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H I G H L I G H T S

Raman analysis reveals stable serum an-
alytes after ambient temperature stor-
age.
Training with the first 20 PCs yields 
high accuracy in degradation classifica-
tion.
Explainability of Raman data points to 
auto-fluorescence as a marker of serum 
degradation.
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 A B S T R A C T

This study explores the potential of conventional Raman spectroscopy and commonly used spectral analysis 
pipelines for rapid and straightforward assessment of degradation in serum samples resulting from storage 
delays. Serum samples from 18 volunteers were processed within 2 h of extraction, which later on were 
analyzed via Raman spectroscopy over 4 days, while the corresponding serum vials were kept at room 
temperature. The resulting spectra were processed, including silicon normalization and a newly proposed 
outlier detection ensemble method. Next, baseline correction was performed, and spectral unmixing along 
with Principal Component Analysis (PCA) were applied. Several classification models (KNN, RF, and SVM) 
were trained and evaluated on three distinct balanced datasets: one including all data, one excluding low 
signal-to-noise ratio (SNR) data, and one excluding low-SNR data with baseline correction. Feature importance, 
assessed through random permutations, was used for explainability.

Spectral unmixing and PCA indicated limited spectral changes directly attributable to analyte degradation, 
with inter- and intra-sample variability dominating. Classification results showed that while removing the 
baseline led to inconclusive results, models trained on datasets retaining the baseline effectively identified non-
degraded samples. These findings suggest that while conventional Raman spectroscopy may not be optimally 
sensitive to subtle analyte variations in serum stored at room temperature, the auto-fluorescence background 
holds promise as a potential biomarker for monitoring serum storage quality.
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1. Introduction

Sample handling is a crucial factor in all research areas since the 
way samples are treated, stored and maintained can heavily influence 
any derived result. Defining well-established quality control protocols 
is essential to ensure truthful and reproducible results. Biobanks are 
institutions designed to certify good sample quality. Their primary 
role is to assure proper sample conditions, both before and during 
storage, so that their materials can be used in any line of research with 
consistent results [1]. Variations in data provided by biobanks will be 
due to donor conditions and not to the introduction of artifacts during 
manipulation and storage [2]. However, samples that arrive at research 
facilities originate from various sources, such as hospitals, universities, 
or other research institutions, creating challenges in confirming their 
validity [3]. This issue is particularly critical with common samples, 
specifically with blood specimens, due to their wide availability and 
their sensitivity to changes in pre-analytical conditions [4]. In the last 
twenty years, great efforts have been made to find biomarkers that can 
serve as quality standards, to establish different quality control methods 
for fluid samples and to define sample conditions that suit different 
purposes. In the context of biomarker quantification, stability can be 
defined as how much an analyte deviates from initial concentrations 
over time [5]. In whole blood, serum, and plasma, many biomarkers 
have been extensively studied to assess their responses. Most studies 
focus on the need for refrigeration (+4 ◦C) or freezing (−20 ◦, −70 ◦C) 
to preserve analyte activity. Among others, different methods such 
as electrophoresis, chromatography, ELISA, mass spectrometry, and 
gas spectrometry, have been used to evaluate the stability of over 
255 metabolites in serum [6–10], plasma [11], and both simultane-
ously [12–16]. Researchers have also examined the impact of extended 
precentrifugation time and of changes in precentrifugation storage 
temperature on serum and plasma properties [17–21]. Still, the diverse 
range of methods and analytes studied makes it challenging to establish 
a universal standard for evaluating serum stability (Tables  1 and 2).

Most of the mentioned methods demand some degree of sample 
preparation, a relatively substantial sample size, high costs, or the need 
for specific labeling, making them impractical for routine implementa-
tion within a laboratory’s regular workflow, as testing every sample 
would be excessively time-consuming. Additionally, all of them search 
for specific analyte changes, therefore those methods are not capable 
of detecting global changes in a biological sample that would indicate 
that it has undergone a process that makes it no longer usable.

Utilizing inelastic scattering, Raman spectroscopy offers a molecular-
specific method for molecular identification and chemical bond analy-
sis [22]. It provides a ‘‘spectral signature’’ reflecting the biochemical 
composition of a sample [23]. Advantages of Raman spectroscopy 
include minimal sample preparation, low sample volume requirements, 
and its non-destructive nature, making it suitable for analyzing solid 
and liquid samples. This technique has been used to study blood com-
ponents since the 1970s, with ongoing innovations in instrumentation 
and applications [24,25].

The multiple modalities of Raman Spectroscopy have been used 
before to detect chemical changes through traditional chemometry. 
For example, Magdas et al. applied a variation of linear discriminant 
analysis to distinguish between wine types using Fourier-Transform 
Raman [26,27]. Similarly, Ortiz et al. applied principal component 
analysis for the discrimination of real and counterfeit pharmaceutical 
powders [28]. Açikgöz and Hamamci also applied a least squares 
method discriminant analysis to determine specific analytes in blood 
samples [29]. Neural-networks-based methods have also been used in 
conjunction with Raman spectroscopy, specifically in health-related 
experiments, to classify sub-types of breast cancer [30], to diagnose 
lupus [31] or to analyze cortical bone [32]. Nonetheless, there has been 
a recent uprising of explainability-based methods (explainable AI, XAI) 
in multiple fields [33–38] in order to not only provide chemometric 
or classification results but also to try to understand their biological 
2 
basis. Specifically in Raman, XAI was used to predict carbon-to-oxide 
ratios [39] and to diagnose thyroid [40] and breast [41] cancer, in a 
more informed way than using conventional chemometrics or classifiers 
only.

This work proposes the use of Raman spectroscopy as a poten-
tially more rapid and straightforward alternative to existing serum 
analysis techniques for assessing changes in serum samples due to 
storage delays. The aim is to investigate the feasibility of using Ra-
man spectroscopy, coupled with common analysis pipelines, to detect 
serum degradation. Through the analysis of Raman spectra from serum 
samples left at ambient temperature for multiple days, we studied 
the evolution of the main Raman bands corresponding to serum com-
ponents using both supervised (spectral unmixing) and unsupervised 
(principal component analysis) techniques, combined with classifica-
tion, and explainable AI (XAI) methods. The latter were incorporated 
as a diagnostic tool to investigate the shortcomings of the proposed 
analysis pipelines for the inspection of serum samples. This evaluation 
will highlight both the potential and the challenges associated with the 
use of Raman spectroscopy for this task.

2. Materials and methods

This section details the materials and methods employed to obtain 
the primary findings of this study. 

