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Abstract 

In this work a previous model developed by the authors for the quasi-static 
analysis of spur gear transmissions supported by ball bearings was modified 
extending its capabilities to dynamic analysis. The model combines a finite 
element and an analytical formulation achieving sufficient accuracy and 
computational efficiency to make dynamic analysis feasible. Non-linearity 
associated with the contact among teeth was included, taking into account the 
flexibility of gears, shafts and bearings. Furthermore, parametric excitations 
originating both from gear and bearing supports, as well as clearance, were also 
taken into account. An example of a simple transmission is presented providing 
several results obtained using the proposed model. Nevertheless, in spite of its 
usefulness, particularly in the case of variable torque loads, and its improved 
capabilities compared with other procedures, this approach still requires a high 
computational effort. As a consequence in those cases where the transmission 
operates under stationary conditions the formulation could be simplified by using 
a pre-calculated value for each the gear tooth stiffness as a function of the 
angular position. Once again, the original model is useful, taking advantage of its 
computational efficiency in the calculation of these stiffness coefficients 
throughout a meshing period. The improved model is applied to the same 
transmission and the consequences of a misleading calculation of the stiffness 
coefficients are shown. Then, it was used to study the vibratory behaviour under 
different levels of applied torque, showing the modifications suffered by the 
orbits, meshing contact forces and particularly the spectra obtained for bearing 
forces. 
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1 Introduction 

The increase in the demands for more efficient and reliable gear transmissions, 
with higher levels of torque and speed, gives rise to an emergent interest in the 
development of analytical tools to provide a deeper understanding of dynamics 
of gear transmissions. This kind of tools could be applied in the improvement of 
the dynamic performance to reduce the level of noise and vibration, but they also 
serve as an excellent support for developing new techniques of detection and 
prediction in the field of condition monitoring based on vibratory measurements. 
This kind of techniques requires the set up of a condition monitoring system that 
is normally based on field measurements in order to define the normal vibratory 
behaviour. Therefore, the development of more accurate models for gear 
dynamics could serve as a basis for future improvements in this technique and 
could also increase the capabilities for prediction of the progress of a certain 
fault. 
     There are a huge number of publications related to the dynamics of gear 
transmissions. A good revision of the works, as well an interesting introduction 
to the problems involved in this kind of elements was provided by Ozguven and 
Houser [1]. The main phenomena involved in gear dynamics are the parametric 
excitation due the variable number of meshing teeth as well as the non linearity 
present as a consequence of the backslash. In this sense Kahraman and Singh [2] 
propose the classification of dynamic gear models as: Linear Time Invariant 
(LTI), Linear Time Variant (LTV), Non Linear Time Invariant (NLTI) and Non 
Linear Time Variant (NLTV) depending on the procedure followed in order to 
include or not these features. 
     In summary, the most important aspect in order to formulate a good dynamic 
model for gear transmission is the procedure followed to include the meshing 
contact forces. Nevertheless, there are other components in gear transmissions 
that present the same kind of dynamic phenomena described for gears. These 
components are bearings. Bearings behave in a similar way to gears. They also 
have a parametric excitation due the variable number of roller elements 
transmitting the load to the supports. However, they also present non linearity as 
a consequence of the Hertzian contact and clearance [3].  
     It is clear from the point of view of condition monitoring that both elements 
should work together and the features of both elements are added in order to give 
the final vibration signature of the transmission. Therefore, condition monitoring 
requires the development of dynamic models that provide an accurate description 
of the dynamic forces as opposed to the most general models, where the interest 
is mainly focused on the determination of the resonances for design purposes. 
That means, accurate models for gear dynamics that should include both, gears 
and bearings in the formulation, taking into account the parametric excitation 
and non linearity originating from each element. 
     Pursuing this objective, a quasi-static model including those features was 
presented by the authors in a previous work [4]. The procedure for gear contact 
force calculation employs a hybrid approach dividing the elastic deflections in 
teeth into two different contributions: global deflections including bending, and 
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shearing and local deflections in the vicinity of theoretical contact points. Global 
deflections were obtained by means a plane strain (or plane stress) finite element 
model taking into account the elastic coupling between successive teeth under a 
load. Instead, local deflections were approached by a non-linear formulation 
derived by Weber-Banashek for bi-dimensional problems. Bearings were also 
included taking into account the clearance, contact non linearity and variation in 
the number of loaded rolling elements. In this case, a bi-dimensional model was 
developed where only deflections of Hertzian type are considered, neglecting 
bending and shearing of races and rolling elements. This model was 
subsequently used for simulation of several kinds of defects in gears [5]. 
     In this paper, this model was further extended to carry out dynamic 
calculations. The usefulness is proved by the simulation of the vibratory 
behaviour of a simple transmission. A faster solution was achieved by the 
calculation of the meshing stiffness for a certain torque applied to the 
transmission. This procedure is compared with the original one and the 
consequences of an inaccurate estimation of the meshing stiffness are analysed. 
Special attention was given to the resulting spectra as the load condition is 
modified. That is one of the main drawbacks of introducing and setting up 
condition monitoring systems in machinery working under variable conditions of 
load (wind turbines, rolling mills, etc.). Different load levels provide different 
behaviour and as a consequence the alarm levels should be adapted on the basis 
of experimental measurements. Thus a good model used during the design task 
could be a very profitable tool to extend the life of the transmission.  

