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Abstract
Let �k(n) denote the simplicial complex of (k + 1)-crossing-free subsets of edges
in

([n]
2

)
. Here k, n ∈ N and n ≥ 2k + 1. Jonsson (2003) proved that [neglecting the

short edges that cannot be part of any (k + 1)-crossing], �k(n) is a shellable sphere
of dimension k(n − 2k − 1) − 1, and conjectured it to be polytopal. The same result
and question arose in the work of Knutson and Miller (Adv Math 184(1):161-176,
2004) on subword complexes. Despite considerable effort, the only values of (k, n)

for which the conjecture is known to hold are n ≤ 2k + 3 (Pilaud and Santos, Eur
J Comb. 33(4):632–662, 2012. https://doi.org/10.1016/j.ejc.2011.12.003) and (2, 8)
(Bokowski and Pilaud, On symmetric realizations of the simplicial complex of 3-
crossing-free sets of diagonals of the octagon. In: Proceedings of the 21st annual
Canadian conference on computational geometry, 2009). Using ideas from rigidity
theory and choosing points along the moment curve we realize �k(n) as a polytope
for (k, n) ∈ {(2, 9), (2, 10), (3, 10)}. We also realize it as a simplicial fan for all
n ≤ 13 and arbitrary k, except the pairs (3, 12) and (3, 13). Finally, we also show that
for k ≥ 3 and n ≥ 2k + 6 no choice of points can realize �k(n) via bar-and-joint
rigidity with points along the moment curve or, more generally, via cofactor rigidity
with arbitrary points in convex position.
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1 Introduction and Statement of Results

Introduction

Triangulations of the convex n-gon P (n > 2), regarded as sets of edges, are the
facets of an abstract simplicial complex with vertex set

([n]
2

)
and defined by taking

as simplices all the non-crossing sets of diagonals. This simplicial complex, ignoring
the boundary edges {i, i + 1}, is a polytopal sphere of dimension n − 4 dual to the
associahedron (here and all throughout the paper, indices for vertices of the n-gon are
regarded modulo n).

A similar complex can be defined if, instead of forbidding pairwise crossings, we
forbid crossings of more than a certain number of edges. More precisely, we say that
a subset of

([n]
2

)
is (k + 1)-crossing-free (assuming n ≥ 2k + 2) if it does not contain

k +1 edges that mutually cross, and define�k(n) as the simplicial complex consisting
of (k + 1)-crossing-free sets of diagonals. Its facets are called k-triangulations since
in the case k = 1 they are exactly the triangulations of the n-gon.

The nk diagonals of length at most k (where length is measured cyclically) belong
to every k-triangulation since they cannot participate in any (k +1)-crossing. Hence, it
makes sense to define the reduced complex �k(n) obtained from �k(n) by forgetting
them. We call �k(n) the multiassociahedron or k-associahedron. See Sect. 2.1 for
more precise definitions, and [26, 27, 33] for additional information.

It was proved in [12, 22] that every k-triangulation of the n-gon has exactly
k(2n−2k−1)diagonals. That is,�k(n) is pure of dimension k(2n−2k−1)−1. Jonsson
[16] further proved that the reduced version �k(n) is a vertex-decomposable (hence
shellable) sphere of dimension k(n − 2k − 1) − 1, and conjectured it to be polytopal.
Remember that all polytopal spheres are shellable, so shellability can be considered
evidence in favor of polytopality. Vertex-decomposability is a stronger notion intro-
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duced by Provan and Billera [30] implying, for example, that the diameters of these
spheres satisfy the Hirsch bound.

Conjecture 1.1 (Jonsson) For every n ≥ 2k + 1 the complex �k(n) is a polytopal
sphere. That is, there is a simplicial polytope of dimension k(n −2k −1)−1 and with(n
2

) − kn vertices whose lattice of proper faces is isomorphic to �k(n).

The first appearance of this statement, as a question rather than a conjecture, is the
2003 preprint [16]. The conjecture then appeared explicitly in Jonsson’s hand-written
abstract after his talk in an Oberwolfach Workshop the same year [17, 25] (but it did
not appear in the shorter abstract published in the Oberwolfach Reports). It was also
included in the unpublishedmanuscript byDress et al. [11], before appearing in papers
by other authors [27, 33].

Remark 1.2 The question of polytopality of�k(n) is quite natural, since it generalizes
the associahedron (the case k = 1) which admits many different constructions as a
polytope [5, 29]. One would expect that, as happens in the case of the associahedron,
having explicit polytopal constructions of �k(n) would uncover interesting combina-
torics. If, in the contrary, it turns out that �k(n) is not always polytopal, it would also
be interesting to know it; it would probably be the first family of shellable spheres
naturally arising from a combinatorial problem and that are proven not to be polytopal.

Interest in this question comes also from cluster algebras and Coxeter combina-
torics. Let w ∈ W be an element in a Coxeter group W and let Q be a word of
a certain length N . Assume that Q contains as a subword a reduced expression for
w. The subword complex of Q and w is the simplicial complex with vertex set [N ]
and with faces the subsets of positions that can be deleted from Q and still contain a
reduced expression for w. Knutson and Miller [19, Thm. 3.7 and Quest. 6.4] proved
that every subword complex is either a vertex-decomposable (hence shellable) ball or
sphere, and they asked whether all spherical subword complexes are polytopal. It was
later proved by Stump [33, Thm. 2.1] that �k(n) is a spherical subword complex for
the Coxeter system of type An−2k−1 and, moreover, it is universal: every other spher-
ical subword complex of type A appears as a link in some �k(n) [28, Prop. 5.6]. In
particular, Conjecture 1.1 is equivalent to a positive answer (in type A) to the question
of Knutson and Miller.

Versions of k-associahedra for the rest of finite Coxeter groups exist, with the same
implications [4].

Conjecture 1.1 is easy to prove for n ≤ 2k + 3. �k(2k + 1) is indeed a −1-sphere
(the complex whose only face is the empty set). �k(2k + 2) is the face poset of a
(k − 1)-simplex, and �k(2k + 3) is (the polar of) the cyclic polytope of dimension
2k − 1 with n vertices [27, Lem. 8.7]. The only additional case for which Jonsson’s
conjecture is known to hold is k = 2 and n = 8 [2]. In some additional cases�k(n) has
been realized as a complete simplicial fan, but it is open whether this fan is polytopal.
This includes the cases n ≤ 2k + 4 [1], the cases k = 2 and n ≤ 13 [20] and the cases
k = 3 and n ≤ 11 [1].

In this paper we explore Conjecture 1.1 both in its polytopality version and in the
weaker version where we want to realize �k(n) as a complete fan. Our method is to
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use as rays for the fan the row vectors of a rigidity matrix of n points in dimension
2k, which has exactly the required rank k(2n − 2k − 1) for �k(n). There are several
versions of rigidity that can be used,most notably bar-and-joint, hyperconnectivity, and
cofactor rigidity. Among these, cofactor rigidity seems the most natural one because
it deals with points in the plane; the “dimension” 2k of this rigidity theory relates to
the degree of the polynomials used.

Our results are of two types. On the one hand we show new cases of multiassocia-
hedra �k(n) that can be realized, be it as fans or as polytopes, with cofactor rigidity
taking points along the parabola (which is known to be equivalent to bar-and-joint
rigidity with points along the moment curve). On the other hand we show that certain
multiassociahedra, namely those with k ≥ 3 and n ≥ 2k + 6 cannot be realized as
fans with cofactor rigidity, no matter how we choose the points.

Summary of Methods and Results

Using a (human guided) computer search, we find explicit embeddings of �k(n) for
additional parameters, be it as a polytope or only as a complete fan. We list only the
ones that were not previously known:

Theorem 1.3 (1) For (k, n) ∈ {(2, 9), (2, 10), (3, 10)}, �k(n) is a polytopal sphere.
(2) �4(13) can be realized as a complete simplicial fan.

Adding this to previous results, we have that �k(n) can be realized as a fan (which
for us alwaysmeans a complete fan) if n ≤ max{2k+4, 13} except for (n, k) = (3, 12)
and (3, 13), and as a polytope if n ≤ max{2k + 3, 10}.

Our method to realize �k(n) is via rigidity theory. We now explain the connection.
The number k(2n − 2k − 1) = 2kn − (2k+1

2

)
of edges in a k-triangulation of the

n-gon happens to coincide with the rank of abstract rigidity matroids of dimension
2k on n elements, which capture and generalize the combinatorial rigidity of graphs
with n vertices embedded in R

2k . This numerical coincidence (plus some evidence)
led [27] to conjecture that all k-triangulations of the n-gon are bases in the generic
bar-and-joint rigidity matroid of n points in dimension 2k.

Apart of its theoretical interest, knowing k-triangulations to be bases can be con-
sidered a step towards proving polytopality of�k(n), as follows. For any given choice
of points p1, . . . , pn ∈ R

2k in general position, the rows of their rigidity matrix (see
Sect. 2.3) give a real vector configuration V = {pi j }i, j of rank k(2n − 2k − 1). The
question then is whether using those vectors as generators makes �k(n) be a fan, and
whether this fan is polytopal. Being bases is then a partial result: it says that at least
the individual cones have the right dimension and are simplicial.

All the realizations of �k(n) that we construct use this strategy for positions of the
points along the moment curve {(t, t2, . . . , t2k) ∈ R

2k : t ∈ R}. The reason to restrict
our search to the moment curve is that in our previous paper [7] we show that, for
points along the moment curve, the vector configuration obtained with bar-and-joint
rigidity coincides (modulo linear isomorphism) with configurations coming from two
other interesting forms of rigidity: Kalai’s hyperconnectivity [18] along the moment
curve and Billera–Whiteley’s cofactor rigidity [35] along the parabola. This is useful
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in our proofs and it also makes our realizations more “natural”, since they can be
interpreted in the three versions of rigidity.

In fact, we pose the conjecture that positions along the moment curve realizing
�k(n) as a basis collection exist for every k and n:

Conjecture 1.4 k-Triangulations of the n-gon are isostatic (that is, bases) in the bar-
and-joint rigidity matroid of generic points along the moment curve in dimension
2k.

This conjecture implies the one from [27] mentioned above, but it would imply the
same for the generic cofactor rigidity matroid and for the generic hyperconnectivity
matroid (the latter is known to hold by a previous result of ours [8, Cor. 2.17]). As
evidence for the conjecture we prove the case k = 2:

Theorem 1.5 2-Triangulations are isostatic in dimension 4 for generic positions along
the moment curve.

In fact, our experiments make us believe that in this statement the word “generic”
can be changed to “arbitrary”.

Conjecture 1.6 2-Triangulations of the n-gon are isostatic (that is, bases) in the bar-
and-joint rigidity matroid of arbitrary (distinct) points along the moment curve in
dimension 4.

This conjecture has an apparently much stronger implication:

Theorem 1.7 If Conjecture 1.6 is true, then all positions along the moment curve
realize �2(n) as a fan (hence, Conjecture 1.1 would almost be true for k = 2).

So far we have discussed whether k-triangulations are bases in the rigidity matroid,
but for the polytopality question we are also interested in the oriented matroid, which
tells us the orientation that each k-triangulation has as a basis of the vector config-
uration. The first thing to notice is that now there is a priori not a unique “generic”
oriented matroid; different generic choices of points may lead to different orientations
of the underlying generic matroid.

Since our points lie in the moment curve, we can refer to each point (t, . . . , t2k)

via its parameter t . The parameters proving Theorem 1.3 are as follows:

• For k = 2, the standard positions (ti = i for each i) realize �2(n) as a polytope if
and only if n ≤ 9. For k = 2 and n ∈ {10, 11, 12, 13} they still realize it as a fan,
but not as a polytope.Modifying a bit the positions to (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20)
we get a polytopal fan for �2(10) (Lemma 4.14).

• Equispaced positions along a circle, mapped to the moment curve via a birational
map, realize �k(n) as a fan for every (k, n) with 2k + 2 ≤ n ≤ 13 except (3, 12)
and (3, 13), and they realize �3(10) as a polytope (Lemma 4.15).

Our experiments show a difference between the case k = 2, in which all the
positions along the moment curve that we have tried realize �k(n) at least as a fan,
and the case k ≥ 3, in which we show that the standard positions do not realize
�k(2k + 3) as a fan (realizing �k(n) for n < 2k + 3 is sort of trivial):
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Theorem 1.8 The graph K9 − {16, 37, 49} is a 3-triangulation of the n-gon, but it
is a circuit in the cofactor rigidity matroid C6(q) if the position q makes the lines
through 16, 37 and 49 concurrent. This occurs, for example, if we take points along
the parabola with ti = i .

This shows that Conjecture 1.6 fails for k ≥ 3, and we prove that it fails in the
worst possible way. We consider this our second main result, after Theorem 1.3:

Theorem 1.9 If k ≥ 3 and n ≥ 2k + 6 then no choice of points q ∈ R
2 in convex

position makes the cofactor rigidity C2k(q) realize the k-associahedron �k(n) as a
fan. The same happens for bar-and-joint rigidity and for hyperconnectivity with any
choice of points along the moment curve.

Let us explain this statement. Cofactor rigidity, introduced by Whiteley following
work of Billera on the combinatorics of splines, is related to the existence of (d − 2)-
continuous splines of degree d − 1, for a certain parameter d. For this reason it is
usually denoted Cd−1

d−2 -rigidity, although we prefer to denote it Cd -rigidity since, as
said above, it induces an example of abstract rigiditymatroid of dimension d. Since this
form of rigidity is based on choosing positions for n points in the plane, it is the most
natural rigidity theory in the context of k-triangulations; for any choice q of n points
in convex position in the plane, we have at the same time a convex n-gon on which we
can model k-triangulations and a 2k-dimensional rigidity matroid C2k(q) whose rows
we can use as vectors to (try to) realize �k(n) as a fan. For n = 2k + 3 we show that
this realization, taking as points the vertices of a regular n-gon, always realizes �k(n)

as a fan (Corollary 3.17), but the above statement says that for n ≥ 2k +6 (and k ≥ 3)
no points in convex position do. As said above, C2k(q) with points along a parabola
is equivalent to bar-and-joint rigidity and to hyperconnectivity with points along the
moment curve in R2k .

