

1 In-depth mass-spectrometry reveals phospho-RAB12 as a 2 blood biomarker of G2019S LRRK2-driven Parkinson's 3 disease

4 Adriana Cortés,^{1,†} Toan K. Phung,^{2,†} Lorena de Mena,³ Alicia Garrido,³ Jon Infante,⁴ Javier
5 Ruíz-Martínez,⁵ Miquel À. Galmés-Ordinas,⁶ Sophie Glendinning,² Jesica Pérez,³ Ana Roig,³
6 Marta Soto,³ Marina Cosgaya,³ Valeria Ravasi,³ Manel Fernández,³ Alejandro Rubiano-Castro,³
7 Ramón Díaz,¹ Haizea Hernández-Eguizazu,⁵ Coro Sánchez-Quintana,⁴ Ana Vinagre-Aragón,⁵
8 Elisabet Mondragón,⁵ Ioana Croitoru,⁵ María Rivera-Sánchez,⁴ Andrea Corrales-Pardo,⁴ María
9 Sierra,⁴ Eduardo Tolosa,³ Cristina Malagelada,⁷ Raja S. Nirujogi,² Joaquín Fernández-Irigoyen,¹
10 Enrique Santamaría,¹ Dario R. Alessi,² María J. Martí,³ Mario Ezquerro^{3,‡} and Rubén Fernández-
11 Santiago^{3,‡}

12 ^{†,‡}These authors contributed equally to this work.

13 Abstract

14 Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for
15 LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD (iPD). However, pharmacokinetic-
16 dynamic readouts and progression biomarkers for clinical trials aiming for disease modification
17 are insufficient since no endogenous marker reflecting enhanced kinase activity of the most
18 common LRRK2 G2019S mutation has been reported yet in L2PD patients.

19 Employing phospho-/proteomic analyses we assessed the impact that LRRK2 activating mutations
20 had in peripheral blood mononuclear cells (PBMCs) from a LRRK2 clinical cohort from Spain
21 (n=174). The groups of study encompassed G2019S L2PD patients (n=37), non-manifesting
22 LRRK2 mutation carriers of G2019S, here, G2019S L2NMCs (n=27), R1441G L2PD patients
23 (n=14), R1441G L2NMCs (n=11), iPD patients (n=40), and healthy controls (n=45).

1 We identified 207 differential proteins in G2019S L2PD compared to controls (39 up/ 168 down)
2 and 67 in G2019S L2NMCs (10 up/ 57 down). G2019S down-regulated proteins affected the
3 endolysosomal pathway, proteostasis, and mitochondria, e.g., ATIC, RAB9A, or LAMP1. At the
4 phospho-proteome level, we observed increases in endogenous phosphorylation levels of pSer106
5 RAB12 in G2019S carriers, which were validated by immunoblotting after 1 year of follow-up
6 (n=48). Freshly collected PBMCs from 3 G2019S L2PD, 1 R1441G L2PD, 1 iPd, and 5 controls
7 (n=10) showed strong diminishment of pSer106 RAB12 phosphorylation levels after in-vitro
8 administration of the MLi-2 LRRK2 inhibitor. Using machine learning, we identified an 18-feature
9 G2019S phospho-/protein signature discriminating G2019S L2PD, L2NMCs, and controls with
10 96% accuracy that correlated with disease severity, i.e., UPDRS-III motor scoring.

11 Using easily accessible PBMCs from a LRRK2 clinical cohort, we identified elevated levels of
12 pSer106 RAB12 as an endogenous biomarker of G2019S carriers. Our data suggest that
13 monitoring pSer106 RAB12 phosphorylation could be a relevant biomarker for tracking LRRK2
14 activation, particularly in G2019S carriers. Future work may determine whether pSer106 RAB12
15 could help with patient enrichment and monitoring drug efficacy in LRRK2 clinical trials.

16

17 **Author affiliations:**

18 1 Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed,
19 Departamento de Salud, UPNA, IdiSNA, ES 31008 Pamplona, Spain

20 2 Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of
21 Dundee, Dundee, DD1 5EH, UK

22 3 Lab of Parkinson's & Other Movement Disorders, Institut d'Investigacions Biomèdiques August
23 Pi i Sunyer (IDIBAPS); Parkinson's Disease and Movement Disorders Unit, Neurology Service,
24 Hospital Clínic de Barcelona; Institut de Neurociències, Universitat de Barcelona; Centro de
25 Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
26 CB06/05/0018-ISCIII; ES 08036 Barcelona, Spain

27 4 Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL; Centro de
28 Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); ES
29 39008 Santander, Spain

1 5 Department of Neurology, Donostia University Hospital; Biogipuzkoa Health Research Institute;
2 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas
3 (CIBERNED); San Sebastián ES 20014, Spain

4 6 In Silico Medicinal Chemistry, Division of Cancer Therapeutics, The Institute of Cancer
5 Research, London, SW7 3RP, UK

6 7 Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona; Institut de
7 Neurociències, Universitat de Barcelona; Centro de Investigación Biomédica en Red sobre
8 Enfermedades Neurodegenerativas (CIBERNED); ES 08036 Barcelona, Spain

9

10 Correspondence to: Dr Rubén Fernández-Santiago, PhD

11 Lab for Parkinson's & Other Movement Disorders

12 IDIBAPS-Hospital Clínic de Barcelona

13 CELLEX building (Faculty of Medicine)

14 Universitat de Barcelona

15 Casanova 143, Floor 3B

16 08036, Barcelona, Spain

17 E-mail: ruben.fernandez.santiago@gmail.com

18

19 Correspondence may also be addressed to: Dr Mario Ezquerra, PhD

20 E-mail: ezquerra@recerca.clinic.cat

21

22 **Running Title:** Elevated pSer106 RAB12 levels in LRRK2 G2019S

23 **Keywords:** Parkinson's disease (PD); leucine-rich repeat kinase 2 (LRRK2); peripheral blood
24 mononuclear cells (PBMCs); phospho-/proteomics; non-manifesting carriers; biomarker

25

1 Introduction

2 Activating mutations in the leucine-rich repeat kinase 2 (*LRRK2*), e.g., G2019S at the kinase or
3 R1441G at the GTPase domains, increase *LRRK2* kinase activity^{1–4} causing autosomal-dominant
4 *LRRK2* Parkinson's disease (L2PD)^{5,6}. By converging pathways, *LRRK2* kinase activity appears
5 to be also enhanced in patients with idiopathic PD (iPD)^{7–9}, which is clinically undistinguishable
6 from L2PD^{10,11}. Thus, ongoing clinical trials of small-molecule type-I inhibitors targeting active
7 *LRRK2* protein conformation represent a promising disease-modifying strategy for a broad
8 spectrum of patients^{12,13}. *LRRK2* non-manifesting carriers (L2NMCs) are at high risk of PD in an
9 age-dependent progressive manner^{14–16}, encompassing a candidate population for the continued
10 clinical follow-up and disease course modification by early neuroprotective interventions.¹³

11 A subset of G-proteins from the Ras-related small GTPase superfamily¹⁷ was reported as
12 phosphorylation substrates of the *LRRK2* Ser/Thr kinase^{2,3}. Among these, pThr73 RAB10 was
13 validated as an *LRRK2* substrate¹⁸ showing elevated endogenous phosphorylation levels in a large
14 set of R1441G carriers, PD-manifesting, and non-manifesting, yet not in G2019S subjects¹⁹.
15 Moreover, pThr73 RAB10 represents a readout for *LRRK2* pharmacological inhibition using MLi-
16 2 or DNL201^{20,21}. In addition, RAB29^{22,23}, and more recently, RAB12^{24,25} and RAB32²⁶, have
17 been described as critical upstream *LRRK2* activators. Despite significant progress, there is an
18 urgent need of lack of clinical progression biomarkers and robust pharmaco-dynamic readouts
19 useful for disease modification clinical trials.

20 By data-independent acquisition (DIA) mass-spectrometry (MS), we have screened the
21 *LRRK2* phospho-/proteome using peripheral blood mononuclear cells (PBMCs) from an extensive
22 *LRRK2* clinical cohort (n=174) including G2019S L2PD (n=37), G2019S L2NMCs (n=27),
23 R1441G L2PD (n=14), R1441G L2NMCs (n=11), iPD (n=40), and controls (n=45). We identified
24 differential phospho-/proteins in G2019S and R1441G carriers, PD-manifesting and non-
25 manifesting. More specifically we detected elevated pSer106 RAB12 phosphorylation levels in
26 G2019S carriers. Our results suggest that pSer106 RAB12 is an endogenous biomarker of G2019S,
27 which can be similarly elevated in G2019S L2PD and L2NMCs. Consistent with RAB12 being
28 phosphorylated by *LRRK2*, we found that pSer106 RAB12 levels strongly diminished after MLi-
29 2 *LRRK2* inhibition in all kinds of subjects, regardless of disease or mutation status. We propose
30 that pSer106 RAB12 could be exploited as a marker of *LRRK2* activity in clinical trials¹³.

1 Following FAIR²⁷ and through interactive Curtain weblinks for non-MS experts²⁸, we provide full
2 open access to all data generated in this study.

3

4 Materials and methods

5 Subjects

6 Probands participated in the study after ethics approval and signed informed consent. Subjects
7 included symptomatic and asymptomatic LRRK2 mutation carriers, iPD patients, and controls,
8 which were healthy spouses and companions of Spanish descent. Patient inclusion criteria were a
9 clinical diagnosis of PD by a movement disorders specialist based on the MDS criteria for
10 Parkinson's²⁹. Exclusion criteria were chronic inflammatory and autoimmune diseases, e.g.,
11 Crohn's (CD), inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus
12 erythematosus (SLE), chronic neurological diseases such as myasthenia gravis, chronic use of
13 nonsteroidal anti-inflammatory drugs (NSAIDs) or corticosteroid anti-inflammatory medication,
14 and viral or bacterial infection during the week precedent to blood donation. Subjects were
15 recruited at three centres from Spain: Hospital Clínic de Barcelona (n=76) ('B')³⁰, Hospital
16 Marqués de Valdecilla in Santander (n=55) ('S')³¹, and Hospital de Donostia in San Sebastian
17 (n=43) ('D')³² (**Table 1**). By cohort and subject type, the sample included G2019S L2PD (n=37)
18 (16 from B, 20 from S, and 1 from D), G2019S L2NMCs (n=27) (11 B, 15 S, and 1 D), R1441G
19 L2PD (n=14) (1 B, and 13 D), R1441G L2NMCs (n=11) (3 B, and 8 D), iPD (n=40) (20 B, 10 S,
20 and 10 D), and controls (n=45) (25 B, 10 S, and 10 D). We also collected sex, age at sampling,
21 age-at-onset (AAO), LRRK2 mutation status, kinship to index cases, UPDRS-III³³, MoCA³⁴,
22 autoimmune and environmental questionnaires, and COVID-19 history. PD patients had a mean
23 age-at-sampling of 63.5 years for G2019S L2PD, 67.1 for R1441G L2PD, and 67.3 for iPD.
24 Asymptomatic blood relatives of L2PD patients, i.e., L2NMCs, were younger than PD patients
25 with an average of 56.7 years for G2019S L2NMCs and 61.1 for R1441G L2NMCs. The AAO
26 was similar for G2019S and R1441G L2PD, with 55.1 and 55.8 years, respectively, whereas iPD
27 had 62.1 years. Mean disease duration was 8.4 years for G2019S L2PD, 12.3 for R1441G L2PD,
28 and 5.2 for iPD. Average disease severity, UPDRS-III motor scoring, was similar (mild) in all
29 three patient groups, i.e., 16.0 in G2019S L2PD, 19.8 R1441G L2PD, and 19.7 for iPD. Mean

1 MoCA scores were also mild and similar in all patients: 24.3 for G2019S L2PD, 23.2 for R1441G
2 L2PD, and 25.6 for iPd. Average L-DOPA equivalent daily dose (LEDD) was 635.8 mg for
3 G2019S L2PD, 711.5 mg for R1441G L2PD, and 584.7 mg for iPd.

4

5 **Genotyping**

6 We genotyped the most common LRRK2 mutations in our population using Taqman SNP assays-
7 on-demand for *LRRK2* G2019S (Thermo Fisher Sci. #C-63498123-10) and a commercial TaqMan
8 assay for *LRRK2* R1441G³⁵ on a Step-One Plus Real-time PCR System (Life Tech. Inc.)

9

10 **PBMC isolation**

11 40 ml of peripheral blood were drawn early in the morning in fasting, and PBMCs were isolated
12 by density gradient using Sodium-Citrate tubes (BD Vacutainer CPT, EAN30382903627821)
13 following manufacturer's instructions. As usual in large-scale proteomic studies, dry PBMC
14 pellets were isolated at every patient visit, immediately snap-frozen into liquid N₂, stored at -80°C
15 overnight, and cryopreserved at -196°C in liquid N₂ for long storage (half a year on average) until
16 DIA-MS.

17

18 **PBMC preparation**

19 PBMC samples from the three cohorts were processed in parallel. Blind experimental groups to
20 the operator were balanced and randomised in runs to avoid manipulation bias. Briefly, PBMCs
21 were homogenised in lysis buffer (7 M urea, 2 M thiourea, 50 mM dithiothreitol) supplemented
22 with cComplete Mini protease (Roche #11836153001) and PhosSTOP phosphatase (Roche
23 #4906845001) inhibitors. Lysates were centrifuged at 20,000g, 1h, 15°C, and the resulting
24 supernatant was quantified by the Bradford assay (Bio-Rad #5000201). Above 400 µg of protein
25 were separated for protein digestion to obtain phosphorylated fractions. Proteins were reduced
26 with DTT (final concentration of 20 mM; 30 min; room temperature), alkylated with

1 idoacetamide (final concentration of 30 mM; 30 min in dark; room temperature), diluted to 0.9
2 M with ABC, and digested with trypsin (Promega #V5280) (1:20 w/w enzyme protein ratio, 18h,
3 37°C). Protein digestion was interrupted by acidification (acetic acid, pH<6), and the resulting
4 peptides were cleaned up using Pierce Peptide Desalting Spin Columns (Thermo Fisher Sci.
5 #89851). Phospho-peptide enrichment was performed using the High-Select TiO₂ Phospho-
6 peptide enrichment Kit (Thermo Fisher Sci. #A32993) according to the manufacturer's
7 instructions. Lastly, the enriched phospho-enriched fractions were cleaned up as described above
8 and dried down in a Speed Vacuum system. Aliquots of 10 µg cleaned-up peptides from protein
9 digestions were set aside for total protein analyses.