2 Model description 

A simple transmission was analysed, as is shown in the schema in fig. 1. This 
transmission is composed of a couple of twin spur gears mounted on elastic 
shafts that are supported by two ball bearings.  Inertia is lumped at the centre of 
each element (gear or bearing) allowing translational and rotational movement in 
the plane. An additional rotational-only inertia is included at the output and a 
constant value of rotational speed is assumed at the input. That means a dynamic 
model with 19 degrees of freedom (dof). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schema and dimensions of a simple transmission. 
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      Following the procedure described in [4], gear contacting forces are obtained 
based of the model proposed by Andersson and Vedmar [6], where tooth 
deformations are divided into two groups; one near the contact that is treated by 
an analytical non-linear formulation of Hertzian type, and another of elastic 
nature determined by means of a dedicated finite element model. This kind of 
formulation achieves an efficient treatment of gear teeth contacts, not requiring a 
highly refined mesh at the contact surfaces. As a consequence the computational 
effort is reduced compared with conventional finite element models allowing the 
analysis of dynamic problems.  
     Contact forces in the line of action (LOA) were further improved by the 
inclusion of friction and damping. Friction forces were added assuming a 
Coulomb model with constant friction coefficient, taking into account the 
reversing sense of this force when the contact takes place in the vicinity of the 
primitive point. In order to avoid numerical problems, a smoothing formulation 
based on the hyperbolic tangent function was considered according to the 
following expression  
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Where Ff 1i and Ff 2i are force vectors representing friction forces at the i contact 
on gear 1 and 2, f  is the friction coefficient, Fi is the contact force at the i 
contact, vPi is the relative velocity between the contacting points on each contact 
surface and t is a unitary vector defining the common normal of the surfaces and 
v0 is a threshold level to smooth the transition when the relative velocity is null. 
     Conventional models consider damping as an overall term accounting for all 
dissipative effects neglecting the oil present between contacts. However, the 
intermediate layer of oil between two approaching surfaces gives rise to a 
damping effect known as squeeze film damping. In this model, this phenomenon 
was the only dissipative source considered for gear damping, neglecting other 
sources such as the hysteretic damping of contacting surfaces. Following this 
assumption, the squeeze damping was defined by the following expression 
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Where η is the dynamic viscosity, b the gear wide, h the thickness of the 
lubricant film, χi the curvature radius of the contacting surface i and |vn| the 
modulus of the relative velocity on the normal of the contacting profiles. 
Assuming that the oil is present around the contacting teeth, the value of h is 
defined by the minimum distance between contacting profiles that is obtained 
knowing the position of each gear. In order to avoid the discontinuity when the 
lubricant thickness is null, a threshold was defined. As the model considers 
several potential contact points the damping force is obtained for each one taking 
into account not only those due the active line of action but also those contacts in 
the reverse line of action. 
     Regarding bearings, the model proposed in [4] was kept unmodified except 
for the capability of including waviness and localized defects, which will not be 
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discussed in this work. Random relative sliding of the rolling elements with 
respect to the cage was also added bearing in mind the smoothing out of the 
spectral content due the ball pass frequency. 
     Taking into account torsional and flexural deflection of shafts and the 
formulations described in the previous paragraphs for gears and bearings, the 
block diagram shown in fig. 2 is achieved. There, the connection among blocks 
could be carried out by a linear translational/rotational spring with a viscous 
damper or by a non linear function. Non linear functions are represented by a 
double sense arrow (in green for gears and blue for bearings). Meshing force 
calculation includes normal contact forces, friction and squeeze damping, 
applying the procedure described previously. Otherwise, bearing damping is 
added in the block diagram as an equivalent translational viscous damping 
having the same value for any direction on the plane of movement.  The same 
type of damping was used for connecting shafts.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Block diagram of a simple transmission. 

