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Highlights 

 Alfalfa lambs showed lower levels of SCD gene expression than indoors lambs. 
 The SCD gene expression was affected by the rs412429481 SNP. 
 The SCD promoter with the A allele had higher activity by luciferase and gene 

expression assays. 
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Abstract 

The nutritional quality of lambs may be improved with increased stearoyl-CoA 

desaturase (SCD) gene expression, which increases the desaturation of stearic acid to 

oleic acid. The aim of this study was to evaluate the effect of the rs412429481 

(FJ513370: g.31C>A) SNP located at the SCD gene on the functionality of the gene in 

lambs reared under different production systems. The effect of the rs412429481 SNP 

on gene expression in Rasa Aragonesa male lambs slaughtered at 22-24 kg was 

studied in two experiments. In Experiment 1 (n=44), the semitendinosus muscle of 

lambs grazing alfalfa (ALF) or fed concentrates indoors (IND) was analysed; in 

Experiment 2 (n=48), the semitendinosus and longissimus thoracis muscles of lambs 

that received supplementation with dl-α-tocopheryl acetate for different finishing 

periods were used. In Experiment 1, the effect of the rs412429481 SNP on the 

expression of the SCD gene in the semitendinosus muscle depended on the feeding 

group (P<0.001), as it had no effect in ALF lambs, but CA lambs had greater SCD 

expression than CC lambs under the IND conditions. Moreover, ALF lambs showed 

lower levels of SCD gene expression than IND lambs (P<0.05). In Experiment 2, gene 

expression was affected by the rs412429481 SNP in both muscles. Animals carrying 

the C- allele showed a lower expression rate than animals carrying the A- allele. These 

different expression levels were not associated with changes in the DNA methylation 

pattern or by the binding of specific nuclear proteins. Finally, we confirmed these 

results by luciferase assays, demonstrating that the SCD promoter containing the A 

variant had a 23.9% higher activity than the promoter containing the C variant.  

 

Keywords: sheep; SCD; nutrigenetics; functional; fatty acid profile. 

1. Introduction 
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The conjugated linoleic acid cis 9-trans 11 isomer (CLA) has been associated with 

numerous health benefits for consumers, including the prevention of atherosclerosis, 

hypertension and even different types of cancer (Bhattacharya et al., 2006). In the 

same context, an increased ratio of mono-unsaturated fatty acids (MUFAs) to saturated 

fatty acids (SFAs) has shown benefits in diabetes and hypertension in humans 

(Schwingshackl and Hoffmann, 2012). Lamb meat is rich in SFAs, particularly palmitic 

and stearic acids, and MUFAs, mainly oleic acid (Enser et al., 1998). The enzyme 

stearoyl-CoA desaturase (SCD) plays an important role in ruminant species because it 

desaturates palmitic to palmitoleic acid, stearic to oleic acid (Enoch et al., 1976; 

Ntambi, 1999) and cis-vaccenic acid (VA) to CLA (Bauman et al., 1999), thus 

increasing the ratio of MUFAs to SFAs. In addition, the SCD gene encoding the SCD 

enzyme is located in a region where a positional quantitative trait locus (QTL) has been 

detected for the CLA:VA ratio in sheep milk (Carta et al., 2008), highlighting the 

beneficial role of SCD expression. Moreover, in sheep, the SCD gene harbours 

polymorphisms that have been shown to affect the fat content in milk, specifically the 

palmitoleic acid, linoleic acid, VA, SFA and MUFA contents and the n-6:n-3 and 

palmitoleic:palmitic ratios (García-Fernández et al., 2010). One of the SNPs associated 

with these traits is the rs412429481 SNP (FJ513370: g.31C>A), which is located in the 

promoter region of the ovine SCD gene and was previously described by Garcia-

Fernandez et al. (2009). In bovines, several studies have shown associations between 

this gene and the fatty acid composition of both meat and milk (Taniguchi et al., 2004; 

Moioli et al., 2007). Expression of the SCD gene is regulated by the diet, especially by 

polyunsaturated fatty acids (PUFAs) of the n-6 and n-3 families, but also by hormones 

and environmental factors (Miyazaki et al., 2003). In ovine, grazing increases the 

amounts of CLA, total PUFAs (Scerra et al., 2007) and n-3 PUFAs (Dervishi et al., 

2010) in lamb meat, a favourable change according to human dietary guidelines. It is 

well documented that, compared with forage, concentrate-based diets increase the 
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content of oleic acid in the tissues of cattle (Mitchell et al., 1991; Blanco et al., 2010) 

and sheep (Rowe et al., 1999; Lobón et al., 2017). Because of these data, we 

hypothesised that changes in diet or hormone treatments might increase the 

expression of the SCD gene, which in turn will decrease the SFA content while 

increasing both the oleic acid and cis-9, trans-11 CLA content of the meat, leading to 

an overall improvement in its nutritional quality. In sheep, only a few studies have 

investigated the nutritional regulation of gene expression in muscle (Vasta et al., 2009; 

Dervishi et al., 2011; Gonzalez-Calvo et al., 2017) but to the best of our knowledge, no 

studies linking DNA sequence variation to the responses to the nutrient responses 

have been carried out until now.  

In the current study, we evaluated the functional impact of the rs412429481 

(FJ513370: g.31C>A) SNP located at the promoter region of the SCD gene on the 

transcription rate of the gene as well as the influence of SCD genotypes on gene 

expression levels in regard to both nutrients response and the muscle type analysed 

(longissimus thoracis or semitendinosus muscles) in Rasa Aragonesa light lambs. 

