
A Performance Cost/Benefit Analysis of Adaptive
Computing in the Tactical Edge

Alessandro Amato∗, Harrie Bastiaansen†, Willem Datema†, Mattia Fogli‡,
Roberto Fronteddu∗, Raffaele Galliera∗, Johan van der Geest†, Thomas Kudla§,

Pablo Sanchez¶, Niranjan Suri∗∥, Susan Watson∗∗
∗ Florida Institute for Human and Machine Cognition (IHMC), Pensacola, FL, USA

{aamato, rfronteddu, rgalliera, nsuri}@ihmc.org
† The Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands

{harrie.bastiaansen, willem.datema, johan.vandergeest}@tno.nl
‡ University of Ferrara, Ferrara, Italy

mattia.fogli@unife.it
§ Fraunhofer Institute for Communication, Information Processing and Ergonomics, Wachtberg, Germany

thomas.kudla@fkie.fraunhofer.de
¶ University of Cantabria, Santander, Spain

sanchez@teisa.unican.es
∥ US Army DEVCOM Army Research Laboratory (ARL), Adelphi, MD, USA

niranjan.suri.civ@army.mil
∗∗ Defence Research and Development Canada, Ottawa, Canada

susan.watson@forces.gc.ca

Abstract—Tactical Edge Computing is a promising solution
to address the challenges of processing and managing large
volumes of data collected by sensors deployed at the tactical
edge. Tactical edge networks often lack sufficient bandwidth to
transfer data at high rates. Much of the sensor raw data might be
uninteresting and would waste networking resources to transmit.
Edge computing solves these problems by staging the processing
capabilities for sensor data at the edge, close to the data source.
Local data processing reduces bandwidth needs in disadvantaged
tactical networks. Furthermore, it could reduce the latency of
data processing and avoid congestion in the tactical network.
However, static solutions that deploy edge services could also be
problematic because of the unpredictability of the tactical edge
– the source / location of the data may not be known a priori,
and there could be significant changes, such as sensors and nodes
going offline. Therefore, tactical edge computing solution must
be adaptive, where services are deployed on demand based on
the sensors tasked and the mission requirements. This paper
presents the work of the NATO IST-193 work on adaptive tactical
edge computing and its analysis on the adaptivity benefits and
overhead costs involved.

Index Terms—Federated Cloud Architecture, Tactical Clouds,
Tactical Networks, Tactical Edge Computing, Adaptive Orches-
tration, Resource Discovery, Service Deployment, Benefits, Per-
formance Costs

I. INTRODUCTION

Increased capabilities in sensing, processing, storage, and
communication are ever more being deployed in military
missions, facilitating data acquisition and processing [1]. How-
ever, these capabilities are often connected through disad-
vantaged tactical networks, which are typically characterized
by limited bandwidth, intermittent connectivity, and variable

latency. Consequently, there is growing relevance for federated
and adaptive tactical edge and cloud architectures [2] for
joint coalition missions. These architectures offer significant
advantages for military and Information Technology (IT) op-
erations in terms of data processing efficiency, survivability
(as highlighted in [3]), and overall improvement in military
mission effectiveness [4].

The North Atlantic Treaty Organization (NATO) Informa-
tion Systems Technology (IST)-168 Research Task Group
(RTG) "Adaptive Information Processing and Distribution to
Support Command and Control" has analysed the performance
of various cloud distributions for container workload orches-
tration in (simulated) Tactical Edge Environments (TEEs) [5].
The findings suggest that state-of-the-art, commercial off-the-
shelf, Kubernetes-based orchestrators could be deployed in
a federated and adaptive cloud architecture to facilitate data
sharing and processing capabilities among mission partners
over disadvantaged tactical networks.

Building on the outcomes of the IST-168 RTG, the NATO
IST-193 RTG "Edge Computing at the Tactical Edge" has
further developed an architecture for deploying federated
cloud architectures in disadvantaged TEEs. Recognizing the
limitations of static solutions for deploying edge services due
to unpredictable availability of edge computing resources and
network connectivity at the tactical edge, an adaptive tactical
edge computing solution has been developed and analysed.
This solution enables services (workloads) to be adaptively
and dynamically deployed across the federations of edges in
the TEE, taking into account the instantaneous TEE situation
of workload requirements and edge processing and networking



resources. In this work, we present the results of the NATO
IST-193 RTG on adaptive tactical edge computing.

This paper details the architectural implementation and
provides an analysis of the benefits of such an adaptive
solution, along with the associated overhead and performance
costs. The structure of the paper includes a discussion of
the broader perspective on adaptive tactical cloud comput-
ing in Section II, covering its objective, architecture, and
performance parameters. Section III addresses an illustrative
and representative scenario together with the experiment set-
up, while Section IV presents and assesses the experimental
results. Finally, Section V provides the overarching discussion,
conclusions and outlines future work.

