genome. By refining 

genotype definitions and increasing resolution, GenoTyphi has improved the discrimination 

of lineages, thereby enabling precise tracking of regional and global transmission patterns. 

 

Figure 4.2 | GenoTyphi scheme. Phylogenetic tree showing the relationships among 16 clades and 

63 subclades, lineages, and sublineages. Tree tips represent unique genotypes as labeled, and 

background shading highlights clades (labeled in larger font). An asterisk (*) indicates genotypes 

added to the scheme after its initial publication, and brackets indicate undifferentiated clades and 

primary clades. Modified from [193]. 

 

Nevertheless, a purely core-genome or SNP-based perspective may overlook the short-

term evolutionary changes driven by the acquisition, loss, or rearrangement of MGEs in the 

accessory genome. These MGEs often carry AMR and virulence genes, rapidly altering the 

pathogen’s resistance and virulence profiles. Understanding the accessory genome’s 

contribution to Typhi evolution is particularly relevant given the rise of resistant phenotypes 

that are frequently associated with plasmid-borne resistance determinants. For example, 

MDR Typhi strains initially acquired resistance determinants via plasmids [200], which 

subsequently integrated into the chromosome [233]. This pattern was also observed in XDR 

Typhi, where an MDR strain further acquired resistance to fluoroquinolones and third-

generation cephalosporins through plasmid-borne genes [126]. Over time, these resistance 
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genes have become chromosomally stabilized [234], reducing fitness costs linked to plasmid 

carriage and increasing the likelihood that resistance will persist. 

The emergence of azithromycin resistance in Typhi further underscores the importance 

of monitoring these MGEs. For instance, in the azithromycin-resistant Typhi strain isolated 

in the U.S. [189], the resistance-conferring gene was encoded in a plasmid. Additionally, the 

emergence of azithromycin-resistant XDR Typhi in Pakistan is hypothesized to result from 

an HGT event, in which an azithromycin-resistance plasmid entered an existing XDR 

background. Such events highlight the dynamic nature of the accessory genome and the 

necessity of pangenomic approaches to monitor the spread of highly resistant strains.  

Therefore, this chapter aims to evaluate the benefits of extending beyond core genome 

typing, where Typhi is already well-characterized, by incorporating accessory genome 

analysis to highlight how MGEs drive resistance and genomic diversity, particularly in the 

U.S. context. To address this, we propose the following specific objectives:  

1. Assess the value of the Jaccard Index in capturing both core and accessory genome 

relationships, and integrate the Genome Length Distance metric to emphasize the 

impact of insertions and deletions.  

2. Conduct a comprehensive pangenome analysis of the largest U.S. Typhi dataset to 

date. 

3. Compare U.S. Typhi isolates with a global reference dataset to examine the genomic 

diversity and regional variations. 

4. Investigate the specific role of MGEs in driving rapid genomic shifts, such as the 

emergence of novel lineages and resistance phenotypes that are not captured by core 

genome analyses alone. 

5. Demonstrate how integrating pangenome data with GenoTyphi enhances resolution 

for lineage tracing, outbreak detection, and epidemiological surveillance, particularly 

in the context of emerging resistance elements.   

 

 Pangenome analysis of U.S. Typhi population 
 

JI was used as a similarity measure between all genome pairs and was calculated 

with BinDash [62]. Specifically, exact JI values were obtained from pairwise comparisons 

within a 2,392 Typhi genome dataset, comprising 2,272 genomes isolated in the U.S. (2008-
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2021) and 120 RefSeq reference genomes (Table S1). Their JI value distribution showed 

that most comparisons (99.84%) yielded JI values above 0.90 (Figure 4.3). 

 

Figure 4.3 | JI distribution obtained from the pairwise comparison of Typhi genomes. (A) 

Histogram displaying the distribution of JI values ranging from 0 to 1. (B) Zoom in on JI values 

between 0.9 and 1.  

 

These pairwise JI comparisons were visualized as a network, where each node 

corresponds to a genome and edges represent similarity based on the JI values. To identify 

clusters of highly similar genomes, the network was filtered by applying a threshold, 

removing connections between genomes that did not meet the similarity requirement (as 

explained in the Materials and Methods chapter). 

For robust cluster definition, networks should exhibit a community structure 

characterized by subgraphs with highly interconnected members and sparser connections 

between subgraphs. Furthermore, to provide meaningful insights, most genomes should 

belong to non-singleton communities (Figure 4.4). The threshold used for this analysis was 

determined through a detailed assessment of various network metrics across different cutoff 

values (Figure 4.4). For JI values above 0.97, transitivity (an indicator of the likelihood that 

two neighbors of a node are also connected) increased, reflecting tightly knit subgroups of 

nodes within the network. The number of small communities increased exponentially for 

JI>=0.975. Within the JI range between 0.979 and 0.983, transitivity remained relatively 

stable. Beyond 0.983, transitivity changed significantly, indicating a notable shift in the 

network´s structure. However, at JI=0.983 and 0.984 the number of communities remained 

largely unchanged, but the percentage of clustered genomes slightly decreased at JI=0.984.  
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Given this, the optimal threshold for analyzing Typhi genomes was set at JI=0.983, 

as higher values caused excessive fragmentation, while lower values resulted in fewer but 

larger genome clusters due to excessive merging. This empirically derived threshold 

provides a foundation for downstream comparative genomic analyses. 

 

Figure 4.4 | Analysis of different networks parameters in the Typhi dataset. A range of JI 

thresholds was applied to the original network and several criteria were explored. (A) Transitivity 

for JI values in the range from 0.9 to 1. (B) Transitivity for JI values between 0.97 and 0.99. (C) 
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Number of communities containing at least five members. (D) Number of communities containing 

fewer than five members. (E) Percentage of genomes contained in communities with at least five 

members. (F) Percentage of genomes contained in communities with fewer than five members. 

 

While JI captures both core and accessory genome variation, it does not distinguish 

their individual contributions. To better understand how Typhi genomes differ in these two 

genomic compartments, PopPUNK [65] was used (Figure 4.5). This tool calculates core and 

accessory Jaccard distances independently, where Jaccard distance is defined as 1-JI. In this 

dataset, core distances were low, consistent with the narrow genetic diversity reported for 

this serovar [184]. However, accessory distances exhibited a significant broader range, 

suggesting that gains and losses of genomic regions account for a significant portion of the 

observed diversity. A small subset of genomes displayed elevated core and accessory 

distances, indicating more divergent lineages. Although the majority of Typhi isolates shared 

a very tight core-genome distance, some variation remained, underscoring the importance of 

phylogenetic analyses in tracking evolutionary changes [184]. 

 

Figure 4.5 | PopPUNK analysis of Typhi isolates showing core versus accessory genome 

distances. Each dot represents a pairwise comparison between two genomes, with the x-axis 

indicating the core distance (primarily driven by SNP differences) and the y-axis indicating the 

accessory distance (reflecting variation in gene content). Contour lines highlight density regions, 

illustrating that most isolates cluster at very low core distances while displaying a broader range of 

accessory distances.  
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Therefore, in Typhi, both core and accessory genomes contribute to overall diversity, 

but their relative contributions differ significantly. To better capture indels differences 

beyond what the JI measures, an additional metric was introduced: GLD. This new metric 

serves a proxy for genome size variation, calculated by the difference in unique k-mer counts 

between two genomes. 

On top of a given JI threshold, pairwise GLD values can be used as a proxy of indels, 

as SNPs do not alter genome length. This allows for emphasizing and further exploring 

differences in genome size. At threshold JI=0.983, between-group differences can be 

explained by insertions larger than 86 kb in size, or by >=2,050 SNPs across the entire 

genome, or a mix of both (see Materials and Methods chapter). By applying a conservative 

GLD filter of 0.05, any pair of genomes differing by more than 50 kb is separated, even if 

they meet the JI requirement. The chosen threshold (0.05) was further supported by the 

plasmid size distribution in our dataset, as the majority of plasmids found in Typhi exceed 

50 kb. In our dataset, the maximum GLD value was 0.845, meaning that the largest size 

difference between two Typhi genomes was 845 kb. GLD thus provides an extra layer that 

can be conditionally applied, depending on the dataset and user requirements.  

One might consider raising the JI threshold to 0.991 to approximate a 50 kb 

difference between groups; this threshold corresponds to around 41 kb in indels or roughly 

1,000 SNPs. However, using such a high JI cutoff alone would excessively fragment the 

network, since any pair of genomes differing by about 41 kb or 1,000 SNPs or a combination 

of both would also be separated. Therefore, using a lower JI threshold combined with a GLD 

filter reduces the influence of SNPs. This approach achieves the same minimum 50 kb 

difference while emphasizing indel-driven differences over SNP-based differences. 

At JI=0.983 and GLD=0.05, the 2,392 Typhi genomes self-organized into 17 distinct 

clusters according to the Louvain method, named JI-groups A-Q, with only 38/2,392 (1.6%) 

nodes not assigned (singletons or JI-clusters with less than 5 members) (Figure 4.6).  
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Figure 4.6 | Distribution of Typhi genomes by JI. The network contains 2,392 nodes, connected 

when JI>=0.983 and GLD<=0.05. Seventeen clusters (named JI-A to JI-Q) are indicated by circles. 

Nodes depicted in red represent RefSeq200 genomes (references) and those in grey represent 

NARMS and PN (PulseNet) genomes.  

 

The relatedness of genomes within each group was > 0.988 JI and > 99.95% ANI, 

reflecting high genomic similarity within each group (Figure 4.7). However, while most 

groups displayed interquartile ranges (IQRs) entirely above 0.985 JI, groups A, B, C, N, and 

P were exceptions, with the lower edge of their boxplots (first quartile) extending below this 

threshold. This reveals that a significant fraction of genomes (approximately 25%) within 

these 5 groups have genomic relatedness values below 0.985, potentially indicating distinct 

genetic subgroups or less closely related genomes within these otherwise cohesive clusters. 

Additionally, the presence of whiskers and outliers across several groups further highlights 

individual genomes with lower relatedness values, reflecting isolated genomic diversity or 

genetic variants distinct from the main cluster of genomes in each group (Figure 4.7). 
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Figure 4.7 | Relatedness of Typhi genomes within each JI-group. Boxplot illustrating the distribution of (A) 

Jaccard Index and (B) FastANI values across different JI-groups. The boxplot displays the IQR of JI or ANI 

values within each JI-group, with the lower and upper edges of the box indicating the first quartile and third 

quartile, respectively. Within each boxplot, horizontal lines represent the median (black) and the average (red) 

values. The 'whiskers' of the boxplot extend to the most extreme values within 1.5 times the IQR from the 

edges of the box, while outliers are depicted as individual points beyond the whiskers.  

 

JI-group A was the largest (n=1,320/2,392), with all other JI-groups represented by 

at least five genomes (Table 4.1).  
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Table 4.1: Summary of Typhi JI-group information for 2,272 U.S. CDC and 120 RefSeq200 

genomes. 

 
 

a | Number of genomes present in each JI group. 
b | Percentage of genomes from the total data set that belong to each JI group. 

 

Three of the largest JI-groups (A, B, and C) were further divided into JI-subgroups 

using an increased JI threshold. Subgroups were identified using the Louvain method, with 

different minimum size criteria based on the overall structure of each JI-group network. JI-

A subgroups A1 to A17 were defined at JI=0.995 and included only those with more than 

five members; JI-B subgroups B1 to B3 at JI=0.986 with a minimum of two members per 

subgroup; and JI-C subgroups C1 to C6 at JI=0.997, including only those with more than 

three members (Figure 4.8). This higher resolution was implemented to capture genetic 

variations and structural patterns that were not apparent at the broader JI threshold, thus, 

enabling a more detailed exploration of the genomic relationships within these major groups. 

The chosen thresholds were determined through visual inspection of the network, balancing 

the number of groups and the transitivity of the network.  

 

JI group Counta %b GenoTyphi primary cluster
A 1320 55.1 0, 1, 2, 3, 4
B 114 4.8 4
C 265 11.1 2, 3, 4
D 26 1.1 3, 4
E 5 0.2 4
F 39 1.6 0
G 6 0.3 2
H 225 9.4 2
I 17 0.7 2, 3, 4
J 11 0.5 3
K 8 0.3 4
L 11 0.5 2
M 133 5.6 3
N 90 3.8 2, 4
O 11 0.5 3
P 58 2.4 2
Q 15 0.6 2

Singletons 38 1.6 0, 2, 3, 4
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Figure 4.8 | Subclustering analysis of Typhi JI-groups A, B, and C. Each panel contains two 

networks, both filtered at GLD ≤ 0.05, but at different JI thresholds. In the left network, a lower JI 

threshold displays the entire group. In the right network, a higher JI threshold reveals subgroups, 

which are highlighted with circles and assigned distinct colors. (A) Subclustering analysis of 1,320 
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JI-A genomes. (B) Subclustering analysis of 114 of JI-B genomes. (C) Subclustering analysis of 265 

JI-C genomes. 

 

 Pangenome population structure of U.S. Typhi  
 

Exploring the U.S. Typhi dataset, we found that autonomous and integrated MGEs 

are ubiquitous in Typhi. A MOB relaxase gene, serving as a proxy for plasmids, ICEs and 

IMEs, was detected in 99.5% (n=2,380/2,392) of the isolates (Figure 4.9A).  

JI-groups often correlated with the presence/absence of known MGEs. For example, 

several large (>80 kb) autonomous plasmids were found to underpin JI-group definitions. 

Members of JI-groups B and J all contained plasmids belonging to PTU-E50 (average size 

90 kb), JI-group C contained PTU-E18 (average size 107 kb), JI-group D contained PTU-

HI1A (average size 217 kb), and JI-group K contained PTU-Y plasmids (average size 100 

kb) (Table 4.2, Figure 4.9B). Plasmids <40 kb, such as PTU-N1 and PTU-X1 in JI-groups 

A, H, and N, did not define JI-groups (at thresholds JI=0.983 and GLD=0.05) due to their 

relatively small size.  

Many unknown MGEs and accessory regions were also responsible for the genetic 

difference between JI-groups: JI-E was defined by the presence of a 49 kb region of unknown 

function, while JI-P members all carried a unique 44 kb phage element (prophage 10) 

(Figure 4.9A, Table 4.3). Each JI-group was found to contain a unique complement of 

accessory genome elements, many of which were undetectable by current routine methods.  
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Figure 4.9 | Distribution of accessory genome elements in the Typhi JI-groups. (A) Distribution 

of MOB relaxases in the JI-groups. Nodes are colored according to the MOB relaxase class present 

in each genome. Information on accessory elements (excluding plasmids) present in >=90% of the 

members of a given JI-group is included in black letters or in red letters when absent. (B) Distribution 

of PTUs in the JI-groups. Nodes are colored according to the PTUs present in each genome. Both 

(A) and (B) networks contain 2,392 nodes, connected when JI>=0.983 and GLD<=0.05. Seventeen 

clusters (named JI-A to JI-Q) are indicated by circles. 

 

Table 4.2: Characteristics of plasmids identified in Typhi JI-groups. 

 
a | PTU and the grade host range were assigned using COPLA. 
b | Plasmid replicons, MOB class, MPF type, and AMR determinants were calculated, respectively, 

using PlasmidFinder, MOBscan, CONJScan, and ResFinder. –, the absence of the specific trait 

indicated in the column. 

 

 

JI-B                     
(114)

114
PTU-E50                     

(III)
IncY, IncFIB(K)

MOBC / MPFT 

(conjugative)

 bla TEM-1B, qnrS1, sul2, 

tet(A), aph(3'')-Ib, aph(6)-

Id, dfrA14, bla CTX-M-15, 

bla CTX-M-88

90

JI-C                     
(265)

265
PTU-E18                       

(IV)
IncFIB(pHCM2)

 - / -                         
(non-tranmissible 
by conjugation)

- 107

JI-D                       
(26)

26
PTU-HI1A                      

(IV)

 IncHI1A, 
IncHI1B(R27), 
IncFIA(HI1)

MOBH / MPFF 

(conjugative)

aph(3'')-Ib, aph(6)-Id, 

bla TEM-1B, catA1, dfrA7, 

qacE, sul1, sul2, tet(B)

217

JI-H                       
(225)

1
PTU-N1                       

(III)
IncN

MOBF / MPFT 

(conjugative)

aph(3'')-Ib, aph(6)-Id, 

bla TEM-1B, dfrA14, sul2, 

tet(A)

50

JI-J                                   
(11)                     

11
PTU-E50                     

(III)
IncY

MOBC / MPFT 

(conjugative)

aph(3'')-Ib, aph(6)-Id, 

bla TEM-1B, dfrA14, sul2, 

tet(A)

115

JI-K                          
(8)

8
PTU-Y                    

(III)
IncY, p0111

 - / -                          
(non-tranmissible 
by conjugation)

 bla CTX-M-15 100

JI-N                          
(90)

78
PTU-E80                 

(IV)
IncX1

MOBP / -     
(mobilizable)

- 25

JI-Groups                  
(number of 
genomes)

Plasmid MOB 
type / MPF 

(transmissibility) b
AMR determinants b

Average 
plasmid size 

(kb)

IncX3
MOBP / MPFT 

(conjugative)
- 44

4

Number of 
genomes with 

plasmid

PTU-X1                       
(III)

PTU-X3                   
(III)

PTU-E73                             
(IV)

IncX1
MOBP / MPFT 

(conjugative)
- 30

JI-A                    
(1,320)

1 IncFII(pCRY)
MOBC / MPFT 

(conjugative)
- 21

18

1

PTU                  

(grade host range) a

Plasmid 

replicons b

4 IncN
MOBF / MPFT 

(conjugative)
- 40

PTU-E80                 
(IV)

PTU-N1                       
(III)

6 IncX1
MOBP /  - 

(mobilizable)
-
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Table 4.3: Summary of all MGEs (other than plasmids) detected in Typhi JI-groups. 

 
a | Number of genomes present in each JI-group. 
b | MGEs identified in the majority of genomes within each JI-group, suggesting these 

elements may contribute to the genomic definition of these groups.  

c | MGEs typically found across other JI-groups but notably missing in most genomes of the 

indicated JI-group, highlighting potential loss events specific to these groups. 

 

To further explore the contribution of MGEs in the JI-group clustering, an in silico 

experiment was carried out by removing them from reference genomes. PTU-E50 plasmids 

present in the B subgroups, and Salmonella Genomic Island 11 (SGI11) encoded in B1 and 

A3 references were eliminated. The “cured” genomes segregated from their original JI-

JI-Groups
Number of 
genomesa MGE detected b MGE absentc Average MGE 

size (kb)

JI-A 1320 IME_MOBQ - 21

JI-B 114 IME_MOBQ - 21

JI-C 265 IME_MOBQ - 21

JI-D 26 IME_MOBQ - 21

IME_MOBQ - 21

Region 1 - 49

Region 5 - 34

- Prophage 5 11

-
Region 2 (MPF typeG, 

MPF typeF)
61

- Region 6 62

- Region 7 21

- Prophage 6 16

JI-H 225 ICE_MOBH - 55

IME_MOBQ IME_MOBH 38

-
Region 2 (MPF typeG, 

MPF typeF)
61

- Prophage 1 21

JI-J            11 Prophage 7 - 29

JI-K 8 IME_MOBQ - 21

JI-L 11 Region 8 - 67

Prophage 3 - 38

Prophage 8 - 26

JI-N 90 - Prophage 1 21

Prophage 9 - 40

Region 9 - 40

JI-P 58 Prophage 10 - 44

Region 10 - 12
Region 11 - 11

- Prophage 5 11

5

6

17

133

JI-Q 15

11

JI-E

JI-G

JI-I

JI-M

JI-O

JI-F 39
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groups and associated with the JI-A1 genomes in the network (Figure 4.10A). The 

progressive reintroduction of SGI11 (Figure 4.10B) and PTU-E50 sequences (Figure 

4.10C) led to the partition of JI-A3, JI-B1, JI-B2, and JI-B3 genomes from the JI-A1 group, 

rendering new clusters.  

 

Figure 4.10 | Effect of MGEs on the JI-based genome clustering. The networks contain 154 nodes, 

connected when JI>=0.995. Nodes are colored according to the original JI subgroup of each genome 

(see Figure 4.8). (A) Clustering of genomes deprived of PTU-E50 and SGI11. PTU-E50 plasmids 

originally present in genomes of the B1, B2, and B3 subgroups, as well as the chromosomally-

inserted element SGI11, encoded also in genomes of the B1 and A3 subgroups, were removed from 

the genome sequences. The resulting “pruned” genomes were used to calculate pairwise genome 

similarities. Genomes from all subgroups reassociate in a single cluster. (B) Clustering of genomes 

deprived of PTU-E50. The SGI11 elements were restituted to the A3, and B1 genomes and the 

network was recalculated. A3 and B1 genomes broke away from the previous cluster and grouped 

together. (C) Clustering of genomes with SGI11 and PTU-E50. The PTU-E50 plasmids were 

restituted to the B1, B2, and B3 genomes. The rebuilt network shows the emergence of distinctive 

clusters. 

 

In a similar experiment, the plasmid sequences were removed from 13 RefSeq200 

reference genomes present in JI-groups B, C, D, and K and 4 reference genomes of JI-groups 

C and J reconstructed by PLACNETw [203]. The pairwise JI values were recalculated, and 

a new network generated (Figure 4.11). The “cured” genomes segregated from their original 

JI-groups (B, C, D, J, and K) and associated with the JI-A and JI-M genomes (in this latter 

case they come originally from JI-C). This shift in JI-group associations demonstrated the 

role of these plasmids in shaping JI-groups, emphasizing their contribution to Typhi 

pangenome structure.  
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Figure 4.11 | Effect of plasmid removal on the JI network.  The network contains 2,392 nodes, 

which are connected whenever JI >= 0.983 and GLD <= 0.05. Nodes colored in red (17) indicate 

reference genomes that contain plasmids larger than 80 kb in size, which were removed prior to JI 

calculation. Seventeen distinct clusters (named JI-A to JI-Q) identified by the Louvain method are 

indicated by circles. 

 

GenoTyphi genotypes [193,229]⁠ were visualized against JI-groups to compare 

phylogenetic context to pangenome groupings. Primary clade 4 dominated the dataset, 

followed by primary clade 2, while primary clade 1 was barely represented, indicating that 

this lineage might be less prevalent in the dataset or has undergone population bottlenecks 

over time. The presence of primary clade 0 in JI-F suggests that this group may represent 

one of the most ancestral lineages of Typhi. 

Most JI-groups (n=12/17) associated with a single GenoTyphi primary clade (Table 

4.1, Figure 4.12A), whereas JI-A, JI-C, JI-D, JI-I, and JI-N contained isolates that fell into 

two or more GenoTyphi primary clades. JI-A contained genomes from all Typhi primary 
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clades (0, 1, 2, 3, and 4), with each primary clade mostly confined to distinct areas in the 

network map of JI-A (Figure 4.12A).  

At the higher threshold used to determine JI-A subgroups (JI>=0.995), GenoTyphi 

lineages were largely resolved into their own cluster, with 15 of 17 JI-A subgroups 

containing genomes of a single GenoTyphi primary clade (Figure 4.13A). Similarly, group 

JI-C had members of primary clades 2, 3 and 4, but at the JI-subgroup resolution, all 

members within each of the six JI-C subgroups contained a single GenoTyphi primary clade 

(Figura 4.13B).  

The distribution of GenoTyphi 4.3.1 subclade, the most common GenoTyphi in 

MDR Typhi, [159,235] and its derivatives was visualized in the JI-groups (Figure 4.12B), 

providing a higher resolution view of this subclade. Multiple lineages of 4.3.1 often 

coexisted within the same JI-group, indicating homogeneity in accessory genome content 

despite some phylogenetic differences. On the contrary, in some cases, the same lineages or 

sublineages of 4.3.1 (i.e. 4.3.1.1.P1 and 4.3.1.1.EA1) appeared in different JI-groups, 

indicating accessory genome differences despite being phylogenetically identical. 

Membership to a JI-group does not necessarily imply vertical descent (as defined by 

GenoTyphi); since JI-grouping aggregates genomes of distinct vertical lineages if they share 

substantial accessory genome material, and partitions genomes of the same vertical lineage 

into separate groups according to their accessory genome content. However, pangenome 

groupings did tend to align with phylogenetic lineage, especially at the level of subgroups 

(n=32/40 JI-group or subgroup contained a single GenoTyphi primary clade) (Figure 4.13, 

Table S1).  

Thus, coupling of pangenomic and phylogenetic methods can simultaneously offer 

information on horizontal and vertical evolutionary dimensions. In fact, coupling 

information from GenoTyphi and MOB typing methods already accounted for a substantial 

proportion of the genetic variance of JI-groups (combined variance partitioning R2=0.725), 

suggesting much of the Typhi pangenome can be effectively identified with existing 

methods. Although MOB typing methods can detect the presence of accessory elements, 

they do not determine its exact nature, whether it is a plasmid, an IME, or an ICE, without 

further analysis. 
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Figure 4.12 | Distribution of GenoTyphi in the JI-groups. (A) Distribution of GenoTyphi primary 

clades in the JI-groups. Nodes are colored according to the GenoTyphi primary clades. (B) 

Distribution of the 4.3.1 GenoTyphi genotype in the JI-groups. Nodes are colored according to the 

lineages and sublineages of the 4.3.1 genotype. Both (A) and (B) networks contain 2,392 nodes, 

connected when JI>=0.983 and GLD<=0.05. Seventeen clusters (named JI-A to JI-Q) are indicated 

by circles. 

 

 

Figure 4.13 | Distribution of GenoTyphi primary clades in JI-subgroups A and C. (A) 

Subclustering analysis of JI-group A. A set of 1,320 genomes of the JI-group A were used to build 

the JI network, using JI>=0.995 as a threshold. Subgroups A1 to A17 identified by the Louvain 

method are defined by circles. Nodes are colored by the GenoTyphi primary clade they belong to. 

(B) Subclustering analysis of JI-group C. A set of 265 genomes of the JI-group C were used to build 

the JI network, using JI>=0.997 as a threshold. Subgroups C1 to C6 identified by the Louvain method 

are defined by circles. Nodes are colored by the GenoTyphi primary clade they belong to. 

