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Abstract: Gut microbiota has a crucial role in the pathophysiology of metabolic-associated
steatotic liver disease (MASLD), influencing various metabolic mechanisms and contribut-
ing to the development of the disease. Dietary interventions targeting gut microbiota have
shown potential in modulating microbial composition and mitigating MASLD progression.
In this context, the integration of multi-omics analysis and artificial intelligence (AI) in
personalized nutrition offers new opportunities for tailoring dietary strategies based on
individual microbiome profiles and metabolic responses. The use of chatbots and other
AI-based health solutions offers a unique opportunity to democratize access to health inter-
ventions due to their low cost, accessibility, and scalability. Future research should focus
on the clinical validation of AI-powered dietary strategies, integrating microbiome-based
therapies and precision nutrition approaches. Establishing standardized protocols and
ethical guidelines will be crucial for implementing AI in MASLD management, paving the
way for a more personalized, data-driven approach to disease prevention and treatment.

Keywords: MASLD; gut microbiota; multi-omics; dietary patterns; lifestyle modifications;
artificial intelligence

1. Introduction
Metabolic dysfunction-associated liver disease (MASLD), characterized by intrahep-

atic fat accumulation, is the most prevalent chronic liver disease in Western countries,
with a global estimated prevalence of 38% [1]. The MASLD spectrum includes steatosis,
metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepato-
cellular carcinoma (HCC) [2]. Although not all cases progress to cirrhosis, it is estimated
that about 20% of MASLD cases develop MASH, with potential advancement to cirrhosis
and HCC [3,4]. Beyond liver-specific complications, MASLD significantly contributes to
cardiovascular disease, chronic kidney disease, and certain cancers—positioning it as a key
mediator of systemic morbidity.

MASLD arises from a complex interplay of metabolic risk factors, genetic susceptibility,
environmental exposures, lifestyle, and gut microbiota. The intricate interplay among
these factors has led to the conceptualization of MASLD not merely as a disease but as a
syndrome.

In 2024, Resmetirom received accelerated FDA approval for patients with MASLD
and significant fibrosis, following promising—though modest—histological improvements
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observed in the interim analysis of a phase 3 clinical trial [5]. Despite this advancement,
lifestyle modifications remain the cornerstone of MASLD management [6]. Weight loss
achieved through dietary changes and increased physical activity has been consistently
linked to reductions in hepatic steatosis, inflammation, fibrosis, and cardiometabolic risk
factors [7]. Notably, a weight loss of ≥10% is associated with MASH resolution and fibrosis
regression [8]. However, only a minority of patients manage to achieve and sustain this
level of weight reduction, underscoring the urgent need for more effective and sustainable
therapeutic strategies. In recent years, the gut–liver axis has emerged as a central player in
MASLD pathophysiology [9–12]. Distinct alterations in gut microbiota (GM) composition
have been associated with hepatic fat accumulation, inflammation, and fibrosis progression.
Moreover, microbial metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs),
and trimethylamine N-oxide (TMAO) have been shown to influence lipid metabolism,
insulin sensitivity, and hepatic inflammation [13]. High-throughput omics technologies are
advancing our understanding of microbial metabolites and aiding in the identification of
novel biomarkers for MASLD [14]. The composition and function of the GM are strongly
shaped by dietary patterns. While Western-style diets promote dysbiosis and disease
progression, fiber-rich and plant-based diets (e.g., Mediterranean diet) support a more
favorable microbial environment that may protect against MASLD. These insights have
stimulated interest in microbiome-targeted interventions—including prebiotics, probiotics,
synbiotics, and fecal microbiota transplantation (FMT)—as emerging tools in MASLD
therapy [15].

Artificial intelligence (AI) is revolutionizing healthcare by enhancing disease diag-
nosis, treatment, and prevention. A key application is promoting lifestyle modifications
through AI-driven interventions that analyze large-scale data, provide personalized recom-
mendations, and optimize dietary guidelines [16,17]. Machine learning (ML) models have
shown promise in predicting conditions like obesity, hypertension, type 2 diabetes mellitus
(T2DM), and cardiovascular diseases. AI is also being explored in MASLD to improve
patient stratification and biomarker discovery through automated data analysis [18]. The
integration of microbiome data and blood metabolites could enhance personalized treat-
ment strategies. Future work should focus on standardizing AI tools and validating their
impact on long-term liver outcomes, gut microbiota modulation, and precision nutrition
strategies. This review explores the complex interplay between gut microbiota and MASLD,
with a particular focus on how dietary modulation can reshape microbial communities and
influence disease progression. Additionally, we examine the emerging role of AI-driven
tools in supporting lifestyle modifications, enabling precision nutrition, and optimizing
MASLD management.

2. Gut Dysbiosis and Its Association with MASLD
2.1. Human Gut Microbiota

The human gut microbiome is a complex and dynamic ecosystem composed of bac-
teria, archaea, viruses, and eukaryotic microbes that inhabit the gastrointestinal tract. It
plays a crucial role in maintaining physiological homeostasis and establishing a symbiotic
relationship with the host [19]. The composition and relative abundance of microbial popu-
lations fluctuate throughout an individual’s life, influenced by genetic and environmental
factors such as diet, medication, and microbial interactions [20].

Recent taxonomic revisions have led to updates in the phylum nomenclature to better
reflect phylogenetic relationships, as recommended by the List of Prokaryotic Names with
Standing in Nomenclature (LPSN) [21]. The predominant bacterial phyla in a healthy adult
gut are Bacillota (formerly known as Firmicutes) and Bacteroidota (formerly Bacteroidetes),
followed by Actinomycetota (formerly Actinobacteria), Pseudomonadota (formerly Proteobacte-
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ria), Fusobacteriota (formerly Fusobacteria), and Verrucomicrobiota (formerly Verrucomicrobia),
which are present in smaller proportions [22–25].