II. APPROACH: OBJECTIVES, ARCHITECTURE AND
PERFORMANCE PARAMETERS

The objectives and the architectural approach of the NATO
IST-168 and IST-193 RTGs for adaptive tactical edge comput-
ing have previously been described in [2], [5]. The following
recapitulates this approach, with an emphasis on the capabil-
ities to support adaptivity in TEEs.

A. Objective: Adaptive Workload Deployment in TEEs

Coalition tactical operations involve diverse mission part-
ners with varying access control policies and security measures
for the processing and networking resources available in
their tactical clouds. Balancing the need for each mission
partner to maintain sovereignty over its own resources with the
challenges of jointly optimizing the use of those constrained
resources for data processing is therefore a key objective in
improving the information posture at the tactical edge.

The primary objective of the architecture for tactical edge
computing is to optimize adaptivity in information processing
and workload orchestration across a federation of tactical
clouds, ensuring fine-grained resource control for mission
partners while encouraging resource sharing.

B. Architecture: Federated Tactical Edges

In the IST-168 study [2], the architectural principles and
artifacts were described for the implementation of a feder-
ated cloud architecture in coalition TEEs. Individual clouds
share their internal resources with other clouds in the federa-
tion through well-defined Application Programming Interfaces
(APIs). This enables standardized inter-cloud interactions
and communications, prevents compromising each partner’s
sovereignty with respect to information about availability of
services, resources, and ability to deploy workloads, and al-
lows a vendor-agnostic approach ensuring interoperability and
compatibility among partner clouds. Standards-based cloud
container technology is to be used like the Open Container
Initiative (OCI).

Within each individual cloud, Kubernetes-based orchestra-
tion can be used for intra-cloud workload deployment orches-
tration [5]. This paper focuses on the costs and benefits of
adaptive orchestration of workloads between the clouds in
the federation, i.e. adaptive inter-cloud workload deployment

orchestration. Fig. 1 depicts the proposed high-level architec-
ture [2].

This architecture relies on the already deployed Kubernetes
infrastructure, with additional architectural services that are
responsible for federation by exposing specific capabilities
through APIs across all clouds in the federation. Communi-
cation between such services within a Kubernetes instance is
handled through Custom Resource Definitions (CRDs). When
one of these services updates a CRD, another will have a
watcher for it and, therefore, be triggered to action. As the
figure shows, four architectural services are deployed on each
cloud:

• Federated Resource Discovery (FRD) - The FRD API
provides information on both available services (available
for deployment and already deployed) and resources
(e.g., CPUs, RAM, storage). It queries its own cloud
and other available clouds to collect and aggregate this
information. Additionally, it exposes resource and service
information about its own cloud through an external API
after applying any policy constraints.
Each instance of the FRD queries its own cloud and other
clouds in the federation by invoking the API of the FRD
in each cloud. The FRD utilizes the Kubernetes API to
fetch locally available resources and running services.
Furthermore, it communicates with Harbor [6], which
is an open source registry for Kubernetes, to fetch the
services available for deployment in each cloud. It also
queries SENSEI [7] to fetch network link metrics between
cloud instances. These calls result in updating, creating,
or deleting various Custom Resources (CRs) based on
the CRDs that were defined for the FRD. These CRs
are Cloud Resources, Service Definitions, and Service
Instances. A Cloud Resource contains information on
CPUs, RAM, storage, and network links connecting to
the other known federated clouds. Service Definitions,
instead, provide information about what services are
available for deployment in each cloud, while Service
Instances provide information about the services deployed
in each cloud. The CRDs are updated every n seconds,
where n is a configurable parameter.

• Federated Adaptive Orchestrator (FAO) - The FAO is
responsible for creating deployment plans across the
federation. These plans are developed based on the infor-
mation provided by the FRD. The FAO does not expose
an external API.
The FAO is triggered upon the creation of a Federated
Workload, a CR that specifies a workload. This workload
may include several services, outlining their requirements
in terms of computational resources (e.g., CPU) and
connectivity (e.g., at least 1 Mbit/s between Service A
and Service B). Essentially, a Federated Workload tells
the FAO the necessary services to accomplish a specific
task, and whether to utilize services already deployed
within the federation or to initiate new instances. The
FAO then generates a Federated Deployment, which is



Fig. 1: High-level architecture for adaptive inter-cloud workload deployment orchestration.

also a CR. Given the dynamic nature of TEEs, the FAO
continuously monitors the Federated Deployments it has
established. If changes occur, such as a cloud going
offline that affects a Federated Deployment, the FAO
promptly revises its previous decisions and, if feasible,
reallocates those services elsewhere within the federation.