Furthermore, we performed functional experiments in vitro to elucidate the molecular 

mechanism underlying the different gene expression levels found for the two alleles 

analyzsed. 

 

2. Material and Methods 

2.1. Animals  

All experimental procedures, including animal care and slaughtering, were performed in 

accordance with the guidelines of the European Union and Spanish regulations for the 

use and care of animals in research and were approved by the Animal Welfare 

Committee of the research centre (protocol number 2009-01_MJT). 
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The study was conducted using the Rasa Aragonesa breed. The Rasa Aragonesa 

sheep breed belongs to the so-called entrefino type, which has short wool and wool 

fibres of medium thickness. These sheep are polled, have wool-less heads and are 

used mainly for meat. The area of distribution of the Spanish Rasa Aragonesa sheep is 

in northeast Spain. To study the putative functional impact of the rs412429481 SNP of 

the SCD gene on the transcription rate, two experiments were conducted with Rasa 

Aragonesa male lambs from weaning to slaughter at 22-24 kg live weight (LW): 

- Experiment 1 (Exp. 1): Forty-four Rasa Aragonesa ewes and their spring single-born 

male lambs were allocated randomly to four treatment groups: alfalfa grazing, alfalfa 

grazing with a supplement for the lambs, indoor lambs with a supplement for the lambs 

with grazing ewes and drylot (Dervishi et al., 2010).  The first two treatments were 

unweaned lambs grazing alfalfa, and the two last treatments were lambs weaned at 

day 45 and fed concentrates indoors. Differences were found in the MUFA and PUFA 

profiles between the grazing groups and the indoors concentrate groups. However, no 

differences were observed between the two grazing groups or the two indoor groups 

(Dervishi et al., 2010). Furthermore, cluster analysis of the expression profiles of 10 

genes related to fatty acid metabolism (including the SCD gene) showed that 2 main 

clusters were formed according to the feeding system: grazing (alfalfa grazing and 

alfalfa grazing with a supplement for lambs) and indoor (indoor lambs with a 

supplement for lambs with grazing ewes and drylot) groups (Dervishi et al., 2011). 

Interestingly, both grazing groups showed lower levels of SCD expression than the 

indoor groups (P < 0.05). According to these results, the animals were divided into two 

groups for the analysis performed in this work: unweaned grazing alfalfa lambs (ALF; 

n=22: alfalfa grazing, alfalfa grazing with a supplement for the lambs) vs. weaned 

lambs fed concentrates indoors (IND; n=22: indoor lambs with a supplement for the 

lambs with grazing ewes and drylot). In the IND group, the lambs were weaned at 45 

days old and had free access to concentrate. The slaughter weights were 23.38 ± 0.24 
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and 23.51 ± 0.36 for the ALF and IND groups, respectively (ALF lambs: 64.93 ± 4.74 

days old; IND lambs: 77.84 ± 6.16 days old). The traditional farming systems in 

Mediterranean regions are extensive, semi-natural and natural grazing areas. 

However, there is a tendency to intensify the production of light lambs. Grass-based 

systems may be a good alternative to indoor lamb production systems because they 

use natural resources and provide the meat desired by consumers (Ripoll et la., 2014). 

- Experiment 2 (Exp. 2): The study began at weaning (48.7 ± 0.21 days old) with an 

average LW of 18.5 ± 0.16 kg. Twelve lambs were fed ad libitum with a commercial 

concentrate without DL-tocopheryl acetate supplementation from weaning to 

slaughter,  and the remaining lambs (n=36) were fed the same commercial concentrate 

but were supplemented with 500 mg of DL-tocopheryl acetate kg−1 concentrate for 

different finishing period lengths prior to slaughter. The length of time the 

supplemented concentrate was given ranged from 4 to 28 days (Ripoll et al., 2013). 

The slaughter weight and age were 23 ± 0.24 kg and 75.20 ± 1.84 days old, 

respectively. 

The experimental procedures, composition of diets, management of the animals and 

sample details for each group are described in detail in Dervishi et al. (2010) and Ripoll 

et al. (2013) for Exp. 1 and Exp. 2, respectively. 

In both trials, when the lambs reached 22–24 kg LW, they were slaughtered 

according to EU laws in the same commercial abattoir. Immediately after slaughter, 

samples of the semitendinosus (ST; Exp. 1 and Exp. 2) and longissimus thoracis (LT; 

Exp. 2) muscles were taken and frozen in liquid nitrogen until RNA and DNA isolation. 

The carcasses were chilled at 4°C for 24 h; then, the ST muscle and a piece from the 

4th to the 6th lumbar vertebrae of the LT muscle were removed from the left halves of 

the carcasses. 
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2.2. Fatty acid analysis.  

In both experiments the muscle fatty acid (FA) content was identified based on the 

protocol described in Dervishi et al. (2012). The individual FA contents were expressed 

as weight percentages (g/100 g of total FA). The proportions of total SFAs, MUFAs, 

PUFAs, n-3 PUFAs, n-6 PUFAs, PUFAs/SFAs and n-6/n-3 ratios were obtained from 

the individual fatty acid percentages.  

