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First-principles density functional theory (DFT) codes which employ a localized basis offer advantages
over those which use plane-wave bases, such as better scaling with system size and better suitability to
low-dimensional systems. The trade-off is that care must be taken in order to generate a good localized basis
set which is efficient and accurate in a variety of environments. Here we develop and make freely available
optimized local basis sets for two common two-dimensional materials, graphene and hexagonal boron nitride,
for the SIESTA DFT code. Each basis set is benchmarked against the ABINIT plane-wave code, using the same
pseudopotentials and exchange-correlation functionals. We find that a significant improvement is obtained by
including the l + 2 polarization orbitals (4 f ) in the basis set, which greatly improves angular flexibility. The
optimized basis sets yield much better agreement with plane-wave calculations for key features of the physical
system, including total energy, lattice constant, and cohesive energy. The optimized basis sets also result in a
speedup of the calculations with respect to the nonoptimized, native choices.
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I. INTRODUCTION

Two-dimensional (2D) van der Waals (vdW) materials
such as graphene and hexagonal boron nitride (hBN; see
Fig. 1) are at the heart of much recent interest in condensed
matter physics and materials science [1] due to the wealth
of physical phenomena they can exhibit, as well as potential
applications in nanotechnology. One crucial recent advance
in engineering novel properties in 2D materials is stacking
engineering to build stacks of vdW materials with a rela-
tive twist angle or strain (lattice mismatch) between layers,
referred to as “twistronics” or “straintronics” [2]. These elab-
orate structures exhibit an interference pattern known as a
moiré superlattice [3,4]. Devices composed of moiré ma-
terials display macroscopic quantum phenomena, including
correlated phases [5,6], incompressible Hall states [7,8], and
superconductivity [9–13], depending on externally controlled
parameters such as the twist angle [14], electron density, and
electric field. 2D materials also exhibit interesting dielectric
[15,16] and polar properties, such as interfacial ferroelectric-
ity (which was recently proposed [17–19] and experimentally
observed [20–23]), as well as flexoelectricity [24–26], related
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to the mechanical coupling between polarization and strain
gradients.

Many of these interesting properties, in particular in moiré
materials, pose a great challenge for computational modeling,
as the system sizes are typically very large, from tens to hun-
dreds of nanometers, with supercells containing up to tens of
thousands of atoms. For example, for magic angle graphene,
with a twist angle θ ∼ 1.1◦ [3,4,27], the unit cell contains
over 10 000 atoms, which is very computationally demanding
to simulate using many widely available electronic structure
codes that employ ab initio methods such as density functional
theory (DFT). Despite the high computational cost, a number
of ab initio studies of moiré materials have been performed
in recent years, for instance, for twisted bilayers of graphene
[28–31] and transition metal dichalcogenides [32–34].

Another complication is that some of the most widely used
DFT codes, such as ABINIT [35–37], QUANTUM ESPRESSO [38],
and VASP [39], use a plane-wave basis. Although very high-
accuracy can be obtained with these codes because the basis
set can be converged systemically, they might not be well
suited for simulating 2D or semiperiodic systems. Because a
plane-wave basis spans the entire unit cell, the computational
cost scales linearly with the vacuum region required to sepa-
rate periodic images of 2D layers, which is an inefficient use
of computational resources.

First-principles codes which use a local basis set, such
as SIESTA [40–42], OPENMX [43–45], CONQUEST [46], PLATO

[47], ADF [48], CRYSTAL [49], CP2K [50], and ABACUS [51,52],
among others, are more well suited for 2D layered systems.
Local-basis codes require fewer basis orbitals per atom, which
translates into a higher efficiency compared to plane-wave
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FIG. 1. (a) Atomic structure of monolayer graphene. Convergence of (b) the total energy and (c) lattice constant of monolayer graphene
with respect to plane-wave cutoff energy (black), obtained using the ABINIT code. The horizontal lines show the corresponding values obtained
from the native local basis sets using the SIESTA code: single zeta (SZ, red), double eta (DZ, blue), and triple zeta (TZ, green), with (solid) and
without (dashed) polarization (P) orbitals. (d)–(f) the same as (a)–(c) for monolayer hexagonal boron nitride.

