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Abstract—We jointly consider network slicing and functional
split for 5G/6G Radio Access Network (RAN). Exploiting virtu-
alization techniques, virtual Radio Access Network (vRAN) is an
architectural shift that moves some of the functions that were
traditionally performed by the base station to centralized nodes,
deployed at cloud-based resources. By appropriately selecting
the location of these nodes, they can effectively coordinate a
number of radio access elements, thus bringing potential gains,
for instance, in terms of interference reduction. One pivotal
decision for vRAN operation is how to split the functions between
these central elements and the corresponding distributed units.
Deploying more functions at the cloud could potentially bring
more benefits, due to the tighter cooperation between access
elements. On the other hand, higher centralization poses more
requirements, in terms of computational resources at the nodes
where these functions are deployed. Along with the virtualization,
RAN slicing enables the deployment of independent service
verticals over the same physical infrastructure, and this could
greatly benefit from the coordination achieved by exploiting
the vRAN features. In this paper we propose a vRAN model
to jointly consider functional split and RAN slicing, and we
establish the corresponding configuration, exploiting Lyapunov’s
Theory to tackle the underlying problem. The results show that,
in highly heterogeneous networks, the dynamic configuration
of the functional split can reach the same performance of
fully centralized networks, with substantially fewer computation
resources.

Index Terms—vRAN, 5G, functional split, RAN slice, optimiza-
tion, Lyapunov

I. INTRODUCTION

The deployment and roll-out of 5G technology enable new
heterogeneous scenarios and novel services, with more ambi-
tious requirements in terms of transmission speed, bandwidth,
latency, and security, among others [1]. Some of these services,
such as real-time HD video, demand high data speeds and
extremely low delay, while others require highly reliable
connectivity with lower error rates, such as remote control
of sensitive equipment.

One fundamental aspect of 5G and 6G networks is the
evolution of the RAN architecture. This shift, enabled by
Software Defined Networking (SDN) and Network Func-
tion Virtualization (NFV) techniques, redefines the traditional
functions associated with the base station. Under this new
paradigm, some of these functions are relocated to central
nodes, typically hosted at cloud servers, resulting in what
is known as Cloud RAN (C-RAN) [2]. C-RAN is based on

the separation of Baseband Unit (BBU) with respect to their
corresponding Remote Radio Head (RRH), grouping them in
a so-called BBU pool. Each RRH element is thus connected to
its corresponding BBU pool via low-latency optical fronthaul
links. Then, a backhaul link connects each BBU pool to
the core network. The C-RAN architecture increases network
scalability, improves spectral efficiency, reduces energy con-
sumption, simplifies network management and maintenance,
and facilitates load balancing [3]. Additionally, it achieves cost
reductions compared to conventional mobile networks [4], and
enables shared processing [5].

Despite the many advantages of the C-RAN architecture, it
requires a low-latency, high-capacity fronthaul network, which
may require large investments from operators [6]. To solve
this problem, the concept of functional split, realized under the
concept of vRAN, brings the possibility that not all processing
functions are centralized, but only a set of them are selected
to be implemented at central units, while the remaining are
deployed at distributed units [7]. The introduction of the
functional split concept brings an architectural transformation,
in which the BBU is divided into Centralized Unit (CU) and
Distributed Unit (DU) components, while the RRH is re-
branded as Radio Unit (RU) [5], [8]. The virtualization of the
entities that compose the base station, along with the isolation
of radio resources, allow the definition of independent RAN
slices, so that multiple virtual base stations can be deployed
using the same physical access element.

The focus of this work lies in the joint management of
radio resources and the functional division within vRAN
architectures. Our main contributions are briefly summarized
below:

1) Proposal of a network model that takes into account the
interaction of the RAN slice definition and configuration
of functional split with time performance constraints,
considering temporal evolution.

2) Proposal of an adaptive solution to optimize the network
operation under random uncontrolled conditions.

3) Validation of the algorithm operation in an heteroge-
neous canonical scenario and performance evaluation of
the joint split and slice configuration compared to fixed
functional split setups.

The rest of the paper is structured as follows: Section II



discusses some related work, highlighting how this research
differs from existing papers. In Section III we introduce the
system model that addresses the joint resource allocation
and functional split decision-making, and we propose an
optimization problem to address it. Then, Section IV discusses
the performance of the proposed scheme, after a thorough
experiment campaign. The paper concludes in Section V,
where we provide an outlook of our future work.

