
Ant Colony Based Dynamic Voronoi Method for
the Multi-Depot Multiple TSP

Sara Pérez-Carabaza∗, Akemi Gálvez∗, Andrés Iglesias∗
∗Dept. of Applied Mathemathics and Computational Sciences

University of Cantabria
Santander, Spain

perezcs@unican.es, galveza@unican.es, iglesias@unican.es

Abstract—This paper introduces a novel approach to solv-
ing the Multi-Depot Multiple Traveling Salesman Problem
(MDMTSP), an extension of the classic Traveling Salesman
Problem (TSP) characterized by multiple salesmen operating
from various depots. The MDMTSP is particularly relevant
in practical scenarios such as logistics and distribution, where
efficient routing is crucial. Our approach integrates the Ant
Colony System (ACS) with dynamically updated Voronoi regions,
offering an innovative method to efficiently organize the assign-
ment and routing of salesmen. This method not only optimizes
the salesmen’s routes but also ensures an efficient distribution
of workload among them, leading to overall reduced travel
distances. Experimental results demonstrate the effectiveness of
our approach, highlighting significant improvements in route
optimization compared to other existing methods.

Index Terms—Multiple traveling salesman problem, Ant
Colony Optimization, Voronoi Regions

I. INTRODUCTION

The multiple traveling salesman problem (mTSP) is a gener-
alization of the well-known traveling salesman problem (TSP),
allowing for more than one salesman within the solution. This
characteristic renders the mTSP particularly suited to real-
life scenarios such as robotics, transportation, and networking.
Thus, the mTSP not only holds significant academic research
value but also boasts extensive practical applications.

Depending on specific application requirements, the sales-
men in mTSP scenarios can represent diverse entities, ranging
from ground vehicles like trucks or robots to aerial vehicles
such as drones [1]. Similarly, the destinations or ‘cities’ in
these scenarios can represent a variety of entities, including
customers, sensor nodes in wireless sensor networks, or targets
in search and rescue operations [2].

This work delves into the Multi-Depot Multiple Traveling
Salesmen Problem (MDMTSP), a more complex variant of
the mTSP that introduces the concept of multiple depots [3].
While the single TSP has been extensively explored in lit-
erature, its multiple variant, particularly the MDMTSP, has
not received equivalent attention [3]. This gap in research,
particularly in the exploration of heuristic methods for solv-
ing the MDMTSP, signifies a interesting area for further
investigation [4].

This research work has been supported by the project PID2021-127073OB-
I00 of the MCIN/AEI/10.13039/501100011033/FEDER,EU, Spanish Ministry
of Science and Innovation.

In this paper, we propose an innovative integration of the
Ant Colony System (ACS) with dynamically updated Voronoi
regions, specifically tailored to address the complexities of
the MDMTSP. Our method, termed ACS-Voronoi, optimizes
the assignment and routing of multiple salesmen who must
visit a set of cities once and return to their respective depots.
This methodology introduces a dynamic Voronoi region-based
assignment of cities to each traveler, efficiently organizing
work distribution. The experimental results highlight the ben-
efits of our approach, not only in optimizing the routing of
the salesmen but also in efficiently distributing the workload
among them, leading to routes with reduced total lengths.

Voronoi regions have found applications in various com-
plex optimization scenarios, including path planning [5] and
Vehicle Routing Problems (VRP) [6]. Notably, the integration
of Voronoi regions with ACS in dynamic path planning was
shown in [5]. While this work also propose the use of
Voronoi regions in conjunction with ACS, their application is
distinctively different as they utilize these regions to divide
an ocean environment map into a roadmap with edges. In
the different context of VRP, Voronoi neighborhoods have
been used to enhance efficiency, where a ‘cluster-first, route-
second’ heuristic was proposed in [6]. This method involves
clustering customers via Voronoi diagrams and refining routes
through simulated annealing. Such instances demonstrate the
versatility and capability of Voronoi methodologies in tackling
a range of complex optimization challenges. In our ACS-
Voronoi approach for the MDMTSP, we innovatively employ
dynamic Voronoi regions to efficiently optimize the routes of
multiple travelers, utilizing the characteristic distance matrix
of TSP instances for efficient city assignment according to
Voronoi regions.

The paper is organized as follows: Section II defines the
combinatorial optimization problem. Section III reviews the
existing literature, focusing on the MDMTSP and related
issues. Section IV, describes the proposed ACS-based method,
highlighting its main innovation: the inclusion of dynamic
Voronoi regions. Section V analyzes its performance, along
with the potential of the key contributions (the use of dy-
namic Voronoi regions and yield turn strategy), across several
MDMTSP instances and compares it against other existing
methods [7]. Finally, Section VI summarizes the main conclu-
sions and outlines future research directions.



II. PROBLEM STATEMENT

The multiple TSP consists of determining the best routes
for m salesmen so that all the cities are visited once by each
unique salesman. In fact, when there is only a single salesman,
the multiple TSP reduces to the well-known TSP. Depending
on whether all the salesmen start their tours from a unique de-
pot or not, the multiple TSP can be classified as Single-Depot
Multiple Traveling Salesman Problem (SDMTSP) or Multi-
Depot Multiple Traveling Salesman Problem (MDMTSP).
Moreover, MDMTSP can be further classified into fixed or
non-fixed MDMTSP, depending on whether the m travellers
are required to return to their starting depot or whether they
can finish in another depot. In this work, we consider the fixed
destination MDMTSP, where all the travelers return to their
original depots.

