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 A B S T R A C T

Cyanobacterial blooms pose significant environmental and public health risks due to the production of 
toxins that contaminate water sources and disrupt aquatic ecosystems. Rapid and accurate identification 
of cyanobacterial species is crucial for effective monitoring and management strategies. In this study, we 
combined Raman spectroscopy with deep learning techniques to classify four toxic cyanobacterial species:
Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii and Microcystis aeruginosa. Spectral data 
were acquired using a confocal Raman microscope with a 532 nm excitation wavelength and subjected 
to preprocessing and filtering to enhance signal quality. We evaluated a multichannel one-dimensional 
convolutional neural network (1D-CNN) approach that incorporates raw spectra, baseline estimations, and 
preprocessed spectra. This multichannel approach improved overall classification accuracy, achieving 86% 
compared to 74% with a traditional single-channel 1D-CNN using only preprocessed spectra while maintaining 
low overfitting. Shapley Additive exPlanations (SHAP) were applied to identify critical spectral regions 
for classification to enhance interpretability. These findings highlight the potential of combining Raman 
spectroscopy with explainable deep learning methods as a powerful tool for water quality monitoring and 
the early detection of Harmful Algal Blooms (HABs).
1. Introduction

Cyanobacterial blooms in freshwater bodies have become a signif-
icant environmental and public health concern worldwide [1]. These 
microorganisms are among the oldest life forms on Earth and play a 
crucial role in global carbon and nitrogen cycles [2]. Under favorable 
conditions, such as high nutrient availability and warm temperatures, 
cyanobacteria can proliferate rapidly, leading to dense accumulations 
known as harmful algal blooms (HABs) [3]. These blooms are often 
characterized by the discoloration of water bodies, unpleasant odors, 
and the production of toxins that can harm aquatic life and human 
health [4].
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Cyanobacteria produce various toxins, including microcystins, cylin-
drospermopsins, saxitoxins, and anatoxins, which can contaminate 
drinking water sources and recreational waters [5,6]. Exposure to these 
toxins may result in liver damage, neurotoxicity, and gastrointestinal 
illnesses in humans and animals [7]. For instance, microcystins are 
potent hepatotoxins and have been implicated in outbreaks of acute 
liver failure [8]. Moreover, cyanobacterial blooms can cause hypoxia in 
water bodies by depleting oxygen levels during decomposition, leading 
to fish death and biodiversity loss [9]. The economic impact is also 
significant, with increased costs for water treatment and losses in 
fisheries estimated to be billions of dollars annually [10].
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The increasing frequency of cyanobacterial blooms are often at-
tributed to anthropogenic activities and climate change [11]. Nutrient 
enrichment from agricultural run-off and urbanization leads to eu-
trophication, providing an abundant supply of phosphorus and nitrogen 
that fuels cyanobacterial growth [12]. Climate change-induced water 
temperature and stratification increases further exacerbate the problem 
by creating optimal conditions for cyanobacterial proliferation [13]. 
Predictive models suggest that without intervention, the occurrence of 
HABs may increase by up to 20% in the next decade [14].

Rapid and accurate identification of cyanobacterial species is crucial 
for effective control strategies to protect public health and maintain 
ecological balance [5]. Traditional methods, such as manual sam-
ple collection followed by microscopy-based identification, are labor-
intensive, time-consuming, and require analysis by highly qualified 
professionals [15]. Biochemical techniques like chlorophyll extraction 
and pigment analysis provide insights into photosynthetic activity but 
lack species-level specificity [16]. High-performance liquid chromatog-
raphy (HPLC) can separate and quantify pigments like phycocyanin 
and chlorophyll; however, its reliability in distinguishing taxa is limited 
by overlapping pigment profiles and environmental variability, making 
it prone to misclassification [17]. Similarly, flow cytometry enables 
the rapid quantification of cyanobacterial populations by analyzing 
thousands of cells per minute; however, its high cost and complex 
setup limit its practical applicability for large-scale and field-based 
applications [18].

In this context, Raman spectroscopy has emerged as a promising 
tool for rapidly detecting and identifying microorganisms [19]. By 
measuring the inelastic scattering of monochromatic light, it gener-
ates a unique molecular fingerprint for each sample, enabling precise 
biochemical characterization [20]. Unlike other methods, Raman spec-
troscopy is non-destructive and requires minimal sample preparation. 
Furthermore, the development of portable Raman devices has extended 
its applicability, allowing for real-time, on-site analyses in field settings. 
Several studies have demonstrated the potential of Raman spectroscopy 
in identifying and classifying microorganisms. Heraud et al. utilized Ra-
man spectroscopy to discriminate between different microalgal species, 
achieving a classification accuracy of over 90% [21]. Similarly, Schus-
ter et al. reported an accuracy of 95% in distinguishing cyanobacterial 
species using Raman spectroscopy combined with multivariate anal-
ysis [22]. He et al. utilized confocal resonance Raman spectroscopy 
combined with Principal Component Analysis (PCA) and Discriminant 
Partial Least Squares (DPLS) analysis to identify unicellular algal gen-
era, achieving a classification accuracy of over 90% [23] Additionally, 
Stöckel et al. used Raman spectroscopy to study the carotenoid content 
in cyanobacteria, providing insights into species differentiation based 
on pigment composition [24].