codes, and the vacuum region does not increase the compu-
tational cost. Moreover, using a local-basis set enables the
use of linear scaling methods for insulating systems with a
well-defined band gap, which makes it possible to simulate
very large systems, up to hundreds of thousands of atoms,
as implemented in the SIESTA [40–42], ONETEP [53], and
CONQUEST [46] codes, for example. The tradeoff for this
computational advantage is that significant effort is needed
in the preparation of unbiased basis sets, in analogy to the
extra work required to prepare pseudopotentials to describe
the effect of core electrons [54,55]. In general, a good basis set
should be transferable [56]: It should be able to describe the
electronic degrees of freedom of an atomic species in different
environments. Maximum efficiency is achieved by choosing
atomic orbitals that allow convergence with small localization
ranges, but in semiperiodic systems such as 2D materials
and surfaces, they should be sufficiently extended in order
to describe long-range interactions and the decay of electron
wave functions from surfaces into the vacuum [57,58].

A code like SIESTA provides a native basis set with a good
trade-off between efficiency and accuracy, which facilitates
the use of the code for routine studies. However, depending
on the differences in energies between relevant phases in a
particular problem, a more refined basis set might be required.
In some cases, the native basis sets generated by SIESTA might
not result in an accurate description of some material proper-
ties, such as total energy and lattice constant, when compared
to equivalent well-converged plane-wave calculations, even
for simple materials like graphene [see Figs. 1(b) and 1(c)].
This limitation is similar to choosing a low-energy cutoff in
a plane-wave calculation. The native basis, which is localized
on atomic sites, does not sufficiently describe the decay of the
electron density into the vacuum. For the native basis sets, the

total energies can be larger by more than 1 eV with respect to
converged plane-wave calculations, and the difference in the
lattice constant can be larger than 1%.

In this work, we develop optimized basis sets for graphene
and hBN which are a significant improvement on the native
basis sets generated by SIESTA. In SIESTA, higher angular
momentum (l + 1) “polarization orbitals” are typically used
to improve the angular flexibility of electronic orbitals (3d
shell for B, C, N). We find that l + 2 (4 f shell) provides
much greater angular flexibility due to the threefold nature
of graphene and hBN. We optimize basis sets with respect to
size (number of basis functions for valence electrons), spatial
extent (cutoff radii), and angular flexibility (polarization or-
bitals). The optimized basis sets give much better agreement
with similar plane-wave calculations for several important
properties: total energy, lattice constant, electronic bands,
and cohesive energy. The basis sets developed in this work
are freely available [59] and will serve as a useful resource
for the community which will enable accurate larger-scale
simulations involving 2D materials, such as twisted bilayers,
multilayers, and stacks of vdW materials.

II. RESULTS

A. Native basis set

First-principles DFT calculations were performed using
the SIESTA [40] code, with norm-conserving [60] PSML pseu-
dopotentials [61], obtained from PSEUDO DOJO [62,63]. SIESTA

employs a basis set of numerical atomic orbitals [54,55].
Calculations were performed for a series of basis sets of
varying size for both graphene and hBN, where B, C, and
N have 2s and 2p orbitals as valence states. The number of
basis functions Nζ was taken to be from 1 to 4. Using the
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notation of SIESTA Nζ = 1 corresponds to single ζ (SZ),
Nζ = 2 corresponds to double ζ (DZ), Nζ = 3 corresponds to
triple ζ (TZ), and Nζ = 4 corresponds to quadruple ζ (QZ).
The l + 1 polarization orbital, where l refers to the maximum
angular momentum shell occupied in the free atom (the 3d
shells for the elements under consideration), was included and
is denoted by P (SZP, DZP, etc.). In addition, a set of bases
with l + 2 polarization orbitals (4 f ) denoted by F (SZPF,
DZPF, etc.), was generated by solving the Schrödinger equa-
tion for the isolated atoms with the corresponding component
of the pseudopotential, as these l + 2 polarization orbitals for
the elements under consideration are not included in the native
SIESTA basis set sizes.

The atomic orbitals in the basis set of SIESTA are strictly
localized, meaning that they exactly vanish at a given cut-
off radius rc for each of the shells considered. In order to
produce this strict localization on the basis as well as radial
functions that are continuous (with all derivatives continuous)
at the cutoff radii, a soft-confinement potential is added to the
atomic Hamiltonian used to generate the basis orbitals. The
functional form proposed in Ref. [54] is given by

V (r) = V0

exp
[
− rc−ri

r−ri

]

rc − r
. (1)

This soft-confinement potential is flat (zero) in the core re-
gion, starts off at some internal radius ri with all derivatives
being continuous, and diverges at rc, ensuring the strict local-
ization there. In the native basis set, the value of the prefactor
V0 and the inner radius ri are fixed to 40 Ry and 90% of
the cutoff radii of the corresponding shell, respectively. They
will be taken as variational parameters when the basis set is
optimized in the following section.

