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We deal with a spectral problem for the Laplace-Beltrami operator posed on a 
stratified set Ω which is composed of smooth surfaces joined along a line γ, the 
junction. Through this junction we impose the Kirchhoff-type vertex conditions, 
which imply the continuity of the solutions and some balance for normal derivatives, 
and Neumann conditions on the rest of the boundary of the surfaces. Assuming that 
the density is O(ε−m) along small bands of width O(ε), which collapse into the line 
γ as ε tends to zero, and it is O(1) outside these bands, we address the asymptotic 
behavior, as ε → 0, of the eigenvalues and of the corresponding eigenfunctions 
for a parameter m ≥ 1. We also study the asymptotics for high frequencies when 
m ∈ (1, 2).

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://
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1. Introduction

This section is devoted to the introduction and state of the art of the different mathematical issues 
arising in the model under consideration. Let us mention Vibrating systems with concentrated masses (see 
Section 1.1) and Stratified sets as a generalization of metric graphs (see Section 1.2). Also, in Section 1.3, 
we describe the main results and the structure of the paper.
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1.1. Vibrating systems with concentrating masses. A historical review

Vibrating systems with concentrated masses have been widely studied in the literature of different disci
plines such as mechanics, civil engineering and mathematics. As is well known introducing a concentrated 
mass in a vibrating system may distort the vibrations but also allow to control them (cf. e.g. [44, VII.10
VII.14]). A concentrated mass is referred to as a ``small region'' where the density is ``much higher'' than 
elsewhere. We denote by ρε the density which is assumed O(ε−m) in this region and O(1) outside, ε being 
a small parameter that we shall make to go to zero. The concentrated mass can be centered at a point (cf. 
[44] and [42] for description of the problem in different frameworks) or at very many points including ho
mogenization processes (cf. [36] and [8] for different reviews). Also, it can be concentrated along a manifold; 
further specifying, along 1-d manifold, cf. [46,23,19] for the first works on the subject, or a 2-d manifold, cf. 
[29] and references therein. Let us also mention the vectorial models in [45,28] for instance.

Many different situations may occur depending on the operators under consideration, the boundary 
conditions and the value of m. A common fact is that depending on m, the high frequencies may play an 
important role, since they give rise to vibrations of the whole structure, i.e. global vibrations, while the low 
frequencies describe vibrations in reduced surroundings of the concentrated mass, i.e. local vibrations. But 
also many different important phenomena appear depending on the range of frequencies in which we move. 
As regards the low frequencies, let us mention the asymptotic infinite multiplicity in [43] or the strongly 
oscillatory behavior of the associated eigenfunctions [39]. Similarly, for the high frequencies, let us mention 
the whispering gallery phenomena on interfaces at a microscopic level or the skin-phenomena, cf [36] for 
precise references.

In all these models, when dealing with the Laplacian operator, a different treatment must be given to the 
different value of m, m ∈ (0, 2) or m > 2, the case m = 2 making somehow a threshold for the study, since 
the localization of the vibrations along points or lines may turn into a phenomenon of interaction between 
microscopic and macroscopic scales, cf. [24] and the review [15] for the case of a string with concentrated 
mass, [42] and [27] for the case of a concentrated mass in dimensions 3 and 2 or [16] for the case of mass 
concentration along a curve.

However, in the case where the mass concentration occurs near a manifold, the value m = 1 also makes 
a threshold, cf. [19,20,16] for 1-d manifold, and the same applies in the case where the perturbation around 
a curve comes from stiffness coefficients [25,26], or potential perturbation [17] (cf. e.g. [4] for stationary 
problems).

Mixing together high mass concentration and stiffness is widely used in reinforcement problems giving rise 
to interesting phenomena which includes an asymptotic concentration of the vibrations (associated to low 
or high frequencies depending on the boundary conditions) near certain points with particular geometrical 
characteristics of the curves defining the domain of perturbation, cf. [25,26,30,31].

The spectral problem for the Laplace operator with a perturbed density is also used to describe wave 
propagation in high-contrast photonic and acoustic media. In this case, the density represents a dielectric 
constant. In [12,33], the spectral properties of a medium in which the dielectric constant is very large near 
a periodic graph in R2 were investigated.

Also, it should be mentioned that Steklov type problems with the spectral parameter arising on the 
boundary condition appear in a natural way as limits of problems with mass perturbation (cf. the reviews 
[36,14] and references therein).

Some of the phenomena above described arise in the problem under consideration, with the additional 
complication resulting from the geometrical configuration of our problem (cf. Section 1.3) which implies 
boundary value problems on stratified/ramified sets, as we describe in Section 1.2.
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1.2. Stratified sets as a generalization of metric graphs. Singularly perturbed problem on graphs

Boundary value problems for differential operators on stratified sets (ramified spaces, branched structures 
or open book structures) are widely studied in the literature, cf. [37,40,41,48,13]. Our problem lies within 
this framework at least at a local level, and also globally when the surfaces become planes; cf. Figs. 1 and 
2, (2.6) and reference [48].

Boundary value problems on stratified sets are a natural generalization to higher dimensions of similar 
problems on graphs, see recent preprint [2], in which the basic concepts of quantum graphs are generalized 
to the case of stratified sets. In recent years, the theory of differential operators on metric graphs has 
been extensively studied due to its numerous possible applications in physics and solid-state engineering. 
However, the most interesting application of this theory from the point of view of physics is quantum graphs. 
Quantum dynamics typically exhibit high complexity, particularly when propagating through branched 
structures. There is a vast amount of literature on quantum graphs, and readers can refer to [32,5,10] and 
the bibliography therein. A boundary value problem on a metric graph is a set of differential operators 
on the edges and some matching conditions for solutions at the graph’s vertices. There is a broad set of 
coupling conditions at the vertices for operators on graphs, in contrast to classical 1D operators. This 
makes the theory of operators on graphs much richer. However, a large number of possible vertex conditions 
leads to the problem of choosing physically motivated ones. The mathematical approach to building correct 
mathematical models, in addition to the experimental one, is based on various approximations of processes on 
graphs. For instance, singular perturbation theory provides an efficient method to find physically motivated 
point interactions at vertices. Suppose we are interested in the effect of a localized potential or a localized 
mass density at a vertex. In this case, we must analyze the convergence of the family of singularly perturbed 
operators. The limit operator will include only vertex interaction conditions that are physically determined 
(see, e.g., [18,11]). This article studies a mathematical model that generalizes the vibration of a network 
of strings with heavy connections. The articles [21,22] examine spectral problems related to the Laplace 
operator on metric graphs. The study focuses on perturbations of the mass density near the vertices.

1.3. Main results and the structure of paper

The geometrical configuration of the problem that we broach here is completely different from those 
treated in the literature. We deal with a boundary value problem on Ω, a stratified set which is composed of 
smooth surfaces (subsets of Riemannian manifolds) somehow joined along a line γ, the junction, near which 
the mass perturbation is located (see Fig. 1). On this domain we consider a spectral problem associated with 
the vibrations of such a stratified set. The operator under consideration is the Laplace-Beltrami operator, the 
mass perturbation being distributed along small bands close to the junction which form also a stratified set 
ωε. These bands of width O(ε) collapse into the line γ as ε → 0, where we impose the Kirchhoff-type vertex 
conditions which imply the continuity of the solutions and some balance for normal derivatives through γ. 
On the rest of the boundary of the surfaces we impose Neumann conditions. For an extensive introduction to 
boundary value problems for the Laplace-Beltrami operator for Lipschitz domains in Riemannian manifolds 
and their variational formulations on Sobolev spaces, let us mention [38].

As above mentioned, the problem represents a first approach to vibrating models arising in many fields 
where some reinforcements along junctions become essential to control vibrations. Example of such struc
tures where the models can arise are propellers and turbines (cf. Fig. 3), but also in reinforcements of corners 
of engineering constructions among others. To detect which mass gives rise to certain kind of vibrations 
becomes important in numerous aspects.