Under healthy conditions, the gut microbiome contributes to immune homeostasis
by modulating the gut microenvironment and coordinating immune responses [26,27].
Additionally, it performs essential metabolic functions, including the fermentation of
polysaccharides, BA transformation, choline metabolism, energy extraction, and pathogen
defense [28]. The GM is part of a dynamic ecosystem characterized by complex interactions
involving metabolite exchange and immune signaling [15]. However, the microbiome is
sensitive to various external and internal factors, including aging, dietary shifts, antibiotic
use, environmental stress, immune status, and inflammation, which can disrupt its structure
and diversity, leading to dysbiosis [22,23]. This imbalance may manifest as an excessive
growth of certain bacterial species, the loss of beneficial microbes, or shifts in overall
bacterial populations. Dysbiosis has been implicated in numerous metabolic disorders,
including T2DM, obesity, metabolic syndrome, and MASLD [29,30].

2.2. Gut Microbiota in MASLD

Multiple studies in both human cohorts and animal models have demonstrated specific
gut microbial alterations associated with the onset and progression of MASLD [31–34].
MASLD is often associated with reduced microbial diversity and a higher proportion of
Gram-negative bacteria at the expense of Gram-positive bacteria [35]. These compositional
shifts contribute to a pro-inflammatory intestinal environment and compromised gut
barrier function, leading to increased microbial translocation and the exposure of the liver
to bacterial endotoxins and other harmful metabolites [36,37].

Certain bacterial clades have been correlated with MASLD, including an increased
abundance of Pseudomonadota, Enterobacteriaceae, and Bacteroidaceae, and the genera Es-
cherichia, Streptococcus, Fusobacterium, Bilophila, Bacteroides, Dorea, and Peptoniphilus, along
with a reduction in Bacillota, Rikenellaceae, and Ruminococcaceae, as well as the genera
Faecalibacterium, Coprococcus, Ruminococcus, Anaerosporobacter, Akkermansia, Blautia, and
Eubacterium [15,35]. Although Pseudomonadota typically comprise less than 5% of the gut mi-
crobiota, their expansion is considered a hallmark of dysbiosis and a key driver of metabolic
and inflammatory responses [38]. An increased abundance of Pseudomonadota has also
been associated with hepatic fibrosis in individuals with a normal body mass index [39].
Similarly, in patients with liver fibrosis, an increased abundance of Ruminococcus [40] and
Bacteroides vulgatus [41] has been reported while obese patients with MASLD exhibit a
relative increase in Streptococcus [42].

A recent study using ML algorithms identified sex-specific microbial signatures associ-
ated with MASLD, with Christensenella and Limosilactobacillus being the key taxa associated
with MASLD in women and Beduinibacterium and Anaerotruncus in men [43]. Furthermore,
advanced fibrosis in MASLD has been linked to a specific GM signature characterized by a
high abundance of pathogenic bacteria, including Fusobacterium and Escherichia-Shigella,
and the depletion of SCFAs-producing genera such as Lachnospira [44]. These microbial
profiles, known as enterotypes, classify GM into distinct clusters based on the relative
abundance of specific bacteria. Among these, the Prevotella/Bacteroides ratio has been
highlighted as a predictive factor in dietary response, with individuals displaying higher
ratios tending to achieve greater weight loss following lifestyle interventions [45]. Broadly,
an excessive presence of enteric, inflammatory, and pathogenic bacterial genera, including
Escherichia, Streptococcus, Shigella, Dorea, Fusobacterium, and Enterococcus, is closely linked to
the onset and fibrotic progression of MASLD. Oppositely, less abundant bacterial genera
in MASLD patients, such as Lactobacillus, Akkermansia, Alistipes, and Eubacterium, help
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regulate these same pathways, mitigating the disease progression and reducing the risk of
its onset [15].

2.3. Conflicting Evidence in Gut Microbiota and MASLD Research

Despite these associations, identifying a robust and consistent microbial signature
for MASLD remains challenging. Contradictory findings, such as the dual associations of
Blautia and Roseburia with both disease progression and protection, highlight the complexity
and heterogeneity of microbiome research [37]. For instance, while Ruminococcus has been
positively linked to fibrosis in some studies [40], others report the opposite [41,46]. Similar
inconsistencies have been reported for Prevotella spp. [40,47,48]. A recent study identi-
fied five bacterial genera that showed consistent differences in relative abundance across
MASLD cohorts, but only Lachnospiraceae reached statistical significance, underscoring the
absence of a universally reliable taxonomic marker [49].

Several factors likely contribute to these inconsistencies across investigations. First, the
variability in study populations—due to heterogeneity in demographic (e.g., age, sex, and
ethnicity), clinical (e.g., obesity, T2DM, and antibiotics use), and lifestyle characteristics—
profoundly influences GM composition and may confound associations with MASLD [50].
Second, methodological differences in microbiota analysis—such as variations in DNA
extraction protocols, targeted 16S rRNA gene regions (e.g., V3–V4 vs. V4–V5), sequencing
platforms, and bioinformatics pipelines—can introduce substantial variability in taxo-
nomic classification and relative abundance estimates [51]. Third, variations in MASLD
definitions and diagnostic criteria—whether based on imaging techniques, liver biopsy,
or non-invasive biomarkers—introduce heterogeneity in case identification and disease
staging, thereby complicating comparisons across studies. Fourth, the predominance of
cross-sectional designs in microbiota–MASLD research limits the ability to draw causal
inferences. Moreover, temporal fluctuations in gut microbiota composition further com-
plicate the interpretation of single-time-point analyses and may contribute to conflicting
results [52].

The inherent complexity of the GM ecosystem and the phenomenon of functional
redundancy indicate that taxonomic shifts may not directly reflect functional changes.
Different microbial taxa can perform similar metabolic roles, meaning that taxonomic
classification alone may be insufficient to explain disease mechanisms. This is particularly
relevant for key microbial functions, such as butyrate and SCFA metabolic pathways, which
are not exclusive to specific taxa. Therefore, relying solely on microbial diversity indices
or compositional comparisons may fall short in elucidating the molecular mechanisms
involved. To move beyond correlative findings, future studies must adopt multi-omics
approaches and causal inference models to better understand the functional relevance of
gut microbiota alterations in MASLD [53].