     Taking a reference frame, with the z-axis oriented along the shaft centre line, 
from left to right in fig. 1, and the y-axis defined by the line between gear 
centres. X and Y are the translational degrees of freedom along the x and y-axis 
while Θ is the rotational degree of freedom around the z-axis. Subscript T 
denotes torsional properties, b means bearing and R gear. Following this 
nomenclature, Xibj means the displacement along the x-axis of bearing j 
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belonging to shaft i. The degrees of freedom associated with bearings and gears 
are grouped in vectors qibj= {xibj, yibj, Θibj }T and qiRj = {xiRj, yiRj, ΘiRj }T arriving at 
the following set of dynamic equations 
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     Those equations expressed in matrix form give rise to the following 
expression 
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     Non linear terms are included in vectors fb and fR while matrices M, C and K 
are constant coefficient matrices. Numerical integration of dynamic equations 
was done combining Matlab/Simulink® tools. The general equation in (3) was 
reformulated for implementation in Simulink using function blocks with Matlab 
functions for the non linear terms and an ode45 solver for integration. 

3 Application example 

Following the model described in the previous paragraph, a numerical example 
will be presented here. Table 1 compiles the main physical parameters defining 
gears. A couple of 209 Single-row radial deep-groove ball bearings [7] support 
each shaft whose dimensions and features are contained in Table 2. Finally, the 
data about shafts are grouped in Table 3.  
     Shaft mass was lumped on gears and bearings and a pair of couplings were 
placed at the input and output of the transmission (represented by their stiffness 
and damping). Shaft stiffness was calculated on the basis of a constant value for 
the radius and length values that appear in fig. 1. 
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Table 1:  Spur gear set data. 

Parameter Value Parameter Value 
Number of teeth  28 Rack tip rounding 0.25 m 
Module (m) 3.175 [mm] Gear tip rounding 0.05 m 
Elasticity Modulus  210 [GPa] Gear face width  6.35  [mm] 
Poisson’s ratio 0.3 Gear shaft radius  20 [mm] 
Pressure angle  20 [degree] Mass (miR1) 0.7999 [Kg] 
Rack addendum 1.25 m Gear inertia (JiR1 ) 4.0 10-4 [Kgm2]   
Rack deddendum 1 m Oil viscosity  0.004 [Pas] 

Table 2:  Bearing data [7]. 

Parameter Value Parameter Value 
Contact Stiffness  1.2 1010 [N/m3/2] Ball diameter  12.7 [mm] 
Number of balls 9 
Radial clearance  15 [µm] 

m1b1= m2b2 
m2b1= m1b2 

0.490 [Kg] 
0.245 [Kg] 

Outer race diameter  77.706 [mm] 
Inner race diameter  52.291 [mm] 

J1b1=J2b2 
J2b1=J1b2 

9.8 10-5 [Kgm2] 
4.9 10-5 [Kgm2] 

Inner groove radius  6.6 [mm] 
Outer groove radius  6.6 [mm] 

Bearing 
damping 5% 

334.27 [Ns/m] 

Table 3:  Shafts data. 

