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ABSTRACT 

This work introduces an innovative capillary or hollow core-based sensor designed to measure turbidity by using the 
reflection of light in its cladding. The structure consists of two different capillary sections and has been optimized to 
maximise the interaction of light with the external liquid. Experimentation includes data collection from different turbidity 
levels using the reflected spectrum. To improve the measuring results, machine learning is implemented, exploring the 
effectiveness of various algorithms and neural network architectures to achieve a good root mean square error. 

Keywords: Capillary, machine learning, optical fiber sensor, turbidity 

1. INTRODUCTION  
Monitoring water quality is essential in order to gain a deeper understanding and ensure the long-term preservation of 
aquatic ecosystems. In this context, fiber optics represent an innovative and ecologically friendly solution for measuring 
crucial parameters such as water flow, level, and turbidity. Turbidity is a critical factor in water quality assessment, and is 
used to quantify the cloudiness or haziness caused by suspended particles. The measurement is expressed in Nephelometric 
Turbidity Units (NTUs), which provides a standardized scale for assessing water clarity. This article concentrates on the 
particular use of fiber optics for measuring turbidity. 

There are a number of commercially available turbidity meters on the market, with varying degrees of accuracy but some 
have measurement issues. Furthermore, these devices frequently have limited functionality. In light of these considerations, 
there is a clear need to develop new and improved sensors. Alternatively, optical fiber sensors are regarded as a new and 
suitable technology for these measurements. In this field, exist an infrared turbidity sensor for the aluminium sulfate 
coagulant process [1]. This pioneering approach demonstrated the potential of low-cost sensors to provide turbidity 
information with a maximum testing error of ±11.6% NTU. In the case of reference [2], a plastic optical fiber was used to 
assess the turbidity level. The sensor has been shown to be an effective and reliable means of measuring turbidity, achieving 
an R2 value of 0.9947 in the best case. 

This work introduces a new optical fiber sensor for turbidity measurement based on a multi-capillary structure. We have 
previously employed capillary structures for the measurement of strain, temperature and water level [3], [4]. Our sensor 
system has been designed to guide light along its cladding, facilitating interaction with the environment and making it ideal 
for use as a turbidity sensor. The measurement is performed in the sensor by capturing data in the reflected spectrum, with 
the results then compared with those from a commercial sensor in order to validate the NTU values. Given the lack of 
notable discrepancies in the raw data acquired from the various NTU levels, a classification approach was adopted utilizing 
machine learning. To this end, we have conducted a comprehensive study to determine the optimal neural network 
configuration using MATLAB and its Regression Learner application. The aim is to enhance the network's capacity for 
accurately classifying reflection spectra associated with different NTU levels, achieving an R² of 0.999 and a maximum 
error of ±5.21% NTU. This represents an improvement on previous studies in the field.  

2. SENSOR DESIGN 
The turbidity of a liquid is defined as its extinction coefficient due to light scattering. It can only be measured on the basis 
of this definition, i.e. optically [5]. In the majority of cases, light scattering from a turbid liquid is asymmetrical, with 
greater intensity observed in the forward direction than in the backward direction. 
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Figure 1. Schematic of the double SMF-HCF structure. The length of the elements is properly designed to provide controlled 

power transfer between the input SMF fiber mode and the highest possible order modes in the final capillary. 

We have developed a fiber optic structure suitable for detecting variations of turbidity in water within the usual range of 
measurement in water quality applications. Our sensing transducer operates on the principle of light interaction with the 
surrounding medium - turbid water - as it propagates through the cladding of a capillary or hollow core fiber (HCF). To 
efficiently transfer light from a standard single-mode fiber (SMF) to the outer layer of the capillary fiber and to excite as 
many higher-order modes as possible, we propose and demonstrate the SMF-HCF structure shown in Fig. 1 The initial 55 
μm diameter HCF fiber expands the incoming beam from the input SMF fiber to excite as many cladding modes as possible 
in the subsequent SMF section. These modes undergo multimodal interference, and with appropriate length, their field 
distribution allows effective coupling to the cladding of the final sensing HCF. 

A commercial fully vectorial finite difference mode solver [6] was used to design the structure. Due to its symmetry, only 
radially symmetric modes were considered. The lengths of the intermediate capillary fiber (LCAP) and the SMF (LSMF) 
fibers (see Fig. 1) were carefully optimized to balance between transmitted power and the excitation of the highest possible 
order modes. 

   
Figure 2. (left) Modal power distribution in the cladding of the intermediate SMF fiber caused by modal interference in the 

first capillary LCAP. (right) Modal power distribution in the cladding of the sensing second capillary resulting from the modal 
interference in the intermediate SMF fiber LSMF. 

With regard to LCAP, the study concentrated on identifying the points at which the guided mode (LP01) reached power 
minima and the higher-order cladding modes achieved power maxima (see Fig. 2 (left)). It was noted that at lengths of 
approximately 0.9, 2.5, and 4.5 mm, there were significant power minima in the guided mode and excitation of up to seven 
cladding modes, with minimal power loss (0.3 dB). To achieve an optimal balance between performance and ease of 
processing, the length of 4.5 mm was selected for LCAP. 

