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Abstract

We construct measure-preserving mappings from the d-dimensional unit cube to the d-dimensional
unit ball and the compact rank one symmetric spaces, namely the d-dimensional sphere, the real,
complex, and quaternionic projective spaces, and the Cayley plane. We also give a procedure to generate
measure-preserving mappings from the d-dimensional unit cube to product spaces and fiber bundles
under certain conditions.
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1. Introduction and main results

Given two measure spaces (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2), a bijective mapping ϕ :Ω1 → Ω2

s said to be measure preserving if both ϕ and ϕ−1 are measurable mappings and moreover
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µ2(A) = µ1(ϕ−1(A)) for every A ∈ Σ2; or, equivalently, if µ1(A) = µ2(ϕ(A)) for every
A ∈ Σ1. In this work, we look for measure-preserving smooth diffeomorphisms between

iemannian manifolds. With a slight abuse of notation, we sometimes remove a null set from
1 or Ω2.
The problem of finding measure-preserving mappings from one manifold to another has

pplications in cartography, computer graphics, medical imaging, signal processing, or, more
generally, in any area that requires good discretizations of a certain space. Thus, when looking
for uniform collections of points or uniform grids (that is, grids all of whose cells have the same
volume) on a manifold M, a frequent approach consists in generating collections or grids with
that property on a simpler, easily discretizable space such as the unit cube, and then transporting
them to M through a measure-preserving mapping. In this sense, most of the research has
been carried out for two-dimensional and three-dimensional manifolds (see [12–15,18–20] and
eferences therein). In [18], the authors also obtained a mapping from the n-dimensional sphere
f radius r in Rn+1 to the n-dimensional ball of radius R in Rn that generalizes the equal-area
ambert mapping.

Measure-preserving mappings are also relevant in the theory of partial differential equations
n Lipschitz domains (see [11]), in the generation of low-discrepancy points (see, for exam-
le, [1,5,7,9,10]), and, more recently, they have been used to generate projective constellations

for noncoherent communications over single-input-multiple-output (SIMO) channels; see [17],
here the authors constructed a measure-preserving mapping from the unit square to the

complex projective line CP1, or [6] for the higher dimensional case. However, to the best of
ur knowledge, there are no constructive procedures to generate measure-preserving mappings

from the d-dimensional unit cube to the d-sphere and to the remaining projective spaces.

1.1. Notation

In this paper, λ denotes the Lebesgue measure in Rd , and Bd (0, R) denotes the open ball
f radius R ∈ (0,∞] in Rd (if R = ∞, this means just Rd ). When R = 1, we denote it by
Bd . We will call (0, 1)d the (open) unit cube.

We denote the measure associated to the normal distribution N (0, c) in Rd by µc, that is,

dµc(x) =
1

(2πc)d/2 e−∥x∥
2/(2c) dλ(x).

It is well known that the mapping
ΦRd : (0, 1)d

−→ Rd ,⎛⎜⎝x1
...

xd

⎞⎟⎠ ↦ −→

⎛⎜⎝
√

2 erf−1(2x1 − 1)
...

√
2 erf−1(2xd − 1)

⎞⎟⎠ ,
(1)

is measure preserving from ((0, 1)d , λ) to (Rd , µc=1), where erf−1 is the inverse of the error
unction erf :R → (−1, 1) given by

erf(t) =
2

√
π

∫ t

0
e−s2

ds.

Given any continuous function ω : (0, R) → (0,∞), we consider the associated measure in
Bd (0, R) given by the weight function ω(∥x∥) and denote it by µω, that is,
dµω(x) = ω(∥x∥) dλ(x).
2
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We will always assume that µω is a probability measure, i.e.,

1 =

∫
x∈Bd (0,R)

dµω(x) =

∫
x∈Bd (0,R)

ω(∥x∥) dλ(x) =
2πd/2

Γ ( d
2 )

∫ R

0
ω(s)sd−1 ds. (2)

Finally, if we have a Riemannian manifold M (including the case that M is the unit cube
with the standard structure, the usual d-sphere, or any open set of a compact Riemannian
manifold), we denote by unif the uniform measure in M according to its volume form. For
example, (Bd , unif) is the unit ball endowed with the Lebesgue measure normalized to have
volume 1, which can be denoted in our previous notation by µω=1/ vol(Bd ).

1.2. The compact rank one symmetric spaces

The compact rank one symmetric spaces (CROSSes) are the n-sphere Sn and the real,
omplex, quaternionic, and octonionic projective spaces RPn,CPn , HPn , and OP2. These
paces, which were classified by É. Cartan, are examples of locally harmonic Blaschke
anifolds; in fact, Lichnerowicz’s conjecture claims that the CROSSes are the only Riemannian
anifolds of this kind. They are also the only compact connected two-point homogeneous
iemannian manifolds. See [4] for more information about these spaces.

Let M be a CROSS and let d , D, and V be, respectively, its real dimension, its diameter
that is, the maximum Riemannian distance between two points in M), and its volume. The
xponential map based on the north pole

expM : Bd (0, D) −→ M,

v ↦ −→ exp(0,...,0,1)(v),

is a diffeomorphism onto M \ X , where X is a measure zero set (just a point in the case
= Sn and a hyperplane for the projective spaces). Moreover, the absolute value of the

acobian of expM, which we simply denote by Jac expM, is known as the volume density and
as the form Ω (∥v∥) for a certain function Ω . As a consequence, we have the following lemma:

Lemma 1.1. Let M be a CROSS. Then, the exponential map expM is a measure-preserving
apping from (Bd (0, D), µω=Ω/V ) to (M, unif).