2.1. Measurement protocol and system parameters

Serum samples were obtained from 38 volunteers, aged between 40 
and 69 years, residing in the northern region of Spain. The samples 
have been acquired in the context of a cohort, Cohorte Cantabria, 
designed to provide information on morbidity related to lifestyle and 
socioeconomic aspects [44]. Blood samples were centrifuged to sep-
arate serum from the cellular fraction within 2 h after extraction, 
according to the faster processing time advised by the SPREC nomencla-
ture [45]. A droplet of serum of 10 μL was deposited on a microscopy 
slide and left to dry for 15 min inside a custom-made water evaporator 
(see Fig. S1 in the supplementary material), which minimizes the 
occurrence of cracks in the surface of the droplets and speeds up the 
drying process.  Aluminum slides are used for the measurements instead 
of conventional fused silica slides to avoid the intrinsic Raman signal of 
fused silica, which would interfere with the molecular fingerprint of the 
samples [24,46–48]. The aluminum slides used in this work also help 
reduce measurement noise without the increased cost of using gold, 
silver, or SERS substrates [49,50]. The tube containing the remaining 
serum of each individual was left at room temperature for 24 h and then 
a second 10 μL droplet was measured with Raman following the same 
procedure. This method was repeated over four days, creating a spectral 
dataset of 38 volunteers at four temporal states of sample degradation, 
labeled according to the SPREC nomenclature [45]: 00 h (Control, 
SER-SST-A-B-N-B-A), 24 h (SER-SST-A-B-N-H-A), 48 h (SER-SST-A-B-N-
J-A) and 72 h (SER-SST-A-B-N-M-A). Out of the 38 volunteers, only 
the samples from 18 could be measured on four consecutive days. 
Therefore, the molecular analysis and classification results are provided 
for those 18 volunteers to ensure that the classes are balanced. The 
data from the remaining 20 volunteers was used as a test set for the 
classification tasks.

Raman spectra were acquired using a Jasco NRS-4500 spectrometer 
with a 532 nm laser (18 mW power). A 15 × 15 grid of measurements 
was collected per droplet, with 170 μm spacing to prevent laser-induced 
sample damage, using a 50× objective (3 μm spot size). Spectra were 
obtained using a 17 μm circular aperture, a 1200 lines/mm diffraction 
grating (0.5 cm−1 resolution), a 1 s exposure time, and 15 accumu-
lations per data point. These parameters were chosen to optimize the 
signal-to-noise ratio (SNR) and minimize sample heating.
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Table 1
Compilation of studies evaluating the stability of various analytes in serum and plasma under different pre-analytical conditions. Part I.
 Blood 
product

Temp. Analytes Conclusions Ref.  

 Serum,
whole

RT, 6 ◦C Vitamin D Stable [42]  

 Serum,
plasma

RT, 4 ◦C,
30 ◦C, −20 ◦C

Hormones All hormones but ACTH
stable at 4 ◦C, 13 hormones 
stable in anticoagulants, 8 
stable at 30 ◦C, BNP 
and NT-BNP stable for
<24 h at RT

[13]  

 Serum 22 ◦C, 4 ◦C,
−20 ◦C

25 analytes All analytes but carbon
dioxide, aspartate and 
alanine aminotransferases,
lactate dehydrogenase, 
alkaline phosphate and
cholesterol stable at all 
temperatures and times

[7]  

 Serum,
plasma

RT 24 analytes All stable over 56 h, but
unstable when the
specimens have delayed 
centrifugation times

[14]  

 Serum,
plasma

RT Folate Unstable [15]  

 Serum,
plasma

RT, 4 ◦C,
freeze-thawed

Endogeneous
and added 
RNA

Under pre-centrifugation
delays, stable in plasma
at 4 ◦C, unstable in serum 
at 4 ◦C. With never-frozen, 
freeze-thawed and thawed 
plasma and serum at RT, 
stable.

[18]  

 Serum RT, refrigerated,
frozen, 
freeze-thawed

14 analytes All stable but insulin and
gastrin.

[12]  
Table 2
Studies evaluating the stability of serum and plasma. Part II.
 Blood 
product

Temp. Analytes Conclusions Ref.  

 Serum RT 225 analytes With pre-
centrifugation delays
all 255 are unstable.
With extended 
serum storage, 14% 
of the 225 increased, 
and 7% decreased. 
Lipids were stable
but amino acids and 
nucleobases were not.

[19]  

 Serum RT, wet ice,
dry ice, 
freeze-thawed

127 metabolites All stable in freeze-
thawed cycles, wet
ice, and dry ice. 
At RT, most were 
unstable, including
phenylalanine 
amino acids, glycine 
and arginine.
Amino acids with
low protein
frequency (i.e., 
tryptophan) 
were stable.

[10]  

 Serum RT, 4 ◦C Glucose, urea.
phosphorus, 
creatinine, uric 
acid, cholesterol, 
triglyceride, 
total protein, 
albumin and 
calcium

Glucose,
phosphorus 
and creatinine 
unstable. The rest, 
stable over 72 h.

[8]  

 Serum RT, refrigerated,
frozen, 
freeze-thawed

Fatty acids Stable [43]  
3 
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Fig. 1. Description of the analysis pipeline implemented in this work. The pre-processing block includes those steps that are common for all results, including outlier removal, data 
balancing, and silicon normalization, in that order. The shaded branches represent the common analysis pipelines implemented in Raman spectroscopy for molecular analysis (first 
row) and classification (last row). The details of each block in this figure are included in the following sections. DS1 (balanced), DS2 (balanced, high-SNR), and DS3 (balanced, 
high-SNR, no baseline) indicate the different datasets that will be used to evaluate the multiple combinations of spectral pre-processing for classification.
2.2. Spectral preprocessing

The analytical pipelines developed and utilized in this work for 
spectral analysis are illustrated in Fig.  1 and will be thoroughly de-
scribed below.

Notably, we implemented a series of incremental classification steps 
to assess the impact of baseline removal and the presence of low signal 
data on the results. This approach aims to determine the necessity of 
additional processing for accurate detection of serum degradation.

2.2.1. Outlier detection and data balancing
To ensure data quality, outlier spectra were removed prior to anal-

ysis. Outliers can arise from sample imperfections (e.g., cracks, uneven 
surfaces), sample burning, out-of-focus measurements, or saturated 
spectra.

We propose an ensemble outlier detection strategy that incorporates 
five distinct methods: the boxplot method, which identifies outliers 
based on deviations exceeding 1.5 times the Interquartile Range (IQR) 
of Raman intensities [51]; Isolation Forest (iForest), an algorithm that 
isolates outliers by randomly partitioning data, with outliers requiring 
fewer partitions [52]; One-Class SVM (OC-SVM), which constructs 
a global boundary around the data, classifying anything outside as 
an outlier [53]; Local Outlier Factor (LOF), which calculates the lo-
cal density deviation of a data point with respect to its neighbors 
(five neighbors), identifying points with significantly lower neighbor 
density as outliers [52]; and Angle-Based Outlier Detection (ABOD), 
which analyzes the variance in angles between data points to identify 
those with unusually high or low angle variances, indicating potential 
outliers [54].

