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Abstract—The growing use of AI-driven video applications like
surveillance or healthcare monitoring underscores the need for
embedded solutions capable of accurately categorizing human
actions in real-time videos.

A methodology is proposed for implementing a customized
CNN-LSTM architecture on AMD-Xilinx SoC FPGA devices for
human action categorization from video data. In this approach,
CNN operations are accelerated by the Vitis-AI DPU within
the FPGA, offering flexibility to support a range of CNN
architectures without requiring individual hardware description
language development. This adaptability is crucial given the
varying performance of CNN models across datasets. LSTM oper-
ations are executed on the SoC processors, overcoming limitations
in the support provided by DPU IP cores for such networks,
while maintaining flexibility to assess different configurations.
Additionally, a pipeline strategy is proposed to enable parallel
execution of both CNN and LSTM components, optimizing
resource utilization and minimizing idle times.

To demonstrate the validity of the proposed implementation
methodology, experiments were conducted on the ZCU102 de-
velopment board, equipped with a Zynq Ultrascale+ MP-SoC,
and involved the use of the VGG16 CNN model along with
the exploration of different LSTM configurations. The results
demonstrate remarkable computational performance, achieving
frame rates of up to 44.34 FPS for videos recorded at a resolution
of 320x240 pixels, surpassing real-time requirements. Aditionally,
the proposed implementation maintains high accuracy levels,
exemplified by the single bidirectional LSTM layer achieving a
competitive accuracy of 73.33% based on the UCF101 dataset.

Index Terms—SoC FPGA, Zynq Ultrascale+ MPSoC, ZCU102,
Vitis-AI DPU, CNN-LSTM, UCF101, HAR, Deep Learning,
AMD-Xilinx

I. INTRODUCTION

The rise of deep learning has revolutionized the capacity to
analyze intricate data patterns, especially in critical domains
like video surveillance [1], [2] and healthcare monitoring [3]–
[5], emphasizing the importance of computer vision. In this
context, a pivotal challenge emerges: accurately categorizing
human actions in video sequences. This challenge stem from
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factors such as variability in capture conditions, visual com-
plexity, appearance variability, context and semantics, ambi-
guity, data volume, and generalization requirements. Simulta-
neously, embedded systems, often resource-constrained, have
become indispensable in applications requiring real-time video
data processing on-site [6]–[8]. This intersection has generated
a growing demand for efficient solutions enabling embedded
systems to proficiently recognize and classify actions in video
streams [9], [10]. However, deploying deep learning solutions
for human action recognition in videos, while meeting preci-
sion and real-time requirements on resource-limited platforms,
presents intricate challenges.

Recognizing actions in dynamic video data, composed of se-
quences of frames containing rich visual information, involves
extracting spatial features from each frame and identifying
temporal patterns across multiple frames. A popular solution
for addressing this complexity involves adopting a combined
solution that leverages the strengths of Convolutional Neural
Networks (CNNs) for spatial feature extraction and Recurrent
Neural Networks (RNNs), particularly Long Short-Term Mem-
ory (LSTM) networks, for capturing temporal dependencies
[11], [12].

Simultaneously, focusing on the challenges of achiev-
ing real-time performance on resource-constrained devices,
System-on-Chip (SoC) devices featuring Field-Programmable
Gate Arrays (FPGAs) emerge as a promising solution. SoC
FPGAs, blending hardware and software, enable precise hard-
ware customization and adaptability. Their proficiency in
handling parallelizable operations, combined with processor
managing sequential and control tasks, provides an ideal
platform for adaptive video classification solutions [13], [14].

However, custom hardware development, in FPGA imple-
mentation, introduces challenges in terms of cost, time, and
expertise. Addressing these complexities, highly specialized
AMD-Xilinx Deep Learning Processing Units (DPUs) have
been developed for deep learning computation acceleration
[15]. Nevertheless, limitations persist, as not all deep learning
operations or architectures, including LSTM networks, are
supported by DPUs [16].



In this context, the proposed contribution aligns with a
CNN-LSTM hybrid design, essential for precise action clas-
sification in videos. The approach distributes computationally
intensive tasks, like CNNs, to DPUs implemented on the PL
part of the SoC FPGA, capitalizing on the inherent paralleliz-
ability of convolution operations. In contrast, LSTM networks,
intrinsically less parallelizable due to their sequential nature,
lack support in DPU accelerators. Their recurrent structure
and temporal dependencies, along with the limited resources
of the FPGA, make them more suitable for software execution
on SoC processors.

