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Abstract 
 
Title. Automatic Calibration of Hydrodynamic Models for Fringing Reefs 
Author. Pablo Zubía Palazuelos.  
Directors. Fernando Méndez Incera, Beatriz Pérez Diaz and Alba Ricondo Cueva. 
Call. October 2021.  
Degree. Master’s in Civil Engineering. 
Specialization. Water, Energy, and Environment. 
Keywords. Nearshore hydrodynamics, Hybrid modelling, Fringing Coral Reefs, Wave Breaking 
Coefficient, Friction Coefficient. 
 
 
 
As global sea levels rise and storm frequency and intensity shift due to climate change, tropical 
coral reef-lined coasts are becoming increasingly susceptible to wave-driven flooding. In addition, 
coral reefs, which are essential for coastal protection, are deteriorating due to ocean acidification 
and other environmental stressors, thereby weakening their ability to dissipate wave energy. In 
this scenario, accurate downscaled predictions of nearshore wave processes are vital for reducing 
the susceptibilities of these environments and developing adequate adaptation strategies.  
 
To achieve these accurate predictions, traditionally, forecasting tools relied on modeling coastal 
dynamics using high-fidelity numerical models. While these models provide detailed simulations, 
they are costly in terms of computational resources when applied under a dynamic downscaling 
approach. To overcome this limitation, hybrid approaches, also known as metamodels, have been 
developed. These metamodels combine numerical models with statistical techniques, aiming to 
reduce computational costs by predicting wave behavior with fewer exhaustive simulations. 
 
However, the accuracy achieved by these approaches is highly dependent on the correct 
estimation of certain calibration coefficients of the numerical models. A calibration process 
commonly involves comparing real measurements with the numerical model outputs to identify 
the most accurate set of calibration coefficients. The longer the observations and the greater the 
number of coefficients to be calibrated, the more the number of required simulations increases 
exponentially, which can lead to significant computational effort and make it difficult to obtain 
accurate results. 
 
To address these challenges, this project introduces CHySwash, an advanced methodology that 
builds upon the foundation of its predecessor, HySwash (Ricondo et al., 2024). CHySwash is 
designed to streamline the calibration of numerical models, significantly reducing the time and 
computational resources typically required. It achieves this by integrating advanced techniques, 
including sampling, clustering, and interpolation, alongside an automatic calibration process 
powered by the Shuffled Complex Evolution optimization algorithm, renowned for its 
effectiveness in parameter optimization. The proposed methodology is applied in a monitored 
coral reef-lined coast, Molokai, Hawaii. Specifically, we aim to predict the optimal wave breaking 
and friction coefficients, which govern the wave breaking process and the dissipation of wave 
energy. 
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Resumen 
 
Título. Calibración automática de modelos hidrodinámicos para arrecifes en franja. 
Autor. Pablo Zubía Palazuelos.  
Directores. Fernando Méndez Incera, Beatriz Pérez Diaz y Alba Ricondo Cueva. 
Convocatoria. Octubre 2024.  
Titulación. Máster en Ingeniería de Caminos, Canales y Puertos. 
Especialidad. Agua, Energía y Medioambiente. 
Palabras clave. Hidrodinámica costera, Modelado híbrido, Arrecifes de coral de franja, Coeficiente 
de rotura de olas, Coeficiente de fricción. 

 
A medida que el nivel global del mar aumenta y la frecuencia e intensidad de las tormentas varían 
debido al cambio climático, las costas tropicales protegidas por arrecifes de coral se vuelven cada 
vez más vulnerables a las inundaciones. Además, estos arrecifes de coral, que son esenciales para 
la protección costera, se están deteriorando debido a factores como la acidificación del océano y 
otro tipo de impactos ambientales, debilitando así su capacidad para disipar la energía de las olas. 
En este contexto, las predicciones precisas de los procesos de oleaje cercanos a la costa son 
cruciales para mitigar las vulnerabilidades de estos ecosistemas y desarrollar estrategias de 
adaptación adecuadas. 
 