 

2.3. SNP genotyping.  

Genomic DNA was extracted from the animals in both studies using the SpeedTools 

DNA Extraction kit (Biotools, Madrid, Spain). The rs412429481 SNP (FJ513370: 

g.31C>A) is located in the promoter region of the ovine SCD gene and was previously 

described by Garcia-Fernandez et al. (2009). Genotyping of all animals was carried out 

using PCR-restriction fragment length polymorphisms (PCR-RFLPs) with the primers 

and amplifying conditions described by Garcia-Fernandez et al. (2009) (Table 1) and 

the MnlI restriction enzyme (New England Biolabs, Beverly, MA, USA). Fifteen l of the 

PCR product was digested with 1 U of MnlI for 4 h at 37ºC in a total volume of 20 l. 

The PCR-RFLP bands were visualised on 3% agarose gels stained with SYBR Safe 

(Invitrogen, Carlsbad, CA, USA). 

 

2.4. Structural characterisation of the promoter region of the SCD gene.  

Primers designed from sheep sequences NC_019479 and GQ904712 were used to 

amplify the promoter genomic region and partial exon 1 of the SCD gene (Table 1). 

PCR products containing the rs412429481 SNP were also used for the structural 

characterisation of this region. Genomic DNA (100 ng) of fifteen lambs with different 

genotypes for the rs412429481 SNP from Exp. 1 (7 CC, 6 CA, and 2 AA) was amplified 
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in a final PCR volume of 25 µl, which contained 7.5 pmol of each primer, 200 nM 

dNTPs, 2.25 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl, 0.1% Triton X-100 and 1 U Taq 

polymerase (Biotools, Madrid, Spain). Standard amplification cycles were used. The 

PCR products were sequenced using an ABI Prism 3700 (Applied Biosystems, Madrid, 

Spain) and standard protocols. Homology searches were performed using the BLAST 

algorithm (http://www.ncbi.nlm.nih.gov/BLAST/) and CLUSTAL Omega software 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

2.5. In silico analysis of transcription factor binding and CpG islands.  

To determine if nucleotide changes might result in changes in the binding ability of 

certain transcription factors, an in silico analysis of the surrounding sequence (plus and 

minus 30 nucleotides) was carried out using the Alibaba 2.1 search tool 

(http://www.generegulation.com/ pub/programs/alibaba2 /index.html). CpG island 

prediction was carried out with MethPrimer software (Li and Dahiya, 2002). 

 

2.6. DNA methylation analysis of SCD.  

The individual CpG methylation status of the promoter region harbouring the SCD 

rs412429481 SNP was analysed by bisulfite sequencing of the converted DNA. DNA 

was converted using a Methylcode Bisulfite conversion Kit (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer‘s protocol. A total of 24 DNA samples from Exp. 1 

(6 CC, 8 CA and 1 AA from ST muscle of ALF treatment; 5 CC, 3 CA and 1 AA from ST 

muscle of IND treatment), and 19 DNA samples from Exp. 2 (7 CC, 7 CA and 5 AA 

from LT muscle from Exp. 2) were extracted and then bisulfite converted. Bisulfite-

treated DNA was PCR amplified and sequenced using an ABI Prism 3700 (Applied 

Biosystems, Madrid, Spain). PCR was carried out in a final PCR volume of 25 l, which 

contained 5 pmol of each primer, 2.0 mM MgCl2, 2.5 l of 10X Certamp complex buffer 
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containing adjuncts and stabilisers and 1 U of Certamp complex enzyme mix (Biotools, 

Madrid, Spain). The primers for bisulfite sequencing PCR (BSP) and methylation-

specific PCR (MSP) were designed using MethPrimer software (Li and Dahiya, 2002) 

and amplified a fragment of 199 bp, that included rs412429481 SNP. The primers used 

are described in Table 1. Standard amplification cycles were used. After sequencing 

the BSP or MSP products, the methylation patterns were determined by comparisons 

to untreated DNA.  

 

2.7. Real-time quantitative PCR analysis (RT-qPCR).  

Total RNA extraction (from approximately 500 mg of ST or LT muscle samples) and 

qPCR were carried out according to the methodology described in González-Calvo et 

al. (2014). The real time-PCR reaction was carried out in a 10 μL PCR total reaction 

mixture containing SYBR Green PCR Master Mix (Applied Biosystem, Madrid, Spain). 

Reactions were run in triplicate on an ABI Prism7500 platform (Applied Biosystem, 

Madrid, Spain) following the manufacturer's cycling parameters. To normalise the 

results of the SCD gene, 3 housekeeping (HK) genes were used for each muscle: 

GAPDH, ACTB, and B2M  in the ST and RPL19, B2M and YWHAZ in the LT muscle. 

These HK genes were chosen because in previous studies, they were the most stably 

expressed genes in these tissues (Dervishi et al., 2011, 2012). Primer sequences for 

SCD and the HK genes are described in Dervishi et al. (2011, 2012). The 

corresponding mRNA levels were measured and analysed by their quantification cycle 

(Cq). 

 

2.8. Reporter plasmids 

Two luciferase reporter constructs for the A and C alleles were generated by cloning a 

region of the ovine SCD proximal promoter into the pGL3-Basic luciferase reporter 
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vector (Promega, Madison, USA). We amplified a 595 bp DNA sequence of the ovine 

SCD proximal promoter (from −470 to +125, TSS defined as +1). The primers used for 

PCR introduced HindIII and XhoI restriction sites into the 5′ ends to enable directional 

cloning in pGL3-Basic (Table 1). PCR amplification was carried out in a volume of 25 

µl, which contained 10 pmol of each primer, 200 nM dNTPs, 1.5 mM MgSO4, 2.5 l of 

10X buffer, and 1 U KOD Hot Start DNA polymerase (Novagen, Merk Millipore, Madrid, 

Spain). Standard PCR cycles were performed according to the manufacturer‘s protocol. 

