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Abstract—The climate situation and the energy crisis have
prompted a number of policies and strategies that foster the
adoption of renewable energy sources. To tackle the intermit-
tency and fluctuations associated with the operation of these
sustainable energy sources, renewable hydrogen appears as an
appealing solution to decarbonize different economic sectors. In
this sense, the design and implementation of a hybrid renewable
energy-hydrogen system has led to the first electrically self-
sufficient social housing in Spain, located in the town of Novales
(Cantabria). On the other hand, the digitization of this type
of self-sufficient systems would allow automatic adaptation to
changing situations, increasing energy efficiency. In this context,
we introduce the design and initial implementation phases of
a digital twin architecture that, using machine learning and
artificial intelligence techniques, facilitates the optimization of
the performance of the physical system by interacting with its
control components. This involves the use of telemetry solutions
that allow the capture and storage of data from the physical
system itself, as well as from the environment, such as instance
meteorological data. We also discuss some initial results of the
digital twin, which features models of the electrical components
of the physical system, based on both their logical behavior and
machine learning techniques.

Index Terms—digital twin, renewable energy, hydrogen.

I. INTRODUCTION

The current juncture of climate and energy crisis has led to
the implementation of policies aimed at promoting the use of
renewable energy sources (RES) with the purpose of fostering
energy independence through sustainable solutions.

Since the Conference of the Parties (COP) 21, held in
Paris in 2015 [1], various roadmaps and strategies have been
promoted to mitigate the harmful effects of climate change.
In this sense, the current society’s dependence on fossil fuels
stands out as the predominant factor responsible for the
global climate situation. Specifically, energy related activities
contribute to > 75% of the overall emissions of equivalent
carbon dioxide (CO2eq) [2], [3]. In this context, the European
Union (EU) has approved the “Fit for 55” plan, which includes

a 55% reduction in greenhouse gas emissions (GHG) by 2030.
On the other hand, the current political instability, has brought
a high inflation, and a shortage of fossil fuels, mainly natural
gas and oil, imported from Russia [4].

In this scenario, the large-scale implementation of renewable
energy sources becomes imperative to ensure a decarbonized
energy system that simultaneously provides a degree of energy
autonomy through efficient and sustainable solutions. How-
ever, it is essential to find effective technological solutions for
energy storage that respond quickly, safely, and flexibly to the
intermittent and fluctuating nature of RES. For this reason, the
European Commission has approved the REPowerEU plan for
the year 2022. According to the policies included therein, the
EU aims to promote the energy independence of the continent
by fostering the use of RES, increasing energy efficiency, and
developing the hydrogen economy. In this context, the use of
hydrogen as an energy carrier and raw material emerges as an
efficient and sustainable solution for large-scale and seasonal
energy storage. It presents itself as a suitable alternative to
promote the presence of RES in the energy sector, and to
facilitate the decarbonization of various sectors related to
energy [5].

In particular, the residential sector becomes critical, due
to its status as a massive energy consumer in the EU, con-
tributing to 40% of the overall consumption. Additionally, it
is currently a rather inefficient sector, largely due to its aging
infrastructure, which negatively impacts its carbon footprint.
On the other hand, unprecedented inflation in the economy
has exacerbated the situation for the most vulnerable citizens,
often inducing energy poverty. It thus becomes imperative
enhancing the energy performance of the residential sector,
to reduce its impact on climate change and to alleviate the
rising costs of electricity bills, which affect the population’s
living standards [6].

We start from a hybrid renewable energy-hydrogen system
in the town of Novales (Cantabria), which meant the first so-



cially subsidized residence to achieve electrical self-sufficiency
in Spain. Over such installation, we propose developing a
digital twin (DT) of the pilot plant. Its main objective is
to improve the performance of the renewable hybrid system
(RHS) through specific algorithms developed and validated
on the digital replica. This work describes the architecture
of the DT, comprising the digital model of the pilot plant,
the communication interface for data collection and signal
transmission, and a module designed to facilitate data sharing
with third parties.

In summary, the main contributions of this paper are:
• We introduce the design of a complete DT for a renewable

energy-hydrogen system. To the authors’ best knowledge,
there do not exist previous works who have exploited the
DT concept to model this type of systems.

• We use a real physical system, which is being used to tune
the specification of the modules of the proposed DT. This
is of utter relevance, since we exploit the real information
about the behavior of such system, allowing us to use
Artificial Intelligence and Machine Learning (AI/ML) to
promote more accurate operation of the digital replica.