More recently, the integration of deep learning algorithms with 
Raman spectroscopy data has shown significant improvements in clas-
sification performance for microbial identification [25–27]. Ho et al. 
incorporated convolutional neural networks (CNNs) with Raman spec-
troscopy to achieve an accuracy of 98% in identifying pathogenic bac-
teria [28]. Similarly, Yu et al. developed a method combining Raman 
spectroscopy with long short-term memory (LSTM) neural networks, 
achieving over 94% accuracy in identifying marine pathogens [29]. 
Despite these advancements, challenges remain in processing and ana-
lyzing Raman spectroscopic data due to the complexity and variability 
of the signals [30]. Issues such as fluorescence background, instrumen-
tal noise, and overlapping spectral features can complicate spectral 
interpretation [31]. To overcome these limitations, robust preprocess-
ing techniques—such as baseline correction, noise reduction, and nor-
malization are essential for improving spectral quality and extracting 
meaningful information [32,33]. Furthermore, advanced algorithms 
and machine learning methods can further enhance the analysis by 
identifying subtle patterns and features within the data [34].

In this study, we present a methodology that combines Raman 
spectroscopy with a multichannel 1D-CNN to improve species-level 
2 
identification of four toxic blue–green cyanobacteria. Filtering spectra 
was a critical step to ensure the quality of the training dataset, reduc-
ing noise and variability. The multichannel framework combines raw 
spectra, baseline estimations, and preprocessed data. This innovation 
increased classification accuracy from 74% when using only prepro-
cessed spectra to 86% with the multichannel approach. Additionally, 
SHAP-based explanations were employed to highlight the most influen-
tial spectral regions, providing a more comprehensive understanding of 
the results. Overall, this methodology offers a more robust and trans-
parent framework for distinguishing cyanobacterial species, ultimately 
supporting more effective management of HABs.

The four genera of toxic cyanobacteria selected for analysis were
Dolichospermum, Aphanizomenon, Planktothrix, and Microcystis. These 
genera are among the most frequently reported in association with 
freshwater HABs worldwide, producing a variety of toxins with critical 
ecological and health impacts, including microcystins, saxitoxins, and 
cylindrospermopsins [35–39]. Despite their overall similarity, these 
cyanobacteria exhibit subtle differences in key traits [40]. These in-
clude pigment composition (e.g., carotenoids, phycobiliproteins, and 
chlorophyll), morphology (e.g., coccoid forms in Microcystis versus fil-
amentous forms in Dolichospermum, Planktothrix, and Aphanizomenon), 
cell size (e.g., Microcystis cells typically measuring 4–6 μm in diameter, 
while Dolichospermum cells can reach up to 25 μm in length), and 
variations in cell wall composition (e.g., Dolichospermum and Apha-
nizomenon have thicker cell walls enriched with polysaccharides and 
glycolipids to support the formation of heterocysts, specialized cells 
for nitrogen fixation) [41,42]. These distinctions highlight the diversity 
found among cyanobacteria associated with HABs.

2. Materials and methods

2.1. Sample preparation

Four species of toxic cyanobacteria commonly found in reservoirs 
worldwide were selected for analysis: Dolichospermum crassum, Aph-
anizomenon sp., Planktothrix agardhii, and Microcystis aeruginosa. The 
isolates were provided by the Department of Biology at the Autonomous 
University of Madrid (UAM). Heterocyst-forming species were cultured 
in BG110 medium, which lacks combined nitrogen sources to promote 
heterocyst development. In contrast, non-heterocystous species were 
maintained in BG11 medium, a standard nutrient-rich medium for 
cyanobacterial cultivation. Cultures were incubated at 25 ◦C under 
continuous light at an illumination intensity between 70 and 130 μmol 
photons m−2s−1. Cultures were regularly manually agitated to ensure 
optimal growth conditions to prevent cell sedimentation and facilitate 
gas exchange.

Details of the analyzed samples are presented in Table  1, and 
bright-field images of each species are shown in Fig.  1.

2.2. Raman spectra acquisition

Raman spectra were obtained using a confocal Raman Spectroscopy 
microscope (XperRAM C Series, Nanobase) equipped with a 532 nm 
laser and a 20× objective lens (0.45 NA, MPlanFL N, Olympus). We set 
the laser power to 5 mW, and for each measurement, we conducted a 
single scan with a 500 ms acquisition time. The short acquisition time 
was selected to facilitate future measurements in a continuous-flow 
microfluidic system. The laser spot size was around 2–3 μm, smaller 
than cyanobacterial cells, enabling a detailed examination of specific 
cellular structures. Daily calibration was performed using a silicon 
wafer.