Proof. Since expM is a smooth diffeomorphism, both expM and its inverse are measurable
mappings. Now, let A ⊆ Bd (0, D) be a measurable set. Applying the change of variables
heorem to expM, we have

µω=Ω/V (A) =

∫
x∈Bd (0,D)

χA(x) dµω=Ω/V (x)

=

∫
x∈Bd (0,D)

χA(x)
Ω (∥x∥)
vol(M)

dλ(x)

=

∫
x∈Bd (0,D)

χA(x)
Jac expM(x)

vol(M)
dλ(x)

=
1

vol(M)

∫
y∈M

χA(exp−1
M(y)) dy

=
1

vol(M)

∫
y∈M

χexpM(A)(y) dy
= unif(expM(A)). □
3
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Table 1
The volume density in the CROSSes is ωp(q) = Ω (r ), where r = dR(p, q) is the Riemannian
distance. In this table, we show rd−1Ω (r ), where d = dimR(M), for the CROSSes. We also
include the diameter D = diam(M), the volume V = vol(M), and the exponential map
expM.
Source: Table taken from [3].

M d D V expM(v) rd−1Ω (r )

Sn n π
2π (n+1)/2

Γ ( n+1
2 )

( v
∥v∥

sin ∥v∥

cos ∥v∥

)
sinn−1 r

RPn n π /2 π (n+1)/2

Γ ( n+1
2 )

( v
∥v∥

tan ∥v∥

1

)
sinn−1 r

CPn 2n π /2 πn

n!

( v
∥v∥

tan ∥v∥

1

)
sin2n−1 r cos r

HPn 4n π /2 π2n

(2n + 1)!

( v
∥v∥

tan ∥v∥

1

)
sin4n−1 r cos3 r

OP2 16 π /2 π8

1320Γ (8)

( v
∥v∥

tan ∥v∥

1

)
sin15 r cos7 r

Table 1 summarizes the dimension, the diameter, the volume, the exponential map, and the
volume density of the CROSSes.

1.3. Main results

Let γ denote the incomplete gamma function:

γ (t, x) =

∫ x

0
s t−1e−s ds.

Our first main result is the following proposition, which yields a measure-preserving mapping
rom the unit cube to the unit ball:

Proposition 1.2. Let ϕBd : (Rd , µc=1) → (Bd , unif) be the mapping given by

ϕBd (x) =
x

∥x∥

(
γ
( d

2 ,
∥x∥

2

2

)
Γ ( d

2 )

)1/d

.

Then, the mapping ΦBd = ϕBd ◦ΦRd : ((0, 1)d , unif) → (Bd , unif), where ΦRd is as in Eq. (1),
s measure preserving.

The next main result provides a procedure to generate measure-preserving mappings from
he unit cube to each CROSS.

Theorem 1.3. Let M be a CROSS and let ϕM : (Rd , µc=1) → (Bd (0, D), µω=Ω/V ) be the
apping given by ϕM(x) = xρ(∥x∥)/∥x∥, where ρ = ρ(r ), ρ : [0,∞) → [0, D), is the unique

olution to∫ ρ

ω(s)sd−1 ds =
1

γ

(
d
,

r2 )
.

0 2πd/2 2 2
4
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Then, the mapping ΦM = expM ◦ϕM ◦ ΦRd : ((0, 1)d , unif) → (M, unif) is measure
preserving.

The following commutative diagram illustrates the construction described in Theorem 1.3:

((0, 1)d , unif) (Rd , µc=1)

(M, unif) (Bd (0, D), µω=Ω/V )

ΦM

ΦRd

ϕM

expM

It follows straightforwardly from the definition of measure-preserving mapping that, given
two Riemannian manifolds M1 and M2, and two measure-preserving mappings

ΦM1 : ((0, 1)dim(M1), unif) → (M1, unif), ΦM2 : ((0, 1)dim(M2), unif) → (M2, unif),

the mapping
ΦM1×M2 : ((0, 1)dim(M1)+dim(M2), unif) −→ (M1 × M2, unif),

(x, y) ↦ −→ (ΦM1 (x),ΦM2 (y)),

where x ∈ (0, 1)dim(M1) and y ∈ (0, 1)dim(M2), is also measure preserving. As a consequence,
ince by Theorem 1.3 we have measure-preserving mappings from the unit cube to any CROSS,

we also have a constructive procedure to generate measure-preserving mappings from the unit
cube to any finite product of CROSSes. In this work we generalize this property to the case of
fiber bundles making use of the Normal Jacobian NJac (see Appendix A for details):

Theorem 1.4. Let E, B, and F be Riemannian manifolds, where we assume that the measures
in E, B, and F are normalized to have unit volume, and let F ↪→ E

π
→ B be a smooth fiber

bundle such that NJacπ (x) is constant for every x ∈ E. Let ΦB : ((0, 1)dim(B), unif) → (B, unif)
and ΦF : ((0, 1)dim(F), unif) → (F, unif) be measure-preserving mappings. Let Ψy : (F, unif) →

(π−1(y), unif) be a measure-preserving mapping for every y ∈ B such that the mapping
ξ : (B × F, unif) → (E, unif) given by ξ (y, z) = Ψy(z) is measurable. Then, ξ is measure

reserving and hence the mapping
ΦE : ((0, 1)dim(E), unif) −→ (E, unif),

(y, z) ↦ −→ ΨΦB (y)(ΦF (z)),

where y ∈ (0, 1)dim(B) and z ∈ (0, 1)dim(F), is measure preserving.

1.4. Structure of the paper

In Section 2, we prove our main technical result, which yields a procedure to generate
easure-preserving mappings from (Rd , µc) to (Bd (0, R), µω), and we prove Proposition 1.2.

n Section 3, we prove Theorem 1.3 and we construct measure-preserving mappings from the
nit cube to each CROSS. In Section 4, we prove Theorem 1.4 and we show an alternative

procedure to construct measure-preserving mappings from the unit cube to odd-dimensional
spheres using the Hopf fibration. Appendix A is devoted to the smooth coarea formula, a
echnical tool. Finally, in Appendix B we present some auxiliary computations.
5
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Recall that ω : (0, R) → (0,∞) is any continuous function satisfying (2).