Remark 1.10 Theorem 1.9 still leaves open the possibility of realizing �k(n) for n ≥
2k + 6 ≥ 12 via bar-and-joint rigidity or via hyperconnectivity, but it would need to
be with a choice of points not lying in the moment curve. We have not explored this
possibility because we cannot think of a “natural” choice of n points in R

2k .
Also, observe that for k ∈ {3, 4} this theorem and Theorem 1.3 (or, rather, its more

precise version Lemma 4.15) completely settle realizability of �k(n) as a fan via
cofactor rigidity: it can be done for n ≤ 2k + 5 and it cannot for n ≥ 2k + 6.

Remark 1.11 k-Triangulations can be bipartized by taking two copies i+ and i− of
each i ∈ [n] and turning each edge (i, j) of a k-triangulation (with i < j) into the
edge (i+, j−). It turns out that when this is done k-triangulations are related to fillings
of certain polyominos and to bipartite rigidity theory in dimension k (instead of 2k); for
example, readers can easily convince themselves that bipartized triangulations become
spanning trees, which are the bases of 1-dimensional rigidity. Using these ideas, the
follow-up paper [6] by the first author recovers most of the results of this paper in the
context of bipartite rigidity, including an obstruction similar to that of Theorem 1.9.

From a computational viewpoint, our methods have three parts (see more details in
Sect. 4.3):
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(1) First, for given k, n, we enumerate all the k-triangulations of the n-gon. To do
this we have adapted code by Vincent Pilaud which uses the relations between
k-triangulations and sorting networks [26]. Although computationally easy, this
is the bottleneck of the process because of the large number of k-triangulations.
(Jonsson [16] proved that the number of k-triangulations of the n-gon is a Henkel
determinant of Catalan numbers, hence growing as Cn

k times a rational function
of degree 2k in n, where Cn denotes the nth Catalan number). In all cases where
we have been able to enumerate all k-triangulations, we have also been able to
decide whether given positions realize the fan and/or the polytope.

(2) Then, our code testswhether, for given positions, the rigiditymatrix realizes the fan
or not. We have always used points along the parabola/moment curve (for which
the three rigidity theories are equivalent), but the code would work for arbitrary
positions and for the three theories. The running time is essentially linear in the
number of k-triangulations, with a factor depending on k and n since we are doing
linear algebra in R

k(2n−2k−1).
(3) Finally, when the second step works, deciding whether the fan (in the obtained

realization) is polytopal is equivalent to feasibility of a linear program with one
variable for each ray of the

(n
2

)
diagonals of the n-gon and k(n−2k−1) constraints

for each k-triangulation.

To choose the positions for the points we use a bit of trial and error. By default we
start with equispaced points along the parabola and along the circle, and when both
of them fail we modify the positions.

Structure of the Paper

Sections 2.1, 2.2, and 2.3 deal respectively with properties of k-triangulations and of
�k(n), with how to prove polytopality of a simplicial complex, and with background
on the three forms of rigidity (bar-and-joint, cofactor, and hyperconnectivity). They
contain mostly introductory and review material but each of them contains also new
results. Among them:

• Corollary 2.9: all 1-dimensional links in any �k(n) have length at most 5 (that is:
all 2-faces of dual complexes are at most pentagons).

• Theorem 2.12 and Proposition 2.13: if a pure simplicial complex, embedded in a
certain vector configuration V , satisfies the so-called “interior cocircuit property”
(see [10, Chap. 4]), for it to be realized as a fan it is sufficient that every link of
dimension one is embedded as a simple cycle (a cycle winding only once). This
condition holds automatically for cycles of length at most four, so in the case of
�k(n) it needs to be checked only for cycles of length five.

Section 3 describes the obstructions for realizability that we have found for k ≥ 3.
We state and prove them in the context of cofactor rigidity. They follow from the
so-called Morgan–Scott split in the theory of splines, which says that the graph of
an octahedron (K6 minus three disjoint edges) is dependent in cofactor 3-rigidity if
and only if the points are in Desargues position (that is, the three missing edges are
concurrent). After recalling some facts on cofactor rigidity in Sect. 3.1, in Sect. 3.2 we
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prove an oriented version of this obstruction (Theorem 3.7), and then use it in Sect. 3.3
to prove Theorem 1.9. Along the way we characterize exactly what choices of points
in convex position realize the fan �k(2k + 3) (Theorem 3.15).

Our final Sect. 4 contains most of our positive results on realizability of�k(n)with
points along the moment curve/parabola. In Sect. 4.1 we prove Theorem 1.5 along
the same lines used in [27] for bar-and-joint rigidity. In Sect. 4.2 we prove a local
version of realizability as a fan: we show that for every 1-dimensional link in �2(n)

there are positions along the moment curve realizing that cycle as a collection of bases
satisfying ICoP and with winding number equal to one (Theorem 4.12), which imply
Theorem 1.7. We also show that arbitrary positions along the moment curve realize
�k(2k + 2) and �2(7) as polytopes (Corollaries 4.9 and 4.10). Section 4.3 contains
details of our experiments, which imply Theorem 1.3.

2 Preliminaries and Background

2.1 Multitriangulations

Let us recall in detail the definition of the k-associahedron. As mentioned in the
introduction, it is a simplicial complex with vertex set

([n]
2

)
:= {{i, j} : i, j ∈ [n], i < j}.

Definition 2.1 Two disjoint elements {i, j}, {k, l} ∈ ([n]
2

)
, with i < j and k < l, of

([n]
2

)
cross if i < k < j < l or k < i < l < j . That is, if they cross when seen as

diagonals of a cyclically labeled convex n-gon.
A k-crossing is a subset of k elements of

([n]
2

)
such that every pair cross. A subset of

([n]
2

)
is (k+1)-crossing-free if it doesn’t contain any (k+1)-crossing.A k-triangulation

is a maximal (k + 1)-crossing-free set.

Observe that whether two pairs {i, j}, {k, l} ∈ ([n]
2

)
cross is a purely combinatorial

concept, but it captures the idea that the corresponding diagonals of a convex n-gon
geometrically cross.

The length of an edge {i, j} ∈ ([n]
2

)
, is min{| j − i |, n −| j − i |}. That is, the distance

from i to j measured cyclically in [n]. Edges of length at most k cannot participate in
any k + 1-crossing and, hence, all of them lie in every k-triangulation. We call edges
of length at least k + 1 relevant and those of length at most k − 1 irrelevant. The
“almost relevant” edges, those of length k, are called boundary edges and, although
they lie in all k-triangulations, they still play an important role in the theory [see
Proposition 2.7(3)].

By definition, (k + 1)-crossing-free subsets form an abstract simplicial complex
on the vertex set

([n]
2

)
, whose facets are the k-triangulations and whose minimal non-

faces are the (k +1)-crossings. We denote this complex�k(n). Since the kn irrelevant
and boundary edges lie in every facet, it makes sense to consider also the reduced
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complex �k(n). Technically speaking, we have that �k(n) is the join of �k(n) with
the irrelevant face (the face consisting of irrelevant and boundary edges).

Multitriangulations were studied (under a different name) by Capoyleas and
Pach [3], who showed that no (k+1)-crossing-free subset hasmore than k(2n−2k−1)
edges. That is, the complex �k(n) has dimension k(2n − 2k − 1) − 1, hence �k(n)

has dimension k(n − 2k − 1) − 1. The main result about �k(n) for the purposes of
this paper is the following particular case of a theorem of Knutson and Miller:

Theorem 2.2 (Knutson–Miller [19]) �k(n) is a shellable sphere of dimension k(n −
2k − 1) − 1.

The following lemma shows that the realizability question we want to look at is
monotone; if we have a realization of �k(n) then we also have it for all �k′(n′) with
k′ ≤ k and n′ − 2k′ ≤ n − 2k. Remember that the link of a face F in a simplicial
complex � is

lk�(F) := {G ∈ � : G ∩ F = ∅, G ∪ F ∈ �} = {σ \ F : σ ∈ �, F ⊂ σ }.

In a shellable d-sphere the link of any face of dimension d ′ is a shellable d − d ′ − 1-
sphere.

Lemma 2.3 (Monotonicity) Let n ≥ 2k + 1. Then, both �k(n) and �k−1(n − 1)
appear as links in �k(n + 1). More preciselyp:

(1) �k(n) = lk�k (n+1)(Bn+1), where Bn+1 := {{n − k + i, i} : i = 1, . . . , k} ∈ ([n]
2

)

is the set of edges of length k + 1 leaving n + 1 in their short side.
(2) �k−1(n−1) ∼= lk�k (n+1)(En+1), where En+1 = {{i, n+1} : i ∈ [k +1, n−k]} ∈

([n+1]
2

)
is the set of relevant edges using n + 1.

Proof By Theorem 2.2, the three complexes �k(n), �k−1(n − 1) and �k(n + 1) are
spheres, of the appropriate dimensions. For example,

dim(�k(n + 1)) = k(n + 1 − 2k − 1) − 1 = k(n − 2k) − 1.

Since the link of a face of size j in a shellable sphere is a sub-sphere of codimension
j , the right-hand sides in both equalities are spheres of respective dimensions

dim(�k(n + 1)) − k = k(n − 2k) − 1 − k = k(n − 2k − 1) − 1 = dim(�k(n))

in part (1) and

dim(�k(n + 1)) − (n − 2k) = k(n − 2k) − 1 − (n − 2k)

= (k − 1)(n − 2k) − 1 = dim(�k−1(n − 1))

in part (2). Two simplicial spheres of the same dimension cannot be properly contained
in one another, so in both equalities we only need to check one containment [with a
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relabelling of the complex allowed in part (2)] and the other containment then follows
automatically.

In part (1) we show �k(n) ⊂ lk�k (n+1)(Bn+1). That is, for every k-triangulation T
of the n-gon with vertices [n]we need to check that T ∪ Bn+1 is (k +1)-crossing-free.
This is because all the edges in Bn+1 have length k + 1 and have n + 1 in their short
side, so any (k + 1)-crossing involving one of them needs to use the vertex n + 1. But
T ∪ Bn+1 has no (relevant) edge using n + 1.

For part (2), we consider the following map

φ :
([n]

2

)
→

([n − 1]
2

)

{i, j} �→ {i, j − 1}, 1 ≤ i < j ≤ n.

The map φ is a bijection between the k-relevant edges in
([n+1]

2

)
not using n + 1 and

the (k − 1)-relevant edges in
([n−1]

2

)
. Moreover, the map reduces crossing of pairs of

edges. More precisely, φ(e) and φ( f ) cross if and only if e and f crossed and were
not of the form {i, j + 1}, { j, � + 1} for some 1 ≤ i < j < � ≤ n.

Hence, if T is a k-triangulation in �k(n + 1) containing En+1 then its image
φ(T \ En+1) is (k + 1)-crossing-free. We need to check that it is also k-crossing-free.
For this, consider a (k + 1)-crossing C in T \ En+1. Two things can happen:

• C uses an edge of En+1, so it is no longer a (k + 1)-crossing in φ(T \ En+1).
• C does not use any edge of En+1. Then, C is of the form {{ai , bi } : i ∈ [k + 1]}
with 1 ≤ a1 < · · · < ak+1 < b1 < · · · < bk+1 ≤ n. But we need b1 = ak+1 + 1,
or otherwise C ∪ {{ak+1 + 1, n + 1}} is a (k + 2)-crossing in T \ En+1. Hence,
φ(C) is no longer a (k + 1)-crossing because φ({a1, b1}) and φ({ak+1, bk+1}) do
not cross.

�
Being a sphere (more precisely, being a pseudo-manifold) has the following impor-

tant consequence:

Proposition 2.4 (Flips [12, 22], see also [27, Lem. 5.1]) For every relevant edge f of
a k-triangulation T there is a unique edge e ∈ ([n]

2

)
such that

T �{e, f } := T \ { f } ∪ {e}

is another k-triangulation.

We call the operation that goes from T to T �{e, f } a flip. The paper [27] gives a
quite explicit description of flips using for this the so-called stars:

Definition 2.5 (Stars) Let s0, s1, . . . , s2k ∈ [n] be distinct vertices, ordered cyclically.
The k-star S with this set of vertices is the cycle {{si , si+k} : 0 ≤ i ≤ 2k}, with indices
taken modulo 2k + 1.

123



Discrete & Computational Geometry (2025) 73:973–1015 983

In classical terms, a k-star is sometimes called a “star polygon of type {2k + 1/k}”
[9, 15]. Observe that every k-star S is (k + 1)-crossing-free but the set S ∪ {t} where
t is a bisector of S is never (k + 1)-crossing-free. Here, by bisector we mean the
following:

Definition 2.6 (Bisectors) An angle consists of two elements {a, b} and {b, c} in ([n]
2

)

with a common end-point b. A bisector of the angle is any edge {b, d} with d lying
betwen a and c as seen cyclically from b. A bisector of a star is a bisector of any of
its 2k + 1 angles. That is, an edge of the form {si , t} such that t lies between si−k and
si+k for some si in the star (with the notation of Definition 2.5).

In terms of stars and their bisectors, flips can be described as follows:

Proposition 2.7 Let T be a k-triangulation of the n-gon. Then:

(1) T contains exactly n − 2k k-stars [27, Cor. 4.4 and Thm. 3.5].
(2) Each pair of k-stars in T have a unique common bisector [27, Thm. 3.5].
(3) Every relevant edge e in T belongs to exactly two such k-stars, and every boundary

edge belongs to exactly one [27, Cor. 4.2].
(4) The k-triangulation obtained by flipping e in T is T �{e, f } where f is the common

bisector of the two k-stars containing e [27, Lem. 5.1].

In our next result we ask the following question. Suppose that F is a face in �k(n).
That is, F is contained in some k-triangulation T . How big can the link of F be? By
“how big” we here mean howmany vertices [of�k(n), that is, diagonals of the n-gon]
are used in the link.