Samples were loaded into a microfluidic slide (Ibidi 𝜇-Slide I Luer 
Glass Bottom) featuring a channel height of 250 μm and a reservoir 
volume of 62.5 μL. Automatic 2D Raman images were acquired on indi-
vidual cells in a static state within the flow chamber. All measurements 
were performed with the glass side of the substrate facing the objective, 
and the laser was focused near this surface.
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Table 1
Detailed information on the toxic cyanobacteria species used, including their respective codes, orders, genera, 
species, and culture media. 
 Code Order Genus Species Culture medium 
 UAM502 Nostocales Dolichospermum D. crassum BG110  
 UAM588 Nostocales Aphanizomenon Aphanizomenon sp.a BG110  
 UAM565 Oscillatoriales Planktothrix P. agardhii BG11  
 UAM253 Chroococcales Microcystis M. aeruginosa BG11  
a Not identified.
Fig. 1. Bright-field microscopy images of the toxic cyanobacterial species analyzed.
2.3. Preprocessing steps

The use of a 532 nm laser induces strong autofluorescence [43]. 
To ensure data consistency, we implemented an autofluorescence-
based filtering criterion. We observed that when focusing the laser 
on cell bodies, fluorescence consistently saturated the detector in the 
3200–3300 cm−1 region, which lies outside the Raman spectral range 
of interest (935–1575 cm−1). We selected only the spectra that reached 
the detector’s saturation threshold of 65,000 counts in this region. This 
threshold showed a strong correlation with Raman signal intensity, 
allowing for the selection of spectra with the most intense Raman 
responses. Only spectra meeting this criterion were considered valid, 
enabling us to exclude low-quality spectra, such as those collected from 
cell edges, and to minimize intraspecies spectral variability. Addition-
ally, as dying cells progressively lose fluorescence [44], this approach 
ensured that analyzed spectra corresponded to cells in comparable 
physiological states.

The spectral data were cropped to the 800–1600 cm−1 range to 
focus on the most relevant Raman bands area. We excluded any spectra 
that exhibited saturation within this range from the analysis. Each 
remaining spectrum underwent smoothing with a Savitzky-Golay fil-
ter (21-point window, second-order polynomial), followed by baseline 
correction using Asymmetric Least Squares (ALS) with a smoothness 
parameter of 5 × 104 and an asymmetry parameter of 0.001. Subse-
quently, normalization was performed by scaling the total intensity of 
the spectra to 2000 counts, preserving the relative proportions between 
signals while ensuring a consistent scale. Finally, standardization was 
applied using Standard Normal Variate (SNV), resulting in spectra with 
a mean of 0 and a variance of 1.

Despite focusing the laser spot near the glass surface of the sub-
strate, interference from the opposite side, composed of polymer, can 
occasionally occur. Residual Raman signals from the polymer were 
detected, as shown in the spectrum provided in Figure S1 of the 
supplemental material. A pronounced band at 910 cm−1 was observed, 
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which could bias results if it appears faintly in cyanobacteria spectra. 
Additionally, fluorescence starts intensely around 1600 cm−1, which 
may lead to improper baseline fitting in some cases. To address these 
issues, we implemented an additional cropping step that limits the 
spectral range to 935–1575 cm−1. To further minimize polymer inter-
ference, the Non-Negative Least Squares (NNLS) algorithm was used 
to decompose each spectrum into a linear combination of reference 
spectra for cyanobacteria and polymer. Figure S1 in the Supplemental 
Material displays the reference spectra considered for the polymer sub-
strate and cyanobacteria. Spectra showing more than 1% contribution 
from the polymer reference were excluded from further analysis.

A signal-to-noise ratio (SNR) filter was applied. Only spectra with 
an SNR greater than 30 between the regions of 800 cm−1 (without 
Raman signal) and 1002 cm−1 (CH3 bonds, according to Table  3) were 
retained. We selected a high SNR threshold (SNR > 30) to ensure 
high-quality data and obtain the most representative spectra for each 
species. A lower threshold introduced greater variability, particularly 
in UAM565, which exhibits higher autofluorescence.

To improve data quality, we implemented an outlier detection 
procedure for all datasets. In the training and validation datasets, 
the Mahalanobis distance was calculated for each class individually, 
applying a fixed threshold of 40. This makes it particularly effective in 
identifying outliers in high-dimensional data where standard Euclidean 
distance may fail. For the test dataset, where data were unlabeled, we 
employed K-means clustering to automatically determine the optimal 
number of clusters using the elbow method. Within each cluster, spec-
tra exceeding the 90th percentile of the Mahalanobis distance were 
classified as outliers and excluded from further analysis.

Figure S2 illustrates the outlier detection procedure, showing a K-
means clustering plot and the Mahalanobis distance distribution for one 
of the classes. Additionally, Figure S3 provides two-dimensional Raman 
images highlighting the spectra removed as outliers. These images 
reveal no discernible spatial patterns among the excluded outliers, 
suggesting a random distribution of anomalous spectra throughout the 
dataset.
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2.4. Deep learning pipeline

Raman spectroscopy produces complex, multicollinear, and high-
dimensional spectra that challenge traditional machine learning meth-
ods, many of which assume feature independence. Our previous work
[45] evaluated various machine learning algorithms for Candida species 
classification and found that a 1D-CNN achieved the best performance 
metrics and generalization. We later developed a simplified 1D-CNN 
with a single convolutional layer to differentiate capsular serotypes of
Klebsiella pneumoniae, also obtaining high predictive performance [46]. 
In this study, we implement a multichannel 1D-CNN framework with 
the same architecture to extract relevant information from diverse 
spectral data.