Theorem 2.1. Let G(ρ) =
∫ ρ

0 ω(s)sd−1 ds, and let ρ = ρ(r ) be the unique solution to

G(ρ) =
1

2πd/2 γ

(
d
2
,

r2

2c

)
. (3)

Then, the mapping ϕ : (Rd , µc) → (Bd (0, R), µω) given by ϕ(x) = xρ(∥x∥)/∥x∥ is measure
reserving.

Proof. First, note that ω(r ) > 0 implies that G is an increasing function with G(0) = 0.
oreover, Eq. (2) implies that G(R) = Γ (d/2)/2πd/2, which means that ρ is a well-

efined bijection with limr→∞ ρ(r ) = R. The inverse of ϕ is easily computed: ϕ−1(y) =

yρ−1(∥y∥)/∥y∥.
Computing the derivative with respect to r at both sides of (3), we get

ω(ρ)ρd−1ρ ′(r ) =
rd−1

(2πc)d/2 e−r2/(2c). (4)

Now, let f (r ) = ρ(r )/r and compute the Jacobian of ϕ(x) = x f (∥x∥) by choosing an
rthonormal basis vx

1 , . . . , vx
d at x ∈ Rd , with vx

1 = x/∥x∥. A straightforward computation
shows that Dϕ(x) preserves the orthogonality of that basis and yields

Jacϕ(x) = f (∥x∥)d−1( f (∥x∥) + ∥x∥ f ′(∥x∥))

=
ρ(∥x∥)d−1

∥x∥d−1 ρ ′(∥x∥)

(4)
=

1
(2πc)d/2ω(ρ(∥x∥))

e−∥x∥
2/(2c).

Then, given any measurable set A ⊆ Rd , we can check that the measure of A in (Rd , µc)
equals that of ϕ(A) in (Bd (0, R), µω) using the change of variables theorem: if we denote by
χA the characteristic function of A, then

µc(A) =

∫
x∈Rd

χA(x) dµc(x)

=

∫
x∈Rd

χA(x)
1

(2πc)d/2 e−∥x∥
2/(2c) dλ(x)

=

∫
x∈Rd

χA(x)ω(ρ(∥x∥)) Jacϕ(x) dλ(x)

=

∫
y∈Bd (0,R)

χA(ϕ−1(y))ω(ρ(∥ϕ−1(y)∥)) dλ(y)

=

∫
y∈Bd (0,R)

χϕ(A)(y)ω(∥y∥) dλ(y)

=

∫
y∈Bd (0,R)

χϕ(A)(y) dµω(y)

=µω(ϕ(A)),

which proves the theorem. □
6
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Example 2.2 (A Measure-Preserving Mapping from (Rd , µc) to (Rd , µb)). In this case, we have
R = ∞ and

ω(r ) =
e−r2/(2b)

(2πb)d/2 .

Following Theorem 2.1, let

G(ρ) =

∫ ρ

0
ω(s)sd−1 ds =

1
(2πb)d/2

∫ ρ

0
sd−1e−s2/(2b) ds =

1
2πd/2 γ

(
d
2
,
ρ2

2b

)
.

We have to obtain ρ from
1

2πd/2 γ

(
d
2
,
ρ2

2b

)
=

1
2πd/2 γ

(
d
2
,

r2

2c

)
,

which is obviously solved by ρ(r ) = r
√

b/c. Thus, we conclude that

ϕ(x) = x

√
b
c

defines a measure-preserving mapping from (Rd , µc) to (Rd , µb).

Example 2.3 (A Measure-Preserving Mapping from (Rd , µc=1) to (Rd , µstereo)). Let µstereo be
the measure that makes the stereographic projection a measure-preserving mapping, that is,

dµstereo(x) =
1

vol(Sd )
2d

(1 + ∥x∥2)d
dλ(x).

In this case, we have c = 1, R = ∞, and

ω(r ) =
1

vol(Sd )
2d

(1 + r2)d
=

Γ ( d+1
2 )

2π (d+1)/2

2d

(1 + r2)d
.

We compute

G(ρ) =

∫ ρ

0
ω(s)sd−1 ds =

2d−1Γ ( d+1
2 )

π (d+1)/2

∫ ρ

0

sd−1

(1 + s2)d
ds.

If d = 2,

G(ρ) =
2Γ ( 3

2 )
π3/2

∫ ρ

0

s
(1 + s2)2 ds =

ρ2

2π (1 + ρ2)
.

Therefore, we have to obtain ρ from
ρ2

2π (1 + ρ2)
=

1
2π
γ

(
1,

r2

2

)
,

that is,

ρ2
=

1

e−r2/2
− 1 = er2/2

− 1.
7



C. Beltrán, D. Ferizović and P.R. López-Gómez Journal of Approximation Theory 308 (2025) 106145

h

p

e

Hence, we conclude that

ϕ(x) =
x

∥x∥

√
e∥x∥2/2 − 1

defines a measure-preserving mapping from (R2, µc=1) to (R2, µstereo).

Example 2.4 (A Measure-Preserving Mapping from (Rd , µc=1) to (Bd , unif)). In this case, we
ave c = 1, R = 1, and

ω(r ) =
1

vol(Bd )
=

Γ ( d
2 + 1)
πd/2 =

dΓ ( d
2 )

2πd/2 .