The PCR products were previously cloned in the pGEM®-T basic vector (Promega, 

Madison, USA) to remove polyA generated during PCR. Once excised from the 

pGEM®-T basic vector, the fragments were purified using a QIAquick gel extraction kit 

(Qiagen IZASA, Madrid, Spain) and cloned into the pGL3-Basic reporter vector 

previously digested with both HindIII and XhoI restriction enzymes. The cloned 

fragments of the SCD promoter and pGL3-Basic vector were digested with restriction 

enzymes, gel purified using the QIAquick gel extraction kit and bounded together with 

T4 ligase (Promega, Madison, USA).  

Two other luciferase reporter constructs were generated by cloning the same DNA 

fragments (A and C alleles) synthesised as gene blocks (gBlocks; IDT, Sumalsa, 

Spain) with the HindIII and XhoI restriction sites. Cloning was performed in the same 

way as that for genomic DNA. The sequences of all plasmids were verified by Sanger 

sequencing.  

 

2.9. Cell culture transfections and luciferase reporter assay  

3T3L1 (mouse pre-adipocyte) cells were maintained in culture with Dulbecco’s modified 

Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA, USA), supplemented with 2 mM L-

glutamine and 10% newborn calf serum (NBCS). The cells were incubated at 37ºC in 

the presence of 5% CO2. Twenty-four hours before transfection, 25,000 cells/well were 
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seeded into sixteen-well plates and grown to 70% confluence. 3T3L1 cells were 

transiently transfected into sixteen-well plates using Lipofectamine 3,000 transfection 

reagent (Thermo Fisher, Madrid, Spain) and Opti-mem media (Thermo Fisher, Madrid, 

Spain) according to the manufacturer’s instructions. For transfections, 500 ng/well were 

used for each reporter vector. The Renilla gene (100 ng/well) served as an internal 

control for transfection efficiency. An empty pGL3-Basic vector was used as a negative 

control (500 ng/well). After 48 h, the cells were lysed with passive lysis buffer (Applied 

Biosystems, Thermo Fisher, Madrid, Spain), and luciferase activity was measured with 

the Dual-Glo luciferase assay system (Promega, Madison, USA) following the 

manufacturer’s instructions. The intensities of Firefly and Renilla luciferase were 

measured using the Glomax20/20 Luminometer from Promega. In total, 7 transfections 

were performed: 4 transfections with luciferase reporter constructs with the ovine SCD 

proximal promoter using genomic DNA for each allele and 3 transfections for each 

allele with luciferase reporter constructs with the ovine SCD proximal promoter 

synthesised as gBlocks. Three independent experiments were carried out for each 

luciferase reporter construct and transfection. 

 

2.10. Electrophoretic mobility shift assays (EMSAs). 

To confirm the potential regulatory role of the rs412429481 SNP, the binding of nuclear 

proteins from C2C12 cells to both alleles was studied by EMSA. Additionally, SL-2 and 

SLC-pPAC-SP1 cells were used to check the binding to SP-1.  

Nuclear extracts were prepared from C2C12 differentiated myotube cells as previously 

reported by Mozas et al. (2002). Nuclear extracts from Sp1-deficient Drosophila cell 

lines (SL-2) and from SL-2-transfected Drosophila cells with pPAC-SP1 (plasmid that 

expresses Sp1) were also used. SL-2 and SL-2-pPAC-SP1 cells were used as a 

control for SP1 expression. 
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For assaying the binding of nuclear proteins to the rs412429481 SNP, 20 nt long 

double-stranded oligonucleotides with the sequence 

GGGGCTGCGG[C/A]GGCCAAACC were used. They were labelled at the 5’ end with 

IRDye®680 (Tecknocroma, Madrid, Spain). Binding reactions were carried out as 

previously reported in Riancho et al. (2011). The DNA-protein complexes were 

subjected to gel electrophoresis on a 4% polyacrylamide gel in 0.25× Tris-borate-EDTA 

(TBE) buffer. The gel bands were analysed in an ODYSSEY infrared imaging system 

(Li-Cor Biosciences, Lincoln, NE, USA). Competition experiments were carried out 

using unlabelled A oligonucleotides (Riancho et al., 2011). The density of the gel shift 

bands was quantified using ImageJ software (NIH Bethesda, MA, USA). The EMSA 

experiment was replicated twice. 

For supershift assays, 0.1 ng of polyclonal antibody specific for SP1 (Santa Cruz 

Biotechnology, CA, USA) was added to the reaction mixture with the labelled double-

stranded oligonucleotides for the C and A alleles. 

 

2.11. Statistical procedures.  

Statistical analyses were performed using the SAS statistical package v. 9.3 (SAS 

Institute, Cary NC, USA). A P-value lower than 0.05 was considered statistically 

significant, and 0.05 ≤ P < 0.10 was considered a trend.   

2.11.1. Fatty acid analysis.  

Statistical analysis of the fatty acid content was performed using different models for 

Exp. 1 and Exp. 2. In Exp. 1, the effects of the treatment on the fatty acid content were 

analysed by using the GLM procedure. In Exp. 1, the equation of the model used was 

as follows: 

yim= μ + Ti + b1(SA)im + b2(IMF)im + eim 
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where yim is the fatty acid content corresponding to the mth animal feed with the ith 

treatment (ALF and IND); Ti is the fixed effect of the ith treatment; SA is the effect of the 

slaughter age; and IMF is the effect of the intramuscular fat included as a covariate. 