The architecture of the 1D-CNN model is designed to process one-
dimensional spectral data. The model begins with a convolutional layer 
of 64 filters of size 8 using ‘same’ padding to maintain input dimen-
sions. A rectified linear unit (ReLU) activation function introduces 
non-linearity into the model. Following this, a MaxPooling1D layer 
with a pool size of 2 reduces the dimensionality and focuses on the most 
significant features. To prevent overfitting, a dropout layer with a rate 
of 0.25 is included. The output is flattened and passed through a dense 
layer with 128 units and another ReLU activation. Another dropout 
layer with the same rate precedes the final dense layer, which has 
units equal to the number of classes and employs a softmax activation 
function for multiclass classification [46].

We implemented a multichannel approach to expand the model’s ca-
pabilities, introducing three independent input channels. Each channel 
processes a different version of the spectra: raw spectra, baseline esti-
mations, and corrected spectra. The inclusion of baseline estimations 
as an independent channel provided the model with the relationship 
between raw and preprocessed spectra, making it easier to access 
information removed during correction. The corrected spectra undergo 
the entire preprocessing pipeline detailed in Section 2.3, while the 
raw and baseline datasets are subjected only to the standardization 
and normalization steps described in the same section. Each dataset 
follows the same convolutional pathway separately. Before reaching 
the dense layers, the outputs from these channels are concatenated, 
allowing the model to integrate information from all spectral types. 
Rather than exhaustively searching for an optimal preprocessing strat-
egy, we prioritized integrating raw and preprocessed spectra in a 
multichannel framework to leverage their complementary information. 
The architecture of this multichannel CNN is depicted in Figure S4.

The dataset was split into 80% for training and 20% for validation. 
To address the class imbalance in the training-validation and test 
datasets, we randomly reduced the size of overrepresented classes, 
ensuring that no class had more than 20% additional samples compared 
to the minority class. The test dataset, measured from different cultures 
months later, was used to assess the model’s performance on new data.

2.5. Shapley values for model interpretability

We employed SHapley Additive exPlanations (SHAP) values [47] to 
interpret the predictions of the multichannel 1D-CNN model. Shapley 
values, derived from cooperative game theory, quantify the contribu-
tion of individual features to a model’s predictions by averaging their 
marginal impact across all possible subsets of features. This approach 
provides a rigorous framework for assessing feature importance in 
highly complex and nonlinear models.

In Raman spectroscopy, Shapley values enable the identification of 
spectral regions that influence the classification process, thus bridging 
the gap between deep learning predictions and the chemical properties 
of the sample. However, the exact computation of Shapley values is 
computationally infeasible for high-dimensional datasets, as it requires 
evaluating all possible feature combinations. To address this, the SHAP 
library provides efficient approximation methods tailored to specific 
models.
4 
Table 2
Number of Raman spectra after preprocessing in the training/validation and test 
datasets for each cyanobacteria species.
 Class Train/val (balanced) Test (balanced) 
 UAM502 9967 842  
 UAM588 9967 1010  
 UAM565 8690 1010  
 UAM253 8306 1010  

For deep learning models, SHAP incorporates the DeepExplainer, 
a tool specifically designed to handle the internal structure of neural 
networks. Rather than evaluating every feature subset, DeepExplainer 
leverages carefully selected reference samples from the dataset and 
gradient-based information within the network to approximate each 
feature’s contribution. It efficiently balances accuracy and computa-
tional cost by focusing on how the model’s predictions change when 
inputs are perturbed relative to these reference samples.

3. Results and discussion

3.1. Raman spectra overview

Table  2 shows the number of Raman spectra remaining after the pre-
processing filters described in Section 2.3. Additionally, Table S1 pro-
vides details of the spectra included in the train/val and test datasets, 
showing the number of spectra acquired per day for each species, the 
total spectra recorded per batch, and the proportion of each species 
within its batch.

As observed in Table S1, the limited number of culture batches and 
the uneven distribution of measurements within them required a ran-
dom division of spectra in the train-validation dataset, as stratification 
by culture batch was not feasible.

In Fig.  2, normalized Raman spectra of the four cyanobacterial 
species are presented, showing (a) the raw spectra and (b) the base-
line estimations, along with their respective standard deviations. For 
the baseline estimations, a broader range (50–3200 cm−1) is used 
to highlight changes in autofluorescence curvature, which are more 
pronounced above 1600 cm−1. The baseline estimation is used as an 
approximation of the samples’ autofluorescence to assess its potential 
contribution to cyanobacterial classification.