We easily compute

G(ρ) =

∫ ρ

0
ω(s)sd−1 ds =

Γ ( d
2 )

2πd/2 ρ
d ,

and we have to obtain ρ from
Γ ( d

2 )
2πd/2 ρ

d
=

1
2πd/2 γ

(
d
2
,

r2

2

)
,

concluding that, following the notation of Proposition 1.2,

ϕBd (x) =
x

∥x∥

(
γ
( d

2 ,
∥x∥

2

2

)
Γ ( d

2 )

)1/d

defines a measure-preserving mapping from (Rd , µc=1) to (Bd , unif).

Proof of Proposition 1.2. Immediate from Example 2.4 and the fact that ΦRd is measure
reserving. □

3. Measure-preserving mappings from the unit cube to the compact rank one
symmetric spaces

After Theorem 2.1, the proof of Theorem 1.3 is now straightforward:

Proof of Theorem 1.3. Immediate from Theorem 2.1, Lemma 1.1, and the fact that ΦRd is
measure preserving. □

We can now generate measure-preserving mappings from the unit cube to all the CROSSes
following Theorem 2.1: it suffices to consider expM ◦ϕM ◦ΦRd , where, according to
Theorem 2.1, the mapping ϕM : (Rd , µc=1) → (Bd (0, D), µω=Ω/V ) can be computed, to some
xtent, explicitly. We do the computations for the different choices of M in the next few

subsections. Recall that, for each CROSS M, we denote its real dimension by d, its diameter
by D, and its volume by V (see Table 1).

3.1. The unit sphere Sn

In this case, we have d = n, D = π , and

ω(r ) =
Ω (r )

V
=

Γ ( n+1
2 )

2π (n+1)/2

sinn−1 r
rn−1 .
8
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Corollary 3.1. The mapping ϕSn : (Rn, µc=1) → (Bn(0, π ), µω=Ω/V ) given by ϕSn (x) =

xρ(∥x∥)/∥x∥ is measure preserving if ρ = ρ(r ), ρ : [0,∞) → [0, π ), satisfies∫ ρ

0
sinn−1 s ds =

√
π

Γ ( n+1
2 )
γ

(
n
2
,

r2

2

)
.

As a consequence, the mapping ΦSn = expSn ◦ϕSn ◦ΦRn : ((0, 1)n, unif) → (Sn, unif) is measure
preserving. For n = 1 we have

ρ(r ) =
√
π γ

(
1
2
,

r2

2

)
= π erf

(
r

√
2

)
,

and so

ΦS1 (x) = (− sin 2πx,− cos 2πx) ∼= −ie−i2πx .

For n = 2 we can compute ρ(r ) explicitly:

ρ(r ) = 2 arccos e−r2/4,

and hence

ΦS2 (x) =

(
ΦR2 (x)

∥ΦR2 (x)∥
2e−∥ΦR2 (x)∥2/4

√
1 − e−∥ΦR2 (x)∥2/2, 2e−∥ΦR2 (x)∥2/2

− 1
)
.

Proof. From Theorem 2.1 we just need to check that∫ ρ

0

Γ ( n+1
2 )

2π (n+1)/2 sinn−1 s ds =
1

2πn/2 γ

(
n
2
,

r2

2

)
,

which is equivalent to the formula in the corollary. The case n = 2 reads

sin2 ρ

2
=

1 − cos ρ
2

= γ

(
1,

r2

2

)
= 1 − e−r2/2,

which is equivalent to the last claim in the corollary. □

Note that the integral on the left-hand side of the expression in Corollary 3.1 is an incomplete
beta function:∫ ρ

0
sinn−1 s ds = 2n−1 Bsin2(ρ /2)

(n
2
,

n
2

)
.

Hence, it is not possible to obtain a closed expression for ΦSn when n > 2. In Section 4
we consider a different approach that provides measure-preserving mappings with closed
xpressions for odd-dimensional spheres.

Figs. 1 and 2 illustrate the measure-preserving mapping obtained in Corollary 3.1 for the
articular case of the two-dimensional sphere S2.

3.2. The real projective space RPn

In this case, we have d = n, D = π /2, and

ω(r ) =
Ω (r )

V
=

Γ ( n+1
2 )

π (n+1)/2

sinn−1 r
rn−1 .
9
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(

Fig. 1. The measure-preserving mapping ΦS2 = expS2 ◦ϕS2 ◦ΦR2 : ((0, 1)2, unif) → (S2, unif) transforms points on
0, 1)2 into points on S2. For an initial collection of 784 mesh points on (0, 1)2, we show the different steps from

the unit square to the sphere.
10
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i

Fig. 2. The measure-preserving mapping ΦS2 = expS2 ◦ϕS2 ◦ ΦR2 : ((0, 1)2, unif) → (S2, unif) transforms uniform
grids in (0, 1)2 into uniform grids in S2. We show the image of a grid in (0, 1)2 formed by 1521 cells.

Corollary 3.2. The mapping ϕRPn : (Rn, µc=1) → (Bn(0, π /2), µω=Ω/V ) given by ϕRPn (x) =

xρ(∥x∥)/∥x∥ is measure preserving if ρ = ρ(r ), ρ : [0,∞) → [0, π /2), satisfies∫ ρ

0
sinn−1 s ds =

√
π

2Γ ( n+1
2 )
γ

(
n
2
,

r2

2

)
.

As a consequence, the mapping ΦRPn = expRPn ◦ϕRPn ◦ ΦRn : ((0, 1)n, unif) → (RPn, unif)
s measure preserving. For n = 1 we have

ρ(r ) =

√
π

2
γ

(
1
2
,

r2

2

)
=
π

2
erf

(
r

√
2

)
,

and so
ΦRP1 (x) = (− cotπx, 1).
11



C. Beltrán, D. Ferizović and P.R. López-Gómez Journal of Approximation Theory 308 (2025) 106145
For n = 2 we can compute ρ(r ) explicitly:

ρ(r ) = arccos e−r2/2,

and hence

ΦRP2 (x) =

(
ΦR2 (x)

∥ΦR2 (x)∥

√
e∥ΦR2 (x)∥2

− 1, 1
)
.