In Exp. 2, the effect of the muscle on the content of each fatty acid was examined by 

using the mixed procedure: 

yim= μ + Si + b1(SA)m + b2(IMF)m + b3(VE)m + Am + eim 

where yim is the fatty acid content corresponding to the mth animal and to the ith muscle 

(ST and LT); Si is the fixed effect of the ith muscle; SA is the effect of the slaughter age; 

IMF is the effect of the intramuscular fat; VE is the number of days of concentrate 

enriched with dl-α-tocopheryl acetate intake before the lambs reached their target 

slaughter weight included as a covariate; and the animal (A) and the residual (e) are 

included as random effects.  

In both models, fatty acid content results were expressed as least square means (LSM) 

± the standard error (SE) values and the differences were tested at a level of 

significance of 0.05 with the t statistic.  

 

2.11.2. Analysis of expression results.  

A statistical methodology to analyse differences in the expression rate of alternative 

genotypes of the polymorphism located at the gene promoter was described by Steibel 

et al. (2009). The equation for the mixed model used for the Exp. 1 was as follows:  

 

ygiomr= μ + TGgi + MTGogi + b1(SA) iom + b2(IMF) iom + Am + egiomr 

where ygiomr is the Cq (transformed data taking into account E < 2) obtained from the 

thermocycler software for the gth gene (SCD and the three HK genes) from the rth well 

(reactions were run in triplicate), corresponding to the mth animal and to the ith treatment 

(ALF and IND); TGgi is the fixed interaction between the ith treatment and the gth gene (T is 
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the effect of the ith treatment and G is the effect of the gth gene); MTGoij is the fixed 

interaction among the oth genotype (CC, CA and AA), the ith treatment and the gth gene (M 

is the effect the oth genotype of the SCD gene, T is the effect of the ith treatment and G is 

the effect of the gth gene); SA is the effect of the slaughter age included as a covariate; 

IMF is the effect of the intramuscular fat included as a covariate; Am is the random effect 

of the animal from where the samples were collected (Am(0, 


S); and egiomr is the 

random residual. Gene-specific residual variance (heterogeneous residual) was also fitted 

to include variability among sample replicates for each gene within a treatment (egiomr N(0, 



eig).  

For Exp. 2, the two muscles were analysed separately. The mixed model fitted was as 

follows: 

ygomr= μ + MGog + b1(SA)m + b2(IMF)m +  b(VE)m + Am + egomr 

where ygomr is the Cq (transformed data taking into account E < 2) obtained from the 

thermocycler software for the gth gene (SCD and the three HK genes) from the rth well 

(reactions were run in triplicate), corresponding to the mth animal; MGog is the fixed 

interaction among the oth genotype (CC, CA and AA) and the gth gene (M is the effect of 

the oth genotype of the SCD gene, and G is the effect of the gth gene); SA (slaughter age), 

IMF (intramuscular fat) and VE (the number of days of concentrate enriched with dl-α-

tocopheryl acetate intake) effects were included as covariates; Am is the random effect of 

the animal from where the samples were collected (Am(0, 

S); and egiomr is the random 

residual. Gene-specific residual variance (heterogeneous residual) was also fitted to 

include variability among sample replicates for each gene within a treatment (egiomr N(0, 



eig).  

To test differences (diffSCD) in the expression rate between the treatments and to obtain 

fold change (FC) values from the estimated TG and MTG (Exp. 1) and MG (Exp. 2) 
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differences, the approach suggested in Steibel et al. (2009) was used to normalise the 

SCD expression to the three HK genes.  

The significance of diffSCD estimates was determined with the t statistic. Additionally, 

asymmetric 95% confidence intervals (upper and lower) were calculated for each FC 

value using the standard error (SE) of diffSCD 

2.11.3. Luciferase assays. 

The results from luciferase assays were analysed using the GLM procedure fitting a 

model in which the dependent variable was the relative luminescence unit (RLU) 

obtained for each genotype in each transfection. Transfection, genomic DNA or 

gBlocks luciferase reporter construct, replicate nested to genotype, and genotype were 

included in the model as fixed effects. Least square means, 95% confidence intervals 

and t tests for means comparison were calculated. 

 

2.11.4. EMSA analysis.  

The density of the gel shift bands was analysed using the GLM procedure. The effect 

of the gel was considered a fixed effect in the model. The results are presented as the 

mean ± standard deviation (SD). Least square means and t tests for mean 

comparisons were calculated. 

 

3. Results  

3.1. Fatty acid composition.  

The effect of the feeding system on the fatty acid content in ST muscle of Exp.1 is 

reported in Supplementary Table S1. Lambs in the ALF group presented greater total 

SFA content (P < 0.01) and greater PUFA n-3 content (P < 0.001) but lower total 

MUFA content (P < 0.01) than their indoor fed-concentrate counterparts. Therefore, the 

n6:n3 ratio was lower in the ALF lambs than in the IND lambs (P < 0.01). No 
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differences between the feeding systems were found for the total PUFA content and for 

total n-6 PUFAs (P > 0.05).  

