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Abstract—Information-centric networking (ICN) is structured
as a distributed caching system in which user requests arrive
at edge nodes and traverse the cache hierarchy to access their
demanded contents. If an intermediate cache node holds a copy
of the desired content, it is promptly delivered to the client
within the local domain. Otherwise, it must be retrieved from
external sources, causing longer access latencies and higher
provisioning costs. To minimize the external logistic costs from the
backhaul, we harness the potential of Interaction-based Caching
to preserve the most popular and largest contents for a maximum
time in the local network. This strategy increases the cache
hit rate and reduces the total volume of data that needs to
be imported from external sources and the associated logistic
costs. Simulative performance evaluations prove the significant
gains of the proposed algorithm in terms of hit ratio (over
10.64%), external volume import (over 1.18 times relative to
internal volume transport), and minimum content provisioning
costs (over 5.1 times relative to internal transport costs) with
respect to the Leave Copy Everywhere (LCE) strategy.

Index Terms—Information-centric Networking, Popularity-
based Caching, Size-based Caching, Topology-based Caching,
Content Volume, Hit Rate, Logistic Costs, Content Provisioning
Costs, Interaction-based Caching

I. INTRODUCTION

The advent of continuously evolving data-generating and
data-consuming technologies, applications, and networks has
ushered in an unprecedented surge in data volume. This surge
is chiefly attributable to video and related multimedia applica-
tions, with video content alone representing the predominant
share of approximately 80% of mobile traffic by 2027 [1].
The forthcoming generations of networks, including 5G, 6G,
and beyond, are poised to facilitate the emergence of novel
multimedia applications, such as augmented/virtual reality and
the Metaverse. These applications demand exceptionally high
data rates and remarkably low latencies. An effective strategy
to mitigate content delivery delays and alleviate network
congestion entails caching large contents often requested in
proximity to end-users.

In this paper, we develop a strategy to decrease the volume
of content imported from external sources by considering
their popularity and size, and leveraging the potential of
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Interaction-based Caching (IC). In [2], we described how
the hit performance rises by permanently saving the n most
popular contents in the network, where n is limited by the
universal cache size. And in [3], we demonstrated how the
caching performance can be maximized by also extending the
availability of the rest of the popular contents. The caching
performance significantly increases by strictly regulating the
diffusion of contents into the cache hierarchy.

Most existing works adopt the popularity of contents as
the critical criterion to cache them, and assume the same
size for each. However, in scenarios with varying content
sizes, prioritizing contents solely on their popularity may not
optimize bandwidth usage, as the most requested items are
not always the largest. In an extreme case, where the most
demanded contents are the smallest ones, the large contents
must be recurrently imported from remote sources, deteriorat-
ing their retrieval times and increasing the transmission costs
and the network congestion probability. To counter this, we
also take the contents’ volume V into account to maximize the
availability of the most popular contents in the network and
minimize the volume of data imported from sources outside
the network.

The main contributions of this paper are:
• A refined caching strategy that minimizes the external

data import and content provisioning costs by jointly
considering the contents’ popularity P and volume V .

• The seamless integration of P and V into the IC caching
strategy, maximizing the availability of prioritized con-
tents in the network.

• A thorough analysis of the caching strategy’s effective-
ness focused on hit ratio, internal and external data
transfer volumes, and the related logistical costs.

The rest of this paper is structured as follows: Section II
introduces the related work; Section III details the proposed
algorithm; Section IV evaluates its performance, comparing it
with alternative solutions; and Section V concludes the paper,
outlining our future lines of work.

II. RELATED WORK

The authors of [4] use big data analytics to estimate the
popularity of contents, and to indicate the importance of
considering the content size for making caching decisions.



The authors in [5] propose a strategy based on a usability
Time-to-Use (TTU) tag, proportional to the content’s popu-
larity and volume. An arriving content is stored only if its
average request time is less than its TTU, so it does not expire
before the arrival of the subsequent request. If there is not
enough space in the cache, LRU (Least Recently Used) is
applied to create space. The strategy aims to evict less popular
contents and cache more popular ones, however, it ignores the
topological properties of the nodes.