 

 U.S. Typhi pangenome structure aligns with epidemiological 

patterns 
 

To gain insights into the epidemiological patterns, epidemiological metadata was 

mapped onto the network to visualize temporal and geographical patterns. JI-A represented 

the largest and most persistent group, with a high concentration of genomes from 2015 

onwards. On the other hand, other JI-groups emerged or became more prevalent in later 
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years, such as JI-B and JI-H. Smaller groups, such as JI-G, JI-E and JI-O, exhibited short-

lived spikes, suggesting these groups could represent localized events (Figure 4.14). 

 

Figure 4.14 | Abundance of Typhi genomes of each JI-group over time. Number of genomes of 

each JI-group during the period 2015-2021. Only the genomes that contain the year of isolation were 

used to produce this figure. 

 

All genomes analyzed in this study were isolated in the U.S. (a region where Typhi 

is not endemic) and travel history data was available for 866 genomes, providing insights 

into their likely geographic origins. A substantial portion of these genomes (634/866) was 

associated with travel to Asia, and they were predominantly clustered in groups JI-A, JI-B, 

JI-C, JI-M, and JI-P. This association suggests that these JI-groups are frequently introduced 

from regions such as Pakistan, India, and Bangladesh, aligning with previous findings on the 

prevalence of Typhi in these areas [236]. Although a smaller proportion of genomes were 

linked to non-Asian regions, certain patterns emerge: JI-H and JI-N genomes were associated 

with travel to America while JI-J genomes were mainly linked to Africa (Figure 4.15). 
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Figure 4.15 | Geographical data mapped onto the JI network of Typhi. The network contains 

2,392 nodes, which are connected whenever JI >= 0.983 and GLD <= 0.05. Nodes are colored by 

United Nations Region of travel within 30 days of illness onset. Seventeen distinct clusters (named 

JI-A to JI-Q) identified by the Louvain method are indicated by circles. 

 

 U.S. Typhi pangenome structure aligns with and expands on 

known AMR  
 

MDR in Typhi genomes were genetically defined by carriage of genes conferring 

resistance to ampicillin, chloramphenicol and co-trimoxazole, genes that are typically found 

in the genomic island SGI11. SGI11 contains AMR genes (blaTEM-1, catA1, aph(3')-Ib [strA], 

aph(6)-Id [strB], sul1, sul2 and dfrA7), a mercury resistance operon, and the qacEΔ1 gene 

that encodes an ethidium-bromide resistance protein [237]. MDR in Typhi emerged several 

decades ago, driven by the expansion of a 4.3.1 (previously H58) strain carrying SGI11⁠ on 

an IncHI1 (PTU-HI1A) plasmid [200]⁠. Subsequent degradation of SGI11 [237] ⁠, as well as 
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integration into the Typhi chromosome and loss of the IncHI1 (PTU-HI1A) plasmid [233]⁠ 

has occurred. The next major evolutionary step in Typhi AMR was the emergence of XDR 

Typhi, first reported in Pakistan in 2016. XDR Typhi evolved from the MDR 4.3.1 lineage 

through the acquisition of an IncY (PTU-E50) plasmid carrying blaCTX-M-15, which confers 

resistance to cephalosporins and qnrS, which confers resistance to fluoroquinolone. More 

recent studies have reported XDR genomes isolated from 2018 onward that have lost the 

PTU-E50 plasmid [238], with the blaCTX-M-15 gene integrating directly into the chromosome 

(Figure 4.16). 

Genetic metadata was mapped onto the JI network to determine if JI-grouping could 

easily detect known AMR patterns. For example, XDR Typhi (genotype 4.3.1.1.P1), first 

reported ⁠[239] in the U.S. in 2018 among patients with travel history to Pakistan, 

corresponded to subgroup JI-B1. Genomes in JI-B1 were isolated from 2018 onward (Figure 

4.14), were all genotype 4.3.1.1.P1 (Figure 4.12B), carried an IncY (PTU-E50) plasmid with 

blaCTX-M-15, and were significantly associated with travel to Pakistan (P < 0.01, chi-squared 

test of independence), despite limited travel data for this group (n=47/88 have any travel 

information available) (Figure 4.15). Additionally, other XDR genomes from the same 

4.3.1.1.P1 sublineage fell into JI-A (specifically JI-A3). Unlike JI-B1 genomes, these JI-A3 

strains have recently lost the IncY (PTU-E50) plasmid and integrated blaCTX-M-15, the gene 

that confers ceftriaxone resistance and defines XDR, into their chromosome [238]⁠. Thus, 

both the original XDR 4.3.1.1.P1 Pakistan outbreak strain with an IncY (PTU-E50) plasmid 

[126] and its recent XDR variants (without the plasmid) were quickly identifiable in the JI-

network as JI-B (JI-B1) and JI-A (JI-A3), respectively, supporting what is known about this 

sublineage (Figures 4.16 and 4.17). 

 

Figure 4.16 | Timeline depicting the major evolutionary steps leading to MDR and XDR Typhi. 

MDR emerged in the 1980s with strains carrying SGI11 on a PTU-HI1A plasmid (corresponding to 
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JI-group D, genotype 4.3.1.3). Around the year 2000, SGI11 integrated into the chromosome, 

exemplified by JI-group A3 (genotype 4.3.1.1). Subsequently, the XDR phenotype arose in 2016 via 

the acquisition of an IncY plasmid (PTU-E50) harboring the blaCTX-M-15 gene, defining JI-group B1 

(genotype 4.3.1.1.P1). More recently, since 2018, XDR strains without the PTU-E50 plasmid have 

been reported, integrating blaCTX-M-15 directly into their chromosome, represented by JI-group A3 

(genotype 4.3.1.1.P1). 

 

Figure 4.17 | Distribution of MDR and XDR Typhi genomes. The network contains 2,392 nodes, 

connected when JI ≥0.983 and GLD ≤0.05. Seventeen clusters (named JI-A to JI-Q) are indicated by 

circles. Nodes are colored according to either they belong to MDR or XDR strains or none of them. 

 

Carriage of SGI11 (denoted as MDR or XDR in Figure 4.17) was identified in JI-A, 

JI-B, JI-C and JI-D, and the genetic location was consistent within each group, chromosomal 

in JI-A, JI-B and JI-C, or plasmid-mediated in JI-D (PTU-HI1A). At higher JI-thresholds, 

the presence of SGI11 was even confined to specific JI-subgroups JI-A1, JI-A3, JI-B1 and 

JI-C1 (Figure 4.18). JI-B1 and JI-C1 represented known epidemiological lineages, the 
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“XDR Pakistan” strain and MDR 4.3.1.1 Typhi strains with chromosomal SGI11, 

respectively. 

 

Figure 4.18 | Subclustering analysis of JI-groups A, B, and C colored by the SGI11 variant. (A) 

Subclustering analysis of JI-Group A. The network contains 1,320 genomes of JI-group A, using 

JI>=0.995 and GLD<=0.05 as a threshold. Subgroups A1 to A17 defined by the Louvain method are 

surrounded by circles. (B) Subclustering analysis of JI-group B. JI network of 114 JI-B using 

JI>=0.986 and GLD<=0.05 as a threshold. Subgroups determined by the Louvain method are 

indicated by circles. (C) Subclustering analysis of JI-group C. JI network of 265 JI-C genomes using 

JI>=0.997 and GLD<=0.05 as a threshold. Subgroups determined by the Louvain method are 

indicated by circles. For more details on SG11 variants, see Figure 4.19A. 

 

Genetic context analysis of genomes with chromosomal SGI11 (28 reference and 

300 U.S. genomes) detected six variants of SGI11 (previously described variants A-E [237] 

and a novel variant F described here). SGI11 was found inserted in two distinct genomic 

regions: either interrupting the yidA gene or in the intergenic region between genes cyaA and 

cyaY (Figure 4.19). To further investigate the relationship between SGI11 variants, insertion 

sites, and JI-groups, a core-genome phylogenetic tree was constructed, mapping the JI-

groups and SGI11 insertions sites onto the rings (Figure 4.19B). However, neither SGI11 

variant nor chromosomal insertion site were found to align with JI grouping, likely due to 

the minimal size differences among SGI11 variants. Interestingly, within this phylogenetic 

framework, we detected a likely event of SGI11 excision from the yidA gene in six JI-B 

isolates otherwise practically identical to other JI-B members encoding SGI11 interrupting 

yidA. These six isolates were represented in Ring 1 of Figure 4.19B as “no SGI11 and yidA 
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disrupted”. In these cases, long-read sequencing of two of these genomes (PNUSAS224101 

and PNUSAS195139) confirmed that the yidA gene was disrupted by IS1, suggesting that it 

could be either a precursor to the SGI11 acquisition, or most likely a derivative of SGI11 

excision, both probably through IS1-mediated recombination. Nonetheless, mapping of 

SGI11 presence onto the JI-network (MDR and XDR strains contain SGI11, Figure 4.17) 

quickly revealed that some JI-groups more frequently host this MGE than others, which is 

likely driven but not entirely explained by the overrepresentation of 4.3.1 in these groups. 

 

Figure 4.19 | SGI11 variants and their distribution in the Typhi genomes. (A) SGI11 variants 

found in the study genomes. Genes encoded by the SGI11 variant A, present in S. Typhi BD1380 

(GenBank Acc. No. KM023773), are represented by arrows and named in the upper part. They are 

colored in red (antimicrobial resistance genes), dark grey (mer operon), or light grey (other genes). 
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In the lower part, a table records the presence or absence of different SGI11 segments in the different 

variants found in the study genomes. SGI11 variants A-E were previously described [237], while 

SGI11-F is a new variant described here. (B) Phylogenetic distribution of SGI11-containing 

genomes. Parsimony reconstruction based on the core SNPs using kSNP3.0  [217]. The tree includes 

328 genomes that contain a chromosomal SGI11 insertion, 130 genomes that do not contain SGI11 

(Table S1), and a non-Typhi genome (NZ_CP015724.1) that was used as an outgroup. Circles at the 

internal nodes indicate the SNPs shared exclusively by their descendants, according to the legend. 

Branch length scale represents changes per number of SNPs. Colored rings indicate the chromosomal 

SGI11 integration site (1), the SGI11 variant (2), and the JI-group of each genome (3). The tree was 

visualized with iTol v6 [215]. 

 

A total of 109 isolates harbored blaCTX-M-15, predominantly in the XDR group JI-B1 

(87/109), with smaller numbers in JI-A (16/109; specifically in subgroups JI-A1 and JI-A3) 

and JI-K (5/109), and in one singleton. In all cases, the gene was likely mobilized by ISEcp. 

The blaCTX-M-15 gene was plasmid-mediated in JI-B (PTU-E50) and JI-K (PTU-Y) but was 

integrated into the chromosome of all 16 JI-A genomes. 

The chromosomal genetic context of blaCTX-M-15 was further explored in JI-A1 (n=4) 

and JI-A3 (n=12) genomes. Three different sized regions (a-c) of the original IncY (PTU-

E50) plasmid were detected, reflecting the incorporation of the plasmid´s drug resistance 

region into the chromosome, likely captured and mobilized by ISEcp1 (Figure 4.20A). 

ISMapper identified four possible ISEcp1-blaCTX-M-15 insertion sites (I-IV) (Figure 4.20B). 

Insertion sites were confirmed either by direct analysis of the blaCTX-M-15-containing contigs 

(insertion sites I-III), or with additional long-read sequencing (insertion site IV). Nine 

genomes contained region a (~4 kb), which lacked the qnrS1 gene, inserted between gutQ 

and norA (insertion I) and four genomes contained region c (~17 kb) inserted within SGI11 

(insertion IV). These two insertion sites (I and IV) were previously reported [238]. 

Additional ISEcp1 insertion sites were found between phsA and sopA (region b, insertion II, 

two genomes), and interrupting stgC (region c, insertion III, one genome).  

To further explore the distribution of blaCTX-M-15, a core-genome phylogenetic tree 

was constructed, including all blaCTX-M-15-containing genomes, along with representative 

genomes from all JI-groups that do not carry this gene (Figure 4.21). The distal position of 

the phylogenetic clades including the JI-A genomes harboring blaCTX-M-15 in the tree suggests 

its chromosomal acquisition occurred recently. Isolates with core genomes differing by 
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fewer than 10 SNPs contain the blaCTX-M-15 gene either in a PTU-E50 plasmid or in different 

chromosomal locations, or entirely lack it (Figure 4.21). This suggests that, indeed, the 

PTU-E50-borne blaCTX-M-15 inserted in at least four independent events.  

Genomes with a given, unique integration site, clustered together in the JI network 

when the JI threshold was increased (i.e., enhanced discrimination between genomes) 

(Figure 4.21C); however, these clusters were not distinct enough to be used for prediction 

of the genetic context from the JI-network alone. 

 

Figure 4.20 | Genomic context of blaCTX-M-15. (A) The genetic vicinity of blaCTX-M-15 in PTU-E50 

plasmids. The region containing the blaCTX-M-15 gene of plasmid NZ_CP046430 is depicted. Genes 

are represented by arrows and those encoding AMR are colored in red. Below, three arrows of 

different sizes, indicated by different colors represent the PTU-E50 regions (a-c) that were found 

integrated into the chromosomes. (B) Chromosomal integration sites of the blaCTX-M-15-containing 

regions (I-IV). Insertion site I locates between genes norR and gutQ; site II between genes phsA and 
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sopA; site III interrupts gene stgC; site IV resides within SGI11. (C) JI networks of subgroups JI-A1 

and JI-A3. Nodes colored in orange, green, and blue indicate genomes containing the different blaCTX-

M-15-encoding regions a, b and c, respectively. 

 

 

Figure 4.21 | Core genome phylogeny of Typhi genomes. The phylogenetic tree, parsimony 

reconstruction based on the core SNPs using kSNP3.0 [217], includes all Typhi genomes that contain 

the gene blaCTX-M-15 (n=109), all genomes from JI-A3 that lack blaCTX-M-15 (n=88), all genomes from 

JI-B1 that lack blaCTX-M-15 (n=4), 122 representative genomes from the 17 JI-groups (Table S1), and 

one genome from serovar Indiana as an outgroup. Branch length scale represents changes per number 

of SNPs. Circles at the internal nodes indicate the number of SNPs distinctive of the corresponding 

clade. The colored rings indicate the JI-group of the corresponding genome (1), and the blaCTX-M-15 

gene location (2). 

 

Chromosomal mutations in the quinolone-resistance determining region (QRDR), 

and presence of acrB mutations (azithromycin resistance ⁠) were mapped onto the JI network 

(Figure 4.22). Genomes with triple QRDR mutations tended to cluster within JI-subgroups 

JI-A1 and JI-A4 (GenoTyphi 4.3.1.2) but were also found in different JI-groups (JI-C, JI-I, 

JI-M), consistent with the observation that QRDR mutants have emerged spontaneously in 

different lineages [124,232]⁠. Specific acrB mutations aligned with JI-group (n=1/6 
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acrB(R717L) in JI-B, n=5/6 acrB(R717Q) in JI-C), but with relatively low prevalence of 

these mutations, this observation may be anecdotal.  

 

Figure 4.22 | Distribution of QRDR and acrB mutations in the JI network of Typhi. The network 

contains 2,392 nodes that are connected whenever JI>=0.983 and GLD>=0.05. Seventeen distinct 

clusters (named JI-A to JI-Q) are indicated by circles. Nodes are colored according to the pattern of 

quinolone resistance determining region (QRDR; mutations in genes gyrA, gyrB, and parC), and the 

acrB gene mutations. The number of genomes with mutations are indicated at the left. 

 

 U.S. Typhi pangenome structure reveals novel plasmid 

patterns 
 

Nine different PTUs were detected in JI-groups, predominantly from MOBP and 

MOBH classes (Table 4.2, Figure 4.9). While some were well known (e.g. PTU-HI1A 

(IncHI1A) in JI-D), others were not well characterized (e.g. PTU-Y (IncY) in JI-K). All of 

them were graded as host range III or higher, including those that lacked a MOB relaxase 
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(PTU-E18 and PTU-Y are phage-plasmids). This is an indication of their broad ability to 

colonize bacteria from different genera of the same taxonomic family. Of particular interest 

were PTU-E50 (IncY) and PTU-Y (IncY) plasmids because of their carriage of blaCTX-M-15 

and association of the former PTU with XDR Typhi (Table 4.2).  

Four different PTU-E50 plasmid variants were identified, each associated with a 

different group or subgroup: JI-B1 (IncY), JI-B2 (IncFIB(K)), JI-B3 (IncFIB(K)), and JI-J 

(IncY) (Figure 4.23). To investigate the phylogenetic relationships and protein content 

profiles of PTU-E50 plasmids from Typhi, a comparative analysis was conducted, 

incorporating PTU-E50 plasmids present in other Enterobacteriaceae species available in 

the RefSeq200 database.  

The phylogenetic analysis (Figure 4.23A) showed that PTU-E50 plasmids of JI-B 

were very similar among them and similar to other plasmids of other hosts. However, JI-J 

plasmids appeared in a separate clade, indicating core differences. AcCNET proteome 

analysis (Figure 4.23C) revealed that plasmids from different JI-groups or JI-subgroups 

contain unique set of proteins. Interestingly, two plasmids from E. coli showed similar 

protein repertoires to the JI-B1 plasmids, as previously reported [126]. The genetic 

divergence between JI-groups by comparing genome structures (Figure 4.23B), showed that 

only partial homology exists between JI-B and JI-J plasmids. This indicated that even within 

the PTU-E50 classification, significant genomic variability exists across plasmids.  

Further, these JI-groups have differing and significant (P < 0.01, chi-squared test of 

independence) geographic signals, despite extremely limited travel data; JI-B1 was linked 

to travel to Pakistan, JI-B2 to Bangladesh, and JI-J to Nigeria (Figure 4.23D). Interestingly, 

while most PTU-E50 (IncY) plasmids from JI-B1 (“XDR Pakistan” plasmid) harbored the 

blaCTX-M-15 gene (n=84/88), four isolates did not. These genomes were likely variants of the 

original XDR Pakistan plasmid [126] that have subsequently lost the blaCTX-M-15 gene, 

representing a novel lineage of the 4.3.1.1.P1 PTU-E50 (IncY)-containing strain. JI-

grouping could be leveraged to link unique plasmids to geographic regions, in the same way 

that core genome SNPs are used to reflect geographical signals.  
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Figure 4.23 | Analysis of PTU-E50. (A) Core genome phylogenetic tree of PTU-E50 plasmids. 23 

plasmids present in Typhi and 17 plasmids from RefSeq200 non-Typhi Enterobacteriaceae hosts 

were used to build a maximum likelihood tree based on the core genome by using IQ-TREE V2 [219] 

(with HKY+F model). The tree was midpoint rooted and visualized with iTol v6 [215]. UFBootstrap 

values > 80% are indicated by circles on the corresponding nodes. Branch length scale represents 

substitutions per site. Close to the tips, colored strips indicate the JI-group (1) and the taxonomic 

species (2) of the plasmid host. (B) Genome comparison of PTU-E50 plasmids. In the left panel, a 

PTU-E50 plasmid of the JI-J group was used as the reference and the colored rings represent regions 

of PTU-E50 plasmids from different JI-B subgroups shared with the reference. In the right panel, a 

PTU-E50 plasmid of the JI-B1 subgroup was used as the reference and the colored rings represent 

regions of PTU-E50 plasmids from JI-J, JI-B2, and JI-B3 groups shared with the reference. In both 

cases, the outermost ring depicts the genes of the reference plasmid. The genomic comparisons were 

carried out with BRIG v0.95 [210]. (C) Proteome network of PTU-E50 plasmids. The proteins of the 

PTU-E50 plasmids were clustered at 80% identity and 80% coverage using AcCNET [205]. The 

larger nodes correspond to plasmids and were colored according to the JI-group or subgroup of their 

bacterial host. The smaller nodes represent HPCs and were colored in black if containing members 

from all plasmids, or grey otherwise. Both kinds of nodes were connected if a plasmid contained a 

member in the corresponding protein cluster. (D) Probable origin of JI-groups containing PTU-E50 

plasmids. JI-group or subgroups containing PTU-E50 plasmids are shown. Nodes were colored 

according to the country of travel. 

 

PTU-Y was exclusively identified in JI-K. Two genotypes were present in this JI-

group, 4.3.1.1 and 4.3.1.2 (Figure 4.12B), and only PTU-Y plasmids hosted in the latter 

genotype carried blaCTX-M-15. This plasmid carried an IncY replicon, but rather than being a 

conjugative plasmid (as is PTU-E50 (IncY) in JI-B1), it was a large non-conjugative phage-

plasmid whose transmission is governed by an entirely different mechanism [240,241]⁠⁠. In 

this case, relying on replicon typing alone (as commonly practiced) would have generated 

confusion, as two very distinct plasmid types (PTU-E50 and PTU-Y) carried the same 

replicon (IncY) (Table 4.2), and interestingly, in this case, both harbor blaCTX-M-15. Of 

interest, carriage of PTU-Y was significantly associated with travel to Iraq (P < 0.01, chi-

squared test of independence).  

JI grouping has the advantage of accounting for all genetic material within the 

plasmid rather than a single replicon target, and therefore can simultaneously differentiate 

highly-related plasmids (as seen for PTU-E50 plasmids), and disintegrate seemingly similar 

plasmids (PTU-Y (IncY) versus PTU-E50 (IncY)). These plasmid subgroups can be rapidly 



Chapter 4: Results I 

117 
 

detected in a network (and overlaid with epidemiological data), preventing the continual 

need for separate plasmid core genome analysis. 

In contrast to large plasmids (>80 kb), smaller plasmids (<80 kb) did not often 

contain enough genetic content to define individual JI-groups (Table 4.2). For example, JI-

H had only one member with a 50 kb PTU-N1 (IncN) plasmid, and instead, was genetically 

distinct from other groups by the presence of a ~55 kb ICE (Figure 4.9, Table 4.3). Another 

small mobilizable plasmid, PTU-E80 (IncX1, ~25 kb, highly related with PTU-X1) (Table 

4.2), was among the most common plasmids detected, predominantly in JI-N, and while it 

is likely important to this group (>85% of members carry PTU-E80), it did not exclusively 

underpin the genetic definition of JI-N. Instead, JI-N was genetically distinct from other JI-

groups also due to the absence of a ~21 kb phage (prophage 1) and the absence of a 21Kb 

IME (MOBQ) (Figure 4.9, Table 4.3). Of interest, JI-N was almost exclusively lineage 2.0.2 

(one genome is 4.1), a genotype that was also detected in JI-A and JI-I. In this case, JI-

grouping enables stratification of an epidemiologically important genotype [193]⁠ using 

“unknown” accessory genetic content. 

 

 U.S. Typhi pangenome structure offers avenues for further 

investigation 
 

Co-visualization of phylogenetic lineages across the JI network enabled rapid 

detection of groups that are likely characterized by clonal expansion (homology-by-descent), 

versus groups that contain disparate genomes that have converged on their MGEs 

(homology-by-admixture). For example, genomes of lineage 3.1.1 fell into either JI-A or JI-

J. JI-J genomes were exclusively of genotype 3.1.1 and differentiated from JI-A partially 

due to carriage of a unique PTU-E50 (IncY) plasmid (Figure 4.9). Thus, it is plausible that 

JI-A/3.1.1 genomes represent a precursor strain that subsequently acquired a PTU-E50 

plasmid and clonally expanded to become group JI-J. JI-J was significantly (P < 0.01, chi-

squared test of independence) associated with travel to Nigeria (despite limited travel data 

for U.S. isolates), an epidemiological signal that could prove useful as lineage 3.1.1 is the 

most common genotype in Western Africa [124]⁠. 

Lineage 2.3.2 is also common in Western Africa and the Americas and was recently 

shown to separate into discrete geographic clades by distance-based phylogeny [124] ⁠. Sixty-
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two genomes from this phylogeny were also present in the U.S. dataset; 61 genomes fell into 

the “Central American” clade and belonged to JI-H, while the remaining genome was in the 

“Western Africa” clade and belonged to JI-A. JI-H differed from JI-A by the presence of a 

~55 kb ICE (Figure 4.9, Table 4.3), and was significantly associated with travel to the 

Americas (P < 0.01, chi-squared test of independence). With further confirmation, the 

presence of this ICE could potentially be used to stratify 2.3.2 lineages into geographically 

and epidemiologically meaningful groups without the need for phylogenetic analysis. 

In contrast to differentiation, aggregation of disparate genomes by their pangenome 

is of interest. For example, JI-C genomes all carried a unique ~107 kb phage-like PTU-E18 

(IncFIB (pHCM2)) plasmid (Figure 4.9), but belonged to a variety of GenoTyphi primary 

caldes and lineages (Figure 4.12, Table S1) with diverse geographic signals, including 

4.3.1.1 dominant in Pakistan [124] ⁠ and 3.5.4 exclusively associated with Samoa [242] ⁠. 

Convergence of these diverse lineages on a large non-mobilizable phage-plasmid that does 

not carry AMR genes is curious, since acquisition cannot simply be explained by conjugation 

under antibiotic selection pressure. Rather, acquisition of plasmid-phages relies on viral-like 

mechanisms (transduction or lysogenic conversion) [240] ⁠ and is likely induced by different 

ecological factors than conjugation [243,244]⁠⁠. Grouping and investigating Typhi strains 

through the lens of shared MGEs provides an opportunity to uncover common environmental 

exposures between genomes that might otherwise appear disparate using phylogenetic 

methods, adding an exciting new dimension to Typhi epidemiology. 

 

 Pangenome structure of U.S. Typhi is generalizable  
 

To assess whether the network obtained with U.S. genomes is generalizable to the 

global population structure of Typhi, a new network was generated with a large dataset from 

a distinct geographic region. It included 1,606 genomes isolated in the Indian subcontinent 

and 136 genomes (Table S2) from the U.S. dataset, representative of the 17 JI-groups 

previously identified (Figure 4.24). The new network organized into 17 JI-groups already 

delimited in the U.S. dataset (5 JI-groups (E, G, J, N, and P) were represented only by 

reference genomes in this network and thus absent in the Indian dataset), and two new JI-

groups (JI-R and JI-S, containing 10 and 11 genomes, respectively). JI-R genomes contained 

a PTU-X1 plasmid and three chromosomal regions enriched in phage-related genes, while 

JI-S members contained two plasmids (PTU-E18, PTU-HI1A) and an IME.  
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Figure 4.24 | Genomic diversity among Typhi genomes from the Indian subcontinent. The 

network comprises 1,606 Typhi genomes originating from the Indian subcontinent, along with 136 

reference genomes selected from both U.S. dataset and RefSeq200. These reference genomes were 

chosen based on their high connectivity within each cluster of the original network and are 

representatives of the different JI-groups. Each genome is represented by a node, which is colored 

by its country of isolation as indicated in the legend. The number of isolates from each country is 

indicated between parentheses. Nodes are connected with thresholds JI=0.983 and GLD=0.05. 