In Exp. 2, dl-α-tocopheryl acetate supplementation had no effect on the FA content of 

ST and LT muscles (P > 0.05; data not shown). The effect of the type of muscle (LT or 

ST) on the fatty acid content showed that the n-3 PUFA content was higher in ST 

muscle than in LT muscle (P < 0.001) due to the higher C20:5n-3, C22:5n-3 and 

C22:6n-3 contents (Supplementary Table S2). However, the MUFA content was higher 

in LT muscle than in ST muscle (P < 0.05) as a result of the higher of C18:1n-9 and 

C20:1n-9 contents observed in LT muscle.  

 

3.2. Structural characterisation of the promoter region of the SCD gene. 

The genotype and allele frequencies found for the rs412429481 SNP in animals from 

Exps. 1 and 2 are shown in Table 2. The genotype frequencies were in Hardy-

Weinberg equilibrium. The promoter regions of 15 animals with different genotypes for 

the rs412429481 SNP (7 CC, 6 CA, and 2 AA) were sequenced to evaluate the 

presence of other polymorphisms linked to the rs412429481 SNP in this region. In 

total, 1844-bp and 183-bp sequences of the promoter region and exon 1, respectively, 

were analysed, but only the rs412429481 SNP was detected.  

 

3.3. In silico analyses of transcription factor binding and DNA methylation analysis of 

SCD.  

In silico analysis of transcription factor binding identified several overlapping putative 

transcription factors containing the rs412429481 SNP: Sp-1, AP-2 alpha, WT1 and NF1 

(C allele) and Sp-1 and C/EBP alpha (A allele) consensus sites. CpG island prediction 

showed that the rs412429481 SNP was located in a 55-bp DNA fragment between two 
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CpG islands that were 193 and 377 bp. Furthermore, the C allele was predicted to be 

methylated. 

After the bisulfite conversion of genomic DNA from both muscles, only the primers 

for bisulfite sequencing (BSP) designed to amplify the unmethylated DNA were able to 

produce an amplicon containing the rs412429481 SNP. Sequencing of this amplicon 

confirmed that this particular region was not methylated.  

 

3.4. Expression analysies.  

In Exp. 1, the expression of SCD was affected by slaughter age (P = 0.0003) and by 

the interaction between the SNP genotype and feeding system (P < 0.0001). SCD 

expression in IND lambs was 7.6 

-fold higher than that in ALF lambs (P = 0.03) (Figure 1a). We excluded animals 

genotyped as AA in the analysis of SCD expression mediated by the rs412429481 

SNP in Exp. 1 because we found only one animal per group genotyped as AA. In ALF 

lambs, there were no significant differences between the different genotypes. However, 

in the IND group, SCD expression was 5-fold higher in CA lambs (n =10) than in CC 

lambs (n =11; P = 0.04, Figure 1b). 

In Exp. 2, the expression of SCD was affected by the slaughter age (P < 0.01) and the 

rs412429481 SNP in both muscles (P < 0.05). In ST muscle, SCD expression in CA lambs 

(n = 23) was 5-fold higher than that in CC lambs (n = 20; P = 0.014) (Figure 1b). In LT 

muscle, SCD expression in AA lambs (n= 5) was 24-fold higher than that in CA lambs (n = 

22; P = 0.03, Figure 1b).  

 

3.5. Luciferase assay 
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We constructed luciferase constructs using both genomic DNA and synthetic DNA 

fragments (gBlocks). Due to extra mutations present in the PCR fragments amplified 

from genomic DNA containing the A variant of the SNP, these sequences were 

discarded. Then, synthetic sequences (gBlocks) had to be used instead. After 

sequencing the luciferase constructs, only the rs412429481 SNP was found. Across 

the different luciferase experiments performed, we consistently found that compared to 

the promoter containing the C allele, the promoter containing the A allele had a 23.9 % 

increase in its activity (Figure 2) (P = 0.057). 

 

3.6. Electrophoretic mobility shift assays (EMSAs). 

Electrophoretic mobility shift assays (EMSAs) suggested a difference in the ability of 

rs412429481 alleles to bind nuclear proteins from C2C12 cells. As shown in Figure 3, 

band 1 resulted from the incubation of C2C12 nuclear extracts with the labelled double-

stranded oligonucleotide. The C allele (C2C12 lane with the C allele) showed stronger 

binding properties (P = 0.02) than the A allele (C2C12 lane with the A allele). The 

mean ratio (± s.d.) of the C allele gel shift band density to the A allele gel shift band 

density was 1.33 (±0.04). 

In competition experiments, both allele shift band densities decreased with a 50-fold 

excess of unlabelled A allele oligonucleotides; these results indicated specific binding. 

Band 1 did not disappear with incubation with the specific SP-1 antibody, and no 

anti-Sp1-specific supershifted complexes were observed in these experiments, 

indicating that the Sp1 nuclear protein was not present in the nuclear proteins. 

Furthermore, band 1 disappeared with the SL-2 extracts, and was replaced by a 

different band (2) (lanes SL-2 and SL2-pPAC-SP1 for each allele); in the SL2-pPAC-

SP1 extracts, an additional band (3) was detected at different positions than 1, 
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suggesting that the protein that binds the oligonucleotide could be up-regulated by Sp-

1.  

