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Until very recently, the asymptotic occurrence of intrinsic anomalous scaling has been expected to require
concomitant effects for kinetically rough interfaces, like quenched disorder or morphological instabilities. How-
ever, counterexamples have been recently reported for simpler situations dominated by time-dependent noise,
as in the discrete growth system associated with an Ising model proposed by H. Dashti-Naserabadi et al. [Phys.
Rev. E 100, 060101(R) (2019)], who assessed the equilibrium behaviour of the model. Here, we revisit this
system to characterise its time-dependent behaviour in two and three dimensions (one- and two-dimensional in-
terfaces, respectively). While the 3D case seems dominated by a fast evolution beyond critical dynamics, in the
2D case, numerical simulations of an associated time-dependent Ginzburg-Landau equation retrieve the same
static (roughness) exponents and the same intrinsic anomalous scaling ansatz as in the equilibrium case through-
out the complete time evolution. However, the dynamic exponent is seen to cross over between two different
values, none of which enables identification with previously known universality classes of kinetic roughening.
Moreover, simulations for larger system sizes suggest a breakdown of scaling behaviour at the largest scales,
suggesting that the previously reported scaling behaviour may be effective and restricted to relatively small
systems.

I. INTRODUCTION

Many spatially-extended systems of a high current interest
operate under non-equilibrium conditions, from active [1, 2]
to quantum matter [3, 4]. In these and many other contexts,
the conditions for and the properties of the emergence of the
strong correlations associated with space-time criticality [5]
become relevant. From this point of view, a particularly in-
teresting class of systems is that for which critical behaviour
appears spontaneously without the need for parameter tuning,
thus showing so-called generic scale invariance (GSI) [6, 7].

Surface kinetic roughening [8, 9] is a celebrated physical
instance of GSI. Indeed, in many different systems, from thin
film production to bacterial colonies, the fluctuations of rough
surfaces and interfaces are observed to evolve in the absence
of typical scales in time and space. To date, some of the main
universality classes of surface kinetic roughening, like that
of the Kardar-Parisi-Zhang (KPZ) equation [10], are held as
paradigms of nonequilibrium critical phenomena at large [11–
14], being surprisingly relevant even in contexts far away from
those that motivated their original formulation. An example is
the recent experimental observation of KPZ scaling for quan-
tum condensates [15] and spin chains [16], the equation being
originally formulated for non-quantum systems [8–10].

In general, the study of surface kinetic roughening remains
instrumental in generalizing the concepts and tools of equilib-
rium critical dynamics to systems which are far from equilib-
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rium [11–14]. A crucial ingredient at this has been the dy-
namic scaling ansatz satisfied by the relevant physical quanti-
ties, such as the surface roughness and correlations. As sem-
inally proposed by Family and Vicsek (FV) [17], it is a di-
rect generalization of the dynamic scaling ansatz of equilib-
rium critical dynamics found in e.g. the classic models A and
B [5, 18]. Indeed, the so-called FV ansatz is satisfied e.g.
by the KPZ equation and by many other systems displaying
kinetic roughening [8, 9]. However, generalizations of the
FV ansatz, collectively termed anomalous scaling [9, 19–22],
have been later shown to be required to account for more elab-
orate scaling behaviour found in models and in experiments,
whereby e.g. different critical exponents characterise fluctu-
ations at distances smaller than or comparable to the system
size.

Up to quite recently, one of these generalised ansatzs, the
so-called intrinsic anomalous scaling, was believed (following
a conjecture [24] based on renormalization group arguments)
to occur asymptotically for some rough interfaces only when
subject to relatively peculiar conditions, like quenched disor-
der and/or morphological instabilities. Hence, the observation
of intrinsically anomalous scaling in the equilibrium state of a
growth system related with a critical Ising model [25] comes
as a surprise, since no such peculiarities are apparent in the
system formulation.

Notably, the values of the static scaling exponents and the
scaling ansatz verified in Ref. [25] coincide with those found
very recently for the tensionless KPZ equation (TKPZ), a par-
ticular case of the KPZ equation and thus a candidate con-
tinuum representative of the universality class exposed by the
results in Ref. [25]. The TKPZ equation has attracted recent
interest for 1D interfaces [26–29], not the least for its poten-
tial relevance for non-KPZ scaling behaviour experimentally
found in some KPZ-related systems [15, 16]. Actually, the
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FIG. 1: Definition of the height profile h(x) (cyan solid line) from
a certain 6 × 6 Ising spin domain. See full definitions in Sec. III
of the main text. Yellow and black cells correspond to +1 and −1
spin values, respectively. The spin rows below and above the bot-
tom and top red lines illustrate the Dirichlet and Neumann boundary
conditions, respectively. The (yellow) cells making up the cluster
connected to the Dirichlet boundary via nearest neighbours are indi-
cated by a purple square. The value of h(x) corresponds to the height
of the topmost one of such marked cells for each x.

1D TKPZ equation has been shown to define a universality
class of its own [27, 28], different from that of the standard
KPZ equation, which encompasses scaling behaviour earlier
found for e.g. growth models related with isotropic perco-
lation [30, 31]. The TKPZ equation seems to be the first
continuum model displaying intrinsically anomalous scaling
[27, 28] in absence of quenched noise or morphological insta-
bilities.

