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Abstract—Reconstructing the attractors of unknown chaotic
systems from time series data presents a formidable challenge
with broad applications across various disciplines. In this paper,
we propose a swarm intelligence approach to address this chal-
lenge, focusing specifically on low-dimensional chaotic maps. Our
approach is based on the bat algorithm, a renowned bio-inspired
optimization technique well-suited for continuous optimization
tasks. We evaluate the effectiveness and validity of our proposed
approach by applying it to two distinct examples of chaotic maps:
the Burger map and the Duffing map. Through comprehensive
experimentation, we showcase the satisfactory performance of
our method in reconstructing attractors from time series data.
Based on our empirical findings, we conclude that our approach
holds significant promise for the reconstruction of attractors of
low-dimensional chaotic maps using time series data.

Index Terms—Dynamical systems, chaotic maps, attractor
reconstruction, time series, swarm intelligence, bat algorithm.

I. INTRODUCTION

Nowadays, dynamical systems are extensively employed
for accurately describing the evolution of various natural and
artificial systems, utilizing both discrete and continuous math-
ematical equations [3], [36]. The system evolution analysis
typically involves studying the trajectories of system variables,
referred to as orbits [2], [7]. While orbit analysis is crucial
for understanding dynamical systems, it poses a significant
challenge, particularly in the case of chaotic systems [19],
[40]. As a result, numerous techniques have been developed
to enhance our comprehension of dynamical system behavior
[9], [17], [30]. Among these techniques, delay-coordinate
embedding has shown relative success for some instances
of dynamical systems [1], [8], [27]. However, embedding
methods suffer from drawbacks such as sensitivity to param-
eter selection, susceptibility to noise in measured data, and
limitations regarding system dimensionality [6].

To address these challenges, researchers have explored
various extensions and alternative techniques. Recent advance-
ments include the utilization of autoencoders for learning em-
beddings [25], [34], as well as the consideration of variational
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Bayes filters [26]. Additionally, artificial intelligence (AI)
approaches have garnered attention, encompassing techniques
such as kernel methods, support vector machines, and neural
networks [20], [31], [35]. Furthermore, machine learning ap-
proaches [13], [28] and deep learning [29] have emerged as
promising avenues for analyzing dynamical systems.

This paper addresses the problem of reconstructing periodic
and chaotic attractors of dynamical systems using time series
data. Given the broad scope of this problem, it cannot be
fully addressed within a single paper. Therefore, we narrow
our focus to discrete systems, specifically low-dimensional
chaotic maps. Our approach formulates the problem as a
continuous nonlinear optimization task, which we tackle using
the bat algorithm, a popular bio-inspired swarm intelligence
method praised for its effectiveness in continuous optimization
tasks. To evaluate the performance of our method, we conduct
computational experiments, applying it to two representative
examples of chaotic maps: the Burger map and the Duffing
map. The experimental outcomes show the ability of our
approach to accurately reconstruct various system behaviors.

The paper is structured as follows: Section II presents
the optimization problem formulation and introduces the bat
algorithm as the chosen bio-inspired optimization method.
Section III provides detailed descriptions of the two illustra-
tive examples of chaotic maps. The experimental results are
discussed in Section IV. The paper concludes with a summary
of findings and suggestions for future research directions.

II. THE PROPOSED METHOD

A. Problem To be Solved

The problem posed in this paper can be stated as follows:
given sets of data points, {xn, yn}n=1,...,N , derived from time
series data of an unknown chaotic map with diverse attractors,
our objective is to reconstruct the attractors effectively. Specif-
ically, we focus on the scenario involving low-dimensional
chaotic maps. In this paper, we assume that any map M can
be represented as a linear combination of functions from a
given family {φ1(x, y), φ2(x, y), . . . , φm(x, y)}, i.e.:

M(x, y) =

m∑
k=1

λkφk(x, y) (1)
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Fig. 1. Different behaviors of the Burger map (for ν = 1) as a function of µ (top-bottom, left-right): (t-l) quasiperiodicity, µ = 0.62; (t-r) period-8 orbit,
µ = 0.67; (b-l) two chaotic attractors, µ = 0.71 (only one color is obtained for each initial condition); (b-r) chaotic attractor, µ = 0.72.