II. RELATED WORK

As mentioned earlier, 5G networks need to integrate a
multitude of services with diverse performance demands, all
of them within a unified physical network infrastructure.
Furthermore, the ultimate goal would be to furnish each
service with a tailored logical network [9]. Hence, there is a
growing need to exploit the potential of dynamically adjusting
the functional split based on specific network conditions and
traffic loads. This flexible functional split, as it is often termed,
has a direct impact on network operation and management.
Nonetheless, existing works exploring the potential benefits of
this approach and proposing performance assessment models
are still relatively sparse.

Some works have studied the selection of functional splits
and the optimization of the fronthaul network. In [10], the
authors address the challenge of minimizing power con-
sumption in vRAN, with a specific focus on two functional
splits, while considering fronthaul configuration functional-
ities. Other strategies for selecting functional splits have
been put forward to enhance various performance metrics,
considering diverse scenario characteristics. For example, [11]
considers the placement of virtual entities and focuses on
maximizing data rates in the fronthaul by posing an Integer
Linear Programming (ILP) problem that considers routing,
bandwidth assignment, and latency. Similarly, Abdulrahman
et al. [12] take into consideration the joint minimization of
system power and transmission capacity consumption while
ensuring end-to-end latency. Liumeng and Sheng propose in
[13] a Markov Decision Process (MDP) based solution to
maximize the throughput in the fronthaul under average rate
constraints, considering radio units powered with renewable
energy. Differently, the authors in [14] introduce a user-centric
functional split orchestration approach, taking into account
power, computational resource, and bandwidth usage. As can
be observed, the scope of the aforementioned works combine
the split selection with the optimization of the fronthaul
network, while we focus on the functional split along with
the management of radio resources.

Closer to our work, Alba and Kellerer propose in [15] a
dynamic split selection algorithm to optimize the throughput
perceived by users. However, they do not consider the resource
allocation along with the split selection, neither they take into
account performance guarantees. In [16] Wu et al. adopt a
slice-centric approach to design a flexible RAN architecture
that considers both processing and transmission resource sav-
ing, while ensuring compliance with the requirements of the
slices. While this work shares some similarities with ours,
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Fig. 1: Scenario example

it is not designed for time-varying scenarios, and service
performance constraints are not included.

It is also worth mentioning the work of Vajd et al. [17],
where the authors focus on the optimization of the fronthaul
network by the selection of functional split and configuration
of optical transponders. Although it does not focus on radio
resource management, the authors consider time-average con-
straints and they apply Lyapunov optimization to tackle the
resulting optimization problem.

All in all, we believe that our work complements the
existing literature, by jointly considering the functional split
selection and the allocation of radio resources to RAN slices.
To our best knowledge, this is the first time these two processes
have been jointly tackled.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we present the system model for the joint
resource allocation and functional-split decision under random
conditions, and we pose an optimization problem to tackle it.
Then, we introduce a simplified version of such problem for
those cases in which the functional-split is fixed. This allows
us comparing the benefits brought by dynamic functional-split
under similar conditions.

We consider a scenario where services are provided by
means of network slices. For simplicity, we assume that each
slice bears a single service, but the model could be easily
adapted for multi-service slices. We focus on the RAN slicing,
where physical radio resources are to be distributed among the
slices. It leads to instantiating virtual base stations, accounting
for the different slices, on top of the physical access elements.
In addition, different centralization levels can be configured
at virtual base stations, according to the functional splits. In
turn, the configuration levels enable coordination techniques,
which would for instance improve the Signal to Interference
plus Noise Ratio (SINR) perceived by users [6].



Figure 1 depicts a simple scenario comprising two physical
base stations and two slices. As can be observed, the radio
resources of the physical base stations, Physical Resource
Block (PRB), are distributed in an orthogonal way between
the virtual ones that are instantiated for each slice. Then, the
centralization level is defined for each virtual base station.
In this way, by exploiting the tighter coordination between
virtual base stations of the same slice, the link quality can be
improved at the overlapping areas.

Having that in mind, we aim to adapt to changes on wireless
conditions by dynamically tuning both the centralization level
and the distribution of PRBs among slices. In this sense,
since the decisions (physical resources and split) affect all
users in a certain area, we average the wireless conditions
over all users in such zone. It is assumed that Medium
Access Control (MAC) scheduling and Adaptive Modulation
and Coding (AMC) would define the SINR perceived for
each single user. Although the underlying problem formulation
that is presented below is generic, the decision time scale
is considered long enough, so that the time elapsed for the
network reconfiguration is negligible.

A. System model

Let B be the set of physical base stations and S the set of
slices. Each base station b ∈ B has a number of physical
wireless resources ηb. In general, it is assumed that slices
provide elastic services with minimum requirements. This is,
the service corresponding to the slice s ∈ S has a minimum
throughput requirement dmin

s , which needs to be satisfied at
all times, and an target throughput ds that should be provided
in average over time. It may happen that ds is not fulfilled at
particular time instants, but it should nonetheless be satisfied
in average.