In this work, we revisit the interface growth model pro-
posed in Ref. [25]. As the authors of that reference were ad-
dressing equilibrium properties of their system, specifically its
classical roughening transition, no time-dependent behaviour
was reported and the kinetic roughening behaviour was ex-
tracted from the system-size dependence of correlation func-
tions. Thus, our goal is to study the time-dependent behaviour
of the system. Specifically, in our present work we study the
full dynamics of the growth process defined in Ref. [25] at the
critical temperature, T = Tc. We perform numerical simu-
lations of the evolution of Ising spin domains in 2D and 3D,
using both a Metropolis algorithm and an alternative coarse-
grained approach based on the Ginzburg-Landau equation, us-
ing the boundary conditions proposed in Ref. [25] and de-
scribed in Fig. 1.

This paper is organised as follows. In section II, we de-
scribe the observables we will measure to characterise the
scaling of kinetic roughening processes. In section III, we

describe the boundary conditions of the Ising model we will
deal with, the definition of the interface, and the two differ-
ent approaches that we have followed for the simulation of
the time evolution of the system. Then, we describe the nu-
merical results obtained both for 1D and 2D fronts (related
to 2D and 3D Ising systems, respectively) via our Ginzburg-
Landau approach in sections IV and V. The results obtained
via a Metropolis Monte Carlo approach are presented in Ap-
pendix A. We discuss our results in section VI, followed by
a summary and our conclusions in section VII. Appendices B
and C contain further details on parameter choices and addi-
tional numerical results, respectively.

II. OBSERVABLES

The observables which are going to be used in the charac-
terization of the front dynamics are (i) the global roughness,

W (t) =
〈√ 1

Ld

∫
[0,L]d

[h(x⃗, t)− h̄(t)]2dx⃗
〉
, (1)

where bar denotes spatial average, L is the lateral system size,
and brackets denote the average over different realisations of
the noise, (ii) the structure factor,

S(k⃗, t) = ⟨|ĥ(k⃗, t)|2⟩, (2)

where ĥ(k⃗, t) is the Fourier transform of h(x⃗, t) and k⃗ is d-
dimensional wave vector, and (iii) the height-difference cor-
relation function,

G2(r⃗, t) =

√
⟨[h(x⃗+ r⃗, t)− h(x⃗, t)]2⟩. (3)

In a kinetic roughening process [8], the global roughness
scales with time as W ∼ tβ — with β being the so-called
growth exponent — up to a saturation value Wsat ∼ Lα which
is reached at steady state. Here, α is the so-called roughness
exponent, which is related to the fractal dimension of the front
[8, 32]. The time tsat required for the system to reach the
steady state increases as tsat ∼ Lz . Here, z = α/β is the
so-called dynamic exponent, which characterises the time de-
pendence of the lateral correlation length ξ along the front as
ξ ∼ t1/z [8]. Frequently, time crossover behavior may occur
whereby the system shows the scaling behavior of some uni-
versality class at short times while displaying a different one
at longer times. An example is the KPZ equation itself, which
displays linear, Edwards-Wilkinson (EW) properties early on
in its dynamics, replaced by full-fledged nonlinear KPZ scal-
ing at longer times [8]. Note that, in cases like this, the long-
time scaling behavior may be impossible to see in small sys-
tems where saturation to steady state occurs before the asymp-
totic scaling has developed.

It is possible to define a scaling function fW that summa-
rizes the scaling laws of the roughness into the single expres-
sion [8, 17]

W (L, t) ∼ LαfW

(
t

Lz

)
, (4)
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provided,

fW (u) ∼
{

uβ if u ≪ 1,
constant if u ≫ 1.

(5)

The local roughness measured over windows of size l < L
also scales with the window size l, with a local exponent αloc.
Equivalently, the height-difference correlation function, Eq.
(3), scales as G2 ∼ rαloc , where r = |r⃗|. In general, αloc = α
(e.g. in the standard KPZ equation [8, 9]). However, there
are some kinetic roughening systems in which the local and
the global scalings of the roughness with the window size are
different, i.e. αloc ̸= α. Such behaviour is called anomalous
scaling or anomalous kinetic roughening [19–22]. The struc-
ture factor scales in this case as [22]

S(k⃗, t) ∼ k−(2α+d)fS(k
zt), (6)

where fS behaves as

fS(u) ∼
{

u2α+d if u ≪ 1,
u2(α−αs) if u ≫ 1.

(7)

Here, αs is an exponent conveniently measured in Fourier
space which is equal to αloc when αloc < 1 [22]. For α =
αloc, the behaviour described by Eqs. (6) and (7) corresponds
to the standard Family-Vicsek scaling ansatz [8, 17]. As noted
above, while intrinsic anomalous scaling had been conjec-
tured, via perturbative arguments, not to be in the asymptotic
regime of continuum models which feature local interactions
and time-dependent noise [24], it has been recently found for
some such systems [28].

Additionally, we will also check multiscaling behaviour,
where higher moments of the height-difference correlation
function, namely,

Gq(r⃗, t) = ⟨|h(x⃗+ r⃗, t)− h(x⃗, t)|q⟩1/q, (8)

do not scale with the same roughness exponent for different
values of q, i.e. for which Gq(r) ∼ rαq with a q-dependent
αq . In those cases, the morphologies are considered multi-
affine [8]. This behaviour appears e.g. in surface growth mod-
els related to isotropic percolation [30, 31].