Proof. From Theorem 2.1 we just need to check that∫ ρ

0

Γ ( n+1
2 )

π (n+1)/2 sinn−1 s ds =
1

2πn/2 γ

(
n
2
,

r2

2

)
,

which is equivalent to the formula in the corollary. The case n = 2 reads

1 − cos ρ = γ

(
1,

r2

2

)
= 1 − e−r2/2,

which is equivalent to the last claim in the corollary. □

3.3. The complex projective space CPn

In this case, we have d = 2n, D = π /2, and

ω(r ) =
Ω (r )

V
=

n!

πn

sin2n−1 r cos r
r2n−1 .

Corollary 3.3. The mapping ϕCPn : (R2n, µc=1) → (B2n(0, π /2), µω=Ω/V ) given by ϕCPn (x) =

xρ(∥x∥)/∥x∥ is measure preserving if ρ = ρ(r ), ρ : [0,∞) → [0, π /2), satisfies

ρ(r ) = arcsin
((

1
(n − 1)!

γ

(
n,

r2

2

))1/(2n))
.

As a consequence, the mapping ΦCPn = expCPn ◦ϕCPn ◦ΦR2n : ((0, 1)2n, unif) → (CPn, unif)
is measure preserving.

Proof. From Theorem 2.1 we just need to check that∫ ρ

0

n!

πn
sin2n−1 s cos s ds =

1
2πn

γ

(
n,

r2

2

)
,

which is equivalent to

sin2n ρ =
1

(n − 1)!
γ

(
n,

r2

2

)
,

and the corollary follows. □

3.4. The quaternionic projective space HPn

In this case, we have d = 4n, D = π /2, and

ω(r ) =
Ω (r )

V
=

(2n + 1)!
π2n

sin4n−1 r cos3 r
r4n−1 .
12
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Corollary 3.4. The mapping ϕHPn : (R4n, µc=1) → (B4n(0, π /2), µω=Ω/V ) given by ϕHPn (x) =

xρ(∥x∥)/∥x∥ is measure preserving if ρ = ρ(r ), ρ : [0,∞) → [0, π /2), satisfies∫ ρ

0
sin4n−1 s cos3 s ds =

1
2(2n + 1)!

γ

(
2n,

r2

2

)
.

As a consequence, the mapping ΦHPn = expHPn ◦ϕHPn ◦ΦR4n : ((0, 1)4n, unif) → (HPn, unif)
is measure preserving.

Proof. From Theorem 2.1 we just need to check that∫ ρ

0

(2n + 1)!
π2n

sin4n−1 s cos3 s ds =
1

2π2n
γ

(
2n,

r2

2

)
,

which is equivalent to the formula in the corollary. □

3.5. The Cayley plane OP2

In this case, we have d = 16, D = π /2, and

ω(r ) =
Ω (r )

V
=

1320Γ (8)
π8

sin15 r cos7 r
r15 .

Corollary 3.5. The mapping ϕOP2 : (R16, µc=1) → (B16(0, π /2), µω=Ω/V ) given by ϕOP2 (x) =

xρ(∥x∥)/∥x∥ is measure preserving if ρ = ρ(r ), ρ : [0,∞) → [0, π /2), satisfies∫ ρ

0
sin15 s cos7 s ds =

1
2640Γ (8)

γ

(
8,

r2

2

)
.

As a consequence, the mapping ΦOP2 = expOP2 ◦ϕOP2 ◦ΦR16 : ((0, 1)16, unif) → (OP2, unif)
is measure preserving.

Proof. From Theorem 2.1 we just need to check that∫ ρ

0

1320Γ (8)
π8 sin15 s cos7 s ds =

1
2π8 γ

(
8,

r2

2

)
,

which is equivalent to the formula in the corollary. □

In Table 2 we show the cases for which we have a closed expression for the measure-
reserving mapping ΦM. In addition, in the next section we present an approach that will allow
s to obtain measure-preserving mappings with explicit expressions for any odd-dimensional
phere.

4. Measure-preserving mappings from the unit cube to fiber bundles

In this section we show how to construct measure-preserving mappings from the unit cube
o the total space E of the smooth fiber bundle F ↪→ E

π
→ B, where the total space E , the base

pace B, and the fiber F are Riemannian manifolds, assuming that we have measure-preserving
mappings from the corresponding unit cubes to B and F .

To prove Theorem 1.4 we need the following lemma. The main technical tool used in its
roof is the smooth coarea formula (see Appendix A for more details).
13
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W

Table 2
Summary of the manifolds for which we have a closed formula for the measure-preserving
mapping ΦM, where ΦRd is as in Eq. (1). The computations are straightforward from our
main results; see Appendix B.

M ΦM = expM ◦ϕM ◦ ΦRd : ((0, 1)d , unif) → (M, unif)

Bn ΦRn (x)
∥ΦRn (x)∥

(
γ
( n

2 ,
∥ΦRn (x)∥2

2

)
Γ ( n

2 )

)1/n

S1 (− sin 2πx,− cos 2πx)

S2
(

ΦR2 (x)
∥ΦR2 (x)∥

2e−∥ΦR2 (x)∥2/4
√

1 − e−∥ΦR2 (x)∥2/2, 2e−∥ΦR2 (x)∥2/2
− 1

)
RP1 (− cotπx, 1)

RP2
(

ΦR2 (x)
∥ΦR2 (x)∥

√
e∥ΦR2 (x)∥2

− 1, 1
)

CP1
(

ΦR2 (x)
∥ΦR2 (x)∥

√
e∥ΦR2 (x)∥2/2

− 1, 1
)

CPn
(

ΦR2n (x)
∥ΦR2n (x)∥

(
−1 +

1

1 −
( 1

(n−1)!γ
(
n,

∥ΦR2n (x)∥2

2

))1/n

)1/2

, 1
)

Lemma 4.1. Let E, B, and F be finite-volume Riemannian manifolds, and let F ↪→ E
π
→ B

be a smooth fiber bundle such that NJacπ (x) is constant for every x ∈ E. Let Ψy : (F, unif) →

(π−1(y), unif) be a measure-preserving mapping for every y ∈ B and consider the mapping
ξ : (B × F, unif) −→ (E, unif),

(y, z) ↦ −→ Ψy(z).