• We discuss initial results of our DT, which show the
benefits of fostering AI/ML based techniques to mimic
the behavior of the real counterparts, compared to model-
based approaches.

The rest of this paper is structured as follows: Section II
provides a description of the current state of the art on the
use of digital twins in the energy sector. Section III details
the architecture of both the physical system and the digital
replica. Subsequently, Section IV focuses on the development
of the models that constitute the DT, and Section V discusses
the results obtained with the initial integrated implementations.
Finally, Section VI concludes the paper, providing an outlook
of our future work.

II. STATE OF THE ART

The concept of DT was originally coined at the turn of the
century, in particular for industrial environments [7], although
its use has recently spread to different sectors [8], [9], taking
advantage of recent progress in digitization and the augment-
ing capabilities of communication and computing systems. As
explained in [10], the increasing complexity in processes can
only be replicated exploiting AI and ML techniques, whose
relevance might be rather strong when applied in DTs.

In the case of the chemical sector, one scenario of particular
interest is that of renewable energy sources. In this case, as
mentioned by the authors in [11] and [9], there are very few
works that have tried to apply the DT concept to this type of
systems. Moreover, the authors of [12] conclude that there do
not exist any in-depth studies on the use of DT in this sector.

One of the few papers applying the digital twin concept to
the energy domain is that of Nguyen et al. [13]. The authors
propose the use of a DT to improve the performance of power
distribution systems, highlighting its ability to take optimal
control decisions based on analyses that are carried out in real
time. Similarly, Agostinelli et al. discuss in [14] the potential

Fig. 1: Renewable hydrogen-based system architecture

benefits of DT in the management of energy distribution and
consumption in buildings, and they highlight the role that
artificial intelligence techniques could play.

Focusing on the hydrogen production process, [15] proposes
the use of a DT to address the uncertainties associated with
the investment and operating costs of the system. However,
they focus on how different factors might impact financial in-
dicators, while we exploit the DT to improve the performance
of the system.

As can be seen, despite their clear potential benefits, the
use of digital twins in the energy realm in general, and in
renewable hydrogen-based systems in particular, is still very
limited. Hence, the approach that we introduce in this paper
contributes to the integration of these two aspects, exploring
the advantages that they might bring.

III. METHODOLOGY

This section first describes the real renewable hydrogen sys-
tem (physical system), identifying its elements and depicting
its general operation. Then, the overall design of the digital
twin is discussed, illustrating its behavior.

A. Pilot plant

The real system consists on a RHS, which was designed
and deployed in the framework of the SUDOE ENERGY
PUSH project1. It combines both renewable energies and novel
hydrogen-based technologies to ensure complete electrical
self-sufficiency of a social housing throughout the year. Fig. 1
illustrates the architecture of the pilot plant, where we also
identify the electricity and hydrogen flows within the system.
A through discussing of the pilot plant can be found in [16].

Photovoltaic panels (point 1 in Fig. 1) installed on the roof
of the building collect solar energy to supply the house (point
10 in the figure) as a primary source. Whenever there is any
excess energy after supplying the house, it is first stored in
a set of lithium-ion batteries (point 3), which store energy

1https://www.sudoe-energypush.eu/



for short-term consumption. If the energy excess is high, it is
used for the generation, compression, and storage of hydrogen
for seasonal energy savings. The hydrogen is generated by
an electrolyzer (point 4), which creates hydrogen with an
electrolysis-based procedure, which is powered by electricity.
This hydrogen is first stored in a buffer (point 5). When the
buffer is complete, the hydrogen is compressed and stored in
a high-pressure tank (points 6 and 7). In case that there is still
excess electrical energy from the solar panels, after supplying
these processes, it is fed into the grid (point 9). During periods
of photovoltaic energy deficit, the batteries supply electricity to
the house and, when they reach a certain discharge threshold,
they are charged by a fuel cell (point 8), which finally covers
the household’s demand. This fuel cell generates electricity
from the hydrogen stored both in the buffer or in the high-
pressure tank.

The operation of the pilot plant has been fully automated
and it is remotely controlled with the help of a programmable
logic controller (PLC). In addition, the RHS operates with
an energy management strategy based on the status of the
stored autonomy, and is continuously monitored by means of
a supervisory control and data acquisition (SCADA) system.

B. Digital twin architecture

Over the pilot plant described above, we introduce in this
work the design and development of a DT where the plant
components are characterized, and control solutions will be
developed to address the automatic improvement of the real
system parameters. For their modeling, machine learning (ML)
and artificial intelligence (AI) techniques will be applied to the
collected data when the behavior of the model-driven approach
does not accurately mimic the real operation of the RHS.