As shown in Fig.  2, the estimated baselines reveal clear differences 
among the analyzed cyanobacterial species, directly linked to autoflu-
orescence. UAM502, UAM588, and UAM253 exhibit similar baseline 
trends, characterized by a slight increase in intensity across the ana-
lyzed Raman range and a gradual rise in the 2500–3200 cm−1 region. In 
contrast, UAM565 presents a markedly different baseline profile, with a 
pronounced increase across the entire spectrum until stabilizing around 
2500 cm−1. This distinct behavior may be attributed to differences 
in photosynthetic pigment concentration, particularly chlorophylls and 
phycobiliproteins [48,49], as well as structural factors such as the pres-
ence of abundant gas vesicles, which are characteristic ofPlanktothrix 
agardhii and can affect light scattering and interactions with cellular 
components [50–52]. Additionally, UAM565 exhibits greater signal 
variability beyond 1300 cm−1, as reflected in the standard deviation, 
which could further contribute to differences in spectral interpretation. 
Given that such variations may introduce biases in classification, assess-
ing their impact on the corrected spectra is crucial for accurate spectral 
analysis and interpretation.

In Fig.  3, the preprocessed Raman spectra of the four cyanobacte-
rial species are displayed after applying the methodology outlined in 
Section 2.2.

The fluorescence signal observed in the raw spectra, especially for 
UAM565, is significantly reduced after preprocessing. The processed 
signals become more consistent across species, with UAM565 showing 
comparable Raman features to the others.
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Fig. 2. Average normalized Raman spectra with standard deviation for each class: (a) raw spectra and (b) baseline estimations.
Fig. 3. (a) Average Raman spectra with standard deviation for the preprocessed data of each species. (b) Overall average Raman spectrum with standard deviation for the entire 
dataset, highlighting the most significant Raman bands.
Table 3
Main Raman band assignments of the four toxic cyanobacteria species analyzed, including Raman shift 
positions along with their associated bonds and substances [23,53–58]. 
 Raman shift (cm−1) Chemical bonds Abbreviation Substances  
 958 C–C str., CH 

out-of-plane 
(C=C), CH rock

𝜈(C–C), 𝛾(CH) Proteins, lipids, 
carotenoids

 

 1002 Sym. C–CH3 str., 
CH3 bend

𝜈(C–CH3), 𝛿(CH3) Proteins, carotenoids  

 1155 C–C str., CH def. 𝜈(C–C), 𝛿(CH) Carotenoids, 
chlorophyll

 

 1191 CH def. 𝛿(CH) Carotenoids  
 1288 CH2 def., Amide 

III (C–N, N–H 
bend)

𝛿(CH2), 𝜈(C–N), 
𝛿(N–H)

Lipids, proteins, 
chlorophyll, 
carbohydrates, 
carotenoids

 

 1448 CH2/CH3 def. 𝛿(CH2/CH3) Lipids, proteins, 
chlorophyll, carotenoids

 

 1520 C=C str. 𝜈(C=C) Carotenoids, 
chlorophyll

 

We propose including raw spectra and baseline estimations in the 
analysis pipeline, as this could enhance the robustness of automatic 
cyanobacterial species classification. It may also reveal whether pre-
processing steps disadvantage certain species, impacting classification 
performance.

Table  3 provides a summary of the band assignments highlighted in 
Fig.  3b.

The Raman spectra presented in Fig.  3 and detailed in Table  3 
reveal prominent bands at 1002, 1155, and 1520 cm−1. The band at 
1002 cm−1 is attributed to symmetric C–CH3 stretching and CH3 bend-
ing vibrations, commonly associated with proteins and carotenoids. The 
5 
1155 cm−1 band corresponds to C–C stretching and CH deformation 
modes, indicative of carotenoids and chlorophylls. The 1520 cm−1 band 
is linked to C=C stretching vibrations, characteristic of carotenoids and 
chlorophylls. These findings suggest that the dominant Raman signals 
in the spectra are primarily due to the vibrational modes of carotenoids 
and chlorophylls present in the samples.

3.2. Deep learning analysis

To evaluate the contribution of each spectral representation, we 
tested different input configurations. The highest test accuracy was 
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Fig. 4. Confusion matrices obtained using the 1D-CNN architectures described in Section 2.4: (a) 1D-CNN trained with preprocessed spectra and (b) 1D-CNN trained with a 
combination of raw spectra, baseline estimations, and preprocessed spectra. The overall accuracies obtained were (a) 74% and (b) 86%.
achieved by combining raw and preprocessed spectra (86%), outper-
forming only preprocessed (74%) or only raw (71%). This combination 
leverages their strengths: preprocessing removes noise and enhances 
spectral features, while raw spectra retain subtle details. Preprocessing 
also simplifies learning, helping the model focus on meaningful spectral 
patterns. We also trained a multichannel CNN using only raw and 
preprocessed spectra, omitting the baseline estimation channel, and 
obtained comparable performance (86%). We retain this channel to 
explore its individual contribution to spectral features, as its inclusion 
enables a more detailed analysis of autofluorescence.

Based on these findings, we compared the performance of the 
model trained with only preprocessed spectra, which is a common ap-
proach [28,46], to the multichannel CNN configuration incorporating 
raw, preprocessed, and baseline estimation spectra. The corresponding 
confusion matrices for these models are presented in Fig.  4.

