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A B S T R A C T

Robust and reliable models are needed to understand how coastlines will evolve over the coming decades, driven 
by both natural variability and climate change. This study evaluated how accurately five popular ‘reduced- 
complexity’ models replicate multi-decadal shoreline change at Narrabeen-Collaroy Beach, a sandy embayment 
in Sydney, Australia. Measured shoreline positions derived from approximately monthly field surveys were used 
for 20-year calibration and 20-year validation periods. The models performed similarly on average but with large 
variability between transects. The set-up of several models was modified to compensate for their sensitivity to 
imperfect input wave data, and further site-specific improvements were identified. Capturing interannual to 
decadal-scale variability in cross-shore and longshore dynamics at this site was challenging for all five models. 
Models appeared to aggregate key processes at this timescale into parameter values rather than representing 
them directly. This suggests time-varying parameters or changes to model structure may be necessary for 
decadal-scale simulations.

1. Introduction

Sandy beaches represent a third of the global coastline and are highly 
dynamic environments (Luijendijk et al., 2018), with shorelines capable 
of shifting tens or hundreds of metres over timescales of days to decades 
in response to storm events, climatic oscillations, and unbalanced sedi
ment budgets (Harley et al., 2017; Reeve et al., 2019; Bishop-Taylor 
et al., 2021; Vos et al., 2023). Climate change over this century will add 
to this dynamic behaviour through sea-level rise as well as altered wave 
climates and fluvial sediment supply (Ranasinghe, 2016). Understand
ing the drivers of shoreline change over past decades and accurately 
modelling future shoreline change over the coming decades is needed 
for governments, developers, insurers and home-owners to manage risk 
to coastal assets and ecosystems, and adapt to climate change impacts 

(Ranasinghe, 2020; Toimil et al., 2020; Vousdoukas et al., 2020).
Over decadal timescales, shoreline change is driven by a combina

tion of short-term and long-term processes, which may involve both 
cross-shore and longshore sediment exchange. At these scales, the role of 
gradients in longshore sediment transport becomes increasingly signif
icant (Komar, 1971; Cowell et al., 1995), as does gradual sediment ex
change between the upper and lower shoreface (Anthony and Aagaard, 
2020; Hamon-Kerivel et al., 2020), exchange between beaches and 
nearby estuaries and inlets (Stive and Wang, 2003; Ranasinghe et al., 
2013; Bamunawala et al., 2020), and the effects of mean sea-level 
change (Bruun, 1962; Cowell and Thom, 1994; Cowell and Kinsela, 
2018). Short-term variability in wave conditions and water levels like
wise contributes to shoreline variability over these timescales through 
storm erosion/recovery cycles (Coco et al., 2014; Brooks et al., 2017; 
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Mortlock et al., 2017) and/or beach rotation (Ranasinghe et al., 2004; 
Harley et al., 2011a), in some cases driving most or all shoreline vari
ability on beaches that are otherwise stable (Reeve et al., 2019; McLean 
et al., 2023). In addition, while event-scale processes have previously 
been discounted as noise about a mean trend (Cowell et al., 2003), 
recent work suggests that major storms may play a role in modulating 
the longer-term shoreline behaviour by facilitating sediment exchange 
between the upper shoreface and sources/sinks such as inlets (Sharples 
et al., 2020) or the lower shoreface (Harley et al., 2022). Seasonal or 
interannual wave climate variability can also influence longer-term 
sediment budgets by facilitating headland bypassing (Goodwin et al., 
2013; Silva et al., 2021; Wishaw et al., 2021). Not all sites are sensitive 
to all processes and the most influential processes are site-dependent; 
however, shoreline change models applied to decadal-scale simula
tions will typically need to resolve multiple processes operating at 
multiple timescales, either directly or indirectly (Ranasinghe, 2020; 
Toimil et al., 2020; Hunt et al., 2023).

Models of shoreline change can be categorised on a spectrum of 
complexity according to whether they are physics/process-based (i.e., 
deductive) or data-driven (i.e., inductive) (Hunt et al., 2023). Models 
between the two ends of the spectrum balance the amount of process 
knowledge and input data required by aggregating individual processes 
into an overall behaviour or morphodynamic response. Labelled as 
reduced-complexity or semi-empirical models by Hunt et al. (2023) and 
hybrid models by Montaño et al. (2020), they often simulate a single 
process, such as cross-shore shoreline change in response to short-term 
variability in waves and/or water levels (Miller and Dean, 2004; Yates 
et al., 2009; Davidson et al., 2013), longshore sediment transport 
(Hanson, 1989; Ashton et al., 2001; Vitousek and Barnard, 2015), beach 
profile response to long-term sea-level rise (Bruun, 1962; Rosati et al., 
2013; Atkinson et al., 2018), or planform beach rotation (Turki et al., 
2013; Jaramillo et al., 2021a). Recent work has explored how such 
models can be coupled together in ‘hybrid frameworks’ that capture 
multiple drivers of shoreline change in a computationally efficient way 
(Vitousek et al., 2017b; Robinet et al., 2018; Antolínez et al., 2019; 
Hallin et al., 2019; Palalane and Larson, 2020; Tran and Barthélemy, 
2020; Alvarez-Cuesta et al., 2021; de Santiago et al., 2021; Jaramillo 
et al., 2021b). At least in theory, these types of frameworks appear to be 
most viable for decadal-scale simulations at present (Reeve et al., 2016; 
van Maanen et al., 2016; Vitousek et al., 2017a; Ranasinghe, 2020; 
Toimil et al., 2020; Hunt et al., 2023).

However, justifying the use of a specific model for a given applica
tion requires that model performance is quantified and its relative 
strengths and limitations are understood (Jakeman et al., 2006; Bennett 
et al., 2013). While semi-empirical and reduced-complexity models may 
be simple, stable, and computationally efficient, this typically comes 
with the trade-off of reduced generality or transferability to different 
sites (Hunt et al., 2023), and testing performance at a range of mor
phodynamically distinct sites is necessary (e.g., Splinter et al., 2014). 
Where multiple models are coupled together, validation of the entire 
framework is necessary, as validation of the components does not 
necessarily prove the model framework itself is robust (Jakeman et al., 
2006). A critical part of this is evaluating models’ ability to replicate 
observed shoreline change, and in particular, their ability to do so on a 
separate period of data not used for model calibration (a blind valida
tion) (Vitousek et al., 2017a; Montaño et al., 2020). Evaluating perfor
mance over the calibration period alone is not sufficient, as some of the 
apparently best-performing models may overfit to noise in the calibra
tion data and have no forecasting skill (Aber, 1997; Jakeman et al., 
2006). While performance has been rigorously evaluated this way for 
models over event-based or interannual timescales (e.g., Splinter et al., 
2013; Montaño et al., 2020; Simmons and Splinter, 2022), few studies 
have tested whether models are capable of accurately replicating high 
frequency (e.g., monthly) measured shoreline change over a 
multi-decadal validation period. Recently, Ibaceta et al. (2022) tested a 
popular shoreline change model over a 14-year validation period at the 

Gold Coast, Australia. They showed that it was susceptible to 
large-magnitude errors due to long-term non-stationarity in the wave 
climate relative to the calibration period, highlighting the importance of 
these types of evaluations.

This study uses 40 years of beach profile survey data from 
Narrabeen-Collaroy Beach in Sydney, Australia (hereafter Narrabeen) to 
evaluate five shoreline change models, four of which are hybrid 
frameworks that capture both cross-shore and longshore processes. 
Shoreline variability at Narrabeen is driven by complex cross-shore and 
longshore dynamics that vary both spatially and temporally, providing a 
thorough test for such models. This site is also one of few globally where 
in-situ techniques have been used to consistently monitor beach and 
shoreline behaviour over multiple decades (Turner et al., 2016). This 
dataset has been previously used to evaluate these types of models but 
only over shorter, interannual scales using 5–15 year simulation periods, 
including only up to five years of data for model validation (Davidson 
et al., 2013; Splinter et al., 2013, 2014; Robinet et al., 2020; Tran and 
Barthélemy, 2020; Jaramillo et al., 2021a; Schepper et al., 2021). 
Recently, Jaramillo et al. (2021b) applied the hybrid framework model 
IH-MOOSE over a 35-year simulation period at Narrabeen but did not 
consider a separate validation period. In the present study, models are 
calibrated over a 20-year period and then evaluated over a 20-year 
validation period. Four of the five models initially simulated trends in 
shoreline positions that substantially diverged from observations. These 
initial results are briefly presented before modifications to these models 
are applied and all five models are re-evaluated together. This study 
highlights the challenges of accurately reproducing shoreline change 
over multiple decades, particularly at an embayed beach with complex 
morphodynamics, and recommends avenues for further improving the 
performance of reduced-complexity and semi-empirical shoreline 
change models.

2. Method

2.1. Model descriptions

Five shoreline change models were tested: ShoreFor (Davidson et al., 
2013; Splinter et al., 2014), CoSMoS-COAST (Vitousek et al., 2017b), 
COCOONED (Antolínez et al., 2019), ShorelineEvol (de Santiago et al., 
2021) and IH-MOOSE (Jaramillo et al., 2021b). The latter four models 
are hybrid frameworks that each couple: (1) a sub-model of cross-shore 
shoreline change driven by short-term variability in waves and/or water 
levels, based on the equilibrium principles of Wright and Short (1984), 
and (2) a sub-model of shoreline change driven by longshore processes 
(longshore transport or beach rotation). The first of the five models, 
ShoreFor, is a semi-empirical model of cross-shore shoreline change 
only. Initially, the hybrid framework of Tran and Barthélemy (2020) was 
included instead, which couples ShoreFor with an analytical longshore 
sediment transport sub-model. However, stable performance was not 
able to be achieved with the longshore sub-model over the validation 
period without the use of continuously time-varying parameters (these 
are discussed in 4.4 but outside the scope of this study to implement) and 
the sub-model was therefore excluded from further analysis, replacing 
the hybrid framework with ShoreFor as a standalone model.

Each of the five models evaluated here simulate shoreline positions 
only and assume a time-invariant equilibrium profile shape. The models 
are forced by bulk wave parameters (significant wave height, peak wave 
period, wave direction) and in some cases water levels, run at hourly to 
daily timesteps, and are computationally efficient for this timescale 
(with run-times between a few minutes and an hour for a 20-year cali
bration period at Narrabeen). In addition to the cross-shore and long
shore transport sub-models, which are the focus of this study, several of 
the hybrid frameworks simulate additional drivers of shoreline change 
such as long-term sea-level rise, hard engineering structures, estuarine 
behaviour or storm-driven dune erosion. The five models and their sub- 
models are summarised in Table 1 and described briefly in turn below, 
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with additional detail on their input data requirements and calibration 
parameters provided in 2.3. Full descriptions of the models, their un
derlying equations and their inputs are provided in the studies refer
enced in the first column of Table 1.

2.1.1. ShoreFor
ShoreFor (Davidson et al., 2013) is a popular semi-empirical model 

of cross-shore shoreline change, and a standalone model rather than a 
hybrid framework. The model is based on the equilibrium principles of 
Wright and Short (1984), with the simulated shoreline evolving at each 
timestep towards a time-varying equilibrium position at a rate 
depending on the present degree of disequilibrium and the wave energy 
available to transport sediment. This idea also underpins the Yates et al. 
(2009) model (hereafter Y09) and Miller and Dean (2004) model 
(hereafter MD04), which are used as cross-shore sub-models in the 
hybrid frameworks in this study. ShoreFor differs from Y09 and MD04 in 
that it is formulated explicitly rather than implicitly, so the shoreline 
position at the previous timestep is not used to calculate the position in 
the present timestep. Instead, only present and antecedent wave con
ditions are considered. Shoreline change is simulated independently at 
each modelled transect and sediment is not conserved between tran
sects. The version of Splinter et al. (2014) is used here, where the ac
cretion rate constant is a free parameter while the erosion rate constant 
is linearly related to the accretion constant and an “erosion ratio” term 
calculated from the wave forcing conditions (detailed further in 2.4.1).

2.1.2. CoSMoS-COAST
CoSMoS-COAST was developed and first applied to the coastline of 

southern California by Vitousek et al. (2017b). While not the first model 
to couple sub-models of cross-shore and longshore processes (e.g., 
Huxley, 2009), it motivated recent interest in hybrid frameworks of this 
type. CoSMoS-COAST discretises the coastline into transects. At each 
transect, the cross-shore response to varying wave conditions is simu
lated using Y09. Shoreline change due to longshore sediment transport 
between transects is captured using a one-line model 
(Pelnard-Considère, 1956), where sediment transport volumes are esti
mated using the CERC formula (Komar, 1971; US Army Corps of Engi
neers, 1984) and the gradient in longshore transport is derived 
numerically using a finite difference scheme (Vitousek and Barnard, 
2015). Hereafter, this is referred to as the ‘one-line (CERC)’ sub-model.

In addition to the cross-shore and longshore sub-models, CoSMoS- 
COAST simulates the response to sea-level rise at each transect using the 
Bruun Rule (Bruun, 1962), and a linear trend term aggregates long-term 
influences such as fluvial or offshore sediment exchange that are not 
otherwise captured. The one-line (CERC), Bruun Rule and linear trend 
terms are added together to calculate ‘long-term’ shoreline change in the 
model, while the cross-shore shoreline change driven by Y09 is treated 

as ‘short-term’ change, and the two components evolve separately in the 
model before being linearly added together to produce the final output. 
CoSMoS-COAST also has data assimilation built in for automated cali
bration, meaning model parameter values (including the linear trend 
term) vary during the calibration period as the assimilation algorithm 
adjusts them each time an observation is available, but remain fixed at 
their final values during the validation period.