A Monkhorst-Pack k-point grid [64] of 20 × 20 × 1 was
used in all calculations, and a fine real-space grid was used,
determined using a mesh cutoff of 1000 Ry. The Perdew-
Burke-Ernzerhof exchange-correlation (XC) functional [65]
was used in all calculations, from LIBXC [66,67]. A vacuum
spacing of 40 Å was used in all calculations.

Geometry relaxations were performed with each basis set
in order to determine the total energy and equilibrium lattice
constant. The out-of-plane lattice vector (in the direction of
the vacuum) was held fixed, and the angle between the in-
plane lattice vectors was held fixed at 60◦. The length of
the in-plane lattice vectors was relaxed with the constraint
|a1| = |a2|. The thresholds for the maximum component of
the force on any atom and the maximum component of the
stress were fixed to 0.1 meV/Å, and 10−4 GPa (6.24 ×
10−6 eV/Å3). Calculations were also performed using the
ABINIT [36,37] code, which employs a plane-wave basis, with
the same PSML [61] pseudopotentials, which are compatible
with both codes with the same decomposition into a local
part and nonlocal Kleinman-Bylander projectors, the same
XC functional, and a vacuum spacing of 40 Å. Geometry re-
laxations were performed in order to calculate the total energy
and equilibrium lattice constant as a function of plane-wave
energy cutoff, from 400 to 2000 eV.

The total energy and lattice constant as a function of basis
set size from SIESTA and as a function of energy cutoff from
ABINIT are shown in Fig. 1. The native bases available in

SIESTA are shown, ranging from SZ(P) to TZ(P). There is
a large disagreement between the codes for both the total
energy and lattice constant. Even for the largest native basis
set (TZP) [68], the total energies differ by over 0.5 eV, and
for the smallest basis set (SZ), the energies differ by about
3.5 eV. The difference in the lattice constant (expressed as
strain) ranges from 0.5% to as large as 4%.

B. Basis set optimization

Basis sets were optimized using the simplex algorithm
[69], following the methodology described in Ref. [54]. Dur-
ing the search for the optimal parameters, the atomic geometry
was held fixed. In particular, the lattice constants were set to
the optimal values from ABINIT (2.466 Å for graphene and
2.504 Å for hBN). For these frozen geometries, the total en-
ergy was minimized with respect to several parameters which
define the basis set, in particular with respect to (1) the cutoff
radii of the orbitals (which control the range of the basis set),
(2) the prefactor and the inner radii of the soft-confinement
potentials given in Eq. (1) (used to optimize the shape and lo-
calization of each angular momentum orbital separately [54]),
and (3) the net charge of the different atomic species. Indeed,
the shape of an orbital is also sensitive to the ionic character
of the atom. Orbitals in cations tend to shrink, and orbitals in
anions tend to expand. A parameter δQ is introduced in the
basis for each species, resulting in orbitals better adapted to
ionic situations in condensed systems [54]. For each atomic
species a global δQ, an extra positive or negative charge, is
added to the atom at the time of solving the atomic DFT
problem to obtain the basis orbitals. The extra charge and the
confinement potentials are used only to generate the basis;
they are not added to the Kohn-Sham Hamiltonian of the
system.

Finally, the concept of basis enthalpy is used to tune
how localized or extended the basis set is [55]. For low-
dimensional systems, the basis set must be sufficiently
extended such that it describes the decay of the electron wave
functions into the vacuum correctly. In order to achieve this,
an extra term pbasisVorbs was added to the total energy to define
enthalpy, where Vorbs = 4π

3

∑
μ r3

c,μ is the total volume of the
basis set, where rc,μ is the cutoff radius of the basis function
μ and the sum is over all basis functions, and pbasis is the
fictitious “basis pressure,” which is used as a tuning parameter.
The minimization of this enthalpy (instead of the total energy)
ensures a good trade-off between accuracy and the range of
the basis set. A value of pbasis = 0.03 GPa was used in order to
obtain sufficiently extended bases for 2D materials (the native
value is pbasis = 0.2 GPa).

Optimized basis sets were obtained for monolayer
graphene and hBN, from SZ to QZ, using P (3d) and PF
(3d + 4 f ) polarization orbitals.