In order to satisfy the demand of slices, we instantiate
virtual base stations within the physical ones. Time is slotted,
and t indicates a given slot time. In each time slot we decide
the amount of resources for each virtual base station, as well
as the centralization level. We have to take into account that
the capacity demand needs to be satisfied in the whole area
covered by the physical base station. In this sense, overlapping
zones will be treated as separate areas. Let A be the set of
areas, and As the subset of areas where slice s is deployed.

For each slice s and area a ∈ As, we use the Shannon’s
formula to compute the average rate at a time instant t, ρs,a(t),
as follows:

ρs,a(t) = Ws,a(t) · PRW · log2
(
1 +

Ps,a(t)

σ2 + Is,a(t)

)
(1)

where Ws,a(t) is the amount of PRBs used by the slice s
at the area a, while Ps,a(t) and Is,a(t) hold for the average
signal and interference experienced by the devices of the slice
in such area, respectively. The size, in frequency, of each PRB
is denoted as PRW , and it is assumed to be a configuration
parameter. In our future work we will consider the impact

of the different numerologies defined for 5G on the system
model. Finally, σ2 represents the noise factor.

Let F be the set of possible functional splits that are
available in the virtual base stations, and f b

s (t) the functional
split selected for the virtual base station used for slice s in
physical base station b. In addition, αb

s(t) holds for the amount
of physical resources allocated from base station b ∈ B to slice
s ∈ S.

It follows that the actual values of (1) may depend on
both random and decision variables. If we consider a generic
random variable ω(t), we can express the variables in (1) as
functions 1: Ws,a(t) = Ŵ (αb

s(t)); Is,a(t) = Î(ω(t), f b
s (t));

and Ps,a(t) = P̂ (ω(t)).
We assume that two base stations covering the same area

coordinate between them to improve the spectral efficiency.
In this sense, the coordination requires overlapping of the
coverage areas, as assumed in [18]. Thus, the following
constraint holds:

Ws,a(t) = Ŵ (αb
s(t)) = min({αb

s(t) | b ∈ Ba}) (2)

where Ba is the subset of physical base stations covering the
area a ∈ As.

Finally, the functional splits require different computation
resources in the nodes where DU and CU pools are deployed.
The former is assumed to have enough capacity for all con-
sidered splits. On the other hand, the computation resources
for the CU pool are shared between various virtual base
stations, thus limiting the decision space. Let CCU denote the
shared computation capacity of the node hosting the CU pool,
and cbs(t) the computation resources required by the virtual
base station instantiated for slice s in physical base station b,
according to the selected split f b

s , at time slot t.

B. Problem formulation

Having in mind the above definitions, we aim to jointly
allocate resources to the different slices and select the split
level so that the average amount of resources is minimized
over time. The time average expectation of a variable y(t)
is defined as follows [19]: y = limT→∞

1
T

∑T
t=0 E{y(t)}.

Altogether, we pose a time-average optimization problem:

min
f(t),α(t)

∑
s∈S,b∈B

αb
s (3)

s.t.

ρs,a ≥ ds ∀a ∈ As,∀s ∈ S (4)∑
s∈S

αb
s(t) ≤ ηb ∀b ∈ B,∀t (5)

ρs,a(t) ≥ dmin
s ∀a ∈ As,∀s ∈ S,∀t (6)∑

s∈S,b∈B

cbs(t) ≤ CCU ∀t (7)

where (4) guarantees that the throughput achieved at each area
(for each slice) reaches the target one, in average. Then, (5)

1Symbol f̂ denotes a function that yields the value of the variable f .



ensures that the amount of granted resources does not exceed
the resources of the physical base stations. (6) imposes that the
minimum throughput is satisfied for all the slices in every time
slot. It is worth highlighting that the variable ρs,a depends on
Ws,a(t), which in turn is a function of both f b

s (t) and αb
s(t).

Finally, (7) ensures that the aggregated computation capacity
required by the CU pool does not exceed its available capacity.
For simplicity, we define the action space in each slot t as
Λ(t), and we replace the constraints that need to be satisfied
every slot, (5), (6) and (7), by a single feasibility constraint:
{αb

s(t), f
b
s (t)}s∈S,b∈B ∈ Λ(t) ∀t.

The original problem can be formulated in a more standard
form by defining Es,a(t) = ds−ρs,a(t), so that inequality (4)
becomes Es,a ≤ 0 ∀a ∈ As,∀s ∈ S.