Lemma 2.8 Let T ∈ �k(n) be a k-triangulation and F ∈ T an edge of it. Let S be
the set of k-stars of T containing a diagonal in T \ F. Then, all diagonals used in
lk�k (n)(F) are either from T \ F or common bisectors of two of the k-stars in S.

Proof Facets in the link correspond to k-triangulations containing F . As the flip graph
is connected [27, Cor. 5.4] they can all be obtained from T by iteratively flipping
diagonals not belonging to F . The diagonals so obtained are bisectors perhaps not
of the original stars in T but at least of new stars obtained along the way. However,
we can give the following characterization of them: At each vertex i of the n-gon,
consider (locally) the union of the angles of stars in S, seeing each angle as a sector
of a small disk centered at i . The bisectors of such a union with an endpoint at i are
either bisectors (at i) of one of the stars, or common edges of two stars. Now, this
“union of stars” is unchanged by flipping, because each flip removes two stars and
inserts another two but with the same union.

Thus, which possible diagonals are used can be prescribed by looking only at T .
They either are bisectors of pairs of stars in T or common edges of pairs of stars in T .
Among the latter we are only allowed to flip, or insert, those that are not in F . �
Corollary 2.9 All links of dimension one in �k(n) are cycles of length at most five.

Proof Every such link is a sphere of dimension one, hence a cycle.
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Let F be the face we are looking at, so that there are relevant diagonals {e, f } ∈([n]
2

)\ F and a k-triangulation T with F = T \{e, f }. The set S of stars in the previous
lemma has size at most four (two for e and two for f ) but it may have size three or
two if e and f belong to one or two common stars. By the lemma, if |S| is two or three
then the length of the cycle is (at most) three or five, respectively.

If |S| = 4, then each of the flips leaves the two stars corresponding to the other flip
untouched. Hence, the two flips commute and the cycle is a quadrilateral, consisting
of T , its two neighbors by the flip at e or f , and the k-triangulation obtained by
performing both flips, in any order. �
Example 2.10 The three graphs below represent codimension-two faces of �2(7). In
each drawing, blue edges are relevant and two more relevant edges are needed to form
a 2-triangulation. The link of the first face is a cycle of length 3, consisting of the diago-
nals {15, 26, 47}. In the second, the length is 4: {15, 25, 36, 47}. In the third the length
is 5: {25, 26, 36, 37, 47}. (In each case, adding to the given graph any two consecutive
edges from the list we get a 2-triangulation, and all 2-triangulations containing that

graph have this form.)

2.2 Polytopality

Throughout this section � will denote a pure simplicial sphere of dimension D − 1
with vertex set V . We ask ourselves whether � can be realized as the normal fan of a
polytope. That is, we ask whether there is a vector configuration V = {vi : i ∈ V } ⊂
R

D with the property that the family of cones

{cone(VF ) : F ∈ �}

form a complete simplicial fan and whether this fan is the normal fan of a polytope.
Here we denote

VX := {vi : i ∈ X}

for each X ⊂ V and

cone(X) := {λ1x1 + · · · + λs xs : s ∈ N, λi ∈ [0,∞), xi ∈ VX }

is the cone generated by X .
The first obvious necessary condition is that we need VF to be linearly independent

for each F ∈ �. When this happens the cones cone(VF ) are simplicial cones and
V naturally defines a continuous map φ�,V : |�| → SD−1 where |�| denotes the
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topological realization of � and SD−1 ⊂ R
D is the unit sphere. The precise definition

of φ�,V is as follows: first map |�| toRD by sending each vertex i to its corresponding
vector vi , and extend this map to |�| linearly within each F ∈ �. The fact that each F
is linearly independent ensures that the image of this map does not contain the origin,
so we can compose the map with the normalization map R

D → SD−1 which divides
each vector by its L2-norm. We call this map φ�,V a pre-embedding of �. Slightly
abusing notation we will also say that V is a pre-embedding of �.

If the pre-embedding happens to be injective, then it is a continuous injective map
between two spheres of the same dimension, hence bijective, hence a homeomorphism.
This implies that � is a triangulation of V in the sense of [10] (see, e.g., Theorem
4.5.20 in that book). We can also say that, in this case, V is an embedding of � or that
it realizes � as a complete fan.

2.2.1 Conditions for a Complete Fan

Remember that the contraction of a vector configuration V ⊂ R
D at an independent

subset I is the image of V \ I under the quotient linear map R
D → R

D/ lin(I ) ∼=
R

D−|I |; it is denoted V/I . If V is a pre-embedding (resp. an embedding) of � then
V/F is also a pre-embedding (resp. an embedding) of lk�(F) for every F ∈ �.We can
then consider a hierarchy of embedding properties by asking V/F to be an embedding
only for faces of at least a certain dimension. The case where F is a facet is trivial.
The next level in the hierarchy, when F is a ridge, has received some attention in [10]:

Definition 2.11 (ICoP propert) Let V ⊂ R
D be a pre-embedding of a pure (D − 1)-

complex �. We say that the pre-embedding has the intersection cocircuit property
(ICoP) if the pre-embedding Vτ of lk�(τ) is an embedding for every ridge τ . That is
to say, if the following two properties hold:

• τ is contained in exactly two facets σ1 and σ2.
• The conesVσ1 andVσ2 lie in opposite sides of the hyperplane spanned byVτ (which
exists and is unique since τ is independent of size D − 1). This is equivalent to
saying that the unique (modulo a scalar multiple) linear dependence in Vσ1∪σ2 has
coefficients of the same sign in the two vectors indexed by σ1 \ τ and σ2 \ τ .

Observe that the first condition is independent of V . When it holds, � is said to
be a pseudo-manifold. The pseudo-manifold is strongly connected if its dual graph is
connected.1

Every link in a pseudo-manifold is itself a pseudo-manifold. For example, the link
of a codimension-two face ρ is a disjoint union of cycles. We say that ρ is nonsingular
if lk�(ρ) is a single cycle and in this case we call this cycle the elementary cycle with
center at ρ.

When this happens for every ρ we say that the pseudo-manifold� has no singulari-
ties of codimension two. Being a pseudo-manifoldwith no singularities of codimension
two is computationally easy to check: in a pure complex the link of every codimension-
two face is a graph, and we only need to check that each of these graphs is a cycle. All
manifolds, hence all spheres, hence �k(n) have these properties.

1 Sometimes strong-connectedness is considered part of the definition of pseudo-manifold, but we do not
take this approach.

123



986 Discrete & Computational Geometry (2025) 73:973–1015

As seen in [10, Thm. 4.5.20], the (ICoP) property is almost sufficient for � to be
a triangulation of V , but something else is needed. We here express this “something
else” in topological terms, in two ways.

Our first characterization is in terms of links of codimension-two faces. Suppose
that � has no singularities of codimension two, so that every face ρ of codimension
two defines an elementary cycle. Then, we have that V/ρ embeds lk�(ρ) as a cyclic
collection of cones in R

2, for which we can define its winding number: the number
of times the cycle wraps around R2 \ {0}. Homologically, this number is the image in
H1(R

2 \ {0},Z) ∼= Z of the elementary cycle as a generator of its homology group
H1(lk�(ρ),Z) ∼= Z. We say that an elementary cycle is simple in V if its winding
number is ±1.

The second characterization is in terms of the degree of the pre-embedding, which is
a generalization of winding number to higher dimensions. The degree of a continuous
map φ : |�| → SD−1 from an orientable (D − 1)-dimensional pseudo-manifold
� to the sphere SD−1 can be defined as the image of the fundamental cycle of
HD−1(M,Z) ∼= Z in HD−1(SD−1,Z) ∼= Z. If φ is injective in each facet (for exam-
ple, if it is a pre-embedding as defined above), the degree of φ can be computed as the
number (with sign) of preimages in φ−1(y) for a sufficiently generic point y ∈ SD−1;
“with sign” means that each preimage x ∈ φ−1(y) counts as +1 or −1 depending on
whether φ preserves or reverses orientation in the facet containing x .

Observe that being a pre-embedding with the (ICoP) property implies � to be an
orientable pseudo-manifold.

Theorem 2.12 Let V ⊂ R
D be a pre-embedding of � with the (ICoP) property. Let

φ�,V : |�| → SD−1 be the associated map. Then, the following conditions are
equivalent:

(1) φ�,V is a homeomorphism; that is, V is a triangulation of � or, equivalently, V
embeds � as a complete simplicial fan in RD.

(2) Every sufficiently generic vector v ∈ R
D is contained in only one of the facet cones

{cone(Vσ ) : σ ∈ facets(�)}.
(3) There is some vector v ∈ R

D that is contained in only one of the facet cones
{cone(Vσ ) : σ ∈ facets(�)}.

(4) � has no singularities of codimension two and all its elementary cycles are simple
in V .

(5) φ�,V has degree ±1.

Proof We only need to show that any of (4) and (5) implies one of (1), (2) or (3), since
the implications (1) ⇒ (2) ⇒(3), (1) ⇒ (4) and (1) ⇒ (5) are obvious and (3) ⇒ (1)
is part of [10, Corollary 4.5.20].

Let us see the implication (5) ⇒ (3). The property (ICoP) implies that the map
φ�,V is consistent with orientations: either it preserves orientations of all facets or
reverses orientation of all facets. This implies that when we compute the degree via
a generic fiber there are no cancellations and, since the map has degree one, every
generic fiber has a single point. That is, φ�,V is injective except perhaps in a subset
of measure zero [the (D − 2)-skeleton of |�|], so (3) holds.

For the implication (4) ⇒ (1) we use induction on D. If D ≤ 2 there is nothing
to prove, so we assume D ≥ 3. Since elementary cycles are preserved by taking
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links/contractions, the inductive hypothesis implies that lk�(i) is a triangulation of
V/vi for every i ∈ V . In particular, lk�(i) is topologically a sphere and, hence, � is a
manifold. Moreover, again by the inductive hypothesis, the map φ�,V : |�| → SD−1

is a local homeomorphism. Every local homeomorphism between two manifolds is a
covering map. Now, D − 1 ≥ 2 implies that SD−1 is simply connected and, since |�|
is connected, the covering map φ�,V is a global homeomorphism. �

Now, by Corollary 2.9, elementary cycles in �k(n) have length bounded by five.
This suggests we study Theorem 2.12 in more detail for such cycles:

Proposition 2.13 Let V be a pre-embedding of � with the (ICoP) property. Then:

(1) All cycles of length ≤ 4 are automatically simple.
(2) Let ρ be a codimension-two face whose elementary cycle Z has length five. Let

i1, . . . , i5 ∈ V be the vertices of Z , in their cyclic order. Then, Z is simple if and
only if there are three consecutive elements i1, i2, i3 ∈ Z such that the unique
linear dependence among the vectors {vi : i ∈ ρ ∪ {i1, i2, i3}} has opposite sign
in i2 than the sign it takes in i1 and i3.

Proof Let us first explain the condition in part two. The (ICoP) property implies that for
every three consecutive vertices i1, i2, i3 in the elementary cycle (of arbitrary length) of
a codimension-two face ρ we have that i1 and i3 lie in opposite sides of the hyperplane
spanned by ρ ∪ {i2}. By elementary linear algebra (or oriented matroid theory), this
translates to the fact that the unique dependence contained in ρ ∪ {i1, i2, i3} has the
same sign in i1 and i3. Similarly, whether this sign equals the one at i2 or not expresses
whether i3 lies on the same or different side of ρ ∪ {i1} as i2. Put differently, it tells
us whether the dihedral angles of i1i2 and i2i3, as seen from ρ add up to more or less
than π (if the dependence vanishes at i2 then the angle is exactly π ).

In general, if Z = i1i2, . . . , ini1 is a cycle with center ρ and (after contraction of the
vector configuration at ρ) it is embedded inR2 with vectorsw1, . . . , wn ∈ R

2 \{0} for
its generators, we can compute the winding number of Z by adding the dihedral angles
wiwi+1, taken with sign. This sum of angles is necessarily going to be a multiple 2πα

of 2π , and the winding number equals the integer α.
Since each individual angle is, in absolute value, smaller than π , it is impossible

to get a sum of at least 4π with four angles or less. With five angles it is possible, but
not if two of them add up to less than π , as expressed by the condition in part (2).
Conversely, if no three consecutive elements in Z satisfy this condition, then the sum
of any two consecutive angles in the cycle is at least π , the sum of four of them is at
least 2π , and the sum of the five of them is more than 2π . �

Summing up, we have an easy way of checking whether a vector configuration
embeds �k(n) as a fan:

Corollary 2.14 Let V = {vi j }{i, j}∈([n]
2 ) ⊂ R

k(2n−2k−1) be a vector configuration. V
embeds �k(n) as a complete fan in R

k(n−2k−1) if and only if it satisfies the following
properties:

(1) (Basis collection)For every facet (k-triangulation) T , the vectors {vi j : {i, j} ∈ T }
are a linear basis.
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(2) (ICoP) For every flip between two k-triangulations T1 and T2, the unique linear
dependence among the vectors {vi j : {i, j} ∈ T1 ∪ T2} has the same sign in the
two elements involved in the flip (the unique elements in T1 \ T2 and T2 \ T1).

(3) (Elementary cycles of length 5) Every elementary cycle of length five has three
consecutive elements satisfying the sign condition in part (2) of Proposition 2.13.

Example 2.15 The pictures below illustrate part (3) of Corollary 2.14. The left picture
shows a flip (the union of two triangulations) belonging to the elementary cycle of
the codimension-two face ρ from the third picture of Example 2.10. In the centre
picture, blue and red represent the signs of the coefficients in the circuit, that in this
case is a K6, for a generic vector configuration V (see Sect. 3.1 to understand why
the signs have to be like this). The sign of 26 is opposite to 25 and 36, and this
implies that, as two-dimensional vectors in V/ρ ⊂ R

2, the vector 26 is a positive
combination of 25 and 36, as in the right part of the figure. Thus, the angles in (25, 26)
and (26, 36) add to less than π and the cycle cannot wind twice around the origin.