• Federated Service Deployment (FSD) - The FSD is re-
sponsible for deploying services, e.g. a database, either on
its own cloud or on other available clouds. A request for
deployment can be initiated by either its own orchestrator
or by another FSD. An instance of the FSD is deployed
on each federated cloud. It also exposes an external API
with policy constraints for communicating between all
FSDs. On each cloud the FSD monitors—by using the
Kubernetes API—the Federated Deployments generated
by the FAO. A Federated Deployment contains informa-
tion about which services should be deployed where. If
a new service is to be deployed, there are two options.
First, the service is to be deployed locally from the point
of view of the FSD. If the service is available in the
local registry, it is deployed using Helm [8]. Second,
the service is to be deployed in a remote cloud. In this
case, the FSD checks if the requested Service Definition
is already available in the remote cloud. If so, it calls the
remote FSD to do a deployment of that service. If the
Service Definition is not available, it fetches the service
Definition, Helm chart and OCI images from the local
registry and send this data to the remote could, where it
gets pushed into the remote repository. Then, it calls the
remote FSD to do a deployment of that service on the
remote cloud.

• Trust Resource Management (TRM) - The TRM is re-
sponsible for monitoring activities in a single federated
cloud and updates its policies that other services, namely
the FSD, FRD, FAO, must enforce. It does not expose
an external API. The TRM collects security monitoring
information, or metrics, such as from the cloud ingress
controller, from Kubernetes, and from the other intra-
cloud services; primarily the FRD and FSD, via the
CRDs. The TRM uses these security metrics to compute

trust values in the range [0, 1] for all partner clouds in
the federation. The trust values are dynamically updated
as the TRM observes the outcomes of interactions and
resource sharing with partner clouds. It then updates its
own CRD, i.e., Federated Trust, with these trust values for
use by other intra-cloud services, for example the FAO,
to assist with decision-making. The TRM also manages
access control policy, which may be either pre-configured
or trust-based. Thus partner clouds in the federation may
be granted differing levels of access to information about
resources and to resources themselves. To compute trust
values, the TRM must collect per-partner-cloud security
metrics. This functionality is enabled by an authenti-
cation and identity management system that links each
interaction and deployed service to its originator in the
federation. In Fig. 1 the shading of the TRM service
differs from that of the FRD and FSD service, indicating
that the TRM service will be developed further in the
IST-193 RTG project. It is out-of-scope in the remainder
of this paper.

To enable cross-cloud service deployment in an adaptive
federated cloud infrastructure, the two APIs exposed by the
FRD and the FSD service must be identical across all clouds.
While the internal implementation of each service may vary
among clouds, the approach for implementing each service as
outlined above should be regarded as a reference implemen-
tation.

C. Performance Parameters: Adaptivity Costs and Benefits

The drawbacks associated with static solutions for deploy-
ing edge services serve may be addressed by the dynamic
deployment of services (workloads) across a federation of
tactical clouds, referred to as adaptive tactical edge computing,
enhancing the information posture at the tactical edge. The
remainder of this paper considers the validity of this approach.
In particular, experiments were conducted to assess the advan-
tages and drawbacks of adaptivity in the tactical edge, focusing
on a set of adapitivity benefits and cost performance metrics:

1) Adaptivity Benefit Metrics: The (main) metric expressing
the benefits of adaptivity in a TEE is the performance gain for
concurrent service requests. This metric expresses the number



of service requests that can concurrently be handled within
the boundaries of acceptable and practically usable service
response times. As such, it shows the advantages of using the
(adaptive) tactical edge computing approach for end-users.

2) Adaptivity Cost Metrics: The (main) cost metrics to
support adaptivity in a TEE are the bandwidth impact, the
time efficiency of the FAO service and the performance cost
of the FRD, FSD, and FAO services:

• Bandwidth impact: The bandwidth impact is due to the
continuous interactions between the edges for querying
the resources available and monitoring of the service
status (by the FRD service) and for initiating deployment
of services across clouds (by the FSD service). More-
over, the SENSEI tool requires continuous interactions
to monitor the status of the connectivity infrastructure at
the tactical edge.

• Time efficiency of the FAO service: This assesses the du-
ration required by the FAO service to create a deployment
plan (i.e., Federated Deployment) or update existing plans
in response to changing conditions, such as a cloud going
offline or changes in mission priorities.

• Performance cost of the FRD, FSD, and FAO services:
This delves into the examination of the CPU and memory
usage of the FRD, FSD, and FAO services and the
network bandwidth usage of the FRD and FSD services
(which are the only ones that require inter-cloud commu-
nications).