3. Microbiota-Derived Metabolites in MASLD Pathogenesis
Growing evidence highlights the critical role of the gut–liver axis in mediating com-

munication between the gastrointestinal tract and the liver [54,55]. Disruptions in this
axis, including microbiota dysbiosis and increased intestinal permeability, facilitate the
translocation of microbial metabolites and components into the portal circulation, ulti-
mately reaching the liver [56]. These microbial components, known as pathogen-associated
molecular patterns (PAMPs), including lipopolysaccharide (LPS) and peptidoglycan, can
activate pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), in Kupffer
cells and hepatic stellate cells (HSCs), triggering inflammatory responses that contribute to
liver injury and fibrogenesis [57,58].
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Changes in the GM composition can lead to an alteration of the microbes-derived
molecules and metabolites that influx in the systemic circulation. Several of these metabo-
lites have been implicated in the pathogenesis of MASLD, including SCFAs, LPS, BA,
choline, TMAO, and ammonia [13]. Through the production of these molecules, GM in-
fluences glucose and lipid metabolism, contributing to hepatic steatosis and metabolic
dysfunction [32,53].

SCFAs, primarily acetate, propionate, and butyrate, support intestinal barrier func-
tion and exert anti-inflammatory effects. In contrast, LPS impairs gut integrity, promotes
endotoxemia, and exacerbates hepatic inflammation. Altered BA profiles can disrupt entero-
hepatic circulation and metabolic regulation, while choline deficiency impairs the hepatic
secretion of very-low-density lipoproteins (VLDLs), leading to triglyceride accumulation in
the liver and contributing to MASLD development. Ammonia is increasingly recognized
for its potential contribution to MASLD pathophysiology [13].

3.1. Gut Microbiota and SCFA Metabolism

Various GM members ferment complex carbohydrates, particularly those found in
dietary fiber, into SCFAs, primarily acetate, propionate, and butyrate. While most SCFAs
are utilized locally in the gut, a portion is absorbed by intestinal epithelial cells and enters
the portal circulation, reaching the liver. There, they contribute to key metabolic processes:
propionate serves as a substrate for gluconeogenesis, whereas acetate and butyrate are
precursors for lipogenesis [59]. Among SCFAs, butyrate is particularly important as a fuel
for enterocytes and for maintaining intestinal barrier integrity by increasing the expression
of tight junction proteins and supporting the growth of Lactobacillus [60,61]. Improved gut
barrier function reduces endotoxin leakage into circulation, thereby decreasing inflamma-
tory cytokine activity in the liver and mitigating hepatic fat accumulation. SCFAs also exert
systemic effects via the activation of G-protein-coupled receptors (GPCRs) expressed in
enteroendocrine cells, adipocytes, and immune cells. GPCR activation triggers the release
of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), which delay gastric emptying,
enhance satiety, and promote hepatic lipid oxidation, thereby reducing steatosis [10,62–64].

Experimental models support the protective role of butyrate against liver steatosis.
In mice, an increase in butyrate-producing bacteria prevented diet-induced hepatic fat
accumulation [65]. In a clinical setting, lower fecal butyrate levels have been observed in
diabetic patients [66]. Moreover, patients with T2DM following a high-fiber diet showed
improved HbA1c levels, likely due to increased populations of acetate- and butyrate-
producing bacteria and enhanced GLP-1 secretion. SCFA levels also vary with liver disease
severity; patients with advanced fibrosis show elevated fecal acetate levels, while those
with mild or moderate MASLD present higher butyrate and propionate concentrations [67].
However, in cirrhosis patients, circulating butyrate levels inversely correlate with inflamma-
tory markers and endotoxin quantity [68]. These inconsistencies may reflect interindividual
variability (age, diet, environmental factors) or technical challenges related to the volatile
nature of SCFAs [13]. Despite this, SCFA supplementation in MASLD murine models has
demonstrated beneficial effects, including reduced liver and adipose tissue inflammation,
as well as shifts in the GM composition that favor SCFA-producing bacteria while reducing
endotoxin-producing strains [69]. These findings suggest that SCFA supplementation could
offer metabolic and hepatoprotective benefits.

Several commensal bacterial species enhance these effects. Faecalibacterium Prausnitzii
produces significant SCFAs that provide energy for enterocytes and exert anti-inflammatory
effects [70]. F. prausnitzii and its metabolites have shown protective effects against colitis in
mice, increasing bacterial diversity and SCFA-producing bacteria while decreasing inflam-
matory markers [71]. Similarly, Akkermansia muciniphila, which colonizes the mucus layer
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of the intestine, interacts with the epithelial barrier via extracellular proteins and SCFA
production (mainly acetate and propionate). In fact, this microorganism can counteract
weight gain and immuno-metabolic disturbances by strengthening the gut barrier in animal
models [72]. The abundance of these beneficial bacteria, particularly Akkermansia, can be
increased through dietary polyphenols and flavonoids [73]. In mice, polyphenols pro-
moted A. muciniphila growth, reducing inflammation, obesity, and insulin resistance [74,75].
Likewise, epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, increased A.
muciniphila abundance and butyrate levels while alleviating colonic inflammation in models
of inflammatory bowel disease [76]. Flavonoids, plant-derived compounds, also promote
SCFA production and modulate gut microbiota composition. In vitro studies have shown
that certain flavonoids (baicalin, quercetin, icraiin, luteolin, amygdalin, and naringin)
increase total volatile fatty acid production and potentially act as prebiotics, enhancing
bacterial diversity [77]. Altogether, these findings support the therapeutic potential of
flavonoid-rich and polyphenol-rich diets in modulating gut microbiota, increasing benefi-
cial SCFA-producing bacteria, and ameliorating metabolic and inflammatory diseases such
as MASLD.

