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Abstract  This study presents an innovative 
approach to high-resolution land cover classification 
using deep learning, tackling the challenge of work-
ing with an exceptionally small dataset. Manual anno-
tation of land cover data is both time-consuming and 
labor-intensive, making data augmentation crucial for 
enhancing model performance. While data augmen-
tation is a well-established technique, there has not 
been a comprehensive and comparative evaluation 
of a wide range of data augmentation methods spe-
cifically applied to land cover classification until now. 

Our work fills this gap by systematically testing eight 
different data augmentation techniques across four 
neural networks (U-Net, DeepLabv3 + , FCN, PSP-
Net) using 25 cm resolution images from Cantabria, 
Spain. In total, we generated 19 distinct training sets 
and trained and validated 72 models. The results show 
that data augmentation can boost model performance 
by up to 30%. The best model (DeepLabV3 + with 
flip, contrast, and brightness adjustments) achieved an 
accuracy of 0.89 and an IoU of 0.78. Additionally, we 
utilized this optimized model to generate land cover 
maps for the years 2014, 2017, and 2019, validated at 
580 samples selected based on a stratified sampling 
approach using CORINE Land Cover data, achieving 
an accuracy of 87.2%. This study not only provides 
a systematic ranking of data augmentation techniques 
for land cover classification but also offers a practi-
cal framework to help future researchers save time by 
identifying the most effective augmentation strategies 
for this specific task.

Keywords  Land cover classification · Data 
augmentation · Deep learning · Image segmentation

Introduction

Knowing the distribution and changes in land cover is 
essential for understanding environmental processes 
(Da Ponte et  al., 2017), assessing habitat quality, 
identifying risk areas (Boori et al., 2021), monitoring 
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deforestation (Weiland et al., 2021), and planning sus-
tainable development (Turner, 2010). Understanding 
land cover data is not only essential for environmen-
tal monitoring and sustainable development but also 
plays a crucial role in studies such as hydrological 
processes: infiltration, runoff, and evapotranspiration, 
as highlighted by Beven and Kirkby (1979). Urbani-
zation, for instance, can alter hydrological responses, 
with studies like Oudin et  al. (2018) demonstrating 
the impact of changes in urban land cover on hydro-
logical systems. More recently, research by Song et al. 
(2022) and Huynh et al. (2024) has explored the use 
of land cover data in regionalized hydrological mod-
eling, providing advanced tools for predicting hydro-
logical dynamics under various scenarios. These 
studies underscore the growing importance of accu-
rate and detailed land cover information for under-
standing and managing hydrological systems, further 
validating the need for advanced methods such as 
those explored in this work. Land cover changes also 
influence ecosystem services, including water puri-
fication, carbon sequestration, and habitat provision. 
For instance, Makwinja et  al. (2021) explore how 
land use and land cover dynamics impact ecosystem 
service value in the Lake Malombe area, Southern 
Malawi, highlighting the importance of monitoring 
these changes to ensure the sustainability of ecosys-
tem functions. In addition to the hydrological pro-
cesses, land cover plays a crucial role in water quality, 
with remote sensing providing valuable insights into 
this relationship. Gani et al. (2023) assess the impact 
of land use and land cover on river water quality using 
remote sensing techniques and water quality indices, 
demonstrating how changes in land cover can signifi-
cantly affect water pollution levels and river ecosys-
tems. The range of applications for remote sensing 
is extensive, and it has been boosted in recent years 
by the availability of open data and the possibilities 
offered by cloud computing services such as Google 
Earth Engine or CREODIAS. These services pro-
vide users with a wide range of image catalogues and 
resources for processing them and quickly obtaining 
results, leading to the development of a large number 
of scientific studies and industrial applications.

Among the most relevant applications of remote 
sensing, the use of time series of images for vegeta-
tion monitoring stands out. The cartography of land 
cover and its changes is fundamental in land manage-
ment and natural resources. Land cover (LC) maps 

can be used for different applications, such as crop 
mapping, identification and monitoring of vegeta-
tion formations (Xie et al., 2008), or planning urban 
growth (Akbari et al., 2003).

Traditional methods for obtaining information on 
land cover involved the visual interpretation of aerial 
photographs and the digitisation of the different ele-
ments present in them. For example, the CORINE 
(Coordination of Information on the Environment) 
project (Büttner et  al., 2004) and the SIOSE (Infor-
mation System on Land Occupation in Spain) project 
(Bosque González et al., 2005) used visual interpreta-
tion and digitisation to obtain detailed maps of land 
cover in Europe and Spain, respectively. However, 
these traditional methods have limitations in terms of 
scalability and efficiency. Visually interpreting large 
volumes of data can be laborious and subjective, 
and manual digitisation can be a slow and laborious 
process. For these reasons, implementing more auto-
mated and efficient approaches is sought.

In this context, supervised classifications have 
gained popularity in remote sensing for obtaining 
information on land cover (Alem & Kumar, 2020; 
Sefrin et  al., 2020). These methods use machine 
learning algorithms to automatically assign the differ-
ent land cover categories based on the spectral char-
acteristics of satellite images (Marmanis et al., 2015; 
Vali et al., 2020). Supervised classification algorithms 
are trained using labelled samples of different land 
cover classes and then applied to unlabelled images to 
perform the classification. The use of machine learn-
ing in supervised classification has proven effective 
for land cover segmentation tasks due to its ability to 
process large volumes of data and recognize complex 
patterns in the spectra of images at different scales 
(Abdali et al., 2024; Cuypers et al., 2023; Marmanis 
et  al., 2015; Sefrin et  al., 2020). This has led to an 
improvement in the accuracy and efficiency of obtain-
ing information on land cover compared to traditional 
methods (Cuypers et al., 2023).

On the other hand, deep learning (DL), a branch 
of artificial intelligence, has become a powerful tool 
for processing complex data and extracting patterns. 
The integration of remote sensing and deep learning 
has led to significant advances in the ability to ana-
lyze and understand data collected by remote sen-
sors. This combination allows automating tasks that 
previously required significant manual intervention 
and provides the possibility of extracting detailed 
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information from large remote sensing datasets. The 
deep learning algorithm is an automatic model that 
refers to the ability of multi-layer neural networks to 
learn and recognize complex patterns and represen-
tations of datasets (Goodfellow et  al., 2016; LeCun 
et  al., 2015). Unlike traditional machine learning 
approaches, DL has proven to be especially effec-
tive in image processing (Krizhevsky et  al., 2012), 
speech recognition, text analysis, and other high-level 
domains. When applied to the field of remote sens-
ing and satellite images, computer vision algorithms 
based on DL offer great potential in the realm of LC 
(Alem & Kumar, 2020).

Using deep neural networks, such as Convolutional 
Neural Networks (CNNs), promising results have been 
obtained in the classification of different types of land 
cover, such as vegetation, water bodies, and urban areas, 
among others. These DL-based methods have shown a 
greater ability to capture complex spatial and spectral 
features of satellite images, leading to improved accu-
racy in classification (Naushad et al., 2021).

Training a deep learning model can meet consid-
erable challenges, whether due to the vast amount of 
data required or the high computational requirements 
involved. The process of manually labelling data, a 
complex task, demands a substantial part of the time 
dedicated to the production and elaboration of maps. 
For this reason, various studies have opted to lever-
age existing cartography, such as that provided by 
the CORINE Land Cover (Büttner et al., 2004), as a 
resource to support the generation of reference data 
in the creation of new products or the training of clas-
sification algorithms.