10

11 **Data-independent acquisition (DIA) mass-spectrometry (MS)**

12 Dried-down peptide samples were reconstituted with 2% ACN-0.1% FA (Acetonitrile-Formic
13 acid), spiked with internal retention time peptide standards (iRT, Biognosys), and quantified by
14 NanoDropTM spectrophotometer (ThermoFisher Sci.) before LC-MS/MS in an EASY-1000
15 nanoLC system coupled to an EZ-Exploris 480 mass spectrometer (Thermo Fisher Sci.). Peptides
16 were resolved using C18 Aurora column (75µm x 25cm, 1.6 µm particles; IonOpticks) at a flow
17 rate of 300 nL/min using a 60-min gradient (50°C): 2% to 5% B in 1 min, 5% to 20% B in 48 min,
18 20% to 32% B in 12 min, and 32% to 95% B in 1 min (A = FA, 0.1%; B = 100% ACN:0.1% FA).
19 Peptides were ionised using 1.6 kV spray voltage at a capillary temperature of 275 °C. We used
20 data-independent acquisition (DIA) with full MS scans (scan range: 400 to 900 m/z; resolution:
21 60,000; maximum injection time: 22 ms; normalised AGC target: 300%) and 24 periodical MS/MS
22 segments applying 20 Th isolation windows (0.5 Th overlap: Resolution: 15000; maximum
23 injection time: 22 ms; normalised AGC target: 100%). Peptides were fragmented using a
24 normalised HCD collision energy of 30%. MS data files were analysed using Spectronaut
25 (Biognosys) by direct DIA analysis (dDIA). MS/MS spectra were searched against the Uniprot
26 proteome reference from the *Homo sapiens* database UP000005640 using standard settings. The
27 enzyme was set to trypsin in a specific mode. On the one hand, Carbamidomethyl (C) was set as a
28 fixed modification, and oxidation (M), acetyl (protein N-term), deamidation (N), and Gln to
29 pyroGlu as variable modifications for total protein analysis. On the other hand, Carbamidomethyl

1 (C) was set as a fixed modification, and oxidation (M), acetyl (protein N-term), and Phospho (STY)
2 were used as variable modifications for phospho-proteome analysis. Identifications were filtered
3 by a 1% Q-value. After MS, samples that did not pass QC were omitted from the study, resulting
4 in a sample of G2019S L2PD (n=32) (15 from B and 17 from S), G2019S L2NMCs (n=22) (9 B
5 and 13 S), R1441G L2PD (n=13) (1 B, and 12 D), R1441G L2NMCs (n=7) (2 B, and 5 D), iP
6 patients (n=39) (19 B, 10 S, and 10 D), and healthy controls (n=42) (23 B, 10 S, and 9 D). Lastly,
7 to disambiguate peptide IDs into gene names we used the Uniprot online database
8 (<https://uniprotparser.proteo.info/>). The resulting number of proteins (3,815) and phospho-
9 peptides (10,288) identified by DIA-MS in human PBMCs attest to the optimal experimental
10 quality of the LRRK2 clinical samples.

11

12 **Proteome differential analysis**

13 Proteome MS output data was exported from .SNE files from Spectronaut in a pivot table text
14 format. For the differential analyses between groups, MS data was processed using QFeatures (doi:
15 10.18129/B9.bioc.QFeatures) in R (QFeatures v1.13.1). We applied the following R workflow: (i)
16 Data was filtered to remove proteins identified by only 1 peptide sequence. (ii) Data selection was
17 done based on condition and sub-group labels, with overall analysis containing all samples,
18 G2019S analyses containing Barcelona and Santander samples labelled with the prefix 'B' or 'S',
19 and R1441G analyses containing samples labelled with the prefix 'D' from Donostia-San
20 Sebastian and 'B' from Barcelona if carrying R1441G. For each analysis, we provided a separate
21 Rscript file with a customised group selection, as well as a single collapsing file with all scripts
22 available at *Brain* online (**Suppl. Material**) and as a cloud weblink
23 (doi.org/10.5281/zenodo.1377402). (iii) A protein ID column was assigned as an identification
24 column for the analysis at QFeatures. (iv) We filtered out any row with 70% or more missing data.
25 Here, with a 70% missing data cut-off, a meta-analysis would have 3,815 rows, while a more
26 common 30% missing data cut-off would result in 3,789 rows. Since there was only about a 0.71%
27 difference between the cut-off threshold, we chose the 70% cut-off to keep entries potentially
28 found in only one group without affecting the statistical power of the entire analysis. (v) Imputation
29 of missing data was done using the kNN method (QFeatures v1.13.1). Subsequently, (vi) we

1 performed a log₂ transformation of the imputed data matrix, and (vii) designed a contrast matrix
2 for differential analysis using limma³⁶. (viii) For each contrast matrix, we performed a limma
3 analysis using the Benjamini-Hochberg false discovery rate (FDR) multiple-testing adjustment
4 under an statistical significance of an FDR adjusted P<0.05 (1.12 log₁₀) and a log₂ fold-change
5 (FC) above |0.6| (|1.5| in lineal values). Scripts for proteome raw data download and re-analysis
6 are available online (**Suppl. Material**). For ANOVA analysis, we used the normalised data from
7 above as a starting point. The data from each row was grouped depending on the criteria used for
8 grouping. Then, for each comparison, we applied a Python script using one-way ANOVA analysis
9 on the grouped data within the comparison and returned the P-value output as a new column³⁷.
10 Lastly, we perform the same FDR correction from above to obtain the multiple-testing adjusted P-
11 values using the Statsmodels Python package³⁸ with Python scripts also available online (**Suppl.**
12 **Material**).

13

14 **Phospho-proteome differential analysis**

15 Phospho-proteome MS data was exported from .SNE files from Spectronaut in a long-form table
16 format using a Spectronaut param export file available online (**Suppl. Material**). Data was
17 imputed using a modified version of a collapsing R script (Perseus Plugin Peptide Collapse)³⁹ with
18 phosphorylation as target modification at a confidence cut-off above 0.75. Modified collapsing.R
19 and Perseus parameter.xml files are available online (**Suppl. Material**). We applied the following
20 R workflow: (i) Columns with more than 70% blank cells were removed to meet the kNN
21 requirement of less than 80% blank columns. (ii) Data selection for QFeatures input was based on
22 condition and sub-group labels using all samples for overall analysis or specific group combination
23 for location-specific and mutation-specific group combination, with overall analysis containing all
24 samples, G2019S analyses containing Barcelona and Santander samples labelled with the prefix
25 'B' or 'S', and R1441G analyses containing samples labelled with the prefix 'D' from Donostia-
26 San Sebastian and "B" from Barcelona when carrying R1441G. For each phospho-analysis group,
27 we provide a separate Rscript file with customisation to the selection group (**Suppl. Material**).
28 Subsequently, (iii) we performed imputation by removing any row with 30% or more empty data,
29 similar to the proteome analysis using the kNN method, and (vi) performed log₂ transformation

1 normalisation of the data using the quantile normalisation method. (v) The statistical significance
2 criteria were set at an FDR multiple-testing adjusted $P<0.05$ (1.12 in \log_{10}) and a \log_2 fold-change
3 (FC) above $|0.6|$ ($|1.5|$ in lineal values). (vii) In each differential analysis, we matched the protein
4 and its original sequence using protein UniProt ID and extracted PTM position in protein and
5 peptide, the peptide sequence, and the sequence window for visualisation at the Curtain tool²⁸.
6 Scripts for phospho-proteome data re-analysis are available at *Brain* online (**Suppl. Material**) and
7 as a cloud weblink (doi.org/10.5281/zenodo.13774022). For phospho-proteome ANOVA analysis,
8 we followed the same methodology as the proteome analysis, using the normalised phospho-
9 proteome datasets from above. Data belonging to each group was identified from their column
10 name. One-way ANOVA was applied on each row of cell groups from their respective comparison.
11 The final statistically significant output values were adjusted using the Statsmodels package under
12 the same FDR multiple-testing adjusted $P<0.05$. Python scripts for ANOVA phospho-proteome
13 analyses are available online (**Suppl. Material**).

14

15 **Data visualisation**

16 Aligning to FAIR principles²⁷ of data findability, accessibility, interoperability, and reusability,
17 we used Curtain and Curtain PTM²⁸, as free open-source tools for MS phospho-/proteomics data
18 mining and exploitation by MS non-experts. Visualisation of each of the differential analysis
19 results from limma was done in volcano plot representation using the default cut-off settings of a
20 fold-change (FC) above $|1.5|$ ($|0.6|$ \log_2) and an FDR multiple-testing adjusted $P<0.05$ (1.12 in
21 \log_{10}). The Curtain tools enable interactively perusing volcano plots, deconvoluting primary
22 experimental data to individual replicates that can be visualised in bar charts or violin plots,
23 allowing statistical analysis and export of plots in .SVG format (Curtain tutorials). For each
24 analysis, we also provide web links in the Figure legends. From each link, users can view the data
25 associated with each data point on the volcano plot as bar charts and violin plots. The magnitude
26 of the data within these plots represents the relative intensity of the protein (total proteome) or
27 phospho-site (phospho-proteome) before normalisation. Beyond simple visualisation of the
28 numerical data, Curtain tools aggregate data for different knowledgebases, including UniProt,
29 AlphaFold, PhosphoSitePlus, ProteomicsDB, and StringDB.

1 **Machine learning modelling of G2019S differential phospho- 2 /proteins**

3 The normalised and imputed datasets comprising differentially expressed peptides and phospho-
4 peptides were employed to train a multi-class classifier to distinguish between Controls, G2019S
5 L2PD, and G2019S L2NMCs. Three distinct candidate models were considered, including Support
6 Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB) classifiers as described
7 in other studies⁴⁰. Parameter optimisation of the models was done through a grid search with a 5-
8 fold cross-validation. To mitigate potential performance degradation due to unbalanced group
9 sizes, we applied the Synthetic Minority Over-sampling Technique (SMOTE)⁴¹ to the training
10 split. We used the balanced accuracy score⁴² defined as the average recall across each class to
11 evaluate model performances. Implementation of the models was done using the Scikit-learn⁴³
12 v1.3.1 library within Python⁴⁴ programming language v3.9.18.

13

14 **Classifier selection by a comparative performance of machine 15 learning models**

16 In the G2019S proteome dataset, we included 32 G2019S L2PD, 22 G2019S L2NMCs, and 42
17 controls that overpassed the QC criteria described above. Similarly, the phospho-proteome dataset
18 comprised 29 G2019S L2PD, 19 G2019S L2NMCs, and 35 controls. First, we assessed
19 comparative model performances for each dataset considering an initial number of features 3,816
20 peptides and 10,180 phospho-peptides respectively (**Suppl. Table 1**). Notably, in the proteome
21 dataset, the SVM classifier demonstrated a substantial enhancement in balanced accuracy score
22 following redundant feature elimination, achieving 0.91. This outcome indicates that the selective
23 elimination of features contributed to obtaining a more discriminative model. Contrarily, the RF
24 classifier showed limited improvement, implying that feature elimination methods were less
25 effective for this specific model. Consistently, we obtained similar results for the phospho-
26 proteome dataset where, after feature elimination, SVM achieved a balanced accuracy of 0.95,
27 again highlighting the efficacy of feature selection in enhancing model performance. Furthermore,
28 GB demonstrate significant improvement with only 43 features. This result indicates that the

1 model performance can be enhanced with only a small subset of features. After comparative
2 evaluation and parameter optimisation, we identified SVM as the most optimal model to derive
3 informative LRKK2 signatures using the minimum subset of relevant features that maximise the
4 discrimination between classes.

5

6 **Identification of a differential G2019S phospho-/protein signature**

7 After the SVM model selection, an initial set of relevant features was determined by incorporating
8 only statistically significant features ($P<0.05$) identified by the ANOVA test. Subsequently, we
9 applied backwards Recursive Feature Elimination with Cross-Validation (RFECV)⁴⁵, i.e., we
10 eliminated features with relative lower importance to iteratively reduce the number of features
11 while maximising the balanced accuracy score. To obtain the LRKK2 signature, we employed the
12 Monte Carlo Tree Search (MCTS)⁴⁶ method. The MCTS strategy involved selecting the minimum
13 combination of features that maximise the score in an additive manner. Considering that the
14 combinatorial features scale rapidly, the depth of the tree was fixed to five to manage
15 computational complexity. The reward at each tree node was computed as the balanced accuracy
16 score obtained through model training with cross-validation, utilising the selected subset of
17 features. At each iteration, the number of trees evaluated was set to 10 times the number of features.
18 After evaluating all the trees, the MCTS identified the best feature to add, maximising the reward.
19 A stop node was introduced to halt the algorithm when no further improvement could be achieved.
20 In summary, the procedure comprised: (i) selection of the first feature, (ii) MCTS evaluation of all
21 possible trees and reward calculation, (iii) selection of the best feature to be added, (iv) iteration
22 from the second step until the model stops, (v) repetition from the first step until all features were
23 screened. After the screening of all features, we selected the combinations of features with a
24 balanced accuracy score above 0.90. The most prominently represented features were used as
25 initial features for refinement by MCTS. Discriminant LRKK2 signatures were defined as the
26 subset with the highest score after the refinement. Feature selection and refinement were
27 implemented in Python v3.9.18 using Scikit-learn v1.3.1 and MCTS v2.0.4 libraries
28 (<https://pypi.org/project/monte-carlo-tree-search>).

29

1 **Phospho-/protein gene ontology enrichment**

2 Differential phospho-/proteins gene ontology (GO) was assessed using Metascape⁴⁷ cell
3 component term using default settings (min. overlap: 3, min. enrichment: |1.5|, P<0.05), and a
4 Benjamini-Hochberg false discovery rate (FDR) multiple-testing adjusted P<0.05. Specifically,
5 for signature phospho-/proteins, we used a combination of cell component and biological
6 processes, KEEGs, Reactome, and wiki pathways under the same statistical significance cut-off.

7

8 **pSer106 RAB12 immunoblotting of 1-year follow-up PBMCs and** 9 **MLi-2 LRRK2 inhibition assessment**

10 Further details on pSer106 RAB12 validation by immunoblot in 1-year follow-up PBMC samples,
11 as well as pSer106 RAB12 response to the LRRK2 MLi-2 inhibitor in freshly collected PBMCs
12 can be found in the Supplementary Material.

13

14 **Clinical correlation of LRRK2 differential phospho-/proteins and** 15 **disease severity**

16 We performed a Spearman's association analysis between the differential proteins and phospho-
17 proteins across different comparisons ($\log_{2}FC > |0.6|$, adj. P<0.05) and UPDRS-III motor scores
18 from PD patients and healthy controls. To this end, we used the "cor.test" function from R (stats
19 v4.3.1) to calculate Rho coefficients and the EnhancedVolcano package (v1.20.0) to represent
20 correlation outputs. Statistical significance was set a Spearman's correlation coefficient $Rho > |0.5|$
21 and an FDR multiple-testing adjusted P<0.05.