3.2. Gut Microbiota and BA Metabolism

The bidirectional relationship between the GM and BAs is well established. On
one hand, BAs regulate microbial populations by preventing bacterial overgrowth and
preserving intestinal barrier integrity; on the other hand, the GM modulates the BA com-
position through enzymatic transformation [78]. Since BAs have a major impact on the
host metabolism and immune function through farnesoid X receptor (FXR) and membrane-
associated GPCR5 signaling, gut dysbiosis or BA imbalance may contribute to the devel-
opment of metabolic diseases [79,80]. Within the gut, primary BAs are deconjugated and
dehydroxylated by the GM into more hydrophobic secondary BAs. These are reabsorbed
in the distal ileum and returned to the liver via enterohepatic circulation [81,82]. Secondary
BAs can activate FXR and GPCR5, thereby modulating metabolic and immune pathways,
including the inflammatory response [83,84].

Alterations in BA profiles have been associated with liver disease progression. Notably,
specific BA compositions have been linked to fibrosis in MASLD via the activation of the
NLRP3 inflammasome [85]. Elevated ratios of circulating conjugated chenodeoxycholic
acid to muricholic acid correlated with increased histological severity and fibrosis in MASH
patients [86]. Additionally, the levels of 7-hydroxy-4-cholesten-3-one (C4), a marker for de
novo BA synthesis, were increased in the serum of MASH patients and were also associated
with alterations in the GM [87].

The GM can regulate BA metabolism through microbial enzymes such as bile salt
hydrolase (BSH) and hydroxysteroid dehydrogenases (HSDHs), which facilitate the de-
conjugation and oxidation/epimerization of primary BAs [88]. Microbial species that
overexpress BSH, such as Lactobacillus casei, help reduce hepatic steatosis, cholesterol accu-
mulation, and lipid metabolism dysfunction in in vitro models [89]. Similarly, Eubacterium,
Ruminococcus, and Bacteroides, which express HSDHs [90], could potentially promote ur-
sodeoxycholic acid (UDCA) formation [91]. UDCA has demonstrated hepatoprotective
effects by activating AMPK, reducing oxidative stress, and attenuating hepatic inflamma-
tion [92]. Moreover, beneficial bacteria such as Akkermansia muciniphila and Bifidobacterium
bifidum help prevent the development of MASLD in mouse models by regulating FXR
signaling, leading to reduced weight gain, improved insulin sensitivity, and decreased liver
fat accumulation [93].
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3.3. Gut Microbiota and Choline Metabolism

Choline, an essential component of the cell membrane, is mainly obtained from dietary
sources (e.g., red meat, eggs, cheese, peanuts), although it can be synthesized by humans de
novo, but at insufficient levels. In the liver, choline is involved in the production of VLDL,
preventing the hepatic accumulation of triglycerides. For this reason, choline-deficient
diets have been used in animal models to induce MASH [94].

Choline can be converted to trimethylamine (TMA) by GM, which is absorbed by
intestinal epithelial cells. In the liver, TMA is oxidized to generate TMAO [95]. Microbial
metabolites like TMAO, which are elevated in individuals with steatotic liver disease, con-
tribute to lipid deposition in hepatocytes by weakening the intestinal barrier and activating
the TLR4/NF-κB pathway [96]. TMAO has been linked to impaired glucose tolerance and
the progression of MASLD [97], with elevated serum TMAO levels correlating with both
hepatic steatosis severity in MASLD patients [98] and MASH in T2DM patients [99]. In
addition, metabolomics studies in humans identified TMAO as a predictor of thrombotic
events, linked to its contribution to platelet hyperreactivity [100].

3.4. Gut Microbiota and Ammonia Metabolism

Urea synthesis—the main process for ammonia detoxification—takes place in the liver.
This cycle is impaired in MASLD patients due to a decrease in the activity and expression
of urea cycle enzymes that leads to reduced ammonia degradation and thus hyperam-
monemia. Ammonia can directly activate HSCs, potentially promoting liver fibrosis [101].
It is also produced by gut bacteria from amino acids, meaning that the GM composition
influences circulating ammonia [102]. Hyperammonemia is considered a potential indicator
of liver disease severity. In MASH preclinical models, dietary intervention resulted in the
restoration of the normal urea cycle enzyme activity and liver fat reduction [103].

In addition to its role in the liver, ammonia is a neurotoxic compound that crosses the
blood–brain barrier and plays a major role in hepatic encephalopathy, though it is not the
only factor [104].

4. Influence of Dietary Patterns in MASLD
Diet is one of the most powerful and modifiable modulators of GM composition and

function. Accumulating evidence highlights the crucial role of dietary patterns not only in
shaping microbial diversity and metabolic activity but also in influencing the development
and progression of MASLD [105,106]. The Western diet, typically high in saturated fats,
refined carbohydrates, and low in fiber, is associated with gut dysbiosis, reduced microbial
diversity, and the overgrowth of pro-inflammatory taxa [15]. Moreover, processed foods,
which often contain additives, preservatives, and dietary emulsifiers, disrupt the balance
of gut microbiota, increasing intestinal permeability, exacerbating metabolic dysfunctions,
and promoting fat accumulation in the liver [36,107]. In contrast, dietary patterns rich
in fiber, polyphenols, and unsaturated fats, such as the Mediterranean diet, promote the
growth of beneficial SCFA-producing bacteria, support intestinal barrier integrity, and
exert anti-inflammatory effects [108]. These diet-induced microbial changes influence key
host metabolic pathways, including lipid and glucose homeostasis, bile acid metabolism,
and immune regulation, all of which are implicated in MASLD pathogenesis [109,110].
Moreover, specific microbial metabolites, such as SCFAs, TMAO, and BAs, act as mediators
between dietary inputs and hepatic outcomes. Understanding the diet–microbiota–liver
axis is therefore essential for identifying preventive and therapeutic strategies against
MASLD.
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4.1. Western Diet and Dysbiosis