It is important to note that the actual instantiation of services
and distribution of data sets in the adaptive federated cloud
also depend significantly on the size of the containerized
services and the volume of data to be distributed. However,
since various use cases involve different service and data sizes,
this aspect will not be the focal point of the performance
assessment of adaptivity discussed in the remainder of this
paper. Furthermore, it is assumed that the services are pre-
configured and available at each cloud, eliminating the need
to account for their distribution in the analysis of adaptivity
within the federated cloud environment. An illustrative and
representative video analysis scenario will be presented in the
subsequent section.

III. EXPERIMENTS: SCENARIO AND SET-UP

A. Scenario: Vehicle Recognition and Tracking

The illustrative and representative scenario for the assess-
ment of the adaptivity performance parameters involves a
joint NATO military mission in an urban area. The mission
partners operate a federated and adaptive infrastructure as
described in the previous section. The amount and type of
processing resources and the trust level of the individual
mission partner’s edge instances may differ. A dismounted
soldier sees a suspicious car speeding away from its location.
The scenario is composed of two stages.

In the first stage, the soldier takes video footage of the car.
The soldier issues a report of the event to the mission Head
Quarters (HQ). The video is uploaded to a nearby vehicle of

TABLE I: Bandwidth and video size parameters

Parameters Value
EC-to-HQ Available Bandwidth 256 Kbit/s
EC-to-EC Available Bandwidth 1 Mbit/s

Low-Resolution Video Size 0.5 MB
High-Resolution Video Size 13.0 MB

the soldier’s nation, being part of the federated and adaptive
tactical cloud. The report to the HQ doesn’t include the license
plate number of the car as it is not recognizable from the video.
The HQ decides to conduct follow-up actions that require a
processing-intensive License Plate Recognition (LPR) service
on the video data. The LPR service is already deployed at
the HQ but cannot be deployed in the cloud storing the video
footage, due to insufficient resources in that cloud. Hence, the
FRD service in the soldier’s cloud is invoked and queries the
FRD APIs running in the mission partner’s clouds for getting
information on which services and resources are available
across the federation. Accordingly, the FAO formulates a
deployment plan that may either necessitate a new deployment
of the LPR service or allow for the reuse of the existing
instance at the HQ, depending on the current conditions.
Subsequently, the FSD behave accordingly. The FRD regularly
provides status monitoring information to the FAO which may
opt for re-deployment in case of failed execution, e.g. in case
the status of the cloud or connectivity conditions in the TEE
change. The results of the LPR service are returned to the
soldier’s cloud for further handling and distribution.

In the second stage, the car is identified as ’suspicious’
and it is decided to track the car throughout the city by
means of detecting the same license plate for video footage
from camera’s mounted on other mission partner’s vehicles
and therefore originating in other edges of the federated
cloud infrastructure. As the various edges may have many
vehicles with mounted cameras, multiple concurrent requests
to the LPR service may be needed originating from the same
edge. Alernatively, the car may be tracked by analyzing street
camera video footage, similarly leading to multiple concurrent
requests to the LPR service.

We assumed that the HQ is connected with the federated
tactical clouds at the edge, henceforth defined as Edge Clouds
(ECs), through satellite communications, while the ECs are
interconnected with each other via military radios, which
typically offer better connectivity than satellites. Table I lists
the configured available bandwidth in both cases, i.e., EC-to-
HQ and EC-to-EC, and describes the two videos used in the
experiments. These videos have identical content but vary in
video quality, which is responsible for the difference in their
sizes. The video was recorded by a street camera capturing
the back of a car speeding away in a Unity simulation. It is
worth noting that the bandwidth is not shared. This means that
each EC has a dedicated 256 Kbit/s link available to the HQ
and each EC-to-EC pair has a dedicated 1 Mbit/s link.



Fig. 2: Tactical edge cases: no tactical edge (l), static tactical edge (m) and adaptive tactical edge (r).

B. Experiment Set-up: Primary Components

The adaptivity performance assessment requires an exper-
iment set-up that resembles a realistic TEE with various
tactical edge cases under disadvantaged network conditions,
as depicted in Fig. 2.

The testbed is composed of four clouds, each owned by a
different mission partner. These include three mission partner’s
clouds (designated as EC1, EC2, and EC3) and one cloud
functioning as the HQ. In each cloud, there are three Virtual
Machines (VMs): one serving as a Kubernetes control plane
and two as workers. Every VM is equipped with 2 vCPUs,
4 GB of RAM, and 64 GB of storage. Within each cloud,
there are no communication constraints among the VMs (i.e.,
between the control plane and the workers). The HQ differs
from the mission partner clouds in that its worker VMs
have enhanced resources, with each worker equipped with 4
vCPUs and 8 GB of RAM. The testbed was provisioned and
configured in a reproducible manner using Terraform [9] and
Ansible [10], respectively.