The 1D-CNN trained on preprocessed spectra achieved an overall 
accuracy of 82% on both the training and validation datasets, dropping 
to 74% on the test dataset (Fig.  4a). In contrast, the multichannel 1D-
CNN reached 95% accuracy on the training and validation datasets, 
respectively, and 86% on the test dataset (Fig.  4b), indicating that 
both models do not overfit. However, the test accuracies are lower, 
showing that generalization to unseen data remains imperfect. Since the 
test dataset was independently acquired, with cyanobacteria samples 
from different culture passages measured months apart, it represents 
novel samples to the models. Despite consistent preprocessing and 
measurement protocols, factors such as potential data leakage resulting 
from varying growth stages or genetic similarity between batches could 
contribute to the slightly reduced generalization.

The comparison between the confusion matrices in Fig.  4 highlights 
the significant improvement achieved with the multichannel 1D-CNN. 
The 1D-CNN trained solely on preprocessed spectra shows significant 
pairwise misclassifications, with UAM253 often confused with UAM565 
and UAM588 with UAM502. Although the model achieves respectable 
accuracies for specific classes, such as 82% for UAM502 and 88% for 
UAM565, these systematic misclassifications introduce biases that com-
promise its overall reliability. In contrast, the multichannel 1D-CNN 
significantly reduces these confusions, although some misclassifications 
persist. By integrating raw spectra and baseline estimations alongside 
preprocessed spectra, the model leverages complementary informa-
tion to reduce class overlap and eliminate the biases observed in the 
single-channel model.

The performance metrics of the multichannel 1D-CNN model are 
presented in Table  4.

The metrics presented in Table  4 demonstrate robust performance 
of the multichannel 1D-CNN model on the test data, with an overall 
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Table 4
Performance metrics for the multichannel 1D-CNN model trained on classifying four 
toxic cyanobacteria species. Metrics include accuracy, recall, precision, specificity, and 
F1-score for each class, along with the macro average and overall accuracy across all 
classes. 
 Cyanobacteria species Accuracy Recall Precision Specificity F1-score 
 UAM502 0.94 0.95 0.81 0.94 0.88  
 UAM588 0.93 0.77 0.94 0.98 0.85  
 UAM565 0.92 0.87 0.84 0.94 0.86  
 UAM253 0.92 0.84 0.83 0.94 0.84  
 Macro average 0.93 0.86 0.86 0.95 0.86  
 Overall accuracy 0.86  

accuracy of 86% and a macro-average F1-score of 86%, demonstrating 
a good balance between precision and recall. UAM502 stands out 
with a high Recall (95%), indicating that almost all its true instances 
are correctly identified. UAM588, with the highest precision (94%), 
shows reliable positive predictions, but its lower recall (77%) reveals 
that 18% of its true instances are classified as UAM502. Meanwhile, 
UAM565 and UAM253 exhibit balanced metrics, with recall of 87% 
and 84%, respectively, and precision of 84% and 83%, although there 
is some confusion between them. These results highlight that the main 
confusions occur in pairs: UAM502 with UAM588 and UAM565 with 
UAM253.

Consistently, Figure S5 in the supplemental material presents an 
LDA plot for the three datasets—raw spectra, baseline estimations, 
and preprocessed spectra—where the same pairwise class confusion is 
observed through the overlapping clusters of the species.

Fig.  4 shows that species prone to misclassification share the same 
growth medium, according to Table  1. To verify if the growth medium 
affects classification, spectra from UAM502 and UAM588 cultured in 
BG11 and BG110 were compared using 1500 preprocessed spectra per 
class. Figure S6 presents the average spectra and their standard devia-
tions for these measurements, where the spectra appear highly similar 
under both culture conditions. Figure S7 illustrates two methods used 
to assess the impact of the growth medium on classification. In Figure 
S7a, the LDA visualization clearly separates the species regardless of 
the growth medium, indicating that the medium has little effect on the 
classification. Similarly, the 1D-CNN confusion matrix in Figure S7b 
shows that classification errors mainly occur between samples of the 
same species grown in different media. This suggests that the similarity 
observed between the cyanobacteria is not attributable to their shared 
growth medium but rather to their intrinsic molecular composition.
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Fig. 5. Raman 2D images of cyanobacterial species classification in mixed samples using the multichannel model from Fig.  4b: (a) UAM502 and UAM253, (b) UAM502 and 
UAM588. Spectra in black did not pass the preprocessing filters, while other colors indicate the model’s classification. Bright-field images provide a visual reference of the species’ 
spatial distribution.
Additional measurements were performed under the same experi-
mental and preprocessing conditions to better understand misclassifi-
cations between classes, focusing on mixed samples containing pairs 
of cyanobacterial species. Raman 2D images were generated using the 
automatic classification derived from predictions made by the mul-
tichannel model. These representations aim to identify patterns that 
explain the misclassifications observed among the species. Fig.  5 shows 
two representative images: a mixture of UAM502 and UAM253 and a 
mixture of UAM502 and UAM588, alongside bright-field images taken 
before the Raman measurements to provide a visual reference of the 
expected spatial distribution of the cyanobacteria species.