The authors of [6] distinguish between a local (l) and a
remote (r) network, and defines an average content provision-
ing cost by C = plCl + prCr, where p is the corresponding
probability of finding a content in the local or remote network,
and C denotes the related cost. It then minimizes C for
contents with varying popularity by a caching strategy, lying
between a non-cooperative, greedy one, which locally stores
as many popular contents as the concerning nodes’ storage
allows, and a fully cooperative one, which aims to maximize
the total number of unique contents in the local network. A
new arriving content is compared with the cached contents in
their popularity and volume for possible replacement.

Among the few approaches based on both content popularity
and content size, the most related to ours is [7], which aims to
cache a maximum set of contents at the edge to maximize the
hit ratio and minimize the average content provisioning costs,
defined as the average price of transferring the demanded
contents from their local, as well as backhaul sources, to
their clients. Each content is associated with a size-weighted
popularity P ′ = V θP with P as popularity, V as volume, and
θ as a factor varying between [-2,2]. The proposed strategy
stores contents having a higher P ′ with a larger priority. If
contents have the same size, as in most existing works, then
θ = 0 and P ′ = P , so the most popular contents are stored
at the edge. For θ = −1, P ′ = P/V , so smaller contents are
prioritized to larger ones. A factor of θ = 1 gives P ′ = V P ,
leading to prioritization of larger contents, complying with
our policy. If the popularity can be assumed as constant
within a period, enabling its estimation, a proactive strategy
pre-fetches contents in descending order of P ′ to the edge
server until its storage capacity limit is reached. A reactive
approach stores each content fetched from the backhaul, like
LCE (Leave Copy Everywhere), at the edge server if it has
enough capacity. Otherwise, the P ′ parameter of the incoming
content is compared with that of the contents in the cache,
to replace one or many of them that have a lower P ′. The
scenario, differentiating between edge and backhaul server,
uses 10 000 requests for 1000 contents having a uniform size
distribution between 1 and 20. The edge server cache has a
capacity of 400 units, and the Zipf distribution has a skewness
factor of α = 0.7. In both proactive and reactive cases, the
hit ratio reaches its maximum for P ′ = P

V , since the policy
caches the most demanded contents at the edge due their small
sizes. However, the lowest average content-provisioning cost
is reached for P ′ = P and P ′ = V P , since the most popular
contents or those with the highest PV are stored at the edge.
For P ′ = V P , the hit ratio sinks, because contents are cached

based on volume-popularity product, not popularity.
Similar to [6] and [7], we introduce a total logistic cost

metric consisting of both internal and external components,
with a focus on reducing import costs. To this end, we employ
the metric P ′ = V P for optimal content placement.

III. INTERACTION-BASED CACHING BASED ON CONTENT
POPULARITY AND CONTENT VOLUME

The demanded contents are provided to the clients either by
the local or the backhaul network, giving the total volume of
data transferred to clients:

V = Vin + Vex = RT
inV + RT

exV (1)

with Vi, Rin,i, Rex,i ∈ N and i ∈ N, i ∈ [1, C ′], where C ′

denotes the set of the demanded contents. Vin denotes the
total volume of contents retrieved from internal, and Vex from
external sources, and V is the vector of all volumes of the
corresponding demanded contents.

If C ′ contents, c1, c2, · · · , cC′ are requested, then V rep-
resents a column vector V =

(
V1, V2, · · · , VC′

)T
of their

corresponding sizes, and Rin =
(
Rin,1 ,Rin,2 , · · · ,Rin,C ′

)T
depicts the column vector of the number of requests for
the corresponding contents satisfied in the local network.
Similarly, Rex =

(
Rex ,1 ,Rex ,2 , · · · ,Rex ,C ′

)T
is the column

vector of the number of requests for externally retrieved
contents. All elements of Rex satisfy Rex,i ≥ 1, as a demanded
content must be first imported if it is not internally available.