Finally, recent developments on kinetic roughening, mostly
related to the KPZ equation (see e.g. Refs. [11–14] and other
therein), demonstrate the nontrivial role of the statistics of the
height fluctuations to unambiguously identify the universality
class, beyond scaling exponent values. Here, we will assess
the field statistics by computing the probability distribution
function (PDF) of the height fluctuations, as well as the time-
dependent skewness,

S(t) = 1

W 3(t)

〈 1

Ld

∫
[0,L]d

[h(x⃗, t)− h̄(t)]3dx⃗
〉
, (9)

and the time-dependent kurtosis,

K(t) =
1

W 4(t)

〈 1

Ld

∫
[0,L]d

[h(x⃗, t)− h̄(t)]4dx⃗
〉
, (10)

where W is the roughness of the h(x⃗, t) field.

III. SYSTEM DESCRIPTION

The physical system that we study in this work is in prin-
ciple the same as that proposed in Ref. [25]. We define a
1D (resp. 2D) interface or front h(x) (resp. h(x, y)) from a
2D (3D) spin domain {sr⃗}, where sr⃗ = ±1 are Ising spins
and r⃗ takes values on a 2D (3D) square lattice of lateral size
L. Dirichlet (fixed) and Neumann (free) boundary conditions
are fixed on each boundary in the last coordinate of r⃗ (the
“vertical” or “growth” one, z); specifically, sr⃗ = +1 (resp.
sr⃗′ = sr⃗) if z = 0 (resp. if z′ = L + 1 and z = L). Periodic
boundary conditions are considered in the other (transverse or
substrate) dimensions. We will refer to these boundary con-
ditions as magnet. Then, a set of values Cr⃗ is defined, such
that Cr⃗ = 1 if spin sr⃗ is aligned with the +1 spins fixed at the
Dirichlet bottom boundary, which are connected to each other
via nearest-neighbour paths, and Cr⃗ = 0 otherwise. For a
2D spin system, the height of the interface at a fixed substrate
coordinate x is finally defined as

h(x) = max{z | Cr⃗ = 1}, (11)

where r⃗ = (x, z). An illustrative 2D spin domain with L = 6
under these boundary conditions and its corresponding h(x)
interface profile is depicted in Fig. 1. An analogous procedure
defines the height of the interface at a fixed substrate coordi-
nate (x, y) for a 3D spin system, where r⃗ = (x, y, z).

A. Metropolis approach

The most straightforward method for studying the dynam-
ical evolution of the spin configurations of a ferromagnetic
system consists of the use of Monte Carlo simulations [33]. A
Metropolis algorithm can be used to simulate the full evolu-
tion of the spin field. At the same time, the equilibrium state
of the model described in the previous paragraph was studied
in Ref. [25] using Wolff’s algorithm. For each Monte Carlo
step, one random spin in a position r⃗ is chosen and flipped
with probability Pr⃗, such that

Pr⃗ =


e−∆Er⃗/kBT if ∆Er⃗ > 0,

1/2 if ∆Er⃗ = 0,

1 if ∆Er⃗ < 0,

(12)

where

H[{sr⃗}] = −J
∑
r⃗

sr⃗

 ∑
r⃗′∈N (r⃗)

sr⃗′

 (13)

is the Ising Hamiltonian, N (r⃗) is the set of all the nearest-
neighbours for the position r⃗ on the 2D or 3D square lattice,
J > 0 is a ferromagnetic coupling, and kB is Boltzmann’s
constant. Hence, ∆Er⃗ = 2Jsr⃗

(∑
r⃗′∈N (r⃗) sr⃗′

)
is the energy

change due to the spin flip at position r⃗. The time scale is set
to t = N/Ld, where N is the number of Monte Carlo steps.
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(a) (b) (c)

(d) (e) (f)

FIG. 2: Snapshots of the 2D spin domain obtained from a numerical integration of Eq. (14) for L = 512 and times t =
403.1, 403.2, and 403.3 for the top panels increasing from (a) to (c), and t = 1099.3, 1099.4, and 1099.5 for the bottom panels increasing
from (d) to (f). The same colour coding of Fig. 1 is used here, with the only difference being that cells making up the cluster connected are
now coloured fully in purple. Again, for each time the front h(x, t) is shown as a cyan solid line. This front performs relatively large vertical
jumps at all times. Moreover, its overall shape can change quite abruptly in relatively short intervals as illustrated e.g. by the (d)→(e)→(f)
sequence.

This method yields a behaviour in which boundary effects
strongly affect the evolution of the front h, so that its scaling
can not be unambiguously assessed for the system sizes we
have been able to simulate. The details of these results are
described in Appendix A. In view of this fact, we alternatively
employ a coarse-grained approach that allows us to access the
effective behaviour of larger systems via the time-dependent
Ginzburg-Landau equation.