The original CoSMoS-COAST model was updated by Vitousek et al. 
(2021, 2023) to: (1) reformulate the cross-shore sub-model Y09, 
retaining identical model behaviour but re-arranging the free parameter 
terms to be expressed in easily-interpretable units such as distance or 
time; and (2) modify the data assimilation approach, with the extended 
Kalman Filter algorithm replaced with an ensemble Kalman Filter, ad
ditive noise included to control how rapidly the data assimilation con
verges to calibrated parameter values, and the algorithm allowed to 
consider the behaviour of all observations in a littoral cell when 
assimilating parameters at each transect (i.e., although different pa
rameters may still be assimilated at each transect, the assimilation at a 
given transect is informed by observations at neighbouring transects). 
This study uses the updated version of Vitousek et al. (2023).

2.1.3. COCOONED
COCOONED (Antolínez et al., 2019) likewise discretises the coastline 

into transects, and shoreline change driven by longshore transport gra
dients is simulated using the one-line (CERC) sub-model. Short-term 
cross-shore variability is captured using MD04. Unlike ShoreFor and 
Y09, MD04 uses storm surge as a forcing variable in addition to wave 
conditions, and the version in COCOONED is modified to also include 
astronomical tide. MD04 and the one-line (CERC) sub-models are 
coupled such that sediment gains or losses from longshore transport also 
alter the equilibrium position term in MD04, rather than linearly adding 
cross-shore and longshore change as separate contributions.

The Bruun Rule is used in COCOONED to simulate shoreline response 
to sea-level rise, but unlike CoSMoS-COAST, sea-level rise does not 
directly shift the shoreline but again alters the equilibrium term in 
MD04, meaning its contribution is simulated more gradually depending 
on wave conditions (D’Anna et al., 2021b). COCOONED also simulates 
foredune erosion following the approach of Kriebel and Dean (1993) and 
Mull and Ruggiero (2014). Profile change is not explicitly modelled; 
however, the volume of sediment lost from the foredune during erosion 
events offsets shoreline erosion by altering the equilibrium shoreline 
position in MD04. Finally, COCOONED is the only model considered 
here that internally propagates waves from the input nearshore depth to 
breaking point. This is achieved using Snell’s law and linear wave the
ory, interactively adjusting wave refraction based on the shoreline 
orientation at each timestep while assuming shore-parallel bathymetric 
contours. The other models with longshore sub-models utilise waves at 

Table 1 
Overview of five shoreline change models evaluated in this study.

Model Cross-shore 
change

Longshore 
change

Mean sea- 
level rise

Other optional modules First applied at

ShoreFor (Davidson et al., 2013; 
Splinter et al., 2014)

ShoreFor – – Long-term trend for unresolved 
processes

Narrabeen-Collaroy Beach, NSW and Gold 
Coast, QLD, Australia

CoSMoS-COAST (Vitousek et al., 
2017b, 2023)

Y09 One-line 
(CERC)

Bruun Rule Long-term trend for unresolved 
processes

Southern Californian coast, USA

COCOONED (Antolínez et al., 2019) MD04 One-line 
(CERC)

Bruun Rule Foredune erosion (KD93) North Beach, Washington State, USA

ShorelineEvol (de Santiago et al., 
2021)

MD04 One-line 
(CERC)

Bruun Rule Hard engineering, estuarine 
response to sea-level rise

Zarautz Beach, Basque coast, Spain

IH-MOOSE (Jaramillo et al., 2021b) Y09 J21 – Long-term trend for unresolved 
processes

Narrabeen-Collaroy Beach, NSW, Australia

Sub-model abbreviations refer to:
J21: Jaramillo et al. (2021a).
KD93: Kriebel and Dean (1993).
MD04: Miller and Dean (2004).
Y09: Yates et al. (2009).
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fixed input depths (refer to Table 2) and only consider changes in 
shoreline orientation when calculating the relative angle between the 
shoreline and incident waves.

2.1.4. ShorelineEvol
ShorelineEvol (de Santiago et al., 2021) is a similar model to COC

OONED and shares the MD04, one-line (CERC) and Bruun sub-models. 
Like COCOONED, the one-line (CERC) sub-model adjusts the shoreline 
position directly as well as shifting the equilibrium position term in 
MD04 (this is a modification of the original version of ShorelineEvol and 
allows the cross-shore equilibrium position to account for mean-trend 
shoreline change driven by longshore transport), while the Bruun Rule 
shifts the MD04 equilibrium term only. ShorelineEvol uses a slightly 
simpler implementation that does not internally propagate waves to 
breaking point, and breaking wave conditions must be pre-computed 
and input to the model. ShorelineEvol does not account for foredune 
processes; instead, it simulates the additional sediment demand from 
coastlines adjacent to estuaries created when sea-level rise increases 
accommodation space in the estuary (i.e., a sediment sink term) (Stive 
and Wang, 2003; Ranasinghe et al., 2013; Toimil et al., 2017). It also 
simulates the effect of hard engineering structures such as seawalls and 
groynes/breakwaters on cross-shore and longshore sediment transport. 
The estuary response and hard engineering modules were not activated 
at Narrabeen (elaborated in 2.3.3), but de Santiago et al. (2021) detail 
their implementation and provide example applications.

2.1.5. IH-MOOSE
IH-MOOSE, developed by Jaramillo et al. (2021b), differs from the 

other hybrid frameworks above in that it does not use the one-line 
(CERC) sub-model for longshore sediment transport or discretise the 
coastline into transects, and is only applicable to embayed beaches with 
a parabolic planform shape. IH-MOOSE calculates shoreline change 
across an embayment in four steps: (1) Y09 is used to calculate 
wave-driven cross-shore shoreline change at a single profile along the 
most wave-exposed section, termed the ‘cross-shore control profile’, (2) 
the parabolic bay shape equation of Hsu and Evans (1989) is used to 
model the embayment planform, and the timeseries of cross-shore 
change from the first step is extended to a timeseries of parabolic 
planforms, (3) the equilibrium model of planform beach rotation of 
Jaramillo et al. (2021a), hereafter J21, is used to simulate the mean 
orientation of the embayment based on offshore wave power and di
rection, and (4) the timeseries of orientations from the third step is used 
to rotate the timeseries of parabolic planforms from the second step to 
produce the final output. In the first step, a modification of Y09 pro
posed by Jaramillo et al. (2020) may be used at sites with mean-trend 
change driven by net gains or losses of sediment, where a linear trend 
term estimated by the user is incorporated into the modelled equilibrium 

shoreline position.

2.2. Study site description

Narrabeen-Collaroy Beach (Narrabeen) is an embayed sandy beach 
in Sydney, south-eastern Australia (Fig. 1). The embayment is 3.6 km 
long and bounded by Narrabeen Headland to the north and Long Reef 
Point to the south. Narrabeen is considered a stable, closed system with a 
near-perfectly balanced sediment budget at a decadal scale, as the 
headlands largely restrict sediment exchange with adjacent beaches and 
the low volumes of sediment lost to an intermittently open and closed 
coastal lagoon at the northern end of the beach are periodically dredged 
and used to replenish the southern end (Woodroffe et al., 2012; Carley 
et al., 2016). The sediment in the embayment is fairly uniform along
shore, a fine to medium quartz-carbonate sand with a median grain size 
of 0.3–0.4 mm (Short, 1984; Splinter et al., 2014; Turner et al., 2016). 
The foredunes reach up to 9 m high along the northern end while urban 
development has encroached onto much of the foredune at the southern 
end (Turner et al., 2016). The site is micro-tidal and tides are 
semi-diurnal, with a spring tidal range of 1.3 m (Turner et al., 2016). 
Mean sea level is correlated with the El Niño Southern Oscillation 
(ENSO), but excluding this interannual signal, has approximately fol
lowed the global mean over the past several decades (White et al., 2014).

The wave climate is dominated by mid-latitude cyclones which drive 
southeasterly swells (Short and Trenaman, 1992), with a mean offshore 
significant wave height of 1.6 m and a peak period of 10 s (Turner et al., 
2016). This corresponds to a moderate-to-high energy embayment, but 
with significant variability about this mean. Storm waves can occur 
during any time of the year but are more common during the austral 
winter from mid-latitude cyclones and east coast lows, while summer 
tends to have lower easterly swell from anticyclonic highs and short 
northeasterly seas generated by regional sea breezes (Short and Trena
man, 1992). At an interannual scale, ENSO and Southern Annular Mode 
(SAM) modulate incoming wave energy and direction (Harley et al., 
2010).

While the embayment is stable over a multi-decadal scale and shows 
minimal mean-trend change (e.g., Fig. 2), the energetic, highly variable 
wave climate interacts with the offshore morphology of the embayment 
to drive complex shoreline dynamics at shorter timescales. The central, 
wave-exposed section of Narrabeen can exhibit any of the six morpho
dynamic beach states (Wright and Short, 1984). The modal state 
straddles ‘rhythmic bar and beach’ and ‘transverse bar and rip’, a 
configuration that allows for rapid transitions between intermediate 
states on the order of days to weeks in response to variations in incident 
wave energy (Wright et al., 1985; Davidson et al., 2013). Wave energy 
exerts a stronger control over shoreline variability than water levels at 
these timescales due to a narrow continental shelf, low magnitudes of 
storm surge, the low tidal range, and typically long-duration storms that 
span several tidal cycles (Ibaceta and Harley, 2024).

In addition to this cross-shore variability, planform rotation of the 
embayment has been observed over both seasonal (Harley et al., 2011a) 
and interannual timescales (Ranasinghe et al., 2004; Short and Trem
banis, 2004). This rotation is driven by a combination of cross-shore and 
longshore processes at Narrabeen, including storm-driven erosion/ac
cretion cycles and sandbar migration (which vary in magnitude across 
the embayment due to the sheltering effect of the headlands and the 
resulting gradient in wave energy), as well as classic longshore sediment 
transport due to shifts in wave direction (Harley et al., 2011a, 2015). 
The relative dominance of cross-shore and longshore processes also 
varies significantly over time in response to interannual wave climate 
variability and large-magnitude nearshore changes following extreme 
storms (Ibaceta et al., 2023). Such complex morphodynamics, exhibited 
over a range of temporal scales, provide an opportunity to rigorously test 
shoreline change models incorporating both cross-shore and longshore 
processes.

Table 2 
Forcing data used by each model.

Model Wave conditions Water level

Input depth Required at

ShoreFor Nearshore Model transects –
CoSMoS- 

COAST
Nearshore Model transects Mean sea level

COCOONED Nearshore 
(propagated 
internally to 
breaking depth)

Forcing 
transects

Mean sea level, 
astronomical tide, 
storm surge

ShorelineEvol Breaking Model transects Mean sea level, 
astronomical tide, 
storm surge

IH-MOOSE Nearshore Cross-shore 
control profile 
(PF4)

–

Offshore Offshore from 
embayment

–
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2.3. Input data and model set-up

2.3.1. Measured shoreline positions and spatial discretisation
Beach profile surveys have been undertaken at Narrabeen along five 

transects (labelled PF1–PF8; Fig. 1b) approximately monthly since April 
1976, and weekly to fortnightly in more recent years (Turner et al., 
2016). Surveys were carried out using the Emery method (Emery, 1961) 
at 10 m cross-shore spacing until May 2005, after which RTK-GPS was 
used at ~0.1 m horizontal spacing (Turner et al., 2016). Harley et al. 
(2011b) compared concurrent Emery method and RTK-GPS surveys, 
finding that the earlier surveys showed a standard deviation of 
cross-shore horizontal errors between mean sea level and the +2 m 
contour (i.e., potential errors in shoreline positions) of 1.1 m. From each 
profile, the shoreline was extracted here (e.g., Fig. 2, top panels) as the 
+0.7 m contour relative to the Australian Height Datum (AHD), a datum 
which approximately corresponds to the average mean sea level around 
Australia. The +0.7 m contour represents mean high water springs 
(MHWS) at Narrabeen and is typically used for shoreline analysis and 
modelling at this site (e.g., Davidson et al., 2013; Vos et al., 2019a; 
Simmons and Splinter, 2022; Ibaceta et al., 2023) as it is strongly 
correlated with subaerial beach volume (Harley et al., 2011b). The 
initial shoreline position for model simulations was taken from the most 
recent survey date preceding the simulation start date, January 30, 1979 
and February 1, 1979 respectively (the latter coinciding with the earliest 
available wave data).

ShoreFor simulates shoreline change at individual transects inde
pendently, so only the five surveyed transects were modelled. CoSMoS- 
COAST, COCOONED and ShorelineEvol discretise the planform 

shoreline into closely-spaced transects linked by longshore sediment 
transport. For these models, shore-normal transects were defined at 
approximately 100 m spacing between the five surveyed transects, for a 
total of 36 modelled transects across the 3.6 km embayment. An extra 
level of processing was required for ShorelineEvol, which simulates 
shoreline positions at fixed alongshore ‘nodes’ that are parallel to the 
average embayment orientation rather than shore-normal. Nodes were 
defined using the coordinates of the initial shoreline position along the 
36 shore-normal transects. Modelled shorelines were then converted 
trigonometrically to distances along the five surveyed transects to 
compare against measured shorelines.

