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Abstract
A numerical algorithm (implemented in Matlab) for computing the zeros of the
parabolic cylinder function U (a, z) in domains of the complex plane is presented.
The algorithm uses accurate approximations to the first zero plus a highly efficient
method based on a fourth-order fixed point method with the parabolic cylinder func-
tions computed by Taylor series and carefully selected steps, to compute the rest of the
zeros. For |a| small, the asymptotic approximations are complementedwith a fewfixed
point iterations requiring the evaluation of U (a, z) and U ′(a, z) in the region where
the complex zeros are located. Liouville–Green expansions are derived to enhance
the performance of a computational scheme to evaluate U (a, z) and U ′(a, z) in that
region. Several tests show the accuracy and efficiency of the numerical algorithm.
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1 Introduction

The search for complex zeros of functions in a domain of the complex plane is essential
in various fields, particularly in problems related to the propagation and radiation of
electromagnetic waves. In such contexts, the complex zeros of specific functions-such
as wave propagation equations [7], Green’s functions, or impedance functions-play a
critical role in determining key physical phenomena. These include resonance, scatter-
ing, and the stability of wave solutions. In general, the complexity of these problems
often requires numerical techniques and sophisticated algorithms for accurately iden-
tifying the zeros in a given domain of the complex plane; see for example [1, 5,
8].

Parabolic cylinder functions arise naturally as solutions to the wave equation when
expressed in a parabolic coordinate system. In this paper, we present a numerical
algorithm for finding the complex zeros of the parabolic cylinder functionU (a, z) in a
domain of the complex plane. The function U (a, z) is a solution of the homogeneous
equation

d2y

dz2
−

(
1

4
z2 + a

)
y = 0. (1.1)

A Poincaré-type expansion for this function is given by [9, Eq. 12.9.1]

U (a, z) ∼ e− 1
4 z

2
z−a− 1

2

∞∑
s=0

(−1)s
( 1
2 + a

)
2s

s!(2z2)s , | arg(z)| < 3π/4, (1.2)

from which, it is clear its recessive behavior at infinity in the sector | arg(z)| ≤ π/4.
The algorithm uses as starting values the asymptotic approximations to the zeros

of U (a, z) given in [4]. These asymptotic approximations are highly accurate for
moderate to large values of a. The approximations are expressed in terms of the
zeros of Airy functions or combinations of these functions. For small values of a, the
asymptotic approximations are refined using a fourth-order fixed-point method. The
remaining zeros of U (a, z) are obtained through a highly efficient scheme involving
carefully selected steps and additional fixed-point iterationswith the parabolic cylinder
functions computed by Taylor series. Numerical tests demonstrate the accuracy and
efficiency of the numerical scheme. The algorithm represents a first practical imple-
mentation that illustrates how combining asymptotic and iterative methods is a highly
efficient strategy for determining zeros of functions that are solutions to second-order
ODEs.

2 Algorithm for computing the complex zeros of U(a, z)

We follow the results given in [10]. In this reference, the complex zeros of solutions
of ODEs

y′′(z) + A(z)y(z) = 0 (2.1)
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with A(z) a complex meromorphic function, are considered. It is shown that the zeros
lie over certain curves which follow very closely the approximate anti-Stokes lines
(ASLs). Information on the approximate Stokes lines (SLs) is also important in a
general strategy for finding the complex zeros of y(z). This qualitative analysis of
ASLs and SLs is then combined with the use of a fixed point iteration T (z) = z +

1√
A(z)

arctan
(√

A(z) y(z)
y′(z)

)
and carefully selected displacements H±(z) = z± π√

A(z)
.

The strategy for finding the complex zeros of y(z) can be summarized as follows:

1. Divide the complex plane in disjoint domains separated by the principal ASLs and
SLs and compute separately in each domain. Schwarz symmetry can be used to
reduce the problem.

2. In each domain, start away from the principal SLs, close to a principal ASL and/or
singularity (if any). Iterate with T (z) until a first zero is found or use an asymptotic
approximation (if available) for that zero.

3. Then, use the basic algorithm described in [10] for computing consecutive zeros,
choosing the displacements H±(z) in the direction of approaching the principal
SLs and/or singularity.