The Western diet, characterized by a high intake of saturated fats, refined sugars,
red and processed meats, and ultra-processed foods, alongside a low consumption of
dietary fiber, is strongly associated with gut microbiota dysbiosis and the development
of MASLD. This dietary pattern promotes a shift in microbial composition, favoring the
growth of pro-inflammatory and endotoxin-producing bacteria such as Escherichia coli,
Streptococcus, and Dorea, while reducing beneficial taxa like Faecalibacterium prausnitzii,
Akkermansia muciniphila, and Ruminococcus [108]. Dysbiosis induced by a Western diet
leads to a reduced production of SCFAs, particularly butyrate, which impairs intestinal
barrier integrity and increases gut permeability [111,112]. This facilitates the translocation
of PAMPs, such as LPS, into the portal circulation, where they trigger hepatic inflammation
through TLR activation on Kupffer cells and HSCs. Inflammatory signaling and immune
activation driven by this gut–liver crosstalk contribute to hepatic steatosis, ballooning,
and fibrotic progression in MASLD. Moreover, Western dietary patterns alter bile acid
metabolism by promoting the abundance of bacterial species with BSH and HSDH activity,
which modify the composition of primary and secondary bile acids [108]. These changes
can disrupt FXR and TGR5 signaling, contributing to insulin resistance, lipid dysregulation,
and hepatic inflammation (see Figure 1).
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Figure 1. Diet directly influences microbial composition, leading to an increase in pro-inflammatory
bacteria and a decrease in beneficial microbes. This imbalance is reflected systemically by enhanced
intestinal permeability and elevated levels of inflammatory mediators, which contribute to the
progression of liver disease.

A hallmark of the Western diet is excessive fructose intake, mainly through sugar-
sweetened beverages and processed foods. High fructose consumption is a well-recognized
driver of hepatic steatosis, de novo lipogenesis, and gut microbiota disruption [113]. Fruc-
tose is primarily absorbed in the small intestine, but when consumed in large amounts,
unabsorbed fructose reaches the colon, where it is rapidly fermented by colonic bacteria.
This process promotes the overgrowth of fermentative and ethanol-producing bacteria,
such as certain Clostridium and Escherichia species. Importantly, fructose-induced dysbiosis
contributes to increased intestinal permeability and the translocation of endotoxins like LPS,
exacerbating hepatic inflammation through TLR4 signaling. Additionally, fructose enhances
the luminal production of endogenous ethanol and reactive oxygen species, further con-
tributing to mitochondrial dysfunction and oxidative stress in hepatocytes [15,36,109,110].
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Animal studies have consistently shown that high-fat, high-sugar diets induce dys-
biosis and rapidly lead to steatosis and inflammation [114–116]. In murine models, FMT
from Western diet-fed donors is sufficient to induce hepatic steatosis in germ-free mice,
even in the absence of direct dietary exposure [117]. This highlights the causal role of gut
microbial alterations in MASLD pathogenesis and the deleterious synergy between poor
dietary quality and microbiota composition.

4.2. Mediterranean Diet and Microbiota Restoration

In contrast to the Western diet, the Mediterranean diet is associated with a protective
gut microbial profile and improved liver health outcomes. It emphasizes the intake of
unprocessed, whole-plant foods, olive oil (particularly extra-virgin olive oil, EVOO), and
dairy products, with a moderate consumption of poultry and fish, while limiting red and
processed meats [108]. This dietary pattern is naturally rich in dietary fiber, polyphenols,
monounsaturated fats, and n-3 polyunsaturated fatty acids, all of which contribute to its
anti-inflammatory and antioxidant effects.

The Mediterranean diet has been shown to favorably modulate the gut microbiota.
Two interventional studies demonstrated that adherence to this diet increases the abun-
dance of beneficial bacteria such as Faecalibacterium prausnitzii and Roseburia spp., while
reducing the presence of potentially pathogenic or pro-inflammatory species like Ruminococ-
cus gnavus, Collinsella aerofaciens, and Ruminococcus torques [118,119]. These taxonomic shifts
are associated with an enhanced production of SCFAs and reduced levels of harmful micro-
bial metabolites such as ethanol, para-cresols, and carbon dioxide [118]. In addition, EVOO
has been specifically linked to improved postprandial glycemic control, partly by reducing
low-grade endotoxemia linked to increased gut permeability [120]. The anti-inflammatory
properties of EVOO, along with its polyphenol content, likely contribute to this effect,
supporting intestinal integrity and modulating microbial composition toward eubiosis.

Polyphenols, abundant in olive oil, red wine, berries, and leafy greens, also play a
crucial role in modulating gut microbiota. They act as prebiotics, selectively promoting
the proliferation of Akkermansia muciniphila, a mucin-degrading bacterium associated with
improved metabolic profiles, reduced fat mass, and enhanced intestinal barrier function [73].
Polyphenol-rich diets have been shown to increase microbial diversity and lower circulating
levels of pro-inflammatory markers in both animal and human studies [74–76,121,122].

A metagenomic shotgun sequencing study of long-term microbiome data from 307
individuals found that the Mediterranean diet modulated 36 distinct microbial metabolic
pathways, enhancing microbial functions related to SCFA production and fiber degrada-
tion [123]. Interestingly, the protective association between an adherence to the Mediter-
ranean diet and cardiometabolic disease risk was particularly pronounced in individuals
with a low abundance of Prevotella copri, a species often linked to pro-inflammatory re-
sponses and metabolic dysfunction.

4.3. High-Fiber Diets and SCFA Production

Dietary fiber plays a central role in shaping gut microbiota composition and function,
and its intake is inversely associated with the risk and severity of metabolic disorders,
including MASLD. Unlike digestible carbohydrates, dietary fibers reach the colon intact,
where they are fermented by specific microbial populations into SCFAs [32,53]. These
microbial metabolites exert local and systemic effects that support intestinal and hepatic
health.