IH-MOOSE outputs continuous planform shorelines, which were 
intersected with the five surveyed transects after the model was run to 
compare modelled and measured shoreline positions. The central tran
sect, PF4, was used as the ‘cross-shore control profile’ as it is the closest 
transect to the node or pivot point of beach rotation at Narrabeen (Short 
and Trembanis, 2004; Harley et al., 2011a; Jaramillo et al., 2021b). 
Following Jaramillo et al. (2021b), the embayment planform was par
ameterised using a parabolic bay shape equation (Hsu and Evans, 1989) 
south of PF4, and as a linear segment to the north of this transect.

2.3.2. Forcing data
The forcing variables used by each model are summarised in Table 2. 

Hourly bulk wave parameters (Fig. 2) were extracted from the Centre for 
Australian Weather and Climate Research (CAWCR) wave hindcast 
(Durrant et al., 2014), beginning in February 1979, at the grid point 
closest to the Sydney wave buoy (Fig. 1a). Refer to Turner et al. (2016)
for a validation of this hindcast against Sydney wave buoy 

Fig. 1. The case study site, Narrabeen-Collaroy Beach. (a) The location of Narrabeen within Sydney, as well as the locations of data sources for waves (black dots) 
and water levels (blue square). (b) The embayment in detail, showing the five transects where beach profile surveys have been undertaken (labelled PF1–PF8), the 
virtual wave buoys where nearshore wave data were sourced (blue dots), and the complex nearshore bathymetry of the embayment. Bathymetric elevation data 
provided by The New South Wales Department of Climate Change, Energy, the Environment and Water (2019). Basemaps obtained from ESRI. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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measurements. These offshore wave conditions were propagated to 
nearshore nodes at approximately 10 m depth using parametric trans
forms developed for the Sydney wave buoy within the NSW State Wide 
Nearshore Wave Transformation Tool (NWTT) (Baird Australia, 2017) 
(Fig. 1b). Nearshore wave conditions were then linearly interpolated 
alongshore to the modelled transect locations. For ShorelineEvol, 
nearshore waves were propagated to breaking point using Snell’s Law 
and the conservation of energy flux as simultaneous equations under 
linear wave theory (the same approach is used by COCOONED to 
propagate waves internally, but COCOONED also accounts for variations 
in the shoreline orientation during the simulation period while calcu
lating wave refraction). For the J21 rotation sub-model of IH-MOOSE, 
offshore CAWCR conditions were extracted for the grid point closest 
to Narrabeen (33◦ 44′S, 151◦ 20′E) rather than to the Sydney wave buoy.

Water level data (Fig. 2, bottom panels) were obtained for Narrabeen 
from the Fort Denison tide gauge located inside Sydney Harbour 
(Fig. 1a), the nearest gauge with a record extending back to February 
1979 to match the start of the wave forcing data. Hourly water levels at 
this gauge were extracted from the Australian National Collection of 
Homogenised Observations of Relative Sea Level (ANCHORS) dataset 
(Hague et al., 2021) and gaps were filled using ANCHORS data from the 
nearest gauges at Port Kembla or Newcastle. Water levels were then 
separated into three components using the ‘annual means’ method 
(Hague and Taylor, 2021), as follows: (1) annual mean sea level was 
calculated, (2) astronomical tide was modelled as oscillating around 
mean sea level using the Matlab package UTide (Codiga, 2011) 
following Viola et al. (2021), and (3) storm surge was taken as the 
leftover residual after subtracting mean sea level and astronomical tide 
from the measured water level.

2.3.3. Model constants and additional model-specific inputs
Hydrodynamic and morphodynamic characteristics required by the 

models were calculated as follows. The wave height exceeded 12 h per 
year and the associated period, H12 and T12, were calculated from the 
offshore CAWCR hindcast data over the simulation period and were 
therefore the same for all modelled transects (5.1 m and 12.9 s respec
tively). The average annual depth of closure was calculated from the H12 
and T12 values using Hallermeier’s (1981) formula, and was likewise the 
same for all transects (10.5 m). The berm height was set to a constant of 
3 m for all transects as the approximate average berm contour at Nar
rabeen (Harley et al., 2016). The median sediment grain size D50 was set 
at a uniform 0.3 mm across the embayment (Short, 1984; Turner et al., 
2016). For the one-line (CERC) sub-models, Dirichlet boundary condi
tions of zero longshore sediment transport at the edges of the embay
ment were imposed as Narrabeen is considered an effectively closed 
sediment compartment (Harley et al., 2011a; Carley et al., 2016).

For CoSMoS-COAST, the nearshore slope tan β was taken as the mean 
slope between mean sea level and the depth of closure contour at the five 
surveyed transects using bathymetry data provided by Turner et al. 
(2016). These slopes were then interpolated to the 36 modelled tran
sects. For COCOONED, dune toe and crest elevations were automatically 
extracted from each beach profile along the five surveyed transects using 
the Python package pybeach (Beuzen, 2019; van IJzendoorn et al., 
2021). Values that were too low (<2 m above mean sea level) were 
filtered out as pybeach had difficulty correctly distinguishing between 
the berm contour and dune contour at the two southernmost transects 
where much of the foredune has been lost to urban development. The 
mean dune toe and crest elevations at the five surveyed transects were 
interpolated to obtain elevations for the 36 modelled transects.

The estuary sub-model of ShorelineEvol was not activated at 

Fig. 2. Measured shoreline positions and forcing data characteristics, shown for two contrasting transects at opposite ends of the embayment. From top to bottom, 
panels show: measured shoreline positions, significant wave height Hs, a proxy for incident wave power Hs2Tp (visualised for reference, noting that peak period Tp 
was input to the models), nearshore wave direction from geographical north, and measured water levels relative to the Australian Height Datum, AHD (with annual 
mean sea level in light blue). A single water level timeseries was used for the embayment so the lower-most panels are identical for both transects. The 20-year 
calibration period is shaded and the subsequent 20-year validation period is unshaded. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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Narrabeen because, as described in 2.2, Narrabeen Lagoon is periodi
cally dredged and the sediment used to replenish the beach, effectively 
negating its role as a sediment sink over the hindcast period. Hard en
gineering structures were also not implemented in ShorelineEvol. While 
ad hoc discontinuous armouring is present at the southern end of Nar
rabeen, this is not typically modelled at this site. The modern vertical 
seawall was also not modelled as construction began in 2019, after the 
simulation period used here. The linear trend term of ShoreFor (refer to 
Equation (4)) was set to zero. The term is intended to represent net 
sediment gains or losses that are not otherwise captured by the model, 
but can contribute to unrealistic behaviour over multi-decadal simula
tions as trends are likely to vary over time, and the cumulative trend 
over long periods can overwhelm the shoreline behaviour simulated by 
the rest of the model (D’Anna et al., 2020, 2021a). Narrabeen has also 
been stable over the long term, with a near-zero average trend over the 
simulation period (e.g., Fig. 2).

2.3.4. Calibration of model parameters
The simulation period was limited to 40 years by the availability of 

wave forcing data (from February 1979 onwards) and water level and 
beach survey data (up to December 2019 at the time it was accessed). 
The first 20-year period 1 February 1979–1 February 1999 was used for 
calibration, and the subsequent 20-year period to February 1, 2019 was 
set aside for validation. ShoreFor was calibrated over ~14.5 years of 
data (24 July 1984–1 February 1999) as it requires up to 2000 days of 
wave data prior to simulations starting to calculate the equilibrium 
condition term (Splinter et al., 2017).

Model performance was evaluated during calibration using Mielke’s 
index λ (Duveiller et al., 2016), given by: 

λ = 1 −

1
n
∑n

i=1(xi − yi)
2

σ2
x + σ2

y + (x − y)2
+

κ
n

(1) 

where xi and yi are the observed and modelled data points, σ2
x and σ2

y are 
their population variances, x and y their means, n is the number of data 
point pairs, and κ depends on Pearson’s correlation coefficient R ac
cording to: 

κ =

⎧
⎪⎨

⎪⎩

0, if R ≥ 0

2

⃒
⃒
⃒
⃒
⃒

∑n

i=1
(xi − x)(yi − y)

⃒
⃒
⃒
⃒
⃒
, otherwise.

(2) 

This means λ is equal to zero when R < 0, equal to R when there is no 
bias, and smaller than R in the presence of either additive or multipli
cative bias (i.e., offset between the modelled and measured timeseries or 
consistent differences in the magnitude of oscillations). The relationship 
between λ and R is given by: 

λ =
2σxσy

σ2
x + σ2

y + (x − y)2 R (3) 

Compared to root mean squared error (RMSE), Mielke’s index is a 
better measure of the degree that measured shoreline variability is 
captured by the model (i.e., whether the standard deviation in both 
timeseries is similar) and helps to avoid “flat” calibrations that fit the 
mean trend of the observations but fail to capture oscillations. A point of 
reference for this index is available in Montaño et al. (2020), who found 
10 reduced-complexity shoreline models achieved Mielke’s index values 
of around 0.2–0.7 over a 15-year calibration period using 
alongshore-averaged shoreline position data at Tairua Beach, New 
Zealand (their results are compared to those of the present study in 4.1). 
It is acknowledged that calibration against different metrics may result 
in different ‘optimal’ parameters and therefore different model perfor
mance; however, models were calibrated using the same metric and later 
evaluated against multiple metrics to provide a balanced assessment of 
performance (these are described in 2.5).

Model parameters were calibrated using automated approaches 
(Table 3). CoSMoS-COAST was calibrated using its built-in data assim
ilation module, with data assimilation turned on during the calibration 
period and then off during the validation period. ShoreFor, Shor
elineEvol and IH-MOOSE were calibrated using the optimisation algo
rithm Shuffled Complex Evolution (SCE-UA) (Duan et al., 1992, 1994). 
SCE-UA is popular in hydrological modelling as it efficiently converges 
to the global optimum and is relatively robust against imperfect algo
rithm settings or ‘hyperparameters’ (Tolson and Shoemaker, 2007; 
Matott et al., 2013; Arsenault et al., 2014). The long run-time of COC
OONED precluded the use of SCE-UA; instead, Dynamically Dimen
sioned Search (DDS) was used (Tolson and Shoemaker, 2007). DDS was 
developed to find good (but not necessarily optimal) parameter sets for 
computationally expensive models within a limited computational 
budget. Access to parallel computing infrastructure allows multiple 
parallel instances of DDS to search more of the parameter space and 
identify better parameter sets over shorter periods of serial compute 
time (Tolson et al., 2014). COCOONED was calibrated using DDS with 
60 serial runs (DDS-60) on 15 parallel compute cores, which required 
close to a week of serial compute time (total 900 model runs). However, 
as uniform random sampling rather than log-uniform sampling was used 
in the implementation of DDS here, the algorithm had difficulty 
converging to good values of the erosion and accretion rate parameters, 
whose sampling ranges span several orders of magnitude. This likely 
contributed to the sub-optimal calibration of the cross-shore sub-model 
of COCOONED, which is identified in later sections. Additional infor
mation on the model free parameters and calibration settings for all five 
models is provided in the Supplementary Material.

Within each model, all parameters (i.e., for both cross-shore and 
longshore sub-models) were calibrated simultaneously. Preliminary 
tests with ShorelineEvol (not shown) indicated that calibrating the sub- 
models separately produced similar or worse mean performance across 
transects over the calibration period as simultaneous tuning, and the 
result depended on the order of calibration (i.e., whether the cross-shore 
or longshore sub-model was calibrated first), with the behaviour of the 
sub-model tuned first being over-exaggerated. The exception to this was 
IH-MOOSE, where the two sub-models were calibrated separately due to 
the computational expense of the coupling steps and the fact that each 
sub-model is calibrated against different measured data (cross-shore 
shoreline change at one central transect for the Y09 sub-model and mean 
shoreline orientation across the embayment for J21).

2.4. Modifications applied following initial simulations

2.4.1. ShoreFor and re-calculating the erosion ratio parameter
The performance of ShoreFor was found to be acceptable over the 

calibration period, but the model initially simulated large accretionary 
trends that strongly diverged from observations over the validation 
period (presented in 3.1.1 below). This behaviour was found to be 
resolved by re-calculating ShoreFor’s erosion ratio term r independently 
for the validation period. In ShoreFor, shoreline change ∂Y/∂t is calcu
lated according to Equation (4), and r controls the rate of shoreline 
response during erosive forcing conditions (F− ) compared to accre
tionary conditions (F+) by scaling the accretion rate parameter c: 

∂Y
∂t

= c(F+ + rF− ) + b (4) 

where b is the linear trend term, set to zero in this study (refer to 2.3.3). 
Unlike in the Y09 and MD04 cross-shore sub-models, where no specific 
relationship is assumed between the accretion and erosion rate constants 
and both are free parameters, r in ShoreFor is not a free parameter but is 
calculated internally from the wave forcing according to: 

r =

⃒
⃒
⃒
⃒
⃒

∑N
i=0 < F+

i >
∑N

i=0 < F−
i >

⃒
⃒
⃒
⃒
⃒

(5) 
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where | | are absolute value operators, the < > operators remove the 
linear trend but preserve the mean, and N is the total number of time
steps in the simulation period (for full definitions of the forcing terms F+

and F− , refer to Splinter et al., 2014). This formulation is intended to 
produce no trend in the modelled shoreline position over the simulation 
period if there is no trend in the balance of accretionary and erosive 
wave forcing conditions (Splinter et al., 2017). Typically, r is calculated 
over the calibration period and kept constant for validation or fore
casting like other model parameters (Davidson et al., 2013; Montaño 
et al., 2020), as was done here initially. However, it appears that wave 
conditions were not consistently balanced over the multi-decadal 
simulation period used here, and re-calculating r was applied as a 
reasonable first-pass solution, using one value for the calibration period 
and another for the validation period. This issue and more sophisticated 
solutions are discussed in 4.3.2.

