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Abstract. In this paper, we prove a couple of new nonlinear functional
inequalities of Sobolev type akin to the logarithmic Sobolev inequality.
In particular, one of the inequalities reads

Oz
/sl arctan (%) Ozudx > arctan (HUHWLI(SIJ lullyirr sty -

Then, these inequalities are used in the study of the nonlinear arctan-
fast diffusion equation

Osu — O arctan (azu) =0.

For this highly nonlinear PDE, we establish a number of well-posedness
results and qualitative properties.
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1. Introduction and Main Results

Functional inequalities are at the core of functional analysis and partial dif-
ferential equations. In this paper, we prove the following nonlinear Sobolev
inequality:

Oy
/aMm(lMMQMMEMGMGMMWWMNMmmuwy
st u

Such a nonlinear Sobolev inequality has the same flavor as the logarithmic
Sobolev inequality [16]

2 2 1 2 / 2
< = — .
/ u 1og(u )dx < = log (6xu) dx

We will make use of this inequality in the study of the following one-dimensional
arctan-fast diffusion equation

Oyu — Oy arctan (&Eu) =0 (x,t)onS"x[0,7], (1.1a)
u

u(z,0) = up(xr) =z on S (1.1b)

We will focus on the well-posedness for such equation and, in particular,
we will establish the global existence of solutions for initial data satisfying
certain properties.

There are several closely related problems in the literature. For instance,
Equation (1.1) is a nonlinear diffusion somehow similar to the logarithmic fast
diffusion equation

@u—m<%“
u

) =0 (z,t) on S' x [0,7). (1.2)

In fact, using
arctan(y) = y + h.o.t.

Equation (1.2) can be obtained from (1.1) when the effect of higher order
nonlinearities is neglected. Remarkably, Eq. (1.2) is related to the Ricci flow
and due to that, this equation has been extensively studied in the past years
by many authors (see Ref. [23] and the references therein).

We could also quote the fast diffusion equation

Oiu = Oy (%ﬁ) with o > 1.
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Equation (1.1) is also related to the following nonlocal fast diffusion equation:

Opu — O, arctan (T) =0 (z,t) on S' x [0,T], (1.3)

Hu(z) ! V/ ﬂdy,

T o Jo an (559)

is the Hilbert transform. Indeed, Eq. (1.3) is obtained from (1.1) by replacing
the derivative inside the arctan(-) by a term proportional to the Hilbert
transform:

where

0, — —H.

A similar procedure establishes relations between the KAV and the Benjamin—
Ono equation or between the Sine-Gordon and the Sine-Hilbert equation
[13]. Equation (1.3) was derived by Steinerberger [22] when studying how
the distribution of roots behaves under iterated differentiation (see also Refs.
[1,20] for the mathematical study of some of its properties).

Actually, the principal reason that led us to study problem (1.1) is Eq.
(1.3). Roughly speaking, our main aim is to understand how the nonlinear
term driven by the arctan(-) allows to prove the existence in the singular case,
namely where u reaches zero. Hence, a first step is to analyze what happens
in the local case (1.1).

Finally, since previous Eq. (1.1) can be written as

B udu — (9yu)?
u? + (Opu)’

we observe that there is a striking similarity with the one-dimensional rela-
tivistic heat equation

2 2 2
atu = 81; < Zuamu 2) == uazu + (8IU) - u(aa:u)2 “ + aﬂ?u 3/2 )

—0, (1.4)

see Refs. [2-9,11].

1.1. Main Results

As anticipated, one of the main results of this paper is

Theorem 1.1. Let 0 < u € WH(SY) be a function such that
||UHL1(S1) =1.

Then, the following nonlinear Sobolev inequalities hold true:

Ozt
/ arctan () Oyudx > arctan <||UHW1,1(81)) [ullyiria g -
st u

2 2
[ axctan (W)delamn( el 1) ) ([ S
st u

u A Ozulull Lty ) OulullLr s
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The assumption |uz1g1y = 1 allows us to write the inequalities in
Theorem 1.1 in a simpler form. However, this hypothesis is not necessary
and an analogous result can be proved without this simplification.

We will make use of Theorem 1.1 in the study (1.1), proving the follow-
ing results.