To develop the DT, we propose an architecture with three
main stages. The first one, focused on the physical-virtual
interaction, is in charge of the collection of information from
the real system, as well as the implementation of decision poli-
cies. Moreover, a module for the management and integration
of data from external sources, such as weather forecasts or
energy prices, is also envisaged. In a second stage, and taking
advantage of the aforementioned modules, the DT model
is implemented by a set of software libraries that replicate
the behavior of the real system. In this regard, once the
input/output and control variables of the main components
of the RHS have been identified, we address its modeling.
It will adopt a model-driven approach when the underlying
behavior is well known, and data-driven AI/ML techniques
otherwise. Finally, we plan to use the DT model to evaluate the
performance of various control policies on the digital replica,
including those based on weather forecasting.

Fig. 2 illustrates the complete DT high level architecture,
including the underlying logic flow of its operation. As was
mentioned above, the pilot plant uses a SCADA system for
monitoring the performance of the real devices. Thus, the
DT will interact with the SCADA system through the PLC
to collect data and apply the appropriate control actions, as
depicted in the points 1 and 4 of the figure.

The logic of the digital replica consists of a main compo-
nent, the DT model, which captures the behavior and perfor-
mance of the pilot, and the management and control system,
in which control strategies are implemented. As can be seen
in Fig. 2, we will follow a loop-based approach to ensure that
the behavior of the real system is accurately captured (points 5
and 6 of Fig. 2): (i) analysis of the control strategies on the DT
model to optimize the performance of the physical system; (ii)
implementation of the strategy on the real pilot, by forwarding
control commands that interact with the deployed SCADA
system; (iii) the system will continue receiving feedback from
the physical pilot (continuous monitoring) to further train the
DT behavior for those cases where ML solutions are adopted.

Finally, although its design assumes the DT to run in a
closed way, we will also exploit the data generated during
its operation. In this sense, those pieces of information that
are considered to be more relevant, will be made available to
third parties and interested stakeholders, as shown in Fig. 2.
Thus, the data generated by the DT will be made available
at a data marketplace [17], such as that promoted by the
FIWARE initiative, as well as at open access repositories
such as Zenodo. In this sense, we need to adopt open data
models, such as Smart Data Models (SDM), which facilitate
the interoperability and reuse of information by third parties.
In case there are no available models for the specific needs of
the DT, new definitions will be proposed to extend the SDM
repository, making the datasets that are created during the DT
operation open and accessible.

Having outlined the general architecture of the system, the
following sections delve into the DT logic modeling, and
discuss the first results obtained.

IV. MODELING

The DT model is implemented as a set of independent and
interconnected software modules, each one of them modeling
one or more physical components of the physical RHS. This
disaggregated solution facilitates the implementation and in-
dependent validation of each component. On the other hand, it
also allows the replacement of the models applied to different
specific components, without affecting the system as a whole.

We have identified the set of variables that influence the
performance of each module, classifying them as control and
input variables; we have also established the outputs generated
by each of them. These input and output variables correspond
to physical magnitudes of the system, while the control
variables mimic decision signals, such as those generated by
the PLC. Thus, when certain input and control variables are
applied to a module, it generates the corresponding outputs,
replicating the behavior of its physical counterpart. The differ-
ent modules are connected so that the outputs of one module
can act as input variables for other modules. In fact, some
signals are fed back into the system, such as the State of
Charge (SOC) of the battery and the pressures of the hydrogen
storage block components, which are sent to the PLC for
decision making.



Digital systemPhysical system

Data explotation

Data market-place

Interested
parties

External data
sources

Configuration
Measurements

Control
commands

DT Model

Management and control
system

Data Broker

Context
cmanager

Control system training

Data management and
transmission
Modelling and
training

1
4

3
2

5

6

Fig. 2: Digital twin high level architecture

Fig. 3 shows the modules that we have identified, together
with the corresponding variables, differentiating between ex-
ternal (grey), system (blue) and control (orange) variables.
The former are independent of the system, while the latter
are modeled by the DT, and their states depend on the
external variables, the previous state of the system and/or the
established decision policy. As can be seen in the figure, the
DT only requires the power demanded by the dwelling and
the photovoltaic (PV) power, which correspond to external
variables, while the rest of variables are estimated by the DT
itself. In the future evolution of the DT model other external
data sources will be integrated, such as the weather forecast
or electricity pricing, since they might have a direct impact
over the overall system performance.