Nineteen distinct clusters (JI-A to JI-S) detected by the Louvain method are indicated by circles. 

They are named in blue when only found in the representative genomes, in red when only present in 

the Indian subcontinent dataset, and in black when containing genomes from both datasets. 

 

Since a quarter of the U.S. dataset was associated to travel to the Indian subcontinent, 

which could bias the comparison, we analyzed a different dataset, representative of the 

global Typhi diversity. We generated a JI network using 1,804 globally representative Typhi 

genomes spanning more than 60 countries, which were previously used to define the 

GenoTyphi typing nomenclature [229]⁠, and 136 reference genomes from the U.S. dataset 

(Figure 4.25). Emergence of novel clusters would be an expectable outcome, especially 

considering that they may emerge by the acquisition or loss of MGEs. Nevertheless, the vast 

majority (1,662/1,804, 92%) of the genomes in the GenoTyphi dataset clustered in 12 of the 
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originally defined JI-groups. The remaining genomes fell into one of eight small new JI-

groups (98 genomes) or were singletons (44 genomes). The application of this method to 

these datasets demonstrates the robustness of the JI-groups identified here, despite being 

established using only genomes collected in the U.S. It suggests that the U.S. dataset 

effectively represents the global diversity of the Typhi pangenome and serves as a proxy for 

global sentinel surveillance.  

 

Figure 4.25 | Genomic diversity of globally representative Typhi genomes. The network contains 

1,804 Typhi genomes from the GenoTyphi dataset and 136 genomes (from both U.S. dataset and 

RefSeq200 as representatives of the different JI-groups). Nodes in the network represent genomes, 

with larger nodes corresponding to representative genomes, which are color-coded based on the JI-

group they are assigned to. Nodes are connected whenever JI>=0.983 and GLD<=0.05. 

 

 Typhi diversity in the pre-antibiotic era 
 

Thirty eight Typhi genomes of the pre-antibiotic era obtained from the Murray 

collection [185]⁠ (Table S4) were incorporated to the U.S. genome network to explore the 

genetic relationship between strains from the pre-antibiotic era and those circulating today. 

The 38 Murray genomes were distributed across multiple genetic clusters, JI-A (20 

genomes), JI-F (7 genomes), JI-M (5 genomes), JI-I (1 genome), JI-Q (1 genome) and four 
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isolates were singletons (Figure 4.26A). Whithin the JI-A group, the Murray genomes 

exhibited additional substructuring (Figure 4.26B). This distribution indicates that specific 

lineages of Typhi were already stablished prior to the introduction of antibiotics and have 

continued to circulate with minimal genetic changes.  

Figure 4.26 | Genomic diversity among Typhi from the Murray collection. (A) Distribution of 

Typhi genomes of the Murray collection in the overall JI-network of Typhi. The network contains 

all the Typhi genomes of the current study (n=2,392, colored in grey) and 38 Typhi genomes from 

the Murray collection, colored in blue (Table S4). Nodes are connected whenever JI>=0.983 and 

GLD>=0.05. (B) JI network of JI-A genomes. The network contains 1,320 JI-A genomes, and 20 JI-

A genomes from the Murray collection. This network was generated at JI=0.995.  

 

The core phylogenetic analysis (Figure 4.27) further illustrated this stability, 

showing that Murray genomes occupay distinct branches, with JI-A members appearing in 

more recent clades alongside contemporary isolates. In addition, the Murray genomes 

contained representative genomes from all GenoTyphi primary clades (Table S4).  
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Figure 4.27 | Phylogenetic distribution of Typhi genomes from the Murray collection. 

Parsimony reconstruction based on the core SNPs using kSNP3.0 [217]. The tree includes 130 

representative genomes of the U.S. dataset and 38 Typhi genomes of the Murray collection (names 

labeled in blue). Genome NZ_CP015724.1 (serovar Indiana) was used as an outgroup and is labeled 

in red. The JI-group for each genome is indicated in the outer ring. Circles at the internal nodes 

indicate the number of SNPs that are shared exclusively by the descendands of each node. Branch 

length scale represents changes per number of SNPs. The tree was visualized with iTol v6 [215]. 
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Graphical abstract 

 

Salmonella enterica subsp. enterica serovar Hadar (Hadar) is an emerging zoonotic 

pathogen in the United States (U.S.) associated with both commercial and backyard poultry. 

It is characterized by high clonality and is transmitted to humans through contaminated food 

or contact with animals. In this study, we explored the population structure and epidemiology 

of Hadar in the U.S. through a pangenome approach. Historically, genetically distinct 

lineages circulated in commercial versus backyard poultry populations. Around 2020, the 

U.S. Hadar population experienced a notable shift, driven by the rapid expansion of two 

clonal groups (JI-A and JI-C) harboring a previously uncommon prophage-like element. 

These groups were implicated in multiple outbreaks linked to both backyard and commercial 

poultry sources. Global genomic comparisons revealed that U.S. Hadar isolates form 

genetically distinct groups with minimal overlap with international strains, highlighting both 

the localized evolution and the unique dynamics shaping the U.S. Hadar population. 
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 Background and specific objectives 
 

In recent years, backyard poultry-associated salmonellosis (BYPAS) outbreaks have 

increased significantly (Figure 5.1), causing more illnesses in the U.S. than outbreaks linked 

to any other type of animal [186]. Compared to multistate BYPAS outbreaks from 1990 to 

2014, the number of outbreak-associated illnesses has nearly tripled [245]. Among these 

outbreaks, Salmonella Enteritidis, Hadar, and Infantis have been responsible for the highest 

annual number of BYPAS outbreak-associated illnesses during 2015-2022. While extensive 

research has been conducted on Enteritidis [246,247] and Infantis [248,249] due to their high 

prevalence in various settings, Hadar remains comparatively under-studied. Notably, 

Salmonella Hadar has resulted in the highest proportion of BYPAS hospitalizations 

compared with other serotypes. Indeed, two of the five largest BYPAS outbreaks in the U.S. 

were caused by Salmonella Hadar (Table 5.1: Outbreak A and Outbreak C) [186]. 

 

Figure 5.1 | Multistate outbreaks of Salmonella linked to contact with backyard poultry, United 

States, 2015-2022. Original legend “Cumulative number of backyard poultry‐associated Salmonella 

illnesses by month of illness onset, United States, 2015-2022. The number of cases identified each 

month in a given year is indicated by the area shaded by each different colour, with the overall curve 

demonstrating the cumulative number of cases during 2015-2022 for each month. When patient 

illness onset date was not reported, an estimated onset date was determined as 3 days before the 

reported isolation date.” Figure taken from [186]. 
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Salmonella enterica subsp. enterica serovar Hadar (Hadar) is a non-typhoidal 

Salmonella. Hadar is transmitted to humans via contaminated food and contact with animals 

and has caused several outbreaks in U.S. during the last decade, linked to either ground 

turkey consumption or contact with backyard poultry (i.e., privately-owned, non-

commercial poultry such as chickens, ducks, or turkeys) [183,186]. Although Hadar is 

considered a highly clonal serotype, exhibiting limited variability based on cgMLST [183], 

strains transmitted by these two different sources were historically differentiable with allele 

differences ranging from 25 to 50.  

However, in 2020, despite decreased reporting of enteric illness during the early 

years of the COVID-19 pandemic, an emergent Hadar strain was linked to both ground 

turkey consumption and backyard poultry contact. These outbreaks have caused over 900 

human illnesses in several states during the period 2020-2023 (Table 5.1), more than 

doubling the fewer than 500 total reported cases of Hadar in all years prior to 2020 [183,250]. 

Traceback investigations were not able to identify an epidemiological connection between 

the indistinguishable strains (as determined by cgMLST) from two seemingly distinct 

sources: commercial poultry and backyard poultry [183,186]. This emergent strain, now 

responsible for > 2000 human illnesses, continued to cause outbreaks into 2024. It has been 

designated by the U.S. CDC as a Reoccurring, Emerging, or Persisting (REP) strain 

REPTDK01, with a cgMLST range of 0–26 allele differences [251]. 

 

Table 5.1 | Summary of some multistate outbreaks caused by the REPTDK01 strain from 

April 2020 to May 2023. Taken from https://www.cdc.gov/salmonella/php/data-

research/reptdk01.html.  

 

Outbreak
Dates people 

got ill
Outbreak source

Reported 
ilnesses

Reported 
hospitalizations

Reported 
deaths

Number of 
states with 
illnesses

Outbreak A
April 2020-

November 2020
Backyard poultry 

(confirmed)
848 186 0 49

Outbreak B
December 2020-

April 2021
Ground turkey (confirmed) 33 4 0 14

Outbreak C
April 2021-

October 2021
Backyard poultry 

(confirmed)
364 111 0 45

Outbreak D
April 2022-

October 2022
Backyard poultry 

(confirmed)
273 74 1 40

Outbreak E
February 2023-

May 2023

Multiple vehicles (confirmed 
backyard poultry and 

suspected ground turkey)
55 9 0 28
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Therefore, the rapid increase in Hadar cases observed in recent years, along with the 

detection of a single strain across multiple, separate poultry industries in several U.S. states 

highlights a public health threat that warrants greater attention and further investigation. 

Given the limitations in the discriminatory power of cgMLST for this strain, the 

Jaccard Index was employed to assess pangenome relatedness of Hadar along the U.S. farm-

to-fork continuum. Building on the thesis-wide objectives (see Objectives chapter), the 

specific aims of the Hadar study are to: 

• Construct a foundational landscape of Hadar diversity. Characterize both core and 

accessory genomic processes that contribute to Hadar’s genetic heterogeneity within 

a U.S. Hadar dataset, and compare these findings with Hadar datasets from other 

regions. 

• Evaluate whether pangenome analysis can differentiate REPTDK01 strains isolated 

from turkey consumption from those associated with backyard poultry contact. 

• Explore the potential of pangenome analysis to provide actionable insights for 

outbreak tracking and improved source attribution. 

• Assess how accessory genomic elements influence Hadar’s short-term evolutionary 

dynamics, potentially driving the emergence of new sublineages. 

 

 Pangenome analysis of U.S. Hadar population 
 

JI was used as a similarity measure between all genome pairs within the Hadar 

dataset, calculated with BinDash [62]. This analysis involved pairwise comparisons of 3,384 

Hadar genomes. The distribution of JI values showed that the majority of genome pairs had 

JI values greater than 0.9 (Figure 5.2). 
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Figure 5.2 | JI distribution obtained from the pairwise comparison of Hadar genomes. (A) 

Histogram displaying the distribution of JI values ranging from 0 to 1. (B) Zoom in on JI values 

between 0.9 and 1.  

 

Following the approach used for Typhi, pairwise JI comparisons of Hadar genomes 

were visualized as a network, where each node represents a genome and edges denote 

similarity based on JI values. The threshold used for this analysis was carefully determined 

through the examination of multiple network properties across different cutoff values 

(Figure 5.3). This analysis revealed a threshold range between 0.985 and 0.990, where the 

network's transitivity remained stable with values above 0.95. This stability indicates 

consistent internal cluster connectivity, making any threshold within this interval a 

reasonable choice. However, other network properties within this range showed subtle 

variations in community structure. The optimal threshold for analyzing Hadar genomes was 

determined to be JI=0.988, at which point the network resolved into 18 well-defined 

communities that encompassed more than 95% the genomes. This threshold balances 

avoiding excessive fragmentation at higher thresholds and preventing over-clustering at 

lower values. This empirically derived threshold provides a robust foundation for 

downstream comparative genomic analyses. 
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Figure 5.3 | Analysis of different networks parameters in the Hadar dataset. A range of JI 

thresholds was applied to the original network and several criteria were analyzed. (A) Transitivity 

for JI values in the range from 0.9 to 1. (B) Transitivity for JI values between 0.97 and 0.99. (C) 

Number of communities containing at least five members. (D) Number of communities containing 

less than five members. (E) Percentage of genomes contained in communities with at least five 

members. (F) Percentage of genomes contained in communities with less than five members. 
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To independently analyze differences in the core and accessory genome of Hadar, 

PopPUNK was employed (Figure 5.4). Hadar exhibited several distinct populations with 

varying degrees of core genome divergence. The majority of Hadar genomes had very low 

core genome distances, as indicated by the dense concentration of points near the y-axis. 

Within this range, there was little variability, as reflected by the tightly clustered contour 

lines. However, some minority populations displayed higher core genome distances, while 

the extent of accessory genome variation remained comparable to the majority of genomes. 

This suggests that certain groups of genomes share similar core genome distances but exhibit 

varying degrees of accessory genome divergence. Another subset of genomes displayed both 

high core genome and high accessory genome distances, representing highly divergent 

lineages that may have undergone significant evolutionary changes through both vertical 

divergence and accessory gene acquisition.  

 

Figure 5.4 | PopPUNK analysis of Hadar isolates showing core versus accessory genome 

distances. Each dot represents a pairwise comparison between two genomes, with the x-axis 

indicating core distance (primarily driven by SNP differences) and the y-axis indicating accessory 

distance (reflecting variation in gene content). Contour lines highlight density regions, illustrating 

that most isolates cluster at very low core distances while displaying a broader range of accessory 

distances.  

 



  Chapter 5: Results II 

133 
 

Hadar genomes self-organized into 18 clusters using a JI threshold of 0.988, labeled 

JI-A through R; less than 5% of genomes (n=158/3,384) did not cluster with a JI-group and 

were considered singletons (Figure 5.5).  

 

Figure 5.5 | Distribution of Hadar genomes by JI. The network contains 3,384 nodes, connected 

when JI≥=0.988. Eighteen groups (named JI-A to JI-R) are indicated by circles. The nodes of each 

JI-group are represented by a distinct color. 

 

JI-group A was the largest group (n=1,899/3,384), with all other JI-groups 

represented by at least five genomes (Table 5.2).  
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Table 5.2: Summary of Hadar JI-group information for 3,384 genomes. 
 

 
a | Number of genomes present in each JI group. 
b | Percentage of genomes from the total data set that belong to each JI group. 

 

Most of the groups showed median JI values between their genomes well above 0.99, 

indicating high genomic similarity among group members (Figure 5.6A). Additionally, 

genomes within each JI-group exhibited an ANI greater than 99.8% (Figure 5.6B).  For JI-

groups A, B, C and D, while the central tendency of JI and ANI values appeared significantly 

high, as indicated by the upward displacement of the box plots, the presence of scattered 

data points at lower JI values within these distributions was notable (Figure 5.6). This 

observation suggests potential genomic divergence or substructuring within these groups, 

where certain genomes exhibit lower similarity to the majority of the group. 

JI group Counta %b

A 1899 56,1
B 489 14,5
C 453 13,4
D 191 5,6
E 40 1,2
F 29 0,9
G 20 0,6
H 20 0,6
I 17 0,5
J 13 0,4
K 12 0,4
L 9 0,3
M 7 0,2
N 6 0,2
O 6 0,2
P 5 0,1
Q 5 0,1
R 5 0,1

Singleton 158 4,7
Total 3384 100
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Figura 5.6 | Relatedness of Hadar genomes within each JI-group. Boxplot illustrating the 

distribution of (A) Jaccard Index and (B) FastANI values across different JI-groups. The boxplot 

displays the IQR of JI or ANI values within each JI-group, with the lower and upper edges of the 

box indicating the first quartile and third quartile, respectively. Within each boxplot, horizontal lines 

represent the median (black) and the average (red) values. The 'whiskers' of the boxplot extend to the 

most extreme values within 1.5 times the IQR from the edges of the box, while outliers are depicted 

as individual points beyond the whiskers.  

 

The three largest groups, JI-A, JI-B, and JI-C, were further divided into subgroups 

using an increased JI threshold (Figure 5.7). Subgroups were identified using the Louvain 

method, with a minimum size criterion of five members. JI-A subgroups A1-15 were defined 

at JI=0.995; JI-B subgroups B1-6 and JI-C subgroups C1-9 were defined at JI=0.992. By 

applying a more stringent threshold, we were able to detect subtle genetic variations and 

structural patterns that the broader JI threshold did not reveal, thereby enabling a deeper 

analysis of the genomic relationships among these primary groups. The chosen thresholds 

were determined through visual inspection of the network, striking a balance between the 

number of groups and network transitivity.  
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Figure 5.7 | Subclustering analysis of Hadar JI-groups A, B, and C. Each panel contains two 

networks filtered at different JI thresholds. In the left network, a lower JI threshold displays the entire 
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group. In the right network, a higher JI threshold reveals subgroups, which are highlighted with 

circles and assigned distinct colors. (A) Subclustering of 1,899 JI-A genomes. (B) Subclustering of 

489 of JI-B genomes. (C) Subclustering of 453 JI-C genomes. 

 

 Pangenome structure of U.S. Hadar population 
 

Analysis of the U.S. Hadar dataset revealed that the variations delineating each JI-

group involve a mix of genomic features, including plasmids larger than 30 kb, prophages, 

AMR regions, or regions of unknown function (Figure 5.8). In some cases, two JI-groups 

differed only by the presence of a large plasmid (e.g., JI-A and JI-C; JI-B and JI-G; JI-D and 

JI-E), while others displayed more differences in their pangenome content (e.g., JI-I) (Figure 

5.8). 

 

Figure 5.8 | Differential distribution of accessory genome elements in the Hadar JI-groups. The 

heatmap was built with the presence or absence of accessory elements in the JI-groups detected by 

PanGraph [77]. Accessory elements larger than 5kb and their derivatives were included in the 

analysis. Each column represents a JI-group. Each row corresponds to an element (with its size in bp 

indicated in parentheses after its name), whose presence in the corresponding JI-group is indicated 

in black while the absence in white. The left bar categorizes the accessory elements as "plasmid", 



Chapter 5: Results II 

138 
 

"prophages", "ICE“, "other“, or “unknown”, as represented in the legend. A digit differentiates 

derivative accessory elements (elements highly similar) sharing otherwise the same name. 

 

ST (sequence type, based on 7 core loci) and cgMLST allele code (based on n=3002 

core loci) [39] were separately visualized on the network to contextualize the pangenome 

with core lineage information. Over 98% of Hadar genomes in this analysis were ST33 

(n=3,326/3,384); only JI-I (ST473), JI-L (ST5130 and ST9222), and JI-Q (ST473) contained 

genomes of a different ST (Figure 5.9A). cgMLST allele codes aligned well with JI-groups, 

with the majority of groups (n=12/18) containing a single condensed allele code (Figure 

5.9B). Phylogenetic analyses suggest membership within certain JI-groups is due to 

convergence in accessory genome content rather than core genome similarity.  

 

Figure 5.9 | Distribution of core lineage information in the Hadar JI-groups. The two networks 

contain 3,384 nodes, which are connected whenever JI >= 0.988. Nodes are colored according to (A) 

Sequence type; (B) Condensed allele code. Eighteen groups (named JI-A to JI-R) are indicated by 

circles. 

 

Plasmids were common in U.S. Hadar genomes, with 60% (n=2,047/3,384) 

containing one or more Col-like plasmids and 25% (n=740/3,384) carrying at least one 

conjugative plasmid larger than 30 kb (Figure 5.10). IncI1 was the most common replicon 

found in large plasmids, detected in three different PTUs: PTU-I1, present in JI-C and JI-E; 
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a newly identified PTU-NA (IncI1, MOBP) in JI-J and JI-N; and another newly identified 

PTU-NA (2) (IncI1, MOBP) in JI-I (Figure 5.10). Although these three PTUs shared the 

same replicon and relaxase, they exhibited differences in their sequence that indicate they 

belong to different taxonomic units. JI-I also contained PTU-E78, a non-mobilizable PTU. 

However, nearly 30% of genomes (n=1,011/3,384) contained neither plasmid 

replicons nor MOB relaxase genes (Figures 5.10 and 5.11); these genomes predominantly 

fell into JI-A. PanGraph analysis revealed that integrated MGEs were also common in 

several JI-groups, including prophages and ICEs (Figure 5.8). 
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Figure 5.10 | Distribution of plasmids in the Hadar JI-groups. The networks contain 3,384 nodes, 

connected when JI≥0.988. Eighteen groups (named JI-A to JI-R) are indicated by circles. (A) 
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Distribution of the 12 most common plasmid replicons patterns across JI-groups. Nodes are colored 

according to the plasmid replicon pattern present in each genome. (B) Distribution of large (>30kb) 

plasmids (classified by PTUs) across JI-groups. Nodes are colored according to the PTUs present in 

each genome. 

 

Figure 5.11 | Distribution of MOB classes across different Hadar JI-groups. The bar chart 

illustrates the number of genomes for each MOB class. Only the MOB patterns that are present in 

more than three genomes within a JI-group are represented. For simplicity, repeated occurrences of 

the same MOB within a genome (e.g., MOBP;MOBP) are counted only once (MOBP).The color of 

each bar corresponds to a specific JI-group, with the color mapping provided in the legend. 

 

Over 90% (n=3,055/3,384) of genomes contained at least one AMR determinant. 

Predicted resistance to aminoglycosides (specifically, streptomycin) and tetracyclines was 

the most common profile, mediated by aph(3'')-Ib, aph(6)-Id, and tet(A)), all integrated in 

the chromosome (Figures 5.12A and 5.13). Predicted resistance to penicillins was less 

common (4%, n=128/3,384) (Figure 5.12B) and was predominantly mediated by blaTEM-1 

(Figure 5.13). While rare, cephalosporin resistance mediated by blaCMY-2 was detected in 

plasmids of groups JI-C and JI-E (0.4%, n=12/3,384; Figure 5.12B). Members of JI-D, JI-

I, and JI-Q were predicted to be pansusceptible, with no known AMR determinants detected. 

Figure 5.13 further detailed all the AMR genes present in all the JI-groups. 
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Figure 5.12 | Distribution of resistance determinants in the Hadar JI-groups. The networks 

contain 3,384 nodes, connected when JI≥0.988. Eighteen groups (named JI-A to JI-R) are indicated 
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by circles. (A) Distribution of the most common AMR genes patterns across JI-groups. Nodes are 

colored based on the AMR determinants. (B) Distribution of genomes with predicted resistance to 

penicillin and cephalosporin across JI-groups. Nodes are colored according to their predicted 

resistance to these antibiotics. 
 

 

Figure 5.13 | Heatmap showing the distribution of antimicrobial resistance genes across JI-

groups. The heatmap was constructed with the presence or absence of AMR genes in the JI-groups. 

Each column represents a JI-group. Each row corresponds to an AMR determinant. The color scale 

indicates the percentage of genomes within each group that harbor the specific AMR gene. 

 

 Genetic and epidemiological differences between most 

abundant pangenome groups 
 

The dominant pangenome groups changed substantially between 2016 and 2023, 

most notably between 2019 and 2020 (Figures 5.14 and 5.15). This shift was particularly 

pronounced for human and retail meat samples, where JI-A and JI-C were rare prior to 2020 

yet comprise between 56% and 100% of samples collected in years 2020-2023. JI-B was the 

most common group detected in retail meat and animal (cecal) sampling prior to 2020 but 

decreased in detection substantially in 2020-2023; JI-B was not detected at all in 2023 retail 

meat sampling (Figure 5.14). Groups JI-D and JI-E made up more than half of human Hadar 
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samples in 2016 and 2017 but have not been detected since 2019; these groups were not 

found in retail meat or animal sampling throughout the study years. JI-A and JI-C are the 

most common JI-groups in all three sampling systems from 2020-2023 (Figure 5.14).  

 

Figure 5.14 | Abundance of Hadar JI-groups over time. The bar charts display either the number 

of genomes (A) or the percentages of genomes relative to each year and source (B) detected in 

humans, retail meats, and animals from 2016 to 2023, categorized by JI-groups. Data are sourced 
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from NARMS, including CDC (humans), FDA (retail meats), and FSIS (animals). Counts and 

percentages are plotted on the y-axis, while years on the x-axis. 

 

Figure 5.15 | Distribution of Hadar genomes by variables of interest. The networks contain 3,384 

nodes, connected when JI≥0.988. Eighteen groups (named JI-A to JI-R) are indicated by circles. Only 

the genomes that were isolated either from commercial poultry or in the human clinic with reported 

backyard exposure are colored. (A) Distribution of the genomes isolated before 2020 in the JI-groups. 

(B) Distribution of the genomes isolated between 2020 and 2023 in the JI-groups. 

 

JI-A and JI-C were indistinguishable by cgMLST-based phylogeny (Figure 5.16: 

Ring 1) but differed in their pangenome due to the presence of a ~100 kb PTU-I1 (IncI1) 

plasmid, which underpins the separation of these two JI-groups (Figures 5.8 and 5.10). Most 

JI-A and JI-C genomes fell within a comparatively tight “emergent” clade that forms the 

CDC-defined REPTDK01 strain (Figures 5.16 and 5.17), associated with ground turkey 

consumption and backyard poultry contact based on previous multistate outbreak 

investigations [251]. This emergent clade contained a ~8 kb prophage, labeled here prophage 

1 (Figure 5.16), that forms part of the core pangenome of JI-A and JI-C (Figure 5.8). 

Prophage 1 was detected as early as 2004 in singleton Hadar genomes (imported “sweet 

good without custard or cream filling” from Pakistan) (Table S5), and it was seen in 

genomes from swine and commercial poultry samples from 2015 (Table S5) yet remained 

uncommon until the 2020 emergence of REPTDK01 (Figures 5.16 and 5.18).  
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Figure 5.16 | cgMLST-based phylogenetic tree of Hadar genomes. Tree generated using 

Bionumerics v7.6.3 and visualized in iTol v6 [215]. Ring 1 displays JI-group, Ring 2 displays time 

range (1990-2019 versus 2020-2023), and Ring 3 displays presence of prophage 1 detected in this 

study. The large clade colored in green represents REPTDK01 strains. 
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Figure 5.17 | Distribution of the REPTDK01 strains in the JI network. The network contains 

3,384 nodes, connected when JI≥0.988. Eighteen groups (named JI-A to JI-R) are indicated by 

circles. Genomes that belong to REPTDK01 strain are colored in red. 