For the parabolic cylinder function U (a, z), we consider real orders a (excluding
the case a = −k+ 1

2 , k ∈ N, which corresponds to the case of Hermite polynomials).
For a ∈ R, a �= −k + 1

2 , k ∈ N, there are an infinite number of complex zeros of the
function U (a, z) tending to the ray arg z = 3π/4 and a conjugate string. To compute
the complex zeros of U (a, z) with a < 0, the following displacements H+(z) and
iterating function T (z) are used:

H+(z) = z + π√−z2/4 − a
, (2.2)

T (z) = z − 1√−z2/4 − a
arctan

(√
−z2/4 − a Q(a, z)

)
, (2.3)

where

Q(a, z) = U (a, z)

U ′(a, z)
. (2.4)

An algorithm to compute the complex zeros of U (a, z) for a < 0, in the domain
of the complex plane 	z ∈ [0, L], 
z < 0 is described in Algorithm 1. To compute
the zeros for a > 0, a similar algorithm can be used but considering the function

U (a, i z). Also, the factor
√

−z2/4 − a appearing in (2.2) and (2.3) should be changed

to
√

−z2/4 + a. For a > 0, the complex zeros are obtained in the domain of the
complex plane 
z ∈ [−L, 0], 	z > 0.

In Algorithm 1, we consider z = −L + i L as a starting point. Then, the zero zm
ofU (a, z) closest to z is calculated using the asymptotic approximations given in [4].
The value of m is estimated using the first term in the approximation [9, Eq. 12.11.1]

z ≈ e3/4π i
√
2τm, (2.5)
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where
τm = (

2m + 1
2 − |a|)π + i ln

(
π− 1

2 2−|a|− 1
2 Γ

( 1
2 + |a|)) .

For a < 0, the asymptotic approximations zm to the zeros of U (a, z) are given in
terms of the zeros of the following combination of Airy functions

Ai(a, z) = 2e−π i/6 cos (aπ)Ai1(z) + ieaπ iAi(z), (2.6)

where Ai1(z) = Ai(ze−2π i/3).
For a > 0, the asymptotic approximations zm are given in terms of the negative

zeros, am , of the Airy functions Ai(x). In our algorithm, for m moderate, we use
precomputed values of these zeros am ; for m large, we use the expansions [9, Eq.
9.9.6]

am = −T
( 3
8π(4m − 1)

)
,

where

T (t) ∼ t2/3
(
1 + 5

48
t−2 − 5

36
t−4 + 77125

82944
t−6 − 1080 56875

69 67296
t−8

+ 16 23755 96875

3344 30208
t−10 − · · ·

)
.

For |a| small orm small, the approximations to the zeros obtained using asymptotic
expansions are refined with a few iterations of (2.3). The computation of U (a, z) and
U ′(a, z) needed in (2.4) is discussed in Sect. 4.

Using the previous approximations, the first zero is calculated z(0)c = zm in Algo-

rithm 1. For computing the second zero z(1)c , the step h = π√−z2/4 − a
in (2.2) is

taken. Then, we consider z = z(0)c + h and evaluate z = T (z) using Taylor series
centered at z(0)c to compute (2.4). For computing the Taylor series, we will use the
results given in Sect. 3; in the first iteration, we use that U (a, z(0)c ) = 0, and for the
derivative, since we are interested in the zeros, it is possible to take a normalized value
(U ′(a, z(0)c ) = 1, for example). The rest of fixed point iterations in the inner while
loop in Algorithm 1 are also computed using Taylor series. The algorithm stops when
a zero with an imaginary part smaller than δ (δ being small and positive) is computed.

3 Local Taylor series

Assuming that y(z0) and y′(z0) are available, it is possible to compute the functions
y(z1) = y(z0 + h) and y′(z1) = y′(z0 + h) using Taylor series for y(z) and y′(z)
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Algorithm 1: Computation of the complex zeros ofU (a, z), a < 0 in the domain
	z ∈ [0, L],
z < 0.
Data: a, real negative parameter; L , length of the interval.