B. Ginzburg-Landau approach

The (stochastic) Ginzburg-Landau (GL) equation [34]

∂tm =
1

2

(
∇2m+m−m3

)
+ D̃η, (14)

where m(x⃗, t) denotes the local magnetization field and η
is an uncorrelated white noise term, is an effective coarse-
grained model, well-known to describe the evolution of the
scalar magnetization of an Ising ferromagnet around thermal

equilibrium [34, 35]. We use this model in order to simu-
late the full dynamic evolution of our Ising system. We also
define here a coarse-grained spin lattice {sx⃗} by discretizing
sx⃗ = +1 if m(x⃗) > 0 and sx⃗ = −1 otherwise, from which
we will define the field h as in the original spin system, recall
Eq. (11). The same boundary conditions as those proposed in
Ref. [25] are considered, see Fig. 1.

Our purpose is to assess the behaviour of this coarse-
grained spin system at the noise amplitude value D̃ = D̃c

corresponding to the Ising critical temperature Tc. For such a
value of the noise, the relative fluctuation of the local magne-
tization field,

M =
⟨m2(x⃗)⟩ − ⟨m(x⃗)⟩2

LdD̃
, (15)

exhibits a divergence at steady state as M ∼ Lγ/ν . Here,
γ = 7/4 and ν = 1 are the exact Ising critical exponents
in two dimensions [34] and γ ≃ 1.23 and ν ≃ 0.63 are the
approximate values in three dimensions [36].

Numerical simulations of Eq. (14) have been carried out
in real space. A straightforward finite-difference scheme in
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space and an Euler scheme in time have been employed [34],
using ∆t = 0.1 and ∆x = 1. A homogeneous initial condi-
tion m(x⃗) = −1 is considered for all x⃗ except at the Dirichlet
boundary, where m = 1 at all times.

IV. DYNAMICS AT T = Tc FOR A ONE-DIMENSIONAL
INTERFACE

A. L ≤ 2048

The entire critical dynamics of the field h(x, t) is evaluated
at D̃ = D̃c. In Appendix B, D̃c ≃ 0.9 is seen to correspond
to the critical temperature T = Tc of the 2D Ising model not
only with periodic boundary conditions [34] but also with the
magnet boundary conditions shown in Fig. 1.

Figure 2 shows snapshots of the 2D spin domain obtained in
a sample realization of our numerical simulations of Eq. (14),
which have been taken at increasing values of time from panel
(a) through panel (f). The front h(x, t) in each panel is shown
as a cyan solid line. Such a line is seen to perform relatively
many large vertical jumps. Its detailed shape can change quite
dramatically in very short times when regions of the purple
cluster connected to it by a few spins become “pruned” due to
these spins flipping out of the cluster. This behaviour is even
more dramatically seen in the movie available in the supple-
mental material (SM) at Ref. [37] and already anticipates large
values for the scaling exponents, see e.g. Ref. [38] and other
references therein.

1. Scaling exponents

Beyond surface morphologies, Fig. 3 shows the time evo-
lution of both the surface roughness W (t) and the structure
factor S(k, t), together with data collapses according to Eqs.
(4) through (7). We find up to three different time regimes in
the behavior of the roughness, which take place or not for a
given value of L, depending on its size, recall the discussion
right before Eq. (4) in Sec. II. In principle, small systems with
L < 2048 saturate to an L-dependent steady state so that the
saturated roughness value Wsat scales with L. Moreover, the
smaller L is, the faster such a steady state is reached, as is
standard in kinetic roughening conditions [8, 9]. However, for
L > 2048 the steady state value Wsat ceases to scale with L,
manifesting failure of kinetic roughening behavior.

More specifically, the three regimes found in Fig. 3(a) are:
(1) for 0 < t < 102 (values of time are approximate); (2) for
102 < t < 103, and (3) for t > 103. Note that Ref. [25] em-
ployed system sizes L ≤ 2048, which are explicitly addressed
in the present paragraph for comparison. The behaviour we
obtain for larger values of L up to L = 8192 is discussed
in Sec. IV B below. For the smallest system size considered
in Fig. 3 (namely, L = 128), the time increase of W (t) is
well characterised by a growth exponent value β1 ≃ 2/3. Re-
calling that random deposition features βRD = 1/2 [8], β1

indicates very large interface fluctuations in time, as antici-
pated above. Furthermore, results for larger L values indicate

that this is a short-time behaviour followed by an even higher
growth exponent β2 ≃ 3/2 for sufficiently large system sizes.
The transition from scaling regime 1 to scaling regime 2 in
the time evolution of W (t) takes place provided L is suffi-
ciently large (say, L ≳ 512), being L-independent in such
cases; compare the various W (t) curves obtained for different
L values in Fig. 3. This is analogous to, e.g., the well-known
EW-to-KPZ time crossover displayed by the KPZ equation
[8].