Observe that, computationally, what we need to do to apply the corollary is to
check that the determinant corresponding to any k-triangulation is nonzero and to
compute (the signs of) the linear dependence corresponding to each flip (plus some
book-keeping to identify which flips form an elementary cycle). We emphasize that
only the signs are needed because computing signs may sometimes be easier than
computing actual values.

2.2.2 Conditions for Polytopality

Once we have a collection of vectors V = {vi : i ∈ v} ⊂ RD that embeds a simplicial
complex � as a complete simplicial fan in R

D , saying that the fan is the normal fan
of a polytope is equivalent to saying the � is a regular triangulation of V (this is in
[10, Thm. 9.5.6]).

Regular here means that there is a choice of lifting heights fi ∈ (0,∞)V for the
vertices i ∈ V of� such that� is the boundary complex of the cone inRD+1 generated
by lifting the vectors vi ∈ R

D to vectors (vi , fi ) ∈ R
D+1. That is to say, we need that

for every facet σ ∈ � the linear hyperplane containing the lift of σ lies strictly below
all the other lifted vectors.

We call such lifting vectors ( fi )i∈V valid. The following lemma is a version of [32,
Thm. 3.7], which in turn is closely related to [10, Prop. 5.2.6(i)].

Lemma 2.16 Let � be a simplicial complex with vertex set V and dimension D − 1,
and assume it is a triangulation of a vector configuration V ⊂ R

D positively spanning
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R
D. Then, a lifting vector ( fi )i∈V is valid if and only if for every facet σ ∈ � and

element a ∈ V \ σ the inequality

∑

i∈C

ωi (C) fi > 0 (1)

holds, where C = σ ∪{a} and ω(C) is the vector of coefficients in the unique (modulo
multiplication by a positive scalar) linear dependence in V with support in C, with
signs chosen so that ωa(C) > 0 for the extra element.

Proof This is similar to in [10, Prop. 5.2.6(i)]. For a facet σ and an extra element that
forms a circuit C , we need to prove that the extra element is in the correct side via the
lifting vector f . Let i be the extra element and f ′

i the last coordinate of the intersection
point of vi × R with the hyperplane spanned by (v j , f j ) j∈C . We want that fi > f ′

i .
But obviously

∑

j∈σ

ω j (C) f j + ωi (C) f ′
i = 0

so the condition is equivalent to fi > f ′
i . �

Remark 2.17 Two remarks are in order:

(1) Ifwe alreadyknow� to be a triangulationofV , it is enough to check the inequalities
for the case when i is a neighbor of σ , because a locally convex cone is globally
convex. That is, checking validity amounts to checking one linear inequality for
each ridge in�: if τ is a ridge and τ ∪{i} and τ ∪{ j} are the two facets containing
it, we need to check inequality (1) for the circuit C = τ ∪ {i, j} contained in
τ ∪ {i, j} (see, e.g., [10, Thm. 2.3.20 and Lem. 8.2.3]).

(2) If ( fi )i∈V is a valid lifting vector and (wi )i∈V is the vector of values that a certain
linear functional takes in V then ( fi + wi )i∈V is also valid (see, e.g., [10, Prop.
5.4.1]). In particular, when looking for valid vectors we can assume, without loss
of generality, that fi = 0 for all i in a certain independent set S (we here say that
S is independent if the vectors {vi }i∈S are linearly independent).

2.3 Rigidity

Let p = (p1, . . . , pn) be a configuration of n points in R
d , labelled by [n].2 Their

bar-and-joint rigidity matrix is the following
(n
2

) × nd matrix:

2 By a configuration we mean an ordered set of points or vectors, usually labelled by the first n positive
integers. For this reason we write p as a vector rather than a set.
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R(p) :=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

p1 − p2 p2 − p1 0 . . . 0 0
p1 − p3 0 p3 − p1 . . . 0 0

...
...

...
...

...

p1 − pn 0 0 . . . 0 pn − p1
0 p2 − p3 p3 − p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 − pn pn − pn−1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

. (2)

Since there is a row of the matrix for each pair {i, j} ∈ ([n]
2

)
, rows can be considered

labeled by edges in the complete graph Kn . The matrix is a sort of “directed incidence
matrix” of Kn , except instead of having one column for each vertex i ∈ [n] we have
a block of d columns, and instead of putting a single +1 and −1 in the row of edge
{i, j} we put the d-dimensional (row) vectors pi − p j and p j − pi .

An important property of R(p) [35, Lem. 11.1.3] is that if the points p affinely span
R

d then the rank of R(p) equals

{(n
2

)
if n ≤ d + 1,

dn − (d+1
2

)
if n ≥ d.

(3)

(Observe that the two formulas give the same result for n ∈ {d, d + 1}.) If the points
span an r -dimensional affine subspace, the same formulas hold with r substituted for
d.

A pair (G,p) where G is a graph on n vertices and p is a set of n points in R
n

(positions for the vertices) is usually called a framework. Seeing this framework as
a bar-and-joint structure, the coefficients of any linear dependence among the rows
of R(p) can be interpreted as forces acting along the bars (edges) with the property
that the resultant force on every vertex cancels out. These systems of forces are called
self-stresses of equilibrium stresses. We will denote Z(R(p)) the space of self-stresses
of p.

In the same manner, a linear dependence among the columns of R(p) can be under-
stood as an infinitesimal motion of the vertices (that is, an assignment of velocity
vectors to the joints) that preserves the length of all bars. This is called an infinitesimal
flex of the framework. We do not introduce a particular notation for flexes since our
main interest is in the vector configuration, and matroid, of rows of R(p). To this end,
for any E ⊂ ([n]

2

)
we denote by R(p)|E the restriction of R(p) to the rows or elements

indexed by E .

Definition 2.18 (Rigidity) Let E ⊂ ([n]
2

)
be a subset of edges of Kn [equivalently, of

rows of R(p)]. We say that E , or the corresponding subgraph of Kn , is self-stress-free
or independent in the position p if the rows of R(p)|E are linearly independent, and
rigid or spanning if they are linearly spanning [that is, if they have the same rank as
the whole matrix R(p)].

Put differently, self-stress-free and rigid graphs are, respectively, the independent
and spanning sets in the linear matroid of rows of R(p). We call this matroid the
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bar-and-joint rigidity matroid of p and denote itR(p). It is a matroid with ground set([n]
2

)
and, for points affinely spanning Rd , of rank given by (3). See, for example, [14,

35] for more information on rigidity matrices and their matroids. Let us remark that,
although rigidity theory usually deals only with R(p) as an (unoriented) matroid, its
definition as the linear matroid of a configuration of real vectors produces in fact an
oriented matroid. Orientations will be important for us in Sect. 4, in the light of the
results of Sect. 2.2.

The following two matrices and matroids reminiscent of R(p) are of interest:

• The hyperconnectivity matroid of the configuration p = (p1, . . . , pn) in R
d ,

denoted H(p), is the matroid of rows of

H(p) :=

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (4)

• For points q = (q1, . . . , qn) in R
2 and a parameter d ∈ N, the d-dimensional

cofactor rigidity3 matroid of the points q1, . . . , qn , which we denote Cd(q), is the
matroid of rows of

Cd(q) :=

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

c12 −c12 0 . . . 0 0
c13 0 −c13 . . . 0 0
...

...
...

...
...

c1n 0 0 . . . 0 −c1n

0 c23 −c23 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (5)

where the vector ci j ∈ R
d associated to qi = (xi , yi ) and q j = (x j , y j ) is

ci j :=
(
(xi − x j )

d−1, (yi − y j )(xi − x j )
d−2, . . . , (yi − y j )

d−1
)

.

For d = 1 this is independent of the choice of q and equals the directed incidence
matrix of Kn . For d = 2 we have C2(q) = R(q).

ThematroidsR(p) andCd(q) are invariant under affine transformation of the points,
andH(p) under linear transformation. (More generally, although we do not need this,
R(p) and Cd(q) are invariant under projective transformation in RP

d and RP
2 as

3 This form of rigidity is usually called Cd−2
d−1 -cofactor rigidity, since it is related to the existence of

piecewise linear splines of degree d − 1 and of type Cd−2.
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compactifications of Rd and R2, andH(p) under projective transformation in RPd−1

as a quotient of Rd \ {0}). We say that the points chosen are in general position forR
(respectively for C or forH) if no d +1 of them lie in an affine hyperplane (respectively
no three of them in an affine line or no d of them in a linear hyperplane). In the three
cases, general position implies that the corresponding matroid has the rank stated
in (3) and that every copy of the graph Kd+2 is a circuit. Nguyen [23] showed that
the matroids on

([n]
2

)
with these properties are exactly the abstract rigidity matroids

introduced by Graver [13].
Clearly, in the three cases and for each choice of the “dimension” d there is a unique

most free matroid that can be obtained, in the sense that the independent sets in any
other matroid will also be independent in this one, realized by sufficiently generic
choices of the points. We call these the generic bar-and-joint, hyperconnectivity, and
cofactor matroids of dimension d on n points, and denote themRd(n),Hd(n), Cd(n)

(observe, however, that this generic matroid may stratify into several different generic
oriented matroids; this is important for us since we will be concerned with the signs
of circuits, by the results in Sect. 2.2).

In [7] we prove that these three rigidity theories coincide when the points p or q
are chosen along the moment curve (for bar-and-joint and hyperconnectivity) and the
parabola (for cofactor). More precisely:

Theorem 2.19 ([7]) Let t1 < · · · < tn ∈ R be real parameters. Let

pi = (1, ti , . . . , td−1
i ) ∈ R

d , p′
i = (ti , t2i , . . . , td

i ) ∈ R
d , qi = (ti , t2i ) ∈ R

2.

Then, the three matrices H(p1, . . . , pn), R(p′
1, . . . , p′

n) and Cd(q1, . . . , qn) can be
obtained from one another multiplying on the right by a regular matrix and then
multiplying rows by some positive scalars.

In particular, the rows of the three matrices define the same oriented matroid.

Proof This follows from the proofs in [7, Lem. 2.3 and Thm. 2.5]. Although the
statements there speak only of the matroids of rows, the proofs show that dividing
each row (i, j) of R(p′

1, . . . , p′
n) by t j − ti and that of Cd(q1, . . . , qn) by (t j − ti )d−1

one obtains matrices that are equivalent to H(p1, . . . , pn) under multiplication on the
right by a regular matrix. �
Definition 2.20 (Polynomial rigidity) We call the matrix H(p1, . . . , pn) in the state-
ment of Theorem 2.19 the polynomial d-rigidity matrix with parameters t1, . . . , tn .
We denote it Pd(t1, . . . , tn), and denote Pd(t1, . . . , tn) the corresponding matroid.

Among the polynomial rigidity matroidsPd(t1, . . . , tn) there is again one that is the
most free, obtained with a sufficiently generic choice of the ti . We denote itPd(n) and
call it the generic polynomial d-rigidity matroid on n points. Theorem 2.19 implies
that we can regardPd(n) as capturing generic bar-and-joint rigidity along the moment
curve, generic hyperconnectivity along the moment curve, or generic cofactor rigidity
on a conic.

We do not know whether Pd(n) equalsHd(n), but we do know thatHd(n),Rd(n)

and Cd(n) are different for d ≥ 4 and n large enough. For example:
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• Kd+1,d+1 is a circuit in Pd(n) and Hd(n), but independent in Rd(n) and Cd(n)

for every d ≥ 2 (more strongly, Kd+1,(d+1
2 ) is a basis in both, [35, Thm. 9.3.6 and

Exam. 11.3.12]).
• K6,7 is a basis in C4(n) and dependent in R4(n) for n ≥ 13 [35, Sects. 11.4 and
11.5] (the example generalizes to show that Cd(n) �= Rd(n) for n − 9 ≥ d ≥ 4).

See [7] for a recent account of these and other relations among these matroids,
including some questions and conjectures. See [24] for a comprehensive study of
bar-and-joint and cofactor rigidities.

3 Obstructions to Realizability with Cofactor Rigidity

Our main goal in this paper is to study whether one of the three forms of rigidity from
Sect. 2.3 provides, by choosing the configurations p in R

2k or q in R
2 adequately,

realizations the k-associahedron�k(n). For positive results (realizations) the strongest
possible setting goes via the polynomial rigidity of Definition 2.20, since that is a
special case of the other three. For negative results (obstructions to realization) we are
going to use cofactor rigidity. This is stronger than using polynomial rigidity, and is also
the most natural setting for studying k-associahedra since, after all, the combinatorics
of a k-associahedron comes from thinking about crossings in the complete graph
embedded with vertices in convex position in the plane.

3.1 Some Results on Cofactor Rigidity

In this section we present some results about cofactor rigidity that we need later.
We first show that cofactor rigidity is invariant under projective transformation.

This, as some other results from this section, was already noticed by Whiteley [35],
but we develop things from scratch since we will not only be interested in the cofactor
rigidity matroid but also in the oriented matroid. Notice also that the same projec-
tive invariance of the matroid is true and well-known for bar-and-joint rigidity (see
again [35]).

Throughout this section we work primarily with a vector configuration Q =
(Q1, . . . , Qn) in dimension three, that is, with Qi = (Xi , Yi , Zi ) ∈ R

3 \ {0}. We
normally assume that Q is in general position (every three of its vectors form a linear
basis) and sometimes that it is also in convex position: (a) each of the vectors Qi

generates a ray of

cone(Q) =
{

∑

i

λi Qi : λi ≥ 0

}

,

and all these rays are different, and (b) the cyclic order of Q1, . . . , Qn equals their
order as rays of cone(Q).
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In this setting, let us redefine the vectors ci j that appear in the matrix Cd(q) in
terms of the vectors Qi as follows. We let

ci j =
(

xd−1
i j , yi j xd−2

i j , . . . , yd−1
i j

)
,

where

xi j = Xi Z j − Zi X j , yi j = Yi Z j − Zi Y j .

We define the matrix Cd(Q) exactly as in (5), but with these new vectors ci j . Observe
that the original definition of Cd(q) is a special case of this one, obtained when we
take all the Zi ’s equal to 1 and we let qi = (Xi , Yi ).