Assuming that the density is O(ε−m) in the stratified set ωε which may be seen as the edges of a cylinder 
of radius O(ε) and length O(1), see Fig. 2, we address the asymptotic behavior, as ε tends to zero, of the 
spectrum of problem (2.2)-(2.5) for a positive parameter m.
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The model being completely new in the literature, the aim of Section 3 is to determine the spectral 
properties of eigenvalues and eigenfunctions of the associated self-adjoint bounded operator. In order to do 
that, we relate its spectrum with that of a Dirichlet-to-Neumann type operator on L2(γ) and of the operator 
associated to problem (1.3) that keeps γ fixed, cf. Theorem 2. For fixed ε and m, the spectrum of problem 
(2.2)-(2.5) is discrete and we denote by {λε

j}∞j=1 the set of eigenvalues with the convention of repeated index. 
In Section 4, by means of matched asymptotic expansions we address the case where m = 1, obtaining as 
limit problem (4.21)-(4.22), a spectral problem in the stratified set Ω with the spectral parameter appearing 
both on the partial differential equation and on the junction condition along γ relating solutions and normal 
derivatives through γ. It has also a discrete spectrum that we denote by {λj}∞j=1 with a structure described by 
Theorem 3. In Section 5, we show the convergence with conservation of the multiplicity, based on properties 
from spectral perturbation theory for uniform discrepancies in the operators norm. More specifically, for 
each j = 1, 2, · · · , we have

|λε
j − λj | ≤ Cjε

1/2, (1.1)

where Cj is a constant independent of ε (see Theorem 4).
This implies that the eigenvalues λε

i are of O(1) when m = 1, and the technique in Section 4 based on 
asymptotic expansions applies, with minor modifications, for m > 1 and the eigenvalues λε of order O(1), 
which amounts, in this new case to the high frequencies and λε = λε

i(ε) where i(ε) → +∞ as ε → 0. Let us 
explain this in further detail.

Indeed, in Section 6 we deal with the limit behavior, as ε → 0, of the eigenvalues λε
i for each fixed i. 

A scaling of these values ε1−mλε
i along with the technique in Section 5, provide us with the limit problem 

when m > 1: (6.1)-(6.2) which now has the spectral parameter only on the transmission condition along the 
junction line γ. Henceforth there is a mass concentration along γ, which likely leads to vibrations of this 
part. We show

|λε
j − εm−1λj | ≤ Cjε

α(m), (1.2)

where α(m) = min{m − 1
2 , 2(m − 1)}. Obviously, now, {λj}∞j=1 compose the spectrum of (6.1)-(6.2) (see 

Theorem 8).
Formula (1.2) determines the order of magnitude of the low frequencies to be εm−1 and, following the 

well-known fact that the high frequencies may accumulate on the whole real positive axis, we look for 
eigenvalues λε of order O(εβ) for some β < m− 1 (cf. [35,20,7]) giving rise to other vibrations that cannot 
be detected with the low frequencies. This is the aim of Section 7, where for the sake of brevity we only 
address the case of m ∈ (1, 2), leaving the rest of the cases for a forthcoming publication by the authors.

Thus, for m > 1 the eigenvalues of order O(1) belong to the range of the high frequencies, and rewriting 
the asymptotic expansions in Section 4, with the suitable modifications, we are lead to the spectrum of 
operator (6.4), namely to problem

−ΔΩu + V u = λu in Ω, ∂nu = 0 on Γ, u = 0 on γ. (1.3)

Henceforth, the corresponding vibrations keep the junction line γ fixed. We show that only the eigenfunctions 
associated to eigenvalues λε asymptotically near eigenvalues λ0 of problem (1.3) can be asymptotically non 
null in the sense stated by Theorem 10. We also get results on the total multiplicity of the eigenvalues 
approaching λ0, in the sense stated by Theorem 13. The proof is based on the construction of families of 
“almost orthonormal quasimodes'' from the perturbation of eigenvalues.
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Fig. 1. Stratified set Ω∗. 

2. Statement of problem

Let us introduce a set that is a bundle of surfaces connected along a curve. Let γ be a straight line 
segment lying on the x3-axis:

{x ∈ R3 : x1 = 0, x2 = 0, 0 ≤ x3 ≤ l}.

Suppose Ω1, . . . ,ΩK is a collection of bounded C∞-smooth surfaces with the Lipschitz boundaries embedded 
in R3 without intersections. We assume that

γ =
K⋂

k=1

∂Ωk,

and only the points of γ can be common to any pair of these boundaries. Let

Ω = Ω1 ∪ · · · ∪ ΩK .

The union Ω∗ = γ ∪Ω can be treated as a stratified set with two strata: the first stratum is the curve γ and 
the second one consists of all surfaces Ωk.

A function v on Ω is a collection of functions {v1, . . . , vK}, where vk : Ωk → C. We generally do not assign 
any values to v on γ, because the one-sided limits of v at points of γ may differ when approached along 
the different surfaces. Throughout the paper, W j

2 (Ω) stands for the Sobolev space of functions belonging to 
L2(Ω) together with their derivatives up to order j. We adhere to the convention that a function v belongs 
to some space X(Ω) if vk belongs to X(Ωk) for all k = 1, . . . ,K, i.e.,

X(Ω) =
K⊕

k=1 
X(Ωk), ‖v‖X(Ω) =

K∑
k=1

‖vk‖X(Ωk). (2.1)

Note that the surface Ωk inherits a metric by restricting the Euclidean metric to Ωk. This metric makes Ωk

into a Riemannian manifold.
Set Γk = ∂Ωk \ γ and Γ =

⋃K
k=1 Γk. We assume that Γk are C2 curves. Let us introduce two vector fields 

on ∂Ωk. The unit outward normal vector to Γk is denoted by nk, and the unit inward normal vector to γ
(as a part of ∂Ωk) is denoted by νk. We combine all fields nk into the single normal field n defined on Γ. In 
addition, there are K different vector fields ν1, . . . , νK on γ (see Fig. 1).
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We consider the eigenvalue problem

−ΔΩu
ε + (V − λερε)uε = 0 in Ω, (2.2)

∂nu
ε = 0 on Γ, (2.3)

uε
1 = uε

2 = · · · = uε
K on γ, (2.4)

∂ν1u
ε
1 + ∂ν2u

ε
2 + · · · + ∂νK

uε
K = 0 on γ. (2.5)

The operator ΔΩ acts as the Laplace-Beltrami operator ΔΩk
on each Ωk, i.e.,

ΔΩv = {ΔΩ1v1, . . . ,ΔΩK
vK}.

The potential V is a real-valued function that belongs to L∞(Ω). The weight function ρε describes a highly 
heterogeneous mass distribution on Ω as ε → 0. Let ωε be the intersection of Ω∗ with the ε-neighborhood 
of γ. We define

ρε =
{

ρ in Ω \ ωε,

ε−mqε in ωε,

where ρ and qε are measurable, bounded and positive functions, and m ≥ 1. We study the asymptotic 
behavior as ε → 0 of the eigenvalues λε and the eigenfunctions uε of (2.2)-(2.5). Equation (2.2) is actually 
the collection of equations

−ΔΩk
uε
k + (Vk − λερεk)uε

k = 0 in Ωk, k = 1, . . . ,K.

Conditions (2.4), (2.5) have been inspired by the Kirchhoff vertex conditions that are widely used for the 
description of string networks and quantum graphs; also these conditions naturally arise for stratified sets 
as shown in [9]. These conditions recall transmission conditions. Condition (2.4) ensures continuity of the 
solution on the whole stratified set Ω∗ while (2.5) can be treated as the tension balance of connected 
membranes.

Let us introduce some geometric objects and functions above mentioned in further details.
Let G be a compact star graph consisting of the vertices {a, a1, . . . , aK} and the edges {e1 =

(a, a1), . . . , eK = (a, aK)} meeting at the vertex a. We implement G as a planar metric graph with a 
metric obtained from the natural embedding of G into R2

x1,x2
. Assume that the vertex a coincides with the 

origin, other vertices lie on the unit circle S1, and all the edges are radii of S1. Moreover, we assume that 
the edges e1, . . . , eK are drawn in the direction of the normal vectors ν1, . . . , νK respectively. Let ω = G×γ

be the stratified set which consists of K rectangles ω1 = e1 × γ, . . . , ωK = eK × γ connected along γ (see 
Fig. 2).