The fitness of each solution in MDMTSP is evaluated based
on the total distance traveled by the m travelers. Hence, the
fitness function is formulated to minimize the sum of the
distances for the m closed tours contained in a solution T k:

minimize
∑

∀(i,j)∈Tk

dist(i, j) (1)

This approach ensures that the optimal solution not only
covers all cities but also minimizes the total distance traveled,
aligning with the core objective of efficiency in routing prob-
lems.

III. STATE-OF-THE-ART

This section gives an overview of existing approaches to
tackle the multiple TSP, focusing on those closely related
to the proposed ACO-based method for the MDMTSP. For
comprehensive reviews of the literature and a discussion on
various applications of the mTSP, readers are referred to [3]
and the more recent study [1].

Some exact solutions exist for the mTSP, but they are con-
strained to solving problems of limited size due to their high
computational demands. For example, the authors in [8] have
formulated and optimally solved a single-depot multiple TSP
using Constraint Programming, taking into account minimum
and maximum city limits per traveler. However, this approach
is notably time-consuming, requiring approximately 2 hours
to solve an instance involving 51 cities and 3 salesmen.

Another approach to solving the multiple TSP involves
transforming it into a standard TSP, enabling the use of
algorithms designed for the standard TSP. A notable instance
of this transformation is presented in [9], where the MDMTSP
is converted into a single asymmetric TSP by creating an
extended graph with additional nodes representing the depots,
and then solved using standard TSP exact methods. However,
as pointed out in [3], methods that transform mTSP into
standard TSP are often inefficient due to the degeneration of
the resulting TSP problem.

Due to the high-computational complexity of the multiple
TSP, heuristics and approximation methods are required to
solve medium or large TSP instances. For instance, the au-
thors in [10], combine the Invasive Weed Algorithm (IWO)

with Partheno-Genetic algorithm to solve the fixed-destination
MDMTSP. Venkatesh and A. Singh [11] propose an Artificial
Bee Colony (ABC)-based method with local search for the
SDMTSP, aiming to minimize both the total traveled distance
and the maximum traveled distance per traveller.

Other works deal with extensions of MDMTSP, highlighting
the diverse and evolving nature of multiple TSP research
[12] [13]. On the one hand, in [12] approximation algorithms
are applied to the many-visits variant of MDMTSP. On the
other hand, an exact Branch and Bound method for non-fixed
destination model with time windows is employed in [13],
focusing on instances with only 6 to 10 cities.

Specially relevant to this work are those ACO-based ap-
proaches that deal with different versions of the mTSP problem
[4], [7], [14], [15]. The ACO-based methods presented in [7]
and [14] incorporate as an additional optimization objective
the balanced work distribution among travelers. Namely, the
authors propose and evaluate several multi-objective ACS-
based methods for the SDMTSP, aiming to simultaneously
optimize two objectives: total length and balanced subtours.
While in [14], an ACO-based approach is proposed for mTSP,
featuring a queen ant organizing teams of ants, each cor-
responding to a traveler, and utilizing dual pheromones to
balance total travel distance and load among salesmen. On
the other hand, S. Ghafurian and N. Javadian [15] propose
an ACO-based solution tailored for a specific variant of the
MDMTSP where the number of cities each traveler can visit is
limited by minimum and maximum constraints. This method
meticulously builds the tours for each traveler in an iterative
manner, adjusting the feasible neighborhood within the ACO
framework to ensure compliance with these city visit con-
straints. Following this work, [4] analyzes the impact of depot
selection and constraints related to the number of travelers
and cities per traveler, finding that these factors significantly
affect the overall fitness of the solution and concluding that
fewer travelers tend to yield shorter tour lengths. In contrast
with these approaches, our ACO-based method offers greater
flexibility by not imposing constraints on the number of
cities per traveler, thereby accommodating a broader range of
MDMTSP scenarios.

IV. ACS-VORONOI BASED METHOD FOR MDMTSP

This section describes the proposed ACS-Voronoi method
for MDMTSP. Initially, it outlines the fundamentals of the
Ant Colony System (ACS). Subsequently, it delves into the
novel Voronoi-based adaptations tailored for MDMTSP within
the ACS framework. The section finishes with a detailed
description of the algorithm, showcasing the integration of the
proposed strategies.

A. Ant Colony System

Ant Colony Optimization (ACO) is a framework comprising
several algorithms inspired by the natural foraging behavior of
ants. All ACO algorithms share a common structure, wherein
every iteration a population of M ants construct their tours
based on heuristic knowledge specific to the problem and



information learned through pheromone trails from the best
solutions of previous iterations. During each iteration, the M
ant tours (candidate solutions) are constructed using transition
rules that determine for the k-th ant located at node i the
next node j from the nodes in the ant feasible neighborhood
Nk

i . This selection is done through a probabilistic decision
that considers the pheromone τi,j and heuristic ηi,j values
associated with traversing from node i to node j. In TSP ηi,j
is set inversely proportional to the distance between both cities,
i.e. ηi,j = 1/dist(i, j). Among ACO various adaptations, the
ACS stands out as a particularly effective variant for solving
combinatorial optimization problems such as TSP [16]. The
pseudorandom transition rule of ACS is given by Eq. (2),
where q is a uniform random variable, q0 is a parameter of
ACS (with 0 < q0 < 1), and β is the heuristic influence
parameter.