 

4. Discussion 

As expected, the fatty acid composition of the ST muscle was influenced by the feeding 

system. The greater content of n-3 PUFAs and C18:2 cis-9, trans-11 in ALF lambs than 

in IND lambs agrees with other previous studies in lambs (Dervishi et al., 2010; 

Aurousseau et al., 2004). Moreover, the oleic acid content was greater in IND lambs 

than in ALF lambs. Similar results have been reported in cattle (Mitchell et al., 1991; 

Blanco et al., 2010) and sheep (Rowe et al., 1999). In Exp. 2, we did not find a 

significant effect of dl-α-tocopheryl acetate (vitamin E) supplementation on the FA 

content. However, the effect of vitamin E on the FA profile is not yet clear, as conflicting 

results have been published (Berthelot et al., 2013; Liu et al., 2013). In the present 

study, it should be noted that the lack of effect can be related to the scarce fat depot 

observed in young lambs (younger than 90 days).   

The rs412429481 polymorphism is located in the SCD promoter region at 255 nt from 

the SCD transcription start in putative trans-acting factor binding sites; therefore, it 

could be expected that alternative genotypes had an effect on gene expression. 

According to the results of the current experiments, we speculate that SCD expression 

could be regulated at two different levels: by the feeding system and by the 

rs412429481 SNP of the SCD gene. In grazing lambs, the genotype had no effect on 

gene expression, probably because the expression of the SCD gene is down-regulated 

by PUFAs (especially the n-6 and n-3 families), CLA, cholesterol and vitamin A 

(Ntambi, 1999; Landau et al., 1997; Choi et al., 2000). Grazing increases the amounts 

of PUFAs, CLA and n-3 PUFA (Dervishi et al., 2010; Aurousseau et al., 2004; Lobón et 

al., 2017), which may contribute to the relatively low expression of SCD (Dervishi et al., 
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2010). In Exp. 1, greater n-3 PUFA content was found in the ALF group 

(Supplementary Table S1). A PUFA response region (PUFA-RR) containing sterol 

response element (SRE) and transcription factor nuclear factor-Y binding sites was 

described in the ovine SCD promoter by Zulkifli et al. (2010) at -362 to -401 from the 

start of transcription. These authors confirmed the SCD response to unsaturated fatty 

acids and that the PUFA-RR is required to elicit such a response. On the other hand, 

the rs412429481 SNP seems to modulate SCD expression during indoor concentrate 

feeding in both experiments and in both muscles, animals carrying the C- allele showed 

a lower expression rate than those carrying the A-allele. Similar PUFAs and n-3 PUFAs 

contents were found in the IND groups in both experiments (Supplementary Table S1 

and Table S2); therefore, we speculate that in the IND groups, the expression of the 

SCD gene was not down-regulated by PUFAs but rather by the rs412429481 SNP. 

However, we found only two animals with the AA genotype in Exp. 1 (excluded from 

the gene expression analysis), and the significant results found in contrast with the AA 

genotype in Exp. 2 ( AA-CA and AA-CC in LT muscle) might be misleading because 

the outcome relies on an unbalanced genotypes distribution (Table 2). Then, we aimed 

to confirm these results by luciferase assays and showed that the promoter containing 

the A allele had consistently higher activity than that containing the C allele.  

Finally, the greater expression rate of the genotypes carrying the A- allele in 

concentrate-fed lambs was consistent with the EMSA results. The EMSA results 

suggested the presence of specific binding and allelic differences in the interaction with 

nuclear proteins. The assays showed that the oligonucleotide harbouring the C- allele 

of the rs412429481 SNP had higher binding affinity than that containing the A- allele. 

The in silico analysis of transcription factor binding sites suggested that the nucleotide 

change could alter the affinity of the SP-1 (A and C alleles), AP-2 alpha (C allele), WT1 

(C allele), NF1 (C allele) and C/EBP alpha (A allele) nuclear proteins for the sequence 

including the rs412429481 polymorphism. The ubiquitous transcription factor Sp1 has 
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been described as a transcriptional activator, but it can also act as a repressor of the 

expression of a vast number of genes involved in many cellular functions, such as 

differentiation, proliferation and apoptosis (Song et al., 2001; Doetzlhofer et al., 1999; 

Philipsen and Suske, 1999). Previous reports have identified Sp1 sites as regulatory 

DNA elements protecting against DNA methylation (Brandeis et al., 1994; Mummaneni 

et al., 1998; Boumber et al., 1998). Despite in silico predictions showing that this region 

could be methylated, methylation-specific PCR after the bisulfite conversion of DNA 

confirmed that the effect found on gene expression was not mediated by the 

methylation of the C allele or the predicted neighbouring CpG islands. In addition, a 

supershift EMSA assay revealed that the SP1 nuclear protein did not interact with this 

region of the SCD gene. CCAAT/enhancer binding protein α (C/EBP alpha) functions 

as a pleiotropic transcriptional activator of adipocyte genes during adipogenesis 

(Mandrup et al., 1997), including SCD (Ohsaki et al., 2007) in bovine adipocytes. AP-2 

alpha is known to repress the expression of a number of genes, including C/EBP alpha 

(Jiang et al., 1998), Bcl-2 (Wajapeyee et al., 2006) and EGFR (Wang et al., 2006), but 

the mechanism of repression is unknown. Finally, the NFI recognition sequence was 

found in the promoter sequences of many cellular genes acting as transcription 

activators or repressors (Pjanic et al., 2011; Cooke and Lane, 1999). It is known that 

NFI occupies the promoters of many genes where it may bind synergistically with other 

transcription factors such as hepatocyte nuclear factor 1 alpha, oestrogen receptor, 

and Brg-associated factor (Satoh et al., 2005; Zhao et al., 2005).  Here, two possible 

scenarios can be postulated. In the first one, the A allele could create a C/EBP binding 

protein motif stimulating gene expression, whereas the C allele would generate an AP-

2 alpha site repressing gene expression or altering the affinity of transcription factors 

for their target motifs. The second possible scenario relies on the cooperative binding 

among different transcription factors and the fact that the rs412429481 polymorphism 

alters the relative affinity of one or more of these regulatory partners. 
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This polymorphism may serve as a potential genetic marker in breeding programs, but 

an appropriate sheep animal model is necessary to test the influence of rs412429481 

on the meat FAs content.  