Result: complex zeros z( j)c , j = 0, 1, 2, ... in 	z ∈ [0, L], 
z < 0.
1. Set z = −L + i L; ε = 10−14; δ = 10−4.
2. Calculate z(0)c (closest zero to z) using an asymptotic expansion in terms of the zeros of (2.6);
3. If a is small, refine the value iterating T (z).

4. Set U (a, z(0)c ) = 0, U ′(a, z(0)c ) = 1 (function values for the Taylor series);
5. i = 0;

6.while 	z(i)c > δ do

z = H+(z(i)c ); Δ = 1 + ε;
while Δ > ε do

y = z; z = T (z);
Δ = |z − y|/|y|;

end
i = i + 1;
z(i)c = z.

Set U (a, z(i)c ) = 0, U ′(a, z(i)c ) = 1 (function values for the Taylor series);
end

7. Check that all zeros z( j)c , j = 0, 1, 2, ... satisfy 	z( j)c ∈ [0, L].

around z0. That is, we compute

y(zi+1) =
N∑

k=0

y(k)(zi )
hk

k! + O(hN+1),

y′(zi+1) =
N∑

k=0

y(k+1)(zi )
hk

k! + O(hN+1).

(3.1)

The successive derivatives y(k) can be computed by differentiation of the differential
equation. From (1.1) we have, differentiating k times, k ≥ 2:

y(k+2) −
(
1
4 z

2 + a
)
y(k) − 1

2 zky
(k−1) − 1

4k(k − 1)y(k−2) = 0, (3.2)

which allows computing derivatives at z = zi when y( j)(zi ), j = 0, 1, 2, 3 are known.
y(0)(zi ) and y(1)(zi ) are known from the previous step, and

y(2)(zi ) = ( 1
4 z

2
i + a

)
y(0)(zi ),

y(3)(zi ) = ( 1
4 z

2
i + a

)
y(1)(zi ) + 1

2 zi y
(0)(zi ).

(3.3)

For computing the successive derivatives, it is necessary that the recursion process
for Eq. (3.2) is well conditioned. Using the Perron-Kreuser theorem [6], it is easy to see
that there are no exponentially dominant nor recessive solutions of the linear recurrence
relation (3.2). Forward computation, therefore, is not seriously ill conditioned as k
becomes large.
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4 Computation of U(a, z) and its derivative in the region where the
complex zeros lie

In [2], methods to compute U (a, z) were given. A computational scheme based on
these methods (Airy-type expansions, integral representations, Maclaurin series, and
Poincaré expansions) can be designed to evaluateU (a, z). For the derivativeU ′(a, z),
the relation [9, Eq. 12.8.3]

U ′ (a, z) − 1
2 zU (a, z) +U (a − 1, z) = 0,

could be used.
In the region where the complex zeros of the function are located (the second

and third quadrants of the complex plane), the scheme can be further enhanced by
employing Liouville–Green approximations, which we discuss next.

4.1 Liouville–Green expansions

As in [3, Eq. (2.2)] we define a Liouville–Green variable ξ̄ given by

ξ̄ =
∫ ẑ

0

(
t2 + 1

)1/2
dt = 1

2
ẑ
(
ẑ2 + 1

)1/2 + 1

2
ln

(
ẑ +

(
ẑ2 + 1

)1/2)
, (4.1)

where here and throughout bars do not denote complex conjugate, unless otherwise
noted. The branch is chosen so that ξ̄ is real when ẑ is, both being of the same sign,
and by continuity elsewhere in the plane with cuts along ẑ = ±iy, 1 ≤ y < ∞. We
are only interested for ẑ in the second quadrant, since the complex zeros of U (a, z)
lie there (there is also a conjugated set of zeros on the third quadrant).

Thus we find that as ẑ → ∞ with 
(ẑ) < 0

ξ̄ = − 1
2 ẑ

2 − 1
2 ln(−2ẑ) − 1

4 + O(ẑ−2). (4.2)

In particular ξ̄ → −∞ as ẑ → −∞ and 
(ξ̄ ) → +∞ as ẑ → i∞ to the left of the
cut.