This computing distribution, along with an optimized
pipeline to minimize idle times, enables the deployment of
configurable CNN-LSTM designs on low-power embedded
platforms. This configuration allows meeting real-time re-
quirements with resolutions high enough to address complex
human action recognition tasks, delivering precision results
comparable to the state of the art.

The article is structured as follows: Section II reviews
previous work related to video action classification, addressing
both techniques and architectures used in action recognition
as well as implementations in embedded systems. Section III
presents in detail the proposed implementation methodology,
including the CNN-LSTM design, training procedure, SoC
FPGA resource distribution and the execution flow strategy.
Section IV discusses the results obtained through experiments
and performance evaluations, while Section V presents the
conclusions and discusses potential future research directions.

II. PREVIOUS WORK

A. Techniques and Architectures in Video Action Recognition

In the domain of computer vision, the evolution of video
action recognition has progressed from classical techniques to
deep learning paradigms, bringing significant advancements in
each of the three stages that constitute the complete process:
feature extraction, temporal representation, and classification.

Initially, in the first stage, classical feature extraction tech-
niques played a crucial role. Methods such as the Histogram of
Oriented Gradients (HOG) [17] and Scale-Invariant Feature
Transform (SIFT) [18] were employed to capture static object
attributes and contours, while dynamic features related to
object motion were addressed through techniques like the
Histogram of Optical Flow (HOF) [19] and Motion Boundary
Histograms (MBH) [20].

In the following stage, efforts were focused on integrat-
ing these diverse features into a standardized video-level
representation. Methodologies such as Bag of Words (BoW)
[21] were commonly employed to organize visual descriptors
into dictionaries, aiming to provide a coherent and structured
representation of video content.

The final stage of the classical process involved video
content classification, often achieved through machine learning
techniques like Support Vector Machines (SVM) [22]. These
algorithms represent the culmination of the traditional video
action recognition pipeline.

However, the field of video action recognition experienced a
significant transformation with the introduction of deep learn-
ing algorithms. The CNNs [23]–[26] revolutionized feature ex-
traction by autonomously learning hierarchical representations
from static images. Leveraging the effectiveness of CNNs,
two key strategies expand their applicability to sequences
of images commonly encountered in videos, addressing both
spatial and temporal relationships.

One strategy involves 2D CNNs [27], [28], where neural
network topologies are tailored to handle reduced frame se-
quences, enabling the effective extraction of spatial features
and motion patterns. The other strategy utilizes 3D CNNs [29],
capturing spatial and temporal information directly from video
sequences. However, they often require substantial labeled
training data and can be computationally intensive, limiting
real-time applicability.

Other approaches emphasized freeing CNNs from extracting
temporal patterns, proposing two distinct strategies. The first
one uses pooling techniques with 2D CNNs [30], [31] to
extract temporal patterns without the computational overhead
of 3D CNNs. The second one employs LSTM networks [32],
[33], adept at capturing temporal dependencies within video
data, accommodating varying temporal distances and requiring
fewer training samples compared to 3D CNNs.

Authors in [11], [12] employ an LSTM-based approach,
utilizing the CNN-LSTM design as the foundation for their
experiments. They assess its efficacy in action recognition and
other proposed tasks using data encompassing diverse types of
information. Additionally, both studies demonstrate significant
precision when applying this network to raw frames, capital-
izing on the spatial information conveyed by the images. This
underscores that leveraging LSTM networks as detectors of
motion patterns yields superior results compared to utilizing
CNN networks for this purpose.

B. Embedded System Implementations for Video Action
Recognition

The deployment of CNN-LSTM neural networks on
resource-constrained embedded systems for real-time video-
based applications has encountered challenges related to the
vast amount of data that must be processed within a short
period of time. Within the literature addressing this issue, three
distinct approaches emerge.