For this reason, the use of data augmentation in 
training models with deep learning is very common 
(Hao et  al., 2023; Imbert, 2019). The core princi-
ple of this method lies in applying transformations 
to previously labelled images using techniques that 
modify their colour, geometry, or both simultane-
ously, generating a more diverse dataset through syn-
thetic images that are similar yet distinct from the 
originals. This process enhances the generalization 
capacity of models and improves their adaptability to 
environmental complexities, providing a robust foun-
dation for land cover mapping. By manually labelling 
a small portion of data and applying various image 
processing techniques, new synthetic data can be cre-
ated to enrich the variability of training datasets and 
address class imbalances. In the context of land cover 

classification, data augmentation strategies such as 
rotation, flipping, cropping, translation, and adding 
noise have been widely used to enhance the perfor-
mance of deep learning models, demonstrating their 
effectiveness in improving model generalization and 
accuracy (Du et al., 2021).

Given the high complexity and computational 
cost of generating a neural network, one of the most 
adopted techniques is transfer learning. This allows 
the leveraging of knowledge previously gained by a 
neural network trained on a large and diverse dataset 
and the transfer of that knowledge to a specific prob-
lem of land cover classification. By using pre-trained 
models with large datasets and adapting them to a 
smaller and more specific one, the potential and gen-
eralization capability of the network to be adapted to 
another problem is exploited, with the advantage of 
using a reduced amount of training data and a signifi-
cant improvement in computing time and computa-
tional cost (Gupta et al., 2022; Iman et al., 2023).

Objectives

The primary objective of this study is to evaluate the 
potential of systematically applying data augmenta-
tion techniques within a deep learning (DL) frame-
work for ultra-high-resolution (25  cm) land cover 
mapping. Given the significant challenges associated 
with manually annotating such data—an effort that 
is both time-consuming and resource-intensive—this 
study aims to identify the most effective augmenta-
tion strategies for improving model performance, 
especially when working with extremely limited 
training data. The study is unique in rigorously test-
ing and ranking various augmentation techniques and 
combinations, offering a crucial framework for future 
researchers seeking to optimize model accuracy while 
minimizing manual labelling efforts.

The classification will be performed for three dif-
ferent years (2014, 2017, and 2020) over a 656 km2 
area in the north of the Iberian Peninsula. The selec-
tion of training data will be deliberately constrained 
to a small fraction of the study area, testing the capac-
ity of pre-trained models to generalize from minimal 
datasets—a scenario that mirrors the common chal-
lenge of working with limited labelled data in remote 
sensing.

To achieve this, eight distinct data augmentation 
techniques will be applied to generate a variety of 
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training datasets. Each dataset will be used to train 
multiple models based on different neural network 
architectures. The study will produce a comprehen-
sive ranking of these models, marking the first sys-
tematic comparison of data augmentation techniques 
in the field of land cover classification with very 
high-resolution imagery. The top-performing model 
from this analysis will then be used to generate land 
cover maps for the three target years. The accuracy 
and reliability of these maps will be validated against 
an independent dataset, ensuring the robustness of 
the findings and their applicability to other research 
scenarios.

Materials and methods

Study area and legend

The study area is located in the autonomous commu-
nity of Cantabria, in the north of Spain. This region 
spans approximately 5321 square kilometres and is 
situated between the Cantabrian Sea and the Canta-
brian Mountains. The study area covers 656 square 
kilometres in the central part of the region, and is 
characterized as a predominantly mountainous area 
covered mainly by vegetation, over which land man-
agement activities such as extensive livestock farm-
ing or forestry management have transformed the 
landscape.

The study area includes a part of the Saja-Besaya 
Natural Park. The vegetation in the area is dominated 
by lush forests of species such as oak, beech, and 
fir, as well as commercial species like eucalyptus or 
pine. The wooded areas are located in mid or high-
mountain areas, followed by pastures interspersed 
with shrubland down to the valley floor, where the 
most productive grasslands prevail. The composition 
of the landscape in the chosen study area possesses 
great heterogeneity in both land cover and plant spe-
cies, which will test the generalization capability of 
the classification algorithms and the augmentation 
techniques.

The combination of climatic and socioeconomic 
factors, such as rural depopulation, creates an envi-
ronment conducive to vegetation succession, and 
gradually transforming grassland areas into shrub-
lands. The spread of shrubland implies an increase 
in the accumulated fuel and the risk of fire, which 

also endangers the biodiversity of the territory and 
plant formations of high ecological value. To reduce 
the loss of pastures, practices of uncontrolled burn-
ing on shrubland areas are being carried out to 
recover grassland areas.

For this reason, high-resolution cartography is 
particularly relevant for monitoring such processes, 
as the transition from grass to shrubland is grad-
ual and has a high degree of mixture that prevents 
medium-resolution sensors from detecting this pro-
cess with sufficient anticipation and accuracy to 
mitigate it.

The legend for the land cover cartography of this 
work (Fig. 1) was selected considering the primary 
objective of this study, which is to evaluate and 
optimize data augmentation techniques to improve 
classification model accuracy. By maintaining a 
limited and manageable set of land cover classes, 
we ensure a rigorous assessment of the performance 
of different augmentation strategies without losing 
focus on the complexity of the classification task. 
This approach also aligns with similar medium-
to-high-resolution products (Sentinel 2, 10–20  m) 
like ESRI’s Sentinel 2 product at 10 m or Google’s 
Dynamic World (DW) (Venter et al., 2022).

1.	 Grass: Pasture formations that develop both in 
the valleys and in the mountainous areas. These 
areas are typically occupied by livestock but are 
also used for fodder production.

2.	 Shrubland: Areas primarily covered by Gorse 
(Ulex sp.) and Heather (Erica sp.) with a height 
ranging from 50  cm to 2  m. These formations 
typically develop on abandoned pastures or tran-
sition areas and are prone to wildfires.

3.	 Forest: Areas predominantly occupied by tree 
species such as oak, beech, pine, eucalyptus, or 
fir. This class will include any isolated individual 
(tree).

4.	 Others: Represents all those elements that do 
not fit into the categories of pasture, shrubland, 
woodland and water. This allows for a clear vis-
ual representation of additional elements present 
in the study area, such as built structures, infra-
structure, roads, shadows, or any other relevant 
non-natural element.

5.	 Water: Refers to water bodies, such as rivers, 
streams, small wetlands, or dam reservoirs, which 
are characteristics of the study area.
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High‑resolution input data

The study area has very high-resolution images from 
the National Aerial Orthophotography Program 
(PNOA). These images provide a detailed representa-
tion of the land surface and are widely used in various 
applications, such as fire management (Montealegre 
et al., 2017), agricultural area analysis (Tomé Morán 
et al., 2013), cadastral mapping (Cuenca et al., 2016), 
or as base cartography. The PNOA provides orthomo-
saics of the entire country every 3 years. The PNOA 
images are characterized by having a spatial resolu-
tion of 25 cm with an XYZ precision ≤ 30 cm. They 
are distributed in raster format, combining red, green, 
and blue bands, and are encoded with a depth of 8 
bits per band (RGB).

Workflow

Figure  2 shows the steps followed in the research 
process, from data labelling to result evaluation. The 
workflow commences with the acquisition of Very 
High Resolution (VHR) imagery, which is subse-
quently segmented into distinct categories and par-
titioned into training and validation datasets. These 
images are subjected to a range of data augmenta-
tion techniques, applied either singularly, in pairs, 
in triplets, or comprehensively. The augmentation 

techniques include rotation, transposition, flipping, 
brightness adjustment, contrast modification, satura-
tion adjustment, hue alteration, and Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE). 
The augmented datasets are then employed to train 
various image segmentation models, such as U-Net, 
DeepLabv3 + , Fully Convolutional Networks (FCN), 
and Pyramid Scene Parsing Network (PsPNet). Fol-
lowing this, the models and their respective augmen-
tation techniques are validated and ranked based on 
performance metrics. The optimal combination of 
model and augmentation techniques is identified and 
subsequently tested in a designated study area. This 
involves performing inferences on the VHR images 
to produce high-resolution land cover maps. Finally, 
the accuracy of the generated cartography is validated 
to ensure the integrity and reliability of the mapping 
process, thus completing the workflow.