Theorem 1.2. Let 0 < ug € H3(S') be the initial data. Then, there exists a
time 0 < T < oo, T = T(JJug|| fr3, min, ug(x)) and a unique positive solution
to (1.1)

0 <wu e C(0,T), H3(SY)).
Theorem 1.3. Let 0 < ug € H3(S') the initial data for (1.1). Then, as long
as the unique positive solution u to (1.1) ewxists, the following properties hold:

o Mazimum principle: ||u(t)| L1y < |luol| Lo (s,
o Mass conservation: ||u(t)| sty = [Juollz1s),
e FEntropy balance:

where

H(t) = /S w(w, ) log(u(x, 1)) — u(z, ) + 1de

D(t) = /31 arctan (E)wu(m’t)) Outla ) dz.

u(x,t) u(zx,t)

In particular, invoking Theorem 1.1,

L a(3) 21,1 g1 ()12, 11 g
H(t) + — / arctan ds < F(0).
am Jo (IHazu(s)lu(s)llLl(sl) 10z u(s)|u(s)ll L1 st)

and

e FEnergy balance:

t
1
Sllu(®) = (wo) 72 +/0 D(s)ds = 5 lluo = (uo)|Z2(s1),

D(t) = / arctan <3xu> Ozudx.
s1 u

In particular, invoking Theorem 1.1,

t
() — o2, + /0 arctan ([[u(s) 1 @) ) 1600l gry ds < lluo — (uo) 32 gy

e Fnergy decay:

arctan(Clluo—=(uo) 251 ))
Tao— (ol T2, ¢

N

lu(t) — (uo)llL2sty < [luo — <u0>||L2(Sl)€_
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We study further properties of solutions to (1.1) passing to the following
formulation of the problem.
We introduce the complex function z(z,t) = u(x,t) + i0,u(x, t) and, passing
to polar coordinates, we rewrite (1.1) as

2 2 _ tan(0) . 926 _ 20 0,0
u(1 + tan®(0))0:0 = 97 arctan 1+ 02 0,0 = 16 1102 o2 + tan(6) 1102
being
Oru(z,t)
tan(f(x, 1)) = ———=.
(60.1) =

Theorem 1.4. Let 0 < ug € H3(S') the initial data for (1.1). Then, as long
as the unique positive solution u to (1.1) ewxists, the following properties hold:
e Boundedness of the slope:
10| Loe 1) < NOO) oo 51y -
Furthermore,
max, uo(x)
[02u(E)|| poc g1y < [[02(0)[| poc s min, o (7)

e Lyapunov functional:
d 9 62 6
@ J. u(1 + tan<(6)) <2 + 4> dz
0

:—/ (8x9)2dx—/ w@tam(@)dx
Sl

st 1462
1 (0.0)%6%(2 + 6?) 9

<0,

i.e.,

00 (14 (20)7) (ot (%20 et (2101 )
2 [ o (14 (Z20Y) (sctan? (22) vt (%20 ) g

In particular, we deduce that
u € L0, T; W (Sh)) n L2(0, T; H*(S)).

N

We also prove two different existence results to problem (1.1) under
lower regularity assumptions on the data.

In particular, we prove suitable uniform bounds to solutions of the ap-
proximating problem

Oyu,, — O, arctan (8211,1) = in S x (0,7,),
U (2,0) = Ji * ug(x) in S,

whose existence follows from Theorem 1.2.
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We first exploit the Lyapunov functional found in Theorem 1.4 to obtain
the following result.

Theorem 1.5. (Existence through Lyapunov functional)
Letug € H(S') withug > 0, and Harctan ( ”“0) H o) suitably small.
Then, solutions to problem (1.1) verify

/ (u(t)D2u(t) — (D,u(t))?)
o ut) (2(0) + Oruld)?)

2 ¢ (““Wﬁu(w*(amu(t»?)?
) </ (uabeul) — (Geu(O))) d$> ec(fo (,@1 (2 O+ @ru()?)? dHl) dt)
= U (o )

2
dx

uo (ug + (9u(0))?)
In particular,
u € L*(0,T; H*(SY)).

The next existence result we prove holds with Wiener data.
We recall that the definition of Wiener spaces is given by

A%(SY) = {u(x) €L'(SY):  ullaa = > [k[*[a(k)] < oo}
kEZ
We will make use of the interpolation inequality [10, Lemma 2.1]:

p
Hu”AT’(Sl) < ||u||A0(sl (sl)”“HAq (S1) for 0<p<gq, 0= g

Theorem 1.6. (Existence in Wiener spaces) Let
u(z,t) — (ug)
(wo)

with u be the unique positive local solution to (1.1). Then, if wy = w(0) €
AL(SY), and

w(z,t) =

1
woll 41g1) < 10’

we have that

w € L*(0,T; A*(SY)) N L*(0,T; A3(S1)).

We observe that these two global existence results, although being stated
in different spaces, have somehow the same flavor. Indeed, both have size
restrictions in rather similar quantities, i.e.,

0zu(0) w@,t) — (uo)
” and o) .
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2. Proof of Theorem 1.1: Sobolev Inequalities

First, we prove the following inequality:

/Sl arctan (' 2 |> |0,u| dz > arctan (HUHWI,I(SI)) lullyia) -

We observe that

/ arctan <(‘3wu> Ozudx :/ arctan <| mu|) |0z u| da.
st u St

We make use of the following inequality:
t
arc an(ﬁ)z

arctan(z) > 13
arctan(§) if z> ¢,

if 2 <&,

to deduce that

arctan & |0z u? d
T

arctan&/ |0, u| dz
St
Since, by Holder’s inequality,

/Sllamu| dr < (/Sl(ai‘)QdQ (/Sludx>é)

-/ @)? o (o [02u])”
Sl

U = Joudz

and we improve the bound as

N

we estimate

2
arctan £ (fSl ‘aqu if |8'cu| <
—/ arctan(| - |>|3m |dz < — ¢ Jgr ude “
st u aﬁv
arctanf/ |0, u| dz 19l >
st u
2.