With the new definition, we have the following invariance:

Proposition 3.1 Let Q = (Q1, . . . , Qn) be a vector configuration in R
3 \ {0}. Then,

(1) The column-space of Cd(Q), hence the oriented matroid Cd(Q) of its rows, is
invariant under a nonsingular linear transformation of Q.

(2) The matroid Cd(Q) is also invariant under rescaling (that is, multiplication by
non-zero scalars) of the vectors Qi . If the scalars are all positive or d is odd then
the same holds for the oriented matroid.

Proof For each vector Q ∈ R
3 \ {0} let Cd−2

d−1 (Q) be the set of all three-variate
polynomials in R[X , Y , Z ] that are homogeneous of degree d − 1 and such that all
their partial derivatives up to order d−2 vanish at Q. This is a vector space of dimension
d. In fact, if we fix a Qi = (Xi , Yi , Zi ) and consider Q j = (X , Y , Z) as a vector
of variables, then the d entries in the vector ci j are a basis for the space Cd−2

d−1 (Qi ).
In particular, the i th block in the matrix Cd(Q) has as rows the vectors obtained by
evaluating that basis of Cd−2

d−1 (Qi ) either at 0 (if the row does not use the point i) or at
one of the Q j ’s (if the row corresponds to the edge {i, j}).

Now, let Q = (Q1, . . . , Qn). A nonsingular linear transformation L : R3 → R
3

induces, for each vector Qi , a linear map L̃i from the space Cd−2
d−1 (L(Qi )) to the space

Cd−2
d−1 (Qi ), defined by L̃i ( f ) = f ◦ L .

Let Mi ∈ R
d×d be the matrix of L̃i in the bases of Cd−2

d−1 (L(Qi )) and Cd−2
d−1 (Qi )

described above. Let M ∈ R
dn×dn be the block-diagonal matrix with blocks of size

d × d and having in the i th diagonal block the matrix Mi . Then we have that

Cd(L(Q)) = Cd(Q)M−1.

As L is nonsingular, this proves part (1).
For part (2): the effect of multiplying a Qi by a scalar λi is to multiply all the rows

of edges using i by the scalar λd−1
i . Hence, although the column space Cd(Q) changes

by rescaling, the matroid Cd(Q) does not, and the oriented matroid does not either as
long as the rescaling factors are all positive or d is odd. �

We now translate the above result to the original setting of a point configuration
q = (q1, . . . , qn) in R2:
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Corollary 3.2 The matroid Cd(q) is invariant under projective transformation of q. If
d is odd or the projective transformation sends conv(q) to lie in the affine chart of
RP

2 (the subset of the projective points [X : Y : Z ] with Z �= 0), the same is true for
the oriented matroid.

Proof Starting with a point configuration q = (q1, . . . , qn) in the (affine) plane we can
consider the vector configuration Q = (Q1, . . . , Qn) with Qi = (qi , 1) ∈ R

3 \ {0}.
A projective transformation in q amounts to a linear transformation in Q. Moreover,
if the projective transformation sends conv(q) to lie in the affine chart of RP2 then
all the Z ′

i in the transformed vector configuration are positive, so they can be brought
back to the form (x, y, 1) by a positive rescaling. �

Our next result is essentially [35, Thm. 11.3.3] and shows how examples and prop-
erties of cofactor rigidity in dimension d can be lifted to dimension d + 1 via coning.
Recall that the contraction p/pi of a vector configuration at an element pi was defined
in Sect. 2.2.

Proposition 3.3 (Coning Theorem, [35, Thm. 11.3.3]) Let Q = (Q1, . . . , Qn+1)

be a vector configuration in general position in R
3. Then, Cd(Q1, . . . , Qn) is the

contraction to
([n]
2

)
of the matroid Cd+1(Q). If the vectors are in convex position, the

same is true for the oriented matroids.

Let us mention that the same result holds for the other two forms of rigidity,R and
H [35, Thm. 9.3.11], and [18, Thm. 5.1]. We call this statement “coning theorem”
because it implies that a graph G with vertex set [n] is d-independent or d-rigid when
realized on (Q1, . . . , Qn) if and only if its cone G ∗ {n + 1} is (d + 1)-independent
or (d + 1)-rigid on (Q1, . . . , Qn, Qn+1). Here, the cone over a graph G = ([n], E)

is defined as the graph with vertex set [n + 1] and with edges

E ∗ {n + 1} := E ∪ {{i, n + 1} : i ∈ [n]} .

Proof Bya linear transformationwecan assumewithout loss of generality that Qn+1 =
(0, 1, 0) and that no other Qi lies in the “hyperplane at infinity” {Z = 0}; hence, we
can rescale them to have Zi = 1 for i = 1, . . . , n. This linear transformation and
rescaling do not affect the matroids. Moreover, if the original vectors are in convex
position, all of them are in a half-space whose delimiting plane contains Qn+1. This
implies that we can further assume that the linear transformation sends this plane to
Zi = 0 and after this step Zi > 0 for every i , so that the rescaling is positive and does
not affect the oriented matroids either.

Under these assumptions we have that

ci,n+1 = (0, 0, . . . , (−1)d−1).

In particular, the contraction of the elements {i, n + 1} in the matroid Cd+1(Q) can
be performed in the matrix Cd+1(Q) as follows: first, forget the last block of columns
(the one corresponding to Qn+1). This does not affect the oriented matroid since the
sum of the n blocks of Cd+1(Q) equals zero (that is, the columns in each one block are
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linear combinations of the other blocks). After the block of Qn+1 is deleted, the rows
{i, n + 1} that we want to contract have a single non-zero entry, so the contraction is
equivalent to deleting those rows and their corresponding columns, namely the last
column in the block of each Qi , i = 1, . . . , n.

The resulting matrix coincides with Cd(Q1, . . . , Qn) except that the row corre-
sponding to each edge {i, j} has been multiplied by the factor xi j := Xi Z j − Zi X j =
Xi − X j . General position (under the assumption Qn+1 = (0, 1, 0) and Zi = 1 for
every other i) implies Xi �= X j for i �= j , so this factor xi j does not affect the matroid.

The factor could a priori affect the oriented matroid, but our assumption that the
vectors are in convex position with Qn+1 = (0, 1, 0) and with Z1 = · · · = Zn = 1
implies that X1 < · · · < Xn . Hence, the spurious factors xi j are all of the same sign
(all negative) and do not change the oriented matroid. �

We now look at what happens if the point we add/delete is not the last one Qn+1
but an intermediate one Qi . This is a mere cyclic reordering of the points with respect
to the previous result, but reordering has a non-trivial effect in the cofactor matrix,
because of a lack of symmetry in its definition. Indeed, the row of an edge {i, j} with
i < j has the shape

(. . . , ci j , . . . ,−ci j , . . . ).

If the reordering keeps i before j the row does not change; its entries simply get moved
around as indicated by the reordering. In contrast, if after reordering we end up having
j before i then the new row equals

(. . . , c j i , . . . ,−c j i , . . . ).

That is, we get c j i where the “moving around” should give −ci j and −c j i where
we should get ci j . The effect of this depends on the parity of d. If d is even, then
c j i = −ci j and the relabelling does not affect the oriented matroid. If d is odd,
however, then c j i = ci j , so the relabelling globally changes the sign of that row of the
matrix. This implies:

Proposition 3.4 Let Q = (Q1, . . . , Qn+1) be vectors in R
3 in general position. Then

the oriented matroid Cd(Q1, . . . , Qi−1, Qi+1, . . . , Qn+1) is obtained from Cd+1(Q)

by contracting at the elements {i, j} with j ∈ [n+1]\{i}, and reorienting the elements
{ j, k} with 1 ≤ j < i < k ≤ n + 1.

Proof Let us first relabel points cyclically so that the point i becomes n +1, then apply
Proposition 3.3, and finally relabel the points back to their original labels. As noted
above, relabelling does nothing if the dimension is even or to the edges that keep their
direction, but it reorients the edges that change their direction (that is, the edges { j, k}
with j < i < k) if the dimension is odd. Since we are relabelling first in dimension
d + 1 and then in dimension d, exactly one of them is odd. �

Now we prove a result about the number of sign changes in any dependence in
Cd(Q), with elements in convex position:
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Lemma 3.5 Let Q = (Q1, . . . , Qn) be vectors in convex position. Let λ ∈ R(n
2) be

a linear dependence among the rows of Cd(Q). For each i, considered the sequence
formed by {λi j } j �=i , with values of j ordered cyclically from i. That is, with the order
(i + 1, i + 2, . . . , n, 1, . . . , i − 1). Then:

(1) If d is even, the sequence changes sign at least d times.
(2) If d is odd, the same happens for the sequence {−λi j } j>i ∪ {λi j } j<i .

Proof Let us first assume that d is even. In this case, as mentioned above, a cyclic
relabelling does not change the oriented matroid, so we can assume without loss of
generality that i = n. Also, by linear transformation and positive rescaling we can
assume that Qn = (0, 0, 1) and that Z j = 1 and X j > 0 for j �= i . Observe that
under these assumptions we have

c jn =
(

Xd−1
j , Xd−2

j Y j , . . . , Y d−1
j

)
= Xd−1

j

(
1, m j , . . . , md−1

j

)
,

where m j := Y j/X j is the slope of the segment from qn = (0, 0) to q j = (X j , Y j ).
Since the X j are positive we can neglect them without changing the oriented matroid,
and convex position implies that the m j are increasing: m1 < · · · < mn−1.

Hence, the sequence (λ jn) j∈[n−1] that we want to study is (at least regarding its
signs) a linear dependence among the vectors (1, m j , . . . , md−1

j ) for an increasing
sequence of m j ’s. Put differently, it is an affine dependence among the vertices of a
cyclic (d − 1)-polytope. It is well-known that the circuits in the cyclic polytope are
alternating sequences with d + 1 points [10, Thm. 6.1.11], hence they have d sign
changes. Since every dependence is a composition of circuits [10, Lem. 4.1.12, Cor.
4.1.13], hence it has at least the same number of changes.

For the case where d is odd all of the above remains true except the initial cyclic
relabelling reverts the sign of all the λi j with j > i . �

3.2 TheMorgan–Scott Obstruction in Cofactor Rigidity

In this sectionwe show that the graphobtained from K6 by removing aperfectmatching
(that is, the graph of an octahedron) is a circuit or a basis in the three-dimensional
cofactor rigidity C3, depending on whether the points are in “Desargues position” or
not. This is well-known in the theory of splines, and usually called the Morgan–Scott
split or Morgan–Scott configuration [21]. We here rework it, following [36, Exam. 4],
since we need an oriented version of it. See also [24, Exam. 41, p. 90].

Definition 3.6 (Desargues position) Let q = (q1, . . . , q6) be a configuration of six
points in convex position in the plane. Let us call upper side of the line 25 the side
containing the points 1 and 6, and lower side the other one. We say that q is positively
(resp. negatively) oriented if the intersection of the lines 14 and 36 lies in the lower
(resp. upper) side of 25. We say that q is in Desargues position if none of the two
happens, that is, if the lines 14, 25 and 36 are concurrent.

See Fig. 1 for an illustration of this concept, with points chosen along the standard
parabola. We call the concurrent case Desargues position since Desargues theorem
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Fig. 1 Two configurations of six points in convex position, chosen along the parabola. The configuration
in the left is positively oriented, the one on the right is in Desargues position

says that this concurrency is equivalent to the triangles q1q3q5 and q2q4q6 being axially
perspective.

Theorem 3.7 Consider the graph G = K6 \ {25, 36} embedded with six points q in
general position. Then,

(1) G is spanning in C3(q), hence it contains a unique dependence. This dependence
may not vanish at any edge other than 14.

(2) Assume q in convex position, and let (λi j )i j ∈ R(62) be this unique dependence.
Then λ15 �= 0 and the sign of λ14/λ15 is positive, negative, or zero, if q is positively
oriented, negatively oriented, or in Desargues position, respectively.

This statement immediately implies:

Corollary 3.8 Consider the graph G = K6 \ {14, 25, 36} embedded with six points q
in convex position. Then, G is a circuit in C3(q) if the points are in Desargues position,
and a basis otherwise.

The proof of the first part of Theorem 3.7 is easy. Let G ′ = G \ {i j} for an edge i j
different from 14. Without loss of generality assume i /∈ {1, 4}. Then G ′ has degree
three at vertex i and G ′ \ i equals K5 minus one edge. Since K5 is a circuit in C3 (for
any choice of points in general position), G ′ \ i is a basis, and hence G ′ is a basis too.
In particular, G is spanning and contains a unique circuit, and this circuit does not
vanish at the edge i j .

To prove part (2), we follow the derivation in [36, Exam. 4]. There, the following
concept is introduced as away to express the determinant of a submatrix in the cofactor
matrix C3 of a triangulated sphere.

Definition 3.9 (3-Fan) Given a graph G = ([n], E0) and a bipartition of the vertices
[n] = V0 ∪ V1, a 3-fan in (V0, V1, E0) is an orientation of G such that the vertices in
V0 have out-degree 3 and those in V1 have out-degree 0.

For a 3-fan π and a vertex i ∈ V0, let π i be the set of three edges that start at the
vertex i . The sign of π , denoted σ(π), is the sign of (π1, π2, . . .) as a permutation of
E0, with the three elements of each π i in increasing order, multiplied by (−1)r where
r is the number of edges oriented from a vertex to another with lower index.

In what follows, wewill denote byCd(q)|(E,V ) the restriction of the cofactor matrix
of q to the rows indexed by E and the column blocks indexed by V .

123



Discrete & Computational Geometry (2025) 73:973–1015 999

Definition 3.10 (Notation [qi ; q j qkql ]) For q : V → R
2, we define [qi ; q j qkql ] =

det C3(q)|({(i, j),(i,k),(i,l)},i). This determinant can be shown to be equal to |qi q j qk | ·
|qi q j ql | · |qi qkql |, where |abc| denotes the determinant of the three points [written as
(x, y, 1)].