Requests find their desired contents either inside
or outside the network, yielding their total number:
R =

∑C′

i=1

(
Rin,i +Rex,i

)
. Due to this complementarity,

a decrease of Vex (1) leads to an increase Vin, since contents
that are not fetched from outside the network are retrieved
from internal sources.
Vex can be minimized by diminishing the frequency of

requests for large external contents via keeping the most
popular and largest contents locally available for as long as
possible. This can be achieved by leveraging the potential of
IC [2], which strategically retains a selection of these contents
indefinitely within the network and prolongs the accessibility
of other contents in descending order of their PV metric.

To identify the optimal contents for the optimization ob-
jective, the IC, detailed in [2], first determines their relevant
features and meticulously integrates them along with their

TABLE I
COUPLINGS BINS

I g

I1 BCL−5 ≤ g < BCL−4

I2 BCL−4 ≤ g < BCL−3

I3 BCL−3 ≤ g < BCL−2

I4 BCL−2 ≤ g < BCL−1

I5 BCL−1 ≤ g < BCL

I6 BCL ≤ g ≤ 1



respective weights into an aggregated quality metric, such as
q
(c)
u = PV , with both weights set here to 1. It subsequently

amalgamates q(c)u with the attributes of the network topology,
like its betweenness centrality levels L, and the properties of
nodes, like their cache capacities V̂ , all within a coupling
strength g

(c)
u . The coupling strength is then transformed by

a function f(·) into the betweenness centrality horizon (BCH)
of the associated contents c representing their maximum
replication radius on their delivery path to their clients u:
BCH(c)

u = f(g
(c)
u ).

The concrete expression of f(·) is at the discretion of the
network provider and is tailored to align with its strategic
objectives. For simplicity and without loss of generality, it
can be specified as:

BCH(c)
u = g(c)u (2)

The IC replicates a content to all nodes n on its delivery
path whose betweenness centrality (BC) degree lies within the
BCH of the content: BC(n) ≤ BCH(c)

u . Consequently, contents
with a coupling proportional to their PV metric, g(c)u ∼ PV ,
become replicated to nodes with a centrality degree growing
with PV . This approach saves prioritized contents with a
large PV metric against eviction by limiting the diffusion of
contents with a small PV factor into higher cache levels.

For strictly regulating the diffusion depth of contents, the
IC divides the BC domain, dom (BC ) ∈ [0, 1], into L
intervals, I1, I2, · · · , IL, with L as the number of discrete BC
levels in the network. Each interval is defined by a range
Il = [BCl, BCl+1). To ensure the BCH of a content falls
within a specific range Il, i.e., BCH(c)

u ∈ Il, its coupling
strength g(c)u must originate, due to (2), from the same interval
Il. Thus, the L intervals Il depict coupling strength containers,
with I1 encompassing the weakest and IL containing the
strongest couplings, as in Tab. I [3].

To provide contents with a coupling they merit, they are
sorted in an array C = [c1, c2, · · · , cC′ ] in descending PV
order and, starting from the beginning of C, are consecutively
provided with a coupling taken randomly from the container
IL under the prerequisite that the concerned caches have
enough capacity. Thus, the contents’ volume Vi is added to
a sum Vsum =

∑C′

i=1 Vi as long as Vsum ≤ V̂ , with V̂ as the
unit cache size. Otherwise, Vsum is reset, and the couplings of
the following contents are taken randomly from the subsequent
weaker interval IL−1.