2.4.2. One-line (CERC) sub-models and wave direction bias
CoSMoS-COAST, COCOONED and ShorelineEvol were found to 

simulate a large trend of planform shoreline realignment over both 
calibration and validation periods during initial simulations, as pre
sented in 3.1.2 below. These three models use the one-line (CERC) sub- 
model for longshore transport. In this sub-model, the rate of shoreline, 
∂Y/∂t, is proportional to the gradient in longshore sediment transport, 
∂Q/∂x, according to: 

∂Y
∂t

= −
1

dB + dc

∂Q
∂x

(6) 

where dB is the berm height above mean sea level, dc is the depth of 
closure below mean sea level and Q is the longshore sediment transport 
rate, given by: 

Q = K
ρ

(ρs − ρ)p
H2

bCg,b

16
sin[2(θb − αs)] (7) 

K is a free parameter controlling the rate of sediment transport, ρ is the 
sea water density, ρs is the sediment density, p is the sediment porosity, 
Hb is the breaking wave height and Cg,b is the group velocity of waves at 
breaking. CoSMoS-COAST uses a slightly simpler formulation Q =

K1H2
s sin[2(θb − αs)], where K1 is a free parameter that aggregates 

breaking wave group velocity Cg,b with the constants and the nearshore 
significant wave height is used instead of the wave height at breaking 
point.

In all three models, erroneous planform realignment was simulated 
unless the rate parameter K (or K1 in CoSMoS-COAST) was set to a very 
small value such that the modelled rate of longshore transport was 

negligible. Similar modelled realignment at Narrabeen was recently 
identified by Chataigner et al. (2022) using a standalone one-line 
longshore transport model, and they showed that it was driven by 
mean biases in input wave direction data and the high sensitivity of 
one-line models to such biases.

To evaluate model performance without the influence of potentially 
poor-quality input data, the realignment trend was corrected for using a 
‘virtual equilibrium shoreline’ approach based on Anderson et al. 
(2018), Antolínez et al. (2019) and Robinet et al. (2020), as follows. 
First, each of the three models were run over the calibration period and 
the simulated shoreline was allowed to realign. The value of K was 
manually selected to produce a sufficiently high rate of longshore 
transport such that by the end of the calibration period, the average 
shoreline position had stabilised, and no further realignment occurred. 
The shoreline position over the final five years of this simulation was 
then averaged to represent a virtual ‘long-term equilibrium’ position 
relative to the biased wave conditions. Next, each model was re-started 
from the beginning of the calibration period using the virtual equilib
rium shoreline as the initial shoreline. Model performance was then 
evaluated by comparing modelled shoreline change relative to the vir
tual equilibrium shoreline, and measured shoreline change relative to 
the measured initial shoreline (i.e., rather than comparing absolute 
shoreline positions). This approach is approximately equivalent to 
removing the mean of the wave direction timeseries (e.g., Tran and 
Barthélemy, 2020) but was found to produce better results in pre
liminary tests (not shown). This issue is discussed further in 4.2.1.

2.5. Evaluating model performance

2.5.1. Overall performance
Model performance was evaluated over the validation period using 

Mielke’s index, the same metric used for calibration (Equation (1)). As 
model performance and relative rankings are known to depend on the 
choice of metric (Montaño et al., 2020) and different metrics evaluate 
different aspects of model skill (Bennett et al., 2013; Liemohn et al., 
2021), three additional metrics were visualised for the validation period 
using Taylor diagrams (Taylor, 2001): (1) the correlation between 
measured and modelled shoreline positions, (2) the standard deviation 
of modelled shoreline positions compared to measured positions (i.e., 
how closely models matched the measured shoreline variability), and 
(3) centred root mean squared error (CRMSE), that is, RMSE with bias 
removed. As the theoretical design of Taylor diagrams requires bias to be 
excluded, the complementary metrics of bias (mean error) and uncen
tred RMSE were also visualised.

Table 3 
Free parameters, calibration approach and run time of each model.

Model Calibration method Programming language  
(for implementation used 
here)

Approx. run time over calibration 
perioda

Number of free parameters 
calibratedb

ShoreFor Optimisation (SCE-UA) R 0.01 s (once φ is set) 
10 s–3 min (total, depending on φ) c

2 per transect

CoSMoS-COAST Data assimilation (ensemble Kalman 
filter)

Matlab 1 h d 7 per transect

COCOONED Optimisation (DDS) Python 1 h e 5 embayment-wide
ShorelineEvol Optimisation (SCE-UA) Fortran 3 min f 4 embayment-wide
IH-MOOSE Optimisation (SCE-UA) Matlab 0.01 s for Y09 or J21 

20 min for whole model
8 embayment-wide

a On a 4-core 1800 MHz processor for a single run through the 20-year calibration period at an hourly timestep.
b ShoreFor and CoSMoS-COAST use alongshore-varying parameters; that is, different parameters were calibrated at each modelled transect. In the remaining models, 

alongshore-fixed parameters were used (one set for the whole embayment). Model parameters are described in the Supplementary Material.
c Run time per transect; each transect is calibrated separately.
d With data assimilation turned on.
e With internal propagation of waves from nearshore to breaking turned on.
f Run-time includes the step of interpolating the output shorelines at fixed nodes to the shore-normal transects.
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2.5.2. Performance over different timescales
To evaluate each model’s ability to capture processes operating over 

different timescales within the multi-decadal period, measured and 
modelled shoreline positions over the 20-year validation period were 
separated into a 6-month rolling mean and residual. The 6-month rolling 
mean was considered to represent seasonal to interannual-scale shore
line variability, while the residual component was attributed to shorter- 
term, storm-driven erosion/accretion cycles. The models’ ability to 
capture each of these components was evaluated using Mielke’s index. 
Additive bias or mean error was removed from the modelled rolling 
mean shoreline position so that Mielke’s index only measured correla
tion and multiplicative bias (i.e. whether shoreline variability was over- 
or under-estimated) for both components. In other words, as additive 
bias is inherently excluded from the residual component, it was also 
removed from the 6-month rolling mean component to directly compare 
model performance scores across the two timescales.

2.5.3. Performance in capturing cross-shore and longshore processes
Finally, to evaluate each model’s ability to capture the processes 

underlying shoreline dynamics at Narrabeen and their spatiotemporal 
variability, an empirical orthogonal function (EOF) decomposition was 
performed on both measured and modelled shoreline positions 
following Harley et al. (2011a), Antolínez et al. (2019) and Robinet et al. 
(2020). Also known as a principal component analysis (PCA), this 
technique may be used to separate a temporally and spatially varying 
signal (in this case, the shoreline position) into a linear series of distinct 
modes, termed eigenfunctions or EOFs, that each explain an indepen
dent component of the variability. The percentage of temporal vari
ability explained by each spatial EOF is given by a corresponding 
weighting factor or eigenvalue in the linear series. Prior to EOF 
decomposition, measured and modelled shoreline positions at the five 
transects were subset to concurrent timesteps, de-meaned, converted to 
a log-spiral coordinate system to express positions in purely cross-shore 
and alongshore coordinates (Harley and Turner, 2008), and interpolated 
to 4 m alongshore (Harley et al., 2011a; Ibaceta et al., 2023). As the 
technique is very sensitive to the time period used (Ibaceta et al., 2023), 
the calibration and validation periods were both separately analysed.

Using this approach, Harley et al. (2011a, 2015) and Ibaceta et al. 
(2023) linked the first two EOFs of measured shoreline change at Nar
rabeen to: (1) sediment exchange operating consistently either onshore 
or offshore across the embayment at any one time, represented by a 
spatial EOF with a uniform sign alongshore (positive or negative), and 
(2) sediment transport occurring in opposite directions at opposite ends 
of the embayment, represented by a spatial EOF with a sign reversal near 
the centre of the embayment. These are termed the “cross-shore 
coherent” and “longshore coherent” modes respectively. However, EOF 
decomposition is a purely statistical technique and the modes do not 
explicitly identify physical cross-shore and longshore processes. At 
Narrabeen, the cross-shore coherent mode does appear to correspond to 
cross-shore processes, while the longshore coherent mode appears to be 
a mixture of mechanisms combining both cross-shore and longshore 
transport (discussed further in 4.1). Therefore, although this decompo
sition does not perfectly measure whether the models are correctly 
partitioning cross-shore and longshore behaviour, it does to some extent 
indicate their ability to capture multiple spatially and temporally 
varying processes operating concurrently at Narrabeen.

3. Results

3.1. Initial model performance prior to modifications

3.1.1. ShoreFor (without re-calculating the erosion ratio term)
ShoreFor showed acceptable performance over the calibration 

period (mean Mielke’s index, λ, of 0.38) but initially simulated large 
accretionary trends that caused the modelled shoreline to diverge from 
observations by 50–100 m by the end of the validation period (Fig. 3). 

Similar behaviour was recently observed by Ibaceta et al. (2022), who 
applied ShoreFor to a 14-year calibration period and used a total of 14 
years for validation at a site on the Gold Coast, Australia. They found 
that ShoreFor simulated large mean-trend erosion when initialised 
outside of the calibration period, which resulted in an RMSE of 254.3 m 
over their total 28-year simulation. They attributed this to the model’s 
sensitivity to wave climate non-stationarity between the two simulation 
periods, and this behaviour is discussed further in 4.3.2 below.

3.1.2. Models with one-line (CERC) sub-models (without a virtual 
equilibrium shoreline)

The initial output of COCOONED and ShorelineEvol showed a large 
net clockwise rotation of the embayment planform over both the cali
bration and validation periods, diverging strongly from measured 
shoreline positions despite automated calibration using optimisation 
algorithms (Fig. 4). By the end of the 40-year simulation period, the 
modelled shorelines showed ~25–75 m of mean-trend accretion at the 
northern and central transects (PF1–PF4) and ~100–200 m erosion at 
the southernmost transect (PF8) relative to measured shoreline 
positions.

CoSMoS-COAST was calibrated using built-in data assimilation. 
During preliminary tests with assimilation turned off for the full simu
lation (not shown), CoSMoS-COAST simulated a similar trend of plan
form shoreline realignment over the calibration period to the two 
models above. In the initial results (Fig. 4), where data assimilation was 
turned on for calibration, CoSMoS-COAST replicated measured shore
line changes almost perfectly during the calibration period (mean λ >
0.99). However, this is a consequence of data assimilation, which adjusts 
modelled shoreline positions towards measured positions at each time
step for which a measurement is available, and is not necessarily 
indicative of forecasting performance. During the validation period, 
where data assimilation was turned off, CoSMoS-COAST simulated 
similar mean-trend realignment as COCOONED and ShorelineEvol, with 
accretion at PF1–PF4 and erosion at PF8, although lower in magnitude 
(Fig. 4).

These three models simulate longshore sediment transport using the 
one-line (CERC) sub-model, which is responsible for this behaviour in 
the presence of biased input wave direction data as noted in 2.4.2 above 
(Chataigner et al., 2022). The pattern of planform realignment simu
lated here closely matched the model behaviour observed at Narrabeen 
by Robinet et al. (2020) using LX-Shore (a hybrid model using a 
grid-based one-line sub-model coupled with ShoreFor), as well as by 
Chataigner et al. (2022), who used a standalone one-line (CERC) model. 
The reasons for and implications of this issue are discussed further in 
4.2.1.

3.2. Model performance with modifications applied

3.2.1. Modelled shoreline positions and Mielke’s index performance scores
Model performance improved substantially once modifications were 

applied (Figs. 5 and 6). ShoreFor showed much more stable performance 
during the validation period once the erosion ratio term r was re- 
calculated (Mielke’s index λ = 0.33 compared to λ = 0.04). For the 
three CERC-based models affected by wave direction bias, the mean 
Mielke’s index across transects improved by 0.25–0.42 when re- 
initialised with a virtual equilibrium shoreline, and planform shoreline 
realignment was no longer evident in the output timeseries. IH-MOOSE, 
not shown in the initial results above, achieved a reasonable perfor
mance across both calibration and validation periods without additional 
modifications.

With modifications applied, mean performance across the five 
transects for all models was clustered within a Mielke’s index of 0.3–0.5 
over both the calibration and validation periods. The exception was 
CoSMoS-COAST over the calibration period, showing near-perfect per
formance at all transects due to data assimilation (mean λ = 0.99). Of the 
models without assimilation, IH-MOOSE achieved the best performance 
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over the calibration period (mean λ = 0.45) without requiring modifi
cations, although it was closely followed by ShorelineEvol (λ = 0.41) 
and ShoreFor (λ = 0.38). Over the validation period, the best mean 
performance was achieved by ShorelineEvol (λ = 0.49), but with similar 
scores from COCOONED (λ = 0.43) as well as CoSMoS-COAST and IH- 
MOOSE (λ = 0.39 for both, with data assimilation now off in CoSMoS- 
COAST). The relative performance of ShoreFor is notable as it is a 
standalone cross-shore model designed for event to interannual-scale 
simulations, not a hybrid framework with a sub-model of long-term 
behaviour, and was expected to be disadvantaged for this reason over 
a 40-year simulation period.