The results of the automatic classifications from mixed cyanobac-
teria samples did not yield particularly remarkable outcomes except 
for some specific cases, such as those shown in Fig.  5. The confusion 
observed between UAM502 and UAM588 often assigns the edges of 
UAM502 as UAM588. This may be related to pigment concentration 
differences in the cell membrane. On the other hand, the confusions 
between UAM253 and UAM565 seem more random, as no significant 
spatial patterns were identified in these cases.

It is worth noting that cyanobacterial membranes vary significantly 
in complexity, composition, and layer thickness—particularly in the 
peptidoglycan layer, which can exceed 700 nm in some species [59]. 
Such structural differences may influence the observed classification 
uncertainties, mainly because the measurements were performed using 
a confocal system. Since the laser penetrates only a few microns de-
pending on the focal plane, subtle variations in membrane structure or 
pigment distribution can result in detectable differences in the Raman 
signal.

3.3. Interpretability from deep learning analysis

Fig.  6 shows the global absolute SHAP values for each class, rep-
resenting the contribution of individual Raman shifts to the predic-
tions made by the multichannel 1D CNN model. These results are 
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shown independently for three channels: (a) raw spectra, (b) baseline 
estimations, and (c) preprocessed spectra.

According to Fig.  6, SHAP values indicate that the most relevant 
information for classification is directly associated with characteristic 
Raman bands. In contrast, baseline estimations (Fig.  6b) contribute 
minimally, suggesting that fluorescence signals, observed as a residual 
broad emission similar to the baseline estimation, have little impact 
on the model’s classification performance. This is consistent with the 
LDA representation shown in Figure S5b, where the separation between 
clusters for baseline estimations is less evident compared to those for 
raw and corrected spectra.

Interestingly, many regions highlighted by SHAP values correspond 
to Raman bands that are not clearly visible in the average spectrum due 
to overlapping with more intense signals. This indicates that the model 
is capable of extracting subtle spectral information.

The SHAP-identified regions correspond to Raman bands commonly 
associated with carotenoids and chlorophylls, according to Table  3. 
Specifically, bands around 1520 cm−1 (C=C stretching), 1155 cm−1 (C–C 
stretching), 1002 cm−1 (symmetric C–CH3 stretching and CH3 bend-
ing) and 1191 cm−1 CH deformations align with well-characterized 
carotenoid signatures [57].

SHAP values also highlight regions where the presence of sub-
stances other than carotenoids is expected, such as chlorophylls, pro-
teins and lipids. For example, the 1288 cm−1 band includes CH2 defor-
mations and amide III vibrations, indicating the presence of proteins 
and lipids, while the 1448 cm−1 band (CH2/CH3 deformations) suggests 
contributions from lipids and chlorophyll.

Considering this, precise molecular attribution remains challeng-
ing due to spectral overlap among these substances, but the strong 
correspondence between the most relevant Raman bands and known 
carotenoid and chlorophyll signatures reinforces their dominant role in 
cyanobacterial species differentiation.
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Fig. 6. Global absolute SHAP values for each class are shown for (a) raw spectra, (b) baseline estimations, and (c) preprocessed spectra obtained from the 1D-CNN multichannel 
model described in Fig.  4b. The scale for Mean Abs SHAP Values is consistent across the three channels. In the case of Raman spectra, the scale is expressed in arbitrary units.
Additionally, flat spectral regions, such as those between 1000–
1100 cm−1, show SHAP values close to zero, confirming that these 
areas, not associated with Raman bands, provide little to no relevant 
information for classification.

SHAP analysis demonstrates that raw and preprocessed spectra pro-
vide complementary insights. A comparison of SHAP values from raw 
(Fig.  6a) and preprocessed spectra (Fig.  6c) reveals greater consistency 
in regions around the Raman bands observed in the mean spectra after 
preprocessing Fig.  3. In raw spectra, SHAP values in these regions are 
less pronounced but remain well-defined, suggesting that noise and 
background signals negatively impact classification while still retaining 
key information for species differentiation. In contrast, preprocessed 
spectra more clearly distinguish key Raman bands, such as those near 
1002, 1155, and 1520 cm−1, confirming that preprocessing improves 
feature selection.

However, preprocessing can also suppress biologically relevant sig-
nals. For instance, the 958 cm−1 band, strongly highlighted in raw 
SHAP values, weakens after preprocessing, indicating potential in-
formation loss. Additionally, the 1500–1575 cm−1 region, located at 
the spectral range’s edge, exhibits a progressive intensity increase in 
preprocessed spectra, likely due to artifacts introduced by baseline 
estimation, which may introduce classification biases.

Despite these limitations, the complementarity between raw and 
preprocessed spectra suggests that both contribute valuable informa-
tion to the classification process. While the preprocessing applied may 
not be the optimal approach, it effectively enhances the model’s focus 
on the most relevant spectral features, leading to improved classifica-
tion performance.

4. Conclusions

This study presents a comprehensive methodology for the clas-
sification of four toxic cyanobacterial species (Dolichospermum cras-
sum, Aphanizomenon sp., Planktothrix agardhii and Microcystis aerugi-
nosa) by combining Raman spectroscopy with advanced deep learning 
techniques.