Aside from the boxplot method, all others have one threshold-
related hyperparameter used to establish what is classified as an outlier. 
In the case of the methods implemented in this article, this hyper-
parameter can be understood as the expected percentage of outliers 
in the data, which we established at 10% for the serum samples. As 
Raman spectra of uniform samples should be uniform, this intentionally 
high value implies that a significant number of data points could be 
misclassified as an outlier.

To mitigate the impact of potential false positives and method-
specific biases, we implemented a consensus approach. A spectrum was 
identified as an outlier and removed only if at least four out of the five 
methods agreed on its classification. This consensus strategy enhanced 
the robustness of our outlier detection, ensuring that only spectra 
consistently identified as outliers were removed, while mitigating the 
weaknesses of each individual method. The raw, 18-patient dataset 
contained a total of 29,644 spectra, corresponding to 132 droplet 
measurements across all patients and four conditions. The consensus 
outlier detection method identified 2575 outliers, representing 8.6% of 
the total data.
4 
Dried sample droplets often exhibit uneven surfaces due to water’s 
surface tension, which prevents them from drying completely flat. This 
leads to inter- and intra-sample variability, characterized by low SNR 
samples spectra originating from out-of-focus regions. These effects 
are exacerbated by the reduced analyte concentration in the thinner 
areas of the sample. Consequently, the next step involved retaining 
only spectra with intensities exceeding the median intensity, effectively 
selecting well-focused regions with higher analyte concentrations. By 
utilizing the median, this process removed 50% of the outlier-free 
dataset, resulting in 13512 well-focused, high SNR spectra.

To mitigate the risk of biased models due to data imbalance [55,
56], the dataset was balanced by reducing the number of spectra per 
volunteer and per category to the lowest count observed within any 
single volunteer or category. This process resulted in a further 52% 
reduction of spectra, yielding a final dataset of 7056 spectra (from an 
initial 13512), distributed across 18 volunteers, with 392 spectra per 
volunteer, and 1764 spectra per category (0d, 1d, 2d, 3d). This bal-
anced approach ensures that the model effectively learns class-specific 
features and minimizes the potential for overfitting.

2.2.2. Intensity normalization
To ensure accurate Raman measurements, the spectrometer is cal-

ibrated daily using a silicon sample after 1 h of thermal stabilization. 
Silicon, with its well-defined and strong Raman signal at approximately 
521 cm−1 [57–59], serves as an ideal calibration standard. Specifically, 
the peak’s position is used to calibrate the Raman shift and its intensity, 
recorded at each start-up, to normalize the Raman spectra of samples 
measured on the same day, thus accounting for daily variations on the 
instrument response.

2.2.3. Baseline correction
To remove the characteristic fluorescence of biological samples and 

focus only on the analytes, we compared multiple baseline removal 
methods (Table  3), including Modified Polynomial (ModPoly) [60], 
Asymmetric Least Squares (ALS) [61], Adaptive Iteratively Reweighted 
Penalized Least Squares (AIRPLS) [62], Statistics-Sensitive Nonlinear It-
erative Peak-Clipping (SNIP), Morphological (Mor) [63,64] and Bubble-
Fill [65]. Each of them is based on a different approach and dependent 
on different hyperparameters (Table  3 and Sec. 3 of the supplementary 
material) whose value yields different results.

2.3. Molecular analysis

Spectral unmixing was used to determine the composition of each 
spectrum by modeling it as a linear combination of twelve primary end-
members (see Table  4) [66–68]. These endmembers represent the most 
frequent spectral peaks observed in the Raman measurements. Each 
peak was modeled using a Gaussian profile, and the final spectrum was 
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Table 3
Baseline removals methods tested for this work. The processing time was measured for 13104 spectra without parallelizing the calculations. 
The results were achieved using a 10th Gen. Intel Core i7 Processor, with 64 Gb of RAM.
 Method Processing time (s) Fundament Hyperparameters  
 ModPoly 23 Polynomial fitting Polynomial order  
 ALS 50 Whittaker-smoothing Smoothing parameter,

penalizing weighting
factor

 

 AIRPLS 23 Whittaker-smoothing Smoothing parameter  
 SNIP 28 Local statistics Window size  
 Mor 35 Morphological processing Window size  
 BubbleFill 38 Morphological processing Minimal bubble width  
Table 4
Chemical bonds [72] associated with the twelve most frequent peaks 
detected across spectra in our dataset, sorted by increasing Raman shift 
(wavenumber).
 Component Raman shift [cm−1] 
 Phenylalanine 623.4  
 Tryptophan 878.4  
 Calcium 962.9  
 Phenylalanine 1005.4  
 Carotenoids 1157.4  
 Phenylalanine 1199.9  
 Phenylalanine 1212.9  
 Amide III 1286.9  
 Phospholipids 1447.9  
 Carotenoids 1515.9  
 Phenylalanine 1608.4  
 Amide I 1655.9  

defined as the sum of these Gaussian peaks [69,70]. While the Voigt 
profile [71] is often more appropriate for Raman spectra, we opted 
for the Gaussian profile to significantly reduce computation times. This 
trade-off is considered reasonable as our subsequent analysis concen-
trates on peak regions, where the Gaussian and Voigt profiles show 
minimal divergence. For a comprehensive comparison of their fitting 
accuracy, please refer to Sec. 4E and Fig. S2 of the supplementary 
material.

Formally, each spectrum is described as follows. Let 𝐼 be the de-
tected Raman intensity at the wavenumber (Raman shift) 𝑘. Let 𝑎𝑖
and 𝑏𝑖 be the peak height and standard deviation, respectively, for a 
specific endmember 𝑖. Then, Eq. (1) was used to fit the spectra to any 
desired number of endmembers, by setting the 𝑎𝑖 and 𝑏𝑖 as free fitting 
parameters. In this work, we selected the number of endmembers as the 
twelve more frequently detected peaks across the dataset, since these 
exhibited the highest SNR. 