SCFA production is closely tied to the abundance of specific bacterial taxa. Genera
such as Faecalibacterium, Roseburia, Blautia, Coprococcus, and Ruminococcus are well-known
fiber degraders and efficient butyrate producers [124–126]. Diets rich in fermentable fibers
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enhance the growth of these bacteria and are associated with improved gut barrier function,
reduced intestinal permeability, and a decrease in endotoxin translocation to the liver [108].

In MASLD, the reduced intake of dietary fiber is associated with diminished SCFA pro-
duction and dysbiosis, leading to increased intestinal permeability, low-grade inflammation,
and hepatic lipid accumulation. Animal models have shown that supplementation with
fermentable fibers or the direct administration of SCFAs ameliorates steatosis and reduces
markers of hepatic inflammation [69]. Furthermore, clinical studies have demonstrated that
high-fiber diets in patients with metabolic syndrome or T2DM improve glycemic control
and modulate the gut microbiota toward an SCFA-producing profile, likely contributing to
the amelioration of hepatic fat content [127–129].

4.4. Polyphenols, Flavonoids, and Gut–Liver Interactions

Polyphenols, a diverse class of plant-derived bioactive compounds, have emerged as
important dietary modulators of gut microbiota composition and metabolic health. Widely
present in fruits, vegetables, tea, coffee, cocoa, and olive oil, polyphenols—including
flavonoids, phenolic acids, stilbenes, and lignans—exert antioxidant, anti-inflammatory,
and immunomodulatory effects. Their low bioavailability in the upper gastrointestinal
tract allows them to reach the colon, where they interact directly with the gut microbiota,
influencing both microbial composition and function.

Polyphenols serve as substrates for microbial metabolism and act as selective growth
promoters of beneficial bacteria, particularly Akkermansia muciniphila and Faecalibacterium
prausnitzii, both of which are associated with an improved gut barrier function, SCFA pro-
duction, and anti-inflammatory activity [70,130]. An increased abundance of A. muciniphila
has been linked to improved insulin sensitivity, reduced adiposity, and the attenuation
of hepatic steatosis in animal models [72]. Several preclinical and human studies have
demonstrated that polyphenol-rich diets increase gut microbial diversity and promote
the production of SCFAs, while simultaneously reducing the abundance of endotoxin-
producing taxa. For example, cranberry and grape-derived polyphenols have been shown
to stimulate A. muciniphila proliferation and reduce metabolic inflammation and obesity-
related parameters in mice [74,75]. Similarly, supplementation with EGCG—the primary
catechin in green tea—ameliorated colonic inflammation in the mouse models of IBD by
enhancing butyrate production and increasing A. muciniphila abundance [76].

Flavonoids, a prominent subclass of polyphenols, have also been shown to modulate
gut microbiota and support intestinal homeostasis. In vitro studies have demonstrated
that flavonoids such as baicalin, quercetin, icariin, luteolin, amygdalin, and naringin
can enhance the production of total volatile fatty acids (VFAs), acting as prebiotic-like
compounds that improve bacterial diversity and stimulate SCFA synthesis [77].

Through these mechanisms, polyphenols and flavonoids not only contribute to the
restoration of gut microbial balance but also modulate key host pathways involved in
MASLD pathogenesis, including inflammation, oxidative stress, lipid metabolism, and
insulin resistance.

4.5. Other Dietary Components and Microbial Modulation

Beyond fiber and polyphenols, other dietary components, such as sweeteners and
food additives, also play a significant role in shaping gut microbiota composition and
influencing liver health [131].

Artificial sweeteners such as sucralose, saccharin, and aspartame, frequently used in
“sugar-free” processed foods, have been shown to alter gut microbial communities and
impair glucose metabolism [107]. These compounds may reduce the abundance of SCFA-
producing bacteria and promote the growth of strains linked to metabolic endotoxemia.
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Emulsifiers (e.g., carboxymethylcellulose and polysorbate-80), preservatives, and
other synthetic food additives have been reported to compromise gut barrier function and
disturb microbial composition [132]. In murine models, chronic exposure to emulsifiers
led to decreased Akkermansia muciniphila abundance, increased mucosal inflammation, and
the development of metabolic syndrome features [133]. Although human data remain
limited, these findings raise concerns about the long-term effects of ultra-processed food
consumption on gut–liver homeostasis.

4.6. Diet–Microbiota Interactions in MASLD Progression

A growing body of evidence supports a causal relationship between dietary patterns,
gut microbiota composition, and the development and progression of MASLD.

Observational studies in diverse populations have shown that dietary quality is
strongly associated with gut microbiota profiles and MASLD risk. For example, individ-
uals with high adherence to the Mediterranean diet exhibit increased microbial diversity,
enrichment of SCFA-producing genera (Faecalibacterium, Roseburia), and lower hepatic
steatosis scores compared to those following Western dietary patterns [108,134]. Clinical
trials have confirmed that dietary interventions rich in fiber and polyphenols not only shift
microbiota composition but also reduce hepatic fat content and improve metabolic markers.
In patients with obesity and MASLD, high-fiber or polyphenol-enriched diets have led to
increases in Akkermansia muciniphila and Bifidobacterium, coupled with improvements in
insulin sensitivity and liver function tests [135].

Rodent models have been instrumental in demonstrating mechanistic links between
diet, microbiota, and MASLD. Mice fed high-fat, high-fructose, or choline-deficient diets
develop microbiota alterations similar to those observed in human MASLD, including in-
creased Pseudomonadota and reduced butyrate-producing taxa [115,136,137]. These models
reproduce the key histological features of MASLD, such as steatosis, lobular inflammation,
and fibrosis, while allowing for the controlled manipulation of dietary components and
microbial exposures [138]. Importantly, dietary reversal in these models, such as transi-
tioning from a Western to a Mediterranean-style or high-fiber diet, leads to the restoration
of microbial diversity and the attenuation of liver damage, supporting a direct role of
diet–microbiota interactions in disease modulation [139].