For intermediate L and times, one might measure an in-
termediate value of β close to that of the TKPZ equation
(βTKPZ = 1 [28]), but that is an apparent behaviour, as borne
out from the data collapses of the structure factor. Indeed, for
L = 2048 Fig. 3(c) shows that early time S(k, t) data collapse
well using α ≃ 1 and z1 ≃ 3/2 (hence, β1 = α/z1 = 2/3),
while Fig. 3(d) shows that long time data collapse well using
α ≃ 1 and z2 ≃ 2/3 (hence, β2 = α/z2 = 3/2). The α ≃ 1
value is suggested by the system-size behaviour of the rough-
ness at steady state [see the inset of Fig. 3(a) for L ≤ 2048],
while the spectral exponent value αs ≃ 1/2 describes the k-
dependent behaviour of the structure factor, see Fig. 3(b). In-
deed, recall that, in the presence of intrinsic anomalous scal-
ing, Eqs. (6) and (7) imply that the structure factor scales as
S(k) ∼ 1/k2αs+1 for k ≫ 1/t1/z [22]. Also, inspection of
Fig. 2, suggests that the anomalous scaling may be due to the
ocurrence of large overhangs that create large jumps in the in-
terface. Such a behavior has also been shown to induce the
(transient) appearance of intrinsic anomalous scaling in, e.g.,
a variant of the diffusion-limited aggregation model [23].

The intrinsically anomalous scaling ansatz which is verified
and the roughness exponent values, α = 1 and αs = 1/2, all
coincide with those of the 1D TKPZ universality class [28],
as also obtained in the simulations of Ref. [25]. Note, in the
latter reference this scaling behaviour was obtained in equi-
librium (at saturation, in our time-dependent approach), while
we are presently assessing it along the time evolution of the
system. However, in contrast with these TKPZ values for
the roughness exponents, Fig. 3 rules out a ballistic value for
the dynamic exponent z as in the TKPZ class, zTKPZ = 1
[28]. For the sake of reference, the standard KPZ equation
has a superdiffusive zKPZ = 3/2 < 2 (as in our case for
short times). Indeed, the value that we measure at long times,
z2 = 2/3 < 1, implies a spread of correlations that is even
faster than ballistic, as occurs in the inviscid noisy Burgers
equation [28]. It can also be found e.g. in suitable continuum
models combining morphological instabilities with non-local
interactions [39].

2. Statistics of front fluctuations

As noted above, beyond scaling exponent values the statis-
tics of the height fluctuations is an additional trait of the sys-
tem that identifies the kinetic roughening universality class.
Hence, we next measure the fluctuations of the height field
h(x, t) at different times. Specifically, Fig. 4 shows our nu-
merical results for the temporal evolution of the skewness, the
kurtosis of the height fluctuations, and the full probability dis-
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FIG. 3: Time evolution for (a) the roughness W (t, L) and (b) the structure factor S(k, t) of the field h(x, t) defined from the simulations of
Eq. (14) for a 2D domain. The inset in (a) shows the scaling of the saturation roughness Wsat with the system size L for the values of L given
in the legend of the main panel. In (b) L = 8192 and time values increase bottom to top. These S(k, t) data are collapsed in (c) [resp. (d)] for
early [late] times during which z = 3/2 [z = 2/3] and L = 2048. Both collapses are for α = 1 and αs = 1/2. In all panels, dashed lines
correspond to the indicated values of the scaling exponents.

tribution function (PDF) of the steady-state fluctuations for
our 1D fronts. Both S and K show very large values at short
times which, after a nontrivial time evolution — frequently
found in continuous nonlinear models —, eventually reach
non-Gaussian (recall SGauss = 0 and KGauss = 3) values
at steady state.

The full height PDF at saturation displayed in the inset of
Fig. 4 is asymmetric indeed. We believe that the negative
range of the fluctuations is over-represented due to a distortion
introduced by the Dirichlet boundary condition at the bottom
of the 2D domain. To illustrate the interplay of the morphol-
ogy with the boundary conditions, we show in Fig. 9 the time
evolution of the average mean height h, as well as the percent-
age of the individual realisations for which some parts of the
h(x, t) front reach the top boundary, thus influencing the fluc-
tuations, for different values of the system size L. We observe
how this percentage decreases with the system size, reaching
a negligible value for L = 2048. Hence, the influence of the
boundary in all measurements is expected to be very small for
large system sizes.

3. Multiscaling

The morphologies in the nonlinear growth regime from the
2D GL model exhibit an abundance of prominent slopes to
the naked eye, recall Fig. 3. In Fig. 6 we assess the PDF of

the slope field u = ∂xh for the GL interfaces. We observe in
the figure that the tail of the PDF decays approximately as a
power law P (χu) ∼ χ−2

u . In Ref. [30, 31], this type of slope
statistics has been shown to imply multiscaling behaviour, as
different q-moments of the height-difference distribution, Eq.
(8), were then shown not to scale with the same roughness
exponent α for different values of q. Specifically, in Refs.
[30, 31], a surface growth model related to isotropic percola-
tion (invasion percolation without trapping) was studied nu-
merically, finding that the statistics were well described by
the power law P (χu) ∼ χ−2

u . In that case, a scaling analysis
based on isotropic percolation implies αq = 1/q for arbitrary
q. This seems to also be the case for q > 1 and not too large r
in our present numerical simulations; see Fig. 7.