Parameter Value 
Output inertia [Kg m2] J2J2= 3.56 10-4 
Input / output torsion stiffness [Nm/rad] KT1J1b1= KT2b2J2=4.0 105 
Input / output torsion damping  [Nms/rad] 1% CT1J1b1= CT2b2J2=3.5761 
Shaft torsion stiffness [Nm/rad] KTib1R1= KTiR1b2 = 4.0 105 
Shaft torsion damping [Nms/rad] CTib1R1= CTiR1b2 = 0 
Shaft flexion stiffness [N/m] Kib1R1= KiR1b2 = 6.24 108 
Shaft flexion damping [Ns/m] 1% Cib1R1= CiR1b2 = 31.6 

4 Pre-calculation of meshing stiffness 

Although the model allows dynamic simulations, it still requires a considerable 
amount of time to provide results. That means that it could be used as an analysis 
tool more than a design tool. With the aim of extending its capabilities, the 
original formulation was analysed searching for the most expensive 
computational task, arriving at the conclusion that the solution of the non-linear 
system of equations present in the original formulation [4] was the critical one. 
Consequently, this task was avoided by the pre-calculation of the contacting 
stiffness for a certain load by means of a previous quasi-static analysis where the 
goodness of the original model can be exploited. When the load and rotational 
speed are stationary and the operation of the system does not correspond to 
resonance, this approach should be valid. In this way, the model structure 
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remains unchanged, including friction and squeeze damping mechanisms and 
only the meshing contact forces should be modified.  
     It should be pointed out that an incorrect calculation of the corresponding 
meshing stiffness don’t leads to a different behaviour  in the global sense, as the 
rms level of the vibration should remain more less the same. Nevertheless, the 
time record and the resulting spectra will have a different shape. Torque level is 
crucial in this task as determine the parametric excitation due the meshing, 
modifying their spectral decomposition and as a consequence the final vibratory 
behaviour of the transmission. Some authors neglect this fact and propose a 
torque-independent stiffness based on analytical formulations [8] and [9]. 
Furthermore, as opposed to those models, in this one, the quasi-static analysis 
provides the stiffness for each tooth pair contact as a function of the angular 
position of the gear mounted on shaft 1 instead of a global value that is the most 
common approach. In this way each contact can be analysed individually 
obtaining better knowledge about the way the load is shared by tooth pairs. 
     In order to validate the pre-calculated contact stiffness model and to analyse 
the consequences of an incorrect calculation of it, three analyses were done. One 
was carried out with a torque of 100 Nm using the original dynamic model. A 
second analysis was done under the same torque using a pre-calculated stiffness 
corresponding to this torque (100 Nm). Finally, one more analysis was carried 
out; again a torque of 100 Nm was applied, but this time the pre-calculated 
stiffness was obtained under a torque of 10 Nm that could be considered similar 
to the approach with torque-independent models. In all models the rotational 
speed of the input shaft was of 1000 r.p.m. and data output were recorded in a 
file with a sampling frequency of 75 kHz. 
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Figure 3: DTE obtained under different assumptions for meshing stiffness 
calculation. 

     In order to compare it, the Dynamic Transmission Error (DTE) was selected 
as it is related directly with the gear meshing behaviour. In figure 3, six meshing 
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cycles are presented for the original model along with those using pre-calculated 
meshing stiffness. Differences are clearly appreciated when the torque used for 
meshing stiffness calculation is wrong. While the model with pre-calculated 
stiffness based on a torque of 100 Nm gives practically the same DTE as the 
model without pre-calculation, the model based on a torque of 10 Nm provides a 
completely different response tending to overestimate the resultant DTE. 
     As a conclusion the pre-calculation of a torque-dependent meshing stiffness 
provides the same results with a faster computation. Nevertheless, the torque 
used to calculate meshing stiffness, should agree with that used for dynamic 
simulation giving inaccurate results otherwise. 