The following components have been deployed on the
testbed:

• Network Emulation (EMANE)
The emulation of the TEE is achieved using EMANE
(Extensible Mobile Ad-hoc Network Emulator) [11].
EMANE is an open-source network emulator that can be
used to apply a variety of communication effects. In this
particular configuration, EMANE is used to control the
characteristics of the network link between each partner
cloud to the other partner clouds. To achieve network
isolation, a unique VLAN ID is assigned to each cloud,
ensuring that each operates within its isolated network
segment. When communication is required, EMANE
performs the packet forwarding from the sender VLAN
to the receiver VLAN, enabling communication between
the designated parties. In addition, communication effects
that may be applied include capacity constraints for
unicast and multicast traffic (bits/sec), latency (millisec-
onds), packet loss (0-100%), jitter (milliseconds), and
ordered delivery. For this particular experiment, only the
capacity constraints were specified. Specifically, EMANE
was used to constrain EC-to-HQ and EC-to-EC commu-
nication links as specified in Table I.

• Network Sensing (SENSEI)

SENSEI (for Smart Estimation of Network State Infor-
mation) [7] is a microservice-based framework designed
to perform network resource discovery and distribution
over constrained tactical networks. By relying on traffic
exchanged between SENSEI instances and by other appli-
cations, SENSEI can passively estimate network metrics
that describe the link between groups of nodes, such as
network latency, bandwidth, and throughput. SENSEI’s
passive approach to network discovery is particularly
important in the context of resource-constrained links
because it enables network awareness without saturating
links that can already be congested. Moreover, SEN-
SEI implements adaptive algorithms that control which
information is exchanged between instances based on
relevance and available resources. SENSEI’s information
is provided to applications designed to perform network-
aware adaptation through a Representational State Trans-
fer (REST) interface.

• License Plate Recognition (LPR) service
The LPR service is a distributed Deep Learning (DL)
application designed for recognizing license plates in
video footage. It identifies and extracts the characters
from each license plate detected, employing a distributed
architecture integrating several components.
The License Plate Recognition service (LPR) application
comprises four distinct, containerized services: the Li-
cense Plate Detector (LPD), the Optical Character Recog-
nition (OCR) service, a Neural Autonomic Transport Sys-
tem (NATS) [12] server, and a MinIO [13] instance. The
LPD and OCR services, which are the core components,
utilize two separate DL models performing their respec-
tive duties. The NATS server enables a publish-subscribe
messaging pattern to facilitate communication between
LPD and OCR services. Meanwhile, the MinIO instance
manages the storage and retrieval of video footage.
Upon initialization, the LPD service loads a customized
Ultralytics Yolo [14] model, specifically trained for li-
cense plate detection. The OCR service, instead, initial-
izes the Tesseract Open Source OCR Engine [15] with
the most recent and accurate Tesseract Long Short-Term
Memory (LSTM) English language model available.
The LPR service accepts processing requests through
its API. These requests include the MinIO instance’s



TABLE II: Response time [s] of LPR service: No Tactical Edge vs. Static Tactical Edge

Case Video Size No. of Concurrent Requests (CRs)
1 2 3

No Tactical Edge (HQ-to-EC communications, 256 Kbit/s) 0.5 MB 150.28 ± 1.63 179.61 ± 5.67 224.55 ± 3.44
13 MB 616.15 ± 1.16 660.95 ± 1.75 1072.35 ± 11.63

Static Tactical Edge (EC-to-EC communications, 1 Mbit/s) 0.5 MB 150.94 ± 1.21 159.08 ± 2.90 208.31 ± 5.60
13 MB 312.82 ± 2.89 316.21 ± 4.86 443.45 ± 4.12

address, along with the specific bucket and object name
referencing the video. After retrieving the object, the LPR
processes the video frame-by-frame. For each detected
license plate, an asynchronous request is published on
the “OCR subject” via the NATS system. This request
contains an encoding of the grayscale-converted segment
of the frame within the predicted bounding box. Upon
receiving a request, the OCR service performs a series
of morphological transformations on the detected area to
diminish image noise and extract a clear Region of Inter-
est (RoI). The Tesseract model then processes this refined
image as a single line of text. The resulting text string is
sent back in response to the request. After processing all
frames, the LPR service sorts the received strings from
the OCR based on their frequency of occurrence. The
final response to the processing request comprises these
ranked and sorted strings, completing the recognition
process for the given video.

IV. RESULTS: ADAPTIVE TACTICAL EDGE COMPUTING

In Section II-C, the metrics for both the benefits and costs
of the proposed adaptive edge computing architecture have
been described. The results of the benefits and cost analysis
on these metrics are addressed in the subsequent paragraphs
of this section.