B. Larger values of L

As the reader may have noted when inspecting some of the
figures presented in Sec. IV A 1, a still different behaviour
(regime 3) is obtained for system sizes L > 2048. Starting
with Fig. 3(a), the L-dependence of the saturation value of
the roughness, Wsat, becomes weaker and becomes virtually
nonexistent for our largest system size, L = 8192. A mani-
festation of this is the increasing deviation (for increasing L)
of the effective Wsat ∼ Lα law [see the inset of Fig. 3(a)],
from the α ≈ 1 value obtained for L ≤ 2048, towards an
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FIG. 5: Percentage of single realisations in which the maximum
height h has reached the system size L (which we denote by Crash)
at any previous time for different values of L. For larger values
(L = 4196 and L = 8392) it is equal to zero for all t.

effectively null roughness exponent for the largest L, imply-
ing the breakdown of kinetic roughening (namely, the lack of
scaling of Wsat with L) at large system size values. Indeed,
the W (t) data obtained for L = 8192 in the main panel of
Fig. 3(a) largely fall on top of those obtained for L = 4096,
essentially ruling out L-dependence of the roughness at such
large system size values. This interpretation is reinforced by
the S(k, t) data displayed for L = 8192 in Fig. 3(b). In-
deed, in the presence of kinetic roughening (and both, un-
der a FV scaling ansatz and under an intrinsically anomalous
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FIG. 6: Histogram of slope values [χu = (u − ū)/std(u), where
u = ∂xh] from morphologies of the 2D GL growth model for
L = 2048 at steady state. The dashed black line corresponds to
the indicated power-law behaviour with χu. Red dots correspond to
the negative slopes.
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FIG. 7: First, second, third, and fourth moments (bottom to top)
of the height-difference correlation function Gq(r) from numerical
simulations of the 2D GL model in the nonlinear growth regime for
L = 2048. Dashed straight lines correspond to the exact values of
the slopes αq = 1/q, as predicted in Refs. [30, 31].

scaling ansatz), the value of k∗× ∼ 1/ξ(t) at which S(k, t)
changes from large-distance, uncorrelated, to short-distance,
correlated behaviour moves towards k = 0 with increasing
time. In contrast, the S(k, t) curves in Fig. 3(b) become time-
independent for the longest times and fall one on top of the
other. In this case, the (inverse of the) corresponding value
k∗× ∼ cnst. signals a time-independent characteristic lateral
length scale instead of a time-dependent correlation length.
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V. DYNAMICS AT T = Tc FOR A TWO-DIMENSIONAL
INTERFACE

In this section, we study the dynamics of the spin config-
urations in three spatial dimensions, which lead to the time
evolution of two-dimensional fronts or interfaces h(x, y, t).
The noise amplitude corresponding to the critical temperature
in a 3D system is again assessed in analogy to our work for
2D spin domains. In this case, the critical D̃ takes the value
D̃c ≃ 1.25 [27].

Our main interest lies in the kinetic roughening properties
of the corresponding h(x, y, t) interfaces. The evolution of the
front roughness W (t) is depicted for different system sizes in
Fig. 8. The growth of the roughness is suddenly interrupted
and W starts to decay for t ≳ 20. This behaviour is induced
by the upper boundary as we can appreciate in Fig. 9. Indeed,
the mean height h suddenly approaches the upper boundary
while the growth of the roughness is interrupted. The surface
becomes pinned to this upper boundary for longer times, lead-
ing to a decrease in the roughness from that time on, much as
it happens in our Metropolis approach for 1D and 2D fronts
(see Appendix A). With our computational power, we have not
been able to find L values which are free from this behaviour.
Moreover, both under the GL approach and under the Monte
Carlo approach assessed in Appendix A, the peak value for
W (t) reached in the 2D interfaces increases with the system
size. Hence, we deem it unlikely that these crashes can be
avoided for even larger L values than those considered here.

VI. SUMMARY AND DISCUSSION

We have revisited the growth model formulated and stud-
ied in equilibrium in Ref. [25], to explore its time-dependent
properties, aiming to assess asymptotic intrinsic anomalous
scaling in a system with time-dependent noise. More specif-
ically, in view of the reported anomalous scaling ansatz and
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FIG. 9: Time evolution of the average mean height profile ⟨h̄⟩ ob-
tained over 10 realisations of the noise from numerical simulations
of the 3D GL model (left bottom panel) compared to the maximum
achievable height (domain lateral size, horizontal red solid line). Left
top panel shows the corresponding evolution of the surface roughness
W (t). One realization of a longitudinal cut h(x, 1, t) for each one of
the highlighted times, t1 to t4 in the left panels, is shown in the right
panels.

values of the roughness exponents [25], a natural hypothesis
to be checked was if the dynamical exponent also agreed with
that of the TKPZ equation, making the model a member of
its universality class. In such a case, moreover, the discrete
growth model might provide a means to explore that univer-
sality class in higher dimensions (d > 1) [40], where the con-
tinuum TKPZ equation is conspicuously prone to instabilities
[27, 41, 42]. In our simulations, we have rephrased the model
using a related stochastic, time-dependent Ginzburg-Landau
equation.