This type of stochastic optimization problem can be tackled
using the Lyapunov’s theory. It can be solved using the
framework defined in [19] to transform the original formu-
lation into one based on stability conditions by changing
time-average equality and inequality constraints to virtual
queues. In our case, we define a virtual queue as follows:
Zs,a(t + 1) = max{Zs,a(t) + Es,a(t), 0}. The original time-
average minimization problem can be solved by applying the
drift-plus-penalty algorithm, which, in every slot t, observes
both the queue state and the corresponding random events and
takes the decision (f(t), α(t)) that minimizes the following
problem:

min
f(t),α(t)

V ·
∑

s∈S,b∈B

αb
s(t) +

∑
s∈S,a∈As

Zs,a(t) · Es,a(t) (8)

s.t.

{αb
s(t), f

b
s (t)}s∈S,b∈B ∈ Λ(t) ∀t (9)

C. Resource allocation only

In those cases where there is not functional split, or it
is fixed, the problem can be greatly simplified. The spectral
efficiency in each area would not then depend on the deci-
sion, but it could be considered constant at each time slot:
Eeffs,a = log2

(
1 +

Ps,a(t)
σ2+Is,a(t)

)
. Thus, we can simplify the

objective function as follows:

V ·
∑

s∈S,b∈B

αb
s(t) +

∑
s∈S,a∈As

Zs,a(t) · Es,a(t)

=
∑
s∈S

[
V ·
∑
b∈B

αb
s(t) +

∑
a∈As

Zs,a(t) · ds−

∑
a∈As

Zs,a(t)Ws,a(t)Eeffs,a

]
(10)

In (10) we can remove the product of the vir-
tual queue by the throughput requirement (Zs,a(t) ·
ds), since it does not depend on the decision, and
the objective function can be thus reformulated as:∑

s∈S

(
V ·
∑

b∈B αb
s(t)−

∑
a∈As

Zs,a(t)Ws,a(t)Eeffs,a

)
. In

addition, since we are minimizing the amount of allocated
resources, any resource not contributing to the throughput will
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Fig. 2: Analysis scenario, heterogeneous network

not be granted. Thus, Ws,a(t) = αb
s(t) ∀b ∈ Ba. Besides, at

each area a ∈ A, we only need to consider the resources
granted by the base stations covering it, Ba. Altogether, the
objective function boils down to:∑

s∈S

(
V ·

∑
a∈As

∑
b∈Ba

Ws,a(t)−
∑
a∈As

Zs,a(t)Eeffs,aWs,a(t)

)
=
∑
s∈S

∑
a∈As

Ws,a(t)

(
V |Ba| − Zs,a(t)Eeffs,a

)
=

∑
s∈S,a∈As

Ks,a ·Ws,a(t) (11)

where Ks,a(t) = V |Ba| − Zs,a(t)Eeffs,a . By replacing (8) by
(11), the resulting problem is converted into a ILP one which
can be solved with existing tools.

IV. PERFORMANCE EVALUATION

This section discusses the results obtained by using the
aforementioned system model for a heterogeneous scenario,
where we apply the proposed algorithm. The main objective
of the evaluation is to analyze the benefits of dynamically
selecting the functional split, along with the resource allocation
to RAN slices. Figure 2 depicts the evaluation setup, which
comprises a layer of macro base stations and small cells,
deployed within the coverage area of the macro cells. In this
scenario, 2 slices are instantiated, the first one in all areas and
the second one only in the areas shared by macro and small
cells (areas numbered 8, 9, and 10).

The scenario configuration is described in Table I. All
base stations have 100 PRB, and in each area the power
and interference values are randomly selected from the cor-
responding ranges in each time slot. In general, we limit the
spectral efficiency to 5 b/s/Hz (typical 4G maximum value),
so that above a certain SINR, the spectral efficiency would
not improve. All virtual base station can be configured with
one of the following functional splits: C-RAN, MAC/PHY,



TABLE I: Configuration of the evaluation setup. Interference
reduction factors and split computation requirements are based
on [6] and [20], respectively

Access network

# PRBs 100
PRW 180 KHz
Interference range [11, 15] mW
Power range [1, 81] mW
V parameter 5e3
CU pool capacity [15, 65] GOPS

Splits: C-RAN, MAC/PHY, RLC/MAC, PDCP/RLC

Interference reduction factor {0.01, 0.2, 0.6, 1}
CU computation requirement {20.9, 10.7, 6.7, 4.7} GOPS

Slices

#Slices 2
Minimum throughput {1, 1} Mbps
Objective throughput. {10, 10} Mbps

RLC/MAC, PDCP/RLC. For each of them, we consider an
interference reduction factor, obtained from [6], which is used
to modulate (multiplying) the actual interference value. In
this sense, if the PDCP/RLC split is selected, the interfer-
ence is kept at the same value, while C-RAN configuration
reduces the interference by a factor of ×100. Altogether, if
we consider the best scenario, where all the resources are
granted, the highest centralization is configured and each PRB
occupies 180 KHz, one area could reach more than 170 Mbps:
100 · 180 · log2

(
1 + 81

11·0.01
)
.