Let

fz/ |0zu| da
st

in (2.1). This choice of & leads to

—/ arctan(| Iu') |0z u| dz
St

arctan ([, [0yu| dz) </ |0, |>2 if 12zl </ |Ogu| d
st u st ’ ’

(fsl udx fsl |0pu| dz

arctan (/ |0l dm) (/ |0l da:) if @ 2/ |0z u| dz.
St

73

if 121
|0l 3 st u b

— [ arctan | —— | |Opu|dz < —
if — >

<&
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Then, using the simplification

/ u(z)de =1,
Sl
|0z ul
- /Sl arctan (u |0zu| dz < — arctan (||uHW1,1(Sl)) [ullyiria ) -

Now, we prove the following inequality:

lull?,, [l %
/ arctan (|8Iu> ] dx > 1 arctan ( WIS WIS
Sl

u u 47 |||8wu|u||L1(Sl) |||8wu|u||L1(§1)

As before, we have that

arctan £ (0pu)? .. Oz
<
Ozu\ Ou ¢ g u? dz if o &
arctan 7 7 dx 2 ‘8 | 9
s arctan £ 1924 44 if Lot >¢
st u u
Furthermore,
2 1/2
/ Mdfﬂﬁ‘@ﬂ (/ |azg| dx) 7
s1 u st u
We fix
O
= [ 12
St u

and we obtain

/ arctan <|8u|> M dx > — arctan < M dx> M dx.
s1 u 4 s1 st

u u u

1/2 1/2
/ |0pu| dz < (/ 19:u] da:) </ |0 u| udx) ,
st s1 u s1

we conclude the desired inequality.

Using

3. Proof of Theorem 1.2: The Existence Result with
Uy € H3 (Sl)
3.1. Well-Posedness

The well-posedness follows from the classical energy method [21], so we only
sketch the proof.

We fix €, k and § three positive parameters and define the approximate
problems
0yl # Ul
3[{ * u(e,n,é) +e

W (2,0) = g+ ug™™" (2) +9,

where J, denotes the periodic heat kernel at time k. The existence of a
unique positive solution (up to a time 0 < T'(g,5,6) < oo) ul&%9) follows

dyu'=m9) — 9,4, * arctan ( ) = &d, % 027, x ulErY),
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from an application of Picard Theorem in H3 [21]. Indeed, it is a tedious but
straightforward computation to check that

(&,k,6)
FERO) (yerdy = o7 % 929, + u&) 49,7, * arctan ( Oulls ¥ u )

Hn * u(fﬁﬂs) + €
satisfies

F(s,n,(;) . H3 N H3
and it is a Lipschitz operator

||F(€,H75) (u(e,mé)) _ F(s7n,6) (v(a,mé))HHS < C(E, /<;,5)||u(‘57“’6) _ ,U(E,mé)”HS.

As a consequence, it exists a positive time of existence 0 < T'(¢,k,d) and a
smooth solution

@) € C([0,T(e, 5, 0)], H*(S")).
The next step is to obtain uniform estimates for 0 < T* < T'(e, &, 0).
It is easy to obtain k-uniform bounds. Indeed, we test against

o)

and, using the properties of the convolution, the symmetry of the heat kernel
and Young’s inequality, obtain

d K WKy
S D2y + el = uED B[ F1 6y < Cle).

The higher order estimate can be obtained in a similar fashion. We test
against
— by (5:9)

and integrate by parts. We find

1d
2dt

=— [ 93arctan <
St

Hu(a K76)(t)||i‘[3(gl) +el|dy * u(a,n,é)( )||H4 St)

azgn * U(E’&é) 4 (e,K,0)
—Hn U VX 0,0k * u dzx.

The nonlinear term can be handled easily using the parabolicity and integra-
tion by parts. Then, we conclude
1 d K K K
§&||u(€’ DOy < PUdw w35 61)) < P (03560,
which leads to the desired sk-uniform estimate. We can pass to the limit and
obtain a solution

uls? € C([0,T(e,0)], H*(S")).
In order to obtain e-uniform estimates, we define
1

(€,9) —
0 min, u(=:9) (z,t)

+ [[uS) ()| g3 (s
Now we use a pointwise argument (see Ref. [12] for more details). Being con-
tinuous and the domain a compact set, the solution has at least a minimum:

mE9 (t) = minu& (2,t) = w9 (2, 1).

x
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Because of the positivity of the initial data, we have that m(=:9)(0) > § > 0.
Following the argument in Ref. [12], we have that
d _ Rl (zy)

P (5’5) — (5’5) _
m'S0(t) = 'S (x,, 1) = et

ar a.ce..