j =

{
argmaxl∈Nk

i
{τil · ηβil} q ≤ q0

sample according to Eq. (3) otherwise
(2)

pki,j =
τi,j η

β
i,j∑

l∈Nk
i
τi,j η

β
i,j

, j ∈ Nk
i (3)

This transition rule determines the next node j according to
Eq. (3), with a probability of (1-q0). This equation, which is
in fact the transition rule used by Ant System [16], states the
probability pki,j for the k-th ant to travel from node i to node j.
On the other hand, Eq. (2) states that with a probability q0, the
experience accumulated by the ants is more strongly exploited,
and the next node j is set to argmaxl∈Nk

i
{τil · ηβil}, that is,

the best possible move as indicated by probability distribution
pki,j given by Eq. (3).

At the end of each iteration, once the M ant tours are
completed, the pheromone update process takes place. ACS
applies pheromone reinforcement and evaporation only to the
edges belonging to the best-found ant tour T gb according to
Eq. (4).

τi,j = (1− ρ)τi,j +
ρ

f(T gb)
∀(i,j) ∈ T gb (4)

where ρ is the pheromone evaporation parameter and f(T gb)
is the fitness of the best tour found so far. In addition to
the global pheromone trail update rule, which is performed
after all ants have completed their tours, ACS also considers a
local pheromone update rule that is applied during the solution
construction process. While building a solution of the TSP,
ants visit edges and change their pheromone level by applying
the local updating rule according to Eq. (5).

τi,j = (1− ξ)τi,j + ξτ0 (5)

where ξ and τ0 are two algorithm parameters, with 0 < ξ < 1.
The value τ0 is set to be the same as the initial value of the
pheromone trails.

B. Voronoi-Based Adaptations for MDMTSP

This section describes the key proposed modifications of
the ACS for MDMTSP. To begin with, in order to solve
the MDMTSP using ACS, it is neccesary to define a proper
codification of the solutions. In the context of MDMTSP,
where multiple depots are involved, the codification must
include not only the sequence of cities visited by each ant but
also the assignment of each city to a specific depot/traveler.
This ant tour T k can be represented as a set of m tours, each
associated with a particular traveler, and the sequence of cities
visited by each traveller. Besides, the fitness of T k is evaluated
based on the total distance traveled by the m travelers, Eq. (1).

In order to assign a set of cities to each traveler, we propose
a Voronoi-based strategy. This approach utilizes the concept
of Voronoi diagrams to partition the set of cities into distinct
regions, each corresponding to a specific traveler. We use the
travelers’ positions as generator points for the Voronoi regions,
which are dynamically updated as the traveler positions change
while constructing the ant tour. This Voronoi-based integration
is incorporated within ACS by adapting the neighborhood Nk

i

of each traveler located at node i to the set of unvisited cities
that are within its Voronoi region. Additionally, beyond the
neighborhood adaptation, the Voronoi regions play a crucial
role in another key aspect of the multiple TSP: the distribution
of work among the travelers. This is achieved through a ‘yield
turn’ strategy, which efficiently balances the workload by
allowing travelers to skip their turn when no unvisited cities
are available in their Voronoi region. Below, the calculation of
the Voronoi assignment is described, and a further description
of the integration of Voronoi regions and the yield turn strategy
within ACS is provided in Sec. IV-C.

As stated, the neighborhood of possible cities that a traveler
located at node i can move to is formed by the cities within
its Voronoi region. To assign the m Voronoi regions we do not
compute the Voronoi geometric regions but instead follow a
simple procedure that involves the distance matrix dist, whose
elements d(i, j) contain the distance to travel from city i to
city j. This distance matrix characterizes the TSP problem
instances, and its use instead of the cities’ coordinates saves
on the computation of any distances. As an example, Fig. 1
shows the Voronoi assignment considering the distance matrix
for the berlin52 instance from the TSPLIB95 library [18] with
m equal to 3 travelers located at cities s1, s2, s3. To obtain the
Voronoi assignment, first we consider the submatrix formed by
the m rows corresponding to the nodes where the travelers are
located (highlighted in bold in the image). This submatrix has
a dimension m by n, and contains the distance between each
traveller (row) to the n cities (columns). The Voronoi region
associated with city j is equal to the index of the row in the
j-th column corresponding to the minimum distance. In the
example of Fig. 1 Voronoi assignments are shown below the
distance matrix.

C. Algorithm

The ACS-Voronoi based algorithm for MDMTSP integrates
the classic ACS framework with the Voronoi-based assignment



Fig. 1: Example of cities assignation to Voronoi regions
generated by the vehicles positions s1:m.

strategy to enhance the distribution of cities among multiple
travelers. The algorithm proceeds as follows:

The algorithm requirements are the distance matrix dist,
the number of travelers, and their depots s01:m. Namely, each
element dist(i, j) contains the distance between city i and
j. Additionally, the algorithm requires typical parameters of
ACS: the number of ants M and the pheromone evaporation
parameter ρ.