Despite similar results on average, performance varied markedly 
across transects for each model. Models appeared to have difficulty at 
different transects and in different ways. For example, ShoreFor ach
ieved the second-highest score of the five models over the validation 
period at PF4, but the lowest score at PF6, where it simulated a positive 
(seaward) offset and underestimated event to seasonal-scale variability. 
CoSMoS-COAST was the best-performing model at PF8 but achieved the 
lowest score at PF1 due to a negative (landward) offset. IH-MOOSE 
achieved the highest score at PF1 and PF4, but the lowest score at 
PF2, where the modelled shoreline position showed a large seaward 
offset. In addition, all three models re-initialised with a virtual equi
librium shoreline showed poor performance at PF4 (λ < 0.2), where 
modelled shoreline positions were offset seaward and seasonal to 

interannual-scale oscillations were not captured.
Interestingly, the Mielke’s index scores were higher over the vali

dation period than the calibration period for several models at indi
vidual transects, as well as for the mean performance of COCOONED and 
ShorelineEvol over all five transects. This is unusual as models are 
typically better able to reproduce the data they are calibrated on rather 
than unseen data. This may be the result of: (1) a possible improvement 
in the quality of the hindcast wave dataset in more recent years (i.e., 
lower scatter compared to measured conditions), as the underlying wind 
and sea-ice concentration reanalysis product was able to assimilate 
increasing numbers of observations; and/or (2) more frequent beach 
profile surveys in recent years allowing for potentially higher Mielke’s 
index scores, as Mielke’s index is a correlation-based metric and may 
increase as more timesteps are added to the calculation.

3.2.2. Performance across other metrics
Taylor diagrams of correlation, centred RMSE and measured versus 

modelled standard deviations (i.e., magnitudes of shoreline variability) 
are shown in Fig. 7. The complementary metrics of bias and uncentred 
RMSE are shown in Fig. 8. These metrics show similar trends as noted 
above, although they quantify different aspects of model behaviour and 
highlight that different metrics favour different models. On average 
across all transects, model performance was again very similar, with all 
models achieving a mean RMSE of 15–19 m and most achieving a 

Fig. 3. Measured versus modelled shoreline positions for ShoreFor, with the erosion ratio term calculated over the calibration period and kept constant over the 
validation period. Note that y-axis scales differ between plot panels but grid spacing is consistent.
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correlation of ~0.6. ShoreFor achieved the lowest correlation score (R 
= 0.36) but the best mean absolute bias (5.2 m compared to 7.8–13.2 m 
for the other models), while CoSMoS-COAST achieved the best mean 
correlation (R = 0.65).

For individual transects, most models were generally able to achieve 
a CRMSE of 10–15 m and an uncentred RMSE of 10–20 m but showed 
significant bias or over/under-estimation of shoreline variability at 
specific transects, as noted above. At PF4, the three models re-initialised 
using a virtual shoreline notably underestimated shoreline variability 
and showed a 10–20 m seaward bias, as identified above from the 
shoreline position timeseries (Fig. 5). ShoreFor tended to capture the 
right degree of variability and show low bias except at PF6, where it had 
the largest bias of the five models (11.7 m). CoSMoS-COAST showed 
fairly large biases, notably at PF1 and PF2 (up to − 26.5 m), but had the 
best correlation and closely matched the magnitude of measured 
shoreline variability at these transects. COCOONED and ShorelineEvol 
performed well at PF2 and PF6 but tended to overestimate shoreline 
variability at the outermost transects PF1 and PF8. IH-MOOSE per
formed well at PF4 but overestimated shoreline variability at the two 
northern transects, underestimated at the two southern transects, and 
showed a 35.4 m seaward bias at PF2.

3.2.3. Performance over different timescales
The 6-month rolling mean of measured and modelled shoreline po

sitions (with bias removed) is shown in Fig. 9. The Mielke’s index scores 
are also listed to quantify the ability of the models to capture this rolling 
mean (representing seasonal-scale and longer-term behaviour), as well 
as its residual component (representing shorter-term storm-driven 
erosion/accretion cycles). In terms of capturing shoreline behaviour 
over seasonal scales and longer, CoSMoS-COAST performed best, fol
lowed by ShorelineEvol and COCOONED. All three of these models use 
the one-line (CERC) sub-model of longshore transport. Each of these 
three models also scored better in capturing longer-term behaviour than 
they did in capturing event-scale oscillations. The notable exception to 
this was at the transect PF4 in the centre of the embayment, where they 
achieved a score of near-zero in capturing longer-term behaviour. IH- 
MOOSE, which uses the semi-empirical sub-model of beach rotation, 
J21, did not score as well as the top three CERC-based models (except at 
PF4) for longer-term behaviour. However, it out-performed ShoreFor, 
the standalone cross-shore model, at all transects except PF6. Interest
ingly, the EOF analysis in 3.2.4 shows that PF6 is the most dominated by 
cross-shore processes over the validation period.

In terms of capturing event-scale erosion/accretion cycles, Shor
elineEvol and IH-MOOSE tended to show the best performance, with 

Fig. 4. Measured versus modelled shoreline positions for three models using the one-line (CERC) sub-model and affected by wave direction bias at Narrabeen. Note 
that y-axis scales differ between plot panels but grid spacing is consistent. In CoSMoS-COAST, data assimilation was turned on for the calibration period and off 
during the validation period.
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ShorelineEvol achieving relatively consistent scores across transects (λ 
~ 0.6) while the performance of IH-MOOSE was best at the central 
transect PF4 (λ = 0.74) and decreased towards the outer transects at the 
edges of the embayment. This may relate to the calibration approach: 
the cross-shore sub-model parameters of IH-MOOSE were tuned at PF4, 
while those of ShorelineEvol were tuned based on average performance 
across the five transects. Surprisingly, neither CoSMoS-COAST nor 
ShoreFor performed as well as these two models (except at PF8), despite 
having alongshore-varying parameters (i.e., parameters calibrated 
separately at each transect) compared to the single set of parameters 
tuned for the whole embayment in ShorelineEvol and IH-MOOSE. 
COCOONED generally achieved lower scores in capturing short-term 
oscillations than the other models, which is attributed to the sub- 
optimal calibration of its cross-shore parameters noted in 2.3.4. Inter
estingly, the three models with one-line (CERC) sub-models were able to 
capture short-term oscillations at PF4 with a similar degree of success as 
they each did at other transects, despite near-zero scores for capturing 
longer-term behaviour, indicating that poor performance at this transect 
is caused by the longshore sub-models rather than the cross-shore sub- 
models as initially hypothesised. This is further supported by the EOF 
analysis in the next section (3.2.4), which shows that this transect has a 
large contribution from longshore coherent processes over the valida
tion period.

Comparing ShoreFor against IH-MOOSE at PF4 provides an oppor
tunity to compare ShoreFor directly against Y09, the cross-shore sub- 
model of IH-MOOSE. IH-MOOSE was set up with Y09 calibrated at PF4, 
and with PF4 acting as the pivot point or node of the rotation sub-model, 
meaning the output of IH-MOOSE at PF4 is driven entirely by Y09 alone. 
IH-MOOSE (Y09) performed better than ShoreFor in capturing both 
timescales of variability over the 20-year period. IH-MOOSE (Y09) also 
performed better than all other models at this profile.

More generally, the scores of ShoreFor were somewhat surprising 
across the five transects. At PF1–PF4, the model captured both longer- 

term and event-scale behaviour with similar scores of λ ~0.4. At PF6, 
which is shown in the following section to be the most cross-shore 
dominated transect over this period, ShoreFor achieved a score of λ =
0.60 for the longer-term behaviour, on par with the three models using 
one-line (CERC) sub-models, and better than IH-MOOSE. However, 
ShoreFor only scored λ = 0.13 for the event-scale behaviour. Conversely, 
at PF8, ShoreFor achieved λ = 0.07 for longer-term shoreline behaviour, 
but λ = 0.73, the best score of the five models, in capturing event-scale 
oscillations. This suggests ShoreFor may have had difficulty capturing 
multiple concurrent processes that drive shoreline change over different 
timescales within the multi-decadal period. Although this may be ex
pected for a standalone cross-shore model applied to a long simulation 
period compared to the hybrid framework models (which include mul
tiple sub-models to capture multiple timescales of behaviour), this has 
also been identified as a specific shortcoming of ShoreFor by previous 
authors over shorter simulation periods (e.g., Schepper et al., 2021; Tran 
et al., 2021) and is discussed in 4.3.2.

3.2.4. Performance in replicating EOF decomposition of measured shoreline 
positions

The first two modes of the EOF decomposition for both measured and 
modelled shoreline positions are shown in Fig. 10. Over the calibration 
period 1979–1999, the EOF decomposition of measured shoreline po
sitions (Fig. 10a, black lines) is similar to the long-term average at 
Narrabeen identified in time-invariant analyses by Harley et al. (2011a)
over the period 1976–2010 and Ibaceta et al. (2023) over 1976–2019. 
The cross-shore coherent mode is dominant, explaining 54% of shoreline 
variability, while the longshore coherent mode accounts for 32% of 
variability. The spatial EOF of the cross-shore coherent mode shows a 
peak at PF4 and higher values at the northern end of the embayment 
compared to the southern end, while the longshore-coherent mode 
shows a sign reversal just north of PF4.

The corresponding decomposition of modelled shoreline positions 

Fig. 5. Measured versus modelled shoreline positions for the five models, separated for clarity between panels: (a) models using the one-line (CERC) sub-model, 
initially affected by wave direction bias; (b) other models. Note that y-axis scales differ between transects but grid spacing is consistent. In CoSMoS-COAST, data 
assimilation was turned on for the calibration period and off during the validation period.
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over the calibration period showed notable differences between models. 
With data assimilation turned on for calibration, CoSMoS-COAST 
replicated all components of the measured EOF decomposition almost 
perfectly over this period, as expected from its near-perfect replication 
of the measured timeseries itself (Fig. 5). In terms of spatial EOFs, 
ShoreFor roughly replicated the cross-shore coherent mode but not the 
longshore coherent mode. However, it was calibrated over a 15-year 
rather than 20-year period (1984–1999) and cannot be directly 
compared to the 1979–1999 decomposition. The remaining three 
models, with alongshore-fixed parameter values (see Table 3), were able 
to replicate the longshore coherent spatial EOF fairly closely, but not the 
cross-shore coherent EOF. In terms of the percentage of variance 
explained by each mode, ShorelineEvol replicated the measured 

percentages reasonably well. Conversely, the variability of COCOO
NED’s output was overwhelmingly dominated by the longshore- 
coherent mode (90%), attributed to the poor calibration and resulting 
underperformance of its cross-shore sub-model. The reverse was true for 
IH-MOOSE and ShoreFor, with 90% and 87% of variability explained by 
the cross-shore coherent mode, respectively. These two models do not 
explicitly simulate longshore sediment transport (at all in the case of 
ShoreFor, and only semi-empirically through an equilibrium beach 
rotation sub-model in the case of IH-MOOSE).

For the validation period 1999–2019 (Fig. 10b), the EOF decompo
sition of measured shoreline positions indicates very different shoreline 
dynamics compared to the calibration period, consistent with the anal
ysis by Ibaceta et al. (2023) showing high variability in these dynamics 
at Narrabeen over interannual timescales. Over the validation period, 
the longshore coherent mode is dominant over the cross-shore coherent 
mode, explaining 52% of variability compared to 41%. The spatial EOFs 
show a reversal in their alongshore magnitudes (e.g., the cross-shore 
coherent mode is now greater in magnitude at the southern end of the 
embayment) as well as changes to their shape. In particular, the spatial 
EOF of the longshore-coherent mode is more complex than the relatively 
linear shape it showed over the calibration period, with a high magni
tude at PF4 and the node further south, closer to PF6.

The EOF decompositions of modelled shorelines over the validation 
period are intriguing. The only model that replicated both spatial EOFs 
with reasonable accuracy was ShoreFor, which was unexpected as it 
does not explicitly resolve longshore processes or consider wave direc
tion as an input. However, ShoreFor was also the only model with at 
least one time-varying parameter, with the erosion ratio r re-calculated 
as described in 2.4.1. The parameters of CoSMoS-COAST varied during 
data assimilation but converged to fixed values towards the latter half of 
the calibration period and were fixed at these values for the validation 
period. This model showed similar, but not identical, spatial EOFs over 
the validation period compared to its spatial EOFs over the calibration 
period. The spatial EOFs of the remaining models, with entirely time- 
invariant parameters, appeared to be almost identical to their calibra
tion period EOFs. The longshore coherent spatial EOFs of these models 
did show a reversal in their alongshore magnitude, consistent with 
measurements, but not a change in their shape, while the shape of the 
cross-shore coherent EOFs remained entirely unchanged. As wave di
rection is used as an input in the longshore sub-models but not the cross- 
shore sub-models, we hypothesise the alongshore reversal in the 
observed EOFs may have been driven by a shift in prevailing wave di
rection between the two time periods. In the case of ShoreFor, recal
culating r (independently at each transect) appeared to allow it to 
capture the shift in shoreline dynamics without explicitly accounting for 
longshore processes or considering wave direction as an input.