To keep the mathematics rather simple, we suppose that the intersection of Ω∗ with the ε-neighborhood 
of γ has the form

ωε = {x ∈ R3 : (ε−1x1, ε
−1x2, x3) ∈ ω}. (2.6)

This neighborhood is the homothetic to ω in the x1 and x2 directions of ratio ε. The intersection ωε
k = ωε∩Ωk

is a rectangle of width ε and height l. We can define the orthogonal coordinates (yk, x3) in ωε
k, where 

yk ∈ (0, ε) and x3 ∈ (0, l). Now we can specify the explicit dependence of density qε on a small parameter 
ε. Let q : ω → R be a measurable, bounded and positive functions. We set

qεk(x) = qk(ε−1yk, x3) in ωε
k. (2.7)
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Fig. 2. The graph G and set ω = G × γ. 

Similarly, the local coordinate system (tk, s) ∈ (0, 1)×(0, l), tk = ε−1yk the stretched coordinates, appears 
on each set ωk = ek × γ. Here tk and s are the natural parameters on ek and γ respectively. We say that 
ω is equipped with the coordinates (t, s), meaning that each component ωk has its coordinates (tk, s). We 
consider t the distance from a point of ω to γ. Also, f(t, s) and g(y, x3) stand for (f1(t1, s), . . . , fK(tK , s))
and (g1(y1, x3), . . . , gK(yK , x3)) respectively.

3. Spectral properties of the perturbed problem

In this section, we will describe spectral properties of (2.2)-(2.5) for a fixed value of ε. We denote by 
L2(h,Ω) the weighted L2-space endowed with the norm

‖φ‖h = (φ, φ)1/2h =

⎛
⎝∫

Ω 

h|φ|2 dS

⎞
⎠

1/2

,

where h is a positive L∞(Ω)-function and dS is the volume form on Ω. We say that a function φ is continuous 
on Ω∗ if φ satisfies condition φ1 = φ2 = · · · = φK on γ. In this case, we write φ|γ for the common trace of 
φk on γ. We will also write Kv instead of 

∑K
k=1 ∂νk

vk. In the space L2(h,Ω) we define the operator

B = h−1(−ΔΩ + V ) in L2(h,Ω),domB =
{
φ ∈ W 2

2 (Ω) : ∂nφ = 0 on Γ, φ is continuous on Ω∗, Kφ = 0
}
. 

Then eigenvalue problem (2.2)-(2.5) is related to the operator Aε, which coincides with the operator B for 
h = ρε, namely

Aε = 1 
ρε (−ΔΩ + V )

in L2(ρε,Ω), and domAε = domB.

Lemma 1. The operator B is closed, self-adjoint, bounded from below, and has a compact resolvent.

Proof. Given φ, ψ ∈ W 2
2 (Ω), we have

∫
Ω 

ΔΩφ ψ dS =
K∑

k=1

∫
Ωk

ΔΩk
φk ψk dS =

K∑
k=1

⎛
⎝ ∫

Γk

∂nφk ψk d
−
∫
γ

∂νk
φk ψk d


⎞
⎠−

∫
Ω 

∇φ · ∇ψ dS, 
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where d
 is the measure on ∂Ω. Recall that νk is the inward normal field on γ. If we suppose that φ belongs 
to the domain of B, then

(Bφ, ψ)h − (φ,B∗ψ)h = −
∫
Ω 

ΔΩφ ψ dS +
∫
Ω 

φ ΔΩψ dS

=
K∑

k=1

∫
Γk

φk ∂nψk d
 +
K∑

k=1

∫
γ

∂νk
φk ψk d
−

∫
γ

φ Kψ d
.

We see at once that the weakest conditions on ψ under which the equality

(Bφ, ψ)h = (φ,B∗ψ)h

holds for all φ ∈ domB are ∂nψ = 0 on Γ, ψ1 = · · · = ψK and Kψ = 0 on γ. Therefore domB = domB∗

and B is self-adjoint.
Since V ∈ L∞(Ω), there exists a positive constant c such that V (x) > −c for almost all x ∈ Ω. Then

(Bφ, φ)h =
∫
Ω 

(
|∇φ|2 + V |φ|2

)
dS ≥ −c

∫
Ω 

|φ|2 dS ≥ − c 
hmin

‖φ‖2
h

for all φ ∈ domB, where hmin = minΩ h. Hence, B is bounded from below.
We observe that, for λ ∈ ρ(B), the resolvent (B − λ)−1 is a bounded operator from L2(h,Ω) to the 

domain of B equipped with the graph norm. Since the latter space is a subspace of W 2
2 (Ω), it follows that 

the resolvent is compact as an operator in L2(h,Ω). �
Thus, the spectrum of B, denoted by σ(B), is real discrete, bounded from below, and it consists of 

eigenvalues with finite multiplicity. To describe it in more depth, we introduce the sets ΣD and ΣΘ associated 
with operators D and Θ(λ) defined below (cf. Theorem 2).

Let M be a 2-dimensional, C∞-smooth, connected, compact, oriented Riemannian manifold with bound
ary, and let ϑ be a non-empty open subset of ∂M . We consider the boundary value problem

−ΔMv + (b− μ�)v = 0 in M, v = ψ on ϑ, ∂νv = 0 on ∂M \ ϑ, (3.1)

where μ ∈ C, b is a real L∞(M)-function, � is a positive L∞(M)-function, and ∂ν is the inward normal 
derivative on ∂M . Let Θ(μ) be the Dirichlet-to-Neumann map

Θ(μ)ψ = ∂νv|ϑ, dom Θ(μ) =
{
ψ ∈ L2(ϑ) : v ∈ W 1

2 (M) and ∂νv|ϑ ∈ L2(ϑ)

where v is a solution of (3.1) for given ψ
}
.

This map transforms the Dirichlet data on ϑ for solutions into the Neumann ones. It is well-defined for all 
μ that do not belong to the spectrum of the operator

D = �−1(−ΔM + b), domD = 
{
φ ∈ W 2

2 (M) : φ = 0 on ϑ, ∂νφ = 0 on ∂M \ ϑ
}
.

For real μ, the operator Θ(μ) is self-adjoint in L2(ϑ), bounded from below and has compact resolvent [3, 
Th.3.1]. For k = 1, . . . ,K, we will denote by Θk(μ) and Dk the Dirichlet-to-Neumann map and the operator 
D respectively for the case when M = Ωk, ϑ = γ, b = Vk, and � = hk := ρεk.

We introduce the operator

D = D1 ⊕ · · · ⊕DK .
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If λ �∈ σ(D), then the operator

Θ(λ) = Θ1(λ) + · · · + ΘK(λ) (3.2)

is well-defined. Moreover, Θ(λ) is self-adjoint in L2(γ), bounded from below and has compact resolvent as 
it is the sum of operators Θk(λ), each of which has these properties. We introduce the set

ΣΘ =
{
λ ∈ R : ker Θ(λ) �= {0}

}
.

Assume that λ is an eigenvalue of D of multiplicity r(λ), and rk is the multiplicity of λ in the spectrum 
of Dk. Obviously, r = r1 + · · · + rK . Let Uλ,k be the corresponding eigenspace in L2(hk,Ωk). If λ �∈ σ(Dk)
for some k, then rk = 0 and the space Uλ,k is trivial. We consider the subspace

Nk(λ) =
{
∂νk

u|γ : u ∈ Uλ,k

}
of L2(γ) consisting of normal derivatives on γ of all the eigenfunctions from Uλ,k. Since linearly independent 
eigenfunctions give rise to linearly independent normal derivatives on γ, we have dimNk(λ) = rk. Let us 
introduce the sum of these spaces

N(λ) = N1(λ) + · · · + NK(λ)

and the subset

ΣD =
{
λ ∈ σ(D) : dimN(λ) < r(λ)

}
.

Theorem 2. The spectrum of B has the following properties:

(i) σ(B) = ΣΘ ∪ ΣD.
(ii) If λ ∈ ΣD, then λ is an eigenvalue of the operator B with multiplicity at least r(λ) − dimN(λ).

Proof. (i) We first prove that σ(B) ⊂ ΣΘ∪ΣD. Let λ be an eigenvalue of B with eigenspace Uλ. All functions 
of Uλ are solutions of the problem

−ΔΩu + (V − λh)u = 0 in Ω, ∂nu = 0 on Γ, (3.3)

u1 = u2 = · · · = uK , Ku = 0 on γ. (3.4)

If there exists a non-zero vector u ∈ Uλ such that u = 0 on γ, then u is an eigenfunction of D with 
the eigenvalue λ. Note that the dimension of N(λ) cannot exceed r(λ), and we have the non-trivial linear 
combination 

∑K
k=1 ∂νk

uk = 0 in this space. Hence dimN(λ) < r(λ), and finally λ ∈ ΣD. Otherwise, the 
trace ζ = u|γ differs from zero for all non-trivial functions u ∈ Uλ. Then

Ku =
K∑

k=1

∂νk
uk

∣∣
γ

=
K∑

k=1

Θk(λ)ζ = Θ(λ)ζ = 0.