Then, the problem consists of computing the parameters of
the linear combination that minimize the error between the
original data, (xn, yn), and the reconstructed data, (x̄n, ȳn),
leading to the functional:

min

[
N∑
i=1

(
m∑

k=1

λkφk(xi, yi)− (x̄i, ȳi)

)]
(2)

which is a nonlinear optimization problem for nonlinear func-
tions φk(x, y). In this paper, the minimization problem in Eq.
(2) is solved through the bat algorithm, described below.

B. The Bat Algorithm

The bat algorithm is a well-known swarm intelligence tech-
nique employed for tackling continuous optimization prob-
lems, drawing inspiration from certain aspects of the social
behavior observed in microbats [43], [45]. Microbats utilize a
specialized form of sonar known as echolocation for various
tasks, including motion planning, prey detection, and obstacle
avoidance. The algorithm initializes with a population of
individuals, or bats, randomly dispersed throughout the search
space. These bats engage in extensive exploration to locate
the best solution, a metric associated with solution quality.
During movement, the dynamics of each bat i at iteration g
is governed by its frequency fgi , location xg

i , and velocity vg
i ,

determined by the following equations:

fgi = fgmin + β(fgmax − f
g
min) (3)

vg
i = vg−1

i + [xg−1
i − x∗] fgi (4)

xg
i = xg−1

i + vg
i (5)

Here, β represents a uniformly distributed random variable
in the interval [0, 1], and x∗ denotes the current global best
location, obtained by evaluating the fitness function for all bats
and subsequently ranking the corresponding fitness values. The
algorithm further performs a local search in the vicinity of
the current best solution through a random walk described as
xnew = xold+εAg , where ε is a uniformly distributed random
number in [−1, 1], and Ag =< Ag

i > represents the average
loudness of all bats in the population at generation g. Any
new solution that improves upon the previous best solution is
accepted with a probability dependent on the loudness value.
Upon acceptance, the pulse rate is augmented according to the
law rg+1

i = r0
i [1−exp(−γg)], where γ is a method parameter.

Concurrently, the loudness diminishes following the evolution
rule Ag+1

i = αAg
i , with α representing another parameter of

the method. This iterative process continues for a maximum
number of iterations, denoted as Gmax, that is also a parameter
of the method.

The algorithm facilitates individual bats to possess varying
loudness and pulse emission rate values, initialized randomly
with A0

i ∈ (0, 2) for loudness and r0
i ∈ [0, 1] for the emission

rate. Both parameters are updated only when new solutions
improve the current ones. The bat algorithm is chosen in
this work over alternative methods due to its demonstrated
effectiveness in numerous difficult optimization problems, as
evidenced in some previous papers by the authors (e.g., see
[5], [10]–[12], [22], [23], [37]–[39]). For an in-depth review
of the bat algorithm and its diverse applications, interested
readers are also referred to [44].
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Fig. 2. Different behaviors of the Duffing map (for b = 0.18) as a function of a (top-bottom, left-right): (t-l) two segment attractors, a = 2.36; (t-r) four
segment attractors, a = 2.57; (b-l) two chaotic attractors, a = 2.71 (only one color is obtained for each initial condition); (b-r) chaotic attractor, a = 2.75.

III. ILLUSTRATIVE EXAMPLES

To analyze the performance of the proposed method, it has
been applied to several discrete chaotic systems. However,
due to space constraints, this paper focuses on two illustrative
examples of chaotic maps: the Burger map and the Duffing
map. They are briefly described in next paragraphs.