If ξ is measurable, then it is measure preserving. Moreover, if the measures in E, B, and

F are normalized to have unit volume, then NJacπ (x) = 1 for every x ∈ E.

Proof. Without loss of generality, assume that the measures in E , B, and F are normalized.
We first check that NJacπ (x) = 1 for every x ∈ E . Since F ↪→ E

π
→ B is a smooth fiber

bundle, we know that π is a submersion and hence we can apply the smooth coarea formula.

Therefore,

1 = vol(E) =

∫
x∈E

dx =

∫
y∈B

∫
z∈π−1(y)

1
C

dzdy =
vol(π−1(y)) vol(B)

C

=
vol(F) vol(B)

C
=

1
C
,

and so C = 1. Now we prove that ξ is measure preserving. Let A ⊆ E be a measurable set.

e have to prove that

vol(A) = vol(ξ−1(A)).

Using again the smooth coarea formula together with the fact that NJacπ (x) = 1 for all

x ∈ E , we have
14
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ξ

p

(

d
c

m

vol(A) =

∫
x∈E

χA(x) dx =

∫
y∈B

∫
z∈π−1(y)

χA(z)
1

NJacπ (z)
dzdy

=

∫
y∈B

∫
z∈π−1(y)

χA(z) dzdy =

∫
y∈B

vol(A ∩ π−1(y)) dy

=

∫
y∈B

vol(Ψ−1
y (A ∩ π−1(y))) dy

=

∫
y∈B

∫
z∈F

χΨ−1
y (A∩π−1(y))(z) dzdy.

(5)

Note that

χΨ−1
y (A∩π−1(y))(z) = 1 ⇐⇒ z ∈ Ψ−1

y (A ∩ π−1(y)) ⇐⇒ Ψy(z) ∈ A ∩ π−1(y)

⇐⇒ Ψy(z) ∈ A ⇐⇒ ξ (y, z) ∈ A
⇐⇒ (y, z) ∈ ξ−1(A) ⇐⇒ χξ−1(A)(y, z) = 1.

Therefore, since

vol(ξ−1(A)) =

∫
(y,z)∈B×F

χξ−1(A)(y, z) d(y, z) =

∫
y∈B

∫
z∈F

χξ−1(A)(y, z) dzdy

=

∫
y∈B

∫
z∈F

χΨ−1
y (A∩π−1(y))(z) dzdy

(5)
= vol(A),

the lemma follows. □

Proof of Theorem 1.4. From Lemma 4.1 we have that the mapping ξ : B × F → E given by
(y, z) = Ψy(z) is measure preserving. Since ΦE = ξ ◦ΦB×F , and both mappings are measure
reserving, the theorem follows. □

Example 4.2 (The Hopf Fibration). Consider S1
⊂ C and S2n+1

⊂ Cn+1. Recall that the
complex) Hopf fibration S1 ↪→ S2n+1 h

→ CPn is given by
h : S2n+1

−→ CPn,

(y1, . . . , yn+1) ↦ −→ [y1 : · · · : yn+1].

The fiber of each [y] = [y1 : · · · : yn+1] ∈ CPn is a unit circle in S2n+1 given by

h−1([y]) = {w ∈ S2n+1
: [w] = [y]}.

For each [y] ∈ CPn , we choose a unit norm representative y smoothly out of a lower-
imensional set, and, thinking of the elements of S1 as unimodular complex numbers, we
onsider the mapping

Ψ[y] : (S1, unif) −→ (h−1([y]), unif),
ζ ↦ −→ ζ y,

which is an isometry and hence it is measure preserving. Therefore, by Theorem 1.4, the
apping

Φh
S2n+1 : ((0, 1)2n+1, unif) −→ (S2n+1, unif),
(y, t) ↦ −→ ΨΦCPn (y)(ΦS1 (t)) = ΦS1 (t)ΦCPn (y),
15
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N
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a

d
m
ψ

where y ∈ Cn ∼= R2n and t ∈ R (and recall that we are assuming that the representative of
CPn (y) has unit norm), is measure preserving. Note that we have explicit expressions for both

ΦS1 and ΦCPn , and hence for Φh
S2n+1 :

Φh
S2n+1 (y, t) = ΦS1 (t)ΦCPn (y)

= −ie−i2π t

(
ΦR2n (y)

∥ΦR2n (y)∥

(
−1 +

1

1−

(
1

(n−1)! γ
(

n,
∥ΦR2n (y)∥2

2

))1/n

)1/2

, 1
)


(

ΦR2n (y)
∥ΦR2n (y)∥

(
−1 +

1

1−

(
1

(n−1)! γ
(

n,
∥ΦR2n (y)∥2

2

))1/n

)1/2

, 1
)
.