 



Chapter 5: Results II 

148 
 

Figure 5.18 | Occurrence of prophage 1 in NARMS surveillance sequencing over time. The bar 

charts represent the number of genomes detected in humans, retail meats, and animals from 2016 to 

2023, categorized by the presence (blue) or absence (grey) of prophage 1. Counts are displayed on 

the left y-axis, year is displayed on the x-axis. The dashed line indicates the percentage of genomes 

(right y-axis) carrying prophage 1 within each category over time. 

 

According to PHASTEST [197], Prophage 1 is related to filamentous phages I2-2 

and Ike, and contains a protein with N-terminal homology to the zonular occludens toxin 

protein (Zot) (Figure 5.19). The phage-encoded Zot proteins in Vibrio cholerae [252] and 

Campylobacter spp. [253,254] have demonstrated a pathogenic role, attributable to a C-

terminal enterotoxic domain [255]. While homology with Zot proteins does not imply 

toxigenic function, the Hadar Zot-like protein identified here was bioinformatically 

predicted as an exotoxin using ToxinPred3.0 [256], hinting at a putative role in pathogenesis. 

Thus, prophage 1 presence is notable both from an epidemiological and biological 

perspective, and its pathogenic and adaptive capacity is being assessed with functional 

analysis. 

 

Figure 5.19 | Genomic alignment of prophages I2-2 (NC_001332.1), Prophage 1, and Ike 

(NC_002014.1). This figure was obtained using Easyfig. Purple arrows represent annotated genes, 

with arrowheads indicating the direction of transcription. Shaded gray regions between the prophages 

denote areas of sequence homology, with shading intensity reflecting the percentage of sequence 

identity (64%–100%, as indicated by the scale bar on the right). Gene annotations of prophage 1 was 

obtained with Bakta. 
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JI-B was the second most abundant pangenome group (Table 5.2), predominantly 

encompassing genomes from commercial poultry isolated before 2020 (Figures 5.14 and 

5.15). A smaller group, JI-G, that also contained genomes from commercial poultry (12/20) 

isolated before 2020 (Figures 5.14 and 5.15), was indistinguishable from JI-B 

phylogenetically (Figure 5.16: Ring 1) but can be differentiated by the presence of PTU-I1 

plasmids (Figure 5.10). JI-B genomes appeared more diverse in their core genome relative 

to those from other dominant pangenome groups (e.g., JI-A, JI-C, JI-D and JI-E) (Figures 

5.9B and 5.16), which may be a reflection of time and environmental factors (genomes in 

JI-B were isolated as early as 2011 from poultry sources across the country). Analysis of JI-

B subgroups did not reveal any geographic association or link to specific processing facilities 

(data not shown). Of note, genomes from human samples that were part of a 2019 multistate 

Hadar outbreak linked to ground turkey consumption (internal CDC investigation) all fell 

into JI-B or JI-G, suggesting Hadar strains from these groups are transmitted via food. 

In contrast, groups JI-D and JI-E were almost always from ill humans (rather than 

animal or meat samples), often with reported contact with backyard poultry and isolated 

before 2020 (Figure 5.14). JI-D and JI-E genomes displayed relatively little core diversity 

(Figure 5.16) and differed from each other only by the carriage of PTU-I1 (IncI1) plasmids 

(Figure 5.10). They differed from other JI-groups phylogenetically and pangenomically; 

phylogenetically, they were encompassed in a single clade by core SNP analysis (Figure 

5.16) and they belonged to a different allele code from cgMLST (Figure 5.9B); 

pangenomically, they lacked a common AMR region (“AMR-encoding Tn 1.1”, Figures 5.8 

and 5.12A) and were the only groups to carry PTU-X1 (IncX1) plasmids (Figure 5.10). 

Genomes in these groups were part of 2016 and 2017 multistate outbreaks linked to contact 

with backyard poultry 

(https://archive.cdc.gov/#/details?url=https://www.cdc.gov/salmonella/live-poultry-05-

16/index.html). 

Two small pangenome groups, JI-H and JI-K, were of interest because of their 

connectivity to JI-A in the network, indicating pangenomic relatedness (Figure 5.5). JI-H 

genomes were all from commercial chicken sampling, or from ill humans (no exposure 

information available), representing a statistically significant “chicken-source cluster” (p < 

0.00001, chi-squared) that is unique among the more common commercial turkey source 

(Figure 5.15, Table S5). JI-K genomes were all isolated throughout 2023, were almost 

exclusively from turkey product samples (n=11/12) (Figure 5.15, Table S5) and were 
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predominantly from a single state (n=8/12 were isolated in California). JI-K genomes carried 

prophage 1, along with two other larger prophages unique to this group (prophage 6.2 and 

prophage 10; Figure 5.8), potentially representing recent divergence from REPTDK01.  

Several pangenome groups harbored PTU-I1 (IncI1) plasmids, including JI-C, JI-E 

and JI-G (Figure 5.10). PTU-I1 (IncI1) plasmids are common in avian environments, often 

carry AMR genes, and may play a role in virulence and growth inhibition of competing 

bacteria [257,258]; thus, their presence and diversity in this dataset were of interest. Core 

plasmid SNP analysis coupled with AcCNET [205] plasmid proteome analysis were used to 

assess the relatedness of PTU-I1 (IncI1) plasmids between and within JI-groups (Figure 

5.20). In addition, this comparative analysis was also conducted with PTU-I1 plasmids 

present in other Enterobacteriaceae genus available in the RefSeq200 database (Table S8). 

PTU-I1 plasmids from all three JI-groups were diverse in their core and proteome and 

intermingled phylogenetically with PTU-I1 plasmids from other Enterobacteriaceae genus 

(Figure 5.20).  

Proteomic analyses further emphasized the diversity of PTU-I1 plasmids. While 

certain HPCs were conserved across all PTU-I1 plasmids, subgroup-specific clusters suggest 

functional specialization (Figure 5.20B). For instance, JI-C1 plasmids form a subgroup 

characterized by their high similarity, sharing the same set of proteins while also carrying 

proteins exclusive to this subgroup (Figure 5.20C). Upon investigating these proteins, none 

stood out as particularly noteworthy. Furthermore, within this subgroup, a plasmid from E. 

coli was identified, indicating a high degree of similarity to the JI-C1 plasmids. 

Plasmids from the same JI-C subgroups clustered together phylogenetically (Figure 

5.20A) and proteomically (Figure 5.20C), indicating that plasmid content was responsible 

for JI-C subgrouping. A phylogenetic comparison of JI-C plasmids and their host 

chromosomes (Figure 5.21) revealed that JI-C chromosomes were highly conserved, with 

greater similarity to one another than the plasmid did to each other. Notably, the largest 

subgroup, JI-C1, formed a distinct clonal lineage with tightly related plasmids and 

chromosomal genomes, suggesting a multiyear clonal expansion. In contrast, other JI-C 

subgroups chromosomes were intermingled in the tree, suggesting that the subgroup 

distinctions are not chromosome-driven. JI-C1 plasmids were primarily associated with 

human clinical isolates of unknown exposure and commercial poultry. Other subgroups, 

such as JI-C2 and JI-C9, were more related to backyard poultry (Figure 5.21).  
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Figure 5.20 | Analysis of PTU-I1. (A) Core genome phylogenetic tree of PTU-I1 plasmids. A ML 

tree was constructed based on core SNPs obtained using Snippy from the core genome of 512 PTU-

I1 plasmids from the Hadar dataset and 259 PTU-I1 plasmids from RefSeq200. The tree was built 

with IQ-TREE [219] using the suggested model, midpoint-rooted, and visualized in iTol v6 [215]. 

UFBootstrap values > 80% are indicated by circles on the corresponding nodes. Branch length scale 

represents substitutions per site. Colored rings indicate the plasmid host (1), the JI-group of Hadar 

plasmid hosts (2), and the JI-subgroup of the JI-C plasmids (3). (B) Proteome network of PTU-I1 

plasmids colored by JI-group. The proteins of the PTU-I1 plasmids were clustered at 80% identity 
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and 80% coverage using AcCNET [205]. The larger nodes correspond to plasmids and are colored 

according to the JI-group of the Hadar plasmids (JI-C, JI-E, JI-G), or in grey if they belong to other 

plasmids from RefSeq200. The smaller nodes represent HPCs and are colored in grey. Both kinds of 

nodes are connected if a plasmid contains a member in the corresponding protein cluster. HPCs 

present a single plasmid were removed. (C) Proteome network of PTU-I1 plasmids colored by JI-C-

subgroup. The network was constructed as indicated in (B). The JI-C Hadar plasmids are colored 

based on their JI-subgroup, and the other plasmids have the same color (light blue).  
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Figure 5.21 | Phylogenetic analysis of Hadar JI-group C isolates. The ML trees were generated 

from core-genome SNP alignments obtained using Snippy for either 453 JI-C plasmids (PTU-I1) (A) 

or JI-C chromosomes (B). The trees were built using IQ-TREE  [219] with the substitution models 

TVM+F+I+R4 (A) or TIMe+ASC (B) and visualized in iTol v6 [215]. UFBootstrap values > 80% 

are indicated by circles on the corresponding nodes. Colored rings indicate the JI-subgroup (1), the 

source type (2), and the time range (3). 

 

 Hadar pangenome offers increased discriminatory power for 

retrospective and prospective public health investigations 
 

REPTDK01 was clearly detectable in the pangenome network, 98% (n=2,148/2,194) 

of these genomes fell into JI-A, JI-C, JI-N and JI-R (Figure 5.17), genetically corroborating 

and adding confidence to the REPTDK01 definition using pangenomic data. Additionally, 

REPTDK01 was further stratified by JI-grouping and JI-subgrouping, revealing clear 

epidemiological patterns. For example, while JI-A itself was not statistically associated with 

either commercial or backyard poultry (Figure 5.15, Table 5.3), JI-A2 was predominantly 

commercial poultry related genomes from the U.S. and Canada (n=42/68) and none of the 

human clinical cases in this group (n=24/68) reported backyard poultry contact (Figure 

5.22). In contrast, JI-A3 was almost exclusively human clinical samples (n=27/28), a third 

of which reported backyard poultry contact, and zero commercial poultry related genomes 

fell into this group (Figure 5.22). JI-N genomes were all human clinical, mostly isolated 

from the northeast (n=4/6) (Tables 5.4 and S5), may represent a closely related subcluster 

of illnesses that differ from JI-A REPTDK01 strains only by the carriage of a large plasmid 

(PTU-NA, IncI1) (Figure 5.8).  
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Figure 5.22 | Subclustering analysis of Hadar JI-group A. The network contains 1,899 nodes of 

JI-group A connected when JI≥=0.995. Subgroups A1 to A15 defined by the Louvain method are 

surrounded by circles, singleton genomes that do not associate with a JI-subgroup are displayed 

around the outside of the network. Nodes are colored by source. 

 

JI-C was significantly associated with backyard poultry (p < 0.00001, chi-squared), 

representing a subgroup of REPTDK01 (defined by the carriage of PTU-I1 plasmids) that 

was likely transmitted to humans via animal contact rather than food. More specifically, 

epidemiological traceback data available for clonal subgroup JI-C1 disproved the 

involvement of a single backyard poultry supply store chain or hatchery, instead suggesting 

a common reservoir of Hadar upstream of hatcheries. Coupling pangenome data and 

epidemiological data, REPTDK01 strains can be further differentiated for both retrospective 

and prospective investigations.  

Several other non-REPTDK01 pangenome groups were statistically associated with 

a specific source or exposure. JI-B and JI-G were each significantly associated with 

commercial turkey (p < 0.00001, chi-squared); JI-B genomes had 17.5 times (95% CI: 13.7-

22.3) and JI-G genomes had 5.9 times (95% CI: 2.1-17.1) higher odds of being from 

commercial turkey compared with all other JI-groups (Table 5.3). Coupled with the absence 

of human cases reporting backyard poultry contact in these groups, it is likely that Hadar 
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strains from JI-B and JI-G, isolated from human cases with unknown exposure, were 

acquired through foodborne transmission.  

In contrast, JI-D and JI-E were each significantly associated with backyard poultry 

contact (p < 0.00001, chi-squared); JI-D genomes had 2.6 times (95% CI: 1.9-3.6) and JI-E 

genomes had 5.2 times (95% CI: 2.7-10.6) greater odds of backyard poultry contact, relative 

to all other JI-groups (Table 5.3). The stark lack of genomes from commercial poultry 

sources (only JI-D had a single commercial chicken source genome), and the predominance 

of backyard poultry-associated outbreak genomes in these groups (n=140/191 in JI-D, 

n=35/40 in JI-E), strongly suggests JI-D and JI-E strains of Hadar were transmitted through 

animal contact. It is important to note that cgMLST differentiates JI-B and JI-G genomes 

from JI-D and JI-E (Figure 5.16), thus, the pangenome analysis performed here provides 

additional genomic confidence in these attributions.  

 

Table 5.3: Statistical analysis between JI-groups and backyard poultry and/or turkey 

genomes in Hadar. This table was prepared by Kaitlin Tagg, whose contribution is gratefully 

acknowledged. 

 
a | Statistical analysis was conducted only for JI-groups with at least 20 genomes and those related to backyard 

poultry or turkey. Consequently, JI groups JI-I to JI-R were excluded for having fewer than 20 genomes, while 

JI-G and JI-H were excluded because they lack genomes associated with these sources, as explained in 

Materials and Methods. 
b | OR indicates Odds ratios for associations between the JI-group and the corresponding source. 
c | CI indicates 95% confidence intervals for associations between the JI-group and the corresponding source. 
d | Total genomes in each group that meet the requirement for statistical analysis as explained in Materials and 

Methods. 

 

A handful of small JI-groups contained genomes from humans with limited 

epidemiological information, but with one or two genomes from a known source (Tables 

5.4 and S5). Specifically, both JI-F and JI-J contained a genome from raw dog food 

Nº genomes ORb CI (lower-upper)c Nº genomes ORb CI (lower-upper)c

JI-A 431 1,1 0,9-1,3 219 0,4 0,3-0,5 1188 1838

JI-B - - - 285 17,5 13,7-22,3 142 427

JI-C 184 2,8 2,3-3,5 - - - 265 449

JI-D 74 2,6 1,9-3,6 - - - 104 178

JI-E 24 5,2 2,7-10,6 - - - 16 40

JI-G - - - 10 5,9 2,1-17,1 8 18

Source

JI-groupa TotaldBackyard poultry related Commercial turkey
Other sources
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(containing duck), obtained from ad hoc pet food sampling. JI-L contained two genomes 

from imported shrimp (Ecuador) isolated in 2022 (Table 5.4, Table S5). Given the close 

relatedness of genomes within JI-groups (ANI ≥ 99.9%, Figure 5.6), the presence of the pet 

food and imported food genomes alongside genomes from human samples is suggestive of 

an epidemiological connection, though without exposure information reported by these ill 

people this link cannot be confirmed. Prospectively, the relatedness of additional human 

cases found within the JI-F and JI-J groups could inform which food items to assess during 

supplementary interviews of ill people included in an outbreak investigation.   

Although this study primarily focused on the dominant groups, the surveillance of 

minor groups remains important, as they may carry advantageous traits or signal emerging 

trends (Table 5.4). Capturing the full spectrum of genomic diversity contributes to a more 

complete picture of evolutionary dynamics and potential sources of infection. 
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Table 5.4: Distribution of smaller JI groups by isolation source and year. 

 

a | JI-groups containing fewer than 30 genomes. The number in parentheses indicates the 

genome count within each JI group. 
b | Source of isolation. 

JI-groupa Sourceb Yearc

Commercial poultry (chicken) 2020 (1)

Human clinical (unkwnown 
exposure)

2015 (1), 2017 (3), 2018 (6), 2019 (5), 2020 (3), 
2021 (2), 2022 (4), 2023 (2)

Animal feed 2017 (2)

Commercial poultry (turkey)
2014 (2), 2016 (2), 2018 (1), 2019 (4), 2020 (1), 

2021 (1), 2023 (1)
Human clinical (unkwnown 

exposure)
2018 (3), 2019 (2), 2020 (1), 2021 (2)

Commercial poultry (chicken) 2018 (1), 2020 (1), 2021 (1), 2022 (5), 2023 (3)

Human clinical (unkwnown 
exposure)

2017 (1), 2018 (1), 2023 (5)

On farm monitoring (chicken) 2018 (1), 2020 (1)

I                  
(17)

Human clinical (unkwnown 
exposure)

2016 (3), 2017 (1), 2018 (1), 2019 (2), 2020 (2), 
2021 (1), 2022 (2), 2023 (5)

Animal feed 2018 (1)

Human clinical (unkwnown 
exposure)

2016 (1), 2017 (2), 2018 (3), 2020 (1), 2022 (3), 
2023 (2)

Commercial poultry (chicken) 2023 (1)

Commercial poultry (turkey) 2023 (11)

Human clinical (unkwnown 
exposure)

2019 (1), 2020 (3), 2023 (3)

Imported food 2022 (2)

Commercial poultry (chicken) 2022 (1)

Commercial poultry (turkey) 2023 (4)

Human clinical (unkwnown 
exposure)

2022 (2)

Human clinical (backyard 
poultry contact)

2020 (2)

Human clinical (unkwnown 
exposure)

2020 (4)

O                  
(6)

Swine 2011 (6)

P                  
(5)

Human clinical (unkwnown 
exposure)

2018 (1), 2019 (2), 2021 (1), 2022 (1)

Q                  
(5)

Human clinical (unkwnown 
exposure)

2017 (1), 2019 (2), 2020 (1), 2022 (1)

Commercial poultry (chicken) 2021 (1)

Human clinical (backyard 
poultry contact)

2020 (1), 2022 (1)

Human clinical (unkwnown 
exposure)

2020 (1), 2022 (1)

M                  
(7)

N                  
(6)

R                  
(5)

F                  
(29)

G                
(20)

H                   
(20)

J                  
(13)

K                  
(12)

L                  
(9)
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c |Year of isolation. The number in parentheses indicates the genome count for each year. 

 

 

As mentioned above, several pairs of JI-groups differed only by the presence of PTU-

I1 (IncI1) plasmids: JI-A and JI-C, JI-D and JI-E, JI-B and JI-G. We further assessed these 

pairs for epidemiological patterns associated with plasmid presence, including source of 

isolation, geographic region, and patient demographics (age, sex, site of infection, 

hospitalization), but no variables were significantly different between paired groups (V < 

0.3, corrected Cramer’s V; p > 0.005, chi-squared). However, PTU-I1 (IncI1) plasmids were 

independently associated with backyard poultry-related sources (PTU-I1 n=208, no PTU-I1 

n=526) when compared with commercial poultry sources (PTU-I1 n=32, no PTU-I1 n=699), 

and when compared with all other sources (PTU-I1 n=305, no PTU-I1 n=2,345) (p < 

0.00001, chi-squared). Thus, PTU-I1 plasmids have statistical support to serve as a genetic 

marker to distinguish strains transmitted via backyard poultry contact versus those more 

likely attributed to another source, which is of particular value for differentiating 

REPTDK01 strains that can be transmitted via several pathways. 

 

 U.S. Hadar pangenome structure reflects a subset of global 

diversity 
 

A dataset of Hadar genomes (n=1,145) from 33 countries other than the U.S., isolated 

from 1950 through 2023, was used to assess differences in pangenome structure between 

separate geographical locations (Figure 5.23). The non-U.S. dataset partially overlapped 

with U.S. genomes: 33% of non-U.S. genomes clusterd within JI-groups identified in the 

U.S. pangenome data, while 47% formed distinct JI-groups not present in the U.S. dataset 

and the remaining genomes were singletons (Figure 5.24, Table 5.5). 
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Figure 5.23 | Metadata overview of the non-U.S. Hadar dataset. 1,145 Hadar genomes present in 

EnteroBase comprise the non-U.S. dataset. (A) Number of genomes per country. (B) Number of 

genomes per year of isolation. 
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Figure 5.24 | Distribution of U.S. and non-U.S. Hadar genomes by JI. The JI network contains 

1,145 non-U.S. Hadar genomes from EnteroBase and a reduced U.S. genomes dataset (n=1,516), 

using JI>=0.988 as a threshold. U.S. genomes are represented by grey nodes and circled when 

belonging to a JI-group, while non-U.S. genomes are represented by red nodes. To select the 

representatives U.S. genomes, the complete U.S. Hadar dataset was first clustered at JI>=0.99916, a 

threshold in which only practically identical genomes were connected. A greedy set algorithm was 

implemented to reduce the dataset. The connectivity degree (number of connections) of each node 

was calculated to select the most connected genome as a representative. All nodes connected to the 

representative were removed. This process was repeated until the network exclusively contains 

unconnected representative nodes. 
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Table 5.5: Distribution of Hadar genomes from U.S. and non-U.S. dataset across JI-groups. 
 

 
a | JI-groups defined in the U.S. dataset (JI-A to JI-R) and JI-groups defined in the non-U.S. dataset 

(JI-S to JI-AN). JI-A and JI-K are fused because when adding the non-U.S. dataset, Louvain grouped 

both groups in a single cluster. JI-groups JI-AH to JI-AN include genomes from the U.S. dataset; 

however, they were not previously defined as JI-groups because they did not meet the minimum 

threshold of at least five genomes. JI-AH contains six genomes from the U.S. dataset, but this group 

was not defined when analyzing only the U.S. genomes. This is because these six genomes did not 

JI-groupsa Nº U.S. genomesb % U.S. genomesc Nº non-U.S. genomesd % non-U.S. genomese

A + K 1911 56,42 208 18,17
B 489 14,44 36 3,14
C 453 13,37 2 0,17
D 191 5,64 1 0,09
E 40 1,18 1 0,09
F 29 0,86 4 0,35
G 20 0,59 0 0
H 20 0,59 0 0
I 17 0,5 70 6,11
J 13 0,38 0 0
L 9 0,27 3 0,26
M 7 0,21 0 0
N 6 0,18 0 0
O 6 0,18 0 0
P 5 0,15 28 2,45
Q 5 0,15 26 2,27
R 5 0,15 5 0,44
S 0 0 90 7,86
T 0 0 46 4,02
U 0 0 27 2,36
V 0 0 22 1,92
W 0 0 19 1,66
X 0 0 17 1,48
Y 0 0 10 0,87
Z 0 0 8 0,7

AA 0 0 8 0,7
AB 0 0 8 0,7
AC 0 0 7 0,61
AD 0 0 7 0,61
AE 0 0 7 0,61
AF 0 0 6 0,52
AG 0 0 5 0,44
AH 6 0,18 96 8,38
AI 4 0,12 81 7,07
AJ 1 0,03 36 3,14
AK 2 0,06 16 1,4
AL 1 0,03 8 0,7
AM 2 0,06 9 0,79
AN 1 0,03 8 0,7

Singletons 141 4,16 220 19,21
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initially cluster together. However, when additional non-U.S. genomes were included, they formed 

a connected cluster with other genomes, leading to the definition of JI-AH in the combined dataset. 
b | Number of genomes from the U.S. dataset present in each JI-group. JI-groups with 0 genomes are 

highlighted in blue. 
c | Percentage of genomes from the U.S. dataset present in each JI-group. JI-groups with 0 genomes 

are highlighted in blue. 
d | Number of genomes from the non-U.S. dataset present in each JI-group. JI-groups with 0 genomes 

are highlighted in blue. 
e | Percentage of genomes from the non-U.S. dataset present in each JI-group. JI-groups with 0 

genomes are highlighted in blue. 

 

Both datasets were further compared using Roary [67]. This analysis showed 

differences and overlaps between the U.S. and non-U.S. Hadar pangenomes (Figure 5.25). 

Both datasets shared a robust core genome comprising 4,187 genes (Figure 5.25A). Notably, 

separate analysis of each dataset revealed similar core gene counts, further highlighting the 

robustness of the core genome across different geographic populations. However, the 

breakdown of core, shell, and cloud genes highlighted significant geographic variation. 

Genes present in over 80% of genomes were classified as core, those present in 15-79% as 

shell, and those in less than 15% as cloud. The non-U.S. dataset contained a larger number 

of cloud genes (8,391) compared to the U.S. dataset (6,791), suggesting higher accessory 

genome diversity among global isolates (Figure 5.25A). This is particularly notable given 

that the non-U.S. dataset includes only about one-third as many genomes as the U.S. dataset.  

To compare the diversity of each dataset at equivalent sample sizes, pangenome 

accumulation curves (Figure 5.25B) were generated to show number of genes across 

increasing numbers of genomes. When comparing 1,000 genomes, the pangenome of non-

U.S. dataset surpassed 9,000 genes, while the pangenome of the U.S. dataset remained below 

this number. Both datasets exhibited an open pangenomes (Heaps’ law γ value ~ 0.2) and 

due to this fact, it is expected that if we add more genomes to the non-U.S. dataset, the 

pangenome will be much larger than the U.S. dataset. Additionally, the Venn diagram 

(Figure 5.25C) illustrated the unique genetic contributions of each dataset. The non-U.S. 

dataset contained 3,095 genes entirely absent from the U.S. pangenome, whereas the U.S. 

dataset had 1,628 unique genes not found in the non-U.S. collection. This distribution 

suggests that the U.S. Hadar population represents a subset of the global genetic diversity, 

with certain accessory genes potentially linked to region-specific adaptations. 
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The gene frequency distribution provided an alternative cumulative overview of 

core, shell, and cloud genes (Figure 5.25D). This panel reaffirms that the majority of 

accessory genes fell into the cloud category, particularly in the non-U.S. dataset, indicating 

a large pool of genes that were sporadically present and likely linked to environmental or 

host-specific adaptations. The gradual slope of the curve for non-core genes reinforces the 

impression of a highly variable accessory genome in non-U.S. isolates.  