Indeed, due to the smoothness of u(®%®) in space and time we have that
m(s"s)(t) is Lipschitz. To see that, we use the reverse triangle inequality and
find that

| min u(5® (¢, 2) — min u(® (t2, 2)| < min(|u®? (t1,2) — w59 (t2, 2)|) < Clt1 — tal.
xT xT xT

Using Rademacher’s Theorem, we have that min, u(*% (¢, z) is differentiable
almost everywhere. Thus, using that z; is the point of minimum, we get that

(e,6) N — o (€,0)
im(e,é) (t) = lim m (t + hj) m (t)
i u(a,é)(xtJrhj 4 hj) _ u(a,é)(xt7 t)
;=0 h;

> 9,ul®%) (x4, 1).

In the same way, we compute

im(Eﬁ) (t) < atu(g’é)(l't,t).
dt
Then,
d 1 Oyu(zy, t) [u(®)] 2 s1) 4
hal __ < < '
dt min, u(z,t) m(t)2 m(t)? < C(E(1)

We can estimate the evolution of the H® norm with the previous ideas to-
gether with the fact that

1 < 1 < 1
u(s,(s) + e = u(s,é) = m(s,(s)(t)'

Thus, finally, we conclude
d
dt

Then, we obtain a e-uniform bound and we can pass to the limit. We find

u® e C([0,T(8)], H3(SY)).

e (1) < P(EE(1)).

With the previous ideas, we can also pass to the limit in § and we conclude
the local existence of classical solution

u € C([0,T], H3(SY)).

To obtain the uniqueness, we proceed with a standard contradiction argu-
ment.
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4. Proof of Theorem 1.3: Properties of the Solution

4.1. Maximum Principle

Equation (1.1) can be written as
udu — (9yu)’ B
u? + (Opu)? B
Using the pointwise method [12], we find that
M(t) = mfxu(a:,t) = u(Ty, t),

and
m(t) = minu(@, t) = u(z,, 1),
satisfy
d d
—M <0, a.e. and —m >0, a.e..
dt dt

Integrating in time, we conclude this part. We observe that, in particular,
lu()ll oo sty < lluollne(sty-

4.2. Conservation of Mass

The conservation of mass follows from the sign propagation and an integration
in space.

4.3. Entropy Balance
The evolution of the entropy can be easily computed and we find that

%%(t) + /Sl arctan <8Zu) 8Zu dz = 0.

Using that
arctan(z)z = arctan(|z|)|z| > 0,

we conclude. Using Theorem 1.1, we conclude the desired estimate.

4.4. Energy Balance

The evolution of the L? energy can be computed similarly. We observe that
the mean is preserved (see above). To estimate the decay, we compute the
following:

1d
2 dt
Integrating by parts, we find

D(t) = / arctan (m) Oyudz > 0.
Sl

[lu(t) — (u(t))HQLz(Sl) = /S1 Ou(u — (ug))de = | Juudz.

St

u

In particular, invoking Theorem 1.1,

t
Ju(t) = (o) l3z(eny + / avctan ([u(3)ws o)) 1u5)llirss o) ds

< o — (o) |22 e1):
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and we obtain that
[u(t) — (uo)llL2(st)
decays.

4.5. Energy Decay

Using that, for certain point Z,

u(x,t) — (ug) = ulx,t) — u(Zy, t / Oru(y,t) dy,
we conclude the Poincaré inequality

Cllu(t) — (uo)ll2sty < |0zu(t)||lLr(s)-

As a consequence,

arctan (Hu(t)nwl,l(sl)) () 1.1 g1y > arctan (Cllu(t) — (uo)llz2(en))
Cllu(t) — (uo) [l L2(s1)-
Thus, integrating by parts and estimating using Theorem 1.1,

d
2a||u(t) — <UO>||L2(Sl) + C arctan (C’||u(t) - <UO>HL2(S1)) < 0.

Using that
arctan(C/|lug — (uo) | £2(s1))
Clluo — (uo)llL2st)

the previous decay of the L? energy translates into the following inequality:

d arctan (C|lug — (uo)||r2(s1))
2—||u(t) — t) — <0
dt”u( ) — (uo)|[2s1) + o — (uo)llz2n) [[u(®) = (uo)llz2(st)

arctan(z) > if 2 < Clluo — (uo) L2 sy,

from where we conclude the

| arctan(Clluo—(uollpaer))

2 Tuo={uod T2 g1y

Ju(t) — (wo)ll L2ty < Iluo — (uo) | r2srye

5. Proof of Theorem 1.4: Further Properties of the Solution
with the 6 Formulation

We consider the complex value z(z,t) = u(x,t) + i0,u(z, t). If we write this

quantity in polar coordinates, we know that

Oyu(z,1)
u(z,t)