The algorithm starts by initializing the pheromone trails
(line 4). Then, the main algorithm iteration loop (line 5 to
line 25) runs until the stop condition is reached and the best
found tour T gb is returned as a solution.

At the beginning of each iteration, during the solution
construction loop (line 6 to 22), M ant tours are generated.
First, all tours are initialized by situating the travelers at their
respective depots positions s01:m. Next, the k-th ant tour is
iteratively constructed until all cities are visited (line 8 to
21). Every turn, the Voronoi based assignation is updated
considering the travelers’ positions (line 10), following the
method described in Section IV-B. Specifically, this method
assign a Voronoi region to every city (stored in the vector
voronoi1:n) considering the travelers’ positions as generator
points. The solutions are iteratively constructed, where each
traveler takes a turn and decides on their next city j among its
feasible neighbor Nk

i (determined in line 12) following ACS
transition rule (in line 14). Next, ACS local pheromone update
rule given by Eq. (5) takes place. As previously described, the
feasible neighbour Nk

i for each traveler located at node i is
the set of unvisited cities that are within its Voronoi region.
In the case where a traveller has no cities left to visit in its
feasible neighbour, it yields its turn to other traveller (line
17). This yield turn strategy aims to lead to shorter and more
efficient tours, and can result in a varied number of cities
being assigned to each traveler. Once the constructed tour T k

contains all cities the tour is finished by closing the tours, that
is, each traveler returns to its depot (line 20).

Once the M tours have been constructed, they are evaluated
according to their total length as given by Eq. (1) and the best
tour found so far T gb is updated. Additionally, at the end of
each iteration the pheromones are updated according to ACS
global update rule (line 24).

Algorithm 1 ACS-Voronoi for MDMTSP

1 : Require: dist, m, s01:m // MDMTSP specifications
2 : Require: M , ρ // ACS parameters
3 : Initialize:
4 : Initialize pheromone trails to τ0
5 : Main Iteration Loop:
6 : For each ant do
7 : Tk ← initializeTour(s01:m)
8 : While T k is not complete do
9 : s1:m ← GetTravellerPositions(Tk)
10: voronoi1:n ← AssignV oronoi(dist,s1:m)
11: For each traveller do
12: Nk

i ← SetNeighbour(voronoi1:n, T k)
13: If Nk

i not empty
14: T k ← assign next node, Eq. (2)
15: ACS local update rule
16: else
17: yield turn
18: end if
19: end for
20: T k ← closeTours(s01:m)
21: end while
22: end for
23: Evaluate the M tours and save best ant tour T gb

24: ACS global pheromone update Eq. (4)
25: end for
26: Return: T gb

When the stop condition is met, such as reaching a max-
imum number of algorithm iterations, the best tour found so
far is returned as the solution to the MDMTSP. This tour
represents the optimized route assignments for the multiple
travelers, achieved through the synergistic combination of ACS
and Voronoi-based strategies.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained from
applying the ACS-Voronoi based method to the MDMTSP. It
starts with an overview of our experimental setup, followed
by the adaptation of the Nearest Neighbour heuristic for
MDMTSP, serving both as a baseline for comparison and as a
means to determine the initial pheromone value parameter for
ACS. The section then progresses to a thorough analysis of
different ACS-Voronoi variants, culminating in a comparative
evaluation against other ACS-based methods for mTSP [7].
This comparison highlights the distinctive advantages and
effectiveness of the proposed ACS-Voronoi based method.

A. Experimental Set-up

In our experimental study, we employed instances from the
TSPLIB95, a widely recognized library for the TSP [18].
For adapting these instances to the MDMTSP, m depots
per instance were randomly selected among the cities within
each instance using a uniform distribution in MATLAB (seed



value: 1), ensuring replicable and unbiased depot selection.
The first and second columns of Tables I, II and III list the
instance names and the corresponding depots selected for each
MDMTSP instance.

For each MDMTSP instance, ACS methods were run 20
times to ensure robust statistical analysis, with a stopping
criterion of 20,000 iterations.

Regarding the specific parameters of ACS, we opted for the
values commonly recommended for the TSP [16], [17]. These
values have a well-established performance in TSP scenarios,
and an analysis of parameter tuning falls outside the scope
of this work. The used parameters for all the ACS-based
variants analysed in this work were set to the following values:
M = 10, q0 = 0.9, and ρ = ξ = 0.1. Additionally, in ACS,
the initial pheromone value τ0 is set as 1/nCnn, where Cnn is
the length of a tour obtained by the nearest neighbor heuristic.
To tailor this for MDMTSP, we developed two adaptations of
the NN heuristic, which were used to calculate τ0 for our
ACS-Voronoi method. Further details on these adaptations are
provided in the following subsection.

B. Nearest Neighbour Adaptation for MDMTSP

The Nearest Neighbour (NN) heuristic, traditionally used
in the classic TSP, involves constructing a tour by sequen-
tially moving to the closest unvisited city from the current
location [16]. This approach, while simple, can yield efficient
paths and serves as a foundational method in various optimiza-
tion algorithms. In the case of ACO algorithms, this heuristic
is used to set the initial pheromone value parameter (τ0).