𝐼(𝑘) =
𝑖=12
∑

𝑖=1
𝑎𝑖 ⋅ 𝑒𝑥𝑝

(

−
(𝑘 − 𝑘𝑖)2

𝑏2𝑖

)

(1)

2.4. Dimensionality reduction

While Raman spectroscopy provides information on numerous mo-
lecular bonds, not all of them are relevant for every analysis. Chemo-
metric analysis helps focus on specific peaks but often discards weaker 
signals. Peak ratios can also serve as biomarkers [32,73,74], though 
their selection typically relies on prior knowledge of chemical behav-
ior. Alternatively, dimensionality reduction techniques have gained 
importance in the field due to the providing a low-dimensionality 
space (latent space) that is easier to work with, without having to 
discard a significant amount of data [75,76]. One of the most common 
dimensionality reduction techniques used in Raman spectroscopy is 
Principal Component Analysis (PCA) [77–79]. This method is based on 
finding the orthogonal directions that explain the greatest amount of 
variance in the data. Then, data can be mapped onto a space defined 
by said directions with the transformation given by Eq. (2) [80]. 
𝑃 = 𝑊 𝑇𝑋 (2)
5 
In Eq. (2), 𝑋 is the matrix containing the individual spectra, 𝑃
the matrix that represents the data in the new space, i.e. the principal 
components (PCs), and 𝑊  is the (weights) matrix containing the linear 
transformation that maximizes the variance explained by the consecu-
tive 𝑃  items. The dimensionality reduction property of PCA comes from 
the fact that the transformation is chosen to explain a high amount of 
the variance present in the data with fewer principal components than 
features in the original space.

Feature standardization is a necessary step to be performed before 
applying PCA [81]. Due to PCA being a variance-based method, if the 
dataset is comprised of features in different scales, those features cen-
tered around greater values will tend to have higher valued variances 
that will bias the calculations of PCA. Feature standardization re-scales 
the data to have an average of zero and a standard deviation of one so 
that PCA focuses only on the differences in the data and not on their 
scale.

To assess the separability of classes in the latent space, we employed 
the Fisher ratio (𝐹𝑟), a metric that quantifies the separation between 
classes based on their means (𝜇𝑖), standard deviations (𝛾𝑖), and sample 
sizes (𝑛𝑖), relative to the overall dataset mean (𝜇) [82], as indicated in 
Eq. (3). Each class represents the PCA-reduced spectra in this analysis 
at a specific time point (00 h, 24 h, 48 h, and 72 h). A higher 
𝐹𝑟 indicates greater inter-class distance and intra-class compactness, 
signifying well-separated and distinct classes. 

𝐹𝑟 =
∑𝐶

𝑖=1 𝑛𝑖(𝜇𝑖 − 𝜇)2
∑𝐶

𝑖=1 𝑛𝑖𝛾
2
𝑖

(3)

2.5. Classification

For this article, we wanted to test whether commonly used classi-
fication methods were enough to separate the samples by their dete-
rioration state. Reducing the dimensionality before classifying ensures 
that all irrelevant data will be removed by the dimensionality reduction 
process. By doing so, noisy data will not hinder the classification 
process. For the classification, we used a K-Nearest Neighbors (KNN) 
classifier [83–85]. KNN classification is based on looking at the 𝐾
closest neighbors of a given point to see which class they belong to. 
Then, a vote is cast under the principle that each sample should be in 
the same class than the majority of its neighbors [86]. Repeating this 
process for all data points divides the space according to the most voted 
classes.

In addition to KNN, we incorporated a Random Forest (RF) classi-
fier [87,88]. This ensemble method functions by generating a multitude 
of decision trees, each trained on a random subset of the data and a 
random selection of features. For a given data point, each tree casts a 
vote for a particular class, and the Random Forest ultimately assigns 
the data point to the class that receives the majority of the votes. 
This aggregation of predictions from multiple trees typically leads to 
improved accuracy and reduced overfitting [87,88].

Finally, we used a Support Vector Machine (SVM) classifier. The 
principle of SVM lies in identifying a decision boundary, known as a 
hyperplane, that best segregates data points of distinct classes within a 
potentially high-dimensional feature space. The algorithm seeks to find 
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Fig. 2. Raman spectra measured on one of the serum droplets (a). High SNR data is depicted in green, and lower SNR data in red. The image of the droplet is also shown in the 
right column. In (b), the outliers measured for this droplet are shown, as well as their position in the droplet via color-coding.
the hyperplane that yields the largest margin, defined by the shortest 
distance between the hyperplane and the closest data points from each 
class [89–91].

The accuracy of 𝑁 the predictions by the classifiers is calculated as 

𝐴𝐶𝐶 =
𝑁
∑

𝑛=1

1
𝑁

{

1, if 𝑦𝑛 = 𝑦̂𝑛
0, otherwise

(4)

where 𝑦 is the expected class and 𝑦̂ the predicted class of a spectrum. 
The classifiers described in this article are also evaluated according to 
their per-class sensitivity, which indicates the accuracy of the classifier 
at correctly classifying data from one class. To further validate our 
results, we performed Leave-One-Out Cross-Validation (LOOCV), which 
consists of dividing the dataset into train and validation sets by keeping 
all of the data, in this case, of one individual (four classes) for validation 
and the rest for training. LOOCV is done as an alternative to randomly 
dividing the dataset into two groups. When the division is done ran-
domly, some spectra of the same volunteer might end in the train 
group and some in the validation group (data leakage), which makes 
the classifier more accurate but not because it finds more features, 
but because it has trained on the same volunteers it is validating the 
accuracy on. Models trained on randomly divided data that keep the 
same individuals in both groups tend to give high accuracy values that 
are not generalizable when the classifier encounters a never-before-seen 
individual.

2.6. Explainability

Accuracy and sensitivity are good indicators of the performance of 
a model, but do not give any information about what parameters are 
helpful or relevant for the model to work. Although dimensionality 
reduction is used in an effort to remove less relevant information, it 
is possible that the dimension-reduced dataset still contains data that 
is not necessary to provide good classification results. In the context of 
this article, the aim is to know which principal components are the most 
important for improving the KNN classifier accuracy, but also what 
are the possible sources of classification error if the models fail. For 
this purpose, we opted for applying the random permutations method, 
which has recently been applied to multi-wavelength data [92]. This 
method focuses on randomly shuffling the data of each input feature 
(PC) and measuring the resulting decrease in classification accuracy. 
A significant drop in the accuracy after shuffling indicates the high 
importance of that feature.This process was repeated ten times for each 
feature (PC), fold, and model to ensure reliability.
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3. Results and discussion

3.1. Preprocessing

3.1.1. Raw spectra
Fig.  2 depicts a serum droplet measurement. A 15 × 15 grid of 

measurement points was defined on the droplet (Fig.  2, right column), 
where Raman spectra were acquired. However, not all spectra were 
usable. Some (Fig.  2, b) exhibited detector saturation, or excessive 
auto-fluorescence, and were thus identified as outliers and removed 
according to the methodology detailed in Section 2.2.1.