For one-dimensional fronts, the model we are presently
studying shows very strong fluctuations related to the defini-
tion of the spin cluster, which is linked with the spins located
at the bottom boundary. Indeed, a few spin flips can suffice
to attach/detach large spin subclusters, inducing strong vari-
ations in space and time for the front profile h(x, t). Given
the size of these fluctuations, a natural source of concern is
whether our scaling results are determined by a prompt inter-
action with the upper boundary that confines the system. Still,
Fig. 5 indicates that this is not the case for (sufficiently) large
systems, including our largest values of L. For the smallest
values of L, we demonstrate that the effect of the interaction
with the upper boundary does not significantly perturb our
results in Appendix C, were the full dynamics (data shown
in Fig. 3) is reanalyzed by discounting all the realisations in
which such an interaction occurs.
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Continuing with 1D fronts, we have found that their scal-
ing behaviour differs for L ≤ 2048 (the range of L values
studied in Ref. [25]) and for larger values of L. In the former
case, during the full time evolution of the system, our model
does reproduce the expected intrinsic anomalous scaling be-
haviour and the same numerical values of the roughness ex-
ponents (α = 1 and αs = 1/2) of previous discrete (equilib-
rium) [25] and continuous [28] models. Actually, very similar
kinetic roughening properties to these have been also mea-
sured [30, 31] in another discrete model of invasion percola-
tion. Moreover, the surfaces in that model were seen to display
similar P (χu) ∼ χ−2

u slope statistics and multiscaling prop-
erties to those we are reporting in Figs. 6 and 7. However, this
behaviour for the statistics of surface slopes, being absent in
the continuum system studied in Ref. [28], is possibly related
to the discrete nature of the surfaces and the single-valued ap-
proximation employed in the discrete models, as believed to
be the case in other instances in the literature [43–47].

In spite of these similarities between the model we are
studying and those in Refs. [28, 30, 31], the value of the dy-
namic exponent that we measure in our simulations crosses
over in time between two different values, none of which co-
incide with the TKPZ value. In particular, the z2 = 2/3 < 1
value measured at long times for L ≤ 2048 indicates an ex-
tremely fast lateral spread of correlations (faster than ballis-
tic) that preempts the eventual breakdown of scaling behavior
seen for still longer times when L > 2048. Crossover be-
haviour of the present type, in which both the short and long
time behaviours are intrinsically anomalous and only differ
by the value of z, seems quite rare in the literature. More-
over, and as noted in Sec. I, the fact that the asymptotic be-
haviour remains intrinsically anomalous for a system with
time-dependent noise contradicts theoretical expectations [24]
based on (perturbative) renormalization group arguments for
continuum models.

Related with the latter fact, our simulations of 1D fronts
indeed show a different behaviour for L > 2048, which im-
plies that the scaling found for smaller systems is not asymp-
totic. Indeed, as suggested by the behaviour of the roughness
W (t) and the surface structure factor S(k, t), kinetic rough-
ening seems to break down at sufficiently large distances and
times. Very analogous behaviour has been recently reported
for other kinetically rough systems [38]. Thus for instance,
an off-lattice generalization of the ballistic deposition model
[48], which has been shown to describe quite accurately [49]
kinetically rough 1D fronts emerging in coffee-ring formation
processes in colloidal systems [50–53], has been shown to dis-
play effective intrinsically anomalous scaling at small to in-
termediate scales; however, such a scaling behaviour breaks
down at the largest time and length scales, being overrid-
den by some sort of morphological instability inducing the
formation of macroscopic shapes [38]. The intrinsic anoma-
lous scaling becomes problematic in the L → ∞ limit, as
S(k, L) ∼ L2(α−αs); hence it is natural to expect it to be not
an asymptotic behaviour but a transient in most real systems.

In the case of 2D fronts in our 3D Ising systems, we obtain
a very fast increase of the surface roughness due to the fast
evolution of the interface height, so that no non-trivial scaling

behaviour develops. This is the case for both our Ginzburg-
Landau and Metropolis approaches. Here, note that while Ref.
[25] reports a 3D surface roughness that does scale (at equi-
librium) with system size under analogous conditions, it does
so as if the system was above the upper critical dimension,
which is unexpected taking into account that 2D sections of
that same system behave as the 1D interfaces of 2D Ising sys-
tems.

Considering the detailed dynamical behaviour that we ob-
tain, the β > 1/2 exponent values observed for our 1D fronts
at small to intermediate scales and the large-scale breakdown
of kinetic roughening might be anticipating the singular be-
haviour that arises in higher dimensions. Recall that larger
values of β are usually taken as indicative of morpholog-
ical instabilities for systems with time-dependent noise, as
β = 1/2 characterises the roughness increase for the ran-
dom deposition process [8]. The TKPZ equation itself can
be understood as being at onset of a morphological instability
[28, 54], so that one might expect a suitable modification of it
to account for the scaling behavior that we presently find. In
view of the processes illustrated by Fig. 2, one possibility is
that the local growth velocity may depend on the configura-
tion of the system far away from the location where it is being
computed, suggesting a potential role for nonlocal effects. In
turn, these may induce morphological instabilities which may
be described by an effective interface equation akin to that
formulated for, e.g., in diffusion-limited growth, see Ref. [39]
and other therein.

In our simulations, the description of the Ising system pro-
posed in Ref. [25] seems feasible via the GL equation in the
one-dimensional case. It has been extended to the study of the
evolution of two-dimensional interfaces. However, the inter-
action of the interface with the free boundary of the system
does not allow us to follow the long-time evolution in these
2D substrates. This is the case for the GL and the discrete
approach to the dynamics based on our Metropolis algorithm.
While we can avoid the crash between the interface and the
upper boundary in the simulations of the 1D fronts by scal-
ing up the effective system size through a coarse-grained ap-
proach, this seems impossible for the 2D fronts. Indeed, in
the latter case, this phenomenon also occurs even under the
coarse-grained GL approach, with the peak values for W (t)
increasing with the system size under both approaches.