 

Figure 5.25 | Comparative analysis of pangenome distribution across U.S. and non-U.S. Hadar 

datasets using Roary. (A) Pie charts show the distribution of core, shell, and cloud genes within 

each dataset. Core genes, defined as those present in at least 80% of genomes, are shown in dark 

blue; shell genes, present in 15-79% of genomes, are shown in medium blue, while cloud genes, 

found in a maximum of 15% of genomes, are shown in light blue. The number of genes in each 

category is indicated on each chart. (B) Accumulation curves for core, new (previously unseen), pan, 

and unique (observed only once) genes across the increasing number of genomes analyzed. The x-
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axis represents the number of genomes, while the y-axis represents the cumulative number of genes 

in each category. (C) Venn diagram comparing the U.S. and non-U.S. dataset. (D) Cumulative gene 

frequency distribution function. The curve represents the accumulated abundance of genomes in 

which a gene is present (gene frequency). Discontinuous lines divide the cumulative gene frequency 

curve into the three gene categories: cloud, shell, and core.  

 

Separate analyses of genomes from France (n=306) and the United Kingdom (U.K.) 

(n=484) were performed since they represented more than half of the non-U.S. genomes. Of 

18 JI-groups defined in the U.S. dataset, the U.K. and France datasets shared only seven (170 

genomes, 35%) and six (74 genomes, 24%) JI-groups, respectively. On the other hand, nine 

France JI-groups (162 genomes, 53%) (Figure 5.26) and seventeen U.K. JI-groups (228 

genomes, 47%) were distinct from those isolated in the U.S (Figure 5.27).  

While no temporal shift was observed for pangenome groups from U.K. data, a 

notable increase in genomes belonging to one of the novel groups in France, JI-S, beginning 

in 2019 was observed (Figure 5.26). JI-S genomes contained a prophage closely related to 

prophage 1, highlighting an intriguing parallel dynamic to the recent proliferation of 

prophage 1-containing groups JI-A and JI-C in the U.S. Thus, these analyses suggest Hadar 

pangenomic diversity is largely geographically defined, with potentially important genetic 

overlaps that will be further investigated.  
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Figure 5.26 | Distribution of France Hadar dataset by source and year of isolation. The bar plot 

shows the number of genomes (y-axis) isolated each year (x-axis) from different sources: 

environment, food, human, poultry, and wild animal. Each bar is color-coded according to the JI-

group classification, as indicated in the legend on the right. JI-groups A-R were defined in the U.S. 

dataset, the remaining groups are exclusively found in the non-U.S. dataset. 

 

 

Figure 5.27 | Distribution of U.K. Hadar dataset by source and year of isolation. The bar plot 

shows the number of genomes (y-axis) isolated each year (x-axis) from different sources: 

environment, food, human, poultry, and wild animal. Each bar is color-coded according to the JI-

group classification, as indicated in the legend on the right. JI-groups A-R were defined in the U.S. 

dataset, the remaining groups are exclusively found in the non-U.S. dataset. 
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  This thesis investigated two serovars of  Salmonella  at the population genomic level

using a pangenome approach. Recognizing that bacterial evolution occurs in both vertical

and horizontal dimensions, inclusion of both core and accessory genetic material is a logical

step  toward  understanding  pathogen  dynamics,  not  to  mention  a  more  holistic  use  of

increasingly available molecular datasets.

  Current genomic surveillance methods predominantly  rely on core genome or gene-

by-gene strategies, which often overlook the extensive genetic diversity inherent in bacterial

populations.  In  contrast,  the  primary  objective  of  this  work  was  to  apply  a  comparative

genomic  framework  that  fully  leverages  all  information  contained  within  whole-genome

assemblies.  This  strategy  aimed  to  uncover  subtle  population  structures  and  evolutionary

dynamics in serovars of  Salmonella,  insights that would remain hidden when relying solely

on traditional gene-by-gene or core genome strategies.

  This  study  specifically  examined  short-term  population  shifts  and  the  role  of  the

accessory  genome  in  generating  genetic  diversity  within  Salmonella.  Given  that  outbreak

dynamics  and  the  epidemic  success  of  pathogens  are  typically  driven  by  rapid  genetic

changes,  often  mediated  by  MGE  acquisition,  the  accessory  genome  becomes  a  critical

focus.  Consequently,  incorporating  the  accessory  genome  into  public  health  analyses  can

provide unparalleled epidemiological resolution.

  Before this project began, a new computational tool, PopPUNK [65], was published

whose functionality initially matched our needs for  analyzing  Salmonella  serovars. This tool

calculates two distinct  k-mer-based distances, one for the core genome and another for the

accessory genome, and it is designed to identify natural clusters within bacterial populations

by  applying  spatial  clustering  algorithms.  For  some  species,  predefined  bacterial  models

exist,  providing  established  optimal  clustering  thresholds  based  on  previous  population

studies. In cases where no predefined bacterial model exists, as is the case for the  Salmonella

serovars  analyzed  here,  PopPUNK  requires  manual  optimization  of  clustering  thresholds

following the steps and recommendations described in the paper.

  When  evaluating  the  quality  of  the  clustering,  the  user  must  interpret  network

parameters  such  as  density,  transitivity  score,  and  average  entropy  and  make  several

decisions  to  obtain  the  most  suitable  output.  The  PopPUNK  developers  generally

recommend  evaluating  clustering  performance  by  visually  inspecting  the  output  and

comparing  the  assigned  clusters  to  a  core  phylogenetic  tree.  This  approach  uses
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differences in the core genome as a guide to determine whether the clusters accurately reflect 

biological relationships and achieve the desired resolution, thereby informing the selection 

of an appropriate threshold for a given project. 

Although PopPUNK offered an attractive framework, and, in theory, should allow 

clustering at any resolution, it presented several limitations for the objectives of this project, 

particularly in defining robust clusters within our dataset, which exhibited low genetic 

variability. Our datasets did not display a clear bimodal separation between within-strain and 

between-strain comparisons. As a result, the distance distribution formed a diffuse “cloud,” 

which made it difficult for the clustering algorithm to converge on a definitive solution.   

 This issue is illustrated in Figure 6.1, which shows the distance distributions for 

Salmonella enterica serovars Typhi and Hadar (analyzed in this study) alongside examples 

from the original PopPUNK publication, including Salmonella enterica and Mycobacterium 

tuberculosis. The former of the original examples shows clearly separated clusters, 

representing a typical case where PopPunk performs well (Figure 6.1A), while the latter 

exemplifies a low diversity species in which the distance distributions do not exhibit a clear 

within-strain versus between-strain separation and instead form a cloud of points (Figure 

6.1B). The PopPUNK authors acknowledged this limitation, noting that in cases like M. 

tuberculosis, network-based model refinement is needed but may result in over-splitting into 

many substrains. A similar pattern was observed in Typhi and Hadar (Figure 6.1C and 

6.1D), where a dense cluster of points near the origin of the graph (Figures 4.5, 5.4, and 6.1) 

and the lack of a clear boundary between within- and between-strain distances compromised 

convergence, leading to unstable clustering outputs. 

Additionally, the distinct patterns observed between core and accessory distances in 

our data suggest that these two genomic components may be evolving somewhat 

independently. This situation, also described in the original PopPUNK framework for the 

case of M. tuberculosis, can reduce the effectiveness of using a combined distance metric 

for clustering. In such cases, alternative strategies that rely on a single dimension may offer 

better resolution than a combined metric. 
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Figure 6.1 | PopPUNK model fitting output. Each row is a species (A and B) or a serovar (C and 

D), with each plot showing the distribution of core and accessory distances. The left column 

illustrates the 2D GMM fits including ellipses representing the mean and covariance of the fitted 

mixture components and points are colored by their predicted cluster. The cluster closest to the origin 
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represents the within-strain cluster. The right column shows the fits after refining the 2D GMM to 

maximize the network score. Initially, a linear boundary was estimated from the GMM clustering to 

separate within-strain from between-strain comparisons. This boundary was subsequentially adjusted 

to maximize the network score. The red dashed line indicates the final optimized decision boundary, 

while the black line represents the search range used during this optimization. In panel B, the grey 

lines depict the optimization with a vertical boundary (using core distances only) or a horizontal 

boundary (using accessory distances only). Red crosses indicate the mean of within-strain distances, 

and blue crosses denote the mean of between-strain distances. 

  

Another limitation of the first PopPUNK version is that it provides only a single 

threshold and, consequently, a single network. A recent version, Iterative-PopPUNK [66], 

addresses this limitation by implementing a multi-level clustering strategy (as described in 

section 1.2.5.2). It leverages a partially resolved core genome phylogeny to guide the 

selection of multiple thresholds, allowing clustering to reflect different levels of sequence 

similarity. This provides greater flexibility compared to the original approach, as it allows 

adjusting the clustering resolution depending on the specific aims of the analysis. 

Consequently, the thresholds selected by PopPUNK are based on differences observed in 

the core genome. However, this project aimed to take a different approach. Instead, we 

interpreted Jaccard Index values in terms of differences in both kilobases and SNPs, which 

can be more informative for choosing the threshold than relying solely on core genome 

differences. In this study, PopPUNK provided valuable insights into assessing the 

independent diversities of the core and accessory genomes. 

Consequently, this study adopted an alternative approach by using the JI directly. 

The JI provides a single global distance for each genome pair by computing overall similarity 

based on the full set of k-mers, without separating core and accessory components. The most 

convenient threshold for analyzing each dataset was determined through direct inspection of 

the JI data combined with network properties such as transitivity, the number of clusters 

formed, and the percentage of genomes grouped within each cluster. This approach was 

designed to provide a primary, informative landscape that was not overly fragmented. By 

manually adjusting the JI threshold, it becomes evident how strains or groups differentiate, 

thereby enabling analysis at the desired level of resolution and uncovering both broad and 

fine-scale population structures. 
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The results of this study align with several observations made by PopPUNK authors, 

confirming that there is no universally optimal clustering solution. Instead, the most 

appropriate clustering resolution depends on the specific dataset and the study's objectives. 

Moreover, both approaches demonstrate that selecting an appropriate threshold necessitates 

careful consideration of network properties to achieve meaningful stratification of the 

bacterial population. Additionally, incorporating relevant metadata into the network analysis 

can further ensure that clustering reflects the context and characteristics of the data. 

Although JI captures both core and accessory genome diversity, including indels and 

SNPs, it has a limitation in that it relies exclusively on unique k-mers. Consequently, JI 

cannot distinguish between two genomes that are identical except for the presence of 

repeated sequences. 

Given the study’s particular interest in indels, the new metric GLD was used to 

highlight differences between genomes attributed to indels. GLD serves as an optional layer, 

applied as needed based on the dataset and the desired resolution. In Hadar, most genomes 

differ by only a few SNPs; therefore, GLD had minimal impact on clustering. In contrast, in 

Typhi, some groups of genomes differ not only in indels but also in a number of SNPs (i.e., 

belonging to different primary clades of GenoTyphi), resulting in GLD having a more 

substantial impact on the clustering process. By applying GLD with a lower JI threshold in 

the Typhi network, the analysis emphasizes indel-driven differences. At the same time, it 

preserves the grouping of genomes that differ by a combination of indels and significant 

SNPs, thereby maintaining overall network connectivity. In summary, selectively integrating 

GLD with a JI threshold captures significant accessory genome changes without 

unnecessarily fragmenting clusters defined by SNP differences. 

Importantly, in highly clonal bacteria, short-term changes driven by point mutations 

are typically minimal and may not significantly affect the JI. In contrast, the acquisition of 

MGEs can introduce a large number of new k-mers in a single event. For example, a 5 kb 

insertion could add roughly 5,000 new k-mers (with k=21), which is comparable in effect to 

about 238 SNPs (238 × 21 = 4,998 k-mers). Thus, while the gradual accumulation of SNPs 

in the core genome over long periods is detectable and contributes more to the JI than a small 

indel, small numbers of mutations occurring over short timeframes may be overlooked, with 

indel events disproportionately influencing the JI. Therefore, for detecting minimal changes 

in the core genome, phylogenetic trees are the best option. 
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Finally, the JI method used here is not immediately implementable within the U.S. 

enteric surveillance system, PulseNet, due to current computational infrastructure. However, 

recent efforts to modernize PulseNet's genomic surveillance 

(https://www.aphl.org/aboutAPHL/publications/Documents/PulseNet-2.0-White-

Paper.pdf) may provide an opportunity to incorporate JI-based methods, offering 

pangenomic analysis closer to “real-time”, and simplifying the detection of unknown MGEs 

that can be explored with targeted genetic analysis. The ultimate public health goal is to 

provide a practical approach for enhanced genetic discrimination that improves surveillance 

and outbreak detection of otherwise indistinguishable enteric pathogens. 

 

 The Salmonella enterica serovar Typhi pangenome 
 

The emergence of AMR is overwhelmingly driven by the acquisition of MGEs, 

particularly in Typhi. Thus, a comprehensive view of Typhi epidemiology necessitates a 

focus on the accessory genome. JINA allowed us to represent U.S. Typhi epidemiology as a 

reticulate network, revealing non-random structure in the pangenome and offering additional 

insights into Typhi epidemiology, ecology and evolutionary dynamics.  

MGEs (both known and unknown) in Typhi were universally present, and each JI-

group displayed a distinct profile corresponding to the presence or absence of particular 

plasmids or integrated MGEs (Figure 4.9), highlighting HGT as a significant mechanism of 

short-term diversification in Typhi. While large detectable plasmids were often the unique 

distinguishing feature of a JI-group, many unknown ICEs, phage-like elements, or 

hypothetical regions, which are generally overlooked in genomic analysis, were also 

responsible for JI-group differentiation (Figure 4.9, Table 4.3). These regions would not 

have been detected by routine screening methods (PulseNet USA screens for AMR 

determinants and plasmid replicons only), nor would they be of interest in investigations 

focused on AMR. Yet, these known and unknown MGEs are key features defining the 

structure of U.S. and global Typhi populations. Further knowledge of the transmission 

dynamics, functional capacity, and environmental reservoirs of these “cryptic” MGEs could 

offer valuable insight into the differing ecological predictors of Typhi occurrence and 

persistence.  
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Stratification of Typhi populations by accessory genome material, alongside existing 

core genome methods corroborated historical and recent epidemiological patterns. JI-

grouping of Typhi genomes detected the previously globally dominant 4.3.1 MDR lineage 

carrying SGI11 on an IncHI1 (PTU-HI1A) plasmid (JI-D) [200] ⁠, the 4.3.1.1 MDR lineage 

with chromosomal SGI11 (JI-A1, JI-C1), clonal and de novo emergence of triple QRDR 

mutants in different lineages (JI-A, JI-C, JI-I, JI-M) [124]⁠, clonal expansion of XDR 

4.3.1.1.P1 strains (JI-B1) associated with travel to Pakistan circa 2018 [126] ⁠, recent 

chromosomal integration of blaCTX-M-15 into the chromosome of 4.3.1.1.P1 strains (JI-A3) 

[238], and a Nigeria-associated lineage of the 3.1.1 West African genotype (JI-J). These 

epidemiologically relevant JI-groups support the use of the Typhi pangenome for public 

health purposes. Specifically, in cases where travel data is unavailable, high genetic 

homology (>99.9% ANI) within a JI-subgroup can be leveraged to make travel-related 

inferences, potentially ameliorating the frequent lack of travel information on U.S. cases. 

Pangenomic analysis expanded our understanding of Typhi plasmids and MGEs and 

suggests that AMR emergence and epidemiology in this pathogen are shaped by complex 

gene exchange networks and dynamics. First, two AMR-associated PTUs have emerged 

relatively recently in Typhi populations (PTU-E50 in JI-B and PTU-Y in JI-K), seemingly 

in distinct geographic regions. Given the host range of these PTUs [25] and the similar 

plasmids found in other genera, it is plausible that these acquisitions are the result of active 

genetic exchange between diverse genera within the Enterobacteriaceae family. Secondly, 

the high prevalence of chromosomally integrated MGEs (Figure 4.9) indicates the presence 

of “hotspots” for AMR region integration in the Typhi chromosome. This is supported by 

the detection of several unique integration events documented in this report (Figures 4.19 

and 4.20), and in previous studies [238] ⁠. Thus, we should expect to see continual 

“stabilization” of AMR phenotypes in the chromosome, which may in turn create 

opportunities for new AMR plasmids to enter. With this in mind, it is tempting to speculate 

that long-established Typhi lineages (e.g. JI-A, represented in the Murray collection) may 

“sample” the mobile gene pool for plasmids and other MGEs of benefit (e.g. PTU-HI1A 

with SGI11, or PTU-E50 with blaCTX-M-15) before eventually incorporating their 

advantageous cargo into the chromosome for reliable expression and long-term stability.  

Although substantial effort is focused on understanding AMR, much of the Typhi 

population is neither MDR nor XDR (Figure 4.17), and most genomes do not carry known 

plasmids or any AMR genes at all (Figures 4.9 and 4.16, Table S5). Stratifying Typhi 
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populations based on “invisible” or “cryptic” MGEs can offer an additional layer of 

molecular resolution for exploration alongside epidemiological variables (e.g. geographic 

origin). This approach enables further differentiation of highly related genomes, as seen with 

JI-H and JI-N which belong to the same GenoTyphi but contain different MGEs. 

Alternatively, it can also enable the grouping of genomes that have converged on a single 

MGE. For instance, JI-C includes genomes from different GenoTyphi, yet all share the same 

plasmid. Just as individual SNPs serve as unique molecular signatures for identifying 

subpopulations [193] ⁠, we can exploit the unknown accessory genome for enhanced 

discriminatory power or source attribution [180] ⁠. With the flexibility to “toggle” the JI 

threshold for increasing differentiation, JI-grouping proves to be a valuable analytical 

method for this purpose.  

The potential biases introduced by utilizing Typhi genomes from a single country 

were addressed by analyzing multiple datasets from different geographic locations and time 

ranges. These datasets allowed us to evaluate whether the groups identified in the U.S. 

dataset remained consistent across geographic locations and time periods. Importantly, most 

of the U.S. JI-groups were also observed in these datasets. This consistency demonstrates 

that the genomic stratification and clustering observed in the U.S. dataset are not unique to 

that population but are reflective of broader global patterns in Typhi evolution and 

epidemiology. One remaining limitation of this analysis is the lack of very recent genomes 

(2022-2024). Given the rapid evolution of Typhi populations, new JI-groups may emerge in 

a relatively short time frame. Additionally, this analysis detected many previously unknown 

MGEs that may prove epidemiologically relevant; however, in-depth genetic 

characterization of each MGE was beyond the scope of this analysis.  

Genomic analysis of pre-antibiotic era isolates revealed that certain lineages were 

already established prior to the introduction of antibiotics and have since circulating with 

minimal genetic changes (Figures 4.26 and 4.27). These findings underscore the long-term 

persistence and evolutionary stability of some Typhi lineages. 

In summary, this analysis revealed a non-random structure in the Typhi pangenome, 

driven both by differences in the core genome and by the gain and loss of mobile genetic 

elements. These findings confirm and expand upon known epidemiological patterns, reveal 

novel plasmid dynamics, and identify new avenues for further genomic epidemiological 

exploration. 
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 The Salmonella enterica serovar Hadar pangenome 
 

Identifying the molecular mechanisms underlying shifts in bacterial populations is 

key to understanding the adaptive forces that drive evolution of human bacterial pathogens. 

Analysis of the Hadar pangenome confirmed known epidemiological and microevolutionary 

dynamics while also revealing previously unknown ones.  

Before 2020, two distinct lineages dominated in commercial poultry (JI-B and JI-G) 

and backyard poultry environments (JI-D and JI-E) separately. In 2020, an emergent lineage 

closely related to previously circulating strains became dominant, displacing the historical 

commercial poultry lineage. Around the same time, coinciding with a surge in backyard 

poultry ownership during the COVID-19 pandemic [259], this same emergent lineage 

became dominant among backyard poultry-associated human cases, confirming through 

high-resolution pangenomic analysis a link between two presumably separate industries. 

Epidemiological and biological evidence suggests that the presence of a novel prophage in 

the emergent lineage may have contributed to its recent expansion. Interestingly, a similar 

genetic shift underpinned by an emergent prophage-containing lineage was seen in the 

French genomes analyzed here, suggesting this phenomenon is not restricted to the U.S. The 

adaptive capacity of this prophage in Hadar, and specifically, the putative pathogenic role of 

the phage-encoded Zot-like protein, is still under evaluatation in U.S. Hadar genomes. 

These new findings can be leveraged to mitigate further spread of this emergent strain 

in several ways. First, comparative plasmid analysis identified a clonal subcluster within this 

lineage (JI-C1), suggesting a reservoir upstream of backyard poultry suppliers and 

hatcheries, one that likely interfaces with commercial poultry (Figure 5.20). Backyard 

poultry hatchery practices, such as drop-shipping and outsourcing to larger commercial 

hatcheries to meet demand [82,250], could explain this connection. This data can inform 

conversations between industry and government stakeholders, as it promotes collective 

action with the goal of eliminating shared reservoirs affecting multiple industries. Second, 

functional analyses to determine the contribution of prophage 1 to avian gut colonization 

could inform intervention strategies in both commercial and backyard poultry settings; for 

example, by minimizing bacterial burden in birds, which is considered a control strategy to 

reduce risk of transmission to humans [260]. Third, this analysis highlighted the importance 

of known MGE (e.g., PTU-I1 plasmids) and identified previously uncharacterized MGE 

(e.g., prophage 1) that can potentially be incorporated into source attribution models and 
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molecular case definitions. For example, PTU-I1 plasmids could serve as a genetic marker 

that distinguishes backyard poultry-related strains from those transmitted via other sources. 

More accurate prediction of foodborne versus animal contact transmission pathways and 

refinement of outbreak and REP strain case definitions both contribute to timelier 

epidemiological traceback, and ultimately, a reduction in human illness [183]. 

More generally, this analysis enabled high-resolution genomic linking of human 

cases to potential sources (e.g., pet food, imported shrimp), helping to identify specific 

vehicles for further investigation and refining supplementary interviews or traceback efforts 

when exposure information is limited and no transmission vehicles are otherwise suspected. 

Additionally, this study identified avenues for investigating the ecological dynamics that 

underpin persistence of Hadar in different environments.  

For example, PTU-I1 and other large plasmids are associated with backyard poultry 

rather than commercial poultry environments, and some JI-groups (with distinct MGE 

profiles) display a unique chicken association rather than the more common turkey signal. 

Along with the previously unreported role of prophages in Hadar diversification and 

microevolution, this comprehensive description of MGE in the U.S. Hadar population is 

foundational information for pathogen risk modeling, especially as it pertains to carriage of 

AMR. The presence of “risky” MGE related to AMR, virulence, or colonization capacity, 

can be proactively monitored through existing surveillance programs, allowing emergent 

threats to be addressed before they become systematically disseminated, as has previously 

occurred with Salmonella serotypes Infantis [251] and Reading [261]. 

Due to the nature of the pangenomic approach employed here, the exact timing and 

location of this persisting REP strain were not determined. Furthermore, while this approach 

cannot definitively determine the source of human illnesses with unknown exposures, or 

multiple exposures (e.g., both commercial and backyard poultry), the findings from this 

study will be assessed within ongoing source attribution modeling to estimate the added 

value of inclusion of accessory genome content. Additionally, while efforts were made to 

obtain genomes representing diverse environments (wildlife, imported foods, commercial 

poultry production, backyard poultry environments, ill humans), several sources remain 

underrepresented (e.g., live animals on farm) or absent (e.g., hatcheries), potentially missing 

dominant pangenomic groups in these settings. Expanded analyses that include genomes 



  Chapter 6: Discussion 

179 
 

from underrepresented sources, along with deeper investigations into the global diversity of 

Hadar, will fill important gaps in the pangenome landscape described here. 

Unraveling pathogen epidemiology and microevolutionary dynamics is a complex 

challenge, and the plethora of available data is both an opportunity and a challenge. 

Leveraging existing genomic data, we demonstrate the value of JI-based pangenomic 

analysis for delineating a highly clonal serotype and uncover actionable data to mitigate the 

spread of an emergent and potentially more pathogenic lineage of Hadar. We paint a 

pangenome landscape of this previously understudied serotype, highlighting the importance 

of both known and unknown MGE, and revealing surprising geographic patterns and 

dynamics. These findings will inform future risk and source attribution modeling, reducing 

public health burdens and mitigating impacts on implicated food and animal industries.  

 

 Final discussion 
 

Salmonella Typhi and Salmonella Hadar are clonal pathogens, yet notable 

differences in their pangenomes underscore their evolutionary and epidemiological 

divergence. While most genomes in both serovars differ by only a few SNPs, the accessory 

genome substantially contributes to overall genetic variability, with prophages and plasmids 

playing important roles. A key difference is that plasmids in Hadar usually do not carry 

antibiotic resistance genes. Even though over 90% of Hadar genomes harbor resistance 

genes, they are generally limited to aminoglycosides and tetracyclines, making resistance a 

less pressing concern. Nevertheless, the detection of certain PTU-I1 plasmids, known for 

their broad host range, that harbor some AMR genes suggests the potential for horizontal 

gene transfer of other resistance traits. Conversely, resistance genes in Typhi represent a 

serious global issue, as treatment options in some regions are very limited. Moreover, AMR 

genes not only reside on plasmids but also frequently integrate into the chromosome.  

These genomic distinctions are further reflected in the ecological niches of the two 

serovars. Typhi is a human-adapted pathogen with a globally distributed pangenome driven 

by the extensive mobility of its human host. In contrast, Hadar, primarily associated with 

poultry, exhibits more geographical genomic differentiation due to limited animal movement 

and the regional nature of commercial supply chains. This genomic footprint not only 
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confirms the known specialization of these serovars but also provides tangible genomic 

evidence of their distinct evolutionary paths. 

Methodologically, this work expands on traditional phylogenetic analyses by 

integrating both vertical inheritance and horizontal gene transfer. By leveraging Jaccard 

Index Network Analysis to integrate both core and accessory genetic material, the study 

presents a multidimensional framework that complements existing phylogenetic methods. 

This approach redefines our understanding of “homology” by accounting for both vertical 

and horizontal genetic relationships, with implications for analyzing short-term bacterial 

evolution and public health applications. Additionally, it offers a powerful tool for 

surveillance, outbreak management, and tracking antimicrobial resistance by mapping 

complex reticulate genomic networks.  

Furthermore, these networks facilitate the incorporation of newly isolated genomes 

of these serovars. As new genomes are added to the network, they are integrated into one of 

the predefined groups, allowing for the rapid identification of certain characteristics, such as 

the presence of specific MGEs, without requiring detailed individual analysis. Conversely, 

if a new genome does not closely match any existing groups, it indicates the emergence of a 

new lineage. This was exemplified when we added two new Typhi isolates to the network 

and grouped independently (data not shown). Detailed analysis revealed that these genomes 

contained a PTU-FE plasmid conferring resistance to azithromycin [189] and exhibited 

chromosomal similarity to strain JI-subgroup A1, confirming them as a distinct lineage. 