The following statement summarizes the derivations in [36, pp. 15–17]:

Lemma 3.11 Let (V , E) be the graph of a triangulated sphere and q : V → R
2 a

position for the vertices that realizes the graph as planar. Let V0 the set of internal
vertices, V1 the three external vertices and E0 the internal edges of the graph. Then

det C3(q)|(E0,V0) =
∑

π 3-fan in {V0,V1,E0}
σ(π)[π1][π2] · · · [πn−3],

where [π i ] stands for [qi ; q j qkql ] with π i = {(i, j), (i, k), (i, l)}.
With this we can finish the proof of Theorem 3.7:

Proof of Theorem 3.7 The coefficients of a rowdependence in an (N+1)×N matrix are
the complementary minors of each row with alternating signs. In our case, our initial
matrix C3(q) has size 13 × 18 and rank 12, but we can by an affine transformation
fix the positions of vertices 1, 2 and 3 (which implies no loss of generality) and then
delete the nine columns of their three blocks, plus the three rows of the triangle they
form. This leaves us with a 10 × 9 matrix whose unique row-dependence we want to
study. The coefficients λ14 and λ15 have the same sign in the dependence if and only
if their complementary minors have opposite sign.

To compute these two signswe useLemma3.11with V0 = {4, 5, 6}, V1 = {1, 2, 3}.
For the edge 15 this is easy because the remaining edges form K6 \ {12, 13, 23, 15,

25, 36}, in which the only possible 3-fan is {41, 42, 43, 53, 54, 56, 61, 62, 64}. This
is an even permutation in which there are 8 “reversed” edges, hence the sign of the
3-fan is positive.

By Lemma 3.11, the determinant is

[4; 123][5; 346][6; 124] = |412| |413| |423| |534| |536| |546| |612| |614| |624|,
where i stands for qi . A determinant of three points is positive if they are ordered
counter-clockwise and negative otherwise. In this case the result is positive because
there are two negative determinants, 536 and 546 (here and in the rest of the proof we
assume without loss of generality that our points are not only in convex position but
also placed in counter-clockwise order along their convex hull).

Now we compute the determinant for K6 \ {12, 13, 23, 14, 25, 36}. There are two
3-fans here:

{42, 43, 46, 51, 53, 54, 61, 62, 65} and {42, 43, 45, 51, 53, 56, 61, 62, 64}.
Both are even permutations, the first one with 8 reversed edges and the second with
7. By Lemma 3.11 the determinant is

[4; 236][5; 134][6; 125] − [4; 235][5; 136][6; 124]
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= |423| |426| |436| |513| |514| |534| |612| |615| |625|
− |423| |425| |435| |513| |516| |536| |612| |614| |624|

= |126| |135| |145| |156| |234| |246| |256| |345| |346|
− |126| |135| |146| |156| |234| |245| |246| |345| |356|

= |126| |135| |156| |234| |246| |345| (|145| |256| |346| − |146| |245| |356|).

The factor |126| |135| |156| |234| |246| |345| is positive: since the points are in con-
vex counter-clockwise position every determinant |abc| with a < b < c is positive.
Hence, we ignore it. To further simplify the rest we use the Plücker relations

|145| |256| = |125| |456| + |245| |156|, |146| |356| = |346| |156| − |546| |136|.

Hence, the last factor becomes:

|145| |256| |346| − |146| |245| |356|
= |125| |456| |346| + |245| |156| |346| − |346| |245| |156| + |546| |245| |136|
= |456| (|125| |346| − |136| |245|).

Dividing again by the positive factor |456| and by |245| |346| we get that the sign of
the determinant equals

|125|
|245| − |136|

|346| = |120|
|240| − |130|

|340| ,

where we call q0 (and abbreviate as 0) the intersection point of 25 and 36. This last
expression can be rewritten in term of the angles around q0, as follows:

|120|
|240| − |130|

|340| = sin∠201

sin∠402
− sin∠301

sin∠403
= sin α

sin β
− sin α′

sin β ′ , (6)

where α, α′, β and β ′ are displayed in Fig. 2.
Looking at the figure we see that the configuration is positively oriented if, and

only if, α < β and α′ > β ′, and it is negatively oriented if the opposite inequalities
hold. Hence:

λ14λ15 > 0 ⇔ the complementary determinants have opposite sign

⇔ the complementary determinant to 14 is negative

⇔ the value of (6) is negative

⇔ α < β and α′ > β ′

⇔ the configuration is positively oriented.

�
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Fig. 2 Explanation of the last equivalence in the proof of Theorem 3.7. Each of the inequalities α < β and
α′ > β ′ is equivalent to the configuration being positively oriented

Consider now the graph K6 \ {14, 25, 36}, with vertices in convex position. That
is, K6 minus a perfect matching, which is the graph of an octahedron. Since this
graph equals G \ {14}, Corollary 3.8 implies that K6 \ {14, 25, 36} is a circuit in C3 in
Desargues position, and a basis in non-Desargues position. In particular:

Corollary 3.12 The graph K6 without the matching {14, 25, 36} is a circuit in the
polynomial rigidity matroid P3(1, 3, 4, 6, 7, 9), and a basis in the generic matroid
P3.

Proof Applying a translation to the parameters ti along the parabola produces an affine
transformation of the point configuration, hence it does not change the orientedmatroid
P . So, the statement for P3(1, 3, 4, 6, 7, 9) is equivalent to the same statement for the
more symmetric P3(−4,−2,−1, 1, 2, 4). The latter is in Desargues position, as seen
in Fig. 1. �

We can now prove that, for k = 3 and n = 9, there are positions where the rows of
the cofactor matrix do not realize the multiassociahedron as a basis collection:

Proof of Theorem 1.8 We start with the graph K6 −{16, 37, 49}, with vertices labelled
{1, 3, 4, 6, 7, 9}. Its coning at three vertices labelled 2, 5 and 8 is the graph K9 −
{16, 37, 49}. The statement in the first sentence then follows from Proposition 3.4 and
Corollary 3.8. The second sentence follows from Corollary 3.12. �

Even more strongly, we can show that in this “realization” not even the map
φ�3(9),V : |�3(9)| → S5 of Theorem 2.12 is well-defined:

Example 3.13 Let T be the 3-triangulation K9 \ {16, 37, 49}, and locate it with a
p in Desargues position, so that it contains a circuit. For example, embedding it via
P(1, 2, 3, 4, 5, 6, 7, 8, 9) in the parabola. By Theorem 1.8 T is a circuit in this embed-
ding. The vertices 1, 3, 4, 6, 7 and 9 have degree 7, so the edges incident to each of
them must have alternating signs in the circuit by Lemma 3.5. As a result, the six
relevant edges in T , which are {1, 5}, {5, 9}, {3, 8}, {4, 8}, {2, 7} and {2, 9}, all have
the same sign.
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The fact that the circuit is positive in all relevant edges implies that the map sending
�3(9) to R

k(n−2k) = R
6 (mapping each vertex to the corresponding row vector of

P(t1, . . . , t9) and extending linearly in each face) contains the origin in its image.
Hence, it does not produce a well-defined map φ�3(9),V : |�3(9)| → S5. Moreover, if
we choose positions p′ and p′′ close to p that are sufficiently generic to make T a basis
but with opposite orientations, then the degrees of the maps |�3(9)| → S5 obtained
will differ by one unit.

3.3 Cofactor Rigidity Does Not Realize1k(n), for n ≥ 2k + 6, k ≥ 3

Although our main result in this section deals with the case n ≥ 2k +6, for most of the
section we assume n = 2k + 3 and characterize exactliceversa y when does cofactor
rigidity C2k realize�k(2k +3) as a complete fan (we already saw in Theorem 1.8 that
it not always does).

With n = 2k + 3 there are exactly 2k + 3 relevant edges, namely those of the form
{a, a + k + 1}, for a ∈ [n]. These edges form a (k + 1)-star S that we call the relevant
star. We will normally consider the relevant edges in their “star order”: the cyclic
order in which {a, a + k + 1} is placed right after {a − k − 1, a}. Put differently, the
edges of the relevant star, in their star order, are

S = {{1, k + 2}, {1, k + 3}, {2, k + 3}, {2, k + 4}, . . . , {k + 1, 2k + 3}, {k + 2, 2k + 3}}.

Removing a number � of edges of the relevant star results in � paths counting as a
“path of length zero” the empty path between two consecutive edges removed.

A simple counting shows that k-triangulations with 2k + 3 vertices are of the form
K2k+3 \ {3 edges}. However, K2k+3 minus three relevant edges is not always a k-
triangulation. The necessary and sufficient condition is that the three paths obtained
removing these edges are even. This “evenness criterion” is the reasonwhy�k(2k+3)
is combinatorially a cyclic polytope of dimension 2k in 2k + 3 vertices.

In a similar way, the union of two adjacent k-triangulations is obtained removing
two relevant edges from K2k+3. We call such unions circuits since we want to realize
them as circuits in the vector configuration. The two relevant paths in a circuit C
necessarily have different parity, and the k-triangulations contained in C are obtained
removing an edge that splits the odd path into two even paths [for this to be doable in
more than one way the odd path in C must be of length at least three. But if C equals
K2k+3 minus two edges and the odd relevant path in C has length one then C contains
a (k + 1)-crossing, so we are not interested in it].

Any codimension-two face F of �k(2k + 3)), in turn, is of the form “K2k+3 minus
five relevant edges”. Let {a, b, c, d, e} be the edges in star order, so that the relevant
star minus {a, b, c, d, e} consists of five paths (some of which may have length zero,
as remarked above). The length of the elementary cycle of F depends on the parity of
the five paths, as follows (see Example 2.10 for the first three cases with k = 2):

• If the five paths are even, then the cycle has length five and the vertices of the
cycle (that is, the k-triangulations containing F) are obtained adding {a, b}, {b, c},
{c, d}, {d, e}, and {e, a}.
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• If two consecutive paths, say (a, b) and (b, c), are odd, then the cycle has length
three and its vertices are formed with {a, b}, {b, c} and {c, a}.

• If two non-consecutive paths, say (a, b) and (c, d), are odd, then the cycle has
length four and the vertices are formed with {a, c}, {c, b}, {b, d} and {d, a}.

• If only one path is even then no multitriangulation contains F . F is not really a
face.

Hence, the only case with length 5 is the one with all intervals even.
We call a k triangulation of the (2k + 3)-gon octahedral if its three missing edges

have six distinct endpoints; equivalently, if the three relevant paths in it have positive
length (observe that this needs 2k + 3 ≥ 9, hence k ≥ 3). The reason for this name is
that any such k-triangulation is, as a graph, an iterated cone (an odd number of times,
greater than 1) over the graph of an octahedron.

Lemma 3.14 Consider a configuration q in convex position. Let 1 ≤ i1 < i2 < i3 <

i4 ≤ 2k + 3 be such that C := K2k+3 \ {{i1, i3}, {i2, i4}} is a circuit and let λ be
its unique (modulo a scalar factor) dependence in the cofactor matric C2k(q); in
particular, we assume that i3 − i1, i4 − i2 ∈ {k + 1, k + 2}. Let {i ′1, i ′3} be the first
edge in the odd path of S \ {{i1, i3}, {i2, i4}} (which can be {i1 ± 1, i3} or {i1, i3 ± 1})
and let { j1, j2} be another edge in the same path at a distance d from the first. Then,
we have that

sign(λ j1 j2) = (−1)d sign(λi ′1i ′3)

if and only if the triangle formed by the three edges {i1, i3}, {i2, i4} and { j1, j2} is in
the inner side of {i1, i3} and {i2, i4} (the side of length k + 2).

In particular, if all edges with d even satisfy the condition, then the condition ICoP
is satisfied by all flips contained in C.

Proof Without loss of generality we can suppose that j1 < i1 < i2 < j2 < i3 =
i1 + k + 1 < i4 = i2 + k + 2. Then i ′1 = i1 − 1, i ′3 = i3, and by the definition of star
order, j1 + j2 = i ′1 + i ′3 − d = i1 + i3 − d − 1.

In the circuit, the degree of i3 is 2k + 1 and by Lemma 3.5,

sign
(
λi ′1i ′3

)
= sign

(
λi1−1,i3

) = (−1)i1− j1−1 sign
(
λ j1i3

)

so the condition to be checked reduces to

sign
(
λ j1 j2λ j1i3

) = (−1)d+1+i1− j1 = (−1)i3− j2 .

The circuit is obtained by a repeated coning from the K6 without two diagonals,
so that the original six vertices become { j1, i1, i2, j2, i3, i4}. The sign of an edge is
inverted whenever we make a cone with the new vertex between the endpoints of that
edge. As a result, the sign of λ j1 j2λ j1i3 is inverted i3 − j2 − 1 times exactly, so in the
graph at the beginning, we should have λ14λ15 < 0.

By Theorem 3.7, this happens when the triangle formed by 14, 25 and 36 is neg-
atively oriented. After making the cones, the configuration { j1, i1, i2, j2, i3, i4} is
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negatively oriented and the triangle is in the side between i3 and i4, which is the inner
side of the two edges. �

Observe that a relevant edge with n = 2k + 3 leaves k points of the configuration
on one side and k + 1 on the other side. We call the one with k + 1 points the big
half-plane defined by the relevant edge.

Theorem 3.15 Let q = (q1, q2, . . . , q2k+3) be a configuration in convex position in
R
2. The following are equivalent:

(1) C2k(q) realizes �k(2k + 3) as a complete fan.
(2) For every octahedral k-triangulation T the big half-planes defined by the three

edges not in T have non-empty intersection.
(3) The relevant star has “non-empty interior” (that is, the big half-planes of all

relevant edges have non-empty intersection).

Remark 3.16 It is interesting to note that, when condition (3) holds, any point o taken in
the “interior” of the relevant star makes the vector configuration {q1−o, . . . q2k+3−o}
be a Gale transform of the cyclic 2k-polytope with 2k + 3 vertices. That is to say, the
theorem says that q realizes �k(2k + 3) as a fan if and only if there is a point o ∈ R

2

such that q−o is the Gale transform of a cyclic polytope. It seems to be a coincidence
that the cyclic polytope in question is in fact isomorphic to �k(2k + 3).