FMT studies provide strong evidence for the transmissibility of MASLD-associated
phenotypes via the gut microbiota. In one notable experiment, germ-free mice colonized
with fecal material from MASLD patients developed hepatic steatosis and metabolic dys-
function despite being maintained on a standard diet, whereas mice receiving feces from
healthy donors were protected. These findings confirm that the altered microbial commu-
nities seen in MASLD are not merely a consequence of disease but can actively drive its
development [140].

Despite compelling evidence, several limitations hinder the translation of microbiome–
diet research into clinical practice. First, most studies rely on 16S rRNA sequencing, which
provides limited taxonomic resolution and no direct insight into microbial function [141].
While metagenomic and metabolomic approaches offer a deeper view, they are costly
and not yet widely standardized. Second, dietary intake is often assessed through self-
reported tools that are prone to recall bias [142]. Finally, interindividual factors—including
sex, age, genetics, medication use, and lifestyle—can confound associations and obscure
causal inferences. As a result, future research should prioritize well-controlled, longitudinal
studies using multi-omics integration and personalized dietary interventions. Incorporating
AI-based tools may help overcome heterogeneity and optimize individualized dietary
strategies based on microbiome profiles.
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5. Artificial Intelligence in Lifestyle Interventions for MASLD
Lifestyle modification remains the cornerstone of MASLD prevention and manage-

ment, yet sustained behavioral change is difficult to achieve in routine clinical practice. In
this context, AI is emerging as a transformative tool to enhance the effectiveness, personal-
ization, and scalability of lifestyle interventions [17]. By leveraging large-scale, multidimen-
sional datasets (including clinical, dietary, microbiome, and metabolic profiles), AI models
can identify complex patterns and generate predictive insights that go beyond traditional
statistical methods [143–146].

ML algorithms have shown promise in predicting MASLD risk, stratifying patients by
disease severity, and identifying microbial or metabolic signatures associated with disease
progression [41,147,148]. More recently, AI-driven platforms have been applied to support
personalized nutrition and behavioral change, offering dynamic dietary recommendations,
monitoring adherence in real time, and predicting individual responses to interventions
based on baseline characteristics [149]. These developments are particularly relevant in
MASLD, where the variability in treatment response is high, and where the gut microbiota
serves as both a biomarker and therapeutic target. Integrating AI into lifestyle intervention
strategies may help bridge the gap between precision medicine and population-level
implementation, offering new opportunities for the early detection, targeted prevention,
and tailored management of MASLD.

5.1. AI-Driven Dietary and Exercise Programs

Recent scientific studies have evaluated AI-based programs aimed at promoting
lifestyle modifications and preventing chronic diseases. Specifically, some studies show the
role of AI in disease prediction, treatment improvement, and real-time monitoring based on
nutritional intake data [150,151]. In the context of MASLD, where sustained lifestyle change
is essential but often difficult to achieve, AI-driven systems offer scalable, personalized,
and adaptive solutions that go beyond traditional approaches. Intelligent digital platforms
can provide real-time dietary feedback and generate individualized meal plans tailored to
health goals such as weight loss, glycemic control, or improved lipid profiles [152–155].

AI is being investigated in MASLD to develop reproducible, quantitative, and au-
tomated methods to enhance patient stratification and discover new biomarkers [18].
Different applications of AI and machine learning algorithms in MASLD, particularly in
analyzing electronic health records, digital pathology, and imaging data, are being devel-
oped to support diagnosis, risk assessment, and treatment planning [156,157]. Furthermore,
microbiota-based ML approaches are emerging as promising tools for disease classification
and personalized therapy selection [147]. A key strength of AI-driven nutrition programs
lies in their capacity to integrate multi-omics data—such as metagenomics, metabolomics,
and transcriptomics—using models like deep learning and random forests. This enables
the modeling of dynamic interactions between diet, gut microbiota, and host metabolism.
AI systems can process large volumes of individualized health data to predict responses to
specific nutrients and dietary patterns. For instance, predictive algorithms can estimate
the impact of high-fiber diets on the abundance of beneficial microbes such as Akkermansia
muciniphila and Faecalibacterium prausnitzii. These models can also account for genetic
predisposition, metabolic flexibility, and behavioral adherence, allowing for highly tailored
dietary interventions (see Figure 2).

Despite their promise, few AI-based lifestyle programs have been specifically validated
in patients with diagnosed MASLD. Nevertheless, due to the pathophysiological overlap
between MASLD and other metabolic conditions—such as obesity, T2DM, and metabolic
syndrome—the beneficial effects observed in these populations are likely to be applicable.
Future research should aim to include liver-specific outcomes, such as hepatic steatosis
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and fibrosis scores, to better assess the direct impact of AI-driven interventions on MASLD
progression.
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5.2. Conversational Agents

Conversational agents—commonly referred to as chatbots—are AI-driven systems
designed to simulate human dialog and provide interactive, real-time communication
with users through natural language processing (NLP). In the context of health promotion,
chatbots have shown significant potential in supporting behavior change by offering
personalized guidance, continuous motivation, and education without the need for constant
human intervention. AI-powered chatbots have proven effective in encouraging healthy
behaviors, such as physical activity, fruit and vegetable consumption, smoking cessation,
medication adherence, and improved sleep duration and quality [16,17]. While AI chatbots
show potential in promoting healthy eating habits, current evidence is insufficient to
confirm their effectiveness in weight loss [158]. Well-designed interventions are necessary
to determine whether chatbots can genuinely support long-term weight loss.