22

1 **Results**

2 **G2019S proteome analyses show endolysosomal pathway 3 deregulation**

4 We succeeded in quantifying the levels of 3,798 unique proteins using DIA-MS in our LRRK2
5 clinical cohort (**Fig. 1**). Pairwise analysis, under a cut-off of ≥ 2 peptide mapping, < 0.30
6 imputation, $\log_2\text{FC} > |0.60|$, and adj. $P < 0.05$ revealed that G2019S L2PD was the most distinct
7 group displaying a set of 207 proteins whose levels differed vs controls, with 85% down-regulated
8 proteins (168 down/ 39 up) (**Fig. 2**). Specifically, G2019S L2PD showed a number of proteins
9 which had reduced expression, among others, ATIC, which can repress LRRK2 and rescue
10 neurodegeneration⁴⁸ ($\log_2\text{FC} = -0.97$, adj. $P = 1.92 \times 10^{-13}$); RAB9A, involved in phagocytic vesicle
11 trafficking and lysosomal function ($\log_2\text{FC} = -1.17$, adj. $P = 3.97 \times 10^{-10}$); or LAMP1, a lysosome
12 biogenesis and autophagy regulator ($\log_2\text{FC} = -1.32$, adj. $P = 1.63 \times 10^{-9}$). G2019S L2NMCs vs
13 controls showed 67 differential hits, also involving 85% down-regulated proteins (57 down/ 10
14 up), which were mostly common and with the same FC direction as in G2019S L2PD (42 of 67),
15 e.g., ATIC or LAMP1 (**Suppl. Fig. 1**). G2019S L2PD vs L2NMCs differed in only 2 proteins,
16 which were down-regulated in G2019S L2PD, i.e., RAB9A ($\log_2\text{FC} = -0.77$, adj. $P = 0.038$) and
17 SCLY, a Selenocysteine lyase involved in peptide elongation ($\log_2\text{FC} = -1.58$, adj. $P = 0.038$). These
18 results indicate proteome changes associated with the G2019S mutation, common to all G2019S
19 carriers.

20

21 **Proteome pathway deficits of R1441G are similar to G2019S**

22 Regarding the R1441G proteome, R1441G L2PD vs controls revealed 80 hits (45 down/ 35 up)
23 (**Suppl. Fig. 2**). Of these, 44% proteins (30 down/ 3 up) overlapped with G2019S L2PD and had
24 the same FC direction, including down-regulation of NDUFB8, a mitochondrial Complex I
25 subunit; PDCD6, a calcium sensor involved vesicle trafficking and apoptosis; RPL11, a
26 component of the 60S ribosomal subunit; and other hits such as ATIC, RAB9A, LAMP1, and
27 SLCY. Similarly, R1441G L2NMCs vs controls showed 5 down-regulated proteins, all common

1 to R1441G L2PD, including NDUFB8 and PDCD6. Between R1441G L2PD and L2NMCs, 2
2 proteins were up-regulated in R1441G L2PD, i.e., ATG3, an E2 ubiquitin-like conjugating
3 enzyme, and MAGT2, which is essential for Golgi protein N-glycosylation. In addition, iPD vs
4 controls, despite their larger sample, had only 3 differential hits, all down-regulated and common
5 to L2PD, i.e., SRSF1, an RNA splicing factor; UQCRCB, a mitochondrial Complex III subunit; and
6 LAMP1 (**Suppl. Fig. 1** and **Suppl. Fig. 4**). Such findings can be related to the clinical
7 heterogeneity of iPD with diverse genetic and environmental aetiology. Functionally, proteome
8 changes in G2019S and R1441G L2PD, even iPD, revealed a shared biological enrichment
9 affecting endolysosomal trafficking, protein homeostasis (i.e., proteostasis), and mitochondrial
10 function (**Suppl. Fig. 3**).

11

12 **LRRK2 phospho-proteome analyses uncovers elevated pSer106 13 RAB12 in G2019S carriers**

14 Regarding the G2019S phospho-proteome, we found 10,288 phospho-sites mapping to 2,657
15 proteins. Using the same stringent cut-off as above, G2019S L2PD vs controls displayed a single
16 differential phospho-site, pSer106 RAB12, which was hyper-phosphorylated in G2019S L2PD vs
17 controls ($\log_2\text{FC}=0.97$; adj. $P=0.036$) as well as in L2NMCs ($\log_2\text{FC}=0.92$; adj. $P=0.057$) (**Fig. 3**). Remarkably, pSer106 RAB12 was shown as a key physiological LRRK2 substrate of higher
18 expression than other RABs including pThr73 RAB10 in brain from PD models^{49,50}. G2019S
19 carriers as a whole also showed elevated levels of pSer106 RAB12 ($\log_2\text{FC}=0.95$; adj. $P=0.003$)
20 along with pTyr334 SKAP2 ($\log_2\text{FC}=1.05$; adj. $P=0.003$), a protein involved in immune response
21 at peripheral tissues that regulates neural functions in the CNS,⁵¹ including α -synuclein
22 phosphorylation⁵². G2019S L2PD vs L2NMCs showed down-regulated pSer205 MON2 levels
23 ($\log_2\text{FC}=1.25$; adj. $P=0.05$), a regulator of endosome to Golgi trafficking. Lastly, we found no
24 differential hit in G2019S L2NMCs compared to controls. Collectively, these results identify
25 elevated pSer106 RAB12 levels in a large clinical cohort of G2019S carriers, pinpointing for the
26 first time pSer106 RAB12 as an endogenous biomarker in PBMCs from G2019S carriers.

28

1 **Phospho-proteome analyses in R1441G carriers and iPD**

2 As for the R1441G phospho-proteome, R1441G L2PD vs controls showed no hit overpassing the
3 multiple-testing adjustment of P-values. In addition, R1441G L2NMCs vs controls had 25
4 differential phospho-sites (20 down/ 5 up), but none of these included pSer106 RAB12 (**Suppl.**
5 **Fig. 2**). Moreover, R1441G carriers as a whole vs controls also showed no hit overpassing the
6 statistical significance cut-off. Altogether, these findings indicate that enhancement of pSer106
7 RAB12 phosphorylation is a specific effect in G2019S PBMCs and suggest distinct phospho-
8 signalling preferences occurring for different pathogenic LRRK2 activating mutations such as
9 G2019S and R1441G. Regarding iPD, at the phospho-proteome level, we found no phospho-
10 peptide change vs controls (**Suppl. Fig. 4**). However, iPD revealed significant phospho-peptide
11 differences compared to G2019S L2PD (84 down/ 9 up), including pSer106 RAB12, whose levels
12 were elevated in G2019S L2PD, and also to R1441G L2PD (409 down/ 225 up). Altogether, these
13 findings indicate that phospho-protein derangements are more prominent in L2PD due to phospho-
14 signalling effects of LRRK2 activating mutations than in iPD, being pSer106 RAB12 a preferred
15 LRRK2 substrate in PBMCs from G2019S carriers.

16

17 **pSer106 RAB12 immunoblot validation and LRRK2 inhibition**

18 **assessment**

19 By immunoblot, we assessed pSer106 RAB12 levels as a pSer106 RAB12 / Total RAB12 ratio
20 using >1-year follow-up PBMC samples from the G2019S cohort recruited at Clínic-Barcelona
21 (n=48). These encompassed G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15), and
22 healthy controls (n=15) (**Table 1**). Consistent with DIA-MS data, we found phosphorylation
23 differences across the different groups (Kruskal-Wallis P=0.01), with increased pSer106 RAB12
24 phosphorylation levels in G2019S L2PD (Dunn's adj. P=0.069) and L2NMCs (Dunn's adj.
25 P=0.118) vs controls. Similarly, G2019S carriers as a whole also showed elevated pSer106 RAB12
26 levels compared to controls (Kruskal-Wallis P=0.003; Dunn's adj. P=0.027), but not in iPD (**Fig.**
27 **4**, and **Suppl. Fig. 5**). However, by immunoblot⁵³ we did not observe down-regulation of proteome
28 hits such as RAB9A in G2019S L2PD or iPD (Kruskal-Wallis P=0.08) nor LAMP1 except in iPD

1 (Kruskal-Wallis $P=0.03$; Dunn's adj. $P=0.046$). Lastly, we assessed pSer106 RAB12 response to
2 LRRK2 pharmacological inhibition by MLi-2 using technical replicates from freshly collected
3 PBMC pellets from an additional set of probands ($n=10$), including 3 G2019S L2PD, 1 R1441G
4 L2PD, 1 iPd, and 5 controls treated with MLi-2 (200 nM; 30 min) or DMSO (**Suppl. Fig. 6**). In
5 all subjects, we observed a substantial diminishment of pSer106 RAB12 phosphorylation levels
6 after MLi-2 treatment, confirming pSer106 RAB12 as a pharmaco-dynamic readout of LRRK2
7 inhibition in PBMCs.

8

9 **Phospho-/protein signatures define PD manifesting and non-**
10 **manifesting G2019S carriers**

11 Next, we interrogated G2019S phospho-/protein signatures. We applied a supported vector
12 machine (SVM) classifier, adjusting for unbalanced group sizes, using 5-fold cross-validations as
13 overfitting control. After recursive feature elimination, we obtained 510 peptides and 204
14 phospho-proteins as multi-class informative items. By Montecarlo Tree Search (MCTS), we
15 refined combinations to the minimal numbers of features yielding the maximal balanced accuracy.
16 We identified an 18-feature signature of 15 proteins and 3 phospho-proteins (**Fig. 5** and **Suppl.**
17 **Fig. 7**) including pSer106 RAB12 and pSer205 MON2, ATIC, RAB9A, LAMP1, NDUFB8, and
18 SCLY which yielded a balanced accuracy of 96% to discriminate G2019S carrier groups and
19 controls. Specifically, receiver-operating curve (ROC) analysis revealed an area under the curve
20 (AUC) of 1.00 for G2019S L2PD vs controls, 0.99 for G2019S L2NMCs vs controls, and 0.98
21 between G2019S L2PD and L2NMCs. The top gene ontology term of the 18 features was vesicle
22 transport, thus supporting a biological plausibility. Altogether, the 18-feature phospho-/protein
23 signature correctly classified 96% of G2019S L2PD, G2019S L2NMCs, and healthy controls, thus
24 holding a potential to assess disease progression.

25

1 **Differential phospho-/proteins correlate with disease severity**

2 Lastly, we assessed the relation between deregulated phospho-/proteins and disease severity.
3 Under a Spearman's Rho>|0.5| and a P<0.05, 16% of the differential proteins between G2019S
4 L2PD vs controls (34 of 207) had an inverse association with UPDRS-III motor scores whereas
5 pSer106 RAB12 and pSer205 MON2 had a direct correlation. Moreover, 55% of the 18 features
6 at the G2019S phospho-/protein signature correlated inversely with UPDRS-III (ATIC, PDCD6,
7 RAB9A, PSMC5, LAMP1, HSD13B10, ARHGAP45, NDUFB8, and SCLY) whereas pSer106
8 RAB12 correlated positively (Rho = 0.49, adj. P = 1.60x10⁻⁴), i.e., the higher the pSer106 RAB12
9 levels, the higher the UPDRS-III scores (Fig. 6). In R1441G L2PD vs controls, 81% of the
10 differential proteins (65 of 80) correlated with UPDRS-III, both inversely (59%) or positively
11 (41%). Remarkably, several of these R1441G proteins are part of the 18-feature G2019S signature
12 (PDCD6, ARHGAP45, NDUFB8, RAB9A, ATIC, SCLY, and LAMP1), whereas other proteins
13 were specific of R1441G, e.g., the mitochondrial UBQLN4 (Rho=-0.89, P=1.64x10⁻⁶) or the
14 cytoskeletal PLEC (Rho=0.84, P=3.50x10⁻⁵) proteins. As an example, PDCD6, a top common
15 correlating protein between G2019S and R1441G (Rho=-0.75, P=5.51x10⁻¹⁰), participates in
16 vesicle trafficking, mediates mitochondrial cytochrome c release and apoptosis⁵⁴, and has been
17 linked to PD⁵⁵. In summary, although correlation does not mean causality, differential phospho-
18 /proteins at the 18-feature G2019S classifier are associated with disease severity, therefore holding
19 clinical interest.

20

21 **Discussion**

22 Following FAIR principles²⁷, we employed an interactive tool called Curtain²⁸ in which the raw
23 and differential phospho-/proteomic data from all analyses are saved as weblinks that non-MS
24 experts can readily explore for public data mining. Overall, the G2019S L2PD proteome showed
25 the highest number of changes, 207 proteins, most of which were down-regulated (85%). The
26 G2019S L2NMCs displayed fewer protein differences, 67, which were also mostly down-regulated
27 (85%). There was a substantial overlap between proteins that changed in both groups (60%). The
28 comparison between G2019S L2PD and L2NMCs revealed two proteins, RAB9A and SCLY,
29 which were down-regulated in the symptomatic carriers. Our findings indicate prominent protein

1 deficits associated with LRRK2 pathogenic mutations such as G2019S, which begin at G2019S
2 L2NMCs premotor stages⁵⁶ and progress to G2019S L2PD stages.

3

4 **Endolysosomal and proteostasis defects in G2019S LRRK2 blood**

5 Gene ontology analysis annotated the protein changes in the G2019S carriers as participating in
6 the endolysosomal pathway, i.e., vesicle trafficking. For example, G2019S L2PD showed down-
7 regulation of RAB9A, which controls phagocytosis and lysosomal biology^{57,58}. In G2019S
8 carriers, we also observed down-regulated levels of LAMP1, a canonical lysosomal marker
9 involved in lysosome biogenesis, which supports an enhanced LRRK2 activity in G2019S
10 carriers⁷⁻⁹. A previous study also noted that LAMP1 levels were reduced in CSF of L2PD⁵⁹. Our
11 findings are consistent with the current understanding of the LRRK2 pathway, indicating that the
12 LRRK2 protein plays a crucial role in controlling the endolysosomal pathway^{50,60}. Beyond that,
13 we also observed protein changes related to G2019S affecting ribosomal function, protein
14 homeostasis, mitochondrial function, and alternative splicing⁶¹. For instance, ATIC, the top protein
15 down-regulated in G2019S carriers, catalyses the last two steps of mitochondria purine
16 biosynthesis^{62,63}. Another study has also linked ATIC to LRRK2 toxicity⁴⁸. Other protein deficits
17 included KARS1, a tRNA synthetase; PSMC5, the proteasomal 26S subunit; or SCLY, seleno-
18 cysteine lyase, an enzyme involved in peptide elongation that has been related to
19 neurodegeneration⁶⁴. These findings align with studies reporting transcriptional repression of
20 proteostasis regulators in G2019S L2PD⁶⁵ and proteostasis defects in PD substantia nigra⁶⁶.

21

22 **Similar proteomic deficits in R1441G carriers as in G2019S**

23 R1441G L2PD showed 80 differential proteins, 44% of which were shared with G2019S L2PD.
24 Enrichment analysis showed that the functions of the proteins deregulated in R1441G carriers also
25 affected the endolysosomal pathway, protein homeostasis, and mitochondrial function. Indeed, the
26 R1441G L2PD top down-regulated protein, NDUFB8, is a subunit of the mitochondrial Complex
27 I (NADH to Ubiquinone oxidoreductase) whose activity is deficient in PD⁶⁷. In addition, R1441G
28 L2PD and L2NMCs displayed few protein differences, notably ATG3, which is involved in

1 autophagy, and MGAT2, a Golgi glycosyl transferase. In summary, the proteomic effects of the
2 R1441G mutation in our LRRK2 clinical cohort were largely similar to G2019S^{68,69}. Furthermore,
3 the iPD proteome, despite being the largest group, displayed only 3 differential proteins, which
4 were commonly decreased in G2019S L2PD, R1441G L2PD, and iPD. These encompassed
5 LAMP1, which further supports endolysosomal dysfunction occurring in iPD^{60,70}; SRSF1, a
6 Serine/Arginine-rich splicing factor; and UQCRC, a mitochondrial Complex III subunit
7 (Ubiquinol-cytochrome c oxidoreductase). Beyond the etiopathological heterogeneity of iPD^{71,72},
8 the fewer protein changes detected in iPD than in G2019S and R1441G L2PD indicate stronger
9 signal transduction derangements due to pathogenic LRRK2 mutations in L2PD than in iPD.
10 However, proteome changes in G2019S and R1441G L2PD, even iPD, similarly affected the same
11 biological processes.