Hence λ ∈ ΣΘ.
Now we prove the inverse inclusion ΣΘ ∪ ΣD ⊂ σ(B). Assume that λ ∈ ΣΘ and ζ is a non-zero function 

belonging to kerΘ(λ). Let us consider the collection u = {u1, . . . , uK}, where uk are solutions of the problems

−ΔΩk
z + (Vk − λhk)z = 0 in Ωk, ∂nz = 0 on Γk, z = ζ on γ (3.5)
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for k = 1, . . . ,K. Then u is an eigenfunction of B with the eigenvalue λ, because u1 = · · · = uK = ζ and 
Ku = Θ(λ)ζ = 0. Hence, λ ∈ σ(B).

Next, we suppose that λ ∈ ΣD, i.e., λ is an eigenvalue of D with multiplicity r such that dimN(λ) < r. 
Let rk be the multiplicity of λ in the spectrum of Dk. If uk1, . . . , uk rk are the eigenfunctions of Dk that 
form a basis in Uλ,k, then the functions ζkj = ∂νk

ukj |γ , j = 1, . . . , rk, form a basis in Nk(λ). In total, we 
have r such functions ζkj in N(λ). If dimN(λ) < r, then there exists a non-trivial linear combination

K∑
k=1

rk∑
j=1 

αkjζkj = 0 (3.6)

for some constants αkj . If we set

vk =
rk∑
j=1 

αkjukj ,

then v = {v1, . . . , vK} is an eigenfunction of B. Indeed, the functions vk solve (3.5) with ζ = 0 as a linear 
combination of eigenfunctions of Dk. The continuity condition in (3.4) holds since all vk vanish on γ. Next, 
we have

Kv =
K∑

k=1

∂νk
vk =

K∑
k=1

rk∑
j=1 

αkj∂νk
ukj =

K∑
k=1

rk∑
j=1 

αkjζkj = 0,

by (3.6). Hence λ is an eigenvalue of B.
(ii) If dimN(λ) = d, then there exist exactly r− d linearly independent vectors α = (α11, . . . , αK,rK ) for 

which (3.6) holds. Therefore we can construct at least r − d linearly independent eigenfunctions of B. �
To conclude this section, we recall once again that all the properties of B are also the properties of 

operators Aε for a fixed ε.

4. Formal asymptotics and the limit operator. The case m = 1

In this section, using asymptotic expansions, we will construct a limit operator whose spectrum is the 
set of limit points for the eigenvalues of (2.2)-(2.5) as the small parameter ε goes to zero.

4.1. Asymptotics of eigenvalues and eigenfunctions

We look for an approximation, as ε → 0, to an eigenvalue λε and the corresponding eigenfunction uε of 
(2.2)-(2.5) in the form

λε = λ + o(1), (4.1)

uε(x) = u(x) + o(1) for x ∈ Ω \ ωε, (4.2)

uε(x) = v(ε−1y, x3) + εw(ε−1y, x3) + o(ε) for x = (ε−1y, x3) ∈ ωε. (4.3)

The function uε solves (2.2) and satisfies (2.3) for all ε > 0. Since the set ωε shrinks to γ as ε → 0, the 
function u must be a solution of the equation

−ΔΩu + V u = λρu in Ω (4.4)
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that satisfies the boundary condition

∂nu = 0 on Γ. (4.5)

Of course, u must also fulfill appropriate transmission conditions on γ. To find these conditions, we will 
examine equation (2.2) in a vicinity of γ.

The metric in ωε
k is the Euclidean one, so the Laplace-Beltrami operator ΔΩk

becomes ∂2
yk

+ ∂2
x3

. In the 
coordinates (t, s), equation (2.2) has the form

−ε−2∂2
t u

ε − ∂2
su

ε + V (εt, s)uε = λεε−1q(t, s)uε in ω.

Here ∂2
t is the second order derivative along edges of G. Substituting (4.3) into the latter equation and 

collecting the terms with the same powers of ε yield

∂2
t v = 0, −∂2

tw = λq(t, s)v. (4.6)

Obviously, both the functions v and w satisfy Kirchhoff’s coupling conditions on γ:

v1(0, s) = · · · = vK(0, s), 
K∑

k=1

∂tkvk(0, s) = 0,

w1(0, s) = · · · = wK(0, s), 
K∑

k=1

∂tkwk(0, s) = 0. (4.7)

To match the approximations on ∂ωε, we write u in the local coordinates (t, s):

uk(ε, s) = vk(1, s) + εwk(1, s) + o(ε),

∂νk
uk(ε, τ) = ε−1∂tkvk(1, s) + ∂tkwk(1, s) + o(1),

as ε → 0. Then we have

uk(0, s) = vk(1, s), (4.8)

∂tkvk(1, s) = 0, (4.9)

∂νk
uk(0, s) = ∂tkwk(1, s) (4.10)

for all k = 1, . . . ,K. Applying (2.3) we also deduce that

∂sv(t, 0) = 0, ∂sv(t, l) = 0, ∂sw(t, 0) = 0, ∂sw(t, l) = 0. (4.11)

Denote by ∂G the set of vertices {a1, . . . , aK}. Collecting (4.6)-(4.7), (4.9), and (4.10), we can now form 
the problems for v and w. The first is the homogeneous boundary value problem in star graph G for the 
second derivative ∂2

t depending on parameter s:

−∂2
t v = 0 in G× γ, ∂tv = 0 on ∂G× γ, (4.12)

v1 = · · · = vK , 
K∑

k=1

∂tkvk(0, ·) = 0 on γ. (4.13)

The problem for w is the same but already non-homogeneous:
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−∂2
tw = λqv in G× γ, ∂tw = ∂νu on ∂G× γ, (4.14)

w1 = · · · = wK , 
K∑

k=1

∂tkwk(0, ·) = 0 on γ. (4.15)

Here, ∂tw = ∂νu is an abbreviation for the set of conditions (4.10).
For a fixed s ∈ (0, l), problem (4.12)-(4.13) has only constant solutions (see [6], for details concerning 

ODE on metric graphs). We put v(t, s) = α(s) and assume that α ∈ W
3/2
2 (γ), α′(0) = α′(l) = 0, because of 

(4.11). In view of (4.8), we now obtain

u1(0, s) = u2(0, s) = · · · = uK(0, s) = α(s), (4.16)

that is to say u must be continuous on Ω∗. So, v(t, s) = u(0, s).
Problem (4.14)-(4.15) is generally unsolvable, because the corresponding homogeneous problem has non

trivial solutions. We will find its solvability conditions, which will simultaneously be another coupling 
condition on u. Now equation (4.14) can be written as −∂2

tw = λq(t, s)u(0, s). Let us multiply this equation 
by an arbitrary function φ ∈ C∞

0 (γ) and integrate over ω:

−
∫
ω

∂2
tw(t, s)φ(s) dt ds = λ

∫
ω

q(t, s)u(0, s)φ(s) dt ds. (4.17)

Both sides can be simplified as follows. Integrating by parts yields

∫
ω
∂2
tw(t, s)φ(s) dt ds =

K∑
k=1

l∫
0 

φ(s)ds
1 ∫

0 

∂2
tk
wk(t, s) dt

=
K∑

k=1

l∫
0 

(∂tkwk(1, s) − ∂tkwk(0, s))φ(s) ds

=
l∫

0 

K∑
k=1

∂νk
uk(0, s)φ(s) ds−

l∫
0 

K∑
k=1

∂tkwk(0, s)φ(s) ds =
∫
γ

Ku φd
.

Above we have used (4.14) and (4.15). Next, we write

∫
ω

q(t, s)u(0, s)φ(s) dt ds =
∫
γ

κu(0, ·)φd
,

where the function

κ(s) =
∫
G 

q(t, s) dt (4.18)

describes the total mass of the graph Gs = G×{s}. The integral over the graph is the sum of integrals over 
edges, i.e.,

κ(s) =
∫
G 

q(t, s) dt =
K∑

k=1

∫
ek

qk(tk, s) dtk. (4.19)
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Then identity (4.17) becomes
∫
γ

(Ku + λκu)φd
 = 0 for all φ ∈ C∞
0 (γ).