Furthermore, the removal of low signal-to-noise ratio data further 
reduced the dataset size (Fig.  2, a), but significantly improved data 
quality, retaining only the most reliable spectra for analysis. This 
improvement is particularly evident in the fingerprint region of the 
spectrum (approximately 500–1800 cm−1). While the main spectral 
bands are visible in both average spectra, features such as those at 
1450 cm−1 and 1655 cm−1 are much more pronounced in the high-SNR 
spectra.

3.1.2. Normalization and baseline correction
The silicon peak measurements taken for calibration are shown in 

Fig.  3. The samples have been calibrated with respect to the maximum 
intensity measured in silicon, as described in the methods section.

The performance of the six baseline correction methods is shown in 
Fig.  4. Of the tested methods, only ModPoly uses the overall spectrum 
instead of looking at its local features, which makes it so that there 
are spectral regions where the baseline is overestimated or underes-
timated (Fig.  4, a). Additionally, hyper-parameter tuning is required 
for all methods, but those that are Whittaker-based have the lowest 
interpretability since the user requires a deep understanding of the 
implementation in order to choose appropriate parameters, even if the 
baseline is properly estimated (Fig.  4, b and c). Morphological baseline 
estimation was not the slowest method (Table  3), but it also led to a 
‘‘staircase’’ effect that would require further smoothing to be used (Fig. 
4, e), which will also be dependent on additional hyper-parameters. 
Finally, even though both SNIP (Fig.  4, d) and BubbleFill (Fig.  4, f) 
use a morphological element to estimate the baseline, BubbleFill’s is 
defined so that it can be directly set as the width of the widest peak 
in the spectra, which in our case is the asymmetric O-H stretch at 
approximately 3400 cm−1 related to the water content [93]. On the 
other hand, setting SNIP’s window size is not straightforward, since it 
prefers the use of small windows to avoid spreading the statistics of the 
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Fig. 3. Raw intensity measurements of the silicon calibration piece along the duration of the experiment.
Fig. 4. Comparison of the different baseline methods (black dashed line) over an example spectra (orange solid line), including ModPoly (a), ALS (b), AIRPLS (c), SNIP (d), Mor 
(e) and BubbleFill (f).
peak’s features. The previous evaluation led us to the use of BubbleFill 
with a minimum bubble size of 400 cm−1 as the smoother of choice for 
this work.

The dataset before and after baseline removal is depicted in Figs. 
5 and 6, respectively. Removing the baseline severely reduces the 
standard deviation in general, visible only near prominent peaks. This 
indicates that the greater variation is found in the presence of analytes 
with strong spectral bands. Additionally, the peaks are more prominent 
and easier to see after removing the baseline, especially those related 
to the phenylalanine (around 1000 cm−1) and carotenoids (near 1100 
and 1500 cm−1).

3.2. Molecular analysis

Peak detection was performed on the serum dataset after pre-
processing. The twelve most frequently detected peaks were used to 
decompose the spectral measurements. On the serum, those peaks (Fig. 
7, top) in our dataset are associated with the components detailed in 
Table  4.  Most of the commonly detected peaks were those associated 
with vibrational modes of phenylalanine (5 bands), followed by those 
of carotenoids (2 bands). The rest of the peaks corresponded only 
to one component, i.e., calcium, amides I and III, tryptophan, and 
phospholipids.

Most bands exhibited a decrease in average and median intensity 
over time. However, there were exceptions. Phospholipids 
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(1447.9 cm−1) and amide I (1655.9 cm−1) showed a slight increase 
on the second day before decreasing. Phenylalanine (1608.4 cm−1) 
also behaved differently, increasing on the third day but remaining 
otherwise stable. Interestingly, the consistent detection of phenylala-
nine and tryptophan aligns with the results found by Anton et al. who 
identified changes in these components using a targeted metabolomics 
approach [10]. Nevertheless, the distributions on different days showed 
substantial overlap, which is caused by inter- and intra-sample variabil-
ity. Compared to this variability, the degradation-related changes were 
minor. Therefore, it is difficult to assess sample degradation using these 
peaks alone.

3.2.1. Datasets
Three different datasets were created for classification based on 

the intensity normalized, balanced data without outliers: (1) with all 
the spectra (i.e., balanced dataset), (2) with only high-SNR data (see 
Section 3.1.1, i.e., balanced, high-SNR) and (3) with high-SNR data 
and baseline removed (see Section 3.1.2, i.e., balanced, high-SNR, no 
baseline).

Within each dataset and sample degradation category (0–3 days), 
we calculated three key spectral statistics related to the spectral spread 
and symmetry: the average of the per-wavelength standard deviation 
(dispersion), the average of the per-wavelength kurtosis (shape), and 
the average of the per-wavelength skewness (asymmetry). The results 
are shown in Table  5.
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Fig. 5. Balanced dataset before baseline removal. The solid lines represent the average per day, and the shaded areas represent the standard deviation of the Raman spectra.
Fig. 6. Balanced dataset after baseline removal. The solid lines represent the average per day, and the shaded areas represent the standard deviation of the Raman spectra.
Table 5
Statistical descriptors (Standard (Std) deviation (Dev), Kurtosis, Skewness) for the three Raman spectra datasets.
 Balanced  
 Days Std. Dev. Kurtosis Skewness 
 0 0,105 −1,146 0,245  
 1 0,095 −0,904 −0,025  
 2 0,102 −0,313 −0,127  
 3 0,119 −0,832 0,105  
  
 Balanced and high-SNR  
 Days Std. Dev. Kurtosis Skewness 
 0 0,074 −1,316 0,213  
 1 0,063 −0,821 0,003  
 2 0,073 −0,116 0,339  
 3 0,097 −0,201 0,258  
  
 Balanced, high-SNR, no baseline  
 Days Std. Dev. Kurtosis Skewness 
 0 0,013 35,215 −1,670  
 1 0,012 5,119 0,561  
 2 0,014 73,194 −2,923  
 3 0,014 11,249 −1,103  
The balanced dataset demonstrates consistent statistical properties 
across its four categories, with comparable spectral variability (stan-
dard deviations of 0.095–0.119). The negative kurtosis values (−1.146 
to −0.313) indicate platykurtic distributions with flatter peaks and 
thinner tails, while the near-zero skewness (−0.127 to 0.245) sug-
gests relatively symmetrical distributions within each category, with 
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minor tails towards higher or lower intensities in some cases. Overall, 
this suggests broad spectral features and symmetrical distributions 
with consistent intensity and variability across the balanced dataset’s 
categories.