Firstly, there are those focusing on software implementa-
tions on microprocessor embedded systems [34]. For instance,
a solution for video surveillance on a Raspberry Pi achieved a
commendable performance of 10-13 frames per second (FPS).
However, this impressive performance comes at the cost of
reduced input frame resolution. Additionally, this implemen-
tation faces limitations in the selection of suitable CNNs.
While MobileNetV2 is proposed with 3.4 million parameters
and around 0.6 Giga Floating Point Operations Per Second
(GFLOPs), it falls short in comparison to networks with
significantly higher requirements.

In [35], the performance of a CNN-LSTM combined design
is compared across various platforms, including both typical



workstation devices and embedded systems like the Pynq
Z1 FPGA SoC. Although using only its ARM A9 cores for
testing, the proposed architecture with InceptionV3, having 23
million parameters and requiring around 6 GFLOPs, achieves
a performance of 1-2 FPS, which is insufficient for real-time
applications.

The second approach focuses on completely hardware-based
implementations. [36] introduces a reconfigurable accelerator
design based on an FPGA, capable of operating in both CNN
and RNN modes, but it is specifically designed and tested for
one-dimensional time series. Conversely, [37] suggests an SoC
design on 65 nm CMOS technology to serve as a general-
purpose processor within deep learning.

In a slightly different research, [38] explores various ar-
chitectures for music genre classification, including CNNs,
LSTMs, and the CNN-LSTM. These networks undergo experi-
mentation and comparison across different platforms, encom-
passing a workstation equipped with an Intel Core i7 8th
Gen CPU and the Zynq Ultrascale+ MPSoC found in the
ZCU104 board. However, only performance results for the
CNN network are presented on the embedded platform. This
limitation arises from challenges encountered in developing an
efficient and optimized CNN-LSTM network for an MPSoC
FPGA, despite the conclusion that the CNN-LSTM design
exhibits the highest capability for the given task.

In the third approach, [39] proposes an SoC FPGA for
a complete implementation of a CNN-RNN model targeting
Remaining Useful Life Prediction (RUL) for machine health
monitoring. The hardware accelerator is dedicated to the CNN,
featuring three convolutional layers with 3x3 convolution
filters, while the RNN computations are handled by ARM A9
microprocessors. This implementation is evaluated using small
data matrices derived from information collected by 21 sensors
over a specific time span. It achieves a performance of up to
5 predictions per second from sequences consisting of 5 time
steps.

The implementation methodology proposed in this research
addresses distinct applications with varying requirements,
meeting real-time high-definition imagery while maintaining
the precision of deep learning algorithms essential for various
computer vision tasks. Furthermore, the proposed design offers
flexibility, enabling adaptation to different neural network
architectures, with computational power tailored to the com-
plexity of the tasks, facilitated by the utilization of DPU units.

III. PROPOSED IMPLEMENTATION METHODOLOGY

This section provides a comprehensive overview of the
methodology of implementation, detailing the hybrid CNN-
LSTM design, the training procedure, the utilization of SoC
FPGA resources, and the pipeline execution strategy. The
visual representation is encapsulated in Fig. 1, illustrating the
distribution of computational load across the SoC FPGA.

A. Hybrid CNN-LSTM Design

The proposed solution features a hybrid design, seamlessly
integrating CNNs and LSTM networks. This combination is

Fig. 1. CNN-LSTM implemented on Zynq Ultrascale+ MPSoC.

designed to extract spatial features through CNNs and capture
temporal dependencies across frames using LSTMs.

The solution offers a flexible implementation approach for
experimenting with different neural network architectures for
both CNN and LSTM components, facilitating a selection
based on specific application needs.

Within the CNN domain, the standardized workflow allows
for deployment across various network families, such as VGG,
ResNet, or Inception. As for the LSTM component, the em-
ployed methodology simplifies experimentation with various
configurations, enabling adjustments to parameters such as
layer count, units per layer, and learning direction.

To predict the category of a given action in a video, the
CNN-LSTM network analyzes a sequence of frames represen-
tative of the action. Notably, the CNN processes a single frame
at a time, while the LSTM requires a fixed-length sequence as
input. Therefore, videos, which typically consist of varying-
length sequence of frames, need to be standardized into fixed-
length sequences. This standardization process is achieved
through the implementation of a sampling strategy designed
to retain maximal contextual information of the action, with
adjustments made to the sampling rate based on the individual
duration of each video. Consequently, this method yields fixed-
length sequences wherein frames are uniformly spaced apart
by a consistent temporal interval, ensuring compatibility across
varying video lengths.