A. Adaptivity Benefits

The benefits of the adaptive edge architecture is expressed
by means of the performance gain in concurrent service
requests in terms of service response times. To this end,
Table II shows the response times for the requested license
plate result as returned to the requesting Edge Cloud (EC),
i.e. EC1 as depicted in Fig. 2 which the soldier taking part
in. The results presented in the table are averaged over 10
experiment runs. The measured response times consist of
the transfer times of the video files and the processing time
for the LPR service. The measured transfer times of the
video files correspond well to the values as also theoretically
calculated, the measured processing time for the LPR service
is approximately 2 minutes and 30 seconds for both the low-
resolution (i.e., 0.5 MB) and high-resolution (i.e., 13.0 MB)
video sizes.

The table includes two cases. For the first case, only the
HQ hosts an LPR service instance, i.e. no tactical edge is
used as depicted in the left image in Fig. 2. It has to serve
both the LPR service requests coming from EC1 for the first
stage of initial vehicle recognition and the concurrent LPR
service requests stemming from EC3 for the second stage of

the vehicle recognition and tracking scenario as described in
Section III-A. For the second case, the LPR service instances
in the tactical edge can be used as depicted in the middle
image in Fig. 2. This can be done for both stages of the vehicle
recognition and tracking scenario.

As the table shows, a significant performance gain for
using a tactical edge is already achieved when simulaneously
executing a limited number of concurrent service requests.
This is due to the required times for data transfer of the
video files from the edge to the HQ and the LPR service
processing time. Note that in the case of multiple concurrent
service requests, the entire video is processed by different
LPR service instances. The rationale is to simulate a scenario
where different videos, potentially recording the target car,
are available at various locations. Adaptivity in the edge
architecture may take care of dynamic transtion from the first
to the second case when the response times for the LPR
service running at the centralized HQ become too large to
be of practical use.

Similarly, the performance gain of adaptivity in the edge ar-
chitecture arises when a tactical edge running the LPR service
instances becomes completely unavailable, for example, due
to adversarial activities or moving out of range, resulting in a
loss of connectivity to the rest of the network. Consequently,
in such cases the service becomes inaccessible, underscoring
the importance of adaptive orchestration in such a dynamic
environment. This adaptation is crucial for leveraging the
benefits of edge computing while ensuring service availability
over time. This situation is depicted in the right image in
Fig. 2.

B. Adaptivity Costs

The cost implications of the adaptive edge architecture
are quantified by evaluating several factors. These include
the bandwidth impact of the FRD and FSD services, and
SENSEI, the time efficiency of the FAO service, as well as
the performance cost, specifically CPU and memory utiliza-
tion, of the FRD, FSD, and FAO services. These services
were configured to expose the necessary metrics, which were
subsequently collected using Prometheus [16]. Prometheus
is a monitoring system and time series database designed
to periodically scrape metrics from Kubernetes and services
deployed through Kubernetes. The data for this analysis were
collected over a 10-minute time window. EMANE was used
to make EC2 go offline.

The bandwidth impact is due to the inter-cloud interactions
of the FRD service, the FSD service, and SENSEI. The
amount of incoming and outgoing data depends on several



TABLE III: Inter-cloud bandwidth impact of the FRD, FSD,
and SENSEI services

Service Traffic In [Bytes/s] Traffic Out [Bytes/s]
FRD 246.75 21.62
FSD 0 0.33

SENSEI 1545 1545

factors, including the number of federated clouds in the
TEE, the frequency of the interactions, and the amount of
data being transferred per interaction. Both the FRD service
and SENSEI interactions are bilateral (peer-to-peer) between
the federated clouds, therefore the bandwidth impact will
be linearly dependant on both the number of clouds in the
federation and the interaction frequency. For the FRD service,
the amount of data being transferred per interaction depends
on the number of resources being exchanged in the format of
CRs (see Section II-B) and the protocol used, with a non-zero
lower boundary in case of no CRs being included. The FSD
service only needs interactions when a new service instance
is being deployed. Table III details the inter-cloud bandwidth
impact of the FRD, FSD, and SENSEI services.