In summary, this thesis not only elucidates the genomic nuances of pathogen 

adaptation and specialization of Typhi and Hadar but also establishes a framework for 

analyzing bacterial population structure. By demonstrating the significant role of the 

accessory genome, the study paves the way for improved public health strategies and a more 

comprehensive approach to bacterial typing and epidemiological surveillance.  
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1. Applying the JI as an agnostic measure of genomic distance allowed for the capture 

of both vertical (core genome) and horizontal (accessory genome) evolutionary 

relationships. This enabled high-resolution stratification of closely related genomes 

and revealed epidemiologically relevant subgroups. 

 

2. Our pangenome analysis revealed fine-scale population structures, emerging lineages, 

and the impact of mobile genetic elements driving epidemiologically relevant shifts 

in Typhi and Hadar in short periods of time. This high-resolution approach enhances 

outbreak detection, facilitates source attribution, and strengthens surveillance of 

antimicrobial resistance. 

 

3. In Typhi, JI-based clustering linked specific groups to globally significant lineages, 

including MDR and XDR strains. It also distinguished between different genetic 

contexts (e.g., chromosomal versus plasmid integrations of resistance genes) and 

identified both known and previously unknown MGEs. Therefore, JI-based networks 

offer a valuable complement to traditional GenoTyphi typing by providing an 

additional layer of genomic information that enhances strain discrimination and 

deepens our understanding of Typhi’s evolutionary dynamics, with clear implications 

for public health. 

 

4. Pangenome analysis revealed a shift in Hadar populations. Before 2020, distinct 

groups existed in commercial and backyard poultry, but in 2020, a new lineage 

(designated as REPTDK01) emerged and rapidly expanded, displacing the previously 

established lineages. This analysis refined the definition of REPTDK01 into two 

groups based on the presence or absence of a plasmid. Additionally, we identified a 

novel prophage in all these isolates that may confer a selective advantage, potentially 

driving this expansion. Notably, no clear pangenomic differences were identified 

between strains from backyard and commercial settings, suggesting shared reservoirs 

and transmission routes between these traditionally separate environments. 

 

5. The U.S. Typhi pangenome structure closely resembled global populations, 

suggesting that extensive human mobility drives the widespread circulation of similar 

lineages worldwide. In contrast, non-U.S. Hadar populations showed geographical 

genomic differentiation that may be influenced by limited animal movement and 
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localized supply chains. These findings underscore the distinct evolutionary paths and 

ecological niches of Typhi and Hadar, enhancing our understanding of their diversity 

and public health implications. 

 

6. Continuous pangenomic surveillance is essential to monitor emerging MGEs and 

evolving lineages. JI-based networks provide a robust tool for this purpose, as the 

appearance of a new group signals the emergence of a new lineage, guiding timely 

interventions and enriching our understanding of Salmonella evolution. 
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Genome Sequences of 18 Salmonella enterica Serotype Hadar
Strains Collected from Patients in the United States
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ABSTRACT Despite being linked to a number of recent poultry-associated outbreaks
in the United States, few reference genomes are available for Salmonella enterica serotype
Hadar. Here, we address this need by reporting 18 Salmonella Hadar genomes from samples
collected from patients in the United States between 2014 and 2020.

S almonella enterica serotype Hadar infections in humans in the United States increased
in 2020 and 2021, compared with previous years, despite an overall decline in reported

salmonellosis cases (1). Many infections occurred as part of recent outbreaks linked to either
backyard poultry flocks (e.g., chickens and ducks) or consumption of ground turkey, but isolates
linked to these different sources demonstrated a high degree of core genome relatedness
(1, 2). Exploring the accessory genome may improve strain differentiation, as well as our
understanding of the recent increase and evolution of this serotype. Here, we generated
assemblies for 18 S. Hadar isolates collected from U.S. patients to serve as references for future
investigations.

Briefly, isolates originated from clinical diagnostic laboratories or public health laboratories
(PHLs) as part of the Centers for Disease Control and Prevention (CDC) national passive
Salmonella surveillance (https://www.cdc.gov/nationalsurveillance/salmonella-surveillance
.html); therefore, isolation methods varied by site (3). Isolates underwent short-read sequencing
(https://www.cdc.gov/pulsenet/pathogens/wgs.html), and serotypes were confirmed using
SeqSero2 v0.1 (4). Genomes were screened for resistance determinants and plasmids using
the ResFinder database (downloaded 30 July 2020) (90% identity and a 50% cutoff value),
the PointFinder scheme for Salmonella spp. (downloaded 30 August 2019) implemented
in staramr v0.4.0 (5), a modified PlasmidFinder database (90% identity and 60% coverage)
(https://cge.cbs.dtu.dk/services), and COPLA (6). Sequence types (STs) were determined using
staramr v0.4.0 (with MLST software [https://github.com/tseemann/mlst] and PubMLST [7]).
This report is a product of activities approved by the CDC internal review board (approval
number 7172).

Isolates were selected for long-read sequencing based on diverse accessory genome
content. Genomic DNA was extracted (Wizard genomic DNA purification kit [Promega,
Madison, WI, USA], with a modification of the manufacturer’s protocol) from cultures that
had been incubated on tryptic soy agar-sheep blood overnight at 37°C. Libraries were prepared
using the rapid barcoding kit (SQK-RBK004; Oxford Nanopore Technologies [ONT], Oxford, UK)
according to the manufacturer’s protocol and sequenced for 72 h on a GridION sequencing
platform (R9.4.1 flow cells; ONT). Reads were base called using Guppy v4.2.2 and filtered for
quality using MinKNOW (ONT). Hybrid assemblies were generated, polished, circularized,
and rotated using Unicycler v0.4.8 (conservative option) (8); corresponding Illumina short
reads that had been previously generated at the PHL (BioNumerics v7.6 [Applied Maths NV,
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Sint-Martens-Latem, Belgium] quality control metrics: quality score, $30; coverage, $30�)
were accessed through NCBI (Table 1). Assemblies were quality controlled using QUAST
v5.0.2 (9) and BLASTn v2.9.0 (10) and were annotated using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) v6.1 (11). Default parameters were used for all soft-
ware unless otherwise specified.

All 18 S. Hadar strains were found to be ST33. Resistance determinants and plasmid types
are summarized in Table 1. The most common resistance genes were aph(30)-Ib, aph(6)-Id,
and tet(A), which were always located on the chromosome (n = 13). When present, other re-
sistance genes were associated with IncI1-Ig or Col(pHAD28) plasmids. High levels of small
plasmids with no known resistance genes were observed, some of which had not been previ-
ously characterized, as indicated by small, circular genetic elements not containing a known
plasmid replicon. More generally, the hybrid assembly method employed here recovered
small plasmids at a higher rate than did long-read-only assembly methods (data not shown).
For two genomes, however, some small plasmids were not recovered despite the use of a
hybrid assembly method (Table 1), a known artifact of the long-read sequencing process (12).

Data availability. The sequences discussed here have been deposited in GenBank
and the SRA under the accession numbers listed in Table 1.
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Mobile genetic elements define the non-random structure of the 
Salmonella enterica serovar Typhi pangenome
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ABSTRACT Bacterial relatedness measured using select chromosomal loci forms the 
basis of public health genomic surveillance. While approximating vertical evolution 
through this approach has proven exceptionally valuable for understanding pathogen 
dynamics, it excludes a fundamental dimension of bacterial evolution—horizontal 
gene transfer. Incorporating the accessory genome is the logical remediation and has 
recently shown promise in expanding epidemiological resolution for enteric pathogens. 
Employing k-mer-based Jaccard index analysis, and a novel genome length distance 
metric, we computed pangenome (i.e., core and accessory) relatedness for the glob­
ally important pathogen Salmonella enterica serotype Typhi (Typhi), and graphically 
express both vertical (homology-by-descent) and horizontal (homology-by-admixture) 
evolutionary relationships in a reticulate network of over 2,200 U.S. Typhi genomes. 
This analysis revealed non-random structure in the Typhi pangenome that is driven 
predominantly by the gain and loss of mobile genetic elements, confirming and 
expanding upon known epidemiological patterns, revealing novel plasmid dynamics, 
and identifying avenues for further genomic epidemiological exploration. With an eye 
to public health application, this work adds important biological context to the rapidly 
improving ways of analyzing bacterial genetic data and demonstrates the value of the 
accessory genome to infer pathogen epidemiology and evolution.

IMPORTANCE Given bacterial evolution occurs in both vertical and horizontal dimen­
sions, inclusion of both core and accessory genetic material (i.e., the pangenome) is a 
logical step toward a more thorough understanding of pathogen dynamics. With an 
eye to public, and indeed, global health relevance, we couple contemporary tools for 
genomic analysis with decades of research on mobile genetic elements to demonstrate 
the value of the pangenome, known and unknown, annotated, and hypothetical, for 
stratification of Salmonella enterica serovar Typhi (Typhi) populations. We confirm and 
expand upon what is known about Typhi epidemiology, plasmids, and antimicrobial 
resistance dynamics, and offer new avenues of exploration to further deduce Typhi 
ecology and evolution, and ultimately to reduce the incidence of human disease.

KEYWORDS Salmonella Typhi, pangenome, plasmids, antimicrobial resistance

E nteric foodborne surveillance has benefited from the integration of whole genome 
sequencing (WGS) data with traditional epidemiological methods, rapidly improv­

ing outbreak detection, source attribution, and our understanding of antimicrobial 
resistance (AMR) (1, 2). Many genomic surveillance and outbreak detection sys­
tems rely on measuring core-genome relatedness; for example, the United States 
national molecular subtyping network for foodborne disease surveillance, PulseNet 
USA, uses core-genome multi-locus sequence typing to detect single nucleotide 
polymorphisms (SNPs) or indels (insertions and deletions) within specific core loci (3). 
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Core genome-based methods approximate vertical evolution—homology-by-descent—
and offer a genetic framework for understanding epidemiological patterns (2). 
However, non-core genes—the accessory genome—reflect horizontal gene transfer 
(HGT), another fundamental dimension of bacterial evolution (4).

The accessory genome is composed of plasmids, phages, and a variety of mobile 
genetic elements (MGEs) that exist as autonomous or chromosomally integrated 
molecules (5). It is highly variable and flexible, enabling rapid adaptation of bacterial 
species to new niches and environmental selection pressures (4, 6). While inclusion of 
accessory content is often thought to confound genomic epidemiological analyses (2, 7), 
the accessory genome is not randomly structured, nor is it under neutral selection (4, 
6, 8, 9). In fact, accessory genome content has been shown to improve our understand­
ing of bacterial population structure (10) and offer deeper epidemiological resolution 
for foodborne pathogen investigations (7, 11–13). For Salmonella enterica, demonstra­
ted concordance of core and accessory phylogenies suggests routine incorporation of 
accessory genetic material could add substantial value to genomic surveillance (14).

In this genomic epidemiology analysis, we characterize core and accessory genome 
(i.e., pangenome) structure and diversity within S. enterica serovar Typhi (herein referred 
to as Typhi), using k-mer-based Jaccard index (JI) analysis coupled with MGE characteri­
zation. JI is a common proximity measurement used to compute the similarity between 
two objects, with wide use in numerous domains, such as ecology (15, 16), text mining 
(17, 18), and genome comparison (19–22). It is particularly useful for comparing and 
discriminating between very similar genomes (e.g., within a clonal serotype such as 
Typhi) because it is optimized for values well over 99.9% average nucleotide identity 
(ANI). Typhi is a globally distributed human pathogen, causing an estimated 9.2 million 
cases of typhoid fever annually (23); and while cases in the United States are relatively 
infrequent (24), their tendency to be travel-related means detailed epidemiological 
information is often unavailable. This limits our ability to pinpoint—or even begin to 
resolve—outbreaks, and to identify “short-” and “long-cycle” transmission pathways of 
Typhi (25). Analyzing the largest collection of U.S. Typhi genomes to date, we leverage 
the Typhi pangenome to explore and deduce the epidemiology of U.S, Typhi cases, 
providing a generalized overview of the pangenome structure of this pathogen, and 
offering insights into its evolutionary and ecological dynamics.

RESULTS

Pangenome analysis of U.S. Typhi population

JI is a measure of similarity between genomes. It is determined by dividing the size of 
the intersection of two sets of nucleotide k-mers by the size of their union. This metric 
captures both SNPs, either due to point mutations or recombination, and gene content 
differences that arise as the result of gain and loss of genetic material (indels), although 
it does not account for differences due to duplicated sequences (Fig. S1 in S1 Appendix). 
The pairwise genome similarities can be represented in an undirected network in which 
the nodes (genomes) are connected if the pairwise JI equals or exceeds the set JI 
threshold. At the initial network stage, genomes sharing any JI value greater than 0 will 
be linked by an edge, resulting in most genomes connected in a single component. By 
increasing the stringency of the JI threshold, separate connected components emerge.

Using BinDash (19), we calculated the exact JI values from pairwise comparisons of 
a 2,392 Typhi genome data set, comprising 2,272 study genomes that were isolated in 
the United States from 2008 to 2021 and assembled in this work, along with 120 RefSeq 
reference genomes (Table S1). Their JI value distribution showed that most comparisons 
(99.84%) produced JI values greater than 0.90 (Fig. S2 in S1 Appendix). To ensure the 
strength of cluster definition, networks should exhibit a community structure character­
ized by highly internally connected subgraphs and sparser connections between them. 
Furthermore, to provide informative insights, most genomes should belong to non-sin­
gleton communities (Fig. S3 in S1 Appendix). Following this approach, the optimum 
threshold for analyzing Typhi genomes was set at JI = 0.983 (see Materials and Methods).
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Since both SNPs and indels are reflected in JI, their individual contribution cannot 
be estimated from the JI value alone. As SNPs do not contribute to genome length, but 
indels do, a new unit of measurement, genome length distance (GLD), was defined. It 
uses the difference between the unique k-mer counts of two given genomes as a proxy 
for genome size variation due to differential gene content (supporting information in S1 
Appendix). On top of a given JI threshold, pairwise GLD values can be used as a proxy of 
indels to emphasize (and further explore) differences in genome size. At thresholds JI = 
0.983 and GLD = 0.05, between-group differences can be explained by indels larger than 
50 kb in size, or by ≥2,050 SNPs across the entire genome, or a mix of both (supporting 
information text in S1 Appendix).

At the abovementioned thresholds, the 2,392 Typhi genomes self-organized into 17 
distinct clusters according to the Louvain method, named JI groups A–Q, with only 
38/2,392 (1.6%) nodes not assigned (singletons or JI clusters with less than five members) 
(Fig. 1A). The relatedness of genomes within each cluster is >99.8% ANI (Fig. S4 in 
S1 Appendix). JI group A was the largest (n = 1,320/2,392), with all other JI groups 
represented by at least five genomes (Table 1). Three of the largest JI groups (A, B, and 
C) were further divided into JI subgroups using an increased JI threshold. JI-A subgroups 
A1 to A17 were defined at JI = 0.995; JI-B subgroups B1 to B3 at JI = 0.986; and JI-C 
subgroups C1 to C6 at JI = 0.997 (Fig. S5 in S1 Appendix).

Pangenome population structure of U.S. Typhi is non-random

Exploring the U.S. Typhi data set, we found that autonomous and integrated MGEs 
(detected by indels) are ubiquitous in Typhi. A proxy for integrative and conjugative 
elements (ICEs) and integrative and mobilizable elements (IMEs), a MOB relaxase gene, 
was detected in 99.5% (n = 2,380/2,392) of the isolates (Fig. 1B). JI groups often 
correlated with the presence/absence of known MGEs. For example, several large 
(>80 kb) autonomous plasmids were found to underpin JI group definitions: members 
of JI groups B and J all contain plasmids belonging to PTU-E50 (average size 90 kb), JI 
group C contains PTU-E18 (average size 107 kb), JI group D contains PTU-HI1A (average 
size 217 kb), and JI group K contains PTU-Y plasmids (average size 100 kb) (Table 2; 
Fig. 1C). Plasmids <40 kb, such as PTU-N1 and PTU-X1 in JI groups A, H, and N, did not 
define JI groups (at thresholds JI = 0.983 and GLD = 0.05) due to their relatively small 

TABLE 1 Summary of JI group information for 2,272 U.S. CDC and 120 RefSeq200 genomes

JI group Counta %b GenoTyphi primary cluster

A 1,320 55.1 0, 1, 2, 3, 4
B 114 4.8 4
C 265 11.1 2, 3, 4
D 26 1.1 3, 4
E 5 0.2 4
F 39 1.6 0
G 6 0.3 2
H 225 9.4 2
I 17 0.7 2, 3, 4
J 11 0.5 3
K 8 0.3 4
L 11 0.5 2
M 133 5.6 3
N 90 3.8 2, 4
O 11 0.5 3
P 58 2.4 2
Q 15 0.6 2
Singletons 38 1.6 0, 2, 3, 4
aNumber of genomes present in each JI group.
bPercentage of genomes from the total data set that belong to each JI group.
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FIG 1 Distribution of Typhi genomes by JI. The networks contain 2,392 nodes, connected when JI ≥0.983 and GLD ≤0.05. 

Seventeen clusters (named JI-A to JI-Q) are indicated by circles. (A) Distribution of references and CDC study genomes in 

the JI groups. Nodes depicted in red represent RefSeq200 genomes (references) and those in gray represent study genomes. 

(B) Distribution of MOB relaxases in the JI groups. Nodes are colored according to the MOB relaxase class present in each 

genome. Information on the PTUs, as well as other accessory elements present in >90% of the members of a given JI 

group, are included in black letters when present in a given cluster or in red letters when absent (see also Fig. S6 in S1 

Appendix). (C) Distribution of PTUs in the JI groups. Nodes are colored according to the PTUs present in each genome. 

(D) Distribution of GenoTyphi primary clades in the JI groups. Nodes are colored according to the GenoTyphi primary clades. 

(E) Distribution of the 4.3.1 GenoTyphi genotype in the JI groups. Nodes are colored according to the lineages and sublineages 

of the 4.3.1 genotype. (F) Distribution of multidrug-resistant (MDR) and extensive drug-resistant (XDR) genomes. Nodes are 

colored according to AMR categories. A Gephi file containing the JI network is available at https://github.com/PenilCelis/Sal­

monella_Typhi_JINA.
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size. Many unknown MGEs and accessory regions, identified through BLAST, were also 
responsible for the genetic difference between JI groups (Fig. S6 in S1 Appendix and 
S2 Appendix); JI-E is defined by the presence of a 49 kb region of unknown function, 
while JI-P members all carry a unique 44 kb phage element (prophage 10) (Fig. 1B; 
Fig. S6 and S7A in S1 Appendix; S2 Appendix). Each JI group was found to contain a 
unique complement of accessory genome elements, many of which were undetectable 
by current routine methods.

To further explore the contribution of MGEs in the JI group clustering, an in sil­
ico experiment was carried out by removing them from reference genomes. PTU-E50 
plasmids present in the B subgroups and SGI11 encoded in B1 and A3 references were 
eliminated. The “cured” genomes segregated from their original JI groups and associated 
with the JI-A1 genomes in the network (Fig. 2A). The progressive reintroduction of 
SGI11 (Fig. 2B) and PTU-E50 sequences (Fig. 2C) led to the partition of JI-A3, JI-B1, 
JI-B2, and JI-B3 genomes from the JI-A1 group, rendering new clusters. In a similar 
experiment, large plasmids in JI-B, JI-C, JI-D, JI-J, and JI-K reference genomes were shown 
to shape these JI groups (Fig. S8 in S1 Appendix), emphasizing their contribution to Typhi 
pangenome structure.

GenoTyphi genotypes (27, 28) were visualized against JI groups to compare 
phylogenetic context to pangenome groupings. Most JI groups (n = 12/17) associated 
with a single subclade, clade, or GenoTyphi primary clade (Table 1; Fig. 1D and E; Table 
S1), whereas JI-A, JI-C, JI-D, JI-I, and JI-N contained isolates that fell into two or more 
primary clades. JI-A contains genomes from the ancestral (0) and all four Typhi primary 
clades (1, 2, 3, and 4), with each primary clade mostly confined to distinct areas in the 

TABLE 2 Characteristics of plasmids identified in JI groups

JI groups 

(number of 

genomes)

Number of 

plasmids

PTU (grade host 

range)a

Plasmid replicons b Plasmid MOB type/MPF 

(transmissibility)b

AMR determinantsb Average plasmid size 

(kb)

JI-A (1,320) 6 PTU-E80 (IV) IncX1 MOBP/– (mobilizable) –c 18

4 PTU-N1 (III) IncN MOBF/MPFT (conjugative) – 40

4 PTU-X1 (III) IncX1 MOBP/MPFT (conjugative) – 30

1 PTU-X3 (III) IncX3 MOBP/MPFT (conjugative) – 44

1 PTU-E73 (IV IncFII(pCRY) MOBC/MPFT (conjugative) – 21

JI-B (114) 114 PTU-E50 (III) IncY, IncFIB(K) MOBC/MPFT (conjugative) blaTEM-1B, qnrS1, 

sul2, tet(A), aph(3'')-

Ib, aph(6)-Id, dfrA14, 

blaCTX-M-15, blaCTX-

M-88

90

JI-C (265) 265 PTU-E18 (IV) IncFIB(pHCM2) –/– (non-tranmissible by 

conjugation)

– 107

JI-D (26) 26 PTU-HI1A (IV) IncHI1A, IncHI1B(R27), 

IncFIA(HI1)

MOBH/MPFF (conjugative) aph(3'')-Ib, aph(6)-Id, 

blaTEM-1B, catA1, dfrA7, 

qacE, sul1, sul2, tet(B)

217

JI-K (8) 8 PTU-Y (III) IncY, p0111 –/– (non-tranmissible by 

conjugation)

blaCTX-M-15 100

JI-J (11) 11 PTU-E50 (III) IncY MOBC/MPFT (conjugative) aph(3'')-Ib, aph(6)-Id, 

blaTEM-1B, dfrA14, sul2, 

tet(A)

115

JI-H (225) 1 PTU-N1 (III) IncN MOBF/MPFT (conjugative) aph(3'')-Ib, aph(6)-Id, 

blaTEM-1B, dfrA14, sul2, 

tet(A)

50

JI-N (90) 78 PTU-E80(IV) IncX1 MOBP/– (mobilizable) – 25
aPTU and the grade host range were assigned using COPLA (Materials and Methods). The grade host range definition is specified in reference 26.
bPlasmid replicons, MOB class, MPF type, and AMR determinants were calculated, respectively, using PlasmidFinder, MOBscan, CONJScan, and ResFinder, according to the 
parameters specified in Materials and Methods.
c–, the absence of the specific trait indicated in the column.
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network map of JI-A (Fig. 1D). At the higher threshold used to determine JI-A subgroups 
(JI = 0.995), GenoTyphi lineages were largely resolved into their own cluster, with 15 
of 17 JI-A subgroups containing genomes of a single GenoTyphi subclade, clade, or 
primary clade (Fig. S9 in S1 Appendix, Table S1). Similarly, group JI-C has members 
of primary clades 2, 3, and 4, but at the JI subgroup resolution, all members within 
each of the six JI-C subgroups contain a single GenoTyphi subclade or clade (Table 
S1). Membership to a JI group does not necessarily imply vertical descent (as defined 
by GenoTyphi), since JI grouping aggregates genomes of distinct vertical lineages if 
they share substantial accessory genome material and partitions genomes of the same 
vertical lineage into separate groups according to their accessory genome content. 
However, pangenome groupings did tend to align with phylogenetic lineage, especially 
at the level of subgroups (n = 32/40 JI group or subgroup contained a single GenoTy­
phi clade or subclade). Thus, coupling of pangenomic and phylogenetic methods can 
simultaneously offer information on horizontal and vertical evolutionary dimensions. In 
fact, coupling information from GenoTyphi and MOB typing methods already accounts 
for a substantial proportion of the genetic variance of JI groups (combined variance 
partitioning R2 = 0.725), suggesting much of the Typhi pangenome can be effectively 
identified with existing methods.

U.S. Typhi pangenome structure aligns with and expands on known AMR and 
epidemiological patterns

Genetic and epidemiological metadata was mapped onto the JI network to determine if 
JI grouping could easily detect known AMR and epidemiological patterns. For exam­
ple, extensively drug-resistant (XDR) Typhi (genotype 4.3.1.1.P1) among patients with 
a history of travel to Pakistan first appeared in the United States in 2018 (29). JI-B1 
genomes first appeared in the United States in 2018 (Fig. S10A in S1 Appendix), are all 
genotype 4.3.1.1.P1, carry an IncY (PTU-E50) plasmid with blaCTX-M-15, and are signifi­
cantly associated with travel to Pakistan (P < 0.01, chi-squared test of independence), 
despite limited travel data for this group (n = 47/88 have any travel information available) 
(Table S1; Fig. S11A and B in S1 Appendix). Genomes of the 4.3.1.1.P1 lineage also 
fall into JI-A (specifically JI-A1 and JI-A3), representing XDR 4.3.1.1.P1 strains that have 
recently lost the IncY (PTU-E50) plasmid and integrated blaCTX-M-15, the gene that 
confers additional ceftriaxone resistance and defines XDR, into their chromosome (30). 
Thus, both the original XDR 4.3.1.1.P1 Pakistan outbreak strain with an IncY (PTU-E50) 
plasmid (31) and its recent XDR variants (without the plasmid) are quickly identifiable 

FIG 2 Effect of MGEs on the JI-based Typhi genome clustering. The networks contain 154 nodes, connected when JI ≥0.995. Nodes are colored according 

to the original JI subgroup of each genome (see also Fig. S5 in S1 Appendix). (A) Clustering of genomes deprived of PTU-E50 and SGI11. PTU-E50 plasmids 

originally present in genomes of the B1, B2, and B3 subgroups, as well as the chromosomally inserted element SGI11, encoded also in genomes of the B1 and A3 

subgroups, were removed from the genome sequences. The resulting “pruned” genomes were used to calculate pairwise genome similarities. Genomes from all 

subgroups reassociate in a single cluster. (B) Clustering of genomes deprived of PTU-E50. The SGI11 elements were restituted to the A3, and B1 genomes and the 

network were recalculated. A3 and B1 genomes broke away from the previous cluster and grouped together. (C) Clustering of genomes with SGI11 and PTU-E50. 