Next from [3, Eq. (2.8)] let

β̄ = ẑ√
ẑ2 + 1

, (4.3)

with β̄ < 0 when ẑ < 0 and is continuous in the same cut plane as for ξ̄ . Thus β̄ → −1
as ẑ → ∞ in the left half plane 
(ẑ) < 0.

Then from (2.14), (2.16)–(2.18), (2.20) and (3.10) of that paper as u → ∞ we find
the expansion
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U
(
1
2u,−√

2u ẑ
)

∼
(
2e

u

)u/4 1{
2u

(
1 + ẑ2

)}1/4

× exp

{
uξ̄ +

∞∑
s=1

(−1)s
Es(β̄) − Es(−1)

us

}
, (4.4)

for ẑ in a domain that certainly contains the second quadrant, except for a closed
neighborhood of the turning point ẑ = i .

The coefficients Es are defined as

E1(β̄) = 1
24 β̄

(
5β̄2 − 6

)
, (4.5)

E2(β̄) = 1
16

(
β̄2 − 1

)2 (
5β̄2 − 2

)
, (4.6)

and for s = 2, 3, 4 · · ·

Es+1(β̄) = 1

2

(
β̄2 − 1

)2
E′
s(β̄) + 1

2

∫ β̄

σ (s)

(
p2 − 1

)2 s−1∑
j=1

E′
j (p)E

′
s− j (p)dp, (4.7)

where σ(s) = 1 for s odd and σ(s) = 0 for s even. We remark that E2s(β̄) is even
E2s+1(β̄) is odd, and E2s(±1) = 0.

Next, from (1.2) we have

U
(
− 1

2u,−i
√
2u ẑ

)
∼ (2u)

1
4 u− 1

4 ẑ
1
2 u− 1

2 exp

{
1

4
(1 − u)π i + 1

2
uẑ2

}
, (4.8)

as ẑ → i∞, and as such this function is recessive at ẑ = i∞. Now again in a domain
that contains the second quadrant, but this time excluding the points ẑ = iy, 0 ≤ y ≤ 1,
we can show in a similar manner by matching recessive solutions that as u → ∞

U
(
− 1

2u,−i
√
2u ẑ

)
∼

( u

2e

)u/4 e(u−1)π i/4

{
2u

(
1 + ẑ2

)}1/4

× exp

{
−uξ̄ +

∞∑
s=1

Es(β̄) − Es(−1)

us

}
. (4.9)

Next from [3, Eqs. (3.20) and (3.24)] we have for large u

√
2π

Γ
( 1
2u + 1

2

) ( u

2e

)u/2 ∼ exp

{
2

∞∑
s=0

E2s+1(−1)

u2s+1

}
. (4.10)
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Then, we have

U
(
1
2u,

√
2u ẑ

)
∼

(
2e

u

)u/4 2e−(u+1)π i/4

{
2u

(
1 + ẑ2

)}1/4

× exp

{ ∞∑
s=1

E2s(β̄)

u2s
+

∞∑
s=0

E2s+1(−1)

u2s+1

}
cos(χ(u, ẑ)),

(4.11)

where

χ(u, ẑ) = iuξ̄ + 1

4
(u + 1)π − i

∞∑
s=0

E2s+1(β̄)

u2s+1 . (4.12)

It is evident that for large u the zeros asymptotically lie on the curve 	{χ(u, ẑ)} = 0.
Note from (4.1) that when ẑ = i

i ξ̄ = i
∫ i

0

(
t2 + 1

)1/2
dt = −1

4
π, (4.13)

and hence (4.12) can be rewritten as

χ(u, ẑ) = uρ + 1

4
π − i

∞∑
s=0

E2s+1(β̄)

u2s+1 , (4.14)

where

ρ = i
∫ ẑ

i

(
t2 + 1

)1/2
dt . (4.15)

The expansion (4.11) is valid in a domain which contains the second quadrant,
except for points close to ẑ = iy, 0 ≤ y ≤ 1. In particular it is valid on the zero curve
which is close to 
(ξ̄ ) = constant in the second quadrant emanating from ẑ = i ,
except for points close to this turning point; see [3, Fig. 1].