Proof The implication (3) ⇒ (2) is trivial. Let us see the converse. First observe that,
by Helly’s Theorem, the intersection of all half-planes is non-empty if, and only if, the
intersection of every three of them is non-empty. So, we only need to show that, when
condition (3) is restricted to three half-planes, only the case where the half-planes
come from the missing edges in an octahedral triangulation matters.

So, consider three relevant edges {{i1, i4}, {i2, i5}, {i3, i6}} and their corresponding
big half-planes. We look at the three paths obtained in the relevant star when removing
these three edges. If at least one path (and hence exactly two) has odd length, then
the intersection of the three big half-planes is automatically non-empty: let the even
interval be (i6, i1). Then the edge {i2, i5} crosses the other two and leaves both i1 and
i6 in its big half-plane, so we can always find a point in the intersection of the three
half-planes in a neighborhood of the intersection of the lines containing {i1, i4} and
{i3, i6}.

Similarly, if two of the three edges are consecutive (say i6 = i1), then the inter-
section of their two half-planes is an angle of the relevant star. This angle necessarily
meets both of the half-planes defined by the third edge {i2, i5}, so the intersection is
again non-empty.

That is, the only case of three edges whose big half-planes might perhaps produce
an empty intersection is when the three paths they produce are even and non-empty.
This is exactly the same as saying that they are the threemissing edges of an octahedral
k-triangulation, which proves (2) ⇒ (3).

Now, the implication (1)⇒ (2) follows from the previous lemma: if the complete fan
is realized, the condition ICoP is satisfied in the flips from an octahedral triangulation,
in particular, the flip from K2k+3 \ {{i1, i3}, {i2, i4}, { j1, j2}} that removes {i ′1, i ′3} and
inserts { j1, j2}, with d even. By Lemma 3.14, this is equivalent to saying that the big
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half-planes of {i1, i3}, {i2, i4} and { j1, j2} intersect, which covers all the cases in (2).
So it only remains to show that (2) ⇒ (1).

If (2), or equivalently (3), holds then we know, by the previous argument, that flips
from an octahedral triangulation satisfy ICoP. These are exactly the flips whose two
missing edges do not share a vertex. The other flips must be of the form K2k+3 minus
two edges with a common end-point. Hence, they contain a K2k+2, in which the signs
are as predicted by Lemma 3.5 and the ICoP property also holds in them.

To finish the proof, we just need to check the condition about elementary cycles of
length 5. Given one of these cycles, adding three consecutive edges of the five in the
cycle gives the graph of a flip. If two edges in the cycle share a vertex, we can add the
other three edges to get the graph of a flip that contains a K2k+2, which has the two
flipping edges as diameters and the other edge with length k, so it has opposite sign.
Otherwise, the five edges are disjoint.

In this case, let {a, b, c, d, e} be the edges. By the condition (3), their five big half-
planes have non-empty intersection. Without loss of generality, suppose that b is a
side of that intersection. Adding a, b and c, we get the graph of a flip. As b is a side
of the intersection, the triangle formed by b, d and e is inside the big half-planes of d
and e, so we can again apply Lemma 3.14 to get that b has opposite sign to a and c,
as we wanted to prove. �
Corollary 3.17 For every k there are point configurations q such that C2k(q) realizes
�k(2k + 3) as a fan. For example, the vertices of a regular (2k + 3)-gon.

Proof The barycenter of the 2k + 3-gon lies in the interior of the relevant star. �
This theorem also implies Theorem 1.9. Cofactor rigidity with points in convex

position cannot realize �k(n) as a fan for n ≥ 2k + 6 and k ≥ 3:

Proof of Theorem 1.9 Let q = (q1, . . . , qn) be a configuration in convex position. By
Lemma 2.3 we only need to show the case n = 2k + 6.

Let I1 = [n] \ {4, k + 5, k + 9} and I2 = [n] \ {2, 6, k + 7}. Then q|I1 and q|I2 are
configurations with 2k + 3 points, to which we can apply Theorem 3.15. We consider
their respective k-triangulations T1 = K I1 \ {{1, k + 4}, {3, k + 6}, {5, k + 8}} and
T2 = K I2 \{{1, k +4}, {3, k +6}, {5, k +8}}. This theorem tells us that in order for qI1
to realize�k(2k +3)we need (q1, q3, q5, qk+4, qk+6, qk+8) to be negatively oriented,
and in order forqI2 to realize itweneed the sameconfiguration to bepositively oriented.
This is a contradiction, so one of the two does not realize �k(2k + 3). Lemma 2.3
implies that q does not realize �k(2k + 6). �

4 Positive Results on Realizability, for k = 2

In this section, we prove Conjecture 1.4 for k = 2 and Theorem 1.7.

4.1 2-Triangulations Are Bases inP2(n)

To prove Theorem 1.5 (that is, Conjecture 1.4 for k = 2) we need operations that send
a 2-triangulation in n vertices to one in n +1 vertices, and vice versa. These operations
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are called the inflation of a 2-crossing, and the flattening of a star. They are defined
for arbitrary k in [27, Sect. 7], but we use only the case k = 2.

An external 2-crossing is a 2-crossing with two of the end-points consecutive.
An external 2-star is one with three consecutive points. Equivalently, one using a
boundary edge (an edge of length two). Let u, v, w be three consecutive vertices of
the (n + 1)-gon, and consider the n-gon obtained by removing the middle vertex v.
The identity map on vertices then induces a bijection between external 2-stars in the
(n + 1)-gon using the boundary edge {u, w} and external 2-crossings in the n-gon
using the vertices u, w. If, to simplify notation, we let [n + 1] and [n] be our vertex
sets, with u = n, v = n + 1 and w = 1, the bijection is

S = {{n, 1}, {1, c}, {c, n + 1}, {n + 1, b}, {b, n}} ↔ C = {{n, b}, {1, c}}.

From now on let us fix an external star S ⊂ ([n+1]
2

)
and its corresponding external

crossing C ∈ ([n]
2

)
, of the above form. Consider the set lk2(S)0 (respectively lk2(C)0)

of relevant edges that do not form a 3-crossing with S, (respectively, with C); they
are, respectively, the sets of vertices in lk�2(n+1)(S) and in lk�2(n)(C).

Theorem 4.1 ([27, Sect. 7]) The following map is a bijection

φ : lk2(S)0 → lk2(C)0,

{i, j} �→ {i, j} if n + 1 /∈ {i, j},
{i, n + 1} �→

{
{i, n} if 1 ≤ i < b,

{1, i} if c < i ≤ n,

and it induces an isomorphism of simplicial complexes

φ̂ : lk�2(n+1)(S)
∼=−→ lk�2(n)(C).

Proof The map is well defined because {i, n +1} is in lk2(S)0 if and only if i /∈ [b, c].
It is injective because the only edges that could have the same image are {i, n} and

{i, n + 1} if 1 ≤ i < b or {1, j} and { j, n + 1} if c < j ≤ n. But in the first case
{i, n} would form a 3-crossing with {b, n +1} and {c, 1}, and in the second case {1, j}
would form a 3-crossing with {b, n} and {c, n + 1}.

It is surjective because if {i, j} ∈ ([n]
2

)
is not in the image of φ then the first case in

the definition implies {i, j} /∈ lk2(S)0, but the only edges in
([n]
2

) \ lk2(S)0 are those
with 1 ≤ i < b and c ≤ j < n. Among these, the only ones in lk2(C)0 are those with
i = b or j = c, which are in the image of φ.

To show that it induces an isomorphism of the complexes we need to check that if
T ⊂ ([n+1]

2

)
is 3-crossing-free and contains S then φ(T \S)∪C is also 3-crossing-free,

and vice versa. These are essentially in [27, Lems. 7.3 and 7.6]. �
Definition 4.2 (Flattening of a star, inflation of a crossing) Let e ∈ ([n+1]

2

)
be a

boundary edge, let S ⊂ ([n+1]
2

)
be an external 2-star using e, and let T be a 2-

triangulation containing S.
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Let φ̂ be the isomorphism of Theorem 4.1 (after a cyclic relabelling sending e to
{n, 1}). We say that the 2-triangulation φ̂(T ) is the flattening of e in T , and denote it
T e. We also say that T is the inflation of C in φ̂(T ).

The crucial fact that we need is, under certain conditions, inflation of a 2-crossing
is a particular case of a vertex split.

Definition 4.3 (Vertex d-split) A vertex d-split in a graph G = (V , E) consists in
changing a vertex u ∈ V , with degree at least d −1, into two vertices u1 and u2 joined
by an edge and joining all neighbours of u to at least one of u1 or u2, and exactly d −1
of the neighbors to both.

Put differently, the graph G ′ with vertex set V \ {u} ∪ {u1, u2} is a vertex d-split
of a graph G on V if, and only if: G ′ contains the edge u1u2, the contraction of that
edge produces G, and u1 and u2 have exactly d − 1 common neighbors in G ′.

Lemma 4.4 ([27, Proof of Thm. 8.7]) Inflation of a “doubly external” 2-crossing of
the form C = {{n, b}, {1, n −1}} in a 2-triangulation T is an example of vertex 4-split
at n, with new vertices n and n + 1. The inflated star has four consecutive vertices
n − 1, n, n + 1 and 1.

Proof Let T ′ be the inflated 2-triangulation. Plugging c = n −1 in Theorem 4.1 gives

φ : lk2(S)0 → lk2(C)0,

{i, j} �→ {i, j} if n + 1 /∈ {i, j},
{i, n + 1} �→ {i, n} if 1 ≤ i < b,

{n, n + 1} �→ {1, n},

which implies that the relevant edges of T are indeed obtained from those of T ′ by
identifying the vertices n and n +1. The same happens for the irrelevant and boundary
edges (which are independent of T and T ′). It also implies that all the neighbors of n
in T are neighbors of at least one of n and n + 1 in T ′.

Hence, we only need to check that n and n+1 have exactly three common neighbors
in T ′. This holds since n − 1, 1 and b are common neighbors of n and n + 1 in T ′,
and any additional common neighbour b′ would create a 3-crossing with {n − 1, 1}
and either {n, b} if b′ > b or {n + 1, b} if b′ < b. �

That vertex d-splits preserve independence in both Rd(n) and Cd(n) is a classical
result [35, p. 68 and Rem. 11.3.16]. Preserving independence holds also inHd(n) and
Pd(n):

Proposition 4.5 ([7, Prop. 4.10]) Corank does not increase under vertex d-split
neither inHd nor inPd . Hence, vertex d-splits of independent graphs are independent,
both in Hd and Pd .

This has the following consequence. We only state and prove it for Hd(q) (which
includes the case of Pd(t) when points are chosen along the moment curve) but the
same statement, with the same proof, holds also for Rd(q) and Cd(q).
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Corollary 4.6 Let q = (q1, q2, . . . , qn) be a configuration in R
d (resp. in the moment

curve) and assume that a certain graph G is a circuit in Hd(q). Let G ′ be a vertex
d-split of G and consider it embedded in positions q′ that are generic (resp. generic
along the moment curve) and sufficiently close to q.

Then, G ′ is either independent in Hd(q′) or it contains a unique circuit. If the latter
happens, then the signs of the non-splitting edges are preserved.

Proof First perturb q to be generic, which either makes it independent or maintains it
being a circuit. Proposition 4.5 implies that G ′ is independent in the first case and that
it is either independent or it contains a unique circuit in the second case.

So, we only need to show that if the latter happens then all the non-splitting edges
are part of the circuit and that they preserve their signs. That they are part of the circuit
follows again from the proposition: if e ∈ G ′ is not a splitting edge then it comes from
an edge of G. Now, since G was a circuit, G \ e was independent; hence G ′ \ e is also
independent, so e belongs to the circuit.

To see that the signs are preserved, consider moving the points continuously from q′
back to q (at the end, the two vertices created in the split collide into the same position
but we can still consider them two different vertices of the graph G ′, with a degenerate
embedding). Since the positions of q′ are taken sufficiently close to those of q, this
continuous motion can be made through positions at which G ′ always has a unique
dependence, and such that the signs of the dependence do not change except perhaps
at the end of the path, when we get to q. At the end of the path the dependence must
degenerate to the original (unique) dependence of G, in the sense that the coefficients
of non-splitting edges are the same in G and G ′, and the coefficients of the splitting
edges in G ′ add up to those in G. Now, since the signs of the non-splitting edges are
never zero along the path and still non-zero at the end, by continuity they must be
preserved. �

Dependence, however, is not preserved. See example after [7, Prop. 4.10].

Definition 4.7 (Ears) A star in a 2-triangulation is doubly external if it has four con-
secutive vertices, like the ones that can be obtained in Lemma 4.4.

An ear of the 2-triangulation is an edge of length 3.

For every ear {a, a + 3} in a 2-triangulation T there is a unique star in T using the
vertices a, a + 1, a + 2 and a + 3 (hence, a doubly external star), and it has {a, a + 2},
{a, a + 3} and {a + 1, a + 3} as three consecutive sides. We call this star the star
bounded by the edge {a, a + 3}.
Theorem 4.8 ([27, Cor. 6.2]) The number of ears in a 2-triangulation is exactly 4
more than the number of internal stars.

Proof of Theorem 1.5 This is proved by induction in n. For n = 5, the only 2-
triangulation is K5, that is a basis in 4 dimensions.

Suppose the statement is true for n and take a 2-triangulation T ′ on n + 1 vertices.
By Theorem 4.8, T ′ has at least four ears. Without loss of generality, suppose one of
them is {n−1, 1}. Then it bounds a doubly external star with the vertices n−1, n, n+1
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and 1. Let b be the remaining vertex in the star. Then, T ′ can be obtained from a 2-
triangulation T in n vertices inflating the 2-crossing {{n, b}, {1, n − 1}}. By Lemma
4.4, this operation is a vertex 4-split, that preserves independence by Proposition 4.5.