For the particular case of S3 we have

Φh
S3 (y, t) = ΦS1 (t)ΦCP1 (y) = −ie−i2π t e−∥ΦR2 (y)∥2/4

(
ΦR2 (y)

∥ΦR2 (y)∥

√
e∥ΦR2 (y)∥2/2

− 1, 1
)

=

(
−ie−i2π t ΦR2 (y)

∥ΦR2 (y)∥

√
1 − e−∥ΦR2 (y)∥2/2,−ie−i2π t e−∥ΦR2 (y)∥2/4

)
,

since ∥ΦCP1 (y)∥ = e∥ΦR2 (y)∥2/4. Note that we are considering ΦR2 (y) ∈ C through the canonical
isomorphism R2 ∼= C given by (a, b) ↦ → a + bi .
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Appendix A. The smooth coarea formula

We devote this appendix to the smooth coarea formula, an integral formula due to Federer [8]
nd Howard [16] that generalizes the change of variables formula and Fubini’s theorem. We
efer the interested reader to [2, Section 2] for some examples of use.

Let M,N be Riemannian manifolds. Given a smooth mapping ϕ :M → N , let Dϕ(x) : TxM →

Tϕ(x)N denote the differential mapping, where TxM is the tangent space to M at x ∈ M and
Tϕ(x)N is the tangent space to N at ϕ(x) ∈ N .

Definition A.1 (Normal Jacobian). Let M and N be Riemannian manifolds and let ϕ :M →

be a C1 surjective map. Let n = dim(N ) be the real dimension of N . For every
oint x ∈ M such that the differential mapping Dϕ(x) is surjective, let vx

1 , . . . , vx
n be an

rthogonal basis of (ker(Dϕ(x)))⊥. Then we define the normal Jacobian of ϕ at x , written
s NJacϕ(x), as the volume in the tangent space Tϕ(x)N of the parallelepiped spanned by

Dϕ(x)(vx
1 ), . . . , Dϕ(x)(vx

n ). In the case that Dϕ(x) is not surjective, we define NJacϕ(x) = 0.

Theorem A.2 (Smooth Coarea Formula). Let M and N be two Riemannian manifolds of
imension m and n, respectively, where m ≥ n. Let ϕ : M → N be a smooth surjective
apping such that the differential mapping Dϕ(x) is surjective for almost every x ∈ M. Let
:M → R be an integrable mapping. Then, the following equalities hold:∫

x∈M
ψ(x) dx =

∫
y∈N

∫
x∈ϕ−1(y)

ψ(x)
1

NJacϕ(x)
dxdy,∫

ψ(x) NJacϕ(x) dx =

∫ ∫
ψ(x) dxdy.
x∈M y∈N x∈ϕ−1(y)

16
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t

Note that if m = n and ϕ is a diffeomorphism we recover the classical change of variables

heorem.

Appendix B. Auxiliary computations

In this appendix, we show the explicit computations leading to the formulas in Table 2.

B.1. Explicit expression of ΦBn

Recall from Proposition 1.2 that we have

ϕBn (x) =
x

∥x∥

(
γ
( n

2 ,
∥x∥

2

2

)
Γ ( n

2 )

)1/n

.

Hence,

ΦBn (x) = ϕBn (ΦRn (x)) =
ΦRn (x)

∥ΦRn (x)∥

(
γ
( n

2 ,
∥ΦRn (x)∥2

2

)
Γ ( n

2 )

)1/n

.

B.2. Explicit expression of ΦS1

Although we could simply define ΦS1 (x) = ei2πx , let us find the expression of this mapping
using the general procedure. In this case, we have

ΦR(x) =
√

2 erf−1(2x − 1).

Following Corollary 3.1, to find ϕS1 we have to obtain ρ from∫ ρ

0
sinn−1 s ds =

√
π

Γ ( n+1
2 )
γ

(
n
2
,

r2

2

)
.

Since in this case n = 1, we have

ρ(r ) =
√
π γ

(
1
2
,

r2

2

)
= π erf

(
r

√
2

)
.

Hence,

ϕS1 (x) =
πx
|x |

erf
(

|x |
√

2

)
.

Therefore,

ϕS1 (ΦR(x)) =
π

√
2 erf−1(2x − 1)

|
√

2 erf−1(2x − 1)|
erf

(
|
√

2 erf−1(2x − 1)|
√

2

)
=
π erf−1(2x − 1)
|erf−1(2x − 1)|

erf(|erf−1(2x − 1)|).

Since both erf and erf−1 are odd functions, the absolute values cancel each other and so

ϕS1 (ΦR(x)) = π erf(erf−1(2x − 1)) = π (2x − 1).

Recall from Table 1 that the exponential map expS1 : (−π , π ) → S1 is given by

expS1 (v) =

(
v

sin|v|, cos|v|
)
.

|v|

17
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Hence,

ΦS1 (x) = expS1 (π (2x − 1)) =

(
π (2x − 1)
|π (2x − 1)|

sin|π (2x − 1)|, cos|π (2x − 1)|
)

= (sin(2πx − π ), cos(2πx − π )) = (− sin 2πx,− cos 2πx)
∼= −ie−i2πx .

B.3. Explicit expression of ΦS2

Recall from Corollary 3.1 that we have

ϕS2 (x) =
x

∥x∥
· 2 arccos e−∥x∥

2/4.

Let us compute first expS2 ◦ϕS2 . Recall from Table 1 that

expS2 (v) =

(
v

∥v∥
sin ∥v∥, cos ∥v∥

)
.

Hence,

expS2 (ϕS2 (x)) = expS2

(
x

∥x∥
· 2 arccos e−∥x∥

2/4
)

=

( x
∥x∥

· 2 arccos e−∥x∥
2/4

∥
x

∥x∥
· 2 arccos e−∥x∥2/4∥

sin
 x
∥x∥

· 2 arccos e−∥x∥
2/4

 ,
cos

 x
∥x∥

· 2 arccos e−∥x∥
2/4

)
.