Next consider the derivative. We find that w(ẑ) = (ẑ2 + 1)−1/2U ′( 12u,
√
2u ẑ)

satisfies
d2w

dẑ2
=

{
u2

(
ẑ2 + 1

)
+ 2ẑ2 − 1(

ẑ2 + 1
)2

}
w. (4.16)

We follow [3, Sect. 2] with

Φ(ẑ) = 5ẑ2 − 2

4
(
ẑ2 + 1

)3 . (4.17)

The coefficients in our expansions are given by

Ẽ1(β̄) = 1
24 β̄

(
7β̄2 − 6

)
, (4.18)
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and

Ẽ2(β̄) = 1
16

(
1 − β̄2

)2 (
2 − 7β̄2

)
, (4.19)

and for s = 2, 3, 4 · · ·

Ẽs+1(β̄) = −1

2

(
1 − β̄2

)2
Ẽ′
s(β̄) − 1

2

∫ β̄

σ (s)

(
1 − p2

)2 s−1∑
j=1

Ẽ′
j (p)Ẽ

′
s− j (p)dp.

(4.20)
Again σ(s) = 1 for s odd and σ(s) = 0 for s even, so that Ẽ2s(β̄) is even, Ẽ2s+1(β̄)

is odd, and Ẽ2s(±1) = 0.
Then from [3, Eq.(2.27)] we have

U ′ ( 1
2u,−√

2u ẑ
)

∼ −1

2

(
2e

u

)u/4 {
2u

(
1 + ẑ2

)}1/4

× exp

{
uξ̄ +

∞∑
s=1

Ẽs(β̄) − Ẽs(−1)

us

}
, (4.21)

as u → ∞ for ẑ lying in a domain that includes the second quadrant, bar ẑ = i .
Next, similarly to (4.9) we obtain for the solution of (4.16) that is recessive at

ẑ = i∞

U ′ (− 1
2u,−i

√
2u ẑ

)
∼ −1

2

( u

2e

)u/4
e(u+1)π i/4

{
2u

(
1 + ẑ2

)}1/4

× exp

{
−uξ̄ +

n−1∑
s=1

(−1)s
Ẽs(β̄) − Ẽs(−1)

us

}
(4.22)

as u → ∞. This too is valid in the second quadrant, except for points close to ẑ = iy,
0 ≤ y ≤ 1.

Now as ẑ → +∞ with a + 1
2 �= 0,−1,−2, . . .

U ′(a,−ẑ) ∼ −
√

π

2

ẑa+ 1
2 e

1
4 ẑ

2

Γ
(
a + 1

2

) . (4.23)

Further from (4.1) we use that as ẑ → +∞

ξ̄ = 1
2 ẑ

2 + 1
2 ln(2ẑ) + 1

4 + O(ẑ−2). (4.24)

On comparing (4.21) with (4.23) as ẑ → +∞, noting that β → 1 in this case, and
that Ẽs(−1) = (−1)s Ẽs(1), we derive similarly to (4.10)

√
2π

Γ
( 1
2u + 1

2

) ( u

2e

)u/2 ∼ exp

{
2

∞∑
s=0

Ẽ2s+1(1)

u2s+1

}
(u → ∞). (4.25)
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Fig. 1 Test of the accuracy obtained with the Liouville–Green expansions. Left: Points where the error
when testing the recurrence relation [9, Eq.12.8.1] for U (20, z) is smaller than 5 × 10−13. Right: Points
where the error when testing the recurrence relations [9, Eq.12.8.2] and [9, Eq.12.8.3] for U ′(20, z) is
smaller than 5 × 10−13

Next, we shall use the differentiated form of [9, Eq. 12.2.17]

U ′(a, ẑ) = ie−aπ iU ′(a,−ẑ) +
√
2π e−( 12 a+ 1

4 )π i

Γ
(
a + 1

2

) U ′(−a,−i ẑ). (4.26)

Hence from (4.21), (4.22), (4.25) and (4.26) we arrive at our desired expansion, valid
as u → ∞ and (at least) ẑ lying in the second quadrant (excluding the interval ẑ = iy,
0 ≤ y ≤ 1)