The balanced and high-SNR dataset exhibits lower spectral variabil-
ity (standard deviations of 0.063 to 0.097) compared to the balanced 
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Fig. 7. On the top, one reference fit is shown, with the result in yellow, the reference spectra in black, and the position of the twelve peaks in red. On the bottom, the boxplots 
of the evolution across days of the twelve most frequently detected chemical bonds in serum are represented, sorted from most frequent to least frequent. The blue line represents 
the evolution of the median, and the black line, the evolution of the average.
dataset, suggesting that removing the out-of-focus samples further re-
duces spectral variations. Similar to the balanced dataset, the kurtosis 
values are negative (−1.316 to −0.116), indicating platykurtic distribu-
tions that may be even broader or flatter after focusing. The skewness 
values remain close to zero (0.003 to 0.339), suggesting largely sym-
metrical distributions with minor tails towards higher intensities in 
some categories.

The balanced, high-SNR, without baseline dataset shows the most 
significant statistical changes, with very low spectral variability (stan-
dard deviations of 0.012 to 0.014) due to baseline removal and fo-
cusing. Notably, the kurtosis has become highly positive (5.119 to 
73.194), indicating leptokurtic distributions with sharp, prominent 
spectral peaks, varying significantly in sharpness and tail behavior 
across categories. The skewness values are more pronounced and both 
positive and negative (−2.923 to 1.670), suggesting asymmetrical spec-
tral distributions.

The three datasets illustrate the impact of processing on Raman 
spectra’s statistical characteristics. The balanced dataset provides a 
starting point with moderate variability, broad features, and symmetri-
cal distributions. By removing the out-of-focus spectra in the balanced 
and high-SNR dataset, the variability is reduced while maintaining 
a generally platykurtic and symmetrical nature. The balanced, high-
SNR, without baseline dataset shows the most significant changes; 
baseline removal combined with focusing isolates sharp, asymmet-
rical spectral peaks, evidenced by high positive kurtosis and more 
pronounced skewness. This progression demonstrates numerically how 
processing transforms spectral distributions from broad and symmetri-
cal to sharp and potentially asymmetrical peaks, emphasizing different 
spectral information aspects in each class, consistent with the graphical 
representation of the dataset (Section 3.1.2). The balanced, high-SNR, 
no baseline dataset appears most informative for distinguishing cate-
gories based on the shape and asymmetry of their key Raman bands, 
as all the inter-class variation associated with different baseline levels 
is effectively removed.
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3.2.2. Dimensionality reduction
Crucially, within each cross-validation fold, the validation group 

was standardized using parameters (mean and standard deviation) cal-
culated solely from the training group. Similarly, principal component 
analysis was fitted exclusively to the training data within each fold, 
and the learned transformation was then applied to the corresponding 
validation data. Standardizing the validation data or performing PCA 
independently would constitute data leakage, where information from 
the unseen validation set contaminates the preprocessing, resulting in 
overly optimistic and unreliable performance metrics.

The first 20 principal components with PCA were kept according 
to a cumulative variance criterion (keeping more than 97.5% of the 
variance of the data), and were sorted by importance according to 
the Fisher ratio (Eq. (3)). The remaining PCs were not considered due 
to the low variance explained by each of them, which indicates that 
they represent mostly noise. The principal components that maximized 
separability by class differed between the three datasets (Fig.  8). PCA 
sorts the principal components in terms of variance, which means that 
the first PCs usually have very well-defined spectral features that turn 
into noise as the PC number increases. The fact that PC1 is Fisher-
chosen only in the second dataset (Fig.  8, b) means that the PC that 
keeps the most variance is the one with the best separability only when 
the low-SNR data are removed, but the baseline is kept.

For the first dataset (Fig.  8, a), data collapses to zero on PC6 even 
though it was selected by the Fisher ratio as the one with the most 
separability between classes. A possible cause for this is that there are 
some spectra that have a value far from zero for PC6 at the sides of 
the main distribution, which means that its average will not be highly 
affected by them, while its standard deviation will. By the definition 
of the Fisher ratio, PC6 will increase in value due to these spectra 
while the separability stays mostly unchanged. For PC3 there is a wider 
spread of values but all categories have their bulk of data on the same 
position. However, we do see that the first two classes are virtually 
indistinguishable from each other, while the third and fourth days have 
slightly wider distributions of PC3.
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Fig. 8. Projection of the spectroscopic measurements over the latent space conformed by the two PCA principal components that maximize separability according to the Fisher 
ratio, for the intensity-normalized, balanced data without outliers (a), with additional removal of out-of-focus spectra (b), and with additional baseline removal (c). The labels 0, 
1, 2, and 3 refer to the number of days the samples have been left at ambient temperature.
Table 6
Table showing the total training and evaluation times for three distinct datasets with the three classifiers. Results were generated using an 
18-fold leave-one-patient-out cross-validation strategy, with feature performance included in the time, evaluated via 10-fold random permutations 
within each fold’s train and validation splits. The models were trained using a 10th Gen. Intel Core i7 Processor, with 64 Gb of RAM.
 KNN RF SVM  
 Balanced 11.5 min 56.1 s 4.7 h  
 Balanced, high-SNR 3.2 min 42.6 s 27.6 min 
 Balanced, high-SNR, no baseline 3.4 min 29.56 s 1.3 h  
By removing low-SNR spectra (Fig.  8, b), the data projection on 
the (PC2, PC1) plane has less overlap between classes, even if the 
individual labels do not collapse to a single cluster. Still, most of 
the clusters keep having some degree of overlap, indicating that the 
variance in the data is not due to differences between classes as much 
as due to variations within the same class (intra-sample variability).

Removing the baseline (Fig.  8, c) leads to a completely different 
projection map of the data. In this case, all distributions are mostly 
identical with similar average and standard deviation values. The re-
duced separability observed suggests that changes in the Raman spectra 
of serum samples left at ambient temperature are primarily driven 
by alterations in the auto-fluorescence baseline rather than analyte 
concentrations. While this study focused on analyte evolution through 
Raman spectroscopy, the observed impact of storage conditions on 
the auto-fluorescence baseline (Fig.  8, b) highlights its potential as an 
indicator of sample integrity. Further investigation of baseline changes 
over time are included in the following sections.

3.3. Classification

KNN, RF and SVM classification was done on the three generated 
datasets after applying PCA, according to Fig.  1: (DS1) the balanced 
dataset, (DS2) the balanced dataset with high-SNR data, and (DS3) 
the balanced dataset with high-SNR data and the baseline removed. At 
this point, it is worth noting that the balanced dataset contains spectra 
from 18 different donors. Each dataset requires a different classifier. To 
choose the number of neighbors for KNN, we maximized the average 
validation accuracy across the 18 folds of leave-one-out cross-validation 
(LOOCV), leading to 47, 5, and 23 neighbors for KNN for each dataset, 
respectively. The regularization parameter value for SVM was set at 
100 with a radial basis function kernel, and 5 estimators were chosen 
for the RF. Both values were selected to avoid overfitting by evaluating 
their train and validation output. Table  6 presents the total training and 
feature performance time for each model on each dataset, revealing 
that SVM consistently took the longest, while RF was the fastest.