12

13 **pSer106 RAB12 as an endogenous G2019S biomarker**

14 At the phospho-proteome level, a single hit, pSer106 RAB12, was elevated specifically in G2019S
15 carriers but not in R1441G. Excitingly, this phospho-site comprises a critical physiological
16 substrate of LRRK2². Overall, the roles that RAB12 plays and its phosphorylation by LRRK2 are
17 poorly understood. Phosphorylation of RAB12 is prominent in the brain in PD models and
18 observed to be higher than other RAB substrates such as RAB10 in this organ^{49,50}. Functionally,
19 other studies showed that RAB12 is located in phagosomes, lysosomes, and late endosomes, where
20 it may regulate endosome to trans-Golgi trafficking and exocytosis^{73,74}. Ours is the first report of
21 hyper-phosphorylated RAB12 in PBMCs from a large clinical cohort of G2019S carriers. In
22 addition, we analysed n=48 follow-up PBMC samples after 1 year of follow-up by
23 immunoblotting. Despite the lower sample than DIA-MS, we found an increase of pSer106 RAB12
24 in G2019S L2PD and L2NMCs. Previous studies in neutrophils probing for RAB10 but not
25 RAB12 phosphorylation revealed elevated pThr73 RAB10 in R1441G but not G2019S carriers¹⁹.
26 In our study, by DIA-MS, pThr73 RAB10 did not pass the QC cut-offs in all three cohorts, only
27 in PBMCs from Barcelona (n=76), which did not show pRAB10 differences between G2019S
28 L2PD and controls ($\log_2\text{FC}=0.71$, adj. P=0.999) or between G2019S carriers and controls
29 ($\log_2\text{FC}=0.68$, adj. P=0.999). Such results in G2019S PBMCs suggest that either RAB12 is a

1 preferred substrate for LRRK2 - indeed, distinct mutation effects cannot be ruled out⁷⁵ - or that
2 pThr73 RAB10 phosphatases, e.g., PPM1H⁷⁶, could dephosphorylate RAB10 more efficient than
3 RAB12. Mechanistic studies on how G2019S and other LRRK2 variants preferentially
4 phosphorylate different RABs in various cell types and using larger cohorts are warranted. Our
5 study identifies pSer106 RAB12 as an endogenous biomarker in easily accessible PBMCs from
6 carriers of the most prevalent G2019S mutation, either PD-manifesting or non-manifesting,
7 suggesting that pSer106 RAB12 can be used as a marker of LRRK2 activity in G2019S carriers.

8

9 **pSer106 RAB12 as a marker of LRRK2 activity**

10 Upstream of LRRK2, PD cell models showed LRRK2 activation by VPS35/ RAB29 (RAB7L1)
11 binding to a region on the Armadillo (ARM) domain termed 'Site-1'^{22,23}. More recently, non-
12 phosphorylated RAB12 was shown as a key LRRK2 activator that binds to a distinct site at the
13 ARM domain termed 'Site-3'^{24,25}. One study showed that RAB12 plays a role in recruiting LRRK2
14 to damaged or stressed lysosomes²⁵. These studies suggested that ARM domain Site-1 or Site-3
15 inhibitors that block RAB binding could serve as novel therapeutic targets for allosteric inhibitors
16 of LRRK2 kinase activity²⁴. The biological effect of pSer106 RAB12 phosphorylation on LRRK2
17 regulation has not been well characterised, and our results in G20919S carriers emphasise that
18 additional work is warranted to investigate this. Specifically, it is key to investigate whether
19 pSer106 RAB12 binding to the ARM Site-3 can create feedback loops modulating LRRK2 activity
20 through activation or inhibition depending on the cellular context and, importantly, how this
21 translates to LRRK2 clinical cohorts. Downstream of LRRK2, MLi-2 phospho-proteomics
22 identified RAB3A, RAB8A, RAB10, RAB12, RAB29, and RAB43 as LRRK2 substrates^{2,3,20,77}.
23 In line with these studies, using freshly collected PBMCs (n=10), we found that pSer106 RAB12
24 levels strongly diminished after MLi-2 LRRK2 inhibition in all subjects, regardless of disease or
25 mutation status. In the clinical setting, only pThr73 RAB10 has been validated as an LRRK2
26 substrate¹⁹ and exploited as a readout of LRRK2 activity in previous studies¹⁸, including in LRRK2
27 inhibitor clinical trials^{12,21}. As mentioned above, there has not been a specific way of assessing
28 elevated LRRK2 activity in G2019S carriers yet due to the lack of effect in pThr73 RAB10
29 phosphorylation. Thus, monitoring pSer106 RAB12 phosphorylation levels could be useful for

1 assessing G2019S selective inhibitors that have been newly developed in clinical studies^{78–81}, as
2 these would be expected to preferentially reduce pSer106 RAB12 phosphorylation in patients with
3 heterozygous G2019S mutations.

4

5 **Dual role of RAB12 upstream and downstream of LRRK2 signalling**

6 RAB12 was shown to play a dual role both in downstream and upstream signalling of LRRK2.
7 Current evidence points to a mechanism by which lysosomal stress and dysfunction lead to the
8 GTP loading and activation of dephosphorylated RAB12 at the lysosome membrane. This, in turn,
9 recruits LRRK2 to the lysosome, where RAB12 directly interacts with Site-3 on the ARM domain
10 of LRRK2.⁸² LRRK2 is then activated at the lysosomal membrane, although the exact mechanism
11 remains poorly understood. Once activated, LRRK2 phosphorylates nearby RAB proteins,
12 including RAB12 at Ser106. In this context, our data suggest that monitoring pSer106 RAB12
13 phosphorylation could be a relevant biomarker for tracking LRRK2 activation, particularly in
14 LRRK2 G2019S PBMCs. Further research is needed to fully understand the biological roles of
15 phosphorylated RAB12 and to identify the proteins and downstream pathways it regulates.

16

17 **G2019S phospho-/protein signatures can reflect disease progression**

18 In G2019S carriers, we identified a signature of 15 proteins and 3 phospho-sites, including pSer106
19 RAB12, that was found to provide a 96% accuracy in discriminating G2019S L2PD, L2NMCs,
20 and controls. Although correlation does not imply causality, 55% of the signature features
21 correlated with PD motor severity as determined by UPDRS-III scores, including pSer106 RAB12,
22 pSer2015 MON2, ATIC, PDCD6, RAB9A, PSMC5, LAMP1, HSD13B10, ARHGAP45,
23 NDUFB8, and SCLY. These results suggest that this phospho-signature can be related to PD
24 progression. However, further work in larger LRRK2 clinical cohorts would be required to assess
25 this clinically⁵⁶. Altogether, as a proof-of-principle, we identified the first phospho-/protein
26 signature in G2019S PBMCs based on DIA-MS data, which complements previous G2019S
27 signatures reported in blood⁸³ and urine^{84,85}.

1

2 **Study limitations**

3 Despite the exciting findings, our study has limitations. Inherent variation in humans markedly
4 affects differential protein expression and phosphorylation. Slightly different PBMCs preparation
5 and storage procedures at different centres can also affect the results. To minimise this variation,
6 we undertook DIA-MS analyses simultaneously for all subcohorts and blind to study groups.
7 Differential enrichment of phospho-peptides on titanium dioxide beads can result in further
8 variety. Indeed, we discarded one of the phospho-peptide batches due to not passing quality
9 control. Based on our phospho-peptide enrichment approach, the detection of phospho-Tyrosines
10 was under-represented. We used stringent significance cut-off criteria filtering in only hits mapped
11 by at least 2 peptides, and we cannot rule out that other important proteins have been excluded.
12 The number of R1441G carriers, especially L2NMCs, was smaller than G2019S, and it was limited
13 for phospho analyses and insufficient to assess signatures by machine learning. Yet, pSer106
14 RAB12 did not show significant differences nor trends in R1441G groups. The validation of
15 pRAB12 by immunoblot in 1-year follow-up clinical samples strengthens the robustness of this as
16 an endogenous biomarker for G2019S carriers. Lastly, other phospho-/protein candidates
17 identified by DIA-MS should be validated in additional studies.

18

19 **Concluding remarks**

20 Aligning with urine⁸⁵, in PBMCs, we found elevated pSer106 RAB12 levels as an endogenous
21 biomarker for G2019S carriers. This finding holds clinical implications, suggesting that pSer106
22 RAB12 can be a marker of LRRK2 activity in G2019S carriers. Other studies should also assess
23 pSer106 RAB12 levels in CSF and brain tissue of LRRK2 patients carrying the G2019S mutation.
24 In addition, given that RAB12 was shown as a key LRRK2 activator in PD models able to increase
25 pThr73 RAB10 levels^{24,25}, future studies ought to investigate the effect of pSer106 RAB12
26 phosphorylation on LRRK2 activation. Moreover, in line with findings from PD models^{50,86}, in
27 human LRRK2 PBMCs, we also found that pSer106 RAB12 represents a pharmaco-dynamic
28 readout of LRRK2 inhibition. In addition, we found an 18-feature signature, including pSer106

1 RAB12, with a 96% accuracy in discriminating symptomatic, asymptomatic G2019S carriers and
2 controls. Future large-scale studies need to assess pSer106 RAB12 in other G2019S clinical
3 cohorts. Moreover, developing novel assays able to quantify pSer106 RAB12 in LRRK2 clinical
4 samples such as blood cells and CSF, e.g., reaction monitoring or ELISA-based assays, are needed
5 to translate our findings to clinical settings. If validated, pSer106 RAB12 can aid patient
6 enrichment and target engagement in clinical trials of novel LRRK2 inhibitors targeting the
7 G2019S mutation^{78–81}.

8

9 **Data availability**

10 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
11 via the PRIDE⁸⁷ partner repository with the dataset identifiers PXD050865 for the proteome and
12 PXD050944 phospho-proteome analyses. Following FAIR principles,²⁷ through the interactive
13 tool called Curtain²⁸, raw and differential phospho-/proteomic data from all comparisons are also
14 provided as weblinks to be readily explored by non-MS experts. Programming Rscripts for data
15 analyses are publicly available at *Brain* online (**Suppl. Material**) and as a cloud weblink
16 (doi.org/10.5281/zenodo.13774022).

17

18 **Web resources**

19 Curtain weblinks of LRRK2 phospho-/proteomic analyses as presented in the article. Expanded
20 analyses can be found at *Brain* online (**Suppl. Figures** and **Suppl. Material**).

21

22 **Proteome G2019S cohort**

23 G2019S L2PD vs controls

24 G2019S carriers vs controls

25 G2019S L2NMCs vs controls

26 G2019S L2NMCs vs L2PD

- 1 iPd vs controls
- 2 G2019S L2PD vs iPd
- 3 G2019S carriers vs iPd
- 4

5 **Proteome R1441G cohort**

- 6 R1441G L2PD vs controls
- 7 R1441G carriers vs controls
- 8 R1441G L2NMCs vs controls
- 9 R1441G L2NMCs vs L2PD
- 10 iPd vs controls
- 11 R1441G L2PD vs iPd
- 12 R1441G carriers vs iPd
- 13

14 **Phospho G2019S cohort**

- 15 G2019S L2PD vs controls
- 16 G2019S carriers vs controls
- 17 G2019S L2NMCs vs controls
- 18 G2019S L2NMCs vs L2PD
- 19 iPd vs controls
- 20 G2019S L2PD vs iPd
- 21 G2019S carriers vs iPd
- 22

1 **Phospho R1441G cohort**

2 R1441G L2PD vs controls
3 R1441G carriers vs controls
4 R1441G L2NMCs vs controls
5 R1441G L2NMCs vs L2PD
6 iPd vs controls
7 R1441G L2PD vs iPd
8 R1441G carriers vs iPd
9

10 **Acknowledgements**

11 We thank the patients and their relatives for their continued and essential collaboration. LDM was
12 funded by the Beatriu-de-Pinòs programme (#BP00176) from the Agència de Gestió d'Ajuts
13 Universitaris i de Recerca (AGAUR). AR was funded by the PFIS programme (#FI21/00104) from
14 the Instituto de Salud Carlos III (ISCIII) co-funded by the European Union. MF was funded by the
15 María-de-Maeztu programme (#MDM-2017-0729) to the Parkinson's disease and Movement
16 Disorders group of the Institut de Neurociències (Universitat de Barcelona). ARC was funded by
17 the EU Next-Generation 2022 Investigo programme from the European Commission (EC) /
18 Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR). Research in the Alessi lab were
19 funded by the UK Medical Research Council (grant number MC_UU_00018/1) and the
20 pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit
21 (Boehringer Ingelheim, GlaxoSmithKline, and Merck KGaA). RFS was supported by a Miguel
22 Servet grant (#CP19/00048), a FIS grant (#PI20/00659), a PFIS grant (#FI21/00104), and a M-
23 AES grant (#MV22/00041) from the Instituto de Salud Carlos III (ISCIII) co-funded by the
24 European Union. IDIBAPS receives support from the CERCA program of Generalitat de
25 Catalunya.

1 **Funding**

2 This study was supported by a grant from the Michael J. Fox Foundation for Parkinson's Research
3 (MJFF) (#MJFF-000858) to RFS, ME, CM, ES, JI, and JRM.

4

5 **Competing interests**

6 The authors report no competing interests.

7

8 **Supplementary material**

9 Supplementary material is available at *Brain* online.

10

11 **References**

- 12 1. Sheng Z, Zhang S, Bustos D, et al. Ser1292 autophosphorylation is an indicator of LRRK2
13 kinase activity and contributes to the cellular effects of PD mutations. *Sci Transl Med.*
14 2012;4(164):164ra161. doi:10.1126/scitranslmed.3004485
- 15 2. Steger M, Tonelli F, Ito G, et al. Phosphoproteomics reveals that Parkinson's disease
16 kinase LRRK2 regulates a subset of Rab GTPases. *Elife.*
17 2016;5(JANUARY2016):e12813. doi:10.7554/elife.12813.001
- 18 3. Steger M, Diez F, Dhekne H, et al. Systematic proteomic analysis of LRRK2-mediated
19 Rab GTPase phosphorylation establishes a connection to ciliogenesis. *Elife.*
20 2017;6:e31012. doi:10.7554/ELIFE.31012
- 21 4. Taylor M, Alessi DR. Advances in elucidating the function of leucine-rich repeat protein
22 kinase-2 in normal cells and Parkinson's disease. *Curr Opin Cell Biol.* 2020;63:102-113.
23 doi:10.1016/j.ceb.2020.01.001
- 24 5. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant
25 parkinsonism with pleomorphic pathology. *Neuron.* 2004;44(4):601-607.