Although the first steps of this work have been focused
on the implementation of the electrical components’ modules,
such as the PLC, the inverter and the battery, we describe
below all the modules that constitute the proposed DT, while
the input and output parameters for each of them are listed in
Table I.

A. PLC

This is the main component of the system, as it contains
the overall management logic of the system. This module
takes as input variables the home power demand, and the
generation of photovoltaic energy from the solar panels. These
variables, together with other internal ones that establish the
situation of the system, such as the SOC and the pressure of
the hydrogen storage systems, are used to estimate the output
variables, which in this case correspond to the control signals
for switching on/off the rest of the modules. Initially, the logic
implemented in the PLC follows the behavior that is currently
configured in the real system, as described in Section III, to
facilitate the validation of the other models. Subsequently, the

implementation of different control algorithms will lead to the
modification of this logic.

TABLE I: Input/Output variables of each component

Input variables Output variables

PLC
PV panels power Electrolyzer on/off signal
Home demanded power Compressor on/off signal
SOC Fuel cell on/off signal
Buffer and tank pressures

Inverter
PV panels power Charge/discharge battery power
Home demanded power Imported/ exported grid power
Electrolyzer power
Compressor power

Battery
Charge/discharge battery power SOC
Fuel cell power

Electrolyzer
Electrolyzer on/off signal Electrolyzer power

Hydrogen generated
Hydrogen Storage

Compressor on/off signal Compressor power
Hydrogen generated Buffer pressure
Hydrogen consumed Tank pressure

Fuel cell
Fuel cell on/off signal Power generated
Hydrogen consumed

B. Inverter

The inverter module uses as input variables the power
generated by the PV panels, the power demanded by the house,
as well as the power required by both the electrolyzer and the
compressor. The proposed model distributes the energy ex-
cess/deficit, generated from the difference between the demand
of the house and the production of the solar panels, to/from
the different energy storage modules and, if necessary, to/from
the grid.



Fig. 3: Modules and variables of the DT

C. Battery

The battery module uses the charge/discharge power pro-
vided by the inverter module to update the SOC. In case
the fuel cell is on, the generated power is also used as an
input variable to establish the SOC. The output variable of
this module, SOC, is fed back into the system, to be used by
the PLC in its decision making processes.

D. Electrolyzer

The electrolyzer module models, from the on/off signal
provided by the PLC, the flow of generated hydrogen and
the power consumed by this module. These variables will also
act as inputs for the hydrogen storage and inverter modules,
respectively. Other variables, such as the ambient temperature,
will also be considered in future phases, to analyze their
potential impact over the behavior of this block.

E. Hydrogen storage blocks

This module consists of a first hydrogen storage block in
a buffer and a second one, which includes a compressor and
a storage tank. The on/off signal that goes from the PLC to
the compressor establishes whether the hydrogen generated
by the electrolyzer should be stored in the buffer, or in the
compressed hydrogen tank. The hydrogen input/output flow
determines the pressure on these blocks, which will be fed
back to the PLC, as they are required for the control logic
decision making.

F. Fuel cell

It receives the on/off signal from the PLC when the battery
is below a certain threshold. It provides, as output variables,
the consumed hydrogen and the generated power, which then
update the status of the hydrogen storage and battery modules,
respectively.

As an initial step, the aforementioned modules are im-
plemented using a model-driven approach that replicates the
logical behavior of the physical components according to their
physical phenomena. In those cases where such algorithmic
solutions are not as accurate as it would be desired, data-
driven AI/ML models, trained with the collected data, are

adopted. The initial analyses using AI/ML solutions have
been performed based on three types of neuronal networks
that allow both the modeling of complex functions and the
prediction of time series:

• Dense Neuronal Network (DNN): Composed by a set
of neurons, each of them applying a non-linear function
to a combination of the module inputs. The non-linear
function (activation) can be modified to identify those
with a better behavior. At the moment, Rectified Linear
Unit (ReLU) functions are used.

• Convolutional Neuronal Network (CNN): The operation
within the neurons is a convolution of the corresponding
inputs, and the used weights are being continuously
updated. Each output is a linear combination of the
current input and a number of previous inputs. In the
training phase, the CNN learns the linear coefficients, i.e.
the weight of prior values on the current output.

• Recurrent Neuronal Network (RNN): They are character-
ized by their memory.In particular, we use the well known
Long Short-Term Memory (LSTM) neurons, which store
inputs sequences. They obtain information from previous
inputs to influence the current output.