Generation of training and testing data

The selection of data for calibration and validation 
involved a meticulous process of photo interpretation, 
encompassing an exhaustive review of the PNOA 
images throughout the study area. In this procedure, 
26 regions that were representative of the territory’s 
heterogeneity and included all the classes in the leg-
end were identified and selected. Each of these areas 

Fig. 1   Detailed overview 
of the study area and the 
five analysis classes: Grass, 
Scrubland, Others, Forest, 
and Water



	 Environ Monit Assess         (2025) 197:423   423   Page 6 of 24

Vol:. (1234567890)

covers 0.05 km2, constituting 0.198% of the total 
extension of the study area.

The proportion of training data with respect to the 
territory’s extension was deliberately small to evalu-
ate the generalization capability of the classifica-
tion algorithms and analyze how data augmentation 
techniques can improve their results (Fujisawa et al., 
2019; Ng et  al., 2015). This decision is based on 
the premise that generating training data is a labori-
ous and costly task. To optimize computational effi-
ciency and ensure effective processing by the neural 
networks, a region size of 896 × 896 pixels was cho-
sen. This size was selected based on the memory and 
processing limitations of the hardware used, ensuring 
that the available computational resources were not 
exceeded while still enabling efficient data handling. 
A semi-automatic approach was adopted to label the 
26 selected areas. Initially, automatic segmentation of 
the images was carried out using a conventional algo-
rithm, the multiresolution segmentation in QGIS with 

Orfeo Toolbox, grouping pixels based on their homo-
geneity using the RGB values of the PNOA images 
as input information. Subsequently, from these seg-
ments, a sample was selected to train a supervised 
classifier, specifically the nearest neighbour method. 
The result of this classification generated a prelimi-
nary map labelled with the classes in the legend. 
Later, photo interpretation was used to correct clas-
sification errors generated in the previous step.

This process was repeated for each area and year, 
resulting in a total of 78 labelled images. To train the 
model, 21 of the 26 areas (~ 80%) were chosen, leav-
ing the remaining areas for validation (~ 20%) of the 
models. Since the classes of pasture, shrubland, and 
woodland are present in almost all 26 areas, classes 
like others and especially water are less common; the 
selection of areas for the validation and training set 
was carried out through random stratified sampling. 
This ensures that all classes are represented in both 
the validation and training set.

Fig. 2   Workflow of the data augmentation and model training and validation process
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For testing the semantic segmentation model, the 
entire study area was selected, and a stratified sam-
pling approach was implemented, encompassing 580 
points distributed across the area over three different 
years. This method ensures a robust evaluation of the 
model’s performance by adequately representing spa-
tial and temporal variations. Each of the pre-trained 
and validated segmentation models was tested using 
these sampling points. The results obtained from the 
model’s predictions were compared against the refer-
ence data at these points, enabling the assessment of 
accuracy, consistency, and the model’s ability to gen-
eralize across different temporal and spatial condi-
tions within the study area. This process ensures that 
the selected model is not only accurate but also reli-
able and applicable across various epochs and regions 
within the area of interest.

Data augmentation techniques

The application of data augmentation techniques 
has emerged as an essential component in the field 
of deep learning applied to land cover mapping, as 
it enhances the efficacy of machine learning models 
(Imbert, 2019; Yuan et al., 2021). Mapping land cover 
through high-resolution images presents significant 
challenges due to the limited availability of labelled 
data and the inherent variability of the images cap-
tured at different times under different acquisition 
conditions (e.g. lighting, sun position, shadows (Sti-
vaktakis et al., 2019)). In this context, data augmen-
tation acts as a strategy to mitigate these limitations, 
allowing for the generation of more diversified and 
representative training sets.

In this study, two typologies of data augmentation 
techniques were applied: radiometric and geomet-
ric. Radiometric techniques are designed to address 
potential variations in colour that a surface might 
experience due to factors such as phenology or light-
ing conditions at the time of image capture. On the 
other hand, geometric techniques seek to vary the 
perspective from which the surface is observed. 
These geometric transformations significantly com-
plement the visual characteristics of the original 
image. Each of the datasets will contain the original 
images and the images generated using the techniques 
or combination of techniques described. Specifically, 
the performance of the following data augmentation 
techniques will be evaluated:

•	 Rotation: This technique involves rotating the 
image by a certain angle. It can help create vari-
ations in the orientation of objects present in the 
image. A random angle of rotation is applied to 
the image between − 90 and + 90°.

•	 Transposition: This involves swapping the rows 
for columns in the image, which can generate sub-
tle changes in the appearance of the image.

•	 Flipping: This technique involves flipping the 
image horizontally or vertically. It can help simu-
late different perspectives and orientations.

•	 Contrast: Adjusting the contrast involves chang-
ing the difference between the brightness values of 
the pixels in an image. It can make objects stand 
out more or less depending on the setting. It can 
soften the image and reduce details, simulating 
conditions of diffuse or cloudy lighting. A random 
percentage is applied to the base contrast of the 
image between − 20 and + 20%.

•	 Brightness: Changing the brightness of an image 
involves globally adjusting the level of lighting. It 
can make the image lighter or darker as a whole, 
which can simulate conditions of intense light-
ing or sunsets. A random percentage is applied 
to the base brightness of the image between − 15 
and + 15%.

•	 Saturation: Adjusting the saturation involves 
changing the intensity of the colours in an image. 
It can make the colours more vibrant or muted. It 
can simulate conditions of intense lighting. A ran-
dom percentage is applied to the base saturation of 
the image between − 20 and + 20%.

•	 Hue: Changing the hue of an image involves 
adjusting the colours on the colour wheel. It can 
generate variations in the appearance of objects 
by changing the predominant colours. A random 
angle of hue is applied to the image between − 10 
and + 10 degrees.

•	 CLAHE (Contrast Limited Adaptive Histogram 
Equalization): This technique involves enhancing 
local contrast in an image by applying histogram 
equalization in small regions rather than the entire 
image at once. It helps to highlight details in areas 
of different lighting levels.

Figure 3 shows the changes applied to the origi-
nal image by each of the data augmentation tech-
niques used during the study. These techniques can 
be applied individually to the dataset, doubling the 
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amount of training data with each method applied, 
but they can also be combined by applying several 
modifications at the same time to obtain a com-
pletely different image. In this article, with the 
intention of testing the individual power of each 
technique, we began by applying only one technique 
to each image at the same time. This way, the data-
set to which a single data augmentation technique 
is applied will have twice as many images (126) 
as the original dataset (63), the dataset with two 
techniques will contain three times (189) as many 
as the original dataset, the dataset with three tech-
niques will have four times more images (252), 
and finally, the dataset with all techniques contains 
ten times more images than the original dataset 
(630). To assess their performance, a model will be 
trained and validated for each new training dataset 
generated. The goal is to determine which method 
or combination of methods of data augmentation 
works best for a specific network architecture.

Each of the techniques was tested and compared 
separately (radiometry and geometry), the combi-
nation of two techniques, joining the best of radi-
ometry and geometry, three techniques, joining 
the best combinations of two techniques with the 
techniques that appear most often in the top rank-
ing of combinations using all techniques together in 
a single dataset. To simplify the analysis, the sets 
of more than one technique were combined by join-
ing the best radiometric and geometric techniques 
for the ranking of each model. The last combina-
tion involves generating a dataset that contains all 
the individual techniques, both radiometric and 
geometric.