1 doi:S0896627304007202 [pii]10.1016/j.neuron.2004.11.005

2 6. Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that
3 cause PARK8-linked Parkinson's disease. *Neuron*. 2004;44(4):595-600.
4 doi:S0896627304006890 [pii]10.1016/j.neuron.2004.10.023

5 7. Di Maio R, Hoffman EK, Rocha EM, et al. LRRK2 activation in idiopathic Parkinson's
6 disease. *Sci Transl Med*. 2018;10(451):eaar5429. doi:10.1126/scitranslmed.aar5429

7 8. Fraser KB, Rawlins AB, Clark RG, et al. Ser(P)-1292 LRRK2 in urinary exosomes is
8 elevated in idiopathic Parkinson's disease. *Mov Disord*. 2016;31(10):1543-1550.
9 doi:10.1002/mds.26686

10 9. Wang X, Negrou E, Maloney MT, et al. Understanding LRRK2 kinase activity in
11 preclinical models and human subjects through quantitative analysis of LRRK2 and pT73
12 Rab10. *Sci Rep*. 2021;11(1):12900. doi:10.1038/s41598-021-91943-4

13 10. Healy DG, Falchi M, O'Sullivan SS, et al. Phenotype, genotype, and worldwide genetic
14 penetrance of LRRK2-associated Parkinson's disease: a case-control study. *Lancet
15 Neurol*. 2008;7(7):583-590. doi:10.1016/S1474-4422(08)70117-0

16 11. Marras C, Alcalay RN, Caspell-Garcia C, et al. Motor and nonmotor heterogeneity of
17 LRRK2-related and idiopathic Parkinson's disease. *Mov Disord*. Published online 2016.
18 doi:10.1002/mds.26614

19 12. Jennings D, Huntwork-Rodriguez S, Vissers MFJM, et al. LRRK2 Inhibition by BIIB122
20 in Healthy Participants and Patients with Parkinson's Disease. *Mov Disord*.
21 2023;38(3):386-398. doi:10.1002/mds.29297

22 13. Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical
23 trials. *Nat Rev Neurol*. 2020;16(2):97-107. doi:10.1038/s41582-019-0301-2

24 14. Hentati F, Trinh J, Thompson C, Nosova E, Farrer MJ, Aasly JO. LRRK2 parkinsonism in
25 Tunisia and Norway: A comparative analysis of disease penetrance. *Neurology*.
26 2014;83(6):568-569. doi:10.1212/WNL.000000000000675

27 15. Marder K, Wang Y, Alcalay RN, et al. Age-specific penetrance of LRRK2 G2019S in the
28 Michael J. Fox Ashkenazi Jewish LRRK2 Consortium. *Neurology*. 2015;85(1):89-95.

1 doi:10.1212/WNL.0000000000001708

2 16. Lee AJ, Wang Y, Alcalay RN, et al. Penetrance estimate of LRRK2 p.G2019S mutation in
3 individuals of non-Ashkenazi Jewish ancestry. *Mov Disord.* 2017;32(10):1432-1438.
4 doi:10.1002/mds.27059

5 17. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their
6 regulation and functions. *FEBS J.* 2021;288(1):36-55. doi:10.1111/febs.15453

7 18. Karayel, Ö, Tonelli F, Virreira Winter S, et al. Accurate MS-based Rab10
8 Phosphorylation Stoichiometry Determination as Readout for LRRK2 Activity in
9 Parkinson's Disease. *Mol Cell Proteomics.* 2020;19(9):1546-1560.
10 doi:10.1074/MCP.RA120.002055

11 19. Fan Y, Nirujogi RS, Garrido A, et al. R1441G but not G2019S mutation enhances LRRK2
12 mediated Rab10 phosphorylation in human peripheral blood neutrophils. *Acta
13 Neuropathol.* 2021;142(3):475-494. doi:10.1007/s00401-021-02325-z

14 20. Thirstrup K, Dächsel JC, Oppermann FS, et al. Selective LRRK2 kinase inhibition reduces
15 phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood
16 cells. *Sci Rep.* 2017;7(1):10300. doi:10.1038/s41598-017-10501-z

17 21. Jennings D, Huntwork-Rodriguez S, Henry AG, et al. Preclinical and clinical evaluation
18 of the LRRK2 inhibitor DNL201 for Parkinson's disease. *Sci Transl Med.*
19 2022;14(648):eabj2658. doi:10.1126/scitranslmed.abj2658

20 22. Purlyte E, Dhekne HS, Sarhan AR, et al. Rab29 activation of the Parkinson's disease-
21 associated LRRK2 kinase. *EMBO J.* 2018;37(1):1-18. doi:10.15252/embj.201798099

22 23. Mir R, Tonelli F, Lis P, et al. The Parkinson's disease VPS35[D620N] mutation enhances
23 LRRK2-mediated Rab protein phosphorylation in mouse and human. *Biochem J.*
24 2018;475(11):1861-1883. doi:10.1042/BCJ20180248

25 24. Dhekne HS, Tonelli F, Yeshaw WM, et al. Genome-wide screen reveals Rab12 GTPase as
26 a critical activator of Parkinson's disease-linked LRRK2 kinase. *Elife.* 2023;12:e87098.
27 doi:10.7554/elife.87098

28 25. Wang X, Bondar V V, Davis OB, et al. Rab12 is a regulator of LRRK2 and its activation

1 by damaged lysosomes. *Elife*. 2023;12:12:e87255. doi:10.7554/elife.87255

2 26. Gustavsson EK, Follett J, Trinh J, et al. RAB32 Ser71Arg in autosomal dominant
3 Parkinson's disease: linkage, association, and functional analyses. *Lancet Neurol*.
4 Published online 10 April 2024. doi:10.1016/S1474-4422(24)00121-2

5 27. Wilkinson M, Dumontier M, Aalbersberg I. The FAIR Guiding Principles for scientific
6 data management and stewardship. *Sci. Data* 3 (2016). *Sci data*. 2016;3:1-9.
7 doi:10.1038/sdata.2016.18

8 28. Phung TK, Berndsen K, Shastry R, et al. CURTAIN-A unique web-based tool for
9 exploration and sharing of MS-based proteomics data. *Proc Natl Acad Sci U S A*.
10 2024;121(7):e2312676121. doi:10.1073/pnas.2312676121

11 29. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's
12 disease. *Mov Disord*. 2015;30(12):1591-1601. doi:10.1002/mds.26424

13 30. Gaig C, Martí MJ, Ezquerra M, Rey MJ, Cardozo A, Tolosa E. G2019S LRRK2 mutation
14 causing Parkinson's disease without Lewy bodies. *J Neurol Neurosurg Psychiatry*.
15 2007;78(6):626-628. doi:jnnp.2006.107904 [pii]10.1136/jnnp.2006.107904

16 31. Sierra M, González-Aramburu I, Sánchez-Juan P, et al. High frequency and reduced
17 penetrance of LRRK2 G2019S mutation among Parkinson's disease patients in Cantabria
18 (Spain). *Mov Disord*. 2011;26(13):2343-2346. doi:10.1002/mds.23965

19 32. Ruiz-Martínez J, Gorostidi A, Ibañez B, et al. Penetrance in Parkinson's disease related to
20 the LRRK2 R1441G mutation in the Basque country (Spain). *Mov Disord*.
21 2010;25(14):2340-2345. doi:10.1002/mds.23278

22 33. Goetz CC. The Unified Parkinson's Disease Rating Scale (UPDRS): Status and
23 recommendations. *Mov Disord*. 2003;18(7):738-750. doi:10.1002/mds.10473

24 34. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment,
25 MoCA: A brief screening tool for mild cognitive impairment. *J Am Geriatr Soc*.
26 2005;53(4):695-699. doi:10.1111/j.1532-5415.2005.53221.x

27 35. Simon-Sánchez J, Martí-Masso JF, Sanchez-Mut JV, et al. Parkinson's disease due to the
28 R1441G mutation in Dardarin: a founder effect in the Basques. *Mov Disord*.

1 2006;21(11):1954-1959. doi:10.1002/mds.21114

2 36. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for
3 RNA-sequencing and microarray studies. *Nucleic Acids Res.* 2015;43(7):e47.
4 doi:10.1093/nar/gkv007

5 37. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for
6 scientific computing in Python. *Nat Methods.* 2020;17(3):261-272. doi:10.1038/s41592-
7 019-0686-2

8 38. Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with Python. In:
9 *Proceedings of the 9th Python in Science Conference.* ; 2010:92-96. doi:10.25080/majora-
10 92bf1922-011

11 39. Bekker-Jensen DB, Bernhardt OM, Hogrebe A, et al. Rapid and site-specific deep
12 phosphoproteome profiling by data-independent acquisition without the need for spectral
13 libraries. *Nat Commun.* 2020;11(1):787. doi:10.1038/s41467-020-14609-1

14 40. Ongutu JO, Piepho HP, Schulz-Streeck T. A comparison of random forests, boosting and
15 support vector machines for genomic selection. In: *BMC Proceedings.* Vol 5. ; 2011.
16 doi:10.1186/1753-6561-5-S3-S11

17 41. Chawla N V, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-
18 sampling technique. *J Artif Intell Res.* 2002;16:321-357. doi:10.1613/jair.953

19 42. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and its
20 posterior distribution. In: *Proceedings - International Conference on Pattern Recognition.*
21 ; 2010:3121-3124. doi:10.1109/ICPR.2010.764

22 43. Pedregosa F, Weiss R, Brucher M, et al. Scikit-learn: Machine Learning in Python. *J*
23 *Mach Learn Res.* 2011;12:2825-2830.
24 http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html%5Cnhttp://arxiv.org/abs/1201.049
25 0

26 44. Van Rossum G, Drake FL, Harris CR, et al. *Python 3 Reference Manual.* Vol 585.; 2009.

27 45. Chen XW. Gene selection for cancer classification using bootstrapped genetic algorithms
28 and support vector machines. In: *Proceedings of the 2003 IEEE Bioinformatics*

1 Conference, CSB 2003. Vol 46. Springer; 2003:504-505. doi:10.1109/CSB.2003.1227389

2 46. Gaudel R, Sebag M. Feature selection as a one-player game. In: *ICML 2010 -*
3 *Proceedings, 27th International Conference on Machine Learning*. ; 2010:359-366.

4 47. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the
5 analysis of systems-level datasets. *Nat Commun.* 2019;10(1):1523. doi:10.1038/s41467-
6 019-09234-6

7 48. Liu Q, Zhu D, Li N, et al. Regulation of LRRK2 mRNA stability by ATIC and its
8 substrate AICAR through ARE -mediated mRNA decay in Parkinson's disease. *EMBO J.*
9 2023;42(15). doi:10.15252/embj.2022113410

10 49. Kalogeropoulou AF, Freemantle JB, Lis P, Vides EG, Polinski NK, Alessi DR.
11 Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity.
12 *Biochem J.* 2020;477(22):4397-4423. doi:10.1042/BCJ20200458

13 50. Kluss JH, Mazza MC, Li Y, et al. Preclinical modeling of chronic inhibition of the
14 Parkinson's disease associated kinase LRRK2 reveals altered function of the
15 endolysosomal system in vivo. *Mol Neurodegener.* 2021;16(1):17. doi:10.1186/s13024-
16 021-00441-8

17 51. Ghelman J, Grewing L, Windener F, Albrecht S, Zarbock A, Kuhlmann T. SKAP2 as a
18 new regulator of oligodendroglial migration and myelin sheath formation. *Glia.*
19 2021;69(11):2699-2716. doi:10.1002/glia.24066

20 52. Takahashi T, Yamashita H, Nagano Y, et al. Identification and Characterisation of a
21 Novel Pyk2/Related Adhesion Focal Tyrosine Kinase-associated Protein That Inhibits α -
22 Synuclein Phosphorylation. *J Biol Chem.* 2003;278(43):42225-42233.
23 doi:10.1074/jbc.M213217200

24 53. Ayoubi R, Ryan J, Biddle MS, et al. Scaling of an antibody validation procedure enables
25 quantification of antibody performance in major research applications. *Elife.*
26 2023;12:RP91645. doi:10.1101/2023.06.01.543292

27 54. Suzuki K, Dashzeveg N, Lu ZG, Taira N, Miki Y, Yoshida K. Programmed cell death 6, a
28 novel p53-responsive gene, targets to the nucleus in the apoptotic response to DNA
29 damage. *Cancer Sci.* 2012;103(10):1788-1794. doi:10.1111/j.1349-7006.2012.02362.x

1 55. Erekat NS. Apoptosis and its Role in Parkinson's Disease. In: *Parkinson's Disease: Pathogenesis and Clinical Aspects*. Codon Publications; 2018:65-82.
2 doi:10.15586/codonpublications.parkinsonsdisease.2018.ch4

3

4 56. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's
5 disease. *Lancet Neurol*. 2021;20(5):385-397. doi:10.1016/S1474-4422(21)00030-2

6 57. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. *Cell Death Differ*.
7 2014;21(3):348-358. doi:10.1038/cdd.2013.187

8 58. Hirota Y, Yamashita S ichi, Kurihara Y, et al. Mitophagy is primarily due to alternative
9 autophagy and requires the MAPK1 and MAPK14 signaling pathways. *Autophagy*.
10 2015;11(2):332-343. doi:10.1080/15548627.2015.1023047

11 59. Hirschberg Y, Valle-Tamayo N, Dols-Icardo O, et al. Proteomic comparison between non-
12 purified cerebrospinal fluid and cerebrospinal fluid-derived extracellular vesicles from
13 patients with Alzheimer's, Parkinson's and Lewy body dementia. *J Extracell Vesicles*.
14 2023;12(12):12383. doi:10.1002/jev2.12383

15 60. Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's
16 disease. *J Neurochem*. 2019;150(5):487-506. doi:10.1111/jnc.14820

17 61. Erb ML, Moore DJ. LRRK2 and the Endolysosomal System in Parkinson's Disease. *J Parkinsons Dis*. 2020;10(4):1271-1291. doi:10.3233/JPD-202138

18

19 62. Bullock KG, Peter Beardsley G, Anderson KS. The kinetic mechanism of the human
20 bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide
21 transformylase/inosine 5'-monophosphate cyclohydrolase). A surprising lack of substrate
22 channeling. *J Biol Chem*. 2002;277(25):22168-22174. doi:10.1074/jbc.M111964200

23 63. Vergis JM, Beardsley GP. Catalytic Mechanism of the Cyclohydrolase Activity of Human
24 Aminoimidazole Carboxamide Ribonucleotide Formyltransferase/Inosine Monophosphate
25 Cyclohydrolase. *Biochemistry*. 2004;43(5):1184-1192. doi:10.1021/bi035139b

26 64. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein
27 P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration,
28 and audiogenic seizures. *J Biol Chem*. 2014;289(14):9662-9674.
29 doi:10.1074/jbc.M113.540682

1 65. Flinkman D, Hong Y, Gnjatovic J, et al. Regulators of proteostasis are translationally
2 repressed in fibroblasts from patients with sporadic and LRRK2-G2019S Parkinson's
3 disease. *npj Park Dis.* 2023;9(1):20. doi:10.1038/s41531-023-00460-w