Balancing the need for real-time processing and effective
prediction, a mixed strategy is employed. Although previously
utilized, its application varies based on the specific problem,
leading to nuanced adaptations.The approach involves dividing
the fixed-length sequence corresponding to a single action into
multiple shorter subsequences. Each subsequence undergoes
prediction independently, and a final prediction for the entire
action is derived through a fusion strategy. The implementation
methodology offers flexibility concerning the specific values
selected for the fixed length of sequences representing an
action post-sampling, as well as the number and length of



subsequences utilized for prediction.

B. Training procedure

The training procedure, adaptable across various architec-
tures and datasets, consists of two main stages: first, fine-
tuning the CNN and, then extracting features for the LSTM.

To initiate the training process, a pre-trained CNN model
sourced from the ImageNet dataset serves as the foundation.
Leveraging the features learned from a wide array of images,
this model embodies an understanding of visual patterns and
structures. However, to tailor its capabilities to the specific
domain of human action recognition in videos, a standard fine-
tuning approach is applied. This process involves adjusting the
parameters of the CNN model through iterative training on the
target dataset, enabling it to adapt and specialize in discerning
spatial features relevant to human actions.

Once the CNN model is fine-tuned, it serves as a feature
extractor for the subsequent LSTM network. By processing
fixed-length frame sequences sampled from each video in
the dataset, the CNN extracts high-level spatial features that
encapsulate the visual characteristics indicative of different
human actions. These spatial features are then compiled into
a new dataset, prepared to serve as the training input for the
LSTM network.

Before proceeding with the training of both components,
standard customizations are introduced to enhance their ef-
fectiveness within the context of the target video dataset.
Specifically,it is common practice to append a fully connected
layer tailored to the categories present in the video dataset is
appended to each model. This additional layer acts as a bridge
between the extracted features and the output predictions.
Furthermore, a softmax layer is typically incorporated to
interpret the output as probabilities, a standard practice in
classification tasks that ensures coherent predictions.

Having established the architectural foundations, standard
training techniques are applied to both the CNN and LSTM
networks. These techniques encompass the utilization of the
cross-entropy loss function to quantify the disparity between
predicted and actual labels, the Adagrad optimizer to dynam-
ically adjust the learning rate for efficient convergence, and
the integration of a dropout layer to mitigate overfitting by
randomly deactivating neurons during training.

C. SoC FPGA Resource Distribution

Efficiently addressing computational demands involves dis-
tributing tasks across SoC FPGA resources. Fig. 1 visually
illustrates the distribution of the computational burden between
the FPGA and SoC processors. The neural network architec-
ture is depicted on the left side, while the SoC FPGA resources
are shown on the right side. Arrows delineate the allocation
of each neural network component within the SoC FPGA:
CNN operations are accelerated by the AMD-Xilinx Vitis-AI
DPU in the FPGA, while LSTM operations are executed on
the processors of the SoC.

The AMD-Xilinx Vitis-AI DPU, a commercial IP core,
accelerates CNN convolutional operations, facilitating parallel

spatial feature extraction by utilizing multiple DPU IP cores,
contingent upon the resource availability of the FPGA. Vitis
AI offers a comprehensive development environment, stream-
lining workflow from neural network creation to compilation
into DPU IP core-compatible binary instructions. The process
includes graph quantization, intermediate representation, and
compilation to the DPU instruction set, resulting in binary
instructions alongside neural network weights. The initial
software implementation employs 32-bit floating-point data
type to ensure maximal precision during weight updates in
training. Subsequently, during the quantization process, the
data type transitions to 8-bit integer, significantly reducing
the size of the weights of the network without compromising
prediction accuracy.

Additionally, AMD-Xilinx provides PetaLinux, a reduced
Linux OS integrating drivers and libraries for application de-
velopment. PetaLinux serves as the enabler for LSTM network
software implementation through the TensorFlow framework
on the SoC processing system. TensorFlow, employed for
all proposed LSTM implementations, utilizes intra-operation
parallelization to optimize critical operations within LSTM
cells across all processing cores of the SoC. The capabilities of
this software approach are further enhanced by the VART (Vitis
AI Runtime) library atop XRT (Xilinx Runtime), extending to
managing CNN operation execution, orchestrating signals for
DPU IP core initiation and termination, and ensuring seamless
collaboration between hardware accelerators, off-chip DDR
memory and ARM processors.