V. RESULTS

During the initial phase of the DT model development, the
activity has focused on the implementation of the modules of
the electrical components of the system: PLC, inverter and
battery. The modeling has followed an algorithmic approach,
using the logical operation of each of them, as well as the
equations governing their behavior. Subsequently, other data-
driven approaches are adopted, depending on the accuracy of
the observed prediction. To validate that the proposed models
provide an accurate behavior, capturing that of their physical
counterpart, this section presents an analysis of the results of
the aforementioned components, focusing on the interaction
between the inverter and the battery.

The results shown below are based on the data obtained
after sampling the physical system, measuring the state of each
variable within a 7 day interval, with a sampling rate of 5



seconds, which allows sufficient granularity to capture abrupt
changes in the state of the variables, such as peaks in the
energy demand of the dwelling. For each sampling instant, the
DT generates an estimation of the corresponding variables.

In the case of the inverter, the analysis compares the real
and estimated values of power supplied/consumed to/from
the battery, being the input signals the generated PV power,
the power demand of the household and the estimated PLC
signals. In the case of the battery, the SOC output variable
is assessed by means of its charge/discharge power, which is
used as input signal for the component.

A. Algorithmic model

This section presents the results obtained by the application
of model-driven approaches to the DT modules.

Fig. 4 shows the instantaneous evolution of the battery
discharge power during a sequence of 1e5 samples. The shaded
background represents the difference between the two input
variables, the PV power and the household demand, whose
scale is indicated on the right-hand axis of the figure (PV/home
diff.). The red and green dots correspond to the real and
estimated values of the battery discharge, respectively.

As can be seen in Fig. 4, the battery discharge occurs
mainly during the night period, when there is an energy deficit
(negative PV/home diff). During the day, the discharge power
remains zero, with the exception of certain home demand
peaks. It can be seen that the model behavior follows the
same trend as that observed for the physical system, providing
estimated values very close to the real ones in most cases.
However, differences can be observed when sudden power
discharges occur, corresponding to the peaks that can be
observed in the figure. This is due to the fact that the grid
is more reactive than the battery, and so reacts more quickly
to sudden power demands. This phenomenon results in an
import of energy from the grid, requiring less power to
be discharged from the battery. This behavior of the real
system is hard to predict with the model-driven approach,
which always performs a maximum battery discharge before
importing power from the grid. In addition, the particular
values that would trigger the power consumption from the
grid would also depend on the devices that are being used,
which would make replicating its behavior harder.

Fig. 5 shows the relationship between the measured and
estimated battery discharge power values during the sampling
period. Each of the blue dots represents the discharge power
estimated by the DT versus the one measured by the real
system at a particular time instant. The ideal behavior is
represented by a line (orange), where the estimated values and
the real samples match. As can be observed, the model is able
to accurately reflect the real behavior in most cases. However,
for certain extreme values, either maximum or minimum, some
mismatches might occur. On the left side of the figure it
can be appreciated that the model provides values over the
whole range, while the measurement system did not detect
any discharges. This behavior is due to gaps in the monitoring
process in the physical system, in particular by the PLC,
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during certain time intervals, where null measurements are
provided. The aforementioned phenomenon, in which abrupt
power demands occur, is also reflected in the upper right part
of the figure, where it can be seen that the estimated discharge
power reaches its maximum value, while the real one adopts
intermediate values due to the faster reaction of the electrical
grid to these unexpected power consumption demands.

To numerically characterize the deviation between the val-
ues provided by the DT and the real ones, the normalized
root mean square error (NRMSE) has been calculated from
all battery discharge power estimations, yielding a value of
0.0279, which evinces the high accuracy of the proposed
model. Nonetheless, in the following subsection, we discuss
the results obtained using machine learning techniques to
replicate the system reaction to sudden demands, and we will
see that they are able to reduce this deviation.

To analyze the behavior of the battery module, the SOC
output signal has been compared with its real value, which
is monitored in the physical system. Fig. 6a shows the time
evolution of the real battery normalized SOC values, and the
one estimated by the DT, with red and blue lines, respectively.
For each sample s in a set of samples S, the scaled value ŝ
is obtained as ŝ = (s − E[S])/σ[S]; where E[S] and σ[S]
hold for the average value and standard deviation of the set of
samples S.
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Fig. 6: Real vs. Estimated SOC for the Logical model (top)
and the one based on DNN (bottom)

In order to better illustrate the observed behavior, the shaded
gray background illustrates the difference of the input variables
(charge and discharge power), whose scale is indicated in the
the right-hand axis.