4 66. Jang Y, Pletnikova O, Troncoso JC, et al. Mass Spectrometry-Based Proteomics Analysis
5 of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple
6 Pathways Potentially Involved in the Disease. *Mol Cell Proteomics.* 2023;22(1):100452.
7 doi:10.1016/j.mcpro.2022.100452

8 67. Grünewald A, Rygiel KA, Hepplewhite PD, Morris CM, Picard M, Turnbull DM.
9 Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease
10 Neurons. *Ann Neurol.* 2016;79(3):366-378. doi:10.1002/ana.24571

11 68. Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2
12 Phosphorylation, More Than an Epiphénoménon. *Front Neurosci.* 2020;14:527.
13 doi:10.3389/fnins.2020.00527

14 69. Harvey K, Outeiro TF. The role of LRRK2 in cell signalling. *Biochem Soc Trans.*
15 2018;47(1):197-207. doi:10.1042/BST20180464

16 70. Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and
17 idiopathic Parkinson's disease. *Trends Neurosci.* 2022;45(3):224-236.
18 doi:10.1016/j.tins.2021.12.002

19 71. Graham JM, Sagar HJ. A data-driven approach to the study of heterogeneity in idiopathic
20 Parkinson's disease: Identification of three distinct subtypes. *Mov Disord.* 1999;14(1):10-
21 20. doi:10.1002/1531-8257(199901)14:1<10::AID-MDS1005>3.0.CO;2-4

22 72. Lewis SJG, Foltyne T, Blackwell AD, Bobbins TW, Owen AM, Barker RA.
23 Heterogeneity of Parkinson's disease in the early clinical stages using a data driven
24 approach. *J Neurol Neurosurg Psychiatry.* 2005;76(3):343-348.
25 doi:10.1136/jnnp.2003.033530

26 73. Bae E-J, Lee S-J. The LRRK2-RAB axis in regulation of vesicle trafficking and α -
27 synuclein propagation. *Biochim Biophys Acta - Mol Basis Dis.* 2020;1866(3):165632.
28 doi:10.1016/j.bbadi.2019.165632

29 74. Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through

1 controlling the degradation of amino-acid transporter PAT4. *EMBO Rep.* 2013;14(5):450-
2 457. doi:10.1038/embor.2013.32

3 75. Xenias HS, Chen C, Kang S, et al. R1441C and G2019S LRRK2 knockin mice have
4 distinct striatal molecular, physiological, and behavioral alterations. *Commun Biol.*
5 2022;5(1):1-14. doi:10.1038/s42003-022-04136-8

6 76. Berndsen K, Lis P, Yeshaw WM, et al. PPM1H phosphatase counteracts LRRK2 signaling
7 by selectively dephosphorylating rab proteins. *Elife.* 2019;8:e50416.
8 doi:10.7554/elife.50416

9 77. Liu Z, Bryant N, Kumaran R, et al. LRRK2 phosphorylates membrane-bound Rabs and is
10 activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. *Hum*
11 *Mol Genet.* 2018;27(2):385-395. doi:10.1093/hmg/ddx410

12 78. Lesniak RK, Nichols RJ, Montine TJ. Development of mutation-selective LRRK2 kinase
13 inhibitors as precision medicine for Parkinson's disease and other diseases for which
14 carriers are at increased risk. *Front Neurol.* 2022;13:1016040.
15 doi:10.3389/fneur.2022.1016040

16 79. Leśniak RK, Nichols RJ, Schonemann M, et al. Discovery of azaspirocyclic 1H-3,4,5-
17 Trisubstituted pyrazoles as novel G2019S-LRRK2 selective kinase inhibitors. *Eur J Med*
18 *Chem.* 2022;242:114693. doi:10.1016/j.ejmech.2022.114693

19 80. Lesniak RK, Nichols RJ, Schonemann M, et al. Discovery of 1H-Pyrazole Biaryl
20 Sulfonamides as Novel G2019SLRRK2 Kinase Inhibitors. *ACS Med Chem Lett.*
21 2022;13(6):981-988. doi:10.1021/acsmedchemlett.2c00116

22 81. Leśniak RK, Nichols RJ, Schonemann M, et al. Discovery of G2019S-Selective Leucine
23 Rich Repeat Protein Kinase 2 inhibitors with in vivo efficacy. *Eur J Med Chem.*
24 2022;229:114080. doi:10.1016/j.ejmech.2021.114080

25 82. Li X, Zhu H, Huang BT, et al. RAB12-LRRK2 Complex Suppresses Primary Ciliogenesis
26 and Regulates Centrosome Homeostasis in Astrocytes. *Nat Commun.* 2024;15(1):8434.
27 doi:10.1038/s41467-024-52723-6

28 83. Garrido A, Santamaría E, Fernández-Irigoyen J, et al. Differential Phospho-Signatures in
29 Blood Cells Identify LRRK2 G2019S Carriers in Parkinson's Disease. *Mov Disord.*

1 2022;37(5):1004-1015. doi:10.1002/mds.28927

2 84. Virreira Winter S, Karayel O, Strauss M, et al. Urinary proteome profiling for stratifying
3 patients with familial Parkinson's disease. *EMBO Mol Med*. 2021;13(3):e13257.
4 doi:10.15252/EMMM.202013257

5 85. Hadisurya M, Li L, Kuwaranancharoen K, et al. Quantitative proteomics and
6 phosphoproteomics of urinary extracellular vesicles define putative diagnostic
7 biosignatures for Parkinson's disease. *Commun Med*. 2023;3(1). doi:10.1038/s43856-023-
8 00294-w

9 86. Kluss JH, Beilina A, Williamson CD, Lewis PA, Cookson MR, Bonet-Ponce L.
10 Lysosomal positioning regulates Rab10 phosphorylation at LRRK2+ lysosomes. *Proc
11 Natl Acad Sci U S A*. 2022;119(43):e2205492119. doi:10.1073/pnas.2205492119

12 87. Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: A hub for
13 mass spectrometry-based proteomics evidences. *Nucleic Acids Res*. 2022;50(D1):D543-
14 D552. doi:10.1093/nar/gkab1038

1 **Figure legends**

2 **Figure 1 Experimental workflow using PBMCs from a Spanish LRRK2 clinical cohort. (A)**
3 Peripheral blood mononuclear cells (PBMCs) processing for different applications. 40 ml of blood
4 were drawn from subjects of a LRRK2 clinical cohort from Spain (n=174) encompassing G2019S
5 L2PD patients (n=37), G2019S L2NMCs (n=27), R1441G L2PD patients (n=14), R1441G
6 L2NMCs (n=11), iPD (n=40), and controls (n=45). **(B)** After PBMCs isolation, homogenisation,
7 and protein digestion, DIA-MS identified a total of 3,815 proteins on an EZ-Exploris 480 mass-
8 spectrometer (Thermo), and 10,288 phospho-sites after phospho-enrichment. For the group
9 differential analysis, we only considered proteins and phospho-sites mapped by ≥ 2 different
10 peptides (Spetronaut), and with $<30\%$ imputation, with a significance cut-off of $\log_2FC > |0.6|$ and
11 an FDR multiple-testing adjusted $P < 0.05$. Data deconvolution and interactive representation of
12 findings were done using the Curtain / Curtain PTM Tool, and gene ontology was assessed by
13 Metascape. Using machine learning, we identified an 18-feature G2019S phospho/protein
14 signature able to discriminate G2019S L2PD, G2019S L2NMCs, and controls. By immunoblot,
15 we assessed pSer106 RAB12 / total RAB12 levels in PBMCs from a subset of subjects (n=48)
16 after 1 year of follow-up, including G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15)
17 and controls (n=15). Lastly, in freshly isolated PBMCs from a second subset of subjects (n=10)
18 encompassing G2019S L2PD (n=3), R1441G L2PD (n=1), iPD (n=1) and healthy controls (n=5),
19 treated with DMSO or the MLi-2 LRRK2 inhibitor, we performed an LRRK2 kinase assay
20 measuring pSer106 RAB12 / total RAB12 levels.

21

22 **Figure 2 Proteome overview and differential analyses in G2019S carriers. (A)** Barplots
23 showing the numbers of differential proteins in different pairwise comparisons involving G2019S
24 carriers, R1441G carriers, iPD, and controls, with up-regulated proteins in dark grey, and down-
25 regulated in light grey. All cohorts were run in parallel, with balanced study groups per run, blind
26 to the operator, and using 1 quantile normalisation (Llimma). The significance cut-off was set at a
27 $\log_2FC > |0.6|$ and an FDR multiple-testing adjusted $P < 0.05$. **(B)** Volcano plot of the proteome
28 differential analysis in G2019S L2PD vs healthy controls, with Curtain weblinks to access raw and
29 differential analysis data, showing proteins up-regulated in G2019S L2PD as red dots on the right,

1 and proteins up-regulated in controls (i.e., down-regulated in G2019S L2PD) as red dots on the
 2 left (Curtain). A legend colour code applying to all panels is shown at the bottom of the Figure,
 3 depicting statistically significant hits as red dots. (C) Volcano plot of the proteome differential
 4 analysis in G2019S carriers as a whole, i.e., L2PD and L2NMCs, vs healthy controls (Curtain).
 5 (D) Volcano plot showing the proteome differential analysis between G2019S L2NMCs and
 6 healthy controls (Curtain). (E) Volcano plot representing the proteome comparison between
 7 G2019S L2NMCs and G2019S L2PD. A Venn diagram at the bottom of the Figure shows the
 8 overlap of differential hits in PD-manifesting and non-manifesting G2019S carriers (Curtain).
 9 Curtain weblinks provide access to the differential analyses.

10

11 **Figure 3 Phospho-proteome differential analyses of G2019S carriers.** (A) Volcano plot of the
 12 phospho-proteome differential analysis of G2019S L2PD vs controls, and Curtain weblinks to raw
 13 and differential analysis data, representing hyper-phosphorylated proteins in G2019S L2PD as red
 14 dots on the right with a single hit, elevated pSer106 RAB12 levels in G2019S L2PD, emerging as
 15 a differential phospho-peptide at a $\log_2\text{FC}>|0.6|$ and an FDR multiple-testing adjusted $P<0.05$
 16 (Curtain PTM). A legend colour code applying to all the panels shows hits categorisation by
 17 statistical significance. (B) Volcano plot showing phospho-protein hits in G2019S carriers as a
 18 whole, PD-manifesting and non-manifesting, compared to controls (Curtain PTM). (C) Phospho-
 19 proteome differences in G2019S L2NMCs vs controls (Curtain PTM). (D) Volcano showing
 20 phospho-proteome differences in G2019S L2NMCs vs G2019S L2PD (Curtain PTM). (E) QC
 21 crude non-imputed (lower bar plot), non-normalised (upper violin plot) mass-spectrometry data
 22 from pSer106 RAB12 levels across all study groups showing higher pSer106 phosphorylation
 23 levels in G2019S L2PD and G2019S L2NMCs respect to the rest of the groups. The adj. P-values
 24 and FC on top of the violin plot correspond to those from the differential analysis. (F) A similar
 25 analysis to the previous panel with G2019S L2PD and G2019S L2NMCs grouped into a single
 26 group of G2019S carriers. Curtain weblinks provide access to the differential analyses.

27

28 **Figure 4 One-year follow-up of pSer106 RAB12 by immunoblot and MLi-2 response.**
 29 Immunoblot assessment of pSer106 RAB12 phosphorylation levels in >1-year follow-up PBMC
 30 samples from part of the LRRK2 subcohort from Clínic-Barcelona (n=48), including G2019S

1 L2PD (n=12), G2019S L2NMCs (n=6), iPd (n=15), and controls (n=15). **(A)** Schematic workflow
2 of immunoblot assessment and representative blot from 5 different blots shown in the Supplement.
3 (*) Denotes intergel control. **(B)** dot plots comparing pSer106 RAB12 / Total RAB12 levels
4 obtained by DIA-MS at the entire LRRK2 clinical cohort (n=174) on the left and by immunoblot
5 of part of the Clínic-Barcelona cohort after 1-year of follow-up (n=48) in G2019S carriers on the
6 right. In each plot, overall intergroup differences were assessed using the Kruskal-Wallis test
7 followed by post-hoc Dunn's test to evaluate for pSer106 RAB12 / Total RAB12 differences in
8 G2019S carriers. **(C)** Representative immunoblot analysis of pSer106 RAB12 / Total RAB12 and
9 pThr73 RAB10 / Total RAB10 using technical replicates from additional freshly collected PBMCs
10 from one R1441G L2PD, one G2019S L2PD, one iPd, and 3 controls (expanded to a total n=10
11 subjects in the Supplement), treated with DMSO or the MLi-2 LRRK2 inhibitor (200 nM, 30 min),
12 showing a diminishment of pSer106 RAB12 phosphorylation levels after LRRK2 inhibition by
13 MLi-2 treatment.

14

15 **Figure 5 Identification of an 18-feature phospho-/protein classifier for G2019S carriers.** After
16 comparing the performance of several models, we applied supported vector machine (SVM)
17 learning, adjusted by unbalanced groups using the Synthetic Minority Over-sampling Technique
18 (SMOTE), corrected from overfitting with 5-fold cross-validation, identified cross-group
19 differential proteins and phospho-proteins by ANOVA and Recursive Feature Elimination with
20 Cross-Validation (RFECV), and refined informative combinations to the minimal numbers of
21 features yielding the maximal balanced accuracy by the Montecarlo Tree Search (MCTS) method.
22 **(A)** 18-feature G2019S phospho-/protein best classifier identified in G2019S carriers, PD-
23 manifesting and non-manifesting subjects, and healthy controls. Red dots indicate individual
24 features correlating with disease severity (UPDRS-III) (See next Figure). **(B)** Relative contribution
25 of the different proteins (n=15) and phospho-sites (n=3), including pSer106 RAB12, from the 18-
26 feature G2019S classifier on the upper bar plot; Metascape gene ontology enrichment analysis of
27 the 18-features G2019S signature lower bar plot. **(C)** Receiver Operating Curve (ROC) analysis
28 of the 18-feature G2019S phospho-/protein signature showing an overall balanced accuracy of
29 0.957 to discriminate G2019S L2PD, G2019S L2NMCs, and controls, specifically with an area
30 under the curve (AUC) of 1.00 between G2019S L2PD and controls, 0.99 between G2019S
31 L2NMCs and controls, and 0.98 between G2019S L2PD and G2019S L2NMCs. **(D)** Principal

1 component analysis (PCA) based on the 18-feature G2019S phospho-/protein classifier in G2019S
2 carriers and healthy controls showing distinct group profiles based on LRRK2 mutation and
3 disease status, with G2019S L2NMCs in between G2019S L2PD and controls, consistent with
4 their disease status.