The caching performance can be slightly improved by fully
utilizing cache capacities through the 0/1 Knapsack optimiza-
tion, which combinatorially maximizes the content quantity
N =

∑C′

i=1 δi in each cache while adhering to constraint∑C′

i=1 δiVi ≤ V̂ , with δi = {0, 1} denoting whether the
content ci is inserted into the cache or not, and C ′ as the
number of demanded contents from a library with a total
of C contents. In this case, caches are first populated with
prioritized contents sequentially taken from the PV array,
however, their remaining capacity is then filled with a less-
prioritized content from a random position in the array. For

more clarity in analyzing the impacts of the algorithm on the
caching performance, we do not utilize this method.

Generally, an Ri times transfer of a content ci with the
volume Vi over a distance di ∈ N to its clients leads to a
logistic transport expense of:

Ei = κ Ri Vi di (3)

with κ ∈ R+ as provisioning cost factor. If the content is
retrieved from internal sources, the logistic cost is:

Ein,i = κin Rin,i Vi din,i (4)

with κin ∈ R+ as internal provisioning cost factor. And if the
contents is fetched from outside:

Eex,i = Rex,i Vi
[
κin D + κex (di −D)

]
(5)

where the first component depicts the transport cost inside of
the network with the diameter D ∈ N+, and the second one
that of the outside. The total logistic expense is thus:

E =

C′∑
i=1

(
Ein,i + Eex,i

)
(6)

The external costs can be minimized by saving contents with
the highest PV at nearest positions, di → 1, to their clients for
a maximum period of time. A minimum distance d = D + 1
yields the minimum external logistic cost:

Eex,min =
(
κin D + κex

) C′∑
i=1

Rex,i Vi =
(
κin D + κex

)
Vex (7)

To minimize Eex,min, the IC reduces the total volume∑C′

i=1Rex,i Vi of imported data from exterior sources.

IV. NUMERICAL PERFORMANCE ANALYSIS

A. Simulation Settings

To evaluate the caching performance, a network topology
consisting of a binary tree of height 7 with 128 clients at the
leaves, 122 intermediate caches, and a content source at the
root (Fig. 1) is composed. The cache nodes depict the local
network with a diameter of D = 6, and the source represents
the entire backhaul network collapsed into a single node.
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Fig. 1. Network topology with users on the left (red) demanding contents
from intermediate caches (blue) and content server S on the right.



Trees possess various advantages for investigating the ef-
fects of caching strategies on request propagation and content
distribution in networks, rather than system resilience, routing,
or congestion. Their structure, lacking multipaths and loops,
allows for isolating caching effects from topological complexi-
ties. Trees can approximaate large networks on a smaller scale
by combining core- and edge-type topologies [8]. Further,
complex networks can be regarded as a superposition of trees
with common intermediate nodes, allowing for breaking down
optimization problems into simpler subproblems, solvable
recursively following Bellman’s optimality principle [9], [10].

The clients send R = 12 800 000 Zipf distributed requests
with factor α = 0.8 for C = 12 800 contents in the library.
Half of the requests are used for caching warm-up. The
size of the contents ranges from 1 to 1000 units, which
may correspond to files of, e. g., 1 MB to 1 GB, or video
contents of 10 MB to 10 GB. The average content volume is
V̄ = 500.5 units, which yields with C an average library size
of 6 406 400 units. The universal cache size V̂ is set to 1% of
the library size, i. e., V̂ = 64 064 units. Larger cache capacities
generally enhance the performance. For the content volumes,
we assume a truncated Gaussian distribution with µ = 500.5
and a standard deviation of σ = µ/4 = 125.125. We define
the transformation function as BCH(c)

u = g
(c)
u .

Performance evaluations were conducted in a Python sim-
ulator, featuring a hierarchical LRU cache network and IC
protocol. Table II summarizes the set-up parameters.

B. Performance Evaluation

We repeatedly simulated the scenario to enhance statistical
certainty and averaged the resulting metrics, observing notably
tight confidence intervals in the performance measurements.