Finally, we get the last condition

Ku + λκu = 0 on γ (4.20)

on the function u, for which we need to formulate the problem. Combining (4.4), (4.5), (4.16) and (4.20), 
we obtain the limit eigenvalue problem

−ΔΩu + V u = λρu in Ω, ∂nu = 0 on Γ, (4.21)

u1 = u2 = · · · = uK , Ku + λκu = 0 on γ, (4.22)

for the leading terms λ and u of asymptotics (4.1) and (4.2).

4.2. Properties of the limit operator

(4.21)-(4.22) is a spectral problem where the spectral parameter appears in both, the partial differential 
equation and the junction condition along γ. Below, we will construct some matrix operator associated with 
the problem. Let us introduce the space L = L2(ρ,Ω) × L2(κ, γ) with the inner product

(û, û)L =
∫
Ω 

ρ|u|2 dS +
∫
γ

κ|ζ|2 d
,

for û = (u, ζ)T , a 2 × 1 vector function belonging to L. In this space, we consider the operator

Aû =
(
ρ−1(−ΔΩu + V u)

−κ
−1Ku

)
(4.23)

that is defined on domA =
{
(u, u|γ) : u ∈ W 2

2 (Ω), u is continuous on Ω∗, ∂nu = 0 on Γ
}
. Now problem 

(4.21)-(4.22) can be written in the form

Aû = λû, û ∈ domA.

The study of the spectra of the operators A and B is similar. Therefore, we will only point out some 
differences without repeating ourselves. Here and subsequently, the operators Dk, D and Θ(λ) refer to the 
definitions provided in Section 3 for the case when h = ρ. Let us introduce the set

ΛΘ = {λ ∈ R : ker(Θ(λ) + λκI) �= {0}} ,

where I is the identity operator on L2(γ).

Theorem 3. The spectrum of A has the following properties:

(i) It is real discrete, bounded from below, and it consists of eigenvalues of finite multiplicity.
(ii) σ(A) = ΛΘ ∪ ΣD.
(iii) If λ ∈ ΣD, then λ is an eigenvalue of A with multiplicity at least r(λ) − dimN(λ).
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Fig. 3. Turbines and propellers. 

Proof. First we prove that A is self-adjoint, bounded from below, and has a compact resolvent. Suppose 
û ∈ domA. An easy computation shows that

(Aû, v̂)L − (û,A∗v̂)L =
K∑

k=1

∫
Γk

uk ∂nvk d
 +
K∑

k=1

∫
γ

∂νk
uk(vk − η) d
, (4.24)

for any v̂ = (v, η)T ∈ L, provided v belongs to W 2
2 (Ω). If we suppose that ∂nv = 0 on Γ, the function v is 

continuous on Ω∗ and η = v|γ , then the right hand side of (4.24) vanishes for all û ∈ domA. Furthermore, 
this is the largest class of vectors v̂ for which this is true. Hence, domA = domA∗ and A∗ is self-adjoint.

Next, we have

(Aû, û)L =
∫
Ω 

(−ΔΩu + V u)u dS −
∫
γ

Ku ud
 =
∫
Ω 

(
|∇u|2 + V |u|2

)
dS

≥ −c

∫
Ω 

|u|2 dS ≥ − c 
ρmin

⎛
⎝∫

Ω 

ρ|u|2 dS +
∫
γ

κ|u|2 d


⎞
⎠ = − c 

ρmin
‖û‖2

L

for all û ∈ domA, where ρmin = minΩ ρ and c is a positive constant such that V (x) ≥ −c for almost all 
x ∈ Ω. Hence A is bounded from below.

The resolvent of A is a bounded operator from L to domA. This resolvent is compact as an operator in 
L since domA ⊂ W 2

2 (Ω) ×W
3/2
2 (γ) ⊂ L and the last inclusion is compact.

The rest of the proof runs in the same way as in Theorem 2. �
Two different types of eigenvibrations correspond to the parts ΛΘ and ΣD of σ(A). If λ ∈ ΣD, then the 

corresponding eigenvector has the form ûλ = (u, 0)T and the connection curve γ remains unmoved in those 
vibrations. However, if λ ∈ ΛΘ, then ûλ = (u, ζ)T , where ζ is a non-trivial solution of the equation

(Θ(λ) + λκ)ζ = 0.

This implies that γ is involved in the system’s vibrations. Our mathematical model can describe the eigen
vibrations of many mechanical systems with complex geometry. For instance, Fig. 3 depicts turbine blades 
and various propellers. From a physics perspective, the first type would illustrate the oscillation of lighter 
blades with a fixed shaft, while the second type would be the vibration that also propagates to the shaft.
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5. Convergence of spectra in the case m = 1

In this section, we will show that the spectra of the perturbed operators Aε converge as ε → 0 to the 
spectrum of A. However, each operator Aε acts in its own Hilbert space L2(ρε,Ω) with the norm depending 
on the small parameter ε. Therefore, it is convenient to study the convergence of the spectra in terms of 
the convergence of quadratic forms.

Suppose the potential V is positive in Ω and introduce the Hilbert space

H = {φ ∈ W 1
2 (Ω) : φ is continuous in Ω∗}

with the inner product 〈φ, ψ〉 =
∫
Ω(∇φ · ∇ψ + V φψ) dS and the norm ‖φ‖ = 〈φ, φ〉1/2. We also define the 

sesquilinear forms

aε(φ, ψ) =
∫

Ω\ωε

ρφψ dS + ε−m

∫
ωε

qεφψ dS,

a(φ, ψ) =
∫
Ω 

ρφψ dS +
∫
γ

κφψ d


acting on the space H. These forms are associated with compact, self-adjoint operators Aε and A in H
defined as follows Aε : H → H, Aεφ = uε where uε is the solution of

〈uε, ψ〉 = aε(φ, ψ) for all ψ ∈ H,

A : H → H, Aφ = u where u is the solution of

〈u, ψ〉 = a(φ, ψ) for all ψ ∈ H.

In this way, we also have

〈Aεφ, ψ〉 = aε(φ, ψ), 〈Aφ,ψ〉 = a(φ, ψ) for all φ, ψ ∈ H

(see [42, III.1], for details). Then, spectral problems (2.2)-(2.5) and (4.21)-(4.22) can be written as

λεAεu
ε = uε, λAu = u,

respectively.

Theorem 4. Let {λε
j}∞j=1 be the increasing sequence of eigenvalues of (2.2)-(2.5) for m = 1, taking multiplicity 

into account. For problem (4.21)-(4.22), the same sequence of eigenvalues is denoted by {λj}∞j=1. Assume 
the potential V is positive in Ω. Then, for any n, we have

|λε
j − λj | ≤ Cjε

1/2

with some Cj > 0.

Let us first prove some auxiliary estimates.
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Proposition 5. There exists a constant c > 0 such that
∫
ωε

|φ|2 dS ≤ cε‖φ‖2

for all φ ∈ H.

Proof. Let φ ∈ H ∩ C1(Ω) where C1(Ω) = {u|Ωk
: u ∈ C1(Ωk)} (cf. (2.1)). For any k = 1, 2, . . .K, we have

|φk(yk, s)|2 ≤ 2|φk(0, s)|2 + 2
∣∣∣
yk∫
0 

∂yk
φk(τ, s) dτ

∣∣∣2 ≤ 2|φk(0, s)|2 + 2yk
ε ∫

0 

|∂yk
φk|2 dτ, 

where (yk, s) ∈ ωε
k = (0, ε) × (0, l). Integrating over ωε

k and using the Trace Theorem, we get

∫
ωε

k

|φk|2 dS =
ε ∫

0 

l∫
0 

|φk(τ, s)|2 ds dτ ≤ 2ε‖φk‖2
L2(γ) + ε2‖∇φk‖2

L2(ωε
k) ≤ ckε‖φk‖2

W 1
2 (Ωk). 