U ′ ( 1
2u,

√
2u ẑ

)
∼ −

(
2e

u

)u/4

e−(u−1)π i/4
{
2u

(
1 + ẑ2

)}1/4

× exp

{ ∞∑
s=1

Ẽ2s(β̄)

u2s
+

∞∑
s=0

Ẽ2s+1(1)

u2s+1

}
sin(χ̃(u, ẑ)), (4.27)

where

χ̃ (u, ẑ) = iuξ̄ + 1

4
(u+1)π + i

∞∑
s=0

Ẽ2s+1(β̄)

u2s+1 = uρ + 1

4
π + i

∞∑
s=0

Ẽ2s+1(β̄)

u2s+1 , (4.28)

with ρ given by (4.15).
Anexample of the accuracyobtainedwith the use ofLiouville–Green expansions for

computingU (a, z) and its derivative, is given in Fig. 1. TheLiouville–Green expansion
(4.11) has been tested using the the recurrence relation [9, Eq.12.8.1]. A large number
(104) of z = 
z + i	z points have been randomly generated in the domain 
z ∈

123
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(−70, 0), 	z ∈ (0, 70). The points where the error when testing the recurrence
relation for U (20, z) is smaller than 5 × 10−13, are plotted in Fig. 1 (left). A similar
plot for the derivativeU ′(a, z) is shown in Fig. 1 (right). For testing the accuracy of the
Liouville–Green expansion for the derivative (4.27), we use the relations [9, Eq.12.8.2]
and [9, Eq.12.8.3]. Our tests show that for moderate or large values of the parameter
a, the Liouville–Green expansions allow for calculating U (a, z) and U ′(a, z) with
very high accuracy in the region where the zeros are located. In our algorithm, we use
the expansions for values of a greater than 18 and z = 
z + i	z, with |
z| > 15,
|	z| > 15.

5 Numerical computation of the zeros

The algorithms to compute the complex zeros of U (a, z) for a positive and negative
have been implemented in Matlab. The following Matlab function

[zcer]=zerosUaz(a,L);
computes the complex zeros of U (a, z) in the domain of the complex plane 	z ∈
[0, L],
z < 0 (fora < 0) and
z ∈ [−L, 0],	z > 0 (fora > 0).zerosUaz(a,L)
makes use of the functions zerosUazpos(a,L) for a > 0 and of the function
zerosUazneg(a,L) for a < 0. The functions zerosUaz(a,L) can be obtained
from GitHub1.

For testing the accuracy of the zeros obtained with numerical algorithm z( j)c , j =
0, 1, 2, ..., the relative error in the computations can be estimated using the inverse of
the condition number

Relative error(z( j)c ) ≈
∣∣∣∣∣
1

z( j)c

U (a, z( j)c )

U ′(a, z( j)c )

∣∣∣∣∣ , j = 0, 1, 2, ... (5.1)

For calculating the function and its derivative, we use the results mentioned in Sect.
3. It is important to note that, except for the first zero (in the case where a is small), the
calculation of the relative error (5.1) can be considered as an independent test of the
algorithm’s accuracy, considering that in the fixed-point iterations for the remaining
zeros, we use Taylor series.

In Figs. 2 and 3, we show two examples of the accuracy obtained with Algorithm 1
to calculate the complex zeros ofU (a, z) (a < 0) in the domain of the complex plane
	z ∈ [0, L], 
z < 0. Figures4, 5 and 6 show examples obtained with the algorithm
for positive values of the parameter a (function zerosUazpos(a,L)) in the domain
of the complex plane 
z ∈ [−L, 0], 	z > 0. In Figs. 2 and 4, where small values of
the parameter a are considered, the asymptotic approximations for the computation of
the first zero have been complemented with few fixed-point iterations. As can be seen
in the figures, almost all zeros are calculated with accuracy significantly better than
ε = 10−14. In the case of the zero closest to the real axis (the one calculated with the
greatest estimated relative error), the accuracy is only slightly above this value. This
holds true even when the number of zeros to be calculated is very high, as shown,