Selection of network architectures

Four different semantic segmentation models 
have been selected for applying the various train-
ing sets generated according to the section “Data 

Fig. 3   Original image and 
eight data augmentation 
techniques: Flip, Transpose, 
Rotation, CLAHE, Bright-
ness, Saturation, Contrast, 
and Hue Adjustments
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augmentation technique”. All models are included 
in the MMSegmentation platform (Mms  Contribu-
tors, 2020), an open-source library developed by the 
Megvii Research team, which provides a wide range 
of state-of-the-art models and algorithms for seman-
tic segmentation in images. It is based on the DL 
framework PyTorch and offers an efficient and flex-
ible implementation of popular architectures such as 
U-NET, DeepLabV3 + , PSPNet, and FCN, among 
others. One of the main strengths of MMSegmenta-
tion lies in its ability to test and explore different seg-
mentation models and adjust hyperparameters, such 
as learning rate, batch size, and loss function. The 
models were selected due to their potential in differ-
ent tasks, their generalization capability, and their 
ability to achieve good results with few data (Chen 
et  al., 2018; Zhang et  al., 2021; Zhao et  al., 2017). 
Transfer learning was employed for each of the mod-
els to leverage pre-trained ResNet50 weights, which 
helps enhance performance, particularly given the 
limited dataset, and ensures consistency across the 
study. The selected models, summarized in Table 1, 
are the following:

•	 U-NET (Ronneberger et al., 2015) is a neural net-
work architecture for semantic segmentation con-
sisting of an encoder and a decoder. The encoder 
uses convolutional layers to extract features and 
reduce spatial resolution, while the decoder uses 
transposed convolutional layers to increase reso-
lution and generate a detailed output. The shape 
of U-NET resembles an inverted “U” with direct 
connections between the encoder and decoder to 
preserve contextual information. It is efficient in 
terms of memory and stands out in medical appli-
cations (Ronneberger et  al., 2015) and satellite 
image recognition (Ch et al., 2022).

•	 DeepLabV3 + (Chen et al., 2018) is an architecture 
for semantic segmentation that uses an encoder-
decoder structure with convolutional layers. The 
encoder extracts features using a network such 
as ResNet101, while the decoder uses transposed 
convolutions and atrous to increase resolution and 
generate a detailed output. DeepLabV3 + employs 
Atrous Spatial Pyramid Pooling (ASPP) to capture 
features of different sizes and a class balance tech-
nique to address imbalances in the training set. It 
is known for its accuracy and is used in a variety 

Table 1   Comparison of semantic segmentation models: architectures, strengths, and limitations

Model Architecture Advantages Disadvantages Trainable parameters and 
applications

DeepLabV3 +  Encoder-decoder architec-
ture with atrous convolu-
tion and spatial pyramid 
pooling

High performance for 
large-scale datasets

Computationally expensive  ~ 42 million

Good handling of object 
boundaries

Requires large memory Autonomous driving

Effective in multi-scale 
feature extraction using 
atrous convolutions

Struggles with small 
objects in complex 
scenes

Medical image segmenta-
tion

FCN Fully convolutional net-
work, typically with VGG 
or ResNet backbone

End-to-end learning Struggles with accurate 
boundary detection

 ~ 134 million

Effective for large input 
images due to its fully 
convolutional nature

Lack of global context, 
especially in complex 
scenes

Satellite image segmenta-
tion

U-Net Symmetric encoder-
decoder architecture with 
skip connections

Good for small datasets Struggles with complex 
textures and large-scale 
images

 ~ 31 million

 High accuracy in medical 
image segmentation

Overfitting on small 
datasets

 Biological image analysis

PSPNet Pyramid pooling network 
with multi-scale context 
aggregation

Strong multi-scale context 
capture

High computational cost  ~ 61 million

Handles large variations 
in scale

Requires large datasets for 
training

Autonomous driving
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of computer vision applications applied to remote 
sensing (Du et al., 2021; Wang et al., 2022).

•	 FCN (Fully Convolutional Network)) (Long et al., 
2015) is a neural network architecture designed 
for semantic segmentation. It uses convolutional 
and pooling layers to extract features and pro-
duces an output that maintains spatial resolution. 
Instead of using fully connected layers, FCN uses 
transposed convolutions to increase resolution and 
generate a detailed segmentation mask. In this 
case, ResNeSt101, the most modern of the feature 
extraction networks in the study, is used. FCN is 
versatile and has been applied in various domains, 
such as autonomous driving and aerial or satel-
lite image segmentation (Li et al., 2021; Xia et al., 
2021).

•	 PSPNet (Pyramid Scene Parsing Network) (Zhao 
et  al., 2017) is a neural network architecture for 
semantic segmentation that uses a pyramid struc-
ture to capture contextual information at dif-
ferent scales. It consists of a backbone (such as 
ResNet-101), a Pyramid Pooling Module (PPM), 
and a decoder. The PPM aggregates features from 
multiple scales, allowing the network to process 
contextual information at different levels of gran-
ularity. The decoder uses this aggregated feature 
information to generate the segmentation mask. 
PSPNet is known for its ability to capture multi-
scale context and is widely used in high-level seg-
mentation tasks (Li et al., 2021; Xia et al., 2021).

Model scalability, transfer learning, and 
computational considerations

Our framework is designed to be fully scalable, which 
makes it highly adaptable to various contexts and 
datasets. Similar architectures have been success-
fully applied to datasets with different resolutions in 
numerous studies, achieving promising results. This 
scalability is particularly important for addressing a 
wide range of land cover types and resolutions, allow-
ing the framework to be applied across diverse geo-
graphical areas. Studies such as Neupane et al. (2021) 
work with images at a resolution of 5 cm, while Gari-
oud et al. (2022) utilize images at 20 cm resolution. 
In our study, we employ images at 25 cm resolution. 

Additionally, Du et  al. (2021) work with multispec-
tral images that include RGB bands, but at resolutions 
greater than 1  m. This suggests that the lower the 
resolution, the more data is needed for classification, 
especially when distinguishing between classes with 
subtle differences. This highlights the scalability and 
adaptability of our framework, which can effectively 
handle datasets of varying resolutions, from high to 
low, by incorporating more comprehensive data for 
challenging classification tasks. In our study, we uti-
lized transfer learning by leveraging a ResNet-50 
model pre-trained on ImageNet. This approach ena-
bled us to fine-tune the model specifically for our 
task, capitalizing on the feature extraction capabili-
ties of the pre-trained model. By adapting the model 
to the characteristics of our dataset, we were able to 
accelerate the learning process and improve perfor-
mance, particularly given the relatively small size of 
our dataset. Regarding the applicability of the model 
in other regions, we believe that it can perform well 
in areas with land cover similar to our study region 
(e.g. landscapes resembling Cantabria, such as parts 
of northern Spain, southern France, or western Portu-
gal). With minimal adjustments, the model could be 
reproduced and applied to other regions with compa-
rable environmental conditions. However, it is impor-
tant to note that the primary objective of our study 
is not to create a universally applicable model but to 
demonstrate that accurately labelling a small data-
set—specific to any given region—can yield highly 
reliable results. This emphasizes the potential of our 
approach to achieve strong local performance as long 
as sufficient representative data from the target area is 
available for fine-tuning.

Despite its scalability and flexibility, the com-
putational requirements for implementing this 
framework are significant. The techniques used 
in our study are most suitable for smaller-scale 
areas, such as provinces or cities, rather than large 
national or continental regions. For example, train-
ing our model on a NVIDIA GeForce RTX 2080 
GPU with 8 GB of VRAM took approximately 3 h. 
But once the model was trained, inferring the AOI 
of 656 km2, comprising 13,000 images, took only 
an estimated 16.25  min, with an average process-
ing time of 75 ms per image. These computational 
considerations are critical when applying the frame-
work to larger areas and highlight the importance of 
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having efficient computational resources for scaling 
the model.