Comparing the proportion of variability explained by each mode 
between the calibration and validation periods shows a similar pattern 
(right-most panels of Fig. 10). For the models with entirely time- 
invariant parameters, COCOONED, ShorelineEvol and IH-MOOSE, 
these proportions appear to have been set during the calibration 
period and then maintained into the validation period. Conversely, 
CoSMoS-COAST and ShoreFor did show a reversal in the dominant 
mode, consistent with measurements, although the proportions were 
skewed too far towards the longshore coherent mode (surprisingly for 
ShoreFor, a model of only cross-shore processes).

Finally, comparing measured and modelled temporal EOFs (middle 
panels of Fig. 10) shows that models typically achieved higher correla
tions with the measured longshore coherent mode than the cross-shore 
coherent mode for both time periods. COCOONED in particular 
showed good correlations with the longshore coherent temporal EOFs 
over both time periods but notably low correlations with the cross-shore 
coherent EOFs, again attributed to the poor calibration of its cross-shore 
sub-model. The exception was ShoreFor, which showed a higher corre
lation to the cross-shore coherent EOF, as expected for a standalone 
cross-shore model. However, it still showed a reasonable correlation to 

Fig. 6. Mielke’s index values of each model at each transect, as well as the 
mean across transects (shaded). Open circles show calibration performance and 
filled circles show validation performance. In CoSMoS-COAST, data assimila
tion was turned on for the calibration period and off during the validation 
period. The initial runs refer to the model outputs described in 3.1, i.e., before a 
virtual equilibrium shoreline was used for ShorelineEvol, COCOONED and 
CoSMoS-COAST, and before the erosion ratio term in ShoreFor was re- 
calculated over the validation period.
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the longshore coherent EOF, particularly over the validation period. 
This supports the view that the longshore coherent EOF at Narrabeen is 
driven by a mixture of cross-shore as well as longshore transport (Harley 
et al., 2011a, 2015), but also suggests that the alongshore-varying and 

time-varying parameters used in ShoreFor here may allow it to replicate 
longshore processes to some extent even though the model is not 
explicitly formulated to capture these.

Fig. 7. Taylor diagrams of model performance by transect over the validation period 1999–2019. The correlation between modelled and measured shoreline po
sitions is shown by the angle from the vertical y-axis. Radial axes show the standard deviation of modelled or measured shoreline positions moving outwards from the 
bottom left. Additional contours show centred root mean squared error (CRMSE), i.e., RMSE with bias removed. Models with better performance are located towards 
the bottom of each plot (i.e., higher correlation with measurements) and closer to the dashed black line (i.e., the standard deviation or modelled degree of shoreline 
variability is closer to the measured variability).

Fig. 8. Complementary metrics to those shown in the Taylor diagrams (Fig. 7): bias and (uncentred) root mean squared error (RMSE).
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4. Discussion

4.1. Overall performance of models at Narrabeen

The overall performance achieved by the five models was promising 
given the simplicity of the models compared to the complexity of 
shoreline dynamics at Narrabeen. For example, all five models assume 
an equilibrium beach profile shape that remains constant in time and 
simply translates landwards or seawards as the shoreline position 
changes, and none of the models explicitly consider sandbar dynamics or 
storage of sediment in the nearshore following storms. In contrast, the 
profile shape of the upper beach and surf zone is very dynamic at Nar
rabeen, with rapid onshore-offshore movement of the sandbar and 
correspondingly rapid transitions through the intermediate morphody
namic beach states (Wright et al., 1985; Davidson et al., 2013). The 
position of the bar has been shown to modulate shoreline variability by 
controlling wave energy dissipation and therefore erosion during storms 
(Harley et al., 2009), as well as sediment availability and accretion rates 
during subsequent recovery periods (Phillips et al., 2017).

Additional simplifying assumptions were made in setting up the 
models. A constant berm height and closure depth were assumed to 
define the landward and seaward limits of modelled sediment erosion or 
deposition (with COCOONED also accounting for dune erosion). How
ever, Harley et al. (2022) found that extreme storms appear to mobilise 
sediment from the lower shoreface, contributing to significant net 

accretion over the following 12 months compared to pre-storm volumes. 
The models were also set up with a uniform grain size across the 
embayment (refer to 2.3.3), meaning that the equilibrium beach profile 
shape was also assumed to be constant alongshore. However, due to the 
sheltering effect of the headlands bounding the embayment (Fig. 1b) and 
the resulting gradient in wave energy exposure, the modal beach state 
also varies alongshore, with the more sheltered southern end tending 
towards more reflective profiles (Wright and Short, 1984) and also 
exhibiting differing sandbar behaviour to the more exposed northern 
end (Harley et al., 2015). Finally, urban development and ad hoc 
armouring at the southern end of the embayment were not simulated, 
although these do truncate the maximum inland extent of profile fluc
tuations during severe storms at PF6 (Short and Trembanis, 2004). 
Nonetheless, the models did not show an obvious degradation in per
formance at PF6 compared to the other transects, with three of five 
models achieving their best or second-best Mielke’s index score at this 
transect (Fig. 6).

The complexity of shoreline dynamics at Narrabeen can also be 
considered in terms of the physical processes underlying the first two 
EOF modes, proposed by Harley et al. (2011a, 2015) and Ibaceta et al. 
(2023). The cross-shore coherent mode is considered to correspond to 
cross-shore shoreline oscillations during storm erosion/recovery cycles, 
which vary in magnitude alongshore due to the alongshore gradient in 
wave energy exposure (Harley et al., 2011a, 2015). The longshore 
coherent mode has been linked to at least three possible physical 

Fig. 9. Six month rolling mean of measured (black) and modelled (coloured) shoreline positions. The individual (i.e., un-averaged) measured shoreline positions are 
shown in grey. The modelled positions were subset to timesteps concurrent with measurements, and bias (mean error) was removed before calculating the rolling 
mean. The timeseries of corresponding residuals are not shown, but Mielke’s index values for both the rolling mean and residuals are listed on the right.
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processes, including both longshore and cross-shore sediment transport: 
(1) seasonal to interannual-scale reversals in longshore transport di
rection (‘classic’ beach rotation), (2) opposing sandbar behaviour at 
each end of the embayment, and (3) longshore redistribution of sedi
ment across the upper shoreface during extreme storms from oblique 
angles, and subsequent redeposition of sand in a different part of the 
embayment to that from which it was eroded (Harley et al., 2011a, 
2015; Ibaceta et al., 2023). The models tested here are designed to 
resolve the mechanism underlying the cross-shore coherent mode, and 
only the first of the three longshore coherent mechanisms (and ShoreFor 
only resolves the former, not the latter). Despite this, the models per
formed surprisingly well in reproducing both modes, particularly over 
the calibration period.

The overall performance scores of the models at Narrabeen are 
comparable to those of Montaño et al. (2020), who evaluated 10 

reduced-complexity or hybrid models (including ShoreFor, 
CoSMoS-COAST and COCOONED) against alongshore-averaged shore
line position data at Tairua Beach, New Zealand. The 10 models ach
ieved Mielke’s index values ranging from 0.23 to 0.62 over a 15-year 
calibration period (excluding two models with data assimilation turned 
on during this period) and 0.23–0.51 over a 3-year validation period. In 
the present study, models achieved Mielke’s index values of 0.30–0.45 
averaged over five transects during the 20-year calibration period 
(excluding the near-perfect score of CoSMoS-COAST, with data assimi
lation turned on). Over the subsequent 20-year validation period, the 
corresponding range across the five models was 0.33–0.49. Unlike the 
present study, models in Montaño et al. (2020) were calibrated using 
RMSE or normalised mean squared error (NMSE), and their Mielke’s 
index scores would be expected to be higher if it was used to calibrate 
models directly. Nonetheless, the similar range of scores observed over 

Fig. 10. The first two empirical orthogonal functions (EOFs) for measured (black) and modelled (coloured) shoreline positions at Narrabeen over the calibration 
period (a) and validation period (b). For each period, the shoreline position p at alongshore coordinate s and time t is given by p(s,t) =

∑N
k=1 wkek(s)ck(t), where wk is 

a weighting factor, ek(s) is the kth spatial EOF and ck(t) is the kth temporal EOF. The EOFs are visualised so that the cross-shore coherent mode always appears in the 
top panel and the longshore coherent mode appears in the bottom panel, allowing the shapes to be compared easily. This means for some models, the first modelled 
EOF (k = 1) is plotted against the second measured EOF (k = 2) and vice versa. Models with the two EOFs in the correct order (i.e., matching observations) are bolded 
in the table on the right.
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the much longer validation period considered here (i.e., 20 years rather 
than 3 years) does provide some confidence in the ability of these types 
of models to maintain consistent performance over multi-decadal sim
ulations (although the different sites mean that the scores are not 
directly comparable, and testing performance over multiple simulation 
period durations at a single site remains an avenue for future work).

However, overall performance scores remain relatively low from the 
perspective of using the models to forecast shoreline change for coastal 
management. This remained the case even after modifications to 
improve performance were applied to four of the five models. Model 
performance also varied substantially between the five transects eval
uated in the present study, with models replicating measured shoreline 
variability well at some transects (up to λ = 0.64 and RMSE = 10.1 m 
over the validation period) and very poorly at others (λ = 0.01, RMSE =
37.6 m). Although the simplifications described above are expected to 
have played some role, the performance of the different models 
appeared to be particularly limited by different factors that depended on 
their cross-shore and longshore sub-models. These are discussed in turn 
below.

4.2. Sub-models of longshore processes

Comparing the results of the standalone cross-shore model ShoreFor 
to the hybrid framework models suggests that coupling sub-models of 
both cross-shore and longshore processes does improve performance at 
Narrabeen over a multi-decadal simulation period, but the additional 
complexity introduces additional sources of error. ShoreFor alone per
formed surprisingly well compared to the hybrid frameworks, particu
larly over the calibration period (Fig. 6). This likely reflects the strength 
of a cross-shore model at a site that has been shown to be dominated by 
cross-shore processes on average (Harley et al., 2011a; Ibaceta et al., 
2023), but also that additional issues limited the performance of the 
more complex models. The hybrid frameworks generally outperformed 
ShoreFor based on mean Mielke’s index values (i.e., overall perfor
mance), their ability to capture >6-monthly shoreline variability (Fig. 9) 
and their correlation with the longshore-coherent mode of shoreline 
variability (Fig. 10). However, ShoreFor tended to show more consistent 
performance across transects, while all three CERC-based models per
formed very poorly at PF4 and IH-MOOSE showed a large bias at PF2. 
These issues are respectively attributed to the difficulty of correcting for 
wave direction bias, and coupling rotation and cross-shore sub-models, 
as elaborated below.

4.2.1. One-line (CERC) sub-model of longshore sediment transport
The outputs of the three hybrid framework models using the one-line 

(CERC) sub-model, CoSMoS-COAST, COCOONED and ShorelineEvol, 
were initially dominated by large-magnitude planform shoreline 
realignment (Fig. 4), similar to the one-line model behaviour observed 
by Robinet et al. (2020) and Chataigner et al. (2022) at Narrabeen. This 
issue has also been noted at other sites such as the U.S. Pacific North
west, where erroneous modelled shoreline realignment was observed 
unless a virtual equilibrium shoreline correction was applied (Anderson 
et al., 2018; Antolínez et al., 2019). Recently, Chataigner et al. (2022)
undertook a sensitivity analysis of the one-line (CERC) model and 
showed that it is very sensitive to small biases in mean direction. They 
found that increasing the standard deviation of direction bias by only 1◦

increased the standard deviation of shoreline position errors by 5 m at 
Narrabeen.

The results here extend the work of Chataigner et al. (2022) in two 
ways. First, this issue dominates the behaviour of one-line (CERC) 
models where biases are present, including when the models are used as 
part of a hybrid model framework. Coupling additional shoreline change 
sub-models does not resolve or compensate for this issue. This was also 
observed by Robinet et al. (2020), who applied the hybrid framework 
LX-Shore (a one-line model coupled with ShoreFor) at Narrabeen. Sec
ond, the issue cannot be “calibrated out” by tuning only the free 

parameters, regardless of whether optimisation or data assimilation is 
used, unless the longshore transport rate parameter K (Equation (7)) is 
set to very low values. However, doing so would suppress the contri
bution of the one-line model and prevent real longshore change from 
being captured, and in the case of hybrid frameworks, would likely 
result in non-physical parameter values calibrated in the cross-shore 
sub-models in compensation. In the case of data assimilation, realign
ment is supressed during the calibration period as the modelled shore
line position is continuously corrected towards observations. However, 
once data assimilation is turned off for validation or forecasting, 
shoreline realignment resumes.