Then, we use (1.1) to deduce the evolution equation of :

tan(0(z,t)) = , hence 0(x,t) = arctan <8zu($,t)) . (51)

u(zx,t)

9 0 tan () 9% 20 020
u(1+tan“(0))0:0 = O arctan 6 — T 0.0 = T+ \1T1e + tan(0) 102 (5.2)

Boundedness of the slope Taking in mind (5.1) and (5.2), let us take
U(t) = max0(z,t) = 0(zy,t).
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Then, a.e. t € [0,T], we have that
B 020(wy,t)
1+ W2(¢)
Observing also that u(zy,t)(1 + tan? ¥(t)) > 0, we obtain that
m;le(z,t) =0(t) < T(0) = In?,XQ(I,O).

u(zy,t)(1 + tan® U(t))0, ¥ (t) <0.

We can repeat the same argument for
®(t) = minb(x,t) = 0(zqe, 1),
getting that
min 0(x,t) = ®(¢) > ®(0) = mind(x, 0).
This implies that the function 6 is bounded in the x variable a.e. t, i.e.,
108) | oty < 10O) ey e t € 0,7
We now recall the definition of § to deduce that

o, = 1O e < 10O =
and the desired estimate follows from the boundedness of u:
:®llm = |0 <] o O
< [[tan(0(0))[| Lo s1) [[w0l| oo g1
max,, ug(x)

< 102u(0) [ oo 1) min, up(z)

5.1. Lyapunov Functional

We are going to prove that the functional

L(u) = /S u(1 + tan(6)) (922 + T) do

is a Lyapunov functional. To this aim, we compute

d
dt

2 4

L(u) = /Sl dru(l + tan®(6)) (% + %) d:z:Jr/S1 ud (1 + tan?(0)) <§ + %) dz

02 0t
+ / w(1 + tan?(6))o; (— + —) dx
Jst 2 4

2 4

= /S1 dru(1 + tan®(6)) (%-‘r%) dz+ /Sl wtan(0)(1+ tan?(0)) (9%%) 0:0 dz

+/ u(1 + tan?(6)) (0 + 6°) 8;0 dz, (5.3)
st

and we use the equations

020 26 0,0
2 _ x _ e
u(1 + tan(0))0,0 = 6 (1 w + tan(0)> o
2, 2
oy = “0eu = O)”

u? + (9pu)
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to rewrite (5.3) as
d 62 o4
QL(u) = /Sl :0(1 + tan?(0)) (5 + Z) dz + /Sl Ou(1 + tan?(9))
3

{1 + 62 + tan(6) (9 + %)} 00 dx

92 g4
:/ 926(1 + tan?(0)) <7 +Z
Sl 2 4

520 20 )
T | —— +tan(0 d
<1+92 <1+€2+ an( )>1+92> *

We claim that (5.4) is equivalent to

d 5 6% o
It | u(1 4 tan“(6)) (2 + 4> dz

03\ 820
_ 2 x
_/Sla [1+9 + tan(6) <9+2 )} e de

Indeed, the integrals

62 o
0,0(1 + tan?(9)) ( + ) dz
St

and

3 20 0
1+ 62 —
/819[ + 0% + tan(0) (9+ 2)} (1+92+tan(9)> 1+02dx,

can be rewritten both in the form
¢ (0)0..0 dz,
Sl

being
with ¢(y) either

or

vi) = [14 42+ tany) (y+ L )] (2 + tan) )
= an = an .
Y 4 Y\IVT 5 1+ 42 VT2
Then, by periodic boundary conditions, we obtain that

=0.

—T

¢'(0)9,0 dz = ¢(0)
St

We come back to (5.5), and we rewrite the r.h.s. as

2 4

4 u(1 + tan?(6)) (% + 0—) dz = / 0020 dx + %/ 62 tan(0)926 dx
Jst st

dt Js 4
1 1 tan(6)
— tan(0)926 d 77/ 8?2
+2/S1 an()0z6dz =5 | 1752 %

>dx +/ 0{1+92+tan(9) (9+—
st 2

6 dx.
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We compute the above integrals by integration by parts:

0070 dx = —/ (0,0)? dz,
St

1 1
B 02 tan(0)0%0 dx = ~5 / (26 tan(9) + 6%(1 + tan®(9))) dz,
St
1 1
f/ tan(0)020 dox = —f/ 2(1 + tan?(9)) dz,
2 Ja 2

1 tan(6) ., 1 (0,0)20 tan()
§/S11+92“d 5/ +92 (L tan(0) da /SW

Summing up all the above integrals, we find that the r.h.s. of (5.5) simplifies
as

d 5 6% o0
T | u(1 + tan=(0)) (2 1 ) dx

:7/ (6}0)2(1:57/ wom(e) dz
Sl Sl

1462
1 [ (0,0)262(2 + 62

Using the properties of tan, we have that « tan(x) > 0, and hence we conclude
that