These chatbots, considered conversational agents or virtual assistants, employ behav-
ior change strategies such as goal setting, progress monitoring, and real-time feedback,
delivering personalized interventions through accessible platforms and devices. In ad-
dition, emerging research collectively shows that AI is a greater option for transforming
the methods and tools used for dietary evaluation, thereby reducing manual efforts and
introducing more accurate and efficient approaches [159]. In this sense, one study evaluates
the feasibility and efficacy of a 12-week lifestyle intervention led by an AI chatbot that
generates a personalized guide on physical activity and a Mediterranean-style diet for each
participant. Results showed significant improvements in participants’ physical activity,
higher Mediterranean diet scores, and a decrease in waist circumference [160]. Regarding
dietary adherence to the Mediterranean diet, a recent study suggests that an automated
smartphone application can effectively monitor and evaluate users’ adherence based on an
imaging system with the same accuracy as a specialist [161].

Chatbots offer an opportunity to democratize access to health interventions due to
their cost-effectiveness, accessibility, and scalability, while also complementing healthcare
professionals in preventive programs. However, while AI and ML offer promising advance-
ments in precision nutrition, researchers also caution about the potential risks associated
with their use, and the need to develop a holistic risk management framework for AI/ML
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systems is crucial to ensure their safe and effective deployment in high-stakes medical
settings [162].

5.3. Future Perspectives

The future of personalized dietary management for MASLD is closely linked to ad-
vances in AI, multi-omics technologies, and the integration of clinical and behavioral data
into predictive models. These innovations are paving the way for highly individualized
nutritional strategies that optimize hepatic and metabolic outcomes while considering
patient-specific variables. AI-driven machine learning models, including deep neural net-
works and random forest algorithms, are increasingly capable of processing large-scale
datasets from metagenomics, metabolomics, and transcriptomics to generate highly per-
sonalized dietary recommendations. The development of digital platforms integrating
these models could allow the real-time monitoring of microbiota and metabolic changes in
response to dietary interventions.

Omics technologies are also essential for identifying specific biomarkers associated
with MASLD and predicting responses to different dietary interventions. Their integra-
tion into clinical practice could facilitate patient stratification, enabling more targeted
interventions based on individual metabolic profiles.

Despite the great potential of AI in personalized nutrition, several challenges must
be overcome before these technologies can be translated into routine clinical care. These
include the standardization and interoperability of omics data, the need for longitudinal
studies to assess the durability and safety of AI-guided interventions, and the inclusion
of contextual variables such as physical activity, medication use, alcohol consumption,
and sleep quality in predictive models. Ethical and regulatory frameworks must also be
established to ensure data security, algorithm transparency, and equitable access to these
tools.

Ultimately, the integration of AI with multi-omics approaches holds immense poten-
tial to transform the management of MASLD through the development of personalized,
adaptive, and mechanistically informed dietary interventions. These technologies will not
only enhance our ability to identify novel biomarkers but also offer new therapeutic av-
enues that move beyond uniform, generalized strategies, ushering in a new era of precision
hepatology.

6. Conclusions
The complex interplay between dietary habits, gut microbial composition, and liver

health has gained recognition as a key element in MASLD pathogenesis and progression.
Specific dietary patterns, particularly the Western diet, can disrupt gut microbial homeosta-
sis, leading to intestinal permeability, systemic inflammation, and metabolic dysregulation,
which contribute to hepatic steatosis and fibrosis. In contrast, diets rich in fiber, polyphe-
nols, and unsaturated fats, such as the Mediterranean diet, have been shown to foster
a more favorable gut microbiota profile, increasing the abundance of SCFA-producing
bacteria, reducing endotoxemia, and improving liver-related outcomes.

Beyond dietary factors, AI-based tools, including machine learning models and con-
versational agents, are emerging as promising strategies to support personalized nutrition
and behavior change. These systems can provide tailored dietary and exercise recommen-
dations, predict individual responses to interventions, and enhance long-term adherence.
Although clinical evidence in MASLD-specific populations is still limited, findings from
related metabolic conditions suggest that these technologies could significantly improve
adherence and clinical outcomes when properly implemented.
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Looking ahead, the integration of AI with omics data (such as metagenomics,
metabolomics, and transcriptomics) holds great promise for advancing precision nutrition
strategies in MASLD. Such approaches can move the field beyond generalized recommen-
dations toward personalized, mechanism-driven interventions tailored to each patient’s
metabolic and microbial profile. Nevertheless, key challenges remain, including the need
for standardized clinical endpoints, data harmonization, long-term validation, and ethical
frameworks, to ensure the safe and equitable application of AI in healthcare. Addressing
these gaps will be essential to fully realize the potential of dietary modulation and digital
tools in the prevention and management of MASLD.

In conclusion, improving MASLD management will likely require a multifaceted
approach that combines dietary modulation and digital health tools. Continued research
and clinical validation will be essential to translate these innovations into practical, effective
interventions that can be implemented in real-world settings.
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BA Bile acid
BSH Bile salt hydrolase
EGCG Epigallocatechin-3-gallate
FMT Fecal microbiota transplantation
FXR Farnesoid X receptor
GLP-1 Glucagon-like peptide-1
GM Gut microbiota
GPCRs G-protein-coupled receptors
HCC Hepatocellular carcinoma
HSC Hepatic stellate cells
HSDH Hydroxysteroid dehydrogenases
LPS Lipopolysaccharide
LPSN List of prokaryotic names with standing in nomenclature
MASH Metabolic dysfunction-associated steatohepatitis
MASLD Metabolic-associated steatotic liver disease
ML Machine learning
NLP Natural language processing
PAMPs Pathogen-associated molecular patterns
PRR Pattern recognition receptors
PYY Peptide YY
SCFAs Short-chain fatty acids
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T2DM Type 2 diabetes mellitus
TLR Toll-like receptor
TMA Trimethylamine
TMAO Trimethylamine N-oxide
UDCA Ursodeoxycholic acid
VFA Volatile fatty acids
VLDL Very-low-density lipoproteins
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