A preprocessing pipeline was carefully designed to address chal-
lenges in Raman spectroscopy and ensure that the selected spectra 
accurately represent each cyanobacterial species while minimizing ex-
ternal influences. Steps such as baseline correction, noise filtering, and 
signal normalization effectively tackled issues like polymer interference 
or spectral variability. These corrections ensured high-quality spectral 
data.

From a biological perspective, the data contained in the train-
validation dataset do not differ significantly from what would be ex-
pected in a real environment, as cyanobacteria blooms are originated 
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by successive regrowth of existing cells rather than independent popu-
lations. This continuous proliferation leads to populations with shared 
genetic backgrounds and similar physiological states, even when they 
arise from different culture batches.

However, a fluorescence-based filtering criterion was applied to 
reduce intraspecies variability and maintain comparable physiological 
states, promoting data consistency and reliability, even at the trade-off 
of excluding some valid spectra. These preprocessing steps are crucial 
for preventing biases and ensuring a representative dataset for classifi-
cation. The slight performance reductions observed on the independent 
test dataset suggest further enhancements to improve model generaliza-
tion, particularly by accounting for variations in sample growth stages 
or potential degradation states.

A multichannel 1D-CNN framework, incorporating raw spectra, 
baseline estimations and preprocessed spectral data, achieved signifi-
cant improvements over traditional single-channel methods, reaching 
an overall accuracy of 86%. By integrating multiple spectral data, the 
multichannel approach effectively minimized systematic misclassifica-
tions commonly observed in single-channel models.

Despite the increased number of parameters in the multichannel 
approach, no evidence of overfitting was observed. Regularization tech-
niques, including dropout and early stopping, were applied to control 
model complexity. Additionally, the multichannel CNN demonstrated 
good generalization to independent test data, indicating its robustness 
in classifying unseen samples.

The drop in accuracy from the training dataset (95%) to the test 
dataset (86%) could be attributed to the natural variability of the 
test set. Additionally, uncontrolled confounding variables may have 
contributed, as it has not been feasible to apply stratification strategies, 
for example, based on culture batches.

The integration of SHAP provided an interpretable framework for 
identifying the most relevant Raman spectral regions contributing 
to the classification. Key spectral bands, primarily associated with 
carotenoids and chlorophylls, were highlighted as critical biochemical 
markers. This improved interpretability not only enhances the model’s 
reliability but also clarifies the molecular features that allow the dif-
ferentiation of cyanobacterial species. Moreover, the complementarity 
between raw and preprocessed spectra underscores the importance of 
leveraging both datasets, as each captures distinct spectral details that 
contribute to a more accurate classification.

In addition, we have demonstrated that autofluorescence, repre-
sented by the baseline estimation channel, does not provide relevant 
information for classification. This finding confirms that the model 
predominantly relies on Raman features.

In future research, we will explore various directions. First, We will 
conduct validation in natural settings to assess the model’s performance 
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under realistic conditions, specifically for Microcystis aeruginosa, which 
forms colonies in nature rather than existing as individual cells, as 
we observe in controlled cultures. While we expand our dataset with 
more cultures and a greater diversity of samples, we plan to further 
refine the model’s generalization by increasing the training set and 
implementing stratification strategies on it. Second, efforts will focus 
on exploring dimensionality reduction techniques using SHAP values 
to improve computational efficiency and optimize spectral analysis. 
Third, work will focus on developing Raman spectroscopy integration 
into microfluidic systems for continuous-flow measurements and in 
situ monitoring, as no low-cost solutions currently exist to identify 
cyanobacterial species in real-time accurately. Finally, the dataset will 
be expanded to include a wider variety of cyanobacterial species and 
environmental conditions, improving the model’s generalizability and 
robustness to variations in spectral data.

Our study underscores the potential of combining Raman spec-
troscopy with advanced deep learning techniques as a powerful tool 
for environmental monitoring. The proposed methodology improves 
the detection and classification of toxic cyanobacterial species, con-
tributing to advancements in water quality management and ecosystem 
protection.
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Abbreviations

The following abbreviations are used in this manuscript:

 1D-CNN One-Dimensional Convolutional Neural Network 
 HABs Harmful Algal Blooms  
 PCA Principal Component Analysis  
 DPLS Discriminant Partial Least Squares  
 LSTM Long Short-Term Memory  
 UAM Universidad Autónoma de Madrid  
 NA Numerical Aperture  
 ALS Asymmetric Least Squares  
 SNV Standard Normal Variate  
 NNLS Non-Negative Least Squares  
 SNR Signal-to-Noise Ratio  
 ReLU Rectified Linear Unit  
 SHAP SHapley Additive exPlanations

Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.talanta.2025.127845.

Data availability

The Raman spectra datasets and the trained models used in this 
work are publicly available on Zenodo at https://doi.org/10.5281/
zenodo.14727718. All Python scripts developed and used in this work 
are available in the GitHub repository https://github.com/fmantecam/
CyanoRamanDL (accessed on 19 December 2024).
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