Testing of the best models and techniques and final 
model selection

In this phase, the objective is to develop a ranking sys-
tem to evaluate the performance of various neural net-
work architectures when combined with different data 
augmentation techniques. The aim is not only to iden-
tify the most effective architecture for handling small-
sized datasets in land cover mapping but also to deter-
mine the most efficient data augmentation methods. 
This will help streamline future research efforts, saving 
time for other investigators working on similar tasks.

For each combination of neural network and data 
augmentation technique, a model will be trained, 
and its performance will be evaluated using the same 
validation dataset. Two key metrics will be used for 
this evaluation: accuracy and the Intersection over 
Union (IoU), also known as the Jaccard Index.

While both metrics are important, IoU is preferred as 
the primary indicator in this study because it provides 
a more sensitive measure for pixel-level segmentation 
and object delineation errors, which is crucial in land 
cover mapping. IoU is especially valuable when precise 
object localization is critical, making it more represent-
ative than overall accuracy for this specific task.

To assess the impact of data augmentation, we also 
trained the models using the original dataset (with-
out augmentation) and calculated the percentage of 
improvement in model performance when augmenta-
tion was applied. In addition to the general improve-
ment in overall precision and IoU, we conducted an 
independent analysis of these metrics, calculating 
their respective percentages of improvement to pro-
vide a more detailed understanding of the augmenta-
tion’s contribution.

(1)IOU =
Intersection area

Union area

(2)Accuracy =
Number of correct predictions

Number of predictions

(3)

Improvement (%) = 100

((

AccAug

AccBase
+

IoUAug

IoUBase

)

∕2 − 1

)

where:
AccAug is the accuracy achieved by the model eval-

uated with data augmentation techniques.
AccBase is the accuracy achieved by the base 

model.
IoUAug is the IoU achieved by the model evaluated 

with data augmentation techniques.
IoUBase is the IoU achieved by the base model.
To ensure a fair comparison between models and 

augmentation techniques, all models were trained 
under the same conditions: 500 iterations, with a 
batch size of 16 images per iteration, resulting in a 
total of 8000 images processed by each model dur-
ing training. It is important to clarify that the total 
of 8000 images refers to the number of images pro-
cessed throughout the training process, regardless of 
whether data augmentation was applied. When data 
augmentation is used, the diversity of the training 
data increases as the techniques generate variations of 
the original images. This added diversity helps delay 
overfitting, which tends to occur more quickly when 
training on smaller datasets where the same images 
are repeated frequently. The choice to use 500 itera-
tions was made because the results obtained with 
this number were satisfactory. Training each model 
until early stopping would have been too demanding 
in terms of time and computational resources, given 
that the study involved training a total of 72 models 
(18 different datasets and 4 models). Furthermore, 
using early stopping would have introduced dispari-
ties in the number of images used to train each model, 
compromising equality in the comparison of results. 
We selected this fixed number of iterations because 
preliminary experiments showed that overfitting in 
the original dataset (without augmentation) began to 
occur near this threshold. By setting this limit, we 
ensured a consistent evaluation while avoiding over-
fitting in all cases. This methodology provides a reli-
able basis for comparing the performance of different 
architectures and augmentation methods.

(4)Improvement Accuracy(%) = 100

(

AccAug

AccBase
− 1

)

(5)Improvement IoU (%) = 100

(

IouAug

IouBase
− 1

)



	 Environ Monit Assess         (2025) 197:423   423   Page 12 of 24

Vol:. (1234567890)

Selection of the best model and subsequent 
evaluation in cartography generation

Once the ranking was completed, the model with the 
highest IoU was selected, as this is the most repre-
sentative metric for segmentation tasks. As previously 
mentioned, efforts were made to equalize conditions 
as much as possible for evaluating the models and 
applying data augmentation techniques. To ensure a 
fair comparison, all models were trained for a fixed 
number of 500 iterations, regardless of their augmen-
tation techniques or dataset size.

While this approach ensures consistency across 
models, it also means that the optimization of the 
best-performing model—trained with the highest 
diversity of data through the combination of aug-
mentation techniques—may not have reached its full 
potential within the 500 iterations. Given the richer 
dataset, this model likely requires more iterations 
to fully capitalize on the additional information and 
reach its maximum performance.

In this final evaluation phase, the model’s perfor-
mance was assessed using accuracy and IoU met-
rics, along with the creation of a confusion matrix to 
ensure a comprehensive analysis.

Generation of land cover cartography

Generating LC maps from very high-resolution sat-
ellite images requires intensive processing with a 
high computational cost. Furthermore, as these are 
extremely large images, the network resamples when 
ingesting the data, potentially losing relevant infor-
mation. For this reason, the tiling of images was 
performed at 896 × 896px. Tiling the study area into 
smaller images addresses the potential computational 
limitations of the equipment or the model.

During the individual segmentation of each tile, 
each one is processed independently, considering only 
its local context. This approach carries the possibility 
of border zones being classified using different criteria, 
which could result in inconsistent classifications at the 
border edges between tiles or when generating a mosaic 
with all of them. To avoid this issue, the study area 
was subdivided with 50% overlaps, that is, overlapping 
areas of 448 × 448 pixels. This overlap allows each tile 
to share a significant context with its neighbour, thus 
reducing the impact of the edge effect on the generation 
of the final mosaic.

Testing land cover cartography

The accuracy of the model outputs was assessed using an 
independent dataset that was not involved in the training 
process. This independent dataset was created through a 
stratified random sampling approach, as outlined in the 
workflow presented in Fig. 4. The sampling units were 
output pixels, and the strata were defined based on the 
land cover classes from the CORINE Land Cover map 
of 2018 (EEA, 2019), which were adapted to align with 
the land cover classes used in our study. This adaptation 
ensured consistency between the CORINE classes and 
the specific classes analyzed in this research. The strati-
fication ensured that all classes were adequately repre-
sented in the testing dataset. For minority strata, such as 
water, a minimum of 20 points per year were designated 
to ensure these classes were well represented in the vali-
dation. This approach significantly increased the testing 
area, as the validation set is sparser, thereby improv-
ing the overall validation process. The testing was con-
ducted over the entire area of interest (AOI), covering 
approximately 656 km2, ensuring comprehensive evalu-
ation across the study region. The accuracy assessment 
involved photo interpretation of high-resolution images 
to validate the model’s predictions. A total of 580 pix-
els per year were analyzed, resulting in 1740 validation 
points in total. The validation was carried out by extract-
ing the actual value of the cartography at each point and 
comparing it with the value predicted by the model. A 
confusion matrix was generated to represent the omis-
sion and commission errors for each class.

This dataset is distinct from the 20% of labelled data 
used for model validation during training, as described 
in Section 2.4. While the latter was part of the training 
process to monitor and refine the model, the independ-
ent dataset described here was exclusively reserved for 
evaluating the final performance of the model outputs.

Results

The resulting datasets from the combinations can be 
seen in Table 2; these datasets were evaluated against 
a common validation set.

Ranking of models and datasets

Table  3 shows the baseline results from train-
ing the four deep learning models (without data 
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augmentation). Although DeepLabV3 + demonstrated 
superior performance in maintaining the shape of the 
segments, U-NET achieved a slightly better overall 
accuracy.