Prior to these recent studies, the CERC formula had received criti
cism but critiques focused largely on uncertainty around the model free 
parameter K (e.g., Pilkey and Cooper, 2002). Alternative formulae 
proposed used different combinations of constants (Kamphuis, 1991; 
Mil-Homens et al., 2013) or included wind and tide effects as well as 
wave conditions (Bayram et al., 2007). However, the sensitivity to wave 
direction bias arises because the CERC formula assumes the rate of 
shoreline change depends on the angle between incident wave fronts 
and the present shoreline (the sin[2(θb − αs)] term in Equation (7)). This 
term is maintained in alternative formulae, meaning the sensitivity to 
bias would be maintained. This was shown to be the case by Robinet 
et al. (2020), who used the Kamphuis (1991) approach rather than the 
CERC formula in their one-line sub-model. Therefore, this sensitivity 
remains a concern as one-line models (with CERC or similar formulae) 
are widely used, both in hybrid frameworks and standalone models of 
longshore change such as GENESIS (Hanson, 1989; Hanson and Kraus, 
1989), CEM (Ashton and Murray, 2006) and ShorelineS (Roelvink et al., 
2020).

To resolve the issue, either the input wave direction data must be 
corrected, as proposed by Chataigner et al. (2022), or the output 
modelled shorelines must be corrected. The latter approach was 
implemented here using a virtual equilibrium shoreline, similar to 
Anderson et al. (2018), Antolínez et al. (2019) and Robinet et al. (2020). 
While model performance substantially improved, the results were not 
perfect. All three models corrected with this approach showed poor 
performance at PF4 (e.g., Fig. 6). The 6-month rolling mean and EOF 
decompositions (Figs. 9 and 10) indicated this was driven by the long
shore sub-models, rather than the cross-shore sub-models having diffi
culty with a long simulation period as was initially hypothesised. The 
virtual equilibrium shoreline also introduced a large offset in the mean 
shoreline position at this transect relative to observations. Additionally, 
in the case of CoSMoS-COAST, the manually-generated equilibrium 
shoreline may have over-compensated for wave direction bias and 
contributed to some offset in the opposite direction (this may have also 
occurred for the other two models to a lesser degree, at the transects at 
the edges of the embayment). However, the method proposed by Cha
taigner et al. (2022) to correct the wave data directly using Monte Carlo 
simulations was not computationally feasible for the models used here. 
Identifying the best way to correct for this issue remains an avenue for 
future work.

However, if corrections are made for wave direction bias, it appears 
that the high sensitivity of one-line models to mean wave direction al
lows them to successfully reproduce beach rotation on embayed coast
lines, even when rotation is driven by subtle shifts in wave climate. The 
three hybrid frameworks using this approach were able to replicate 
Narrabeen’s seasonal planform rotations with a reasonable degree of 
success, which Harley et al. (2011a) showed are driven by relatively 
small seasonal shifts involving only 24% of the wave climate together 
with some degree of cross-shore processes. Likewise, Anderson et al. 
(2018) found a one-line (CERC) model was able to replicate the gradual 
rotation of embayments in the Pacific Northwest over multiple decades, 
which the authors suggested were driven by phase shifts of the Pacific 
Decadal Oscillation. This supports the use of one-line models to assess 
how shorelines will respond to shifts in mean wave direction under 
climate change (Ranasinghe, 2016), although given the large 
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uncertainty associated with wave climate projections (e.g., Zarifsanayei 
et al., 2022), their sensitivity may result in unreasonably large uncer
tainty bounds on shoreline change projections.

4.2.2. J21 sub-model of beach rotation
The longshore sub-model J21 of the hybrid framework IH-MOOSE 

represents a simpler approach than the one-line (CERC) sub-model 
discussed above. Rather than explicitly simulating longshore sediment 
transport volumes, it links wave forcing directly to morphological 
change (Hunt et al., 2023). Interestingly, this sub-model did not require 
modifications to produce a stable output, achieved the best Mielke’s 
index score of the non-assimilated models during the calibration period, 
and performed comparably over the validation period overall to the 
more complex models without requiring modifications for wave direc
tion bias. This highlights the potential value of simpler models, partic
ularly where adequate data are not available (Cowell et al., 1995; van 
Maanen et al., 2016).

However, the simplicity comes with a trade-off of reduced generality 
(Hunt et al., 2023), with J21 (and IH-MOOSE) being applicable only to 
embayed beaches. Additionally, converting the mean planform orien
tations simulated by J21 to absolute shoreline positions as part of a 
hybrid framework requires the embayment planform to be para
meterised into a specific shape. IH-MOOSE assumes a parabolic plan
form, following the equation developed by Hsu and Evans (1989). 
Fitting this equation to a site requires manual calibration effort together 
with additional nearshore wave data beyond bulk parameters at a single 
depth (González and Medina, 2001; Jaramillo et al., 2021b). This also 
means the performance of IH-MOOSE depends on the accuracy of the 
planform parameterisation as well as the performance of its two 
sub-models. The parameterisation used here, a parabolic planform south 
of PF4 combined with a linear section north of PF4, followed Jaramillo 
et al. (2021b). While reasonable, it produced poor performance at PF2, 
where the modelled shoreline showed a ~35 m seaward offset on 
average over the validation period (Fig. 5), similar to the result observed 
by Jaramillo et al. (2021b). This may have been resolved with a different 
planform parameterisation.

4.3. Sub-models of cross-shore processes

It appears that the cross-shore sub-models contributed more to pro
ducing relatively low overall performance scores than the longshore sub- 
models, as the hybrid frameworks tended to capture the longshore 
coherent mode better than the cross-shore coherent mode. This is to be 
expected, as the cross-shore sub-models were designed for seasonal to 
interannual-scale simulations and have rarely been evaluated over a 
multi-decadal period. Additionally, the models had difficulty capturing 
the extremes of storm-driven erosion/accretion cycles (frequently over- 
or underestimating shoreline variability at each transect; Fig. 7), and the 
hybrid frameworks scored lower in capturing <6-monthly oscillations 
than seasonal and longer-term behaviour (Fig. 9). This supports recent 
work indicating that capturing the extremes of short-term shoreline 
oscillations remains a challenge for cross-shore models based on equi
librium principles, and machine learning models may present a prom
ising alternative (Montaño et al., 2020; Gomez-de la Peña et al., 2023).

4.3.1. Alongshore-varying parameters in cross-shore sub-models
Alongshore-fixed parameters in the cross-shore sub-models (i.e., one 

set of parameters for the entire embayment; Table 3) may have 
contributed to poor performance. The wave energy exposure varies 
alongshore at Narrabeen, together with the magnitude and dominance 
of cross-shore processes (Harley et al., 2011a, 2015), and optimal 
cross-shore parameters may be expected to vary likewise. Although this 
variability should in theory be captured by the wave forcing terms of the 
models rather than the parameter values, previous studies suggest that 
this is not the case in practice. Splinter et al. (2014) found the optimal 
parameters of ShoreFor to vary across the five transects at Narrabeen, 

with the optimal value of the response rate parameter c in particular 4–6 
times larger at PF8 compared to PF1. More generally, the authors found 
model parameters to strongly depend on the mean dimensionless fall 
velocity across sites, which varies alongshore at Narrabeen. Similarly, 
Yates et al. (2009, 2011) found the optimal parameters of Y09 to vary 
alongshore at multiple sites in California, USA.

In the present study, the role of alongshore-fixed cross-shore pa
rameters was inconclusive. The models with alongshore-fixed parame
ters, ShorelineEvol and IH-MOOSE, tended to outperform the models 
with alongshore-varying parameters, CoSMoS-COAST and ShoreFor, in 
capturing <6-monthly oscillations (Fig. 9). ShorelineEvol (alongshore- 
fixed) also showed the highest correlation to the cross-shore coherent 
temporal EOF, while CoSMoS-COAST (alongshore-varying) showed the 
lowest (Fig. 10). However, these may be spurious results driven by other 
factors. In the case of CoSMoS-COAST, a single rate parameter ΔT is used 
for both erosion and accretion events rather than separate C+ and C−

parameters which may lower performance (although Yates et al. (2011)
found this decreased model R2 by only <10% for Californian sites). In 
the case of ShoreFor, lower performance scores may be a model-specific 
issue relating to the long simulation period (discussed below). 
Conversely, the performance of IH-MOOSE (alongshore-fixed) at 
capturing <6-monthly oscillations was best at PF4, the transect that its 
cross-shore parameters were calibrated against, and performance scores 
decreased towards the edges of the embayment, suggesting 
alongshore-varying parameters may have improved performance. 
Additionally, only models with alongshore-varying parameters were 
able to accurately replicate the shape of the cross-shore coherent spatial 
EOF along the embayment (Fig. 10). However, it is noted that unless 
data assimilation is used (e.g., CoSMoS-COAST), implementing 
alongshore-varying parameters substantially increases the computa
tional cost and difficulty of calibration.

4.3.2. ShoreFor compared to Y09 and MD04
All three (sub-)models of short-term cross-shore processes consid

ered here, Y09, MD04 and ShoreFor, are based on the equilibrium 
principles of Wright and Short (1984). At each timestep, the shoreline 
evolves towards an equilibrium position at a rate that depends on the 
present degree of disequilibrium and the wave energy available to 
transport sediment. The three sub-models differ conceptually in how 
disequilibrium is calculated, discussed in detail by Vitousek et al. (2021)
and briefly summarised as follows. In both Y09 and MD04, the rate of 
shoreline change depends on wave forcing as well as the present 
shoreline position, which acts as a ‘damping’ term and limits the effect of 
wave forcing. This means that as a beach is increasingly eroded 
(accreted), it becomes more difficult to erode (accrete) further. 
Conversely, the rate of shoreline change in ShoreFor depends only on 
present and antecedent wave conditions, not the shoreline position.

This means that the shoreline position modelled by Y09 and MD04 
tends to oscillate around a fixed value, while ShoreFor allows for large 
fluctuations of the shoreline and its output only oscillates around a fixed 
position if erosive and accretionary conditions maintain a consistent 
balance over time. Therefore, if long-term trends in wave energy are 
present, ShoreFor simulates mean-trend erosion or accretion, while Y09 
and MD04 simulate short-term oscillations of a greater magnitude but 
not mean-trend change. This behaviour was demonstrated analytically 
by Vitousek et al. (2021) and through simulations by D’Anna et al. 
(2021a, 2022). However, ShoreFor’s potential for unstable behaviour 
over multi-decadal simulations in the presence of a non-stationary wave 
climate was not illustrated until the recent work of Ibaceta et al. (2022). 
They applied the model to a 14-year calibration and a 14-year validation 
period using satellite-derived shorelines (Vos et al., 2019b) from the 
Gold Coast, Australia. They found that ShoreFor diverged substantially 
from observations with large mean-trend erosion, with the model being 
unable to maintain stable shoreline behaviour as the balance of erosive 
and accretionary wave conditions shifted between the calibration and 
validation periods. In the present study, similar mean-trend divergence 
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was observed during initial simulations with ShoreFor (but not Y09 or 
MD04), suggesting similar non-stationarity was present in Narrabeen’s 
wave climate between the calibration and validation periods used here. 
Notably, Ibaceta et al. (2022) used the form of the model initially pro
posed by Davidson et al. (2013), where separate erosion and accretion 
constants were both calibrated as free parameters, rather than the 
version of Splinter et al. (2014) with one free parameter and the erosion 
ration term r, as used in the present study. This implies the issue is not 
strictly related to r itself, but a more fundamental aspect of the model.

In the present study, this behaviour was resolved using a first-pass 
solution of re-calculating ShoreFor’s erosion ratio parameter r over 
the validation period, rather than using the value obtained during 
calibration. Although re-calculating r produced a stable output, the 
resulting performance scores of ShoreFor were not as high as the other 
cross-shore sub-models. In particular, ShoreFor and Y09 can be 
compared directly at PF4, where the output of IH-MOOSE was driven 
exclusively by Y09 (its cross-shore sub-model). At this profile, IH- 
MOOSE (Y09) outperformed ShoreFor in capturing both >6-monthly 
mean behaviour and shorter-scale oscillations (Fig. 9) and achieved 
better Mielke’s index and Pearson’s correlation scores. Additionally, 
ShorelineEvol (with MD04 as its cross-shore sub-model) and IH-MOOSE 
(Y09) tended to outperform ShoreFor in capturing <6-monthly oscilla
tions across most transects, despite having alongshore-fixed parameters, 
unlike ShoreFor. Better performance is expected from ShoreFor using 
approaches such as re-calculating r over moving 5-year windows 
(D’Anna et al., 2022) or explicitly relating all of ShoreFor’s free pa
rameters to wave climate covariates and allowing them to vary 
accordingly at each timestep (Ibaceta et al., 2022).

However, more generally, ShoreFor appeared to have difficulty 
concurrently capturing different timescales of shoreline change over the 
multi-decadal period, with the moving mean decomposition suggesting 
that it attempted to focus on either short-term oscillations or longer- 
term variability at different transects but was not able to capture both 
well at the same transect (Fig. 9). This is in line with previous studies 
which have shown that ShoreFor can have difficulty with different 
timescales when shoreline behaviour is forced by different drivers (e.g., 
storm events versus ENSO variability) (Montaño et al., 2021; Schepper 
et al., 2021; Tran et al., 2021), or where interannual-scale shifts in wave 
climate cause shifts in the dominant timescale of shoreline response 
(Splinter et al., 2017; Ibaceta et al., 2022). Therefore, performance may 
also be improved by incorporating additional terms into the model 
structure to represent the influence of short-scale processes on 
longer-term shoreline behaviour and vice versa, directly capturing 
multiple interacting timescales of variability in forcing conditions and 
shoreline change (Schepper et al., 2021).