5 Numerical simulation and discussion 

Using the model with pre-calculated meshing stiffness, simulations were done 
with a constant rotational speed at the input of 1000 r.p.m, and several loads at 
the output rising from 10 Nm to 100 Nm, data output were again recorded in a 
file with a sampling frequency of 75 kHz. To reduce the transient until the 
system achieves stationary conditions the central position of the bearings and 
gears was obtained from a previous quasi-static analysis and the results were 
used as initial conditions for integration. In the same way, initial rotational 
velocity was imposed only in the torsion dofs.  
     Some results will be shown in the following figures. In the first place the 
orbits for each torque level are presented in figure 4. There, it can be observed 
that the model recognizes the deflection of shafts and bearings. Higher torque 
values open the position of the orbit along the LOA. The non linear nature of the 
bearing forces is also visible as the orbits tend to be closer when the load was 
increased. Variable bearing compliance gives rise to a substantial enlargement of 
the orbit shape along the LOA with several oscillations. At the same time the 
orbit was spread in the off line of action (OLOA) as the clearance provides lower 
bearing stiffness in this direction and the model allows OLOA forces when the 
contact takes place at the rounded tips. This fact is highlighted when friction is 
considered because the low OLOA stiffness gives a wider orbit in this direction 
as can be seen in figure 5 where orbits for a torque of 100 Nm with friction 
coefficient (f) of 0, 0.03 and 0.05 are presented. 
     In figure 6 the meshing forces for each contact are presented for the extreme 
values of applied torques (10 Nm on the left and 100 Nm on the right), 
normalized about the corresponding static case. Lower torque gives a wider 
period for single contact with important singularities when changes take place in 
the number of active contacts. On the other hand, higher torque reduces the 
period of single contact and it seems quieter, with singularities only when the 
tooth begins to support the entire load. 
     The force transmitted to the supports towards the bearings and their spectral 
decomposition is more interesting from the point of view of condition 
monitoring. Bearing LOA force spectra are presented in figure 7 as a function of 
the applied torque, normalizing the frequency with the Gear Mesh Frequency 
(GMF). The ball pass frequency appears at low frequencies,, which is also  
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Figure 4: Orbits for several torque levels. Dashed line is the bearing 
clearance. 
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Figure 5: Orbit when friction is added; a)  f=0; b) f=0.03; c) f=0.05. 
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Figure 6: Normalized meshing contact forces; a) 10 Nm; b)100 Nm. 
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Figure 7: Spectrum of the bearing forces (b11) in the line of action. 

present as a side band around the mesh frequency and its multiples. That is not a 
common situation in real machinery because of the noise and the quasi-periodic 
character of the bearing vibrations due the slip of the cage. Noise addition to the 
resultant signal as well as the random angular position of ball bearings reduces 
this phenomenon enabling the model results to approximate to experimental 
measurements. 
     Each of the GMF harmonics follows a different path when the torque 
increases from 10 to 100 Nm showing the model’s capabilities to capture this 
feature. For example at low torques the second GMF harmonic is preponderant, 
while at high loads the 5th GMF harmonic becomes the biggest. A clearer picture 
of the modifications in GMF harmonics with the load can be seen in the bar chart 
presented in figure 8 where only the five first harmonics of GMF are considered.  
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Figure 8: Amplitude of the first 5 GMF harmonics of bearing force (b11) on 
the line of action. 
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6 Conclusions 

A model for the dynamic analysis of a gear transmission supported by bearings 
was presented. This model was based on an efficient formulation and solution of 
the meshing contact forces with a non-linear model for bearings. In order to 
improve the computation time, a pre-calculated value for meshing stiffness was 
obtained, simplifying the resultant equations system. Careful selection of the 
torque should be done in order to obtain accurate results. Special attention should 
be paid when the load cannot be considered stationary, using in these cases the 
original model. The model features were demonstrated with a simple 
transmission paying particular attention to the bearing force spectrum variation 
with the load and showing the capability of the model to capture this behaviour. 
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