VII. CONCLUSIONS

In conclusion, we have shown that the 1D interfaces de-
fined over the Ising spin systems as in Ref. [25] do not fea-
ture asymptotic kinetic roughening for large systems sizes
(L > 2048). For the previously explored range of L val-
ues (L ≤ 2048), we do reproduce the intrinsically anomalous
scaling ansatz and the values of the global and local roughness
exponents obtained for the equilibrium discrete Ising model
[25] and for some continuous systems [28]. In our present
case, we have employed a Ginzburg-Landau approach to the
dynamic behaviour of the Ising system which provides bet-
ter results than those obtained from a simple Metropolis algo-
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rithm. Still, the dynamic exponent crosses over in our sim-
ulations between short and long-time values, none of which
agree with that of the TKPZ continuous model. The intrin-
sic anomalous scaling found for L ≤ 2048 is perhaps related
to non-localities in the interactions at play, e.g. the effect that
single spin flips have in the dynamics of large regions of the
front. In these cases the interface shows strong fluctuations
with multiscaling and fat-tailed slope statistics — perhaps re-
lated to the discreteness of the spins and the single-valued ap-
proximation of the fronts—, all of which (except again for the
value of z) agree with earlier discrete models of invasion per-
colation.

On the other hand, the 2D fronts obtained through our ap-
proach present a discrete version of “blow-up”, which might
be analogous to that reported for the continuous 2D tension-
less KPZ equation [28, 41, 42]. In our 3D spin model, this
“blow-up” is due to the interaction with the system boundaries
and is reminiscent of analogous behaviour we have found for
the 1D fronts of our smallest 2D systems. To extract more
definitive conclusions on the behaviour of the 2D fronts (in-
cluding the analysis of their symmetries [55], provided the
universality class can be defined), improved simulations of our
non-equilibrium system seem required which access substan-
tially larger system sizes, perhaps via cluster algorithms akin
to those employed at equilibrium. In this process, it would
also be interesting to explore alternative boundary conditions
to those that were originally implemented [25].
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FIG. 10: Time evolution of the roughness W for the height profiles
obtained in the Metropolis evolution of an Ising system in both, two
and three-dimensional domains (left and right panels, respectively)
with boundary conditions as described in Fig. 1 and for different val-
ues of the lateral system size L.

Appendix A: Simulation results using the Metropolis algorithm

The evolution of the interface field h defined as described
in Section III, i.e. using Eqs. (11) and (12) for both, 2D and
3D spin lattices, has been measured at T = Tc, where Tc =
2/ ln (1 +

√
2) ≃ 0.44 is the exact value for the 2D square

lattice and Tc ≃ 0.22 for the 3D cubic lattice [25].
We find very fast growth of the roughness W with time, as

shown in Fig. 10 for different lateral system sizes L for both
2D and 3D spin domains, hence 1D and 2D fronts. Such a
fast growth process is interrupted when the mean height ap-
proaches the boundary of the system, leading to an abrupt de-
crease in the roughness from that time on. This behaviour is
very similar to that found in our Ginzburg-Landau approach
for 3D domains, see Sec. V. As the GL equation provides
a coarse-grained description involving continuum, instead of
discrete, values of the local degrees of freedom, it might be
describing effectively larger system sizes with a comparable
computational cost.

Appendix B: Identification of the critical temperature

We assess the behaviour of the Ginzburg-Landau equation,
Eq. (14), at different values of the noise strength D in order
to determine the noise amplitude corresponding to the critical
temperature Tc. In Fig. 11 we show how the relative fluctu-
ation of the magnetization field — see Eq. (15) — at steady
state t ≫ 1 exhibits a divergence as M ∼ Lγ/ν for the critical
value D = Dc ≃ 0.9 corresponding to the critical tempera-
ture T = Tc. Here, γ = 7/4 and ν = 1 are the Ising critical
exponents in two dimensions [34]. This divergence is more
clear if we consider a spin system in which all the boundary
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conditions are periodic, as shown in the bottom panels of Fig.
11.
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FIG. 11: Determination of the noise strength Dc corresponding to
the critical temperature Tc for the GL equation in a 2-dimensional
spatial domain. Left panels show the magnetization fluctuation M
at steady state for different values of D and lateral system size L
[magnet boundary conditions (top) and periodic boundary conditions
(bottom)]. At D = Dc, corresponding to T = Tc, M diverges with
L as M ∼ Lγ/ν = L7/4 (red solid line) as expected from the 2D
Ising critical exponents γ = 7/4 and ν = 1 [36].

Appendix C: Dynamics without those realisations that interact
with the upper boundary

In Fig. 12, the results of Fig. 3 are shown but discarding
all realisations for which the surface profile touches the upper
boundary at any given time. The ensuing plots agree with the
interpretations and conclusions already derived from Fig. V.
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FIG. 12: Same as Fig. 3, but only using h(x, t) data in which the fronts does not reach the upper system boundary at any point, time, or
realization.
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