�

4.2 Realizing Individual Elementary Cycles

We now prove some results for realizability as a fan in the case k = 2. Among other
things, we show that for n ≤ 7 any position of the points in the plane will realize the
multiassociahedron �2(n) as a fan via the cofactor rigidity matrix.

Corollary 4.9 For n = 2k + 2, any choice of q1, . . . , q2k+2 ∈ R
2 in convex position

makes the rows of the cofactor matrix realize �k(n) as a polytopal fan.

Proof In this case, all the k-triangulations are K2k+2 minus a diameter. The simplicial
complex is in this case the boundary of a (k − 1)-simplex. We also know that K2k+2
is a circuit, therefore all the k-triangulations are bases.

In this circuit, Lemma 3.5 implies that the sign of each edge coincides with the
parity of its length. The flipped edges in this case are two of the diameters, that have
all the same sign. Hence, the condition ICoP in Corollary 2.14 is true. The condition
on the elementary cycles is trivial because all of them have length three.

This implies that every position of the points realizes the boundary of the simplex
as a complete fan. But realizing a simplex as a complete fan is equivalent to realizing
it as a polytope, so the corollary is proved. �
Corollary 4.10 For k = 2 and n = 7, any choice of q1, . . . , q7 ∈ R

2 in convex position
realizes �2(7) as a fan.

Proof By Theorem 3.15, the fact that a position realizes the fan is equivalent to the
interior of the 3-star formed by the seven points being non-empty. This is trivial,
because any three edges without common vertices are consecutive in the circle, and
the seventh vertex will always be in the intersection. �

We now look at the case k = 2 and n ≥ 8. We are going to show that for each
elementary cycle there are positions that make that cycle simple (and, in particular,
for every flip there is an embedding that makes ICoP hold for that flip). Of course,
this does not imply that �2(n) can be realized as a fan; for that we would need fixed
positions that work for all cycles, not one position for each cycle. But this implication
would hold if 2-triangulations were basis at arbitrary positions (Theorem 1.7).

We need the fact that, in this case, neither a flip nor an elementary cycle of length
5 can use all the doubly external stars in a 2-triangulation.

Lemma 4.11 Let T be a 2-triangulation on at least 8 vertices.

(1) For any relevant edge e in T there is a doubly external star in T \ {e}.
(2) If e and f are two relevant edges in T and the elementary cycle lk�2(n)(T \{e, f })

has length five then there is a doubly external star in T \ {e, f }.
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Proof A star cannot be bounded by more than two ears, and if a star S is bounded by
two ears then its five vertices are consecutive. That is, the edges of S are the two ears
plus three boundary edges. We call such stars triply external.

Two triply external stars cannot have a common edge (except for n = 6, but we are
assuming n ≥ 8). This, togetherwith the fact that T has at least four ears (Theorem4.8)
implies part (1): if T has two triply external stars then (at least) one of them does not
use e, and if T has one triply external star, or none, then the existence of four ears
implies that there are at least three doubly external stars in T , and only two of them
can use e.

We now look at part (2) of the statement. By the proof of Corollary 2.9, for the link
of T \ {e, f } to have length five we need that there is a star S0 in T using both e and
f , plus another two stars Se and S f using each one of e and f . We want to show that
there is a doubly external star that is not any of these three (these three may or may
not be doubly external, or external).

Suppose, to seek a contradiction, that no star other than these three is doubly
external. Then every ear bounds one of these three stars. Since only triply external
stars are bounded by two (and then only two) ears, the total number of ears is at most
three plus the number of triply external stars among S0, Se and S f . The three cannot
be triply external (because S0 shares edges with both Se and S f ), so the number of ears
is at most five. But five ears would imply Se and S f to be triply external, in particular
e and f to be ears bounding them, and S0 to be doubly external, bounded by the fifth
ear, different form e and f . In particular, the five edges of S0 would have to be two
boundary edges and three ears, which can only happen with n = 7 (because two of
the ears would need to share a vertex and have their other end-points consecutive).

So, there are at most four ears in T and, by Theorem 4.8, exactly four. Moreover,
they all bound S0, Se or S f . By Theorem 4.8 again, this implies that each of the other
n −7 stars in T is an external star, but not a doubly external one. That is, each of these
n −7 stars contains one and only one of the n −7 boundary edges, and the other seven
boundary edges are distributed among S0, Se and S f .

Let T0 be the 2-triangulation of the 7-gon obtained by flattening one by one the
n − 7 boundary edges not in S0, Se or S f . Observe that, when we flatten a singly
external star, all other stars have the same number of boundary edges before and after
the flattening. In particular, the last star that was flattened was still singly external
before the flattening, so it becomes a singly external 2-crossing (that is, a crossing of
two relevant edges) in T0. At the end, in T0 only S0, Se and S f survive, and the edges
e and f are such that their link is a cycle of length five (because all throughout the
process the link of T \ {e, f } preserves its length, by Theorem 4.1).

The contradiction is that for the cycle to be of length five we need the two relevant
edges in T \ {e, f } to be non-crossing, as in the third picture of Example 2.10, but
those two edges must cross because they are the 2-crossing obtained form the last star
that was flattened. �

Theorem 4.12 (1) For each pair of adjacent facets in �2(n) there is a choice of param-
eters for P4(t1, . . . , tn) that makes the corresponding circuit of the polynomial
rigidity matrix satisfy ICoP.
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(2) For each elementary cycle with length 5 in �2(n) there is a choice of parameters
for P4(t1, . . . , tn) that makes the cycle simple.

Proof The proof goes by induction in n. For n ≤ 7 it is already proved in Corollaries
4.9 and 4.10, so suppose it is true for n and prove it for n + 1 ≥ 8.

For the first part, let T1 and T2 be two 2-triangulations we are looking at, and let
e, f be the edges in T1 \ T2 and T2 \ T1, respectively. Part (1) of the previous lemma
implies that there is a doubly external star S ⊂ T1 \ {e} = T1 ∩ T2. By Theorem 4.1,
flattening S in T1 and T2 we get 2-triangulations T ′

1 and T ′
2 that still differ by a flip, and

by the inductive hypothesis the sign condition ICoP will hold in the circuit T ′
1 ∪ T ′

2 for
certain choice of the parameters ti . Now we return to the flip graph in n + 1 vertices
by the reverse operation of flattening a doubly external star, which is a vertex split by
Lemma 4.4. If we keep the two split vertices close enough, the signs of the non-split
edges (which include the flip edges e and f ) will not be altered (Corollary 4.6), and
the ICoP condition still holds.

For the second part, let our elementary cycle be (the link of) T \ {e, f }, for a 2-
triangulation T and relevant edges e, f ∈ T . By the previous lemma, there is a doubly
external star S ⊂ T \ {e, f }.

Again, we can flatten S, assume by the inductive hypothesis that the sign condition
in part (3) of Corollary 2.14 holds in the flattened 5-cycle, and return to n + 1 vertices
by a vertex split that will preserve the sign condition if the split vertices are kept close
enough. �
Proof of Theorem 1.7 Suppose, for a contradiction, that all positions realize �2(n) as
a basis collection, but there is a position t that does not realize it as a fan. This implies
that, at t, there is an elementary cycle with wrong signs. But, by Theorem 4.12, there
is another position t′ giving the right signs in that cycle.

Consider now a continuous transition between t and t′. At some point, the signs need
to change, either by attaining condition ICoP at a flip, or by making the cycle simple.
But any of the two ways would involve collapsing some cone to lower dimension at
that point, which does not happen by hypothesis. �

4.3 Experimental Results

In this section we report on some experimental results. In all of them we choose real
parameters t = {t1 < t2 < · · · < tn} (actually we choose them integer, so that they are
exact) and computationally check whether the configuration of rows of P2k(t1, . . . , tn)

realizes �k(n) first as a collection of bases, then as a complete fan, and finally as the
normal fan of a polytope.

For the experiments we have written python code which, with input k, n and the
parameters t, first constructs the set of all k-triangulations and then checks the three
levels of realizability as follows:

(1) Realizability as a collection of bases amounts to computing the rank of the sub-
matrix P2k(t)|T corresponding to each k-triangulation T .

(2) For realizability as a fan we first check the ICoP property, which amounts to
computing the signs of certain dependences among rows of P2k(t). There is une
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such dependence for each ridge in the complex, so the total number of them is
N D/2where N is the number of k-triangulations onn points and D = k(n−2k−1)
is the dimension of �k(n).
If ICoP holds then we check that a certain vector lies in the positive span of a
unique facet of the complex. We do this for the sum of rays corresponding of a
particular k-triangulation, the so-called greedy one. This property, once we have
ICoP, is equivalent to being realized as a fan by parts (2) and (3) of Theorem 2.12.
The greedy k-triangulation is the (unique) one containing all the irrelevant edges
and the edges in the complete bipartite graph [1, k] × [k + 1, n], and only those.
It is obvious that these edges do not contain any (k + 1)-crossing and we leave it
to the reader to verify that the number of relevant ones is indeed k(n − 2k − 1).

(3) For realizability as a polytopewe then need to check feasibility of the linear system
of inequalities (1) from Lemma 2.16.
Here, without loss of generality we can assume that the lifting vector fi j is zero
in all edges of a particular k-triangulation, and we again use the greedy one. This
reduces the number of variables in the feasibility problem from n(n −2k −1)/2 to
(n − 2k)(n − 2k − 1)/2, a very significant reduction for the values of (n, k) where
we can computationally construct�k(n). Apart of the computational advantage, it
saves space when displaying a feasible solution; in all the tables in this section we
show only the non-zero values of fi j , which are those of relevant edges contained
in [k + 1, n]. Note that taking all the fi j ’s of a particular k-triangulation equal to
zero makes the rest strictly positive.

Remark 4.13 If a choice of parameters realizes �k(n) (at any of the three levels) for
a certain pair (k, n) then deleting any j of the parameters the same choice realizes
�k′(n − j) for any k′ with k − j/2 ≤ k′ ≤ k. This follows from Lemma 2.3 plus the
fact that each of the three levels of realization is preserved by taking links.

Our first experiment is taking equispaced parameters. Since an affine transformation
in the space of parameters produces a linear transformation in the rows of P2k(t),
we take without loss of generality t = (1, 2, 3, . . . , n). We call these the standard
positions along the parabola.

For k ≥ 3 and n ≥ 2k + 3 we show in Theorem 1.8 that standard positions do not
even realize �k(n) as a collection of bases. Hence, we only look at k = 2.

Lemma 4.14 Let t = {1, 2, . . . , n} be standard positions for the parameters. Then:

(1) Standard positions for P4(t) realize �2(n) as the normal fan of a polytope if and
only if n ≤ 9.

(2) The non-standard positions t = (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) for P4(t) realize
�2(10) as the normal fan of a polytope.

(3) Standard positions for P4(t) realize �2(n) as a complete fan for all n ≤ 13.

Proof For part (1), by Lemma 4.14 we only need to check that n = 9 works and
n = 10 does not. For n = 8, 9 Table 1 shows values of ( fi j )i, j that prove the fan
polytopal. For n = 10 the computer said that the system is not feasible [which finishes
the proof of part (1)], but modifying the standard positions to the ones in part (2) it
gave the feasible solution displayed in Table 2.
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Table 1 Height vectors ( fi j )i, j realizing �2(8) (left) and �2(9) (right) as a polytopal fan with rays in
P4(1, 2, . . . , n) (standard positions)

i, j fi j i, j fi j i, j fi j

3, 6 3 3, 6 7 4, 8 33

3, 7 14 3, 7 29 4, 9 95

3, 8 36 3, 8 76 5, 8 6

4, 7 3 3, 9 165 5, 9 42

4, 8 16 4, 7 9 6, 9 16

5, 8 6

Table 2 A lifting vector that leads to a polytopal realization of the multiassociahedron for k = 2 and
n = 10, with (ti )i=1,...,10 = (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20)

i, j fi j i, j fi j i, j fi j

3, 6 44 4, 7 45 5, 9 1062

3, 7 161 4, 8 260 5, 10 42,019

3, 8 424 4, 9 1722 6, 9 196

3, 9 1733 4, 10 60,296 6, 10 13,048

3, 10 46,398 5, 8 106 7, 10 6146

For part (3), the computer checked the conditions for a complete fan for n =
8, 9, 10, 11, 12, 13. Only the last one would really be needed; this last one took about
7 days of computing in a standard laptop. �

Let us mention that for n = 11 we have tried several positions besides the standard
ones. All of them realize the complete fan but none realize it as polytopal. Among the
positions we tried are the “equispaced positions along a circle” that we now explain.

The standard parabola is projectively equivalent to the unit circle. Since P2k(t)
is linearly equivalent to the cofactor rigidity matrix C2k(q) for the points q of the
parabola corresponding to the parameters t, it makes sense to look at the values of t
that produce equispaced points (that is, a regular n-gon) when the parabola is mapped
to the circle. We call those values of t, “equispaced along the circle”. They are

ti = tan

(
α0 + i

n
π

)
, i = 1, . . . , n (7)

for any choice of α0, with a symmetric choice being α0 = −(n + 1)π/2n.
For k = 3, n = 10, we already know that standard positions do not even give a

basis collection. We have tried to strategies to realize �3(10): perturbing the stan-
dard positions slightly we have been able to recover independence (that is, a basis
collection), but not the fan (the ICoP condition was not satisfied). Using equispaced
positions along the circle via (7) the positions realize the polytope.

For k = 3, n = 11 and for k = 4 and n = 12, 13 equispaced positions realize the
fan but not the polytope, even after trying several perturbations.
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Lemma 4.15 (1) For the same positions t of Table 2, P6(t) realizes �3(10) as the
normal fan of a polytope. The following are valid values of f :

i, j fi, j

4, 8 4
4, 9 69
4, 10 16, 074
5, 9 14
5, 10 10, 281
6, 10 3948

.

(2) Equispaced positions along the circle realize �k(n) as a fan for (n, k) ∈
{(3, 11), (4, 12), (4, 13)}.
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