C. Comparison of the optimized basis with plane waves

A series of tests was performed in order to compare the op-
timized basis sets to the native ones, as well as to check which
yield better agreement with respect to the ABINIT calculations.
Figure 2 shows the difference in total energy

�Etot = E − EPW (2)
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FIG. 2. Difference in (a) total energy, (b) lattice constant (expressed as strain η), and (c) cohesive energy of monolayer graphene with
respect to ABINIT plane-wave calculations using a cutoff of 2000 eV for basis sets ranging from SZ to QZ, with P (black) and PF (red)
polarization orbitals. The native basis sets are represented by open circles, and the optimized basis sets are represented by filled circles.
(d)–(f) The same as (a)–(c), but for monolayer hBN.

and strain

η = a − aPW

aPW

(3)

with respect to ABINIT at the largest plane-wave cutoff
(2000 eV) for native and optimized bases and with P and
PF polarization orbitals. For basis sets of size DZ and larger,
a significant improvement of the total energy and lattice
constant is obtained. Including the 4 f orbitals almost al-
ways improves the agreement of the total energy and lattice
constant.

The cohesive energy was calculated as

Ec = Emono −
∑

i

E i
atom, (4)

namely, the energy of the monolayer minus the energies of
the individual atoms in isolation. The individual atoms were
simulated in a cube with a side length of 10 Å for each plane-
wave cutoff for the ABINIT calculations and for each basis set
for the SIESTA calculations. In Figs. 2(c) and 2(f) we show
the difference in cohesive energies computed with a plane-
wave calculation and with a localized atomic orbital code.
The optimized basis sets give cohesive energies in excellent
agreement with plane-wave calculations, excluding SZ, with
diminishing returns above DZ (for reference, the chemical
accuracy for cohesive energy is 1 kcal/mol ∼ 43 meV). The
optimized SZ basis set gives worse agreement than the native
one. A likely reason for this is the basis set superposition
error. The basis sets were optimized for monolayer graphene
and hBN, meaning that the basis functions for the atoms in
one sublattice can improve the description for the atoms in
the other sublattice. This suggests that the SZP and SZPF

basis sets are not sufficiently transferable from the condensed
systems to the isolated atoms.

Additionally, the optimized basis sets give electronic band
structures in excellent agreement with plane-wave calcula-
tions (see Fig. 3).

D. Timing

The computational efficiency of the localized basis sets,
compared to the native ones and the plane-wave calculations,
was also assessed. The benchmarks were performed using
SIESTA and ABINIT, keeping the calculations as similar as pos-
sible. ABINIT version 9.8.4 and SIESTA version 5.0.0 were used,
both of which were compiled using Intel 2021.8 compilers
and the Intel oneAPI Math Kernel Library. As mentioned
previously, both codes used the same PSML pseudopotentials
and the same XC functionals from the same version of LIBXC.
Each individual calculation was run on a single Intel Cascade
Lake core on an isolated node. For the ABINIT calculations,
the convergence criterion for the self-consistent field (SCF)
loop was a difference in total energy less than 10−6 Ha. For
the SIESTA calculations, the convergence criterion was relative
changes of less than 10−4 for both the density matrix and
Hamiltonian. Because the convergence criteria for the two
codes are not equivalent, the wall time per SCF step was
compared: t̄ = twall/NSCF, where twall is the wall time and NSCF

is the number of SCF steps.
SIESTA uses only time reversal symmetry (TRS) to reduce

the number of independent k points. ABINIT uses both TRS
and crystal symmetries, which can greatly reduce the number
of independent k points for systems with a high degree of
symmetry. ABINIT calculations were performed, reducing
the k points with only TRS and with both TRS and crystal
symmetry.
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FIG. 3. Electronic band structure of monolayer (a) graphene and (b) hBN, obtained from ABINIT calculations (black), using a plane-wave
cutoff of 2000 eV, and SIESTA (red), using the optimized DZPF basis set.