The separate analysis of both radiometric and 
geometric data augmentation techniques reveals a 
clear hierarchy in their ability to enhance the per-
formance of image segmentation models. Among 

the techniques evaluated, rotation, flip, brightness 
adjustment, contrast, and CLAHE consistently 
stand out as the most effective, achieving signifi-
cant improvements in accuracy and Intersection over 
Union (IoU). This consistency across different archi-
tectures suggests that these techniques not only opti-
mize specific aspects of the models but also enhance 
the overall ability of the networks to capture spatial 

Fig. 4   Independent dataset validation workflow
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and radiometric features in the images. It is important 
to note that the PSPNet model was excluded from the 
study, as no technique demonstrated a real improve-
ment in its results.

Table  4 presents the performance metrics for 
each model using a single data augmentation tech-
nique. Rotation proved to be the most effective tech-
nique for U-Net, while contrast variation worked 
best for DeepLabV3 + . Based on these results, 

two techniques HUE and Saturation were also dis-
carded, as they showed negative impacts on model 
performance.

The results of training each model with two com-
bined data augmentation techniques, as shown in 
Table 5, demonstrate even more substantial improve-
ments compared to the single technique experiments. 
The U-Net model showed outstanding performance 
with the rotation + contrast technique, achieving 
an overall improvement of 28.14% and a 43.33% 
improvement in IoU, making this combination the 
most effective augmentation. Notable improve-
ments were also observed with rotation + brightness, 
which presented a 27.69% overall improvement and 
a 42.71% improvement in IoU. The combinations of 
rotation + CLAHE and flip + contrast showed more 
moderate improvements, with increases ranging 
from 22.16 to 24.59% in overall improvement and 

Table 2   Best combinations 
of data augmentation 
techniques

Base dataset One technique Two techniques Three techniques All together

Original dataset Rotation Rotation + contrast Flip + contrast + bright
Transpose Flip + contrast Flip + bright + CLAHE
Flip Flip + bright Rot + contrast + CLAHE
Contrast Flip + CLAHE
Bright Rotation + CLAHE
Saturation
Hue
CLAHE

Table 3   Metrics of best training with base dataset

Model Accuracy IoU

DeepLabV3 +  0.723 0.495
U-NET 0.741 0.48
FCN 0.737 0.474
PSPNet 0.728 0.452

Table 4   Metrics obtained for the best trainings with a single data augmentation technique

Model Technique Accuracy IoU % improvement %Acc improve-
ment

%IoU improvement

U-NET Rotation 0.779 0.623 17.46 5.13 29.79
U-NET Bright 0.748 0.596 12.56 0.94 24.17
U-NET Flip 0.755 0.553 9.55 1.89 15.21
U-NET HUE 0.71 0.44  − 6.26  − 4.18  − 8.33
DeepLabV3 +  Contrast 0.784 0.598 14.62 8.44 20.81
DeepLabV3 +  Flip 0.788 0.597 14.8 8.99 20.61
DeepLabV3 +  Saturation 0.709 0.45  − 5.51  − 1.94  − 9.09
FCN CLAHE 0.742 0.57 10.47 0.68 20.25
FCN Rotation 0.764 0.567 11.64 3.66 19.62
FCN Bright 0.755 0.553 9.55 2.44 16.67
PSPNet Transpose 0.745 0.394  − 5.23 2.34  − 12.83
PSPNet Flip 0.676 0.373  − 12.34  − 7.14  − 17.48
PSPNet Contrast 0.703 0.367  − 11.09  − 3.43  − 18.81
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improvements of 35.42 to 38.13% in IoU. These tech-
niques highlight that the U-Net model responds posi-
tively to augmentations that enhance image features, 
particularly those involving rotation and contrast. In 
the case of Deeplabv3 + , the flip + CLAHE combina-
tion stood out, achieving a 27.22% overall improve-
ment and a 37.58% improvement in IoU. The model 
showed very similar performance with the combina-
tions of rotation + CLAHE and flip + contrast, both 
with improvements of 27.22% and 37.58% in IoU. 
The rotation + brightness technique also produced 

good results with a 26.93% overall improvement 
and a 37.17% improvement in IoU. These results 
suggest that Deeplabv3 + is particularly sensitive to 
augmentations involving contrast enhancement, and 
that rotation and flip techniques are equally effec-
tive in this model. The FCN model presented the 
flip + contrast technique as the most effective, with 
a 31.75% improvement and 41.77% in IoU, show-
ing a considerable improvement compared to the 
other augmentation combinations. The combina-
tions of flip + CLAHE and flip + brightness were also 

Table 5   Results training each model using two data augmentation techniques

Model Technique Accuracy IoU % improvement %Acc improve-
ment

%IoU improve-
ment

U-NET Flip + contrast 0.837 0.688 28.14 12.96 43.33
U-NET Flip + bright 0.835 0.685 27.69 12.69 42.71
U-NET Rotation + CLAHE 0.823 0.663 24.59 11.07 38.13
U-NET Rotation + contrast 0.814 0.66 22.16 8.91 35.42
U-NET Flip + CLAHE 0.798 0.63 20.59 7.69 31.25
Deeplabv3 +  Flip + contrast 0.837 0.688 27.38 15.77 38.99
Deeplabv3 +  Flip + CLAHE 0.845 0.681 27.22 16.87 37.58
Deeplabv3 +  Rotation + CLAHE 0.845 0.681 27.22 16.87 37.58
Deeplabv3 +  Rotation + contrast 0.841 0.679 26.93 16.32 37.17
Deeplabv3 +  Flip + bright 0.841 0.673 26.14 16.32 35.96
FCN Flip + contrast 0.836 0.672 31.75 13.43 41.77
FCN Flip + CLAHE 0.834 0.663 26.52 13.16 39.87
FCN Flip + bright 0.834 0.663 26.52 13.16 39.87
FCN Rotation + CLAHE 0.829 0.657 25.55 12.48 38.61
FCN Rotation + contrast 0.821 0.645 23.74 11.40 36.08

Table 6   Training results of each model using three data augmentation techniques after 500 iterations

Model Technique Accuracy IoU % improvement %Acc 
improvement

%IoU 
improvement

DeepLabV3 +  Flip + contrast + bright 0.837 0.69 27.58 15.77 39.39
DeepLabV3 +  Flip + contrast + CLAHE 0.83 0.659 23.97 14.80 33.13
DeepLabV3 +  Rot + contrast + bright 0.784 0.615 16.34 8.44 24.24
FCN Flip + contrast + CLAHE 0.83 0.658 25.72 12.62 38.82
FCN Flip + contrast + bright 0.827 0.658 25.52 12.21 38.82
FCN Rot + contrast + bright 0.801 0.61 18.69 8.68 28.69
U-NET Rot + contrast + CLAHE 0.813 0.65 22.57 9.72 35.42
U-NET Flip + contrast + bright 0.772 0.598 14.38 4.18 24.58
U-NET Flip + contrast + CLAHE 0.779 0.57 11.94 5.13 18.75
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effective, with a 26.52% improvement in accuracy 
and an increase of 39.87% to 41.77% in IoU. While 
the FCN model showed good results, especially with 
flip + contrast, its overall performance was slightly 
lower than that of Deeplabv3 + and U-Net, though 
still competitive in terms of accuracy and IoU.

After analyzing the results of the two-technique 
combinations, combinations of three data augmenta-
tion techniques were selected based on their repeated 
appearances in the ranking and their consistent per-
formance across different models.

Testing with three data augmentation techniques 
(Table 6) revealed that the best combination was flip-
ping, contrast enhancement, and brightness. However, 
the improvements were not significantly larger com-
pared to the combinations using just two techniques. 
This suggests that adding more techniques does not 
always lead to better performance. To confirm these 
results, we plan to test the efficacy of utilizing all 

augmentation techniques simultaneously. This will 
help us determine if there is a point at which addi-
tional techniques no longer contribute to model 
generalization.