In this case, the NRMSE obtained for the entire measure-
ment period is 2.42 · 10−2. As can be noticed, despite the
differences in high values of the SOC, the model proposed
for the DT shows a rather appropriate behavior, capturing
quite accurately the one of the corresponding component in
the physical system. However, we can observe a recurrent
mismatch between the real and predicted values when the SOC
reaches its highest values (fully loaded battery), and during the
battery discharge periods. These mismatches always happen in
the same points of the SOC curve, and they could have a strong
impact over the overall DT model.

B. Models based on neuronal networks

As discussed previously, model-driven approaches are not
able to always fully capture the behavior of real systems, due
to their non-predictable behavior. However, data-driven models
can learn and reproduce these situations. Hence, for both
modules, inverter and battery, three different types of neuronal
networks (DNN, CNN and RNN) have been trained with the
50% of the real system measurements, 10% for evaluation
during the training phase and 40% for testing the models.

TABLE II: NRMSE obtained for each model

Model Discharge Power SOC
Model-driven 2.79e-2 2.42e-2
Dense neuronal network 2.01e-2 1.50e-2
Convolutional neuronal network 1.42e-2 1e-2
Recurrent neuronal network 1.56e-2 6.3e-3

In order to illustrate the differences between the model-
driven and data-driven approaches, Fig. 6b shows the predicted
values obtained by the DNN. In particular, the DNN model
takes as inputs the charge and discharge power values, as well
as the previous SOC level. As can be observed, the results
yielded by the DNN provide an almost perfect match with
the real values. The data-driven approach does not only learns
the normal and well known battery load and unload trends,
but it also learns SOC behavior that does not correspond
to a normal battery load calculation. First, opposed to the
model-driven solution results, shown in Fig. 6a, the DNN
avoids SOC saturation. Besides, it learns to follow the SOC
unload process, even when it does not fully correspond to its
expected behavior, predicted with the power charge/discharge.
It is worth noting that the same behavior is also seen with the
other neural networks used in this work.

In order to numerically measure the benefits of using data-
driven solutions, Table II summarizes the NRMSE obtained
with both the model-driven approach and the neural network
models, to predict the battery discharge power and the SOC,
to assess the performance of both the inverter and battery
modules, respectively. From these values it can be concluded
that the error decreases when applying neural networks on
both modules. In the case of the battery discharge power,
the convolutional neuronal network yields an error reduction
close to a 50% compared to the model-based solution, slightly
better than the other neural networks. However, in the case
of the SOC, the recurrent neural network almost reduces the
NRMSE an order of magnitude compared to the algorithmic-
based solution. It is worth noting that, besides reducing the
overall error, the data-driven models are able to avoid recurrent
mismatches at particular points. For instance, the NRSME of
the SOC prediction using the DNN is not as low as the one
obtained with the RNN, but it was nevertheless able to correct
the pathological behavior of the model-driven solution shown
in Fig.6.

VI. CONCLUSIONS

This work presents the design and the first steps of the
implementation of a DT for a hybrid renewable energy-
hydrogen system, deployed in a house in the town of Novales
(Cantabria, Spain).

The DT model features a number of functional modules that
emulate the physical components of the real system. It uses,
as external variables, the energy demand of the house, and the
energy generated by the photovoltaic installation, predicting
the value of the remaining variables.

We have discussed the initial implementation of the first
modules that have been integrated into the DT, which represent



the electrical components of the physical system. The obtained
results indicate a good fit between the values measured in
the real system and those obtained with the DT, with very
low errors. On the other hand, it has been seen that the real
components do not precisely behave as would be expected,
but present some unexpected and unpredictable trends. To
overcome this situations, data-driven solutions based on neural
networks have been adopted. The results evince that the
results yielded by the neural networks clearly outperform those
obtained with the model-based option by reducing the overall
error and avoiding pathological predictions.

The next steps we will tackle aim at extending the function-
alities of the DT model, implementing the rest of the system
components as independent software modules, which will be
then connected to each other by means of the appropriate vari-
ables. Once the overall DT model has been validated, control
policies will be proposed to optimize the system performance
using both the system variables and external data sources
(i.e. meteorological data). In addition, we will also foster an
open access to relevant data, by developing the corresponding
connections to various repositories and marketplaces. This
would allow interested stakeholders to exploit the information
generated by the proposed DT.
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