Con el fin de obtener dichas predicciones precisas, tradicionalmente, se ha dependido de la 
modelización de la dinámica costera a través de modelos numéricos de alta fidelidad. Si bien estos 
modelos proporcionan simulaciones muy detalladas, son costosos en términos de recursos 
computacionales. Para superar esta limitación, se han desarrollado enfoques híbridos, también 
conocidos como metamodelos. Estos metamodelos combinan modelos numéricos con técnicas 
estadísticas, con el objetivo de reducir los costos computacionales al predecir el comportamiento 
de las olas con menos simulaciones necesarias. 
 
Sin embargo, la precisión que se alcanza con estos enfoques depende en gran medida de la 
correcta estimación de ciertos coeficientes de calibración de los modelos numéricos. El proceso 
de calibración comúnmente implica comparar mediciones reales con los resultados obtenidos del 
modelo numérico para identificar la combinación más precisa de dichos coeficientes de 
calibración. Cuanto más largas sean las observaciones y mayor sea el número de coeficientes a 
calibrar, mayor será el número de simulaciones necesarias, lo que puede conllevar un esfuerzo 
computacional significativo y dificultar la obtención de resultados precisos. 
 
Para abordar estos desafíos, este proyecto introduce CHySwash, una metodología avanzada 
basada en los fundamentos de su predecesor, HySwash (Ricondo et al., 2024). CHySwash está 
diseñado para agilizar la calibración de modelos numéricos, reduciendo significativamente el 
tiempo y los recursos computacionales típicamente necesarios. Lo logra integrando técnicas 
avanzadas, como el muestreo, la agrupación y la interpolación, junto con un proceso de calibración 
automático impulsado por el algoritmo de optimización Shuffled Complex Evolution, conocido por 
su efectividad en la optimización de parámetros. La metodología propuesta se implementa en una 
costa rodeada por arrecifes de coral en Molokai, Hawái, donde se ha llevado a cabo un monitoreo 
exhaustivo. Nuestro objetivo es estimar los coeficientes óptimos de rotura de olas y fricción del 
coral, los cuales regulan el proceso de rotura y la disipación de la energía de las olas. 
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1. Introduction 
 

1.1. Background and motivation 
 
As sea level and storm frequency and intensity are expected to rise along numerous coastlines 
throughout the world (Oppenheimer et al., 2022), tropical coral reef-lined coasts face increasing 
exposure to storm wave-driven flooding. In addition, ocean warming and acidification pose an 
increasing threat to the structural integrity of reefs compromising their ability to mitigate wave 
energy and protect coastlines. This deteriorating condition of coral reefs poses a significant 
challenge, as these bio-geomorphic systems play a crucial role in coastal protection (Ferrario et 
al., 2014). 
 
Given the ecological importance and inherent vulnerability of coral reef-lined coasts (Winter et 
al., 2020), addressing the escalating risks associated with storm wave-driven flooding is of 
paramount importance. This challenge necessitates accurate predictions of coastal wave 
processes, which are essential for the effective design and implementation of nature-based 
shoreline protection measures and coastal zone management strategies (Clark, 1997). By 
integrating predictive tools into management practices, decision-making can be more informed, 
thereby enhancing the resilience of coastal ecosystems to wave impacts. 
 
To effectively address these challenges, it is crucial to enhance our understanding of how reef 
morphology, vegetation characteristics, and hydrodynamic conditions influence wave behavior. 
Fringing coral reefs, with their varied topographies, from steep slopes to shallow platforms, have 
the potential to dissipate the majority of the incoming wave energy (Brander et al., 2004 ; 
Péquignet et al., 2011 ; Pomeroy et al., 2012). The roughness of the reef surface and wave breaking 
at the crest are vital for energy dissipation and the formation of nearshore currents. Therefore, 
accurately estimating wave breaking (Cr) and friction (Cf) coefficients is essential for modeling 
these processes effectively. Precision in these estimates is crucial for generating realistic 
outcomes in coastal management and improving risk assessments (Lee et al., 2021).  
 