D. Execution flow

The execution flow of the implemented pipeline strategy is
designed to leverage both hardware and software capabilities,
ensuring efficient execution for both CNN and LSTM compo-
nents. This approach consists of two interconnected parallel
software processes described here:

a) CNN Process: A thread is initiated for each DPU IP
core present in the SoC FPGA, responsible for managing the
execution of CNN operations. Each DPU runs a set of binary
instructions, representing neural network operations, loaded
into the external off-chip memory along with network weights
and the corresponding input frame. Upon thread initiation, a
’start’ signal activates the corresponding DPU. The thread then
awaits the ’end’ signal from the DPU, indicating the comple-
tion of the CNN block execution. After receiving the initiation
signal, the DPU utilizes Direct Memory Access (DMA) to load
instructions, weights, and input data from the external DDR
off-chip memory, storing results back into the same external
DDR memory. A First In, First Out (FIFO) queue associated
with each thread has been implemented, storing spatial features
extracted from the frame processed by the respective DPU.
This parallel approach optimizes the efficiency of the CNN
process by allowing simultaneous extraction of spatial features
from multiple frames.

b) LSTM Process: On the other side, the LSTM process
waits until a sufficient number of spatial features are enqueued



in FIFO structures associated with each CNN thread. Sub-
sequently, the input subsequence for the LSTM is generated,
and inferences are conducted for each one. The probabilities
obtained from each subsequence are accumulated, leading to
a final prediction that determines the composite action derived
from all the subsequences.

The temporal organization and resource distribution of the
designed software processes are graphically depicted in Fig. 2,
providing a overview of the implemented pipeline. This tem-
poral diagram presents multiple timelines, delineated by solid
and dashed lines, each symbolizing a specific task inherent
to consecutive subsequence inferences. Solid lines delineate
primary tasks, while dashed lines depict subtasks derived from
them. Specifically, the dashed lines in the diagram refer to
threads that decompose the CNN process to handle interactions
with each DPU. The resources assigned to each task are
represented by shaded rectangles, categorized with labels such
as ”HW” (hardware) or ”SW” (software), indicating whether
the task takes place within the FPGA or the SoC processors,
respectively.

The duration termed as ”spatial features time” represents
the time needed for the CNN process to complete, which
includes extracting spatial features from frames forming a sub-
sequence. Subsequently, a period is necessary for inter-process
communication, achieved through read and write operations
of FIFO queues, bridging the gap between the CNN process’s
completion and the initiation of LSTM process execution. This
combined duration, along with the spatial features time, is
defined as ”subsequence generation time”. Lastly, the time
taken to conduct an inference in the LSTM network utilizing a
subsequence of spatial features, when added to the previously
mentioned durations, is referred to as ”subsequence inference
time”.

The pipeline strategy is reflected in the simultaneous ex-
ecution of the LSTM process for the inference of the first
spatial features subsequence and the commencement of spatial
features generation for the second frame subsequence by the
CNN process, thus ensuring parallel execution of the CNN
process and its respective threads alongside the LSTM process,
maintaining the operability of both HW and SW parts of the
platform.

The latency of each process varies depending on the specific
architecture chosen for each component. This variability may
lead to scenarios where the latency of the LSTM process
exceeds that of the CNN process, or vice versa. However,
this pipeline approach ensure that the hardware (CNN) and
software (LSTM) components work simultaneously, minimiz-
ing wait times, and optimizing the utilization of SoC FPGA
resources. Smooth and efficient communication between these
processes, facilitated by FIFO queues and synchronization
mechanisms, enables real-time and effective video classifica-
tion on embedded systems.

IV. RESULTS

Several experiments were conducted on the ZCU102 de-
velopment board, equipped with the Zynq Ultrascale+ MP-

Fig. 2. Pipeline execution flow diagram.

SoC, which consists of a XCZU9EG FPGA and four ARM
A-53 cores interconnected via the AXI bus. The configuration
utilized the DPUCZDX8G IP core, synthesized to maximize
computational capacity at 4096 MACs (Multiply-Accumulate
Operations) per clock cycle. To fully exploit FPGA resources,
three instances of this DPU were deployed, enabling simulta-
neous processing of up to three frames.