We propose two distinct adaptations of the NN heuristic for
MDMTSP. These adaptations are designed to determine the τ0
in our ACS-Voronoi method and also to act as tailored baseline
methods for comparative analysis. Additionally, these adapta-
tions have the potential to be employed as initial solutions in
other metaheuristics, such as genetic algorithms or simulated
annealing.

• NN-Balanced: This adaptation involves each salesman,
starting from their respective depot, iteratively selecting
the nearest unvisited city. All salesmen simultaneously
make a move to their respective closest city in each
iteration, ensuring a balanced workload distribution.

• NN-Static: This adaptation of the NN heuristic integrates
Voronoi regions, using the salesmen’s depots as the gen-
erating points. Each salesman, starting from their depot,
is guided by the traditional NN heuristic but with a key
modification: they are restricted to selecting the nearest
unvisited city within their designated Voronoi region. This
approach rationalizes the distribution of cities, ensuring
that each salesman operates within an area proximate to
their starting depot. As an example, Fig. 2 illustrates
the solution generated by this heuristic for the ch150
instance, with three travelers starting at cities 28, 52, and
60, highlighted in red.

Fig. 2: The NN-Static Voronoi solution for ch150 instance with
depots 28-52-60 (l=8289).

Name Depots Algorithm Fitness

berlin52 22-38-1 NN-Balanced 12292
NN-Static 9413

berlin52 16-8-5 NN-Balanced 14634
NN-Static 10965

berlin52 10-18-21-29 NN-Balanced 14276
NN-Static 9778

berlin52 22-36-11-46 NN-Balanced 12793
NN-Static 10456

kroA100 42-73-1 NN-Balanced 32999
NN-Static 25975

kroA100 31-15-10 NN-Balanced 34466
NN-Static 30423

kroA100 54-42-69-21 NN-Balanced 33761
NN-Static 29734

kroA100 88-3-68-42 NN-Balanced 29473
NN-Static 27851

ch130 55-94-1 NN-Balanced 8991
NN-Static 8043

ch130 40-20-13 NN-Balanced 10551
NN-Static 8637

ch130 40-20-13 NN-Balanced 10551
NN-Static 8637

ch130 71-55-90-27 NN-Balanced 10801
NN-Static 7949

ch150 115-4-88-55 NN-Balanced 9268
NN-Static 7912

ch150 28-52-60 NN-Balanced 10575
NN-Static 8289

ch150 81-63-103-31 NN-Balanced 12579
NN-Static 8744

ch150 132-5-101-63 NN-Balanced 10672
NN-Static 9041

kroB200 84-145-1 NN-Balanced 44606
NN-Static 37899

kroB200 61-30-19 NN-Balanced 43354
NN-Static 40526

kroB200 108-84-138-41 NN-Balanced 51282
NN-Static 39923

kroB200 176-6-135-84 NN-Balanced 53199
NN-Static 40106

TABLE I: Results of the two proposed NN heuristics for
MDMTSP.



Table I shows the fitness (tour length) achieved by the two
NN adaptations across 20 different MDMTSP instances. The
results consistently demonstrate the superior performance of
the NN-Static heuristic, particularly highlighting the efficacy
of Voronoi regions in efficiently distributing the workload
among the salesmen. Due to its better performance, this heuris-
tic is selected for computing the initial pheromone values
in the proposed ACS-Voronoi based method for MDMTSP.
Nevertheless, we also want to acknowledge the potential
merits of NN-Balanced. Despite resulting in longer tours,
NN-Balanced ensures equitable distribution of cities among
salesmen. This can be a significant consideration in practical
applications where balanced workload is crucial.

C. Analysis of ACS-Voronoi based method for MDMTSP

This subsection evaluates the performance of the ACS-
Voronoi based method for MDMTSP, focusing on assessing
the impact of dynamic Voronoi region updates and the yield
strategy on the overall effectiveness of the solution. To this
aim, we consider three variants of the proposed method for
MDMTSP whose label and details are described below:

• Dynamic-Yield: This variant is the proposed ACS-
Voronoi based method for MDMTSP, as described in
Algorithm 1. It utilizes dynamic updates of Voronoi
regions and incorporates the yield turn strategy, allowing
salesmen to skip their turn if no unvisited cities are
available in their Voronoi region. This enhances the
efficiency of tour construction and could lead to shorter
tours.

• Static-Yield: In this variant, Voronoi regions, determined
based on the depots, remain static throughout the solution
construction process. It serves to examine the effect of
static versus dynamically updated Voronoi regions on
the solution’s fitness. Specifically, this variant omits the
Voronoi update specified in line 10 of Algorithm 1.

• Dynamic-Balanced: This variant maintains the dynamic
update of Voronoi regions but excludes the yield turn
strategy. It assesses the impact on tour fitness by evenly
distributing cities among salesmen without the flexibility
provided by the yield strategy. Each salesman selects
according to the transition rule, considering the unvisited
nodes within their Voronoi-region. However, if a salesman
has no nodes in his region, the set of all unvisited nodes is
considered as the neighborhood. Specifically, this variant
interchanges the yield turn strategy specified in line 17 of
Algorithm 1 with the selection of the next city according
to the transition rule defined by Eq. (2), considering all
the unvisited nodes as Nk

i .
Table II presents the outcomes of applying these variants to

various MDMTSP instances. The fourth column displays the
average tour length obtained over 20 runs for each variant, the
fifth column details the standard deviation of these solutions,
and the final column contains the fitness of the best solution
achieved in these 20 runs.