0 o
u(1 4 tan?(0)) (2 + 1 ) dz <0,

t
/ (0.0)* dx < L(ug).
0 Jst

6. Proof of Theorem 1.5: Existence Through Lyapunov
Functional

dt

and

Let —02%0 be the test function in (5.2). Then, the integral in space reads

926)° 092
_/ u(1+tan2(9))6tea§9dm:_/ ( d ) d.13—|-2/ %@de
st

s 11062 (1+062)

09,0020
+/51 tan (6) Ty d. (6.1)

We integrate by parts the integral in the l.h.s.:
— / u (14 tan® (0)) 0,0026 dx
St

:/ u(1+tan (0 ))8 GafTGquL/ Oy ( (1+tan (0 )))ﬁrﬁatﬂdx
Sl

Sl

U (1 + tan? (9)) (8369)2 dr — I + I,
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with
1
I = 5/ Oy (u (1 + tan? (9))) (8359)2
Sl
I, = / Oy (u (1 + tan? (9))) 0,00,0 dx.
Sl

We use the equations

920 20 0.0
5 _ - _ _r7
u(l + tan (9))(%9 =1 T 92 (1 T2 + tan(9)> 1+ 62’
2, _
= udzu (3zu2) — 8,0,
u? + (896“)
Opu
" = tan(6),

to rewrite I; and I5 as follows:
n= %/ Byu (1 + tan? (0)) (9.60)? da +/ tan(0)u (1 + tan? (6)) 016 (9,0)° dz
st sl

dx

‘ 2
N %/sl (1 + tan® (9)) (9:0)* dz + /S1 tan(0) (9.0)* %22

‘ 6 (9:9)° ‘ (9:0)°
72./51 tan(0) 1+ 02)2 dzf-/ 2(0) 102 dez,

Iy = / tan(@)u (1 + tan? (6)) 9a0(1 + 20,6)9,0 d
Sl

_ 09,0026 (060)%6 o5, (00)?
_~/Sltan(9)1+92 dxf2'/ (9)( 072 dz — ./Sltan (9)14»92 dx

(0:0)020 / (020)0 / 2
+ 2/51 tan(0) 1362 doe — 4 » tan(6) 1+ 02)2 dx — 2 - tan®(6) T+ 0° dz.

The difference among I; and I, reads

. o A ) )
I — I = 7/ tan(H) 09,9959 dz + 2/ tan(@)M dz + / 2(0) (0:6) dz
st sl

02 (1+92)2 02

(83:0)2820 / (6x6)39 / 2 (020 )
— t Gid 2 tan(0 d. t [% d
/Sl an(0) S g do 2 [ tan(0) (B do ot [ tan®(0) 0 da

+ %/Sl (1+tan? (9)) (920)* dz.

Then, (6.1) becomes

1d (820)*
1+ tan? (0 0)?d / 2
g Jo (8" 0)) (0:0)" dot | SR de
2 2
L D42 / oaxeae +/ 8x08 9
(1+62)?
B (0:0)20 a 0)2 : (0:6)2026
_2/ tan(@)(l_i_e2 dz +/ dx f/Sltan(O)de
3 2
+/ tan? 0)(8x9) dz + = / 1+ tan?(6)) (8:0)° dz + 2 / 91610529 dx

(6.2)
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We easily estimate the sum of the first two terms in (6.2

(
(0.0)%6 9 (020)2
2/Sl tan(@)mdx—l— /Sl tan®(6) 1 02 dz

0,0 € L*(0,T; L*(S")),

using that

and
tan(60(t, x))0(t, x)
1+ 602(t,x)

+tan?(A(t,z)) < HQtan(H(O))H(O) + tan?(0(0))

||L°°(Sl) se

Furthermore, we can absorb the last term in (6.2) using Young’s inequality
and the boundedness in time and space of 6:

2 820 2 2 2
[ [ O [ 0
o (1+62) w140 o (1+62)

020)*
E/Sl (H“’e)2 da + c(e )/Sl(ame)zdx

So far, (6.2) can be bounded with

1d 2 2 (820)2
ia/yu(l—ktan (9)) (8,0)" dz + (1 &:)/S1 o d

<) [ @0 ar+ [ oy C1%L

1462
1 3462 3
= 1 . .
+2/S1< + 200 tan (9)> (0,0)* da (6.3)
The second integral in the r.h.s. of (6.3) can be estimated as

(9.0)* 829| d20(t) 4

|tan(6))] +¢(e) [10:0(8) | Las1) -
st 1+ 62 /1+02 L) (s1)

Since
2
||8a:9(t)Hi4(Sl < ||ozect) HLQ ||9(t)||ioo(sl)

H 920(t)

\/1+02

16O ery (1+ 10O < o)) -
L2(SY)

we can absorb

(9:0)* |929)] 2 2
[ tean @) EEE e < (14100 0)) 180) o +2)