Conversely, Y09 appeared to be able to reasonably reproduce both 
short-term oscillations and >6-monthly behaviour over the multi- 
decadal period at PF4, where it was the sole contributor to simulated 
shoreline change by IH-MOOSE. This is somewhat contrary to the results 
of D’Anna et al. (2022), who found that Y09 simulated little interannual 
variability compared to ShoreFor. The formulation of the equilibrium 
condition in Y09 links shoreline positions to wave energy through two 
free parameters over the calibration period, meaning the model cannot 
account for wave climate variability on longer timescales than those 
present during calibration (D’Anna et al., 2021a, 2022; Vitousek et al., 
2021). In this case, it appears that providing a multi-decadal period for 
calibration does allow the model to capture interannual-scale variability 
over subsequent multi-decadal simulation periods. Finally, the perfor
mance of MD04 as a cross-shore sub-model is more difficult to evaluate 
as it was not calibrated as a standalone model to any transect. However, 
it appeared to perform similarly to Y09 at Narrabeen, with similar scores 
of ShorelineEvol (MD04) and IH-MOOSE (Y09) at capturing <6-monthly 
oscillations across the five transects.

4.4. Time-varying parameters

The results of this study support recent recommendations to move 
towards new approaches of capturing long-term variability in wave 
climate and shoreline behaviour for multi-decadal simulations (Splinter 
and Coco, 2021), particularly the use of time-varying parameters 
(Ibaceta et al., 2020, 2022; D’Anna et al., 2022). Time-varying param
eters are increasingly being used in hydrological models to account for 
large shifts in simulated systems driven by climate change or land use 
change, to reduce model sensitivity to the calibration period used, and to 
overcome the inability of models to adequately simulate all magnitudes 
of streamflow (i.e., low flows to flood pulses) (e.g., Pathiraja et al., 2016, 
2018; Zeng et al., 2019; Zhang and Liu, 2021). Zeng et al. (2019) noted, 
“Although the time-invariance of model parameters is one of the basic 
criteria of a high-quality hydrologic model, very few (if any) models can 
achieve this due to their inherent limitations.” It is increasingly 
becoming apparent that this is also true of shoreline change models, 
particularly in the presence of interannual wave climate variability.

Interannual wave climate variability has been linked to variations in 
the relative contributions of cross-shore and longshore processes 
(Ibaceta et al., 2023), the dominant timescale of shoreline variability 
(Splinter et al., 2017), the envelope of cross-shore shoreline excursions 
(McLean et al., 2023), and the equilibrium planform of embayed bea
ches (Mortlock and Goodwin, 2016). Over the historical periods 
considered, this variability has been driven by teleconnections such as 
ENSO, but further wave climate change is projected this century for 
many parts of the world (Morim et al., 2019). Although wave climate 
variability should be accounted for in models’ wave forcing terms, it 
appears the models are not fully able to capture some aspects of the 
resulting variability in shoreline behaviour. The EOF analysis (Fig. 10) 
indicated that the alongshore magnitude of cross-shore and longshore 
processes, as well as their relative dominance, was notably different 
between the 20-year calibration and 20-year validation periods used 
here. While ShoreFor appeared to be most sensitive to this shift 
(requiring at least one time-varying parameter to produce a stable 
output), the EOF analysis indicated that the performance of all models 
was affected. This included CoSMoS-COAST, the model calibrated using 
data assimilation, although to a lesser degree as its parameters varied 
somewhat over the calibration period. The modelled alongshore mag
nitudes of cross-shore and longshore processes and their relative domi
nance appeared to be established in models during the calibration period 
and then maintained into the validation period, implying that this aspect 
of the wave climate–shoreline behaviour connection is being captured 
by free parameters rather than explicitly simulated by the models.

Similarly, it is well established that optimal parameter values depend 
on the specific calibration period selected and/or its duration, with 
models being tuned to the characteristics of wave climate over this 
period (e.g., Splinter et al., 2013, 2017; D’Anna et al., 2020; Ibaceta 
et al., 2020; Tran and Barthélemy, 2020). Splinter et al. (2014) explicitly 
showed that the optimal parameters of ShoreFor are strongly correlated 
to wave climate variables, particularly the interannual (~5 year) mean 
antecedent dimensionless fall velocity. This finding was in the context of 
parameters varying alongshore and between different sites, but a similar 
result was subsequently found by Ibaceta et al. (2022) while testing how 
the optimal parameters of ShoreFor varied through time at a single 
location. While alongshore-varying parameters may be needed to 
compensate for variations in profile or sediment characteristics, or 
varying errors in nearshore wave conditions, the link to interannual 
wave climate in optimal parameter choices implies that key processes 
which translate wave forcing conditions to shoreline behaviour are 
being missed by reduced-complexity models at these longer timescales. 
The results in the present study suggest that exploring time-varying 
parameters not just for ShoreFor but also MD04, Y09 and the long
shore process sub-models may be a promising avenue for future work. 
The need for time-varying parameters may be used to indicate specific 
shortcomings in model structure and identify potential improvements 
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(Smith et al., 2008); in this case, seeking to capture more of the processes 
that drive interannual-scale variability in modes of shoreline behaviour.

4.5. Limitations

This study tested models at only one site, Narrabeen-Collaroy Beach 
in southeast Australia, which represents only one certain set of 
geomorphological and hydrodynamic characteristics. Shoreline behav
iour is controlled by complex cross-shore and longshore processes that 
vary both spatially (Harley et al., 2011a) as result of geological controls 
by large headlands and offshore reefs (Daly et al., 2014; Robinet et al., 
2020), and temporally (Ibaceta et al., 2023), driven by interannual wave 
climate variability (Harley et al., 2010; Mortlock and Goodwin, 2016; 
Vos et al., 2023). These complex dynamics provided a rigorous test for 
the cross-shore and longshore sub-models of the hybrid framework 
models, and the evaluation of model performance focused on these as
pects. Other aspects such as the sediment demand of estuaries in 
response to sea-level rise or the effect of hard engineering structures 
were not set up (in ShorelineEvol), and foredune erosion (in COC
OONED) appeared to contribute only minimally. Narrabeen is 
micro-tidal and storm surge does not play a big role in driving shoreline 
change due to the narrow continental shelf (Ibaceta and Harley, 2024), 
so the site also did not rigorously test the role of tides and storm surge as 
model forcing variables (in MD04 in COCOONED and ShorelineEvol). 
Nonetheless, this study builds on previous work (e.g., Montaño et al., 
2020) in testing multiple models at a site where this was not previously 
undertaken, and in particular, over a multi-decadal validation period.

The ability of the models to simulate shoreline response to sea-level 
rise was also not rigorously tested, although the sea-level rise sub-model 
was turned on in models that had this capability (CoSMoS-COAST, 
COCOONED and ShorelineEvol). Over the hindcast period studied here, 
sea-level rise has not appeared to produce a measurable response in the 
measured shoreline behaviour at Narrabeen, consistent with other sites 
with long-term monitoring programs on the southeast Australian 
coastline (McLean et al., 2023). Testing sea-level rise response models 
such as the Bruun Rule (Bruun, 1962) has not been possible to date 
except in laboratory studies (Atkinson et al., 2018; Beuzen et al., 2018) 
or on rapidly subsiding coastlines (e.g., List et al., 1997; Leatherman 
et al., 2000; Zhang et al., 2004), and sea-level rise is generally expected 
to emerge as a dominant driver of shoreline behaviour for most coast
lines after the middle of the century (Dean and Houston, 2016; Vitousek 
et al., 2017b; Le Cozannet et al., 2019; Thiéblemont et al., 2021; D’Anna 
et al., 2022). However, some ‘early responder’ sites may provide an 
opportunity to test models over the coming years (Sharples et al., 2020).

It is emphasised that this contribution does not necessarily reflect the 
best possible performance that each of the five models could theoreti
cally achieve. Although automated approaches were used to calibrate 
model parameters, each model required manual set-up and/or site- 
specific modifications, and several additional modifications were 
possible but not implemented (suggested in the discussion above). The 
relative rankings of the models therefore do not represent an absolute 
measure of their performance. Better performance scores and/or 
different rankings may be achieved with additional tuning at this site, 
and different rankings and performance scores are likely to be achieved 
at other sites with different morphodynamic characteristics. Rather, this 
study identifies potential limitations and improvements to reduced- 
complexity or semi-empirical shoreline modelling approaches more 
generally, and highlights the value of testing models at a range of 
morphodynamically different sites beyond those where they were first 
developed. Finally, although other authors have shown that ensembles 
of models typically perform better than any individual model (e.g., 
Montaño et al., 2020; Simmons and Splinter, 2022), this study highlights 
that addressing site-specific complexities in each model can make 
implementing an ensemble challenging in practice, particularly for 
multiple sites at regional scales.

5. Conclusions

Five shoreline change models (ShoreFor, CoSMoS-COAST, COC
OONED, ShorelineEvol and IH-MOOSE) were run over a 20-year cali
bration and 20-year validation period at Narrabeen-Collaroy Beach, 
Australia. Four models were hybrid frameworks coupling sub-models of 
cross-shore and longshore processes, and one (ShoreFor) was a stand
alone model of wave-driven cross-shore change. Initially, three models 
that used the one-line (CERC) sub-model to simulate longshore sediment 
transport showed large-magnitude planform shoreline realignment in 
response to biased nearshore wave data (Chataigner et al., 2022). This 
issue dominated model behaviour regardless of the other sub-models in 
the hybrid framework, or whether optimisation or data assimilation was 
used to calibrate the models. These three models were re-initialised 
using a ‘virtual equilibrium shoreline’, where the modelled shoreline 
was allowed to realign until equilibrium was reached before re-starting 
simulations from this equilibrium position. This substantially improved 
performance and the longshore transport sub-models were subsequently 
able to capture seasonal-scale rotations of the embayment. Nonetheless, 
this solution was imperfect and the best way to correct for this issue, 
which is not limited to this site, remains an avenue for future work.

The standalone cross-shore model ShoreFor showed reasonable 
performance over the calibration period but simulated large accre
tionary trends over the validation period that diverged from measured 
positions. Similar behaviour was recently observed by Ibaceta et al. 
(2022) and attributed to the sensitivity of the model to wave climate 
non-stationarity. In the present study, this was resolved with a first-pass 
solution of re-calculating the model’s ‘erosion ratio’ term r, derived from 
wave forcing conditions, independently for the validation period.

With these modifications applied, the performance of all five models 
over the validation period was similar on average but with substantial 
variability between transects and across performance metrics, as 
different models were limited by different factors. These included: short- 
comings in the virtual equilibrium shoreline approach implemented 
here (for the models CoSMoS-COAST, COCOONED and ShorelineEvol 
using the one-line (CERC) sub-model), difficulty capturing multiple 
timescales of shoreline variability concurrently over a long simulation 
period (ShoreFor), and the parameterisation of the embayment plan
form (IH-MOOSE). These results suggest that no model or approach was 
clearly better or worse than the others; rather, accurately simulating 
shoreline change over multiple decades at a morphodynamically com
plex site poses an ongoing challenge.

Overall, coupling sub-models of longshore processes (longshore 
sediment transport or beach rotation) to cross-shore sub-models did 
appear to improve performance, despite the additional complexity and 
potential for error described above. The cross-shore sub-models of the 
hybrid framework also appeared to ‘let down’ the performance of hybrid 
frameworks more than the longshore sub-models. This may have been 
improved with alongshore-varying parameter values for the cross-shore 
sub-models.

Additionally, while the measured shoreline behaviour showed a shift 
in the spatial variability and relative dominance of cross-shore and 
longshore processes over the two 20-year periods, modelled shoreline 
dynamics appeared to be established during the calibration period and 
remained fixed into the validation period unless parameters were 
allowed to vary over time in some way. These results indicate that the 
current model structures are not capturing all aspects of the connection 
between interannual wave climate variability and shoreline behaviour, 
with key processes being aggregated into model free parameters rather 
than being directly accounted for by the models’ wave forcing terms. 
Consequently, time-varying parameters or changes to model structure 
are suggested as avenues for further research to improve the perfor
mance of reduced-complexity models in multi-decadal simulations.
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request (Iñaki de Santiago, idsantiago@azti.es). ShoreFor: publicly 
available on Github at https://github.com/ShoreShop/ShoreModel_ 
Benchmark. IH-MOOSE: available on request (Camilo Jaramillo, 
camilo.jaramillo@unican.es).

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements and funding sources

Nearshore wave data from the NSW State Wide Nearshore Wave 
Transformation Tool were kindly provided by Bradley Morris on behalf 
of the NSW Department of Climate Change, Energy, the Environment 
and Water. CSIRO is acknowledged for providing the CAWCR offshore 
wave hindcast dataset, and the Bureau of Meteorology and NCI Australia 
for the ANCHORS tide gauge data. Narrabeen-Collaroy Beach survey 
data are collected by the UNSW Water Research Laboratory and previ
ously by the University of Sydney Coastal Studies Unit (Professor 
Andrew Short). Surveys have been supported by past funding from the 
ARC DP and LP programs and Warringah/Northern Beaches Council. 
The R implementation of the model ShoreFor used here was kindly 
provided by Yen Hai Tran and Eric Barthélemy. We thank two anony
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