The CNN is structured based on the VGG16 architecture,
which boasts 30.96 GFLOP. Chosen for its reputation as a
benchmark in computer vision deep learning, VGG16 consists
of thirteen convolutional blocks, each containing a convo-
lutional layer with 3x3 filter size, max-pooling layer, and
ReLU activation, followed by three fully connected layers. In
the LSTM component, various configurations were explored,
adjusting the number of layers (one or two), units per layer
(128, 256, or 512), and learning direction (unidirectional or
bidirectional).

For performance evaluation, we utilized the widely recog-
nized UCF101 dataset [40], which comprises 13,320 videos
categorized into 101 actions. This dataset offers extensive
diversity in actions and features significant variations in
camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, and illumination conditions.
Additionally, the actions can be grouped into five types based
on the nature of the depicted interactions: Human-Object
Interaction, Body-Motion Only, Human-Human Interaction,
Playing Musical Instruments, and Sports.

Initially, the videos were at 320x240 pixels resolution and
25 FPS. Then, they were sampled into fixed-length sequences
of fifteen frames, further divided into five subsequences of
three frames each to optimize the utilization of the three
DPUs deployed in the FPGA. This allowed for the parallel
processing of each frame within a subsequence by an inde-
pendent DPU. The inference process involved independently
processing subsequences of three frames through the CNN-
LSTM design. Probabilities corresponding to the 101 cate-
gories in the UCF101 dataset were obtained from each 3-frame
subsequence and averaged to generate the final prediction for
the entire 15-frame sequence, providing inferred likelihoods



for each action category in the dataset.
The precision evaluation assessed results for each LSTM

configuration are presented in Table I, focusing on the first
train/test split of the dataset, which comprised 3.7K videos for
testing. The nomenclature used to refer to the different LSTM
configurations is as follows: based on the number of layers,
”single” denotes a single layer, and ”stacked” denotes two
layers; based on the learning direction, ”LSTM” is used for
a unidirectional network and ”Bi-LSTM” for a bidirectional
network; finally, the number of units per cell is indicated by
128, 256, or 512.

The highest precision of 73.65% is achieved with the
Stacked Bi LSTM 512 architecture, which closely aligns with
values reported in previous works for similar CNN-LSTM
architectures. For instance, [11] achieved a 71.12% accuracy in
the first split of the UCF101 dataset using a CNN architecture
very similar to AlexNet and a unidirectional LSTM config-
uration with 256 units in its cells. It employs an averaging
strategy to obtain complete video categorization but performs
inference on subsequences of 16 frames without subsampling
each video. Additionally, [12] achieved a 77.36% accuracy for
the first test split of the UCF101 dataset using the Inception-
ResNetV2 architecture. Similarly, it employs various configura-
tions of recurrent networks, including the bidirectional LSTM
with 512 units per cell, achieving the previously mentioned
accuracy. However, it adopts a different evaluation strategy
by classifying sequences of 180 frames, which encompass the
complete context of the action in each video, thanks to prior
adaptative subsampling.

TABLE I
VGG16 + Several LSTM Configurations

CNN Direction Layers Units Acc

VGG16 Unidirectional single
128 71.13
256 72.83
512 73.43

stacked
128 69.39
256 71.03
512 72.19

Bidirectional single
128 73.21
256 73.33
512 73.54

stacked
128 72.09
256 71.9
512 73.65

To illustrate the performance enhancement achieved with
the pipeline implementation, computational performance re-
sults were compared in Fig. 3 against a sequential implementa-
tion, where the LSTM software component waited for the CNN
hardware component to finish, and vice versa. The latency
for processing a single frame and generating a spatial feature
was approximately 60 milliseconds, consistent across all three
instances of simultaneously implemented DPUs. However, the
latency for processing a sequence of three spatial features
varied depending on the LSTM configuration being tested,
ranging from 20.3 milliseconds to 89.73 milliseconds for the
Single LSTM 128 and Stacked Bi LSTM 512 architectures,
respectively. The maximum processing speed was achieved