In order to reduce the computational effort of classical wave downscaling, hybrid approaches, also 
referred to as metamodels, have emerged as potential alternatives to transfer nearshore waves to 
coastal areas (e.g., Camus et al., 2011a, Ricondo et al., 2023), or nearshore waves to the evolution 
of the surf-zone hydrodynamics (Ricondo et al., 2024, Pearson et al., 2017). These methods 
incorporate high-fidelity numerical models with statistical techniques (i.e., data mining, selection 
and interpolation) to create transfer functions of minimum computational cost. However, when 
applied to real coral reef morphologies, these metamodels often require separate calibration of 
the numerical models, which can significantly increase computational demands. Calibrating 
hydrodynamic models for nearshore wave processes typically involves an iterative process of 
adjusting model input coefficients and comparing simulations with observed data. As the number 
of coefficients and the length of observations increase, the number of required simulations grows 
exponentially, making calibration more computationally intensive.  
 
To address these challenges, we propose CHySwash, an innovative metamodel that builds upon 
the foundation of its predecessor, HySwash (Ricondo et al., 2024). CHySwash seamlessly integrates 
advanced techniques such as sampling, clustering, and interpolation with the Shuffled Complex 
Evolution (SCE) optimization algorithm (Duan et al., 1994), known for its effectiveness in parameter 
optimization. By streamlining the calibration process of numerical models, CHySwash significantly  
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reduces the time and computational resources typically required, while enhancing prediction 
precision. This approach not only accelerates simulations but also improves accuracy by adjusting 
key model parameters, such as wave breaking and friction coefficients, based on observational 
data. The proposed methodology is applied to the coral reef-lined coast of Molokai, Hawaii, 
ultimately supporting more informed decision-making for coastal protection and adaptation 
strategies. 
 

1.2. Objectives  
 
The primary objective of this project is to develop a robust and efficient methodology for the 
automatic calibration of hydrodynamic models. To achieve this, the project focuses on the 
development, application, and validation of a hybrid statistical-numerical metamodel, CHySwash, 
that integrates an optimization technique for finding the optimum calibration coefficients. This 
approach aims to enhance the efficiency and accuracy of model calibration processes. 
 
The specific objectives are: 
 

1. Develop the CHySwash metamodel, based on its predecessor HySwash (Ricondo et al., 
2024). The primary objective is to create the CHySwash metamodel, a hybrid tool that 
combines statistical and numerical methods to simulate nearshore wave dynamics with 
high precision. This metamodel will integrate advanced techniques such as sampling, 
clustering, and interpolation with the established 1D hydrodynamic model SWASH 
(Simulating WAves till SHore) (Zijlema et al., 2011). The goal is to develop a model that 
efficiently predicts wave behavior in coastal areas, offering both accuracy and reduced 
computational time. This involves creating a response function through interpolation 
methods after simulating representative cases. This function approximates the behavior 
of the original model, enabling predictions for parameter combinations that were not 
directly simulated. As a result, the CHySwash metamodel will allow for the reconstruction 
of extensive datasets without the need for time-consuming direct simulations, thus 
optimizing the model's performance and usability. 

 
2. Apply the CHySwash metamodel to the Molokai study area. The second objective is to 

apply the CHySwash metamodel to a real-world coastal setting, specifically the southern 
coastal area of Molokai Island, Hawaii, where extensive sensor data is available. The goal 
is to use the metamodel to accurately reconstruct wave characteristics, such as significant 
wave height (Hs) and infragravity wave height (HsIG) , based on this data. This application 
involves calibrating key coefficients—namely, the wave-breaking coefficient and the coral 
friction coefficient—to ensure that the model reflects observed hydrodynamic conditions 
accurately. The calibration process will be validated by comparing the metamodel’s 
predictions with actual sensor measurements, aiming to minimize prediction errors. By 
utilizing real sensor data from Molokai, the metamodel will reconstruct wave evolution in 
the nearshore zone using five defined parameters: significant wave height (Hs), wave 
steepness (Hs/Lo), water level (WL), friction coefficient (Cf), and wave-breaking coefficient 
(Cr). Special emphasis will be placed on calibrating the last two coefficients to align the 
model outputs with real-world observations.  
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3. To implement an optimization algorithm that automates the calibration process. The 

third objective is to enhance the calibration process by implementing an optimization 
algorithm that automates the search for the best combination of calibration coefficients. 
This will be achieved using the SCE algorithm. Specifically, the SCE will be programmed to 
systematically search for the combination of calibration coefficients that results in the 
lowest error, ensuring the model best aligns with the observed data. By automating this 
process, we aim to streamline calibration and improve the accuracy of the model’s 
predictions. 