Now let us add all K inequalities. This completes the proof, since C1(Ωk) is dense in W 1
2 (Ωk). �

Proposition 6. There exists a positive constant C, independent of ε, such that
∣∣∣∣∣∣ε−1

∫
ωε

qε|φ|2 dS −
∫
γ

κ|φ|2 d


∣∣∣∣∣∣ ≤ Cε1/2‖φ‖2

for all φ ∈ H, where κ is defined by (4.18).

Proof. As in Proposition 5, it suffices to prove that the estimates
∣∣∣∣∣∣∣ε

−1
∫
ωε

k

qεk|ψ|2 dS −
∫
γ

κk|ψ|2 d


∣∣∣∣∣∣∣ ≤ Ckε
1/2‖ψ‖2

W 1
2 (Ωk)

hold for all ψ ∈ C1(Ωk) and k = 1, . . . ,K. Here ψ = φk and κk(s) =
∫
ek

qk(tk, s) dtk (see (4.19)). Let us 
multiply the obvious equality

|ψ(yk, s)|2 − |ψ(0, s)|2 =
yk∫
0 

∂yk
|ψ(τ, s)|2 dτ (5.1)

by the weight function qεk(yk, s) = qk(ε−1yk, s) and integrate along γ. Then

∣∣∣∣∣∣
l∫

0 

qk
(
ε−1yk, s)(|ψ(yk, s)|2 − |ψ(0, s)|2

)
ds

∣∣∣∣∣∣ ≤ c1

l∫
0 

yk∫
0 

∣∣∂yk
|ψ(τ, s)|2

∣∣ dτds

≤ c2

l∫
0 

yk∫
0 

|ψ(τ, s)| |∂yk
ψ(τ, s)| dτds ≤ c3‖ψ‖L2(ωε

k)‖∇ψ‖L2(ωε
k) ≤ Cε1/2‖ψ‖2, (5.2)
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in view of Proposition 5. We note that

∫
γ

κk|ψ|2 d
 = ε−1
ε ∫

0 

l∫
0 

qk(ε−1yk, s)|ψ(0, s)|2 ds dyk.

From (5.2) we get

∣∣∣ε−1 ∫
ωε

k
qεk|ψ|2 dS −

∫
γ
κk|ψ|2 d


∣∣∣ ≤ ε−1

∣∣∣∣∣∣
ε ∫

0 

l∫
0 

qk
(
ε−1yk, s)(|ψ(yk, s)|2 − |ψ(0, s)|2

)
ds dyk

∣∣∣∣∣∣
≤ ε−1

∣∣∣∣∣∣
ε ∫

0 

Cε1/2‖ψ‖2 dyk

∣∣∣∣∣∣ ≤ Cε1/2‖ψ‖2,

which completes the proof. �
Proof of Theorem 4. Applying Propositions 5 and 6 yields

|aε(φ, φ) − a(φ, φ)| ≤ 
∫
ωε

ρ|φ|2 dS +

∣∣∣∣∣∣ε−1
∫
ωε

qε|φ|2 dS −
∫
γ

κ|φ|2 d


∣∣∣∣∣∣ ≤ c1ε
1/2‖φ‖2

for all φ ∈ H. The latter inequality implies that Aε converge to A in norm and, moreover, ‖Aε−A‖ ≤ c1ε
1/2. 

Therefore we conclude that ∣∣∣∣∣ 1 
λε
j

− 1 
λj

∣∣∣∣∣ ≤ cjε
1/2,

(cf. [42, III.1]) and hence λε
j → λj as ε → 0, and finally that

|λε
j − λj | ≤ cj |λj ||λε

j |ε1/2 ≤ 2cj |λj |2ε1/2 ≤ Cjε
1/2

for all j ∈ N. �
Remark 1. The operators introduced in Section 3, Aε, and the operators generated by forms, Aε, share the 
same set of eigenfunctions. Additionally, the map λ �→ λ−1 is a bijection between their spectra. Indeed, 
all eigenfunctions of Aε have higher smoothness and actually belong to the space W 2

2 (Ω). In this case, any 
eigenfunction uε with an eigenvalue (λε)−1 of Aε is also an eigenfunction of Aε with the eigenvalue λε and 
vice versa, because any weak solution (in the sense of the variational statement) is a strong one.

6. Low frequency eigenvibrations in the case m > 1

Problem (2.2)-(2.5) concerns the eigenvibrations of a propeller with a heavy propeller shaft and relatively 
light blades. The total mass Mε that is concentrated on the shaft has the following asymptotics:

Mε = ε−m

∫
ωε

qε dS = ε1−m

⎛
⎝∫

γ

κ d
 + o(1)

⎞
⎠ , as ε → 0.

When m = 1, this mass was finite, but now it goes to infinity as ε → 0. It is easily seen that
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|aε(φ, φ)| ≤ cε1−m‖φ‖2

if m > 1, and ‖Aε‖ = O(ε1−m) as ε → 0. However, the operators εm−1Aε converge for every m > 1 and the 
limit operator does not depend on m. We will define this operator as follows.

Let us consider the eigenvalue problem

−ΔΩu + V u = 0 in Ω, ∂nu = 0 on Γ, (6.1)

u1 = u2 = · · · = uK , Ku + λκu = 0 on γ, (6.2)

which is similar to (4.21)-(4.22), but in it the weight function ρ is zero. One interesting aspect of the problem 
is that the spectral parameter λ only appears in the boundary condition. The operator’s eigenfunctions 
describe the low frequency eigenvibrations, which refer to the vibrations of a propeller with weightless 
blades when all the mass of this vibrating system is concentrated on the propeller shaft. This is best seen 
in the case of K = 2, when the stratified set Ω∗ turns into a domain Ω ⊂ R2 divided by the curve γ into 
two parts, and problem (6.1)-(6.2) can be written as

−Δu + V u = λκδγu in Ω, ∂nu = 0 on ∂Ω,

where the mass density of the vibrating system is Dirac’s distribution

κδγ(ψ) =
∫
γ

κψ d
, for all ψ ∈ C∞
0 (Ω),

with the support on γ.
We will denote by Θ the operator Θ(λ) from (3.2) in the case when h = 0. This operator transforms the 

Dirichlet data ζ for the solutions vk of the problems

−ΔΩk
vk + Vkvk = 0 in Ωk, ∂nvk = 0 on Γk, vk = ζ on γ, k = 1, . . . ,K (6.3)

to the sum on the normal derivatives Kv =
∑K

k=1 ∂νk
vk. This Dirichlet-to-Neumann map is well defined if 

the corresponding operator D is invertible, i.e. all problems (6.3) have only trivial solutions for ζ = 0. Then 
the condition Ku + λκu = 0 can be written as

Θζ + λκζ = 0.

Theorem 7. If the problem

−ΔΩu + V u = 0 in Ω, ∂nu = 0 on Γ, u = 0 on γ (6.4)

has only a trivial solution, then the set of eigenvalues of problem (6.1)-(6.2) coincides with the spectrum of 
−κ

−1Θ. This spectrum is real, discrete and consists of eigenvalues of finite multiplicity.

Proof. The operator Θ is self-adjoint on L2(γ) and has a compact resolvent [3, Th.3.1]. Therefore, κ−1Θ also 
possesses these properties, and σ(κ−1Θ) is a real discrete set consisting of eigenvalues of finite multiplicity.

If λ is an eigenvalue of (6.1)-(6.2) with an eigenfunction u, then ζ = u|γ differs from zero, because 
otherwise u would be a solution of (6.4) equal to zero. Hence, λ is an eigenvalue of −κ

−1Θ. It is evident 
that the converse statement is also true. If λ ∈ σ(−κ

−1Θ) and ζ is the corresponding eigenfunction, then λ
is an eigenvalue of (6.1)-(6.2) with the eigenfunction v = {v1, . . . , vK}, where vk are solutions of (6.3). �
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Theorem 8. Suppose m > 1 and the potential V is positive in Ω. Let {λε
j}∞j=1 be the increasing sequence 

of eigenvalues of (2.2)-(2.5), taking multiplicity into account. For problem (6.1)-(6.2), the same sequence of 
eigenvalues is denoted by {λj}∞j=1. Then ε1−mλε

j → λj as ε → 0, and

|λε
j − εm−1λj | ≤ Cjε

α(m), (6.5)

where α(m) = min{m− 1
2 , 2(m− 1)}. The constant Cj does not depend on ε.