1 https://github.com/AmparoGil/NumerZerosPCFs.
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Fig. 2 Left: Zeros obtainedwith the function zerosUaz(a,L) for a = −3.2 and L = 5. Right: Estimated
relative errors obtained

Fig. 3 Left: Zeros obtained with the function zerosUaz(a,L) for a = −13.1 and L = 15. Right:
Estimated relative errors obtained

for example, in Fig. 6. In that case, the number of calculated zeros in the domain is
Nz = 407. As an additional check of the accuracy of the zeros computed with our
algorithm, we have compared them with Maple values for the zeros (computed with
50 digits) and found that the relative errors obtained are consistent with the accuracy
estimated using the inverse of the condition number. We give two examples: first, the
last three zeros computed with our algorithm in the example shown in Fig. 3 were
(in the order in which they were obtained) za =-9.008392235290984e+00
+ 2.976766819022779e+00i, zb =-8.498829407276800e+00 +
2.237094348893690e+00i and zc =-7.866459577089755e+00 +
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Fig. 4 Left: Zeros obtained with the function zerosUaz(a,L) for a = 1.3 and L = 10. Right: Estimated
relative errors obtained

Fig. 5 Left: Zeros obtainedwith the functionzerosUaz(a,L) fora = 10.7 and L = 15.Right: Estimated
relative errors obtained

1.309795045190692e+00i. The corresponding zero values computed with
Maple were ẑa =−9.00839223529104890...+2.976766819022788250
...*I, ẑb =−8.4988294072768770...+2.237094348893700886...*I
and ẑc =−7.86645957708986376...+1.309795045190640585...*I.
The comparisons give the following relative errors: εa = 6.99 × 10−15, εb =
9.05 × 10−15 and εc = 1.5 × 10−14, respectively. On the other hand, the
last three zeros computed with our algorithm in the example shown in Fig. 6
were za = -2.784978156368416e+00 + 1.077249953770989e+01i
, zb = -2.082060971609168e+00 + 1.031935184018148e+01i
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Fig. 6 Left: Zeros obtainedwith the functionzerosUaz(a,L) fora = 20.5 and L = 50.Right: Estimated
relative errors obtained

Table 1 Typical CPU times
spent by the algorithm. Nz is the
number of zeros calculated in
the domain

a L Nz CPU time (s)

−1.7 12 23 0.023

−1.7 60 573 0.068

−1.7 180 5157 0..317

−30.2 12 31 0.018

−30.2 60 587 0.068

−30.2 180 5171 0.268

2.3 10 16 0.018

2.3 50 398 0.048

2.3 140 3120 0.228

20.5 10 21 0.017

20.5 50 407 0.042

20.5 140 3129 0.219

and zc = -1.204905397657948e+00 + 9.772189846956170e+00i
. The corresponding zero values computed with Maple were
ẑa =−2.78497815636791519...+10.77249953770959430...*I ,
ẑb =−2.08206097160857784... +10.31935184018114877...*I and
ẑc =−1.20490539765712604... +9.772189846955761085...*I.
The comparisons give the following relative errors: εa = 5.23 × 10−14, εb =
6.41 × 10−14 and εc = 9.31 × 10−14, respectively.

Regarding the computational efficiency of the algorithm, some typical computation
times are shown in Table 1 for different values of the parameter a and L . The cal-
culations have been performed in Matlab R2024b, in a computer under Windows 11
(64-bit), processor Intel(R) Core(TM) i5-10210U @ 1.60GHz 2.11 GHz. As can be
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seen, even a very high number of zeros Nz can be calculated with a low computational
cost, demonstrating the efficiency of the numerical scheme. It is important to mention
that the use of Taylor series to compute most fixed-point iterations is largely respon-
sible for the excellent computational efficiency of the algorithm. Although it would
have been possible to calculate the quotients (2.4) using the algorithm for computing
the function and its derivative, this approach is slower.

In conclusion, the numerical tests conducted demonstrate the accuracy and effi-
ciency of the numerical scheme (implemented in Matlab) we have developed to
compute zeros of parabolic cylinder functions in domains of the complex plane. As
mentioned in the Introduction, these strategies can be extended to the computation of
zeros of other functions that are solutions of second-order ODEs.
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