As expected, the training data exhibited strong performance, with 
confusion matrices (Fig. S3) showing predictions largely aligned with 
the true classes (centered close to the diagonal). While the valida-
tion accuracy displayed considerable variability in the cross-validation 
folds, ranging from below 10% to over 90%, the classification patterns 
observed on the confusion matrices (Fig.  9) were consistent across the 
KNN, RF, and SVM models for all three datasets. This consistency in be-
havior suggests that overfitting was not a significant issue in any model, 
as all reach similar conclusions. Particularly, all classifiers consistently 
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demonstrated higher sensitivity in identifying non-degraded samples 
across all datasets, but exhibited greater difficulty in distinguishing 
between non-degraded and 24-hour degraded serum, as well as be-
tween 48-hour and 72-hour degraded serum. This pattern, effectively 
illustrated by the per-class sensitivity visualization in Figs.  9 and 10, 
suggests a critical transition point in serum degradation between 24 and 
48 h of storage at room temperature. A specific exception was observed 
in the confusion matrix of SVM classification of the balanced, high-SNR 
dataset (Fig.  9, h), where the more degraded the sample is, the harder 
it is for the classifier to identify it properly.

Across the three models (Fig.  10), RF achieved the highest sensi-
tivity on the non-degraded samples of the balanced dataset, while SVM 
outperformed both KNN and RF on the remaining datasets for the same 
task. It must be noted that, on average, the total accuracy between the 
classifiers is comparable: 36%, 45.5%, and 39.8% for the first dataset; 
54.5%, 54.5%, and 68.2% for the second dataset; and 34.5%, 34.0%, 
and 41.2%. Fig.  10 also highlights that the second-best detected class 
in nearly all cases corresponded to the longest degradation period, 
indicating better performance at identifying extreme conditions, while 
detecting finer distinctions between 24 and 48 h remains a challenge 
for these models. Interestingly, the dataset with the complete stan-
dard Raman spectroscopy preprocessing (baseline removal included) 
showed the poorest classification performance, implying that room 
temperature serum degradation might primarily involve alterations in 
the spectral baseline rather than specific metabolite shifts, aligning 
with the previously described overlapping analyte distributions found 
in the molecular analysis. Conversely, the least processed dataset still 
enabled the RF model to identify non-degraded samples in over 70% of 
cases correctly, suggesting that in time-sensitive scenarios, an RF model 
on minimally processed data could offer a rapid initial assessment of 
sample degradation status, warranting further evaluation with more 
comprehensive techniques.

Finally, we assessed the models’ generalization ability using data 
from an external set of 20 volunteers. These individuals belonged to 
the same cohort as the primary dataset’s 18 participants, but their 
spectra were excluded from the main analysis due to inconsistent 
measurements. Specifically, some volunteers had missing data points 
on certain days, such as when samples acquired before the weekend 
resulted in two skipped degradation time points. The resulting 20-
volunteers dataset is not balanced: 1834, 1108, 506 and 1450 for the 0, 
1, 2, and 3 days of sample degradation after outlier removal. Therefore, 
the average test accuracy will not be calculated and, instead, only the 
per-class sensitivity will be discussed here.



V. Mieites et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 340 (2025) 126297 
Fig. 9. Confusion matrices of the classifiers’ validation output and class-wise sensitivity. The classes correspond to days of serum degradation at ambient temperature for the 
validation datasets, evaluated with KNN (a, b, c), RF (d, e, f), and SVM (g, h, i).
Fig. 10. Sensitivity of KNN, RF, and SVM models for predicting serum sample degradation at room temperature for the three validation datasets with different preprocessing steps 
(balanced, balanced with high SNR, and balanced with high SNR and no baseline) and degradation times (0, 1, 2, and 3 days). The bars represent the prediction sensitivity, and 
the horizontal black line represents the maximum sensitivity possible.
For this dataset (test dataset) of 20 individuals, we applied the 
preprocessing pipeline that yielded the best performance in our main 
analysis, which involved retaining the baselines and removing low-SNR 
data. Consistent with the cross-validation strategy used in the prior 
sections, the test data was standardized using the mean and standard 
deviation calculated from the original 18-patient training dataset and 
transformed according to the training-derived PCA transformation. This 
ensured that the standardization or dimension reduction processes were 
not influenced by the test set itself. The results are shown in Fig.  11.

These findings indicate that the models generalize well to the 
test set, achieving comparable or improved sensitivity in identify-
ing non-degraded samples relative to the cross-validated validation 
sensitivity. This highlights their potential for robustly differentiating 
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between degraded and non-degraded serum samples at room tem-
perature with Raman Spectroscopy if the baselines are kept, while 
accurately pinpointing the exact degradation stage remains a challenge.

3.3.1. Explainability
We evaluated feature importance through the average accuracy 

decrease according to the random permutations model for each clas-
sifier. The behavior for the three classifiers is depicted in Fig.  12. 
Although they varied in performance, the three classifiers showed good 
agreement on the importance of the principal components for the three 
datasets. For example, the classifiers agree that the most important 
principal component in the balanced dataset is PC3. In the balanced, 



V. Mieites et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 340 (2025) 126297 
Fig. 11. Confusion matrices of the classifiers’ test output and class-wise sensitivity. The classes correspond to days of serum degradation at ambient temperature for the validation 
dataset, evaluated with KNN (a), RF (b), and SVM (c).
Fig. 12. Results of the accuracy decrease through feature permutation for the 20 studied principal components after 18-fold cross validation for the three classifiers. (a): balanced 
dataset; (b): balanced, high-SNR dataset; (c) balanced, high-SNR, no baseline dataset.
Table 7
Comparison of the two most important principal components (PC) for separability according to the Fisher ratio (FR), the K-nearest neighbors 
classifier (KNN), the random forest classifier (RF), and the support vector machine classifier (SVM). The components that appear more than 
once per dataset are highlighted in bold.
 FR KNN RF SVM  
 Balanced (PC6, PC3) (PC3, PC2) (PC3, PC6) (PC3, PC6)  
 Balanced, high-SNR (PC2, PC1) (PC2, PC1) (PC2, PC10) (PC2, PC3)  
 Balanced, high-SNR,  
 no baseline (PC10, PC8) (PC3, PC6) (PC18, PC11) (PC18, PC3) 
high-SNR dataset, PC2 was deemed as the most relevant for classifi-
cation by all models. Finally, for the balanced, high-SNR, no baseline 
dataset, which was the one with the worst accuracy, all principal 
components contributed approximately the same amount, consistent 
with the difficulty of the models to determine serum deterioration on 
this dataset accurately. The components with the best class separability 
in the PC space according to the Fisher ratio (Fig.  8) are the same as 
those detected with the random permutations method for each trained 
model (Table  7). This agreement between both metrics is significant 
when considering that the Fisher ratio uses the statistical properties of 
the data, whereas the random permutations method evaluates feature 
importance in terms of model performance.