 

1.3. Project Outline 
 

The project is structured to ensure a comprehensive understanding of the motivation and 
development of CHySwash. The 1.1. Background and Motivation section provides essential context 
about the increasing exposure of tropical coral reef-lined coasts to wave-driven flooding. This 
section underscores the critical role of coral reefs in coastal protection and highlights the urgent 
need for effective decision-support tools for disaster managers and coastal planners. Following 
this, the 1.2. Objectives are clearly defined, focusing on creating a tool capable of predicting the 
optimal combination of wave breaking and coral roughness coefficients. The study specifically 
aims to characterize these coefficients using the innovative one-dimensional hybrid 
hydrodynamic model, CHySwash, calibrated with real data from sensors deployed on Molokai 
Island, Hawaii. 
 
The next major section, 2. Study Area and Data, provides a comprehensive overview of the Molokai 
Reef tract. The 2.2. Field Data subsection describes the deployment of 19 strategically positioned 
sensors along Molokai's southern coast. These sensors captured various hydrodynamic 
parameters crucial for accurately modeling the processes impacting the reef. Additionally, the 2.3. 
Bathymetric Profile subsection presents a detailed bathymetric profile of the study area, which is 
essential for the accurate simulation of hydrodynamic processes. 
 
In the 3. CHySwash Methodology section, the project delves into the technical aspects of the 
study. The 3.1. Parameterization subsection explains the careful selection process for 
hydrodynamic parameters, wave breaking coefficients, and friction coefficients, all of which are 
critical for accurate modeling of wave dynamics on coral reefs. Following this, the 3.2. Sampling 
and Selection subsection describes the application of Latin Hypercube Sampling (LHS) and the 
Maximum Dissimilarity Algorithm (MDA). These techniques are used to create a representative 
dataset for simulation. The 3.3. Numerical Model SWASH subsection provides detailed information 
on the setup and configuration of the numerical model used to simulate wave dynamics and their 
impact on the reef. The 3.4. Reconstruction subsection outlines methodologies for creating the 
interpolation surface using Principal Component Analysis (PCA) and Radial Basis Function (RBF) 
interpolation. This allows for the estimation of output variables for input combinations that were 
not modeled. To ensure the model's accuracy and reliability, the 3.5. Numerical Validation 
subsection describes the application of k-fold cross-validation. Finally, the 3.6. Automatic 
Calibration subsection details the process of refining the model's accuracy. This is achieved 
through hyperparameter optimization, using real sensor data to fine-tune the model. 
 
The 4. Results section provides a comprehensive overview of the numerical simulations, focusing 
on the calibration and accuracy of the hydrodynamic model. It highlights the identification of 
optimal calibration coefficients, which significantly improved the precision of reconstructed 
variables.  
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The section also addresses the model's limitations in handling bidimensional effects, particularly 
at the reef crest, where wave dynamics are more complex. Additionally, other applications of the 
metamodel are presented, being the flood proxy concept introduced, demonstrating the model's 
capability to assess coastal flood risks under various future climate scenarios. 
 
Following this, the 5. Environmental Self-Assessment and Reflection on the Project's Contribution 
to Transitions section evaluates the project's impact according to Green Budget Criteria, focusing 
on areas such as climate change mitigation, adaptation to climate change, water resources 
management, and biodiversity preservation. 
 