The IC exploits the variation of popularity and volume
of contents to increase the caching performance. With pro-
gressing equalization of them, the caching efficiency decreases

TABLE II
SIMULATION SETUP

Tree topology
branching b 2
height h 7

Number of users U 128

Number of caches N 126

Number of edge caches N1 64
Cache size s V̂ 64 064

Library size C 12 800

Content volume V 1 · · · 1000

Mean content volume µ 500.5

Standard deviation of content volume σ µ/4

Number of requests R 12 800 000

Number of warm-up requests R/2

Zipf parameter α 0.8
Transformation function BCH = g

Cache strategy LCE, IC
Content replacement strategy LRU

toward that of LCE, which ignores them. Reducing the Zipf
parameter α gradually equalizes the demand for contents, so
that with α → 0 the PV distribution becomes increasingly
dominated by volume distribution. However, the steep expo-
nential decrease of the popularity over content rank causes the
popularity distribution to dominate the PV distribution.

Consider Fig. 2 showing the average popularity P̄ , mean
volume V̄ , and P̄ V of the contents stored at different cache
levels for a simulation run. Note that contents, which can
diffuse into the caches at level l′ also diffuse into caches
at lower levels l < l′ due to IC’s replication constraint
BC(n) ≤ BCH(c)

u . Further, all caches, except those at the high-
est level l = L, are exposed to eviction. The rapid decrease of
the average values P̄ , V̄ and P̄ V from the level-2 to the level-1
caches is caused by the abolition of the caching restriction for
the level-1 caches, allowing all contents to diffuse into them.
The non-monotonic increase in the average content volume
shows that the IC does not consider the contents’ volume as
the only factor; otherwise the largest contents would be stored
in the highest-level caches at l = 6. However, the image at
the bottom of Fig. 2 manifests how the higher-level caches are
filled with contents with a higher P̄ V factor.

With falling α, the PV distribution becomes more domi-
nated by V . Hence, the IC saves more of the largest contents
in the higher-level caches, so the average volume V̄ of cached
contents rises in the corresponding nodes (Fig. 3). Conversely,
as α grows, it amplifies the influence of the popularity dis-
tribution, leading to the ascent of smaller yet more popular
contents to higher-level nodes, reducing their average volumes.
Consequently, the logistic cost Eex for the import of contents
from external sources rises with growing α.

Fig. 2. Average content popularity P̄ (above left), content volume V̄ (above
right), and P̄ V (bottom) over the 6 different cache levels in the network.



Fig. 3. Average volume V̄ of contents cached at different cache levels

The integration of the proposed strategy in the IC signifi-
cantly outperforms LCE in terms of cache hit ratio. It achieves
an average cache hit ratio of 36.4775%± 0.0321%, whereas
the LCE reaches 25.8338%± 0.0222%, yielding an IC gain
of approximately 10.6437%± 0.0324% (Fig. 4).

Incorporating content volume V alongside popularity P
slightly reduces hit performance by about 0.828%, as per sce-
narios only considering P [3], which aligns with expectations
given P ’s dominance over the PV distribution at α = 0.8.
Thus, the joint optimization of caching with both P and V
produces benefits without substantially affecting the hit rates.

The IC reduces the average total import volume V̄ex by:

∆V̄ex = V̄ LCE
ex − V̄ IC

ex = 361 044 900.2± 901593.1455 (8)

relative to LCE, equal to about 721 368.432 less of the
4 768 213.36 average-size contents imported by LCE, i. e.,
15.1287% less average-size contents (Fig. 5). It, thus, de-
creases the ratio of the average total data volume V̄ex fetched
externally to the internally transferred data volume V̄in from
V̄ LCE

ex /V̄ LCE
in = 2.8846 to V̄ IC

ex /V̄
IC

in = 1.7044, yielding a
reduction of 1.1802 (Fig. 6).