A comparable methodology was employed to ascertain the length of LSMF, with an analysis of the power distribution across 
higher-order modes (up to the ninth order). At a length of 7.5 mm, there was a notable distribution of power into higher-
order modes, resulting in a total insertion loss of 1.8 dB (see Fig. 2 (right)). This length was selected to optimise the 
effective modal coupling between the intermediate SMF and the sensing capillary. 

3. DATA ANALYSIS 
The objective of this experiment was to demonstrate the functionality of the fiber optic structure (Fig. 1) as a turbidity 
meter. In the manufacture of sensors, the Fujikura FSM-100P was employed, enabling the creation of different profiles 
through the modification of fusion parameters, thus allowing the fusion of diverse fibers, as HCF and SMF. The final 
capillary section was sealed using a last discharge of the Splicer, in order to avoid liquid in the hole of the last capillary. 



 
 

 
 

Once the structure has been fabricated, a high-quality optical reflection signal is obtained using an FBG (Fiber Bragg 
Grating) optical interrogator (Micron Optics SM130). Fig. 3 (left) shows the reflected signal obtained from the structure, 
which exhibits the interference pattern predicted by theoretical calculations. This pattern is characterized by evenly spaced 
interference fringes, resulting from the constructive and destructive interference of light reflected between the structure's 
interfaces. It is observed a period of interference of 0.24 nanometers. 
The structure was subjected to testing on the reflected spectrum as a function of temperature, with measurements taken at 
temperatures ranging from 27°C to 67°C. The maximum observed wavelength variation was 0.9 nm, a reduction in the 
signal level of approximately 40 a.u. 

   
Figure 3. (left) Reflected spectrum from the multi-capillary structure. (right) Experimental Setup. 

With regard to the experimental setup in the laboratory, a rectangular container with a thin profile was used to provide the 
required background to secure the fiber optic structure. Please refer to Fig. 3 (right) for details of the experimental setup. 
This allowed the container to be filled, enabling the fiber structure to be completely submerged in each of the liquid 
solutions, each with a different NTU value. To create different levels of turbidity, ultrapure water was used as a base and 
formazin was added. Formazin is directly correlated with turbidity variations. Measurements were taken for each distinct 
liquid solution, spanning a range from 0 to 280 NTU at 40 NTU intervals. To verify that the solutions reached the desired 
NTU levels, a commercial turbidity meter was used [7]. 

The initial analysis shows a wavelength shift of the transfer function depending on the formazin concentration. But we 
obtain inconclusive findings when we try to relate the turbidity with just one parameter (see Fig. 4 (left)). Fortunately, 
today we can use techniques that help us to make measurements in these complex scenarios. So, we opted to analyse the 
received reflected spectrum using machine learning for data classification. In particular, the MATLAB Regression Learner 
tool [8] which provides an intuitive interface for building and evaluating regression and classification models. This 
application identifies patterns and relationships between features and the target variable. 

To assess the model's predictive performance, a five-fold cross-validation approach was employed. This involved splitting 
the dataset into five parts, ensuring that each part served as both training and validation data. This process reduced bias 
and provided a robust estimate of the model's accuracy, with the root mean square error (RMSE) being the key metric for 
comparing model performance. The turbidity measurement dataset, which was originally limited in scope, was augmented 
by generating "pseudo samples" through the addition of Gaussian noise [9], thereby expanding the dataset to 120 samples. 
A variety of machine learning models were trained. Neural networks, in particular two-layer (Bilayered) and three-layer 
(Trilayered) models, demonstrated consistent superior performance compared to other models. 

Table 1.  Comparison of RMSE across various neural networks over 20 iterations: analysis of average, median and variance 
to assess consistency and performance. 

 RMSE 
NEURAL NETWORKS NARROW MEDIUM WIDE BILAYERED TRILAYERED 

Average 4.21 4.17 4.21 3.75 3.66 
Median 4.25 4.13 4.18 3.75 3.61 

Variance 0.05 0.03 0.04 0.05 0.05 
Table 1 provides an overview of the average, median, and variance for all cases of neural networks in 20 iteration of 
training. Is Trilayered Neural Network that consistently exhibits the lowest RMSE values across all iterations, indicating 
superior overall performance (the lowest value obtained is 3.27). Furthermore, a graph illustrating the correlation between 
the predicted and true responses confirmed the high accuracy of the trilayered neural network, with a slope of 0.999, 
indicating near-perfect alignment between the two values. The model demonstrated an excellent level of accuracy in 
predicting turbidity levels, with a maximum testing error of 5.21% NTU and a median error of 2.19%. The model's practical 
utility was further enhanced by MATLAB's capability to export trained models for real-time application. This included the 
option to integrate with the Micron Optics sm130 interrogator to process spectral data and predict turbidity in real time. 



 
 

 
 

 
Figure 4. (left) Reflected spectra from the multi-capillary structure immersing in liquid with different values of NTU. (right) 

Best value of RMSE obtained, model Trilayered Neural Network. 

4. CONCLUSION 
In conclusion, this study demonstrates the viability of using a multi-capillary sensor optimised for turbidity measurement 
through light reflection from the sensor's cladding and employing machine learning to analyse the reflected data, which 
has significant potential for use in a range of applications. The sensor´s structure is designed to optimise power transfer 
between the input fiber core modes and the highest-order cladding modes in the final capillary. The three-layer neural 
network proved to be the most effective, achieving a maximum testing error of 5.21% NTU. This highlights the potential 
of this technology to improve water quality monitoring and management in a variety of applications. 
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