The project concludes with the 6. Conclusions and Future Research Lines section, summarizing 
the key findings and their implications for future research. This section offers recommendations 
for further studies aimed at enhancing the accuracy and applicability of the developed metamodel, 
thereby contributing to improved coastal management and protection strategies. 
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2. Study area and data  
 

This section offers a comprehensive overview of the study area, focusing on the south coast of 
Molokai for the calibration of our metamodel. We delve into a detailed description of the Molokai 
Reef tract, highlighting its unique characteristics. Additionally, we describe the field data, which 
involved the strategic deployment of 19 sensors along Molokai's southern coast to capture various 
hydrodynamic parameters. A detailed bathymetric profile of the study area is also presented, 
crucial for accurately modeling the hydrodynamic processes impacting the reef. 
 

2.1. Study Area 
 

The coral reefs of Maui Nui (Figure 1), encompassing the islands of Maui, Molokai, Lanai, and 
Kahoolawe in the Hawaiian Islands, are crucial to the local ecology, culture, and economy. Despite 
their importance, the health of these reefs has been steadily declining over the past few decades. 
Currently, they face numerous threats, including overfishing, land-based pollution, and climate 
change (Storlazzi, 2019). Our research is concentrated on the south coast of Molokai, selected due 
to the presence of extensive coral reefs and the availability of field data. 
 

 
Figure 1. Map of nine major shallow reef tracts of Maui Nui, Hawaii,  

showing percentage of coral cover. (Source: Storlazzi, 2019). 
 

2.1.1. Molokai Reef tract  
 

The island of Molokai is located approximately at 21°N, 157°W in the north-central Pacific, situated 
between the islands of Oahu and Maui in the Hawaiian Archipelago (Figure 2). The island is 62 km 
long from east to west and averages 13 km wide from north to south. It is comprised of two basaltic 
shield volcanoes that formed roughly between 1.90 and 1.76 million years ago (Clague and 
Dalrymple, 1989), being the East Molokai volcano 1515 meters high, and the west one 420 meters 
high.  
 

The south shore of Molokai boasts a 53 km long fringing coral reef, stretching across the Kalohi 
Channel between Molokai and Lanai, and the Pailolo Channel between Molokai and Maui. This reef 
holds significant ecological importance, serving as habitat for a diverse range of marine species 
while also acting as a natural barrier against erosion and wave impact. Its vital role in the marine 
environment makes it indispensable for both the local ecosystem and the cultural and economic 
activities of surrounding communities. 
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(a) 

 
(b) 

 
Figure 2. Map of the study area. (a) Map of the Hawaiian Islands showing the location of Molokai (Source : Created by the 
author) ; (b) Location of coral zones in the islands of Maui, Molokai, Lanai, and Kahoolawe (Source: Allen Coral Atlas). 

 
The Molokai Reef is characterized by a complex and varied structure, featuring distinct 
morphological sections such as the reef flat, reef crest, and fore reef (Figure 3). Below, we explore 
the detailed morphology of these sections, highlighting the specific features and sediment 
compositions that define each part of the reef. 

 
• Forereef. To begin with, at depths between 3 to 30 meters, we can find the forereef, which 

is the deepest part of the reef and faces the open ocean. The steep slope in this area helps 
dissipate some of the wave energy while also directing water flow toward the upper parts 
of the reef. The turbulence generated here initiates the process of energy dissipation. The 
steep incline of the forereef forces waves to disperse their energy vertically. This area 
usually has the highest coral cover (Storlazzi et al., 2004) and features 1- to 3-meter-high 
ridges and grooves running perpendicular to the shore.  
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• Reef Crest. Furthermore, the reef crest, the highest part of the reef, is where most waves 

start the process of breaking. This area is clearly defined along much of the southern 
Molokai reef. Here, wave energy is significantly dissipated due to the abrupt reduction in 
depth and the increased friction. Surface roughness is particularly high in this zone 
because of the dense presence of corals and other biological structures that act as physical 
barriers against waves. The reef crest is mostly covered with tough coralline algae and 
encrusting corals (Storlazzi et al., 2004). 