Proof. As in the proof of Theorem 4, we introduce the sesquilinear form

a0(φ, ψ) =
∫
γ

κφψ d
 for all φ, ψ ∈ H,

and the corresponding self-adjoint operator A0 : H → H, defined by A0φ = u where u is the solution of

〈u, ψ〉 = a0(φ, ψ) for all ψ ∈ H.

In this way, we also have 〈A0φ, ψ〉 = a0(φ, ψ).
Repeated application of Propositions 5 and 6 enables us to write

|εm−1aε(φ, φ) − a0(φ, φ)| ≤

∣∣∣∣∣∣ε−1
∫
ωε

qε|φ|2 dS −
∫
γ

κ|φ|2 d


∣∣∣∣∣∣ + εm−1
∫

Ω\ωε

ρ|φ|2 dS ≤ c(ε1/2 + εm−1)‖φ‖2

for all φ ∈ H. So, we see that ‖εm−1Aε −A‖ ≤ c1(ε1/2 + εm−1), and therefore
∣∣∣∣∣ε

m−1

λε
j

− 1 
λj

∣∣∣∣∣ ≤ cj(ε1/2 + εm−1).

It follows from this estimate that the sequence ε1−mλε
j converges to λj , and

|λε
j − εm−1λj | ≤ cj |λj ||λε

j |(ε1/2 + εm−1) ≤ 2cj |λj |2εm−1(ε1/2 + εm−1) ≤ Cj(εm−1/2 + ε2(m−1)), 

which completes the proof. �
7. Asymptotics of upper part of σ(Aε) in the case m ∈ (1, 2)

In the previous section, we described the behavior, as ε tends to zero, of eigenvalues λε
j for any fixed j. 

The {λε
j}∞j=1 have been ordered in an increasing order and the convergence of λε

j to zero is not uniform with 
respect to the number. Indeed, under the basis of cj independent of ε in Theorem 8, the constants Cj in 
inequalities (6.5) tend to infinity as j → ∞, since Cj ≥ O(|λj |2). Therefore, even if ε is sufficiently small, 
only a finite number of eigenvalues have the asymptotics given by (6.5). For all the other eigenvalues, the 
value of Cjε

β(m) is the same or larger than εm−1λj , and the asymptotic expansion λε
j = εm−1λj +O(εβ(m))

is not valid (see Fig. 4 (a)). This raises the question of the asymptotic behavior of large eigenvalues. We have 
shown that the spectra of both operators Aε and A can intersect with the spectrum of D. In this section, 
we discuss the role of D in approximating the upper part of σ(Aε). Under the basis of the normalization 
of the eigenfunctions in H, we show that there are sequences {λε}ε>0 of eigenvalues such that λε → μ and 
μ > 0, and the corresponding eigenfunctions uε converge towards a non-zero function u in H weakly only if 
μ is an eigenvalue of D (cf. Theorems 10 and 13). If so, u is the corresponding eigenfunction.
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Fig. 4. (a) The set Σ: domain A is where asymptotics (6.5) holds, while domain B is where the asymptotics is not valid, but other 
approaches of eigenvalues could exist. (b) An illustration of possible values λε

j for m = 3/2.

It is assumed that the potential V is positive and m ∈ (1, 2). The quadratic form aε(φ, φ) is continuous 
with respect to ε, for ε �= 0. Therefore, using results on comparison of eigenvalues and the variational 
principles (cf. e.g. [44, I.7]), it can be shown that the eigenvalues λε

j are continuous functions of ε ∈ (0, 1]. 
The continuity at zero is a consequence of Theorem 8. Let

Σ =
{
(ε, λ) : ε ∈ (0, 1), λ ∈ σ(Aε)

}
.

This set is the union of all curves in R2
ε,λ parameterized by the eigenvalues λ = λε

j , ε ∈ (0, 1). Let cl0 Σ
denote the set of all points λ∗ such that (0, λ∗) belongs to the closure of Σ, namely, λ∗ is a limit point of 
λε as ε → 0.

As a consequence of Theorem 1 in [7], we claim:

Lemma 9. cl0 Σ = [0,+∞).

Note that Lemma 9 implies that for each λ∗ > 0 there are sequences λεn
i(εn) → λ∗ as εn → 0 where, on 

account of Theorem 5, i(εn) → +∞. It is worth mentioning that the existence of i(ε) → +∞ such that 
the whole sequence λε

i(ε) → λ∗ could be obtained by means of the corresponding spectral families (cf. [35] 
for the technique and [20] for further explanations and references). For the sake of completeness, Remark 2
contains a formal proof based on a graphic for the specific order λε

j = O(εm−1) with m ∈ (1, 2).

Remark 2. All eigenvalues λε
j are positive, therefore cl0 Σ ⊂ [0,+∞). Additionally, λ = 0 belongs to cl0 Σ

according to Theorem 8. As above mentioned, given j ∈ N, the eigenvalue λε
j is a continuous function of ε

that goes to zero as ε → 0, λε
j ≈ εm−1λj . Also λj → +∞ and, for fixed ε = ε0, λε0

j → +∞ as j → +∞. 
If, contrary to our claim, some point λ∗ > 0 is not included in cl0 Σ, then, for all sequences εn → 0, none 
subsequence, still denoted by εn, of eigenvalues λεn

i(εn) can converge towards λ∗ and there will likely exists a 
neighborhood of (0, λ∗), Bλ∗ , that is free of points of Σ. Based on what is shown in Fig. 4 (b) we conclude 
that for sufficiently large j we can find εj sufficiently small such that λεj

j ∈ Bλ∗ . This contradicts the 
assumption.

The lemma states that any positive number can be approximated by a sequence of eigenvalues of Aε. 
However, there is a difference between the spectrum of D and the other points in cl0 Σ. This distinction can 
only be explained by the behavior of the corresponding eigenfunctions.

Let E be a subset of the interval (0, 1) for which zero is a limit point. We also introduce the space

H0 = {φ ∈ H : φ = 0 on γ}.
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Theorem 10. Assume m ∈ (1, 2). Let {λε}ε∈E be a sequence of eigenvalues of Aε and {uε}ε∈E be a sequence 
of the corresponding eigenfunctions, normalized by ‖uε‖ = 1. Suppose that λε converge to some positive 
value λ as E � ε → 0 and uε → u in H weakly.

(i) If λ / ∈ σ(D), then u = 0.
(ii) If the limit function u is not equal to zero, then λ is an eigenvalue of D and u is an eigenfunction 

associated with λ.

Proof. First, we prove that uε|γ → 0 in L2(γ), as E � ε → 0. An eigenfunction uε of problem (2.2)-(2.5)
satisfies the identity

∫
Ω 

(
∇uε · ∇φ + V uεφ

)
dS = λε

∫
Ω 

ρεuεφdS for all φ ∈ H. (7.1)

When considering the normalized eigenfunction, this identity gives
∫

Ω\ωε

ρ|uε|2 dS + ε−m

∫
ωε

qε|uε|2 dS = 1 
λε

.

From this, we immediately estimate that

ε−1
∫
ωε

|uε|2 dS ≤ c1ε
m−1.

Next, by applying (5.1) for uε instead of ψ and repeating the same computation as in the proof of Propo
sition 6, we obtain

‖uε‖2
L2(γ) =

∫
γ

|uε|2 d
 = ε−1
∫
ωε

|uε(0, ·)|2 dS ≤ c2(εm−1 + ε1/2). (7.2)

Hence, uε|γ converge to zero in L2(γ), and moreover

ε−m

∫
ωε

qεuεφdS → 0, E � ε → 0, (7.3)

provided φ ∈ H0 and m ∈ (1, 2). By passing to the weak limit in (7.1), we obtain that
∫
Ω 

(
∇u · ∇φ + V uφ

)
dS = λ

∫
Ω 

ρuφ dS for all φ ∈ H0. (7.4)

Therefore, u is either an eigenfunction of D with the eigenvalue λ or zero, since u|γ = 0. �
The theorem we have just proved does not guarantee the existence of convergent sequences λε → λ and 

uε → u such that u is not zero if λ belongs to σ(D). This fact will be demonstrated constructing the so-called 
quasimodes. We refer to [47] for the proof of Lemma 11.