The table illustrates that the bytes sent and received by the
system are minimal, measured in the order of bytes. Specif-
ically, an average FRD instance sends approximately 21.66
bytes/s to gather information from other clouds, and in return,
receives about 246.75 bytes/s. In more complex scenarios, the
bandwidth impact could be more significant. However, it’s im-
portant to note that these exchanges could be optimized further.
One approach could be to implement strategies that reduce
the frequency of updates, such as not transmitting an update
unless there’s a substantial change from the previous version.
Another option could be to explore different applications and
serialization protocols. The current version of FRD utilizes
HTTP request/response mechanisms with JSON serialization
for the body content. The impact of the FSD on bandwidth
is around 0 because it generates traffic only when the FAO
service creates or updates a Federated Deployment. In this
experiment, there was a single update, i.e., when EC3 went
offline. The overhead caused by SENSEI is more significant
and in the order of a few Kilobytes. Each instance sends
an average of 1545 bytes per second to each neighbor. This
data is used to convey network statistics and estimates about
the link with the involved neighbor. Most of the footprint is
caused by the fact that there is no significant other traffic that
SENSEI can leverage to perform packet pair estimation (this
traffic would have to be generated by a middleware capable
of sending packet pairs, for example using the Mockets [17]
transport protocol), thus forcing the service to periodically
inject probes to estimate bandwidth. This overhead could be
further reduced by limiting updates to network changes or
increasing the time between estimations. SENSEI additionally
offers two other operational modes: fully passive and on-
demand. In the fully passive mode, SENSEI generates reports
only when it accumulates sufficient information, potentially
resulting in operating with outdated network knowledge. On

TABLE IV: Time efficiency [s] of the FAO service

Percentile
50th 75th 90th 99th 99.9th
0.65 0.77 0.94 2.13 2.46

the other hand, the on-demand mode prioritizes obtaining a
current view of the network status, albeit with the downside of
significant delays in the inference process. These modes cater
to various scenarios; for instance, the fully passive mode may
be suitable for emission control tasks where occasional delays
are acceptable. However, it’s important to note that while these
modes are integral to SENSEI’s functionality, they were not
the primary focus of this work.

Table IV showcases the time efficiency of the FAO service.
On average, the FAO service takes about 661 ms to update
its decision plans. 99.9 % of the updates took at most 2.46 s.
These data are related to over 10000 updates carried out by the
FAO service. In this case, the update was the reallocation of the
LPR service from EC3 to EC2, triggered by EC2 going offline.
This duration accounts for the time taken by the FAO service
from the moment the FRD service updates the resources,
to the point where the FAO modifies its existing Federated
Deployments. The resource allocation algorithm in its current
iteration is implemented in Python with the OR-Tools CP-SAT
solver [18]. If the solver finds multiple solutions, indicating
that several deployment plans are available, the current imple-
mentation of the FAO prioritizes maximizing trust. In these
experiments, each cloud was assigned a static trust level, i.e., a
number between 0 and 1. In scenarios with a larger number of
clouds, there is a possibility that this implementation might not
scale effectively. For these more complex scenarios, Machine
Learning (ML) algorithms could offer a more feasible solution
to create and update deployment plans within a reasonable
timeframe.

The performance cost of the FRD, FSD, and FAO services
includes both CPU and memory utilization. In this regard,
Table V provides the CPU and memory utilization for each of
these services. As shown, such services are very frugal. More
complex scenarios may be more challenging, especially from
the FAO perspective, which would be needed to make more
difficult and/or frequent orchestration decisions.

V. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

This paper has presented the overall architecture and de-
scribed the major components that are part of the adaptive and
federated cloud computing framework developed by the IST-
193 Research Task Group. A specific exemplar problem was
introduced and used as the basis for analysing the performance
benefits as well as the overhead involved in the adaptivity
mechanisms for the architecture. Based on the results as
presented in this paper, it may be observed that:

• The communications links at the tactical edge are often
constrained and become the limiting factor for handling
large volumes of sensor data generated at the edge.
Tactical edge computing helps to address this problem



TABLE V: CPU and memory performance cost of the FRD,
FSD, and FAO services

Service CPU [milliCPU] Memory [MB]
FRD 230 106.05
FSD 20 241.61
FAO 30 119.43

by processing the data at or close to the point of gen-
eration, thereby improving response times and overall
performance. This can be observed by the reduction in
the response time as the number of concurrent requests
increases.

• Static solutions that do not adapt dynamically to changing
circumstances will fail due to the high variability that
typically occurs at the tactical edge. Node mobility and
adversarial actions may cause network disconnections
as well as node failures, which can cause statically
deployed solutions to fail. Hence, a dynamic approach
is necessary that can re-orchestrate deployed workflows
when circumstances change.

• The bandwidth impact and performance cost of the
federated FRD, FSD and FAO services for introducing
adaptivity in the federated tactical edge is relatively
low. Hence, adaptivity may yield high benefits at low
performance cost.

Note that the experimental network used in this paper was
fairly simple, with just a handful of nodes. Hence, the time-
efficiency of the FAO service for the configurations explored
in this paper is low. Further analysis is needed, taking into ac-
count more advanced FAO algorithms based on ML concepts.

Moreover, as future work, we intend to explore additional
TEE scenarios that could benefit from adaptive and federated
tactical edge computing. One area to explore is training or
retraining ML models at the edge with data that is collected at
the edge. We also intend to further integrate the Trust Resource
Management (TRM) capability, which will keep track of the
trust level of different federated clouds and influences the FAO
in the decision-making process.