Finally, Table  7 shows the results when all aug-
mentation techniques were applied simultaneously. 
Surprisingly, performance degraded significantly 
across all models, confirming that using too many 
augmentation techniques at once can lead to poorer 
results, likely due to increased noise or overfitting 
from learning unrealistic transformations of limited 
training data.

Single data augmentation techniques improved 
model performance by up to 17.46% with rotation 
and contrast variation being the second with a 14.62% 
improvement, proving to be the most effective meth-
ods. When combining two techniques, the improve-
ments were even more significant, reaching up to 
31.75%. In particular, the combination of horizontal 
flipping, brightness adjustment, and contrast varia-
tion emerged as the most successful strategy. How-
ever, adding a third technique resulted in diminishing 
returns, and applying all techniques simultaneously 
led to a notable drop in performance. Overall, the 
DeepLabV3 + model, when trained with a combina-
tion of horizontal flip, contrast, and brightness aug-
mentation, delivered the best results, making it the 
most promising model for generating land cover maps 
in this study.

At the beginning of the study, it was assumed that 
radiometric changes would not significantly affect 
model performance, as the images had undergone 
consistent radiometric corrections. However, it was 
observed that between 2014 and 2021, improvements 
in camera technology resulted in these corrections 
affecting the images differently over time. This high-
lights the importance of including data augmentation 
techniques that account for these variations during 
training, ensuring that the model remains functional 
despite evolving imaging technology. Such tech-
niques not only improve the model’s ability to gen-
eralize across different acquisition periods but also 
ensure its robustness for future campaigns, which will 
likely face similar shifts due to continued advance-
ments. This approach helps the model remain adapt-
able and effective over time, supporting its long-term 
functionality.

Table 7   Metrics obtained for the best training with all data 
augmentation techniques

Model Technique Accuracy IoU %Improvement

Deep-
LabV3 + 

All together 0.744 0.615 13.57

U-NET All together 0.732 0.592 11.05
FCN All together 0.68 0.563 5.52
PSPNet All together 0.65 0.385  − 12.76

Table 8   Hyperparameters of the best model

Best iteration 3800

Best epoch 312
Data augmentation combination Flip + contrast + bright
Batch size 16
Number of images 195
Number of iterations 5000
Training epochs 200
Learning rate 0.0001
Optimization algorithm SGD
Input size 896 × 896 × 3
Classes 5
Depth 4
Filters on the first level 64
Padding Yes
Backbone architecture Resnet101
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Extended training of the selected model

After selecting the best-performing model, an 
extended retraining was conducted for 5000 iterations 
to maximize performance while avoiding overfitting 
by using early stopping. The hyperparameters for the 
retrained model are detailed in Table 8.

The results on the validation set showed a signifi-
cant improvement in model performance while the 
initial 500 iterations provided a good approximation; 
they were insufficient to fully optimize the model. 
After 3800 iterations, the model achieved an accuracy 
of 0.89 and an IoU of 0.78 on the validation dataset, 
reflecting a 41% improvement compared to the base 
dataset. However, compared to the best model trained 
with 500 iterations, the performance gain was 5.3% 
for precision and 9% for IoU. This smaller but notice-
able increase demonstrates that while 500 iterations 

give a solid benchmark, further training yields more 
refined results.

Figure  5 presents the confusion matrix generated 
during the validation phase. All classes demonstrate 
high accuracy, with most above 88%, and Water 
achieving the highest at 94.76%. However, the most 
confusion occurred between shrubland and pasture 
classes, which is likely due to their shared character-
istics. Additionally, confusion between the Forest and 
Others categories is linked to the inclusion of shad-
ows within the Others class, which are often present 
in forested regions.

Figure  6 shows an example of the model’s infer-
ence on a portion of the study area. The model’s 
ability to classify different land cover types at a high 
level of detail is evident. During independent test-
ing, conducted over 1740 pixels, the model’s met-
rics remained consistent with those from the training 
phase. Some variations in accuracy, particularly for 

Fig. 5   Validation results using the validation set and the exhaustively trained model
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pasture and shrubland, are attributed to the test set’s 
location near areas undergoing land cover changes. 
Since the validation process focused on pixel-level 
accuracy, areas near class borders were more prone to 
misclassification.

The test confusion matrix in Fig.  7 reveals the 
model’s performance on the test dataset, allowing for 
a comparison with the previously discussed validation 
matrix. Overall, the model’s accuracy on the test set 
is comparable to but slightly lower than the validation 
set, obtaining a precision of 87.2%. The class results 
are slightly lower for most classes except for Forest 
and Water, where accuracy is slightly higher. Grass 
shows an accuracy of 81.77% in the test compared 
to 88.83% in the validation, with a notable increase 
in confusion with Scrubland and Others. Scrubland 
has an accuracy of 83.67% in the test versus 88.16% 
in the validation, with a significant increase in con-
fusion with Grass and Forest. Forest, on the other 
hand, improves in the test with an accuracy of 92.03% 

compared to 89.83% in the validation, although con-
fusion with Scrubland is higher. Others show an accu-
racy of 92.52% in the test, improving from 89.95% in 
the validation, with less overall confusion. Water has 
the highest accuracy in both matrices, with 96.30% in 
the test versus 94.76% in the validation, with minimal 
errors.

Although the model demonstrates robust overall 
performance, the decrease in accuracy for Grass and 
Scrubland classes in the test set, along with increased 
mutual confusion, points to areas for potential 
improvement. It is important to note that the label-
ling of the dataset was primarily performed through 
a semi-automated approach, grouping pixels based on 
their homogeneity using the RGB values, rather than 
at the pixel level. However, this testing process relied 
on photo interpretation, which, as a more detailed and 
exhaustive validation method, likely introduces more 
errors, especially for visually similar classes. This 
increased level of scrutiny could explain the observed 

Fig. 6   Example of cartographic inference: A region and the corresponding land cover inference
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drop in accuracy for these classes, as small differ-
ences in appearance may result in misclassifications. 
Additionally, the test dataset was independent and not 
seen by the model during training, meaning that the 
model was evaluating its performance on new, unseen 
data. This introduces additional challenges, particu-
larly when working with classes that share similar 
characteristics or exhibit high temporal and spatial 
variability. The testing area was also significantly 
larger and geographically diverse compared to the 
training area, contributing further to the variability in 
the Grass and Scrubland classes.

Discussion

The evolution of land cover classification method-
ologies reflects significant advancements in remote 

sensing technologies, computational algorithms, 
and standardization frameworks. Contemporary 
approaches integrate multisensor data fusion, deep 
learning models, and modular classification systems 
to address historical challenges in spectral confu-
sion, intra-class variability, and regional harmoni-
zation. Recent studies, such as those by Irwin et  al. 
(2017) and Shakya et  al. (2023), demonstrate that 
fusion-based methods combining synthetic aperture 
radar (SAR), light detection and ranging (LiDAR), 
and optical imagery improve classification accuracy 
compared to conventional techniques. Standardiza-
tion frameworks like the Land Cover Classification 
System (LCCS) in Di Gregorio (2005), which offers 
a standardized approach to land cover mapping, pro-
mote global interoperability while accommodating 
local ecological gradients and nuances. Despite the 
increasing sophistication of these methodologies, 

Fig.7   Confusion matrix derived from 1740 photo-interpreted points of CORINE Land Cover class stratification
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photo interpretation and traditional data augmenta-
tion techniques remain essential in generating data-
sets for the use of these more advanced techniques. 
Data augmentation methods enhance dataset size 
and variability, allowing models to generalize better 
without requiring extensive ground truth data. Addi-
tionally, modular classification systems increasingly 
integrate very-high-resolution (VHR) RGB imagery 
with lower-resolution multisensor data, such as Sen-
tinel imagery, to balance spatial detail with spectral 
richness. Moreover, when classifying large areas, it is 
crucial to rely on lower-resolution data such as Sen-
tinel, given the high cost of acquiring drone-based 
multispectral imagery at resolutions comparable to 
RGB.