To evaluate what the Fisher ratio and the random permutations are 
considering as important, i.e. to discuss the explainability of the results, 
we evaluated the weights assigned to each Raman wavenumber by each 
chosen PC according to the two most important validation set features.

The most important principal components detected for the balanced 
dataset are presented in Fig.  13. PC2 and PC3 show the presence of 
the most intense phenylalanine peak, along with those of carotenoids; 
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however, both of these PCs also include the spectral baseline. On the 
other hand, PC6 depicts a non-baselined version of the spectrum in 
which numerous spectral bands are highlighted, and whose values 
largely coincide with the most frequently detected peaks in the spectra 
employed for molecular analysis.

For the balanced, high-SNR dataset, four principal components were 
consistently selected by the various methods, as depicted in Fig.  14. 
As before, the effect of the baseline is evident in PC1, PC2, and PC3, 
exhibiting varying levels of prominence relative to the spectral peaks 
they include. Nevertheless, PC10, which was specifically selected by the 
RF model, displays a spectral profile resembling the derivative of the 
serum spectra, implying that a combination of the spectral baseline and 
the primary spectral peaks is optimal to provide effective classification 
outcomes.

Finally, for the balanced, high-SNR dataset with no baseline, there 
was no good agreement between the most important principal compo-
nents, as shown in Fig.  15. Notably, the chosen principal components 
for this dataset reproduce the spectral shape worse than the other two. 
This occurs because the standardization that is applied prior to the 
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Fig. 13. Best PCs selected by the Fisher ratio and the three classifiers for the balanced dataset. There are only three PCs represented as all methods coincide in the most important 
ones (Table  7).
Fig. 14. Best PCs selected by the Fisher ratio and the three classifiers for the balanced, high-SNR dataset. There are only four PCs represented as selected by the multiple methods 
(Table  7).
Fig. 15. Best PCs selected by the Fisher ratio and the three classifiers for the balanced, high-SNR, no baseline dataset. There are six PCs represented as selected by the multiple 
methods (Table  7).
dimension reduction process is no longer influenced by the baseline. 
Consequently, the way to interpret Fig.  15 is by focusing on the 
strongest peaks and valleys of each PC. Upon observation, we conclude 
that all PCs point to similar Raman shift values. However, there is 
no clear indication of some peaks being more important than others; 
rather, a mixture of peaks is given similar weights for all PCs. The only 
exception to this is PC8, which strongly highlights the phenylalanine 
peak at 624.4 cm−1 as a deep valley, while the rest of the spectrum has 
less intense peaks. Furthermore, combining these results with the low 
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variance explained by these components, and the observation that the 
classifiers fail at identifying even the non-degraded samples, suggests 
that most of the content of these PCs is very similar. This similarity 
arises because the spectra of this dataset are extremely similar between 
classes except on the main peaks (as shown in Fig.  6), ultimately 
hindering dimension reduction and classification.

The results presented in this section consistently indicate the base-
line as the primary marker of serum sample degradation at room 
temperature. Anton et al. [10] have reported an evolution over time in 
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serum left at ambient temperature. Specifically, they observed changes 
in ratios related to lysophosphatidylcholine to total phosphatidyl-
choline. Notably, lysophosphatidylcholine is a type of lipid known to 
be detectable through fluorescence measurements [94]. Consequently, 
the Raman baseline could be related to this molecule. If so, it could 
act as a biomarker for serum degradation. Furthermore, the presence 
of phenylalanine and carotenoids on almost all principal components 
is also consistent. This aligns with the most commonly detected peaks 
and with findings in the literature, where results indicate their variation 
over time in serum samples left at room temperature [10].

4. Summary and conclusions

This work presented a thorough evaluation of Raman spectroscopy 
serum spectra when stored at ambient temperature for up to three days. 
The aim was to explore if conventional Raman spectroscopy analyzed 
with traditional pipelines can be used to detect serum deterioration 
so that research facilities could take advantage of the ease-of-use 
and non-invasive nature of Raman measurements. After preprocessing 
the measurements by removing outliers, low-SNR measurements, and 
spectral baselines, the resulting spectra were analyzed with spectral 
unmixing (supervised) to evaluate the evolution of the most common 
analytes in the molecular fingerprint. Even though, on average, some 
slight variations can be seen, most of the spectral variation is due to 
inter-sample and intra-sample differences, which does not appear to 
strongly correlate to the actual decay of the serum analytes.

Dimensionality reduction with PCA (unsupervised) was used to an-
alyze each spectrum as a whole instead of looking at individual peaks. 
Overall, the PCA transformations generally resulted in overlapping data 
within the two main Fisher-ratio-detected components, particularly 
after baseline removal. Despite this overlap, considering the first 20 
principal components to classify the data using KNN, RF, and SVM 
classifiers yielded promising results. Specifically, these classifiers some-
times achieved over 80% sensitivity in distinguishing degraded from 
non-degraded samples, on both the validation and test sets. These 
results are particularly encouraging when the baseline is retained in 
the dataset, which is further supported by the random permutations 
XAI method, as it identified the spectral baseline as a key feature 
included in the most important PCs. This suggests that the primary 
indicator of serum degradation detectable through conventional Raman 
spectroscopy resides in the spectral baseline, rather than in specific 
analyte changes.

While changes in conventional Raman spectral peaks of serum 
analytes were minimal after three days at room temperature, our classi-
fication results successfully distinguished degraded from non-degraded 
samples, primarily indicated by baseline shifts. This demonstrates the 
potential of Raman spectroscopy for detecting early signs of serum 
sample deterioration due to poor storage conditions. Although further 
investigation is needed to pinpoint the precise state of degradation 
and the origin of the baseline variations, our findings suggest that 
monitoring baseline changes offers a promising avenue for rapid serum 
quality assessment. Future research will focus on whole blood with 
pre-centrifugation delays to establish a detailed degradation timeline, 
ultimately aiming for non-invasive evaluation of blood quality using 
Raman spectroscopy.
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