Lemma 11. Let L : H −→ H be a linear, self-adjoint, positive and compact operator on a separable Hilbert 
space H with domain D(H). Let v ∈ D(H), with ‖v‖H = 1 and μ, r > 0 such that ‖Lv − μv‖H ≤ r. Then, 
there exists an eigenvalue μ∗ of L satisfying |μ − μ∗| ≤ r. Moreover, for any d > r, there is v∗ ∈ H, with 



22 Y. Golovaty et al. / J. Math. Anal. Appl. 549 (2025) 129586 

‖v∗‖H = 1, v∗ belonging to the eigenspace associated with the eigenvalues of the operator L lying on the 
interval [μ− d, μ + d] and such that

‖v − v∗‖H ≤ 2rd−1.

The couple (μ, v) ∈ R×H such that ‖Lv−μv‖H ≤ r and ‖v‖H = 1 is called a quasimode of the operator 
L with error r. If r = 0, then μ is an eigenvalue of L with the normalized eigenfunction v. Otherwise, as 
stated Lemma 11, given a quasimode with error r, the interval [μ− r, μ+ r] contains at least one eigenvalue 
μ∗ of L.

It should be noted that no assertion can be made about the relative closeness of the quasimode v to a 
true eigenvector v∗. The only fact that can be stated is that

‖E(Δ)v − v‖H ≤ rd−1, (7.5)

where Δ = [μ − d, μ + d] and E(Δ) is the spectral projection of L corresponding to Δ. If Δ contains only 
one simple eigenvalue μ∗ of L, then there exists a normalized eigenvector v∗ such that

‖v − v∗‖H ≤ 2rd−1, (7.6)

since E(Δ) = (v, v∗)H v∗ (see [47] and [34], for details).
A family of quasimodes {(μ, v1), . . . , (μ, vJ)} with error r is said to have a deviation from orthogonality θ

if 
∣∣(vi, vj)H − δij

∣∣ ≤ θ for all i, j = 1, . . . , J , where δij is the Kronecker delta. We refer to [34] for the proof 
of Lemma 12.

Lemma 12. Let {(μ, v1), . . . , (μ, vJ)} be a family of quasimodes of the operator L with error r and deviation 
from orthogonality θ. If rd−1 + θ < J−1, then L has eigenvalues on the interval [μ− d, μ + d] with a total 
multiplicity of J .

Let us construct quasimodes for the operator Aε : H → H introduced in Section 5. We consider the pair 
(λ−1, u), where λ is an eigenvalue of D and u is the corresponding normalized eigenfunction. We need to 
evaluate whether the norm ‖Aεu− λ−1u‖ is small as ε tends to zero.

It is observed that u satisfies identity (7.4) for functions φ ∈ H0, but for the test functions from H the 
following identity holds:

∫
Ω 

(
∇u · ∇φ + V uφ

)
dS +

∫
γ

Ku φd
 = λ

∫
Ω 

ρuφ dS for all φ ∈ H. (7.7)

In addition, the eigenfunction u, as we noted above, belongs to W 2
2 (Ω). Due to the Sobolev embedding 

W 2
2 (Ωk) ↪→ C0,η(Ωk), valid for η ∈ (0, 1) (cf. [1, 1.27, 6.2]), we have that

|u(x)| ≤ c|x|η

in a vicinity of γ, because of u|γ = 0. Combining this with Proposition 5, we have

∣∣∣∣∣∣
∫
ωε

qεuφdS

∣∣∣∣∣∣ ≤ c1 max 
x∈ωε

|u(x)|
∫
ωε

|φ| dS ≤ c2ε
η+1‖φ‖. (7.8)

Applying (7.7) and (7.8), we deduce
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〈Aεu− λ−1u, φ〉 =
∫

Ω\ωε

ρuφ dS + ε−m

∫
ωε

qεuφdS − λ−1
∫
Ω 

(∇u · ∇φ + V uφ) dS

= λ−1
∫
γ

Ku φd
 + ε−m

∫
ωε

qεuφdS −
∫
ωε

ρuφ dS

= λ−1
∫
γ

Ku φd
 + O(εη+1−m) as ε → 0.

Hence, the pair (λ−1, u) is not the best candidate for a quasimode, because the vector Aεu − λ−1u has a 
large norm in H. However, we will improve it now.

Let us assume that κ (namely, q) is sufficiently smooth and there is g from H such that

g(y, s) = (λκ(s))−1Ku(0, s), in a neighborhood of γ and g ∈ H. (7.9)

Then ∣∣∣∣∣∣ε−1
∫
ωε

qεgφ dS − λ−1
∫
γ

Ku φd


∣∣∣∣∣∣ ≤ cε1/2‖φ‖, (7.10)

by Proposition 6. We set wε = u − εm−1g and consider a new pair (λ−1, wε). Repeating the previous 
argument and using (7.10) leads to the estimate

∣∣〈Aεwε − λ−1wε, φ〉
∣∣ ≤

∣∣∣∣∣∣ε−1
∫
ωε

qεgφ dS − λ−1
∫
γ

Ku φd


∣∣∣∣∣∣
+ε−m

∣∣∣∣∣∣
∫
ωε

qεuφdS

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
ωε

ρuφ dS

∣∣∣∣∣∣ + εm−1

∣∣∣∣∣∣∣
∫

Ω\ωε

ρgφ dS

∣∣∣∣∣∣∣
+λ−1εm−1|〈g, φ〉| ≤ C(εm−1 + ε1/2 + εη+1−m)‖φ‖.

Finally, we have

∣∣〈Aεwε − λ−1wε, φ〉
∣∣ ≤ Cεβ(m,η)‖φ‖,

where

β(m, η) =
{
m− 1 if m ∈ (1, 1 + η

2 ],
η −m + 1 if m ∈ (1 + η

2 , η + 1).
(7.11)

We can see that for any m as close to 2 as possible, there exists η ∈ (0, 1) such that β(m, η) is positive. 
Hence, ‖Aεwε − λ−1wε‖ ≤ Cεβ(m,η), and therefore (λ−1, wε) is a quasimode of Aε with error of order 
O(εβ(m,η)), as ε → 0.

Let λ be an eigenvalue of D with multiplicity J . In the corresponding eigenspace Uλ, we can choose a 
basis {u(1), . . . , u(J)} such that

λ

∫
Ω 

ρu(i)u(j) dS = δij for i, j = 1, . . . , J.
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Then this basis is orthonormal in the space H, i.e., 〈u(i), u(j)〉 = δij . We can construct the family of 
quasimodes

w(1)
ε = u(1) − εm−1g(1), . . . , w(J)

ε = u(J) − εm−1g(J)

with error of order O(εβ(m,η)). In addition, this family has a deviation from orthogonality of the order 
O(εm−1). Indeed, for every i, j = 1, . . . , J , we have

〈w(i)
ε , w

(j)
ε 〉 − δij = 〈u(i) − εm−1g(i), u(j) − εm−1g(j)〉 − 〈u(i), u(j)〉

= −εm−1(〈u(i), g(j)〉 + 〈g(i), u(j)〉
)

+ ε2(m−1)〈g(i), g(j)〉 = O(εm−1), as ε → 0.

Lemma 12 and estimates (7.5), (7.6) will now be applied to construct a family of quasimodes by setting 
d = 2JCεβ(m,η), θ = cεm−1 and r = Cεβ(m,η). The condition rd−1 + θ < J−1 is met because the following 
inequality

(2J)−1 + cεm−1 < J−1

holds for sufficiently small values of ε.
Summarizing, we have

Theorem 13. Assume m ∈ (1, 2) and κ ∈ C1(γ) such that (7.9) holds. Let λ be an eigenvalue of D with 
multiplicity J , i.e., λ = λj = λj+1 = · · · = λj+J−1 and λj−1 < λ < λj+J . Then the total multiplicity of 
eigenvalues of Aε that lie in the interval

Δε =
[
λ− 2JCεβ(m,η), λ + 2JCεβ(m,η)

]

is equal to J . Here β(m, η) is given by (7.11), where η is any positive number such that m− 1 < η < 1.
In addition, if λ is a simple eigenvalue of D with an eigenfunction u, ‖u‖ = 1, and the interval Δε =[

λ− 2JCεβ(m,η)+τ , λ + 2JCεβ(m,η)+τ
]

for a certain τ > 0 contains only an eigenvalue of Aε, then there 
exists a sequence of eigenfunctions uε of Aε such that uε → u in H weakly.
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