Although technology has advanced significantly, 
a solid photo-interpreted dataset is still required to 
begin the work, which involves a high temporal and 
computational cost. For this reason, data augmenta-
tion techniques remain essential for expanding the 
size and variability of datasets, improving the gener-
alization ability of models without the need for large 
amounts of reference data. Our study confirms that 
conventional data augmentation techniques are still 
valuable and highlights the ones that contribute the 
most in land cover classification tasks. These tech-
niques have proven to be especially effective when 
working with limited datasets. Although deep learn-
ing models (DLMs) have revolutionized land cover 
mapping, particularly regarding the scarcity of data 
in very high-resolution (VHR) images, challenges 
related to model scalability and label consistency still 
persist. Recently, models like the Segment Anything 
Model (SAM) in the study Kirillov et al. (2023) have 
emerged, aimed at transforming image labelling using 
a zero-shot approach that facilitates the annotator’s 
task of labelling the initial dataset. This reduces the 
annotation burden in resource-poor environments. 
However, SAM’s performance in high-resolution 
rural landscapes remains an underexplored area. On 
the other hand, as seen in our study, this approach 
should not replace data augmentation but rather com-
plement it.

Our study highlights the efficacy of data augmen-
tation techniques in improving land use and land 
cover (LULC) classification in very high-resolution 
images (25 cm), particularly when working with lim-
ited datasets. The applied augmentation techniques, 
both radiometric and geometric, not only increased 

the variability of the training set but also enhanced 
the generalization capability of the models. This find-
ing aligns with previous research that underscores 
the positive impact of data augmentation on remote 
sensing image classification, such as the work by Sti-
vaktakis et al. (2019) and Shorten and Khoshgoftaar 
(2019), who explore various data augmentation tech-
niques independently. However, unlike these stud-
ies, our work evaluates combinations of geometric 
and radiometric transformations, allowing for the 
exploration of additional synergies to improve model 
generalization.

Our study also builds on the research by Du et al. 
(2021), who used only the DeepLabv3 + architec-
ture—an approach we also explored and found to give 
the best results in validation. Unlike their work, which 
uses object-based image analysis (OBIA) to classify 
homogeneous image segments, our study focuses 
on pixel-level classification, aiming to address the 
limitations of smaller datasets using data augmenta-
tion techniques. While Du et al. worked with a much 
larger dataset (21 km2 vs. 1.3 km2 in our case), our 
work addresses the complexities posed by highly het-
erogeneous vegetation classes, making segmentation 
more challenging.

Additionally, Hao et al. (2023) review a wide range 
of data augmentation techniques but do not include 
combinations of radiometric transformations, such 
as those evaluated in our study. We highlight the 
importance of combining radiometric and geometric 
transformations to improve generalization in dynamic 
and heterogeneous environments, especially in cases 
where lighting and acquisition conditions vary. Our 
detailed analysis also reveals that applying multiple 
transformations simultaneously does not always result 
in better performance. In fact, when all techniques 
were used together, performance decreased, likely 
due to the noise added to the training set. This finding 
aligns with studies such as Yang et al. (2022), which 
warn about the potential negative effects of excessive 
transformation on model learning.

Despite these advancements, limitations were 
identified in the classification of vegetation classes 
such as grasses and shrubs, which showed greater 
confusion due to their high temporal and spatial 
variability. This phenomenon highlights the need 
to expand training datasets with more representa-
tive and diverse samples. The incorporation of addi-
tional spectral data, such as NIR bands, along with 
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topographic information derived from elevation, has 
proven to be an effective tool for improving discrimi-
nation between vegetation classes, addressing one of 
the main limitations of our study, as demonstrated in 
Garioud et  al. (2022). This work explores advanced 
techniques for semantic segmentation in highly vari-
able environments, successfully classifying more 
diverse vegetation, including conifers, deciduous 
trees, shrubs, vineyards, and herbaceous vegetation, 
and highlighting the usefulness of multispectral bands 
for this purpose. Additionally, it evaluates the impact 
of data augmentation techniques on performance 
improvement, albeit not as pronounced as in our case. 
This is because, when working with a significantly 
larger base dataset, these techniques, although effec-
tive, do not have as marked an impact as observed in 
our study, where the limited size of the dataset high-
lights their importance.

Our study makes a significant contribution by 
being the first to address the impact of data augmen-
tation techniques and their combinations on land 
cover classification tasks, an area that had not been 
investigated in detail in the existing literature. Our 
results show that data augmentation techniques are 
crucial for improving accuracy in limited datasets, 
achieving substantial improvements in result quality. 
While there are methods that facilitate initial labelling 
through photo interpretation, this process remains 
laborious and costly. However, by applying controlled 
data augmentation, it is possible to enrich the data-
set without compromising result quality and with 
a smaller size of the photo-interpreted dataset. The 
combination of this approach with Sentinel images, 
which are updated every 5 days, allows us to multiply 
the data quantity without affecting accuracy, as land 
cover changes typically do not occur within such a 
short interval. This hybrid approach, which integrates 
very high-resolution images with Sentinel data, lever-
ages the temporal variable provided by the satellite. 
This approach complements previous studies, such as 
Garioud et  al. (2023), which demonstrate the effec-
tiveness of hybrid approaches for land cover classifi-
cation tasks.

Conclusions

This study successfully demonstrates the efficacy 
of data augmentation techniques in enhancing land 

cover classification using deep learning models, 
particularly when working with limited ultra-high-
resolution (25  cm) datasets. Through a systematic 
evaluation of various augmentation strategies, the 
research provides valuable insights for researchers 
and practitioners in the fields of remote sensing and 
land cover mapping.

A key conclusion from the study is that data 
augmentation significantly improves mode perfor-
mance, with some cases showing improvements of 
up to 30%. This highlights the importance of aug-
mentation techniques in addressing the challenges 
posed by limited training data in high-resolution 
land cover classification tasks.

Among the strategies tested, the combina-
tion of flip, contrast, and brightness adjustments 
emerged as the most effective. When applied to the 
DeepLabV3 + architecture, this optimized model 
achieved an impressive accuracy of 0.89 and an IoU 
of 0.78, setting a new benchmark for and cover clas-
sification using limited data.

The study also offers a practical framework for 
identifying the most effective augmentation strat-
egies, potentially saving considerable time and 
resources for future land cover classification pro-
jects. The successful application of the optimized 
model to generate land cover maps for multiple 
years (2014, 2017, and 2019), with high accuracy 
(87.2%), demonstrates the robustness and transfer-
ability of the approach across temporal datasets.

However, the research also reveals that excessive 
data augmentation can lead to diminishing returns 
or even a decrease in performance. This under-
scores the need for careful selection and combina-
tion of augmentation techniques to avoid overfitting 
or degrading model effectiveness.

Future research could explore the integration of 
multispectral data, such as NIR bands, and topo-
graphic variables to further enhance the classifica-
tion of complex vegetation classes. The addition of 
NIR bands could provide improved discrimination 
of vegetation types by leveraging their sensitiv-
ity to chlorophyll content, while topographic vari-
ables such as slope and elevation could account for 
environmental factors influencing vegetation dis-
tribution. These advancements could address cur-
rent limitations and further improve classification 
accuracy, particularly for highly heterogeneous and 
dynamic environments.
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Finally, the study addresses a critical gap in the lit-
erature by providing a comprehensive and compara-
tive evaluation of data augmentation methods spe-
cifically applied to land cover classification. It offers 
valuable guidance for future studies in this domain 
and contributes significantly to the field of high-reso-
lution land cover classification.
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