When comparing our approach (Dynamic-Yield) with the
Static-Yield variant, we observe that Dynamic-Yield achieves

Name Depots Algorithm Avg. Std Best

berlin52 22-38-1
Static-Yield 8463 20 8445
Dynamic-Balanced 8513 163 8258
Dynamic-Yield 8262 49 8188

berlin52 16-8-5
Static-Yield 9062 0 9062
Dynamic-Balanced 8415 195 8070
Dynamic-Yield 8080 109 7798

berlin52 10-18-21-29
Static-Yield 8933 31 8921
Dynamic-Balanced 9180 175 8929
Dynamic-Yield 8333 181 8032

berlin52 22-36-11-46
Static-Yield 9086 24 9066
Dynamic-Balanced 8776 232 8461
Dynamic-Yield 7903 143 7788

kroA100 42-73-1
Static-Yield 22042 43 22022
Dynamic-Balanced 23062 663 22388
Dynamic-Yield 21964 374 21502

kroA100 31-15-10
Static-Yield 24955 59 24889
Dynamic-Balanced 25181 918 23996
Dynamic-Yield 24481 644 23342

kroA100 54-42-69-21
Static-Yield 24052 6 24047
Dynamic-Balanced 25027 984 23661
Dynamic-Yield 22871 549 22140

kroA100 88-3-68-42
Static-Yield 24614 69 24548
Dynamic-Balanced 23890 503 23284
Dynamic-Yield 23016 250 22713

ch130 55-94-1
Static-Yield 6645 33 6592
Dynamic-Balanced 6701 256 6427
Dynamic-Yield 6362 84 6207

ch130 40-20-13
Static-Yield 6999 52 6926
Dynamic-Balanced 7147 292 6655
Dynamic-Yield 6818 163 6553

ch130 71-55-90-27
Static-Yield 6800 38 6734
Dynamic-Balanced 7341 276 6822
Dynamic-Yield 6726 203 6372

ch130 115-4-88-55
Static-Yield 6733 47 6675
Dynamic-Balanced 7298 347 6778
Dynamic-Yield 6661 152 6364

ch150 63-109-1
Static-Yield 7284 30 7233
Dynamic-Balanced 7255 263 6834
Dynamic-Yield 6948 109 6719

ch150 28-52-60
Static-Yield 6957 33 6918
Dynamic-Balanced 7375 237 6817
Dynamic-Yield 6811 103 6632

ch150 81-63-103-31
Static-Yield 7059 59 6956
Dynamic-Balanced 7819 371 7235
Dynamic-Yield 6922 161 6685

ch150 132-5-101-63
Static-Yield 7227 60 7106
Dynamic-Balanced 7919 393 7290
Dynamic-Yield 6936 141 6680

kroB200 84-145-1
Static-Yield 31386 306 30918
Dynamic-Balanced 33418 1464 30385
Dynamic-Yield 31799 1011 30540

kroB200 61-30-19
Static-Yield 33056 391 32435
Dynamic-Balanced 32911 1497 30394
Dynamic-Yield 30948 560 30179

kroB200 108-84-138-41
Static-Yield 32030 268 31671
Dynamic-Balanced 37279 1709 34999
Dynamic-Yield 31596 735 30762

kroB200 176-6-135-84
Static-Yield 33537 210 33264
Dynamic-Balanced 38867 1721 35535
Dynamic-Yield 33285 1201 31358

TABLE II: Performance of ACS-Voronoi variants.

better results in nearly all instances. This shows the clear
benefit of dynamically update the Voronoi regions to the
travelers’ positions through the solutions construction process.
However, it is notable that Static-Yield exhibits a lower stan-
dard deviation in the fitness of its solutions. This consistency
can be attributed to its more limited search space, as each



(a) Static-Yield (l=6965) (b) Dynamic-Balanced (l=7126) (c) Dynamic-Yield (l=6892)

Fig. 3: Illustration of solutions generated by the three ACS-Voronoi based variants for the ch150 instance with depots 28-52-60.

traveler is restricted to the initial division of cities determined
by their proximity to the depots. In terms of computational
times, Dynamic-Yield showed an increase of approximately 3-
4% compared to the Static-Yield variant, due to the additional
processing required for dynamic Voronoi updates.

Comparing Dynamic-Yield with Dynamic-Balanced allows
us to analyze the effectiveness of the yield turn strategy, where
travelers can skip their turn when there are no unvisited cities
available in their Voronoi region. Our approach consistently
outperforms Dynamic-Balanced across all instances, leading
to the conclusion that the yield turn strategy contributes
significantly to reducing tour lengths.

Figure 3 illustrates example solutions obtained by the
three variants for one of the instances. As can be observed
when comparing Fig. 2 and Fig. 3(a), both the NN-Static and
Static-Yield distribute cities among travellers according to the
Voronoi regions from depots. However, Static-Yield leverages
ACO optimization to enhance route efficiency within the
same distribution framework, resulting in improved fitness.
The solution of Dynamic-Balanced variant shown in Fig.3(b)
displays an equal balance among the three travellers, with
each visiting 50 cities. In contrast, the Dynamic-Yield variant
further improves the total tour length by more effectively dis-
tributing the workload among travelers, as depicted in Fig.3(c).