070(t)

1+ 62(1)

in the Lh.s. of (6.3) for sufficiently small £ and [|6(0)|| < g1)-

L2(SY)
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The last integral in the r.h.s. of (6.3) can be estimated by Sobolev’s embed-
ding as

1 3+ 02
3 (1 T @) @) do < c000) e, < 100001

2 14062

We interpolate the last inequality and we use the Poincaré inequality to get

0D 51y < N0 Faony 02600) [ 1ery < 1000 en) 02608 ey -

HG(Sl

We apply the Young inequality to obtain the following estimate on this last
integral:

1 3+0% 5 > 3 4 a20(t)
- 1+ t 0) | (0:0)° dz < O 0(t +e|| == .
2/31 ( 1+o2 " () ) (9:6)" dw < e(e) 190Dz 1) + L+ 62(8) || 12 g1y

Finally, for € and [|0(0)|| ;1) suitably small, i.e., such that

6 =13 = (14 100) [}~ e1) ) 10O) 7 51, > 0.

we obtain the following estimate:

u (1 + tan® (6)) (0,0)* dz + 0 (026) dr<c </ (0.0)? dx)
st

st st 1+ 02
(/ (0,0)? dz + 1) .
St

To conclude our argument, we continue in the following way: we estimate

2. U (1 + tan? (9)) cqr e | o 2 4
/sl (0,0)° dz = /sl T (9 (1 tan? (9)) (0:0)* dz < /Sl (1 + tan® () (0,0)° da.

This means that we have a differential inequality of the type
y'(t) <c (1 + (/ (0,6)? dac)) y(t),
Sl

y(t) = /S w14t (9)) (0,6)°

Then, we can apply a Gronwall type inequality obtaining that

dt

with

(1 + tan® (0(t))) (2.0(t))* dz

U\

an 2 40 ) ecUs (Jo1 (026(s))* da+1) ds)
<</ o (1+ tan® (6(0))) (2:6(0)) d) (s +1)ds)

Finally, we conclude using

t
/ (0.0)? dz < L(up).
0 Jst
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7. Proof of Theorem 1.6: Existence in Wiener Spaces

This proof is done in the same spirit as Refs. [15,17-19]. First we focus on the
a priori estimates. We know that, for an H?® initial data, the solution exists.
Consequently, let us obtain the desired estimates under this extra assumption
and, later on, we will generalize the argument to be able to drop it out.

Let

w(x,t) = ul@,t) — (uo) <u0>.

{uo)

Then, (1.4) becomes

02w+ wdiw — (O,w)?
142w+ w? 4 (Opw)?’

<U0>wt
with initial data
to(z) — {uo)
(uo)
Since we assumed that [[wo[g:) < 1/10, we know that there exists a
time 0 < T, eventually smaller than the existence time 7', such that

||w(t)||A1(S1) < 1/10 YVt < T%.

wo(z) = w(z,0) =

Hence,
|2w(x,t) + wQ(x,t) + (31w(a:,t))2’ g 4 ”w(t)HAl(Sl) < 1a
and we can develop in series

(up)wy = 92w + wdw — (Oyw)? + ((ﬁw + wdw — (31w)2)

> (=D"M2w +w? + (Dew)?)" | - (7.1)

n>1

We want to write the Fourier coefficient of (7.1). Before getting into these
computations, we rewrite

Z(_l)n(2w+w2 + (azw)2)n _ Z(_l)n Z < n >24w2j+l(axw)2r

0 g,
n>1 n>1 l+j+r=n b
4,353,720

n _nl
04, r)  glrl’

The Fourier coefficient of this series is given by

for

(8925111 + wdZw — (axw)Q) (Zn>1(—1)"(2w +w? + (wa)2)") (k,t)

(ng + wdw — (8zw)2) Z (=" Z

n>1 é+j_+7‘:n

0,5, 70
et ¥ ()

n>1 epir=n b3 T
03,720

0 7")221021'“(8%1”)% (k, t)
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o (P G 5w -+ P (G, 5 — P ) (1 1)

= N1k, t) + Na(k,t) — Na(k, t),

for
_ n n rol
Nik,t)y==>" (-1 (e, ;i T)(_n 203 L
n>1 l+j+r=n mo€EL
£,j,r=20
Z (ki — mo) @(k‘ — mo,t)
majyet2r—3€ZL
2r—1
X (mo —m1)W(mo —ma, 1) < 11 @(mp —mpia,t)(my, — mp+1)>
p=1
2j+b42r—3
X < I @0n, - mq+1’t)> W(maj+e+2r-3,1),
q=2r—1
Na(k,t) =S (=1)" ")t YL
T SR A EIeD >
n>1 l4j+r=n mo€EZ
£,j,r=20
Z (k—mo) @(k—m07t)
Mojyetor—2€L
2r—1
X (mo —m1)W(mo —ma, ) < 11 @(mp —mpsa,t)(my, — mp+1)>
p=1
2j4+0+2r—2
X < I @0n, - mq+1’t)> W(majtet2r—2:t),
g=2r—1
Nak,t) =S (=1)" )ttt ST
=T B (0 et s
n>1 l4j+r=n moEZL
l,3,7>0