Figure 4(a) shows the ABINIT wall time per SCF step as a
function of plane-wave cutoff energy for graphene using both
TRS and crystal symmetry to reduce the k points (blue) and
only TRS (green). The corresponding times from SIESTA using
the DZP and DZPF basis sets, both native and optimized, are
represented by the horizontal lines. Figure 4(b) shows the

timings of SIESTA calculations using basis sets from SZ to
QZ, using P and PF polarization orbitals. The horizontal lines
represent the timings from ABINIT with a plane-wave cutoff
of 1000 eV, roughly where the calculations are converged.
Adding the 4 f polarization orbitals significantly increases the
computational cost. Interestingly, the optimized basis sets lead

FIG. 4. (a) Wall time per SCF step for monolayer graphene with respect to plane-wave (ABINIT) calculations as a function of plane-wave
cutoff (blue line). The horizontal lines show the corresponding wall times for SIESTA calculations using the DZP (black) and DZPF (red) basis
sets, both native (dashed) and optimized (red). (b) Wall time per SCF step for monolayer graphene for SIESTA calculations using native (open
circles) and optimized (filled circles) basis sets from SZ to QZ, using P (black) and PF (red) polarization orbitals. The horizontal blue line
represents the wall time from an ABINIT calculation using a plane-wave cutoff of 1000 eV, for which the total energy and lattice constant are
converged. (c) Wall time per SCF step for Nsc × Nsc graphene supercells for Nsc ranging from 5 to 12. Calculations were performed using
a single k point (�). Plane-wave (ABINIT) calculations are shown in blue. (c) The full range of data; the shaded gray region, plotted in (d),
shows a shorter range of times, highlighting the differences between the SIESTA calculations. The number of atoms in each super cell Natoms is
indicated above. Calculations were run on a single core on an isolated node, using as similar parameters as possible for both codes.
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to calculations that are computationally more efficient than the
native ones; an effect that is likely attributable to the shorter
range of the former set.

For the smaller simulation box (two atoms per unit cell),
when both TRS and crystal symmetry are used in the ABINIT

calculations, the timings are comparable to the ones obtained
with SIESTA. The SIESTA calculations are faster than ABINIT

when the number of k points is reduced using only TRS. This
suggests that the local basis sets are much more efficient for
larger systems, where the number of k points is small (or just
one) and where the number of atoms within the simulation box
increases. We note that the computation of the Hamiltonian
and overlap matrix elements in real space are computed with
order-N scaling in SIESTA. In order to verify this gain in effi-
ciency for larger systems, a series of �-point calculations were
performed for Nsc × Nsc supercells of monolayer graphene,
with Nsc ranging from 5 to 12 for SIESTA and from 5 to 10
for ABINIT. For the larger system sizes the timing difference
between SIESTA and ABINIT grows very rapidly, as shown in
Fig. 4(c). Again, the calculations using optimized basis sets
are faster than the calculations using the native basis sets,
with the difference between them increasing with system size
[see Fig. 4(d)]. The timing tests for hBN calculations yielded
results very similar to those for graphene.

III. DISCUSSION AND CONCLUSIONS

In this work, we investigated the computational efficiency
and accuracy of optimized localized basis sets for 2D mate-
rials, using graphene and hBN as examples. We developed
and make freely available [59] optimized basis sets that will
serve as a useful tool for simulations of 2D materials using
the SIESTA code, in particular for calculations involving large
supercells. We generated optimized basis sets from SZ up to
QZ, including P and PF polarization orbitals. We find that the
4 f (l + 2) polarization orbitals generally improve agreement
with plane-wave calculations. One possible reason for this
is that the 4 f shells may be more appropriate for graphene
and hBN due to their hexagonal nature. Optimizing the basis

sets yielded excellent improvement in the agreement between
energetic and structural properties with respect to converged
plane-wave calculations.

Our timing benchmarks demonstrate that localized basis
sets can also reduce computational cost. Calculations using
local basis sets offer a speedup compared to comparable cal-
culations using a plane-wave basis. Although self-consistency
loops and other computational knobs could be tweaked to
make the performance of each code optimal, this will not
significantly change the overall performance of plane-wave-
based codes relative to that of local-basis codes. While ABINIT

has the ability to further reduce the number of k points with
crystal symmetries beyond TRS, significant savings are ob-
tained when the number of k points in the two calculations
is equivalent. In particular, dramatic savings are obtained for
�-point calculations using large supercells. The optimized
basis sets yield faster calculations while still maintaining good
agreement for a range of material properties.

In summary, the use of optimized localized basis sets in
the SIESTA code offers advantages over plane-wave alterna-
tives, particularly in terms of computational efficiency. For
2D materials such as graphene and hBN, the optimized sets
developed here provide a balance between computational cost
and precision, making them a useful resource for future large-
scale calculations.
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