Due to the parity of the sine and the cosine, we can rewrite the previous expression as

expS2 (ϕS2 (x)) =

(
x

∥x∥
sin(2 arccos e−∥x∥

2/4), cos(2 arccos e−∥x∥
2/4)

)
.

To further simplify these expressions, note that, for −1 < x < 1,

sin(2 arccos(x)) = 2 sin(arccos(x)) cos(arccos(x)) = 2x
√

1 − cos2(arccos(x))

= 2x
√

1 − x2,

and

cos(2 arccos(x)) = cos2(arccos(x)) − sin2(arccos(x)) = x2
− (1 − x2)

= 2x2
− 1.

Therefore,

expS2 (ϕS2 (x)) =

(
x

∥x∥
2e−∥x∥

2/4
√

1 − e−∥x∥2/2, 2e−∥x∥
2/2

− 1
)
.

Hence, we conclude that

ΦS2 (x) =

(
ΦR2 (x)

∥ΦR2 (x)∥
2e−∥ΦR2 (x)∥2/4

√
1 − e−∥ΦR2 (x)∥2/2, 2e−∥ΦR2 (x)∥2/2

− 1
)
.

18



C. Beltrán, D. Ferizović and P.R. López-Gómez Journal of Approximation Theory 308 (2025) 106145
B.4. Explicit expression of ΦRP1

In this case, we have

ΦR(x) =
√

2 erf−1(2x − 1).

Following Corollary 3.2, to find ϕRP1 we have to obtain ρ from∫ ρ

0
sinn−1 s ds =

√
π

2Γ ( n+1
2 )
γ

(
n
2
,

r2

2

)
.

Since in this case n = 1, we have

ρ(r ) =

√
π

2
γ

(
1
2
,

r2

2

)
=
π

2
erf

(
r

√
2

)
.

Hence,

ϕRP1 (x) =
πx
2|x |

erf
(

|x |
√

2

)
.

Therefore,

ϕRP1 (ΦR(x)) =
π

√
2 erf−1(2x − 1)

2|
√

2 erf−1(2x − 1)|
erf

(
|
√

2 erf−1(2x − 1)|
√

2

)
=
π erf−1(2x − 1)
2|erf−1(2x − 1)|

erf(|erf−1(2x − 1)|).

Since both erf and erf−1 are odd functions, the absolute values cancel each other and so

ϕRP1 (ΦR(x)) =
π

2
erf(erf−1(2x − 1)) =

π

2
(2x − 1).

Recall from Table 1 that the exponential map expRP1 : (−π /2, π /2) → RP1 is given by

expRP1 (v) =

(
v

|v|
tan|v|, 1

)
.

Hence,

ΦRP1 (x) = expRP1

(π
2

(2x − 1)
)

=

(
π (2x − 1)
|π (2x − 1)|

tan
⏐⏐⏐π

2
(2x − 1)

⏐⏐⏐ , 1
)
.

Since the tangent function is odd, we can simplify the previous expression as follows:

ΦRP1 (x) =

(
tan

(π
2

(2x − 1)
)
, 1

)
=

(
tan

(
πx −

π

2

)
, 1

)
= (− cotπx, 1).

B.5. Explicit expression of ΦRP2

Recall from Corollary 3.2 that we have

ϕRP2 (x) =
x

∥x∥
arccos e−∥x∥

2/2.

Let us compute expRP2 ◦ϕRP2 . Recall from Table 1 that

exp 2 (v) =

(
v

tan ∥v∥, 1
)
.
RP

∥v∥
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t

Hence,

expRP2 (ϕRP2 (x)) =

( x
∥x∥

arccos e−∥x∥
2/2

∥
x

∥x∥
arccos e−∥x∥2/2∥

tan
 x
∥x∥

arccos e−∥x∥
2/2

 , 1
)
.

Since the tangent function is odd, we can simplify the previous expression as follows:

expRP2 (ϕRP2 (x)) =

(
x

∥x∥
tan arccos e−∥x∥

2/2, 1
)
.

Note that

tan arccos(x) =
sin arccos(x)
cos arccos(x)

=

√
1 − x2

x
=

√
1
x2 − 1.

Hence,

expRP2 (ϕRP2 (x)) =

(
x

∥x∥

√
e∥x∥2

− 1, 1
)
,

and we conclude that

ΦRP2 (x) =

(
ΦR2 (x)

∥ΦR2 (x)∥

√
e∥ΦR2 (x)∥2

− 1, 1
)
.

B.6. Explicit expression of ΦCPn

Recall from Corollary 3.3 that we have

ϕCPn (x) =
x

∥x∥
arcsin

((
1

(n − 1)!
γ

(
n,

∥x∥
2

2

))1/(2n))
.

Recall from Table 1 that

expCPn (v) =

(
v

∥v∥
tan ∥v∥, 1

)
.

Let us compute expCPn ◦ϕCPn . As for the case of RP2, the parity of the tangent function implies
hat

expCPn (ϕCPn (x)) =

(
x

∥x∥
tan arcsin

((
1

(n − 1)!
γ

(
n,

∥x∥
2

2

))1/(2n))
, 1

)
.

Note that, in our range,

tan arcsin(x) =
sin arcsin(x)
cos arcsin(x)

=
x

√
1 − x2

=

√
−1 +

1
1 − x2 .

Hence,

expCPn (ϕCPn (x)) =

(
x

∥x∥

√−1 +
1

1 −
( 1

(n−1)!γ (n, ∥x∥2

2 )
)1/n , 1

)
,

and we conclude that

ΦCPn (x) =

(
ΦR2n (x)

∥ΦR2n (x)∥

√−1 +
1

1 −
( 1

(n−1)!γ
(
n,

∥ΦR2n (x)∥2

2

))1/n
, 1

)
.
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