A. The Burger Map

The Burger map is a dynamical system derived by dis-
cretization in [41], [42] of two coupled ordinary differential
equations used to analyze hydrodynamic flows in [4]. It is
defined by the following evolution equations:

xn+1 = (1− ν)xn − y2
n

yn+1 = (1 + µ)yn + xnyn

}
(6)

Considering the case ν = 1, the map becomes:

xn+1 = −y2
n

yn+1 = (1 + µ)yn + xnyn

}
(7)

Varying the value of parameter µ, the Burger map in Eq. (7)
exhibits different behaviors [14]. Some of them are shown in
Fig. 1. Quasiperiodicity is observed for µ = 0.62, shown in
Fig. 1(top-left), while a period-8 orbit is obtained for µ = 0.67,
see Fig. 1(top-right). Increasing the value of µ leads to chaotic
behavior, for instance, for µ = 0.71, when the system exhibits
a pair of strange attractors, represented in blue and green in
Fig. 1(bottom-left), that are symmetric with respect to the axis
y = 0. Depending on the initial condition, we obtain one of
these attractors. Increasing the value of µ even further, the two

attractors merge into a single attractor, shown in Fig. 1(bottom-
right) for µ = 0.72.

B. The Duffing Map

The Duffing map is the discrete version of the Duffing
oscillator [21], and is given by:

xn+1 = yn
yn+1 = −bxn + ayn − y3

n

}
(8)

which depends on two parameters a and b. Taking b = 0.18,
different behaviors for the Duffing map can be obtained as a
function of parameter a [15]. A period-doubling sequence to
chaos can be found, with two segments for a = 2.36, depicted
in Fig. 2(top-left) and enlarged in the inset graphic for better
visualization; four segments for a = 2.57, see Fig. 2(top-
right); and so on, leading to a pair of strange attractors for
a = 2.71, represented in blue and green in Fig. 2(bottom-
left). The attractors can be independently attained depending
on the initial condition. Increasing the value to a = 2.75,
the system exhibits an attractor-merging crisis where the two
strange attractors become connected and merged into a single
one, shown in Fig. 2(bottom-right).

IV. RESULTS AND DISCUSSION

A. Computational Experiments and Parameter Tuning

We applied the method described in Sect. II-B to the
optimization problem given by Eq. (2) for the two examples
described in Sect. III. The initial population is comprised by
100 potential solutions expressed as a linear combination of
the family of functions: φp,q(x, y) = xpyq , p, q = 0, . . . , 3.
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Fig. 3. Attractor reconstruction of the Burger map from the original time series data in Fig. 1, displayed in blue. The reconstructed data are displayed in red
for easier visual comparison: (t-l) quasiperiodicity; (t-r): period-8 orbit; (b-l) two independent chaotic attractors (the second one is displayed in green (original
data) and magenta (reconstructed data)); (b-r) a single chaotic attractor.

Accordingly, any potential solution can be written as: C1 +
C2x+C3y+C4x

2+C5xy+C6y
2+C7x

3+C8x
2y+C9xy

2+
C10y

3. Here, Ci are two-dimensional vectors, resulting in 20
parameters to be optimized. Using the time series data from
Figs. 1 and 2, we apply the bat algorithm to minimize the 10
parameter vectors Ci as per Eq. (2).

Regarding the parameter tuning, the bat algorithm is ex-
ecuted for a fixed number of iterations, denoted as Gmax.
Through multiple simulations, we determined that Gmax =
1, 000 provides sufficient convergence across all cases. The
remaining parameters of the bat algorithm are empirically
chosen and set as follows: A0 = 0.5, r0 = 0.25, α = 0.5,
and γ = 0.3. Subsequently, the bat algorithm is executed, and
the best individual at the final iteration is designated as the
solution to the optimization problem.

An important observation arises from the fact that some
parameter values Ci are exceedingly small, rendering their
contribution to the solution negligible and introducing noise
into the system. To address this, we discard all coefficients
smaller than a prescribed threshold, set at 10−3 in this work.
This filtering strategy is applied not only at the final iteration
for the ultimate solution but across all iterations to alleviate
computational burden while maintaining result accuracy.

Finally, to evaluate the performance of the method, we em-
ploy the root-mean-square error (RMSE) metric from Eq. (2),

defined as RMSE =

√∑N
i=1

(Di−D̄i)2

N , where Di and D̄i

denote the observed and the predicted values, respectively, and
N indicates the sample size.