The PTU-E50 plasmids were restituted to the B1, B2, and B3 genomes. The rebuilt network shows the emergence of distinctive clusters.
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in the JI network as JI-B1 and within JI-A1/JI-A3, respectively, supporting what is known 
about this lineage.

The chromosomal genetic context of blaCTX-M-15 was further explored in JI-A1 (n = 4) 
and JI-A3 (n = 12) genomes. Three different sized regions of the original IncY (PTU-E50) 
plasmid were detected, likely captured and mobilized by ISEcp1 (Fig. 3A). ISMapper 
identified four possible ISEcp1-blaCTX-M-15 insertion sites (I–IV) (Fig. 3B). Insertion sites 
were confirmed either by direct analysis of the blaCTX-M-15-containing contigs (insertion 
sites I-III) or with additional long-read sequencing (insertion site IV) (PNUSAS198714, 
SAMN18813804). Despite being highly related by phylogenetic analysis (Fig. 4; Fig. 
S12), the difference in size and chromosomal location of these insertions confirms the 
PTU-E50-borne blaCTX-M-15 inserted in at least four independent events. Genomes with a 
given, unique integration site clustered together in the JI network when the JI threshold 
was increased (i.e., enhanced discrimination between genomes) (Fig. 3C); however, these 
clusters were not distinct enough to be used for prediction of the genetic context from 
the JI network alone.

Multidrug resistant (MDR) in Typhi emerged several decades ago, driven by the 
expansion of a 4.3.1 (previously H58) strain carrying SGI11 [containing blaTEM-1, catA1, 
aph(3')-Ib (strA), aph(6)-Id (strB), sul1, sul2, and dfrA7, a mercury resistance operon, and 
the antiseptic resistance gene qacEΔ1] (32) on an IncHI1 plasmid (33). Subsequent 
degradation of SGI11 (32), as well as integration into the Typhi chromosome and loss 
of the IncHI1 (PTU-HI1A) plasmid (34), has occurred. Carriage of SGI11 (denoted as MDR 
or XDR in Fig. 1F) was identified in JI-A, JI-B, JI-C, and JI-D, and the genetic location 
was consistent within each group—chromosomal in JI-A, JI-B, and JI-C, or plasmid-medi­
ated in JI-D (PTU-HI1A) (Fig. 1F). At higher JI thresholds, presence of SGI11 was even 
confined to specific JI-subgroups JI-A1, JI-A3, JI-B1, and JI-C1 (Fig. S5 in S1 Appendix). 
JI-B1 and JI-C1 represent known epidemiological lineages, the “XDR Pakistan” strain 
(discussed above) and MDR 4.3.1.1 Typhi strains with chromosomal SGI11, respectively. 
Genetic context analysis of genomes with chromosomal SGI11 (28 reference and 300 U.S. 
genomes) detected six variants (previously described variants A–E and a novel variant 
F described here) in two different genetic locations, the yidA gene and the intergenic 
region between genes cyaA and cyaY (Fig. S13 in S1 Appendix). However, neither SGI11 
variant nor chromosomal insertion site was found to align with JI subgrouping, likely 
due to the relatively small size of SGI11 (~25 kb or smaller). Indeed, we detected a 

FIG 3 Genomic context of blaCTX-M-15. (A) The genetic vicinity of blaCTX-M-15 in PTU-E50 plasmids. The region containing the blaCTX-M-15 gene of plasmid 

NZ_CP046430 is depicted. Genes are represented by arrows and those encoding AMR are colored in red. Below, three arrows of different sizes, indicated by 

different colors, represent the PTU-E50 regions that are found integrated into the chromosomes. (B) Chromosomal integration sites of the blaCTX-M-15-containing 

regions (I–IV). Insertion site I locates between genes norR and gutQ; site II between genes phsA and sopA; site III interrupts gene stgC; site IV resides within SGI11. 

(C) JI networks of subgroups JI-A1 (upper panel) and JI-A3 (lower panel). Nodes colored in orange, green, and blue indicate genomes containing the different 

blaCTX-M-15-encoding regions.
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likely event of SGI11 excision from the yidA gene in six JI-B isolates otherwise practically 
identical to other JI-B members encoding SGI11 interrupting yidA (Fig. S13b). In these 
cases, long-read sequencing of two of these genomes (PNUSAS224101, SAMN21040479; 
PNUSAS195139, SAMN18332688) confirmed that the yidA gene is disrupted by IS1, 
suggesting that it could be either a precursor to the SGI11 acquisition, or most likely 
a derivative of SGI11 excision, both probably through IS1-mediated recombination. 
Nonetheless, mapping of SGI11 presence onto the JI network (Fig. 1F) quickly reveals 
that some JI groups more frequently host this MGE than others, which is likely driven but 
not entirely explained by the overrepresentation of 4.3.1 in these groups.

Chromosomal mutations in the quinolone-resistance determining region (QRDR) and 
presence of acrB mutations (azithromycin resistance [35]) were mapped onto the JI 
network (Fig. S14 in S1 Appendix). Genomes with triple QRDR mutations tended to 
cluster within JI subgroups JI-A1 and JI-A4 (GenoTyphi 4.3.1.2) but were also found in 
different JI groups (JI-C, JI-I, JI-M), consistent with the observation that QRDR mutants 
have emerged spontaneously in different lineages (36, 37). Interestingly, specific acrB 
mutations aligned with JI group, rather than GenoTyphi lineage (Table S1) [n = 1/6 
acrB(R717L) in JI-B, n = 5/6 acrB(R717Q) in JI-C], but with relatively low prevalence of 
these mutations, this observation may be anecdotal.

U.S. Typhi pangenome structure reveals novel plasmid patterns

Nine different PTUs were detected in JI groups, predominantly from MOBP and MOBH 
classes (Table 2; Fig. 1C). While some are well known (e.g., PTU-HI1A [IncHI1A] in JI-D), 
others are not well characterized (e.g., PTU-Y [IncY] in JI-K). The plasmid copy number 
of all PTUs did not exceed that of the chromosome. All of them were graded as host 
range III or higher, including those that lacked a MOB relaxase (PTU-E18 and PTU-Y are 

FIG 4 Core-genome phylogeny of Typhi genomes. The cladogram includes all Typhi genomes that contain the gene blaCTX-M-15 (n = 109), all genomes from 

JI-A3 that lack blaCTX-M-15 (n = 88), all genomes from JI-B1 that lack blaCTX-M-15 (n = 4), 122 representative genomes from the 17 JI groups (Table S1, see column 

“Genomes in Fig. 4"), and one genome from serovar Indiana as an outgroup. Branch length scale represents changes per number of SNPs. Circles at the internal 

nodes indicate the number of SNPs distinctive of the corresponding clade. The colored rings indicate the JI group of the corresponding genome (i), and the 

blaCTX-M-15 gene location (ii). A phylogenetic tree of the representative genomes from the 17 JI groups is shown in Fig. S12 in S1 Appendix).
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phage-plasmids). This is an indication of their broad ability to colonize bacteria from 
different genera of the same taxonomic family. Of particular interest are PTU-E50 (IncY) 
and PTU-Y (IncY) plasmids because of their carriage of blaCTX-M-15 and association of the 
former PTU with XDR Typhi.

Four different PTU-E50 plasmid variants were identified in JI-B1 (IncY), JI-B2 
[IncFIB(K)], JI-B3 [IncFIB(K)], and JI-J (IncY) (Fig. S15A in S1 Appendix), each containing 
a unique set of proteins (Fig. S15B and C in S1 Appendix). Hence, PTU-E50 core gene 
analysis would not detect these plasmid clusters (Fig. S15A in S1 Appendix). Furthermore, 
these JI groups have differing and significant (P < 0.01, chi-squared test of independ­
ence) geographic signals, despite extremely limited travel data (Table S1); JI-B1 is linked 
to travel to Pakistan, JI-B2 to Bangladesh, and JI-J to Nigeria (Fig. S11B in S1 Appendix). 
Interestingly, while most PTU-E50 (IncY) plasmids from JI-B1 (“XDR Pakistan” plasmid) 
harbor the blaCTX-M-15 gene (n = 84/88), four isolates do not. These genomes are likely 
variants of the original p60006 (31) plasmid that have subsequently lost the blaCTX-M-15 
gene, representing a novel lineage of the 4.3.1.1.P1 PTU-E50 (IncY)-containing strain. JI 
grouping could be leveraged to link unique plasmids to geographic regions, in the same 
way that core genome SNPs are used to reflect geographical signals.

PTU-Y was exclusively identified in JI-K. Two genotypes were present in this JI group, 
4.3.1.1 and 4.3.1.2, and only PTU-Y plasmids hosted in the latter genotype carried 
blaCTX-M-15 (Table S1; Fig. S15D through F in S1 Appendix). This plasmid carries an IncY 
replicon, but rather than being a conjugative plasmid (as is PTU-E50 [IncY] in JI-B1), it is 
a large non-conjugative phage-plasmid whose transmission is governed by an entirely 
different mechanism (38, 39). In this case, relying on replicon typing alone (as commonly 
practiced) would generate confusion, as two very distinct plasmid types (PTU-E50 and 
PTU-Y) carry the same replicon (IncY) (Table 2), and interestingly, in this case, both carry 
blaCTX-M-15. Of interest, carriage of PTU-Y is significantly associated with travel to Iraq (P 
< 0.01, chi-squared test of independence). JI grouping has the advantage of accounting 
for all genetic material within the plasmid rather than a single replicon target, and 
therefore can simultaneously differentiate highly related plasmids (as seen for PTU-E50 
plasmids), and disintegrate seemingly similar plasmids (PTU-Y [IncY] versus PTU-E50 
[IncY]). These plasmid subgroups can be rapidly detected in a network (and overlaid with 
epidemiological data), preventing the continual need for separate plasmid core genome 
analysis.

In contrast to large (>90 kb) plasmids, smaller plasmids (<50 kb) did not often contain 
enough genetic content to define individual JI groups (Table 2). For example, JI-H has 
only one member with a 50 kb PTU-N1 (IncN) plasmid, and instead is genetically distinct 
from other groups by the presence of a ~55 kb ICE (Fig. S6 in S1 Appendix and S2 
Appendix). Another small mobilizable plasmid, PTU-E80 (IncX1, ~25 kb, highly related 
with PTU-X1) (Table 2), was among the most common plasmids detected, predominantly 
in JI-N, and while it is likely important to this group (>85% of members carry PTU-E80), 
it did not exclusively underpin the genetic definition of JI-N. Instead, JI-N was genetically 
distinct from other JI groups also due to the absence of a ~21 kb phage (prophage 1) and 
the absence of a 21 Kb IME (MOBQ) (Fig. S6 and S7B in S1 Appendix, and S2 Appendix). 
Of interest, JI-N is almost exclusively lineage 2.0.2 (one genome is 4.1), a genotype that 
was also detected in JI-A and JI-I. In this case, JI grouping enables stratification of an 
epidemiologically important genotype (28) using “unknown” accessory genetic content.

U.S. Typhi pangenome structure offers avenues for further investigation

Co-visualization of phylogenetic lineages across the JI network enabled rapid detection 
of groups that are likely characterized by clonal expansion (homology-by-descent) versus 
groups that contain disparate genomes that have converged on their MGEs (homology-
by-admixture). For example, genomes of lineage 3.1.1 fall into either JI-A or JI-J. JI-J 
genomes are exclusively of genotype 3.1.1 and differentiate from JI-A partially due to 
carriage of a unique PTU-E50 (IncY) plasmid (Fig. S6 in S1 Appendix). Thus, it is plausi­
ble that JI-A/3.1.1 genomes represent a precursor strain that subsequently acquired a 
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PTU-E50 plasmid and clonally expanded to become group JI-J. JI-J is significantly (P < 
0.01, chi-squared test of independence) associated with travel to Nigeria (despite limited 
travel data for U.S. isolates), an epidemiological signal that could prove useful as lineage 
3.1.1 is the most common genotype in western Africa (36).

Lineage 2.3.2 is common in western Africa and the Americas and was recently shown 
to separate into discrete geographic clades by distance-based phylogeny (36). Sixty-two 
genomes from this phylogeny are also present in the U.S. data set; 61 genomes fall 
into the “Central American” clade and belong to JI-H, while the remaining genome is 
in the “Western Africa” clade and belongs to JI-A. JI-H differs from JI-A by the presence 
of an ~55 kb ICE (Fig. S6 in S1 Appendix, and S2 Appendix), and is significantly associ­
ated with travel to the Americas (P < 0.01, chi-squared test of independence). With 
further confirmation, the presence of this ICE could potentially be used to stratify 2.3.2 
lineages into geographically and epidemiologically meaningful groups without the need 
for phylogenetic analysis.

In contrast to differentiation, aggregation of disparate genomes by their pangenome 
is of interest. For example, JI-C genomes all carry a unique ~107 kb phage-like PTU-E18 
[IncFIB(pHCM2)] plasmid (38, 40) (Fig. 1C and D), but belong to a variety of GenoTyphi 
lineages with diverse geographic signals, including 4.3.1.1 dominant in Pakistan (36)
and 3.5.4 exclusively associated with Samoa (41). Convergence of these diverse lineages 
on a large non-mobilizable phage-plasmid that does not carry AMR genes is curious, 
since acquisition cannot simply be explained by conjugation under antibiotic selection 
pressure. Rather, acquisition of plasmid-phages relies on viral-like mechanisms (transduc­
tion or lysogenic conversion) (38) and is likely induced by different ecological factors 
than conjugation (42, 43). Grouping and investigating Typhi strains through the lens 
of shared MGEs provides an opportunity to uncover common environmental exposures 
between genomes that might otherwise appear disparate using phylogenetic methods, 
adding an exciting new dimension to Typhi epidemiology.

Pangenome structure of U.S. Typhi is generalizable

To assess whether the network obtained with U.S. genomes is generalizable to the 
global population structure of Typhi, a new network was generated with a large data 
set from a distinct geographic region. It included 1,606 genomes isolated in the Indian 
subcontinent and 136 genomes (Table S2) from the U.S. data set, representative of the 
17 JI groups previously identified (Fig. S16 in S1 Appendix). The new network organized 
into 17 JI groups already delimited in the U.S. data set (5 JI groups [E, G, J, N, and P] are 
represented only by reference genomes in this network and thus absent in the Indian 
data set) and two new JI groups (JI-R and JI-S, containing 10 and 11 genomes, respec­
tively). JI-R genomes contain a PTU-X1 plasmid and three chromosomal regions enriched 
in phage-related genes, while JI-S members contain two plasmids (PTU-E18, PTU-HI1A) 
and an IME. In a similar experiment, 38 Typhi genomes of the pre-antibiotic era obtained 
from the Murray collection (44) (Table S3) were incorporated to the U.S. genome network 
(Table S1). They were distributed in groups JI-A (20 genomes), JI-F (seven genomes), 
JI-M (five genomes), JI-I (one genome), and JI-Q (one genome) and four isolates were 
singletons (Fig. S17A and B in S1 Appendix), with JI-A members belonging to different 
subgroups (Fig. S17C in S1 Appendix). Since a quarter of the U.S. data set is associated 
to travel to the Indian subcontinent (Table S1), which could bias the comparison, we 
analyzed a different data set, representative of the global Typhi diversity. We generated 
a JI network using 1,804 globally representative Typhi genomes, which were previously 
used to define the GenoTyphi typing nomenclature (27), and 136 reference genomes 
from the U.S. data set (Table S4; Fig. S18 in S1 Appendix). Emergence of novel clusters 
would be an expectable outcome, especially considering that they may emerge by the 
acquisition or loss of MGEs. Nevertheless, the vast majority (1,662/1,804, 92%) of the 
genomes in the GenoTyphi data set clustered in 12 of the originally defined JI groups. 
The remaining genomes fell into one of eight small new JI groups (98 genomes) or were 
singletons (44 genomes). The application of this method to these data sets demonstrates 
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the robustness of the JI groups identified here, despite being established using only 
genomes collected in the United States. It suggests that the U.S. data set effectively 
represents the global diversity of the Typhi pangenome and serves as a proxy for global 
sentinel surveillance.

DISCUSSION

Bacterial genomes frequently evolve by HGT, and the emergence of AMR is overwhelm­
ingly driven by acquisition of MGEs, particularly in Typhi. Thus, a comprehensive view of 
Typhi epidemiology necessitates a focus on the accessory genome. Employing JI values, 
calculated from entire genome assembly pairwise comparisons with BinDash (19), we 
incorporated both vertical (SNPs) and horizontal (indels) evolutionary mechanisms to 
simultaneously analyze homology-by-descent and homology-by-admixture. This allowed 
us to represent U.S. Typhi epidemiology as a reticulate network, revealing non-random 
structure in the pangenome and offering additional information toward Typhi epidemi­
ology, ecology, and evolutionary dynamics.

MGEs (both known and unknown) were universally present, and each JI group 
displayed a distinct profile corresponding to the presence or absence of particular 
plasmids or integrated MGEs (Fig. 1B and C), highlighting HGT as a significant mechanism 
of short-term diversification in Typhi. While large detectable plasmids were often the 
unique distinguishing feature of a JI group, many unknown ICEs, phage-like elements, 
or hypothetical regions, which are generally overlooked in genomic analysis, were also 
responsible for JI group differentiation (Fig. 1B; Fig. S6 and S7 in S1 Appendix and S2 
Appendix). These regions would not have been detected by routine screening methods 
(PulseNet USA screens for AMR determinants and plasmid replicons only), nor would 
they be of interest in investigations focused on AMR. Yet these known and unknown 
MGEs are key features defining the structure of U.S. and global Typhi populations. 
Further knowledge of the transmission dynamics, functional capacity, and environmen­
tal reservoirs of these “cryptic” MGEs could offer valuable insight into the differing 
ecological predictors of Typhi occurrence and persistence.

Stratification of Typhi populations by accessory genome material alongside existing 
core-genome methods corroborated historical and recent epidemiological patterns. JI 
grouping of Typhi genomes detected the previously globally dominant 4.3.1 MDR 
lineage carrying SGI11 on an IncHI1 (PTU-HI1A) plasmid (JI-D) (33), the 4.3.1.1 MDR 
lineage with chromosomal SGI11 (JI-C1), clonal and de novo emergence of triple QRDR 
mutants in different lineages (JI-A, JI-C, JI-I, JI-M) (36), clonal expansion of XDR 4.3.1.1.P1 
strains (JI-B1) associated with travel to Pakistan circa 2018 (31), recent chromosomal 
integration of blaCTX-M-15 into the chromosome of 4.3.1.1.P1 strains (JI-A3) (30), and a 
Nigeria-associated lineage of the 3.1.1 West African genotype (JI-J). These epidemiolog­
ically relevant JI groups support the use of the Typhi pangenome for public health 
purposes. Namely in cases where travel data are unavailable, high genetic homology 
(>99.9% ANI) within a JI subgroup can be leveraged to make travel-related inferences, 
potentially ameliorating the frequent lack of travel information on U.S. cases.

Pangenomic analysis expanded our understanding of Typhi plasmids and MGEs, and 
suggests AMR emergence and epidemiology in this pathogen are subject to complex 
gene exchange networks and dynamics. First, two AMR-associated PTUs have emerged 
relatively recently in Typhi populations (PTU-E50 in JI-B and PTU-Y in JI-K), seemingly in 
distinct geographic regions. Given the host range of these PTUs (26), it is plausible these 
acquisitions are the result of active genetic exchange between diverse genera within the 
Enterobacteriaceae family. Secondly, the abundance of chromosomally integrated MGEs 
(Fig. 1B) suggests the existence of “hotspots” for integration of AMR regions in the Typhi 
chromosome, supported by the detection of several unique integration events described 
in this report (Fig. 3; Fig. S13 in S1 Appendix), and previously (30). Thus, we should expect 
to see continual “stabilization” of AMR phenotypes in the chromosome, which may in 
turn create opportunities for new AMR plasmids to enter. With this in mind, it is tempting 
to speculate that long-standing established lineages of Typhi (e.g., JI-A represented in 
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the Murray collection) may “sample” the mobile gene pool for plasmids and other MGEs 
of benefit (e.g., PTU-HI1A with SGI11, or PTU-E50 with blaCTX-M-15) before eventually 
incorporating their advantageous cargo into the chromosome for reliable expression and 
long-term stability (45).

Although substantial effort is focused toward understanding AMR, much of the 
Typhi population is not MDR or XDR, nor do most genomes carry known plasmids or 
any AMR genes at all (Table S1). Stratification of Typhi populations using “invisible” 
or “cryptic” MGEs can offer an additional layer of molecular resolution for exploration 
alongside epidemiological variables (e.g., geographic origin), either by further partition­
ing of highly related genomes (see JI-H and JI-N) or aggregation of genomes that have 
converged on a single MGE. In the same way that we look to individual SNPs as unique 
molecular signatures for identifying subpopulations (28), we can exploit the unknown 
accessory genome for enhanced discriminatory power, or source attribution (12). With 
the flexibility to “toggle” the JI threshold for increasing differentiation, JI grouping is a 
useful method of analysis for this purpose.

JI analysis and network visualization as performed here is a powerful approach 
for pangenome exploration, enabling high-resolution stratification of thousands of 
genomes without the need for references, existing databases, or genomic annota­
tion. While this analysis was performed on short-read data collected as part of 
routine surveillance, additional long-read sequencing is required for confirmation of 
genetic differences between JI groups. In fact, JI grouping facilitates prudent selection 
of representative genomes for long-read sequencing, minimizing sequencing resour­
ces, and maximizing coverage of population diversity. Similar clustering approaches 
harnessing k-mer-based genome distance estimation (20, 46, 47), as well as refined 
implementations (10, 48), are increasingly available and diminish considerably the 
computational challenges associated with incorporating both core and accessory 
genetic material into genomic analyses. However, as demonstrated here, it is essential to 
perform downstream analyses, leveraging existing tools and the rich body of knowl­
edge on MGEs, for maximal interpretation of bacterial genomic clusters, especially for 
meaningful application in the public health space.

The potential biases introduced by utilizing Typhi genomes from a single country 
were addressed by analyzing multiple data sets from different geographic locations and 
time ranges. A remaining limitation of this analysis is the lack of very recent genomes 
(2022–2024). Since Typhi populations can rapidly evolve, new JI groups may emerge 
in a relatively short time period. Additionally, many previously unknown MGEs were 
detected in this analysis that may prove epidemiologically relevant, but in-depth genetic 
characterization of every MGE was outside the scope of this analysis. Finally, the JI 
method used here is not immediately implementable within the U.S. enteric surveillance 
system, PulseNet, due to existing computational infrastructure. However, recent efforts to 
modernize PulseNet’s genomic surveillance (https://www.aphl.org/aboutAPHL/publica­
tions/Documents/PulseNet-2.0-White-Paper.pdf) may offer an opportunity for incorpo­
ration of JI-based methods, offering pangenomic analysis closer to “real-time” and 
simplifying the detection of unknown MGEs that can be explored with targeted genetic 
analysis. The ultimate public health goal is to provide a practical approach for enhanced 
genetic discrimination that improves surveillance and outbreak detection of otherwise 
indistinguishable enteric pathogens.

Given bacterial evolution occurs in both vertical and horizontal dimensions, inclusion 
of both core and accessory genetic material is a logical step toward understanding 
pathogen dynamics, not to mention a more holistic usage of increasingly available 
molecular data sets. With an eye to public, and indeed, global health relevance, we 
couple contemporary tools for genomic analysis with decades of research on MGEs 
to demonstrate the value of the pangenome, known and unknown, annotated, and 
hypothetical, for stratification of bacterial populations. We confirm and expand upon 
what is known about Typhi epidemiology, MGEs and AMR dynamics, and offer new 
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avenues for exploration to unravel Typhi reservoirs, “short” and “long-cycle” transmission 
pathways, and ultimately reduce incidence of human disease.

MATERIALS AND METHODS

Isolate collection and metadata

Typhi is a nationally notifiable disease in the United States (https://ndc.serv­
ices.cdc.gov/case­definitions/salmonella­typhi­infection­2019/). The Centers for Disease 
Control and Prevention (CDC) requests state and participating local public health 
laboratories (PHL) (https://www.cdc.gov/narms/index.html) to submit all Typhi isolates 
that they receive from clinical laboratories to the National Antimicrobial Resistance 
Monitoring System (NARMS). Since 2016, NARMS and PulseNet USA, an enteric disease 
surveillance network of state and local PHL, have routinely performed WGS on Typhi 
isolates (3). CDC’s National Typhoid and Paratyphoid Fever Surveillance system collects 
metadata on all Typhi cases reported to PHL, including history of international travel in 
the 30 days before illness onset (https://www.cdc.gov/typhoid-fever/surveillance.html).

Whole genome sequencing

WGS data were available for 2,272 Typhi isolates collected from 1 January 2008 
through 30 September 2021 (Table S1). For years prior to routine WGS (2008–2015), 
all Typhi isolates in the PulseNet national database with WGS data available were 
included (n = 68); these isolates represent a small proportion of total isolates from 
this time period. For years 2016–2018, all Typhi isolates sent to NARMS for WGS were 
included (n = 1,343), which is representative of U.S. Typhi cases reported to CDC for 
these years. Due to logistics and delays in shipping for NARMS surveillance isolates 
in recent years, the 2019–2021 time period is represented by Typhi isolates in Pulse­
Net with WGS data available (n = 861), with expected underreporting due to severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic-related factors. WGS 
performed through NARMS and PulseNet followed standard operating procedures for 
the Illumina Miseq platform (https://www.aphl.org/programs/food_safety/Documents/
PNL38_WGS%20on%20MiSeq%20SOP_v3.pdf). Reads with a base call quality score ≥28 
and coverage ≥40× were assembled in this study using shovill v.1.0.9 (https://
github.com/tseemann/shovill); and contigs with coverage below 10% average genome 
coverage were excluded from final assemblies. Typhi serotype for all study genomes was 
confirmed using SeqSero2 v.0.1 (49), and genomes were further genotyped using the 
updated GenoTyphi scheme.