>

mojiet2r2€Z

x (k —mo)w(k — mo,t (H w(my — mpy1,t)(my — mp+1)>

2 +0+2r—2
X ( H @(mq — Mg+1, t)) @(m2j+f+2rf27 t)7

q=2r—1
and the Fourier coefficient of (7.1) is given by

(uo) Wy (k,t) = —k*D(k,t) — Y m*@(m, )i (k — m, 1)
meZ

- Z m(k — m)w(m, t)w(k —m,t)

mEZ

+ Ni(k,t) + Na(k,t) — N3(k, t).
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We now want to take the sum in k € Z and to estimate the A'(S!) semi-norm
of the time derivative.
Since

ou(t, k)| = Re (W(t, k)0 (¢, k) ) /[ (t, b)),
we have that
ST AR = S o)y, and S R0 0] = fo)lLsgen
keZ kEZ

Using the Tonelli’s Theorem and interpolation in Wiener spaces, we estimate
the left terms as

Z|k|2mwmt (k —m,t)

kEZ  |mez
< w®) a0 sy w0l as(s1) »

SIS mlk — m)@(m, @k —m, )] <

kEZ  |mez
< w®)l a0 sy w0l as(s1) »

S @l as sy 1wl a2 1)

[w(®)]| a1 sy 1w 42 g1y

and
k| [A71 (, )] < Il (0)]] g3 e " )2t w1 F e ()% 6
CD) Y &Y Y
keZ n>1ttjtr=n 57T
£,j,m7=0
n
= [lw(®)ll g3y Y (QHw(t)HAO(Sl) + (@) %01y + ||w(t)||?41(sl)> )
n>1
k| (W2 (k. )] < o (®)]] 45 o1 B )2 I @OIF e e @I o
D) Y (GID) Y
kEZ n>1ltjtr=n DT
£,5,m7=0
n
= llo®)llas @y o) laoery Y- (2 Iw®lLaogr + lw@®lZoe) + lw®)Zie) "
n>1
> Ik [N, )] < Iw®lazgeny llw(®)lar gy D
k€EZ n>1
n r 2j+4
>, : )2 w1 ) @155
l+]+'r n o
2,5, 7r=0

n
<@l lw®laoey Yo X ()2 le@ ey le®Is,
n>1bkitr=n RURE
3, 720

= l[w(®)ll ass1) lw(®)l aos1y Y (2 lw(®)l| g0 g1y + llw @l %o sy + Hw(t)IIQAl(sl))
n>1

Since, for every t < T,

S (el + oo, + 1@ @)

n>1

1
1= 2Jlw®)]L o + 1@ + wOIPien)
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2wl aos + [ O o + 0@ @)
1= 2 lw(®)]l a0y + w0y + o) ery)
w41 s1y
S 1= 4fw®) e’
we improve the bounds on the A terms as

S Ikl (R t)| + D7 1K1 [ (k)] + D 1l [Ara k)
kEZ kEZ

kEZ

< No®lasy (1+ 20l 1

A w41 g1y
— 4wl g1 g1y

Then,

d
<uo>a lw(@)| 41 g0y + 1w assr)
4wl 41 sr)

<[ 2|w@ (2 ¢ 1) t

( ol aogsry + (21w a0y +1) 7 EY O] [w(®)] a2 (s1)

2wl 4051 4wl axsr)
- 7+t T lw(®)]| g2s1)
1— 4 fJw(®)] 5 ) lw(®)]] a1(s1)

< 6 lw(®)| 41 g1y o) orer,
1= 4flw@®)[l ar(sry A

The smallness assumptions on |[wo|[ 40g1) and on the ¢ <7 imply that

6 [lw(®)ll ar st
1= 4flw®)[| o1 (s1y

X 13
so we get that

d
<’U,0>& ||w(t)||A1(Sl) + (1 - C) ||w(t)||A3(Sl) < 0’

and the thesis follows integrating in time.
Let us explain now how to get the extra assumption on the initial data.
We consider the problem

2
(up)wd = 2w + wN 2wl — (BI’LUN>

2 N
+ (ang +uwN 2w — (9,07) > (Z (D" @wY + (V)2 + (asz)Q)"> :

n=1
For each fixed N we can obtain a local in time solution using Galerkin method.
Repeating the previous estimates in the Wiener space A', we find that

w Sw in L(0,T; L),
PN 503w in M(0,T;L>).
Using the ideas in Ref. [14] we can further get the desired space
L>(0,T; AY) N L£>(0,T; A%).
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