Finally, we intend to perform additional experimentation
within the Anglova scenario [19], which will provide a larger
and dynamic TEE, requiring a more continuous adaptivity
mechanism. The Anglova scenario will allow us to conduct
a comprehensive analysis of the proposed architecture’s adap-
tivity costs, scalability, and robustness, factoring in a realistic
number of nodes and the effects of node mobility. We also plan
to experiment with other resource allocation algorithms, for
example, that leverage Multi-agent Reinforcement Learning
(MARL) concepts.

ACKNOWLEDGMENT

The work presented in this article is being done as part of
the IST-193 RTG "Edge Computing at the Tactical Edge". We
would like to thank the NATO IST-Panel for providing us the
opportunity to do this highly relevant and interesting research
and the individual participating partners for providing valuable
inputs within a stimulating and cooperative setting.

REFERENCES

[1] M. Tortonesi, A. Morelli, M. Govoni, J. Michaelis, N. Suri, C. Stefanelli,
and S. Russell, “Leveraging internet of things within the military
network environment — challenges and solutions,” in 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT), 2016, pp. 111–116.

[2] H. Bastiaansen, J. v. d. Geest, C. v. d. Broek, T. Kudla, A. Isenor,
S. Webb, N. Suri, M. Fogli, B. Canessa, A. Masini, R. Goniacz, and
J. Sliwa, “Federated control of distributed multi-partner cloud resources
for adaptive c2 in disadvantaged networks,” IEEE Communications
Magazine, vol. 58, no. 8, pp. 21–27, 2020.

[3] K. Zaerens, “Enabling the benefits of cloud computing in a military
context,” in 2011 IEEE Asia-Pacific Services Computing Conference,
2011, pp. 166–173.

[4] W. Smith, G. Kuperman, M. Chan, E. Morgan, H. Nguyen, N. Schear,
B. Vu, A. Weinert, M. Weyant, and D. Whisman, “Cloud computing
in tactical environments,” in MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), 2017, pp. 882–887.

[5] T. Kudla, M. Fogli, S. Webb, G. Pingen, N. Suri, and H. Bastiaansen,
“Quantifying the performance of cloud-oriented container orchestra-
tors on emulated tactical networks,” IEEE Communications Magazine,
vol. 60, no. 5, pp. 74–80, 2022.

[6] “Harbor,” https://goharbor.io/, 2023, [Online; accessed 20-12-2023].
[7] R. Fronteddu, A. Morelli, M. Mantovani, B. Ordway, L. Campioni,

N. Suri, and K. M. Marcus, “State estimation for tactical networks:
Challenges and approaches,” in MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), 2018, pp. 1042–1048.

[8] “helm - The package manager for Kubernetes,” https://https://helm.sh/,
2024, [Online; accessed 04-01-2024].

[9] “Terraform - it enables you to safely and predictably create, change, and
improve infrastructure.” https://github.com/hashicorp/terraform, [Online;
accessed 2024-01-05].

[10] “Ansible - a radically simple it automation system,” https://github.com/
ansible/ansible, [Online; accessed 2024-01-05].

[11] “EMANE- Extendable Mobile Ad-Hoc Network Emulator,” https://
github.com/adjacentlink/emane, 2023, [Online; accessed 21-12-2023].

[12] “Nats - the cloud native messaging system,” https://github.com/nats-io,
[Online; accessed 2024-01-05].

[13] “Minio - the object store for ai data infrastructure,” https://github.com/
minio/minio, [Online; accessed 2024-01-05].

[14] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” Jan. 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[15] A. Kay, “Tesseract: An open-source optical character recognition en-
gine,” Linux J., vol. 2007, no. 159, p. 2, jul 2007.

[16] “Prometheus - a monitoring system and time series database,” https:
//github.com/prometheus/prometheus, [Online; accessed 2024-01-05].

[17] N. Suri, M. Tortonesi, M. Arguedas, M. Breedy, M. Carvalho, and
R. Winkler, “Mockets: a comprehensive application-level communica-
tions library,” in MILCOM 2005 - 2005 IEEE Military Communications
Conference, 2005, pp. 970–976 Vol. 2.

[18] “Google or tools - cp-sat solver,” https://developers.google.com/
optimization/cp/cp_solver, [Online; accessed 2024-01-05].

[19] N. Suri, J. Nilsson, A. Hansson, U. Sterner, K. Marcus, L. Misirlioglu,
M. Hauge, M. Peuhkuri, B. Buchin, R. in’t Velt, and M. Breedy, “The
anglova tactical military scenario and experimentation environment,”
in 2018 International Conference on Military Communications and
Information Systems (ICMCIS), 2018, pp. 1–8.