In summary, our proposed Voronoi-ACS method (Dynamic-
Yield) consistently outperforms the other two variants, demon-
strating superior efficiency and adaptability in solving the
MDMTSP. This success underscores the value of dynamically
updating Voronoi regions and the strategic benefit of the yield
turn strategy.

D. Comparison with Other Methods

The final part of our experimental analysis involves a
comparison of our proposed ACS-Voronoi based method with
two other approaches: the Nearest Neighbour (NN) heuristic,
which represents a baseline solution strategy for MDMTSP,
and the ACS-based approach described in [7].

The NN heuristic is a well-known approach traditionally
used for solving the classic TSP [16]. As adapted in Sec. V-B

for the MDMTSP, this heuristic provides a robust baseline
for comparison. Of the two adaptations—NN-Balanced and
NN-Static—described previously, NN-Static was chosen for
comparison due to its superior performance. Additionally, we
compared our method with the ACS-based approach from [7].
In this approach, while each salesman uses the ACS transition
rule for city selection, the turn of which salesman to move
is chosen randomly. This ACS-based approach offers a well-
suited contrast to our ACS-based method by illustrating the
effectiveness of Voronoi regions and the yield turn strategy, in
contrast to a process where the turn selection is randomized.

Table III shows the results over the same set of MDMTSP
instances used in the previous experiments for the considered
methods: the nearest neighbour heuristic which considers static
Voronoi regions (labelled as NN-Static), the ACS-based ap-
proach proposed in [7], and the proposed Voronoi-ACS based
method (labelled as Dynamic-Yield), which considers dynamic
Voronoi regions and yield turn strategy. The results show that
our Voronoi-ACS based method consistently outperforms the
other two methods in all instances. On the one hand, the
notable performance over the NN-Static heuristic underscores
the superior efficiency of dynamically updated Voronoi regions
in conjunction with the ACO metaheuristic. On the other
hand, the remarkable results of our ACS-based method as
compared to the ACS-based strategy method in [7], emphasize
the significant advantages of combining dynamically updated
Voronoi regions with the yield turn strategy.

VI. CONCLUSIONS AND FUTURE WORK

Our ACS-Voronoi based method has shown significant
efficacy in addressing the MDMTSP, consistently achieving
shorter tours compared to other methods. The innovative use
of dynamic Voronoi regions and the strategic city alloca-
tion among travelers have been instrumental in enhancing
tour efficiency. This adaptability underlines the potential of
our approach. Furthermore, our approach’s dynamic Voronoi
region-based city assignment could be particularly relevant
for dynamic versions of mTSP, where parts of the problem
may change during runtime without prior knowledge. While



Name Depots Algorithm Avg. Std Best

berlin52 22-38-1
NN-Static 9413 0 9413
ACS-based [7] 8159 175 7879
Dynamic-Yield 8262 49 8188

berlin52 16-8-5
NN-Static 10965 0 10965
ACS-based [7] 8166 141 7972
Dynamic-Yield 8080 109 7798

berlin52 10-18-21-29
NN-Static 9778 0 9778
ACS-based [7] 8998 257 8465
Dynamic-Yield 8333 181 8032

berlin52 22-36-11-46
NN-Static 10456 0 10456
ACS-based [7] 8207 176 7835
Dynamic-Yield 7903 143 7788

kroA100 42-73-1
NN-Static 25975 0 25975
ACS-based [7] 23879 915 22305
Dynamic-Yield 21964 374 21502

kroA100 31-15-10
NN-Static 30423 0 30423
ACS-based [7] 25736 856 24347
Dynamic-Yield 24481 644 23342

kroA100 54-42-69-21
NN-Static 29734 0 29734
ACS-based [7] 25400 600 24101
Dynamic-Yield 22871 549 22140

kroA100 88-3-68-42
NN-Static 27851 0 27851
ACS-based [7] 25539 772 24216
Dynamic-Yield 23016 250 22713

ch130 55-94-1
NN-Static 8043 0 8043
ACS-based [7] 7069 235 6661
Dynamic-Yield 6362 84 6207

ch130 40-20-13
NN-Static 8637 0 8637
ACS-based [7] 7209 272 6586
Dynamic-Yield 6818 163 6553

ch130 71-55-90-27
NN-Static 7949 0 7949
ACS-based [7] 7624 246 7288
Dynamic-Yield 6726 203 6372

ch130 115-4-88-55
NN-Static 7912 0 7912
ACS-based [7] 7570 204 7188
Dynamic-Yield 6661 152 6364

ch150 63-109-1
NN-Static 8627 0 8627
ACS-based [7] 7733 358 7209
Dynamic-Yield 6948 109 6719

ch150 28-52-60
NN-Static 8289 0 8289
ACS-based [7] 7796 240 7213
Dynamic-Yield 6811 103 6632

ch150 81-63-103-31
NN-Static 8744 0 8744
ACS-based [7] 8173 347 7657
Dynamic-Yield 6922 161 6685

ch150 132-5-101-63
NN-Static 9041 0 9041
ACS-based [7] 8467 266 7930
Dynamic-Yield 6936 141 6680

kroB200 84-145-1
NN-Static 37899 0 37899
ACS-based [7] 36077 1275 33760
Dynamic-Yield 31799 1011 30540

kroB200 61-30-19
NN-Static 40526 0 40526
ACS-based [7] 36134 1306 33926
Dynamic-Yield 30948 560 30179

kroB200 108-84-138-41
NN-Static 39923 0 39923
ACS-based [7] 38376 877 36330
Dynamic-Yield 31596 735 30762

kroB200 176-6-135-84
NN-Static 40106 0 40106
ACS-based [7] 39101 1511 36912
Dynamic-Yield 33285 1201 31358