The evaluation tool consists of a proprietary system-level
simulation, implemented in C++ that deploys the correspond-
ing scenario and processes it to establish the corresponding op-
timization problem. The simulator also keeps track of the past
decisions, to appropriately update the virtual queues defined in
Section III-B. In particular, we use the GNU Linear Program-
ming Kit (GLPK) framework 2 to solve problem instances that
only solve resource allocation (see Section III-C). On the other
hand, joint split selection and resource allocation problems
are solved by iteratively instantiating resource-allocation prob-
lems, and calling GLPK. More efficient algorithms to solve
the joint problem will be tackled in our future work, being
our main objective herewith the evaluation of the potential
gains brought by a joint decision. All the results shown in the
following sections are obtained from experiments lasting 1e4
slots.

A. Resource utilization

Figure 3 illustrates the split selection probability at those
areas where slice 2 is deployed, while varying the com-
putation capacity in the cloud node hosting the CUs. For
each computational capacity value, we show the probability
of selecting each split (see Table I) at each area, where the
leftmost bar corresponds to PDCP/RLC (lowest centralization)
and the rightmost to C-RAN (highest centralization). As can
be observed, as the computational capacity increases, the

2https://www.gnu.org/software/glpk/
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Fig. 3: Split selection probability

proposed algorithm tends to select higher centralization levels
with higher probability. In this sense, when the computation
capacity is 15 GOPS, the PDCP/RLC split is always selected at
the three areas, while the highest centralization is chosen with
the maximum computational capacity (65 GOPS). While these
results could have been anticipated, they validate the operation
of the decision algorithm under different circumstances.

B. Split probability selection

We now study the impact of the joint decision over the
average amount of PRBs used in the small cells (Ws,a(t) in
Section III). Figure 4 uses a boxplot to show the amount of
resources used by the second slice, using the joint decision
for different values of the computational capacity of the CU
cloud. In addition, we indicate the resources required by
the static split selection with colored bands. In Figure 4a
we can observe that larger computation capacities yield a
slight reduction of the amount of resources used by slice
2. However, the amount of computation resources required
by the joint decision is lower than that needed by the static
configuration. For instance, the joint solution achieves similar
average resource usage (this is represented by a circle in the
figure) to that brought by static C-RAN configuration when the
CU cloud has 55 Giga Operations per Second (GOPS). On the
other hand, the static configuration would require more than
60 GOPS (21 × 3). It is worth noting that there is a rather
relevant difference between the results obtained when using
C-RAN and MAC/PHY configurations, due to the saturation
effect of the spectral efficiency gains: larger SINR values due
to centralization would not yield additional efficiency gains.

In Figure 4b we increase the maximum spectral efficiency
to 30 b/s/Hz, which captures a typical 5G maximum value.
As can be seen, the benefits of the C-RAN configuration
become much more clear in this case, leading to a notable
reduction resource utilization. Again, we can observe that the
joint solution achieves the same performance than the static
C-RAN, but it requires fewer computational resources.

V. CONCLUSION

In this work, we have proposed a system model and an
algorithm to tackle the reduction of radio resources allocated
by base stations exploiting a dynamic selection of functional
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split. We have assessed the potential benefits of a dynamic
centralization level assignment, over a highly heterogeneous
scenario. We exploit a proprietary tool, which integrates the
GLPK framework to solve the corresponding optimization
problems. After extensive simulations, the observed results
evince that the proposed dynamic solution yields better per-
formance, since it enables a significant reduction of the
average number of resources to be allocated, compared to a
more traditional configuration, where split levels are statically
established.

This work has focused on the four most significant split con-
figurations, characterizing their behavior in terms of resource
allocation and average throughput. In our future work, we will
broaden the analysis, to encompass the impact of considering
all the centralization levels defined by 3GPP. Furthermore, we
will also extend the analysis by considering more generic sce-
narios, as well as service requirements coming from particular
use cases. As for the proposed model and algorithm, we will
address the development of more efficient approaches to solve
the resulting optimization problem. Finally, we will consider
extensions, for instance including numerologies defined for
5G, which would modify the size of resource blocks.
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