with the Single Bi LSTM 256 architecture, reaching a per-
formance of 44.34 frames per second (FPS). The largest
absolute improvement provided by the pipeline implemen-
tation over the sequential approach is 17.13 FPS for the
Stacked Bi LSTM 256 architecture, while the most signifi-
cant improvement in percentage terms occurs with the Sin-
gle LSTM 512 architecture, showing a 69.40% enhancement
in FPS performance compared to the sequential implementa-
tion. The FPS results indicated a maximum limit of around
44 FPS, primarily dictated by the minimum latency of the
VGG16 network. The improvement provided by the pipeline
implementation diminished significantly only for those LSTM
configurations whose latency exceeds the 60 milliseconds of
the VGG16 network, moving away from the maximum limit
of 44 FPS.

Fig. 3. Sequential vs Pipelined FPS performance for several LSTM architec-
tures.

A visual representation in Fig. 4 illustrates the trade-off
between computational performance and accuracy in success-
ful classification. All LSTM architectures are depicted by
two crosses on the graph, each representing one of the two
implementations: sequential and pipeline, and indicating their
respective accuracy and FPS performance. Additionally, an
arrow connects both points for the same architecture, symbol-
izing the improvement brought by the pipeline implementa-
tion. Notably, architectures with higher accuracy may not have
the highest FPS, and vice versa. However, some architectures
excel in both aspects, such as the Single Bi LSTM 256,
achieving 73.33% accuracy, merely 0.32 decimals below the
best accuracy, and delivering a peak performance of 44.34
FPS, surpassing the highest accuracy architecture by 16.96
FPS.

The presented methodology allows for alternative algorithm
selection and utilization of DPUs based on the requirements
and available hardware resources on other platforms.

V. CONCLUSIONS AND FUTURE WORK

This study introduces an efficient methodology of imple-
mentation of a CNN-LSTM network on an SoC FPGA tailored
for video action recognition. Leveraging the AMD-Xilinx Vitis
AI DPU IP core as a hardware accelerator for convolutional
operations, the FPGA serves as a spatial feature extractor



Fig. 4. Accuracy vs FPS for several LSTM architectures.

from raw frames. The significant advantage of this hardware
accelerator lies in its flexibility, allowing users to select CNN
architectures without the need for individual hardware descrip-
tion language development, such as VHDL or Verilog. This
adaptability is essential as the efficacy of a particular CNN
architecture on one dataset does not guarantee its performance
across all datasets. Concurrently, the utilization of the proces-
sors of SoC for LSTM network deployment addresses the DPU
IP cores limited support for alternative network types, while
preserving flexibility in assessing various configurations for
the dataset at hand.

The achieved results demonstrate competitive performance,
aligning with typical benchmarks for this architecture as evi-
denced by state-of-the-art literature. Discrepancies in precision
may stem from the chosen CNN architecture for feature
extraction, input sequence length during LSTM inference,
prediction strategy, or dataset preprocessing methods like data
augmentation and video subsampling. However, this study
does not aim to surpass current state-of-the-art in human
action recognition in videos but rather to present a competitive
implementation capable of real-time operation on low-power
embedded systems with constrained resources. Notably, the
computational performance, indicated by FPS, reaches up to
44 FPS, comfortably exceeding real-time requirements typi-
cally ranging between 15 and 30 FPS. These findings motivate
further exploration to enhance precision, albeit potentially at
the cost of FPS performance.

In the proposed CNN-LSTM design, the LSTM network
identifies motion patterns based on spatial features extracted
by the CNN from raw frames. However, enhancing predic-
tions by providing more detailed information about specific
elements in the frame is crucial.

Various approaches, including optical flow techniques and
networks like YOLO or PoseDetection, have been suggested

to extract motion information and identify relevant objects or
key points, improving the LSTM network’s ability to recognize
motion patterns.

Nevertheless, the challenge lies in the increased computa-
tional resources required for detailed object movement extrac-
tion while meeting real-time constraints. Future research may
focus on optimizing CNN and LSTM architectures to reduce
computational load and latency, enabling the integration of
supplementary information without sacrificing performance.

Exploring sequences of different lengths and sampling
strategies could provide insights into the impact of context and
action duration on prediction accuracy. By varying sequence
lengths and sampling methods, researchers can assess how
temporal context influences action recognition performance,
informing the design of more effective video classification
systems.
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