5

6 **Figure 6 Association between differential LRRK2 phospho-/proteins and disease severity.**
7 Correlation analysis of differential proteins and phospho-proteins ($\log_2 FC > |0.6|$, adj. $P < 0.05$) and
8 UPDRS-III motor scores from L2PD patients and healthy controls with statistical significance set
9 at a Spearman's correlation coefficient $Rho > |0.5|$ and an FDR multiple-testing adj. $P < 0.05$. (A)
10 Correlation plots between differential proteins in G2019S L2PD vs controls on the left and
11 R1441G L2PD vs controls on the right, showing differential hits correlating with UPDRS-III in
12 red. (B) Scatter plot of 10 hits from the 18-feature G2019S phospho-/protein signature correlating
13 with UPDRS-III in G2019S L2PD patients represented as orange dots and healthy controls as blue
14 dots, including PDCD6, ARHGAP45, ATIC, SCLY, PSMC5, NDUFB8, LAMP1, HSD17B10,
15 RAB9A, and pSer106 RAB12.

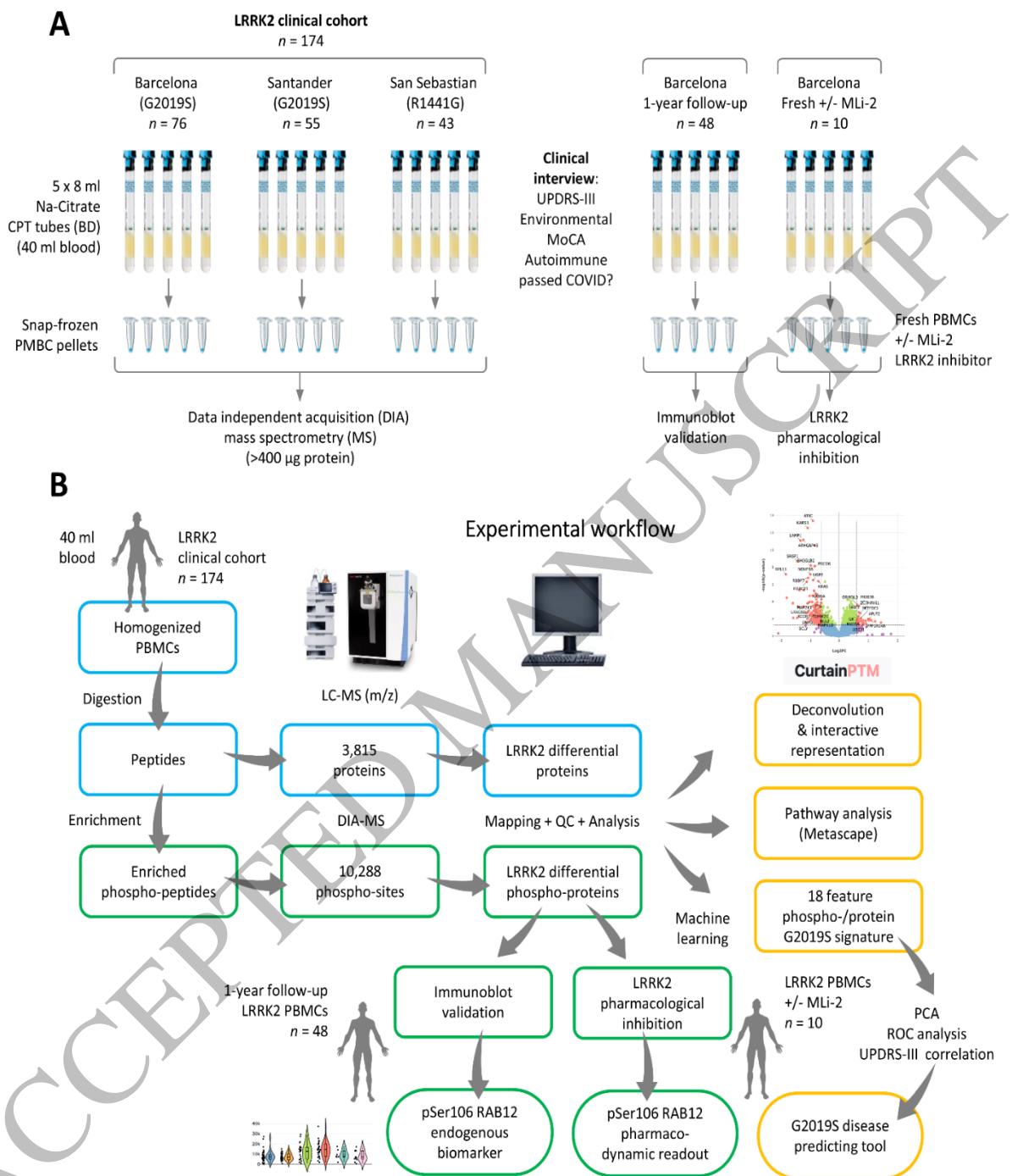
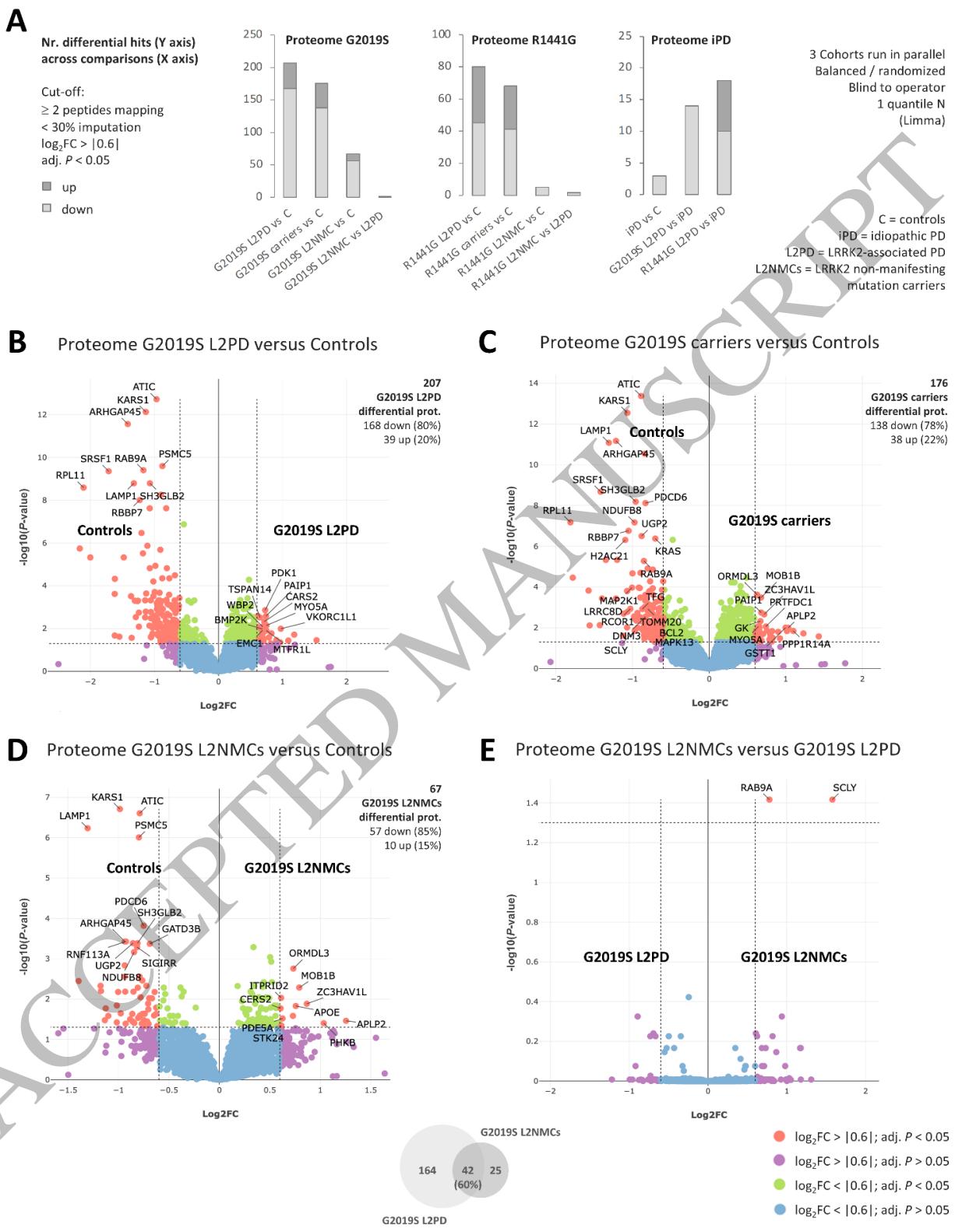
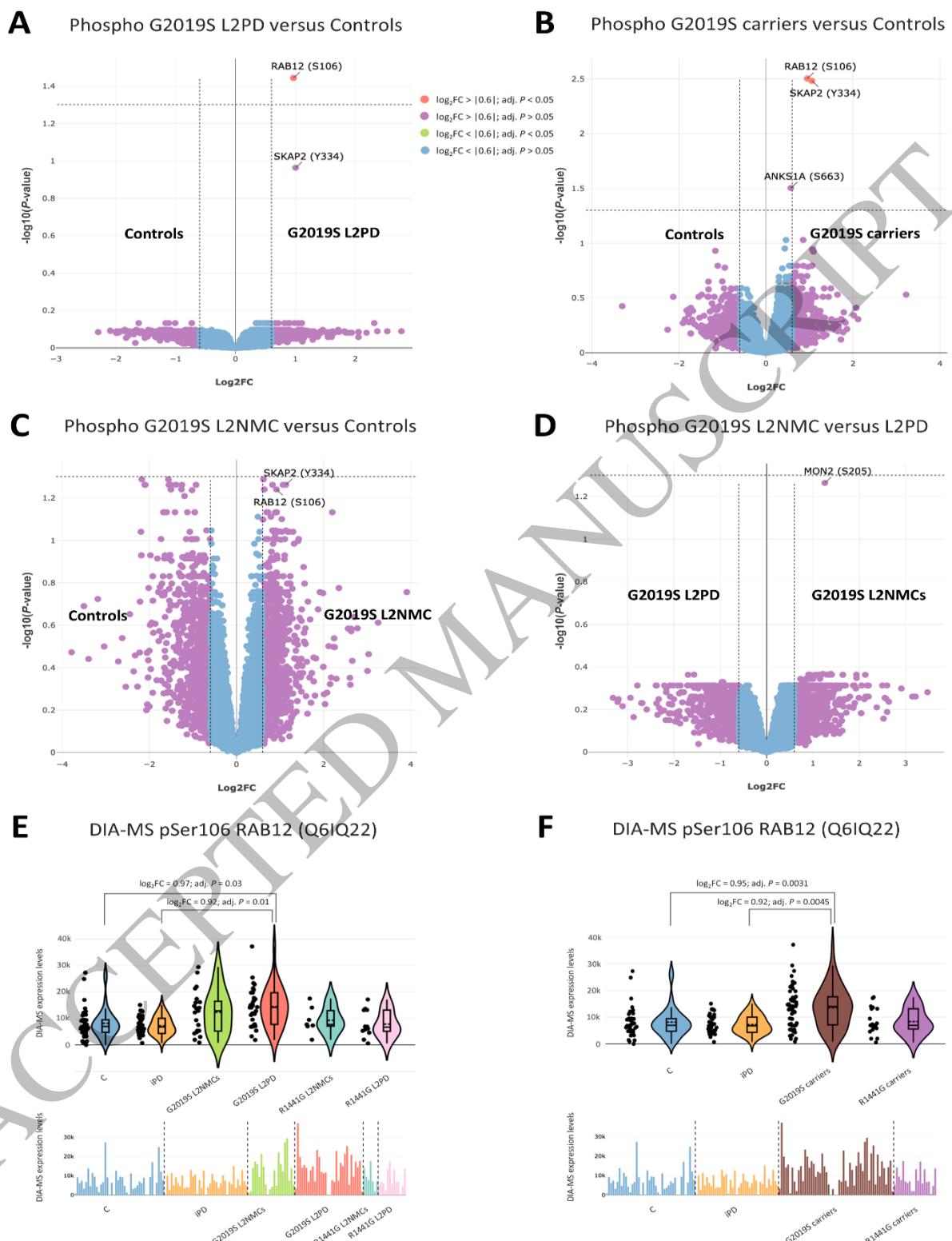




Figure 1
183x201 mm (x DPI)

1
2
3
4

Figure 3
162x229 mm (x DPI)

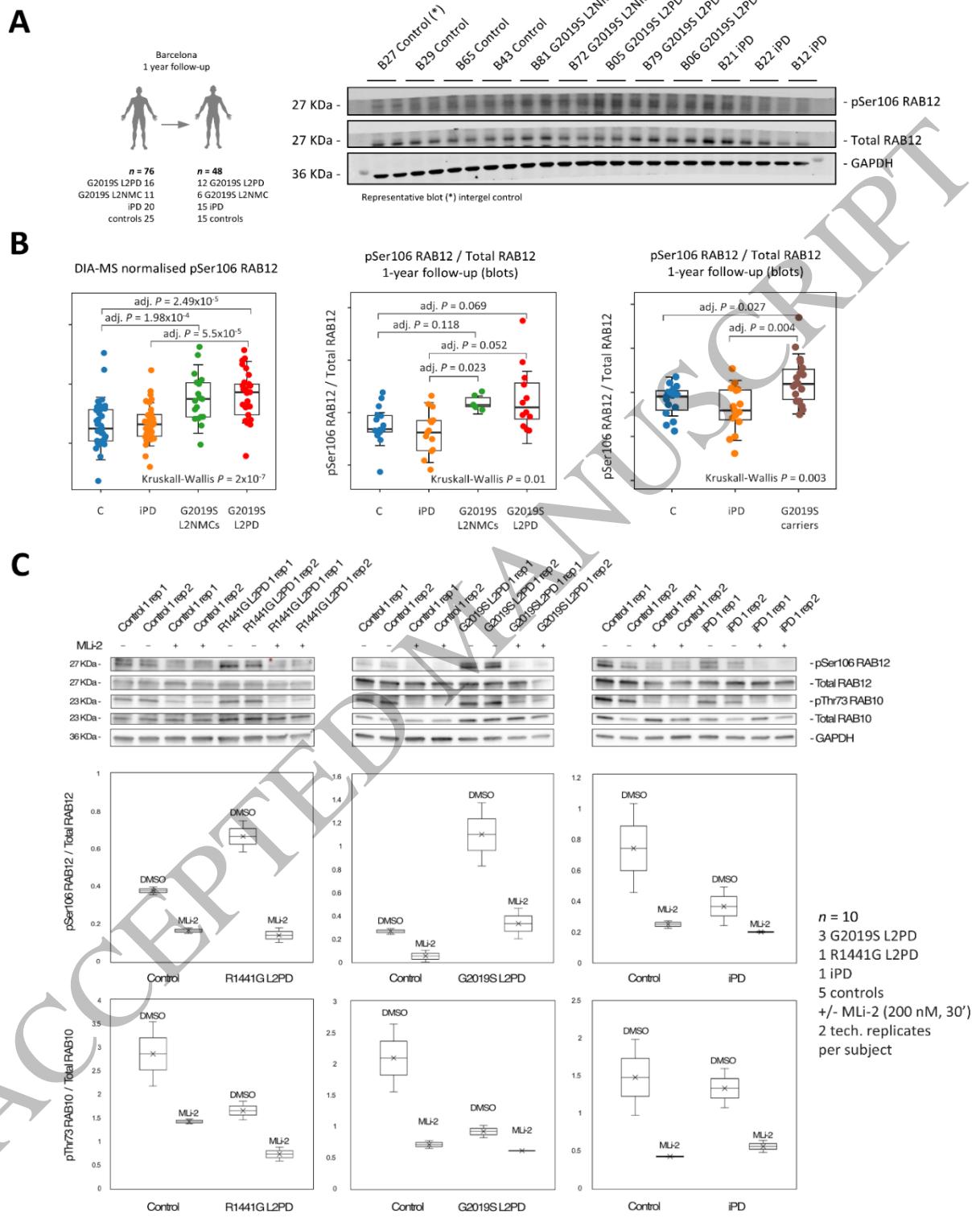


Figure 4
171x225 mm (x DPI)