TABLE III
SIMULATION RESULTS

LCE IC ∆(LCE, IC)

h̄ 25.8338% 36.4775% -10.6437%
V̄in 827318637.0 1188372454.4 -361053817.4
V̄ex 2386490785.8 2025445885.6 361044900.2
V̄ 3213809422.8 3213818340.0 -8917.2
V̄ex

V̄in
2.8846 1.7044 1.1802

Ēin 1660633368.8 2859632208.6 -119899883980.0
Ēex,min 16705435500.6 14178121199.2 2527314301.4
Ē 18366068869.4 17037753407.8 1328315461.6
Ēex,min

Ēin
10.0597 4.9580 5.1017

Fig. 4. Hit ratio of LCE and IC and the IC-gain

The average volume of all demanded contents is in both
cases almost equal: V̄ LCE ≈ V̄ IC. Their negligible difference of
8917.2 is due to statistical fluctuations of requested contents.

The general average external logistic cost is defined by:

Ēex =
(
κin D + κex x̄

)
V̄ex (9)

Fig. 5. Top: Average total content volume transferred to clients by LCE
and IC from internal and external sources, and their sum (above), and the
corresponding average logistic costs (bottom).



Fig. 6. Gains of IC relative to LCE concerning ratios between average external
and internal data transfers, and the associated total logistic expenses.

where d̄ = D + x̄ is the average distance of external sources
from clients, and x̄ ∈ N+ is the average distance of the content
locations from the local network. The ratio of the average
external to internal logistic cost is thus:

Ēex

Ēin
= κin D

V̄ex

Ēin
+ κex x̄

V̄ex

Ēin
(10)

IC’s gain in costs relative to LCE can be written as:

∆
Ēex

Ēin
= κinD

(
V̄ LCE

ex

ĒLCE
in
− V̄ IC

ex

ĒIC
in

)
+ κex

(
V̄ LCE

ex

ĒLCE
in
− V̄ IC

ex

ĒIC
in

)
x̄

(11)
Since in the IC strategy, contents with the largest PV -factor
are retrieved from inside, instead of outside the network, the
average volume V̄ex imported externally sinks, and the average
amount of data V̄in transferred internally rises. Consequently,
the average external cost Ēex decreases and the average inter-
nal expense Ēin increases, such that V̄ IC

ex /Ē
IC
in < V̄ LCE

ex /ĒLCE
in .

The gain ∆(Ēex/Ēin) further grows with the external data
provisioning cost factor κex, and the average distance x̄ of the
content sources from the local network.

Assuming κex = κin = 1 and D = 6, the minimum external
costs are reached when the content sources are, on average,
just x̄ = 1 hop away from the local network, giving:

∆
Ēex

Ēin
= 7

(
V̄ LCE

ex

ĒLCE
in
− V̄ IC

ex

ĒIC
in

)
= 5.1017 (12)

Thus, by reducing the relative external data import V̄ex/V̄in

by 1.1802, the IC decreases the relative external logistic costs
Ēex/Ēin by more than 5.1 times.

As κex and x̄ contribute linearly to the expense gains (11),
the benefits grow linearly with them. Figure 7 shows the gains
over κex for 0 ≤ κex ≤ 10, and x̄ for 1 ≤ x̄ ≤ 10, with the
minimum at κex = 0 (no external costs) and x̄ = 1.

V. CONCLUSION

To reduce data import volumes and logistics costs, it is
crucial to hold contents at more central nodes for longer
durations proportional to their popularity-volume (PV ) factor.

Fig. 7. External logistic cost gains ∆(Ēex/Ēin) of IC as a function of average
distance x̄ of external sources from the network and external cost factor κex.
The minimum gain of 5.1017 is at x̄ = 1 and κex = 1 (red circle).

This strategy also enhances the user experience by reducing
bandwidth usage, access latency, and network congestion.
Regulating the coupling allocation decreases cache pollution
and content eviction while increasing local access to the
highly demanded largest contents. Integrating more features
of caching parties into the IC can further improve its perfor-
mance. Our future research will explore the IC’s potential in
reducing content access delays, crucial for 5G/6G’s URLLC
and eMBB services.
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