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Abstract. Relativistic nonlinear models in the Hartree-Fock approach, with o, @, p and 7 mesons, are
used to explore the influence of the nucleon-nucleon tensor force (#f) on the behaviour of the nuclear charge
radii of the Pb isotopic chain. It is found that a part of its effect on the charge radii is channelled through
its opposite effect to the spin-orbit interaction. The kink effect seems to be produced by the combination of
the geometrical features of the 1i112 neutron orbital and its binding energy.

1 Introduction

The marked change in trend of the evolution of the
charge radii of some isotopic families of nuclei versus
the mass number A is known as kink effect (KE). This
is a consequence of the shell structure of nuclei. The fact
that the density-dependent Hartree-Fock model with
standard Skyrme functionals [1] or Gogny forces [2]
were not able to reproduce this effect for the Pb isotopic
chain, for example, whereas the relativistic models in
the simple mean-field approach did reasonably well [3,
4], has increased the interest in understanding the
mechanism responsible for the KE [5-8]. However, it
seems that the full theoretical understanding has not
been reached yet.

The aim of this work is to consider a nuclear
relativistic Lagrangian and use the Hartree-Fock
approximation, without pairing correlations, to explore
the influence of the NN tensor force (¢f) on the behaviour
of the nuclear charge radii of the Pb isotopic chain.

2 The model

The effective Lagrangian density L includes the
nucleons and the o, @, p and 7 meson fields (@, o, ay,
puand 7, respectively), and the electromagnetic field 4,
[9]:
L= Lo (¢, 6, ®u, pu, 7%, Ay) + Lint. — UnL. (1)
Lo describes the free system and
Lint. = =9oP0P — GuPv*wup — gp @y pu-to —

Ti—’;@)/sy”aun-w —epy# %A,ﬁﬂ, e)
represents the interaction of nucleons with the boson

fields. The nonlinear potential energy density
Uny = 35M(9g50)* +52(g50)* ®
takes into account the o-meson self-interactions. g, g,
gp and f are the o, @, pand 7 meson-nucleon coupling
constants, respectively. 7 is the usual isovector operator,
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— 2
b and ¢ are dimensionless parameters. ;—’:T = 0.08. The

quantities My, gg, Jo» Jp» b and C are adjusted to
nuclear ground state experimental data [9], see Table 1.

Table 1. Columns 3-8 give the fitted parameters of
the model without (77=0) and with (77=1) tensor
force contribution. ms is the o meson mass,
whereas go, go, gp, b and € are the dimensionless
parameters entering eqs. (2) and (3). The last 4
columns give the nuclear matter saturation values
for the nuclear density (po), the binding energy per
particle (—E/A), the symmetry energy coefficient
(as) and the compressibility modulus (K).

Model | 77 | mo, go go dp b
MeV x103
HFO | 0 | 441.7 | 5.015 | 9.510 | 0.67 | —=5.26

HF1 | 1] 4433 | 5322|1039 | 0.72 | -4.36

Model c 0o, E/A, as, K,
x103 fm3 | MeV | MeV | MeV
HFO0 —-8.95 | 0.146 | —16.3 36.8 294

HF1 -7.26 | 0.149 | —-16.3 | 355 285

3 Results

3.1 Effect of the tensor force

Fig. 1 shows the neutron single-particle energies of
208pp. It can be seen that the #f reduce the spin-orbit
splittings. Fig. 2 shows the charge radius isotope shift
A2 (Pb))= (r2(“Pb)) — (r2(*°°Pb)). The ¢f reduces
the difference between the radii of the two spin-orbit
partners but it has little influence on A(r;?) both for the
i-conf. (...1i37,5°%), where the KE is observable, and for

the g-conf. (...2gg/;'*®), where it is not.
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Figure 1: Neutron sp energies of 2%®Pb for models
HFO (#=0) and HF1 (3=1), and Experiment data

[Te}
«© T
1hy1/2 1
o 19972 ]
197/2 sl
Wy ]
[Te]
. 1f, -]
i 5/2
£ e
A s/z |
s s 7
A\ 0 _
L sz
P12 ]
151/2 :
S N T S TR
205 210 215

Figure 3: The sp r.m.s. charge radii of the proton
nodeless orbitals of the Pb isotopic chain for the HFO
(#=0) and HF1 (#=1) models and i-conf.

Figs. 3 and 4 show the charge radii of the proton
nodeless orbitals of the Pb isotopic chain. The effect of
the #f'on (r,;) for the two orbitals of a spin-orbit doublet
is opposite to each other and decreases as / increases.
The effect of the #f is observable and it seems (only)
qualitatively equivalent to that of reducing the spin-orbit
interaction.

4 Conclusions

The effect of the tensor force (¢f) on the nuclear charge
radii of the nodeless proton orbitals of the Pb isotopic
chain is opposite to that of the spin-orbit interaction and
it decreases as / increases. For orbitals with nodes, the
effect is more involved and less important. The global
effect of the #f'on the nuclei charge radii is very small.

A

Figure 2: Charge radius isotope shift A { 7.2 ) for the Pb isotopic
chain with respect to that of the 2°*Pb for models HF0 (#=0) and
HF1 (y =1) and for the neutron i- and g-confs.
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Figure 4: The same as Fig. 3, but for the g-conf.
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