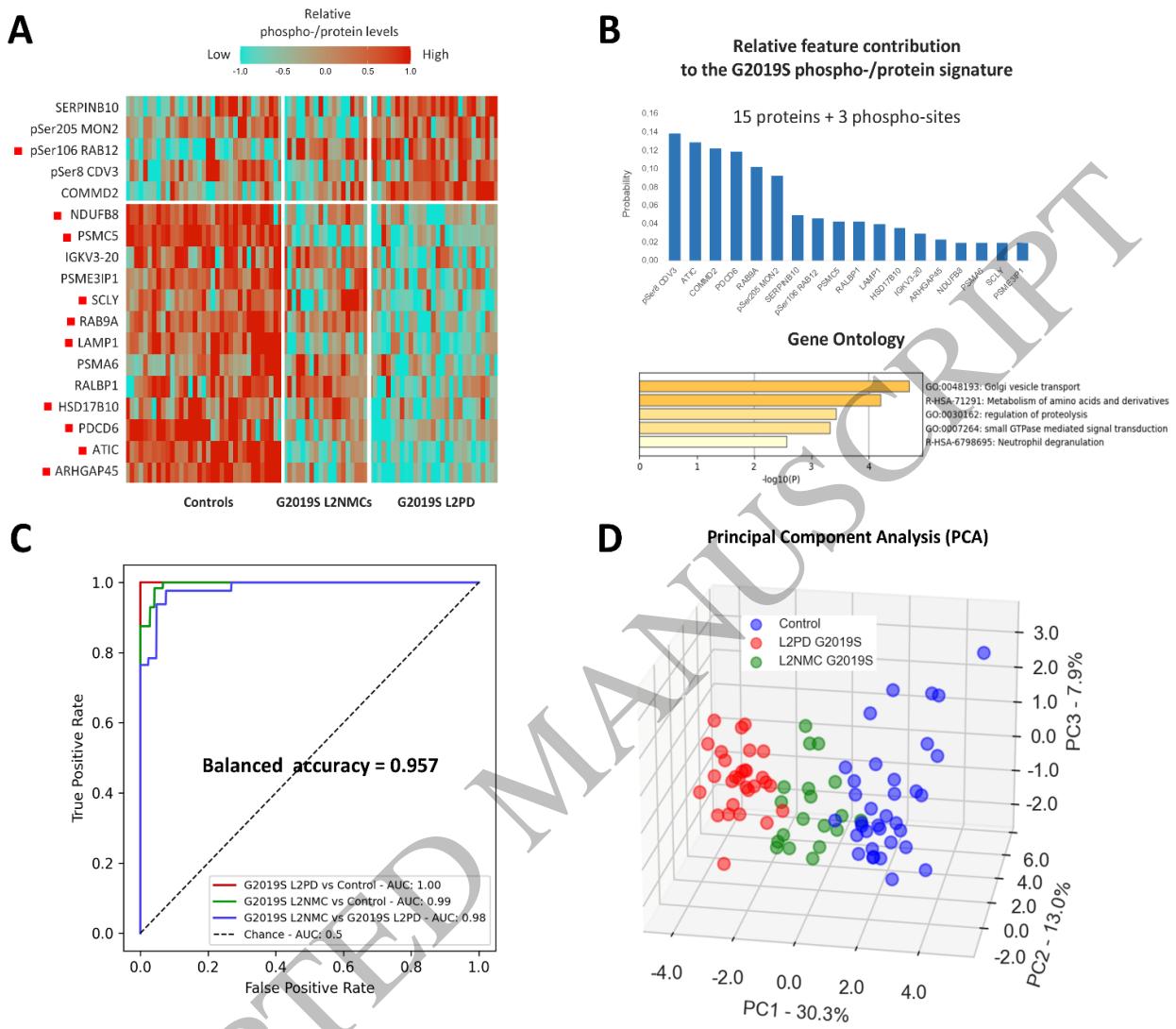


Figure 5
179x151 mm (x DPI)

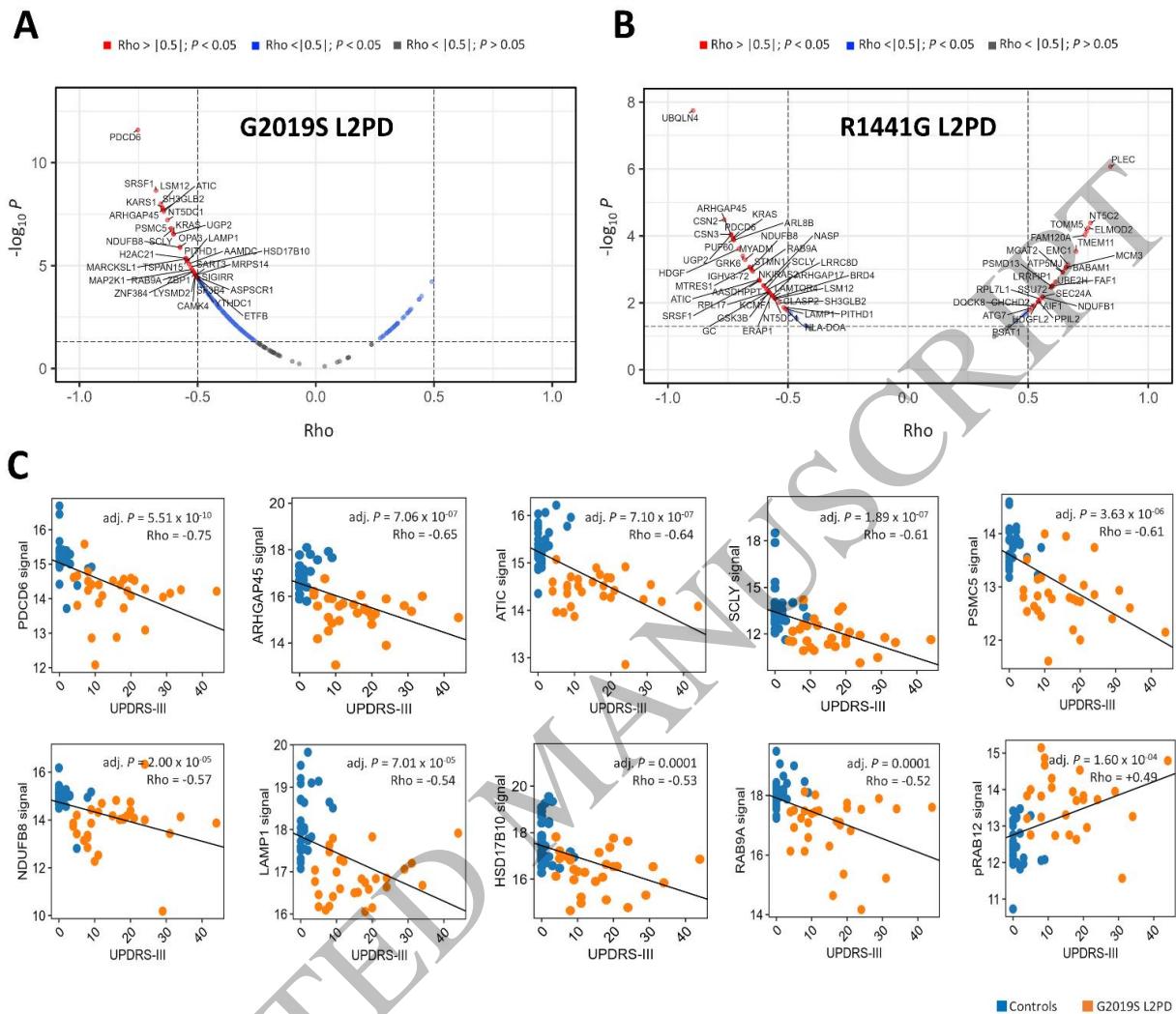


Table I Participant clinic-demographics

Cohort	N (males/females)	Age at sampling (years)	PD AAO (years)	Disease duration (years)	UPDRS-III	H&Y	MoCA	LEDD (mg)	Passed COVID-19 (yes/no)
Entire cohort	174								
G2019S L2PD	37 (20/17)	63.5 ± 9.1 (37/37)	55.1 ± 10.2 (33/37)	8.4 ± 6.3 (33/37)	16.0 ± 9.7 (34/37)	2.0 ± 0.6 (21/37)	24.3 ± 4.5 (35/37)	635.8 ± 438.8 (29/39)	4/30 (34/37)
G2019S L2NMC	27 (18/9)	56.7 ± 14.1 (26/27)	—	—	1.0 ± 1.6 (22/27)	—	25.4 ± 6.6 (25/27)	—	6/19 (25/27)
R1441G L2PD	14 (7/7)	67.1 ± 9.5 (14/14)	55.8 ± 11.4 (14/14)	12.3 ± 5.5 (14/14)	19.8 ± 12.0 (14/14)	2.2 ± 0.9 (13/14)	23.2 ± 5.5 (10/14)	711.5 ± 355.7 (14/14)	4/10 (14/14)
R1441G L2NMC	11 (4/7)	61.1 ± 5.5 (11/11)	—	—	1.2 ± 2.1 (11/11)	—	28.6 ± 2.0	—	1/10 (11/11)

							(11/11)		
iPD	40 (30/10)	67.3 \pm 7.7 (40/40)	62.1 \pm 8.5 (40/40)	5.2 \pm 4.3 (40/40)	19.7 \pm 13.2 (40/40)	2.2 \pm 0.6 (31/40)	25.6 \pm 3.7 (33/40)	584.7 \pm 373.6 (37/40)	1/37 (38/40)
C	45 (18/27)	60.0 \pm 10.9 (45/45)	–	–	1.2 \pm 2.2 (17/27)	–	27.5 \pm 3.2 (27/27)	–	14/30 (44/45)
B - Barcelona	76								
G2019S	16 (7/9)	65.5 \pm 8.3 (16/16)	53.5 \pm 11.3 (14/16)	11.4 \pm 7.1 (14/16)	13.0 \pm 7.2 (13/16)	2.0 \pm 0.5 (11/16)	25.0 \pm 4.3 (14/16)	596.5 \pm 269.7 (13/18)	2/12 (14/16)
L2PD									
G2019S	11 (7/4)	47.8 \pm 15.5 (10/11)	–	–	0.3 \pm 0.7 (10/11)	–	28.2 \pm 2.0 (10/11)	–	4/5 (9/11)
L2NMC									
R1441G	1 (0/1)	44.0 (1/1)	32.0 (1/1)	12.0 (1/1)	16.0 (1/1)	NA (0/1)	30.0 (1/1)	400 (1/1)	0/1 (1/1)
L2PD									
R1441G	3 (2/1)	65.3 \pm 15 (3/3)	–	–	3.0 \pm 3.6 (3/3)	–	29.3 \pm 0.6 (3/3)	–	1/2 (3/3)
L2NMC									
iPD	20 (16/4)	68.3 \pm 7.9 (20/20)	64.3 \pm 7.8 (20/20)	4.0 \pm 3.0 (20/20)	14.7 \pm 4.2 (20/20)	1.9 \pm 0.2 (20/20)	27.2 \pm 3.2 (20/20)	453.8 \pm 279.8 (19/20)	1/19 (20/20)
C	25 (9/16)	63.9 \pm 10.6 (25/25)	–	–	1.7 \pm 2.4 (16/25)	–	27.9 \pm 2.1 (25/25)	–	8/17 (25/25)
S - Santander	55								
G2019S	20 (13/0)	61.3 \pm 9.0 (20/20)	55.6 \pm 9.1 (18/20)	6.1 \pm 4.7 (18/20)	18.1 \pm 11.0 (20/20)	1.9 \pm 0.6 (9/20)	24.2 \pm 4.6 (20/20)	652.7 \pm 562.3 (15/20)	2/17 (19/20)
L2PD									
G2019S	15 (11/4)	62.6 \pm 10.2 (15/15)	–	–	1.8 \pm 1.9 (11/15)	–	23.3 \pm 8.1 (14/15)	–	2/13 (15/15)
L2NMC									
iPD	10 (6/4)	67.2 \pm 7.6 (10/10)	62.0 \pm 6.3 (10/10)	5.2 \pm 4.0 (10/10)	17.9 \pm 8.3 (10/10)	2.5 (1/10)	23 \pm 3.5 (10/10)	479.9 \pm 220.2 (8/10)	0/8 (8/10)
C	10 (4/6)	56.9 \pm 11.1 (10/10)	–	–	NA	–	25.0 \pm 3.6 (6/6)	–	1/8 (9/10)
D - Donostia	43								
G2019S	1 (0/1)	78.0 (1/1)	68.0 (1/1)	10.0 (1/1)	15.0 (1/1)	3.0 (1/1)	19.0 (1/1)	893 (1/1)	0/1 (1/1)
L2PD									
G2019S	1 (0/1)	58.0 (1/1)	–	–	NA	–	29 (1/1)	–	0/1 (1/1)
L2NMC									
R1441G	13 (7/6)	68.9 \pm 7.1 (13/13)	56.5 \pm 9.7 (13/13)	12.4 \pm 5.7 (13/13)	20.1 \pm 12.5 (13/13)	2.2 \pm 0.9 (13/13)	22.4 \pm 5.2 (9/13)	735.5 \pm 358.3 (13/13)	4/9 (13/13)
L2PD									
R1441G	8 (2/6)	59.5 \pm 5.6 (8/8)	–	–	0.5 \pm 0.8 (6/6)	–	28.3 \pm 2.3 (6/6)	–	0/8 (8/8)
L2NMC									
iPD	10 (8/2)	65.4 \pm 7.8 (10/10)	57.9 \pm 10.6 (10/10)	7.5 \pm 5.9 (10/10)	31.7 \pm 20.7 (10/10)	2.7 \pm 0.7 (10/10)	23.7 \pm 2.9 (10/10)	917.3 \pm 441.8 (10/10)	0/10 (10/10)
C	10 (5/5)	53.5 \pm 8.1 (10/10)	–	–	NA	–	29.1 \pm 3.9 (5/5)	–	5/5 (10/10)

Data are expressed as a mean \pm standard deviation (S.D.) with the number of available subjects/totals in brackets. L2PD = LRRK2-associated PD patients; L2NMC = LRRK2 non-manifesting carriers; iPD = idiopathic PD; C = controls; AAO = age-at-onset; UPDRS-III = Unified Parkinson's Disease Rating Scale; MoCA = Montreal cognitive assessment; LEDD = levodopa equivalent daily dose; “–” = not applicable; NA = not available.