B. Results

The graphical results of our attractor reconstruction tech-
nique applied to the diverse behaviors exhibited by the Burger
map and the Duffing map, as depicted in Figs. 1 and 2, are
presented in Figs. 3 and 4, respectively. In each instance,
the reconstructed attractor (in red) is juxtaposed with the
original attractor (in blue) for convenient visual comparison.
Our method has successfully reconstructed all observed behav-
iors with good accuracy. This encompasses not only regular
(periodic) behaviors, such as the period-8 orbit of the Burger
map in Fig. 3(top-right), but also other dynamical behaviors
such as periodicity for the Burger map in Fig. 3(top-left), or
the two-segment and four-segment attractors of the Duffing
map shown in Figs. 4(top-left) and (top-right), respectively.

The chaotic attractors have also been retrieved with notable
fidelity. For instance, our method accurately reconstructed the
general shape and behavior of the two strange attractors of
the Burger map, as depicted in Fig. 3(bottom-left), as well as
the single chaotic attractor showcased in Fig. 3(bottom-right).
Similar results are obtained for the Duffing map, as evidenced
in Figs. 4(bottom-left) and (bottom-right), respectively.

These promising graphical outcomes are corroborated by
numerical results. The RMSE errors range from 10−1 to 10−3

across all cases, contingent upon various factors. These values
confirm the efficacy and robustness of our proposed technique.
In light of these findings, we conclude that our approach is
well-suited for reconstructing attractors of low-dimensional
chaotic maps from time series data.
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Fig. 4. Attractor reconstruction of the Duffing map from the original time series data in Fig. 2, displayed in blue. The reconstructed data are displayed in red
for easier visual comparison: (t-l) two segment attractor; (t-r): four segment attractor; (b-l) two independent chaotic attractors; (b-r) a single chaotic attractor.
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Fig. 5. Examples of inaccurate attractor reconstructions for the Burger map.

We should also acknowledge some limitations of our
method. Although it demonstrates commendable accuracy in
attractor reconstruction, there exists some discrepancy between
the original and reconstructed data. For instance, in Fig. 3(top-
right), the eight periodic points in blue and red are close but
not identical. This disparity can be partly attributed to the
extreme sensitivity of chaotic systems to initial conditions, as
well as the stochastic nature of our method. To address this,
all simulations must be repeated multiple times to mitigate the
randomness inherent in certain parameters of the bat algorithm.
In this study, we conducted 10 independent simulations for all
input time series, selecting the best outcome for presentation.
Nonetheless, individual executions may fail to accurately
reconstruct the original attractor, as illustrated in Fig. 5 for
the Burger map. On the left, the method returned a chaotic
attractor in red for the original period-8 orbit in blue, while
on the right, the original single attractor in blue has been
reconstructed by the half-side chaotic attractor in red. These
instances underscore the importance of performing multiple

independent executions to ensure reliable performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new method for reconstruction of periodic
and chaotic attractors of low-dimensional dynamical systems
from time series data is introduced. The method is based on
a powerful bio-inspired swarm intelligence method called bat
algorithm. The method has been applied to two illustrative
examples of chaotic maps: the Burger map and the Duffing
map. The graphical and numerical results show that the method
performs well and is able to recover the underlying shape of
the attractors of chaotic maps for a variety of periodic and
chaotic behaviors with good accuracy. Some limitations of the
method have also been exposed. Altogether, we can conclude
that the presented approach is very promising for this relevant
but challenging problem.

Despite these promising findings, our approach has certain
limitations that require consideration. Firstly, the method is
confined to low-dimensional maps, thereby limiting its appli-
cability for high-dimensional systems. Additionally, the fitting
of chaotic maps through an algebraic scheme may not be
optimal for transcendental functions. Addressing these limita-
tions requires further methodological research. Extending our
method to more challenging scenarios, such as chaotic flows
governed by sets of ordinary differential equations, represents
an important direction for future work. Furthermore, applying
our approach to the control and suppression of chaos [18],
[24], [32] and the synchronization of chaotic systems [16],
[33], would advance our understanding of chaotic phenom-
ena. Future work will also involve conducting a comparative



analysis of our results against other metaheuristic techniques.
Additionally, enhancing the bat algorithm through hybridiza-
tion with a local search strategy, as in previous studies [11],
is also part of our future work in the field.
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