5. Conclusion 

The feeding system affects the fatty acid composition and SCD gene expression in 

the semitendinosus muscle. Grazing lambs presented higher levels of n-3 PUFAs and 

C18:2c9t11 and lower SCD gene expression than indoor lambs. On the other hand, the 

SCD gene expression and luciferase assay data indicate that the rs412429481 SNP 

located in the SCD promoter modulates gene expression in both the semitendinosus 

and longissimus thoracis muscles of Rasa Aragonesa lambs. To the best of our 

knowledge, these are the first functional interactions shown between diet (grazing vs 

concentrate) and SCD genotype (rs412429481) in sheep. 
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Table 1.  Primer sequence, amplification size (bp), annealing temperature to amplify the SCD 

promoter region and partial exon 1 (fragments 1-3), primers for bisulfite sequencing PCR 

(BSP) (fragment 4) and methylation specific PCR (MSP) (fragment 5), and those used for 

obtaining promoter amplicon used for cloning (fragment 6). Fragment 3 was also used to 

genotype the rs412429481 SNP. 

1
 Restriction recognition sequence is underlined 

 

  

SCD 

fragment 

Primers Size 

(bp) 

Tª 

(ºC) 

1  Forward: CACCTGCCCAGACTTCTCTC  

Reverse: CGTTGTTTTGGAATTGCCTT 

757 58 

2 Forward: AAGGCAATTCCAAAACAACG 

Reverse: TGCTGGGGATTTAAAGGCTA 

1066 55 

3 Forward: AAATTCCCTTCGGCCAATGAC 

Reverse: TCTCACCTCCTCTTGCAGCAA  

526 58 

4 Forward: CGAGTTAATGGTAACGGTAGGACGA 

Reverse: AAAAAAAACAAAACTCCGAAACGTA 

199 55 

5 Forward: TGAGTTAATGGTAATGGTAGGATGA 

Reverse: AAAAAAAACAAAACTCCAAAACATA 

199 55 

6 Forward:  CCCTCGAGTAAGAGAAGCCGAGGAGAAAGG (XhoI) 
1
 

Reverse:  CCAAGCTTCTCTCGGACACTGGGATCACTT (HindIII)   

611 55 
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Table 2. Numbers of animals (n) for each genotype and allelic frequencies (af) for the 
rs412429481 SNP of the SCD gene for experiments 1 (Exp. 1) and 2 (Exp. 2).  
 
 

   Exp.  1    Exp.  2  

  CC CA AA  CC CA AA 

Total         

 n 19 23 2  21 22 5 

 af (C) 0.69  0.67 

Treatment1
         

ALF n 8 13 1     

 af (C) 0.66     

IND n 11 10 1     

 af (C) 0.73     

 

 

1 ALF: unweaned grazing alfalfa lambs (ALF); IND: weaned lambs fed concentrates 
indoors.  
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Figure captions. 

Figure 1.  Differences in the expression rate between the treatment groups in 

Experiment 1 and  among  the genotypes in both experiments. Log2 fold change (FC) 

for the contrast between the IND and ALF treatments and between the CC and CA 

genotypes of the rs412429481 SNP in Experiment 1 (a) and among the alternative 

genotypes of the rs412429481 SNP in the longissimus thoracis and semitendinosus 

muscles in Experiment 2 (b). Segments indicate the 95% confidence interval of the fold 

change (FCUP-FCLOW). The significance level of the contrast is indicated over each bar 

(*P < 0.05, § P < 0.1). ALF: unweaned grazing alfalfa lambs (ALF); IND: weaned lambs 

fed concentrates indoors. 

Figure 1.   
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Figure 2. Differences between least square means (lsmeans) in relative luminescence 

units (RLUs) for the contrast among constructs with alternative alleles of the 

rs412429481 SNP and the pGL3-Basic vector in the luciferase assay. Segments 

indicate the 95% confidence interval.  

 

Figure 2.  
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Figure 3. Electrophoretic mobility shift assays (EMSAs). The six lanes on the left 

correspond to experiments performed with a labelled oligonucleotide specific for allele 

A of the rs412429481 SNP, whereas in the six lanes on the right, a labelled 

oligonucleotide specific for the C allele was used. NE indicates that no extract was 

added to the labelled probe. In the lanes labelled C2C12, SL2 and SL2 PpacSp1, the 

nuclear extracts from these cell cultures were added to labelled A- and C-specific 

probes. In the lanes labelled C2C12 50×, a 50-fold excess of an unlabelled A 

oligonucleotide was used to interfere with the formation of the complexes by either A-

specific or C-specific probes. In lane C2C12 Ig-Sp1 a specific polyclonal antibody for 

the Sp1 transcription factor was used. The specific complex is indicated with an arrow.  

Figure 3.  

 

 

NE        C2C12    C2C12 SL2        SL2 C2C12     NE      C2C12     C2C12 SL2       SL2 C2C12

Ig-SP1                Ppac SP1    x50                                   Ig-SP1              Ppac SP1     x50

A allele C allele