Long-read sequencing was performed in this study on select isolates (PNUSAS224101, 
SAMN21040479; PNUSAS195139, SAMN18332688; PNUSAS198714, SAMN18813804; see 
Table S1) for indel verification (the first two isolates to confirm the absence of SGI11 and 
the yidA gene disruption, and the third one to detect the integration of blaCTX-M-15 in 
SG11) as previously described (50). Corresponding Illumina short reads were generated 
from the same DNA extraction; libraries were prepared using the Illumina DNA Flex 
preparation kit per the PulseNet protocol (https://www.aphl.org/programs/food_safety/
Documents/PNL35%20Illumina%20DNA%20Prep%20SOP_v4.pdf) and sequenced on the 
Illumina MiSeq platform as described above. Hybrid assemblies were generated as 
previously described (50) and uploaded to the National Center for Biotechnology 
Information (NCBI).

Molecular subtyping and characterization

Typhi study genomes were typed using the updated GenoTyphi scheme (27, 28) (https://
github.com/katholt/genotyphi). AMR determinants were detected using staramr v.0.4.0 
(51), which employs the ResFinder database (updated 30 July 2020; 90% identity, 
50% gene coverage) and the Salmonella spp. PointFinder scheme (updated 30 August 
2019). Accessory genome elements were detected using a database adapted from 
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PlasmidFinder (52) (90% identity, 60% gene coverage) for plasmid replicons, MOBscan 
(53) for conjugative relaxases, CONJScan (54) for conjugative systems, and COPLA (55) to 
assign plasmids to a given PTU (26). Reconstruction of plasmids from Illumina reads was 
performed using PLACNETw (56). Bakta was used for gene annotation of indel regions 
(57). Indel regions containing phage-related proteins were assigned as prophages and 
further re-annotated using PhageScope (58).

MDR was defined as the presence of genes conferring resistance to ampicillin, 
chloramphenicol, and trimethoprim-sulfamethoxazole, which are typically acquired 
within an IS1-mediated composite transposon, either on a plasmid or integrated into 
the chromosome as SGI11 (Salmonella genomic island) (27, 28, 34). XDR was defined 
as MDR with the addition of a ciprofloxacin resistance mechanism (QRDR mutation 
and/or plasmid-mediated quinolone resistance gene) and a ceftriaxone resistance gene 
(typically blaCTX-M-15) (31, 59).

Chromosomal integration events were detected using the typing mode of ISMap­
per (60) to identify acquisition of an insertion sequence (IS) relative to a reference 
chromosome. To detect the integration sites of blaCTX-M-15, its mobilizer, ISEcp1, was 
used as a bait against a reference chromosome (Typhi 311189_291186, NZ_CP029894.1). 
Integration of SGI11 was detected using IS1 as a bait element and Typhi CT18 as the 
reference chromosome (NC_003198).

Additional genomes

One-hundred twenty Typhi reference genomes from NCBI RefSeq200 database (accessed 
on 14 May 2020) were included in the analysis, collected between 1916 and 2019 (Table 
S1). A data set for comparative analysis against the U.S. data set was generated using all 
Typhi genomes isolated in the Indian subcontinent available in Pathogenwatch (61) (n = 
1,606) (accessed on 22 March 2021). Specifically, this data set included genomes linked to 
Bangladesh (n = 637), India (n = 487), Nepal (n = 318), Pakistan (n = 158), and Sri Lanka (n 
= 3), or a combination of these countries (n = 3) (Table S2).

Thirty-eight Typhi genomes from the Murray collection (44) available at the 
European Nucleotide Archive at https://www.ebi.ac.uk/ena/browser/view/PRJEB3255 
(Table S3) and a database of 1,804 globally representative S. Typhi genomes used 
to develop the GenoTyphi typing scheme (27) available at Pathogenwatch (https://
pathogen.watch/genomes/all?collection=nti046ubbs7t-wong-et-al-2015&genusId=590) 
(Table S4) were included in a comparative analysis against the U.S. data set. Molecular 
subtyping and characterization of reference genomes was performed as above.

Jaccard index and genome length distance analysis

The exact JI was used as a measure of similarity between all genome pairs. First, the 
complete assembly of each genome was converted into a set of k-mers. JI was calculated 
as the ratio of shared k-mers over the total number of different k-mers between the 
two sets (shared k-mers, SNP k-mers [i.e., k-mers differing by just 1 bp], and indel k-mers 
[i.e., k-mers different in both data sets]). BinDash (19) was used to calculate JI, using 
parameters minhashtype = −1 (to compute the exact JI between highly similar genomes, 
that is, using the complete set of k-mers rather than calculating an estimated JI based 
on a subset of k-mers) and k-mer length (k) = 21 (this latter as previously defined 
as optimum in reference 20). The formula to calculate JI between genomes A and B 
(equation 1) is defined as the size of the intersection divided by the size of the union of 
the two k-mer sets of genomes A and B (see supporting information text in S1 Appendix).

(1)JI A, B = A ∩ BA ∪ B = A ∩ BA + B − A ∩ B
Genome length was estimated from the number of unique k-mers in a genome (S). 

The upper k-mer length limit in Jellyfish v.2.2.6 (62) (k = 27) was used to generate 
k-mers from each genome sequence because with greater k-mer length, the probability 
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of having repeated k-mers by chance in a genome is lower and the genome length 
estimation is more accurate. S was computed by counting the occurrences of identical 
k-mers only once, that is, unique k-mers. To obtain a relative measure of genome size, the 
unique k-mer count is divided by 1 million base pairs (S/1,000,000). For every genome 
pair (A and B), the difference between their unique k-mer counts is recorded as a GLD 
value (equation 2).

(2)GLD A, B   =   |SA  −  SB |  / 1, 000, 000
Taking into account that contig ends affect k-mer count, a correction described by 

equation 3 was applied in draft genomes, considering S, k, and the number of contigs of 
the assembly (C).

(3)GLD A, B   =   | SA + k − 1 CA   −   SB + k − 1 CB |  / 1, 000, 000
Network visualization and community detection

The adjacency matrix of pairwise genome similarities generated by BinDash was used 
to build an undirected network. Gephi v.9 (https://gephi.org/ [63]) was used to visualize 
the network, applying the ForceAtlas2 algorithm for the layout. The network nodes, 
representing genomes, were colored according to metadata and genetic determinants of 
interest. Edges between nodes are represented whenever the corresponding JI or GLD 
value is equal to or higher than the user­defined threshold. A range of JI thresholds for a 
given application needs to be assessed to define the final components to study, referred 
to as JI groups. This depends on the specific study population and question pursued, 
but it is recommended to minimize complexity by setting a threshold that will result in 
a manageable number of JI groups [ideally, the number of clusters should not exceed 
the natural logarithm of the number of genomes (64)], to group the greatest number of 
genomes possible, and to factor in congruence with genetic determinants of interest, if 
available. In this data set, no distinct valley was observed in the distribution of JI values 
(Fig. S2 in S1 Appendix). We thus evaluated several statistics to optimize the network 
sparsification: transitivity (a measure indicating groups of nodes with strong internal 
connections), density, number of communities (smaller or larger than five members), and 
proportion of genomes in these two types of communities (Fig. S3 in S1 Appendix). For 
JI values greater than 0.97, we detected an increase in transitivity with a corresponding 
decrease in edge density (due to the removal of spurious edges linking communities). 
The number of small communities exponentially increased for JI ≥0.975. The presence 
of singletons and small communities may be influenced by incorrect assignment to 
the Salmonella serovar, sample bias, the thresholds applied, sequencing errors, and the 
intrinsic genetic diversity of the samples. Nevertheless, a plateau in the number of 
communities with five or more members was observed in the JI range between 0.980 
and 0.984. In this range, 98.95% to 98.36% of genomes were assigned to a community 
with five or more members. The final JI threshold was set at 0.983. The Louvain method 
(65), implemented in Gephi, was used to define the JI groups by using resolution of 
1.5. This community­finding algorithm aims to maximize the density of edges within 
communities while minimizing those between communities. Once the main JI groups are 
defined, they can be further dissected in several subgroups within the network using a 
more stringent JI and applying the same community detection algorithm.

Distinct differences in indels, including MGEs or accessory genome regions, between 
JI groups were detected using BLASTN (v.2.6.0+) (66) by comparing reference genomes 
from each JI group (Table S1). For those JI groups that did not contain a reference 
genome, a genome was reconstructed using PLACNETw (56). Plasmid presence was also 
detected using PlasmidSeeker (67). The BLAST searches between all possible reference 
pairs from different JI groups enable the detection of regions present in one genome of 
the pair and absent in the other. An estimation of their expected size can be obtained by 
clearing L (number of SNPs or the inserted region in size bp) from formula (Eq. 4), where 
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N corresponds to the total number of genome k-mers of the reference genome. If the size 
of the genome­specific regions targeted by BLAST is similar to L, it can be assumed that 
genome differences are due mainly to indels. Otherwise, SNPs or a mix of SNPs and indels 
account for the differences (supplemental information text in S1 Appendix).

(4)JI  =  N − k − 1  / N + L + k − 1

MGE removal

To explore the contribution of MGEs in the JI group clustering, MGE (plasmids and/or 
SGI11) sequences were manually removed from the nucleotide fasta files of selected 
genomes. These “cured” sequences were then used to compute JI and generate networks 
as explained in the previous section.

Phylogeny reconstruction

kSNP 3.0 (68) was used to identify SNPs in WGS data (complete, assembled, and 
raw short-read data) using k-mers = 19. This optimal k was chosen with the kSNP 
tool Kchooser. SNP-based trees were reconstructed by maximum parsimony using the 
core-SNPs detected (option -core). All the trees generated in this study were visualized 
with iTol v.6 (69).

Plasmid copy number calculation

The presence of specific plasmids and their average plasmid copy number was estimated 
from the sequence read files of 1,836 Typhi isolates using PlasmidSeeker (67), including 
1,157 genomes from JI-A, 97 from JI-B, 152 from JI-C, 5 from JI-D, 5 from JI-E, 7 from JI-F, 6 
from JI-G, 158 from JI-H, 9 from JI-I, 10 from JI-J, 7 from JI-K, 4 from JI-L, 117 from JI-M, 75 
from JI-N, and 28 singletons. PlasmidSeeker was executed with default parameters and 
a plasmid database of 1,064 plasmids from RefSeq200 (1,011 from Salmonella spp., and 
153 belonging to PTU-E50, PTU-Y, PTU-E7, and PTU-E80 from Enterobacterales).

Statistical analysis

The varpart function implemented in the vegan Community Ecology R package 
(search.r-project.org/CRAN/refmans/vegan/html/varpart.html) was used to partition the 
variance in JI groups with respect to GenoTyphi lineages and MOB relaxase genes using 
an adjusted R2 value. Chi-squared tests of independence were performed to examine 
geographic signals associated with JI groups.
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a b s t r a c t 

Objectives: The United States Centers for Disease Control and Prevention (CDC) conducts active surveil- 

lance for typhoid fever cases caused by Salmonella enterica serovar Typhi (Typhi). Here we describe the 

characteristics of the first two cases of mph (A)-positive azithromycin-resistant Typhi identified through 

US surveillance. 

Methods: Isolates were submitted to public health laboratories, sequenced, and screened for antimicrobial 

resistance determinants and plasmids, as part of CDC PulseNet’s routine genomic surveillance. Antimicro- 

bial susceptibility testing and long-read sequencing were also performed. Basic case information (age, 

sex, travel, outcome) was collected through routine questionnaires; additional epidemiological data was 

requested through follow-up patient interviews. 

Results: The patients are related and both reported travel to India (overlapping travel dates) before illness 

onset. Both Typhi genomes belong to the GenoTyphi lineage 4.3.1.1 and carry the azithromycin-resistance 

gene mph (A) on a PTU-FE (IncFIA/FIB/FII) plasmid. These strains differ genetically from mph (A)-positive 

Typhi genomes recently reported from Pakistan, suggesting independent emergence of azithromycin re- 

sistance in India. 

Conclusions: Cases of typhoid fever caused by Typhi strains resistant to all available oral treatment op- 

tions are cause for concern and support the need for vaccination of travellers to Typhi endemic regions. 

US genomic surveillance serves as an important global sentinel for detection of strains with known and 

emerging antimicrobial resistance profiles, including strains from areas where routine surveillance is not 

conducted. 

Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Salmonella enterica serovar Typhi (Typhi) is a globally important 

uman pathogen, although disease burden falls predominantly in 

outh and southeast Asia, and sub-Saharan Africa [ 2 ]. The United 
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tates is a low-incidence Typhi setting, with cases predominantly 

ssociated with international travel to endemic areas [ 3 ]. Thus, US 

yphi surveillance serves as an important global sentinel for the 

urveillance of strains with known and emerging antimicrobial re- 

istance (AR) profiles, including strains from areas where routine 

urveillance is not conducted. 

Increasing multidrug resistance (MDR) and global spread of ex- 

ensively drug resistant strains (XDR) [ 2 ] leaves dwindling op- 

ions for oral antibiotic treatment of Typhi. While azithromycin 
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emains a viable oral treatment option for most cases of typhoid 

ever globally [ 2 , 4 ], azithromycin-resistant strains have recently 

een reported from India, Nepal and Singapore [ 5 ]. The mech- 

nism of resistance is typically a single point mutation in the 

crB gene, which has arisen in several independent Typhi lin- 

ages [ 6–8 ]. However, the acquired azithromycin-resistance gene 

ph( A) (encoding a macrolide phosphotransferase) has also been 

eported in Bangladesh [ 9 ], and most recently from a patient in 

akistan [ 10 ]. We describe here the first two cases of azithromycin- 

esistant mph (A)-positive Typhi identified in the United States 

hrough PulseNet, the US national network for molecular subtyp- 

ng of enteric bacteria. 

. Material and methods 

Isolates PNUSAS349400 and PNUSAS347532 were submitted 

y clinical diagnostic laboratories to public health laboratories 

nd were sequenced as part of the Centers for Disease Con- 

rol and Prevention (CDC) PulseNet national passive Salmonella 

urveillance network, per standardized methods ( https://www. 

dc.gov/nationalsurveillance/salmonella-surveillance.html ; https:// 

ww.cdc.gov/pulsenet/pdf/PNL38- WGS- on- MiSeq- 508.pdf ); resis- 

ance determinants and plasmids were identified through routine 

creening, utilizing ResFinder and PlasmidFinder databases, respec- 

ively, as previously described [ 11 ]. Plasmids were further catego- 

ized into plasmid taxonomic units (PTU) using COPLA [ 12 ]. Se- 

uenced reads were typed using GenoTyphi ( https://github.com/ 

atholt/genotyphi ) [ 13 ]. 

For long-read sequencing of both isolates, genomic DNA was 

xtracted (Wizard Genomic DNA Purification Kit, modified man- 

facturer’s protocol, Promega, WI, USA) from cultures incubated 

n Tryptic Soy Agar-Sheep Blood overnight (37 °C). Libraries were 

repared using the Rapid Barcoding Kit (SQK-RBK114.24; Oxford 

anopore Technologies [ONT], Oxford, UK) according to the manu- 

acturer’s protocol and sequenced for 72 h on a GridION sequenc- 

ng platform (R10.4.1 flowcells, ONT). Reads were base-called using 

he SUP (“Super accurate”) model of Guppy v6.5.7, filtered for qual- 

ty using MinKNOW v23.04.5 (ONT), and filtered for minimum read 

ength ( > 10 0 0 bp) using Nanoq v0.10.0 [ 14 ]. Read sets were down-

ampled randomly using rasusa v0.7.1 [ 15 ] and assembled using 

ye v2.9 [ 16 ] (asm-coverage option set to 10 for PNUSAS349400). 

ssemblies were rotated to fix start positions of each contig us- 

ng Circlator v1.5.5 [ 17 ], polished using Medaka v1.8.0 ( https:// 

ithub.com/nanoporetech/medaka ), and screened for quality using 

ocru v2.2.4 (to ensure expected genomic arrangement) and BUSCO 

5.4.6 [ 18 , 19 ]. Long read data are deposited in National Center for

iotechnology Information (NCBI) under the BioSample IDs listed 

n Table 1 . 

Additionally, these two isolates underwent antimicrobial sus- 

eptibility testing (AST) according to CDC National Antimicro- 

ial Resistance Monitoring System’s protocol. Specifically, 14 

ntibiotics were tested (amoxicillin-clavulanic acid, ampicillin, 

zithromycin, cefoxitin, ceftriaxone, chloramphenicol, ciprofloxacin, 
able 1 

olecular and epidemiological characteristics of mph (A)-positive Typhi cases. 

Patient Strain ID SAMN GenoTyphi AMR determinants 

1 PNUSAS349400 SAMN35155331 4.3.1.1 aac(6′ )-Ib-cr, aadA5, blaCT

blaOXA-1 , catA1, dfrA17, df

gyrA (S83Y), mph (A), sul1

2 PNUSAS347532 SAMN35010716 4.3.1.1 aac(3)-IIa , aac(6′ )-Ib-cr, a

blaCTX−M-15 , blaOXA-1 , catA

dfrA7, gyrA (S83Y), mph (A

^ Antimicrobial susceptibility testing. Antimicrobial abbreviations are as follows: A, amp

ulfamethoxazole); Cx, ceftriaxone; Gen, gentamicin; Su, sulfamethoxazole. 

70
olistin, gentamicin, meropenem, nalidixic acid, sulfamethoxazole, 

etracycline, trimethoprim-sulfamethoxazole) and resistance was 

etermined using CLSI breakpoints ( https://www.cdc.gov/narms/ 

ntibiotics-tested.html ). 

Public health departments routinely submit epidemiologic in- 

ormation for all laboratory-confirmed cases of typhoid fever to 

DC, including demographics, clinical outcome details, and travel 

istory. We requested that public health officials perform a sup- 

lementary, second interview to collect additional epidemiologic 

nd clinical information (including exposures, clinical course, and 

reatment information) from the two patients whose isolates car- 

ied the mph (A) gene. 

This project was reviewed by CDC and deemed not to be re- 

earch (IRB review was not required); the activity was conducted 

onsistently with applicable federal law and CDC policy. Patients 

rovided verbal consent for publication of their case information. 

. Results and discussion 

Follow-up interviews revealed that patient one and patient two 

ere related (daughter and mother, respectively). Patient one (with 

solate PNUSAS349400) was a healthy woman in her 30 s who be- 

ame ill in February 2023. She initially reported high fever and was 

ospitalized for her infection for six days. She failed to respond 

o multiple antibiotics (fever returned after a week), but subse- 

uently recovered. Patient two (with isolate PNUSAS347532) was a 

oman in her 60 s with a history of type II diabetes mellitus who 

ecame ill in March 2023. Symptoms persisted for three weeks; 

he was initially evaluated in the emergency department and dis- 

harged home. After a second emergency department visit, she 

as hospitalized for four days and treated with multiple antibiotics 

ver the course of her illness, including amoxicillin-clavulanic acid, 

zithromycin, ceftriaxone, ciprofloxacin, doxycycline, meropenem, 

inocycline, moxifloxacin; she ultimately recovered, and under- 

ent laparoscopic cholecystectomy in April 2023. 

Both patients spent a portion of their incubation period (de- 

ned as 6–30 days before illness onset) in New Delhi, India, where 

hey attended the same wedding. Patient one stayed both at a ho- 

el and with family; she reported consuming only Indian street 

ood with no specific dietary restrictions, and consumed bottled 

ater during her stay, but food may not have been prepared with 

ottled water. Patient two reported staying with friends and rela- 

ives and eating mostly meals prepared in the home; she reported 

onsuming bottled water. Neither patient was vaccinated for ty- 

hoid fever before travel. 

Isolates PNUSAS349400 (patient one) and PNUSAS347532 (pa- 

ient two) belong to GenoTyphi lineage 4.3.1.1, a common genetic 

ineage in India [ 2 , 3 ]. They sit within a cluster of four genomes in

 SNP-based phylogenetic tree and differ by a single SNP ( Fig. 1 )

 1 ]. In addition to azithromycin resistance, they are multidrug re- 

istant (MDR) displaying phenotypic and genotypic resistance to 

mpicillin, chloramphenicol, trimethoprim-sulfamethoxazole, and 

eftriaxone, and decreased susceptibility to ciprofloxacin, due to 
AST ̂ Plasmid type Travel 

reported 

Vaccinated 

X−M-15 , 

rA7, 

 

ACSuCxCotAzm PTU-FE 

(IncFIA/FIB/FII) 

India No 

adA5, 

1, dfrA17, 

), sul1 

ACSuCxGenCotAzm PTU-FE 

(IncFIA/FIB/FII) 

India No 

icillin; Azm, azithromycin; C, chloramphenicol; Cot, cotrimoxazole (trimethoprim- 

https://www.cdc.gov/nationalsurveillance/salmonella-surveillance.html
https://www.cdc.gov/pulsenet/pdf/PNL38-WGS-on-MiSeq-508.pdf
https://github.com/katholt/genotyphi
https://github.com/nanoporetech/medaka
https://www.cdc.gov/narms/antibiotics-tested.html
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Fig. 1. SNP-based phylogenetic subtree of closely related genomes, exported directly from NCBI pathogen detection, (accessed 30.07.24) [ 1 ]. Scale bar indicates number of 

SNPs. PNUSAS349400 and PNUSAS347532 are highlighted in red. 

Fig. 2. Pairwise comparison of multiresistance region ( ∼27 kb) of plasmids pPNUSAS349400 and pPNUSAS347532, generated in Geneious Prime v2021.2.2. Plasmids were 

annotated using Prokka v1.14.6 and ISfinder ( https://isfinder.biotoul.fr/blast.php ). Complete and partial annotations are denoted in the following colours: coding sequences in 

yellow, resistance genes in teal, insertion sequences in purple, transposons in light green, and conserved segments of a class 1 integron in fuscia. 
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 combination of chromosomal and plasmid-mediated determi- 

ants ( Table 1 ). Both isolates have a single gyrA mutation (S83Y); 

nd a variant of SGI 11 inserted in the chromosome (between 

yaY and cyaA ), containing only catA1, dfrA7 and sul1 (similar to 

GI 11b , [ 20 ]). Resistance genes catB3 (partial), blaOXA-1 , aac(6′ )-Ib- 

r, blaCTX−M-15 , dfrA17, aadA5, sul1, qacE and mph (A) were present 

n a PTU-FE (IncFIA/FIB/FII) plasmid in both genomes, within a 

arge ( ∼27 kb) multiresistance region ( Fig. 2 ). While the multire- 

istance regions are structurally similar, plasmid pPNUSAS347532 

arries aac(3)-IIa between two copies of IS 26 , a region that is 

ot present in plasmid pPNUSAS349400 ( Fig. 1 ). Thus, these two 

trains are closely genetically related, but not identical. 

PTU-FE plasmids are common in Escherichia coli [ 21 ], but have 

ot been reported from India, even in recent efforts to characterize 

eftriaxone resistant strains [ 22 ], nor have they been detected be- 

ore in Typhi surveillance in the United States ([ 23 ]; https://www. 

dc.gov/typhoid-fever/surveillance.html ). Since Typhi is prone to 

arriage of PTUs with the ability to colonize a wide range of bacte- 

ial genera [ 23 ], novel acquisition of an E. coli -associated PTU by a

reviously circulating Typhi lineage is plausible and, in fact, drove 

he recent emergence of XDR Typhi [ 24 ]. 

The mph (A)-positive Typhi reported here are of a different 

enotype and carry a different plasmid than recent mph (A)-positive 

enomes from Pakistan [ 10 ], indicating independent emergence 

f plasmid-mediated azithromycin resistance. The epidemiological 

nd molecular evidence is suggestive of local transmission in In- 

ia, either from a common exposure or person-to-person trans- 

ission. While we have not yet detected widespread circulation 

f this strain in India, the slight genetic variance (both in the chro- 

osome and the plasmid) is worth further contemplation. It is cer- 

ainly possible that the small variation in these strains occurred in 

ach patient after initial infection; or perhaps there exists a com- 

on reservoir from which variants of the original mph (A)-positive 

train are already evolving. 

Strains resistant to penicillin, chloramphenicol, trimethoprim- 

ulfamethoxazole, fluoroquinolones and third-generation 

ephalosporins leave few treatment options. The emergence 

f azithromycin resistance, the only remaining oral treatment 

ption, highlights the need for additional intervention and control 
71
easures, including vaccination for travellers and residents of 

ndemic Typhi areas [ 7 ]. Because many typhoid infections likely 

o undetected, and treatment options are increasingly limited, on- 

oing US-based surveillance is important to detect mph (A)-positive 

yphi in returning travellers and prevent transmission. 
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Tesis Doctoral
Inclusión del pangenoma para la 
vigilancia genómica de los serovares
Typhi y Hadar de Salmonella enterica

PhD Thesis
Harnessing the pangenome for the 
genomic surveillance of Salmonella
enterica serovars Typhi and Hadar

El estudio de la relación genética entre bacterias mediante loci cromosómicos
específicos constituye la base de la vigilancia genómica en salud pública. Sin
embargo, este enfoque basado en la evolución vertical, deja de lado un aspecto
crucial de la evolución bacteriana: la transferencia genética horizontal. Esta tesis
evalúa la relación del pangenoma en Salmonella Typhi y Hadar mediante un
enfoque basado en el Índice de Jaccard, capturando tanto las relaciones
evolutivas verticales (homología por descendencia) como horizontales
(homología por mezcla) en una red reticulada. El análisis revela grupos
poblacionales estrechamente relacionados, linajes emergentes y el impacto de
elementos genéticos móviles que impulsan cambios epidemiológicamente
relevantes en períodos cortos de tiempo. Este enfoque de alta resolución no solo
mejora la detección de brotes y la atribución de fuentes de contaminación, sino
que también refuerza la vigilancia de la resistencia a antibióticos.

Bacterial relatedness measured using selected chromosomal loci forms the basis
for public health genomic surveillance, yet this method primarily captures vertical
evolution while neglecting horizontal gene transfer. This thesis evaluates
pangenome relatedness in Salmonella Typhi and Hadar using a Jaccard Index
approach, capturing both vertical (homology-by-descent) and horizontal
(homology-by-admixture) evolutionary relationships within a reticulate network.
The analysis revealed fine-scale population structures, emerging lineages, and
the impact of mobile genetic elements driving epidemiologically relevant shifts
over short periods of time. This high-resolution approach not only enhances
outbreak detection and source attribution but also strengthens antimicrobial
resistance surveillance.
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