TABLE III: Comparative results with other methods

there exists some research on the Dynamic Traveling Salesman
problem (DTSP), literature on its multiple traveler variant,
the Dynamic Multiple Traveling Salesman Problem (DMTSP),
appears to be scarce. Addressing this gap, particularly in
dynamic scenarios where problem parameters change in real-
time, presents a significant opportunity for future research.

Furthermore, our ACS-Voronoi method for MDMTSP
showcases significant flexibility, offering a robust foundation
for future extensions that could incorporate various constraints,
like a minimum or maximum number of nodes per trav-
eler. This adaptability emphasizes our approach’s versatility,
uniquely positioning it to efficiently handle both constrained
and unconstrained MDMTSP scenarios. This stands in contrast
to other ACO-based approaches in the literature [4], [15],
which are tailored for problems with mandatory minimum
and maximum city limits per traveler, and thus may not be
as adaptable to the unconstrained MDMTSP intances tackled
in our study.

REFERENCES

[1] Cheikhrouhou, O., and Khoufi, I. (2021). A comprehensive survey on
the Multiple Traveling Salesman Problem: Applications, approaches and
taxonomy. Computer Science Review, 40, 100369.

[2] Cheikhrouhou, O., Koubâa, A., and Zarrad, A. (2020). A cloud based
disaster management system. Journal of Sensor and Actuator Networks,
9(1), 6.

[3] Bektas, T. (2006). The multiple traveling salesman problem: an overview
of formulations and solution procedures. Omega, 34(3), 209-219.

[4] Ramadhani, T., Hertono, G. F., and Handari, B. D. (2017, July). An Ant
Colony Optimization algorithm for solving the fixed destination multi-
depot multiple traveling salesman problem with non-random parameters.
In AIP Conference Proceedings (Vol. 1862, No. 1). AIP Publishing.

[5] Xiong, C., Chen, D., Lu, D., Zeng, Z., and Lian, L. (2019). Path
planning of multiple autonomous marine vehicles for adaptive sampling
using Voronoi-based ant colony optimization. Robotics and Autonomous
Systems, 115, 90-103.

[6] Fang, Z., Tu, W., Li, Q., Shaw, S. L., Chen, S., and Chen, B. Y. (2013).
A Voronoi neighborhood-based search heuristic for distance/capacity
constrained very large vehicle routing problems. International Journal
of Geographical Information Science, 27(4), 741-764.

[7] Necula, R., Breaban, M., and Raschip, M. (2015, November). Tackling
the bi-criteria facet of multiple traveling salesman problem with ant
colony systems. In 2015 IEEE 27th international conference on tools
with artificial intelligence (ICTAI) (pp. 873-880). IEEE.

[8] Vali, M., and Salimifard, K. (2017, August). A constraint program-
ming approach for solving multiple traveling salesman problem. In
The Sixteenth International Workshop on Constraint Modelling and
Reformulation (pp. 1-17).

[9] Oberlin, P., Rathinam, S., Darbha, S. (2009, June). A transformation for
a multiple depot, multiple traveling salesman problem. In 2009 American
Control Conference (pp. 2636-2641). IEEE.

[10] Wang, Z., Fang, X., Li, H., and Jin, H. (2020). An improved partheno-
genetic algorithm with reproduction mechanism for the multiple travel-
ing salesperson problem. IEEE Access, 8, 102607-102615.

[11] Pandiri, V., and Singh, A. (2015). Two metaheuristic approaches for the
multiple traveling salesperson problem. Applied Soft Computing, 26,
74-89.

[12] Bérczi, K., Mnich, M., and Vincze, R. (2023). Approximations for many-
visits multiple traveling salesman problems. Omega, 116, 102816.

[13] Shirafkan, M. T., Seidgar, H., and Javadian, N. (2018). A new mathe-
matical model for non-fixed destination multi-depot multiple travelling
salesmen with time window problem. International Journal of Services
and Operations Management, 31(4), 530-538.

[14] Lu, L. C., and Yue, T. W. (2019). Mission-oriented ant-team ACO for
min–max MTSP. Applied Soft Computing, 76, 436-444.

[15] Ghafurian, S., and Javadian, N. (2011). An ant colony algorithm for
solving fixed destination multi-depot multiple traveling salesmen prob-
lems. Applied Soft Computing, 11(1), 1256-1262.

[16] Parsons, S. (2005). Ant Colony Optimization by Marco Dorigo and
Thomas Stützle, MIT Press, 305 pp., ISBN 0-262-04219-3. The Knowl-
edge Engineering Review, 20(1), 92-93.

[17] Dorigo, M., Gambardella, L. M.: Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1), 53–66 (1997).

[18] Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA Jour-
nal on Computing, 3(4), 376–384 (1991).