 
• The Reef Flat. Finally, the reef flat is a mostly flat area under shallow water, between 0.3 

and 2.0 meters deep. It extends from the shore out to about 1.5 km into the sea. The bottom 
of the reef is mostly made up of calcareous marine sediment, with large grains making up 
58–65% of it (Calhoun and Field, 2002). The finer particles include both marine sediment 
and material from the erosion of the island's volcanic rocks. The inner part of the reef flat 
is covered by a layer of muddy sand, which is mostly made up of silt and fine grains from 
the land. This muddy sand extends about 200–300 meters from the shore. Beyond this 
area, up to about 500 meters from the shore, the ancient reef surface is exposed and 
usually covered with algae. Additionally, from 500 meters to about 1000 meters offshore, 
the reef flat has a pattern of ridges and troughs. The ridges have live coral, and the troughs 
are filled with calcareous sediment (Storlazzi et al., 2004). This flatter and shallower area 
allows the remaining wave energy to dissipate further through friction.  

 
(a)                                                (b) 

         
 

Figure 3. General coral reef morphology highlighting the key components. (a) Tridimensional morphology of a general 
reef morphology (Source: https://www.usgs.gov/media/images/coral-reef-block-diagram). 

(b) Cross-shore profile showing the evolution of waves interacting with the reef. 
(Source: https://www.annualreviews.org/content/journals/10.1146/annurev-marine-042120-071823) 

 
2.1.2. Oceanography and Meteorology 
 
The waves arriving at Molokai encompass: North Pacific swells, Northeast Trade wind waves, 
Southern Ocean swells, and Kona storm waves (Moberly and Chaimberlin, 1964). As analyzed by 
Moberly and Chaimberlin, the North Pacific swell doesn't affect the central part of the south shore 
reef much because the island is oriented east-west. Northeast Trade wind waves happen all year 
but are strongest from April to November when the Trade winds blow the hardest, usually between 
10 and 20 meters per second. These waves are about 1–4 meters high but have short intervals of 
5–8 seconds between them. Southern swells come from storms in the Southern Ocean during the 
Southern Hemisphere's winter. These waves are smaller, about 1–2 meters high, but have long 
intervals of 14–25 seconds between them. Finally, Kona storm waves come from the south during 
local storms or fronts. They are not very frequent or regular and are usually about 3–5 meters high 
with intervals of 8–12 seconds. 
 
 

https://www.usgs.gov/media/images/coral-reef-block-diagram
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The island's rainfall is mainly influenced by the Northeast Trade winds and Kona storms. The 
Northeast Trade winds hit the northeast side of the island, get directed around the East Molokai 
volcano, and usually approach the reef near Kamiloloa from the southeast (Fletcher et al., 2002). 
Because of the high East Molokai volcano, most rain falls on the northeast part of the island, 
around 200–400 cm per year, while the south-central and west parts get much less rain, under 60 
cm per year on average (State of Hawaii, 2001). 
 

2.2. Field Data 
 
As part of a coastal monitoring initiative (U.S. Geological Survey, 2020), aimed at advancing the 
understanding of coastal dynamics and supporting the preservation of coral reef ecosystems, 25 
sensors were deployed along the southern coastal zone of Molokai Island, Hawaii. These sensors 
were strategically arranged in a linear formation perpendicular to the coastline, as illustrated in 
Figure 4, to collect crucial data on various oceanographic parameters over a period of 86 days. 
Positioned directly on the seafloor, the sensors were designed to measure the pressure exerted 
by the water column above them. This data is vital for understanding nearshore circulation and 
the variability of hydrodynamic properties over the coral reefs in this region. 
 

 
Figure 4. Sensor deployment area on the southern coast of Molokai Island. Horizontal and vertical axes with longitude 

and latitude coordinates (Source: Created by the author). 
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It's important to highlight that although 25 sensors were installed, only the data from 19 sensors 
were deemed valid for further analysis. The data from the remaining sensors were discarded due 
to incorrect pressure measurements or invalid readings caused by sediment accumulation, which 
hindered accurate water column pressure measurements. 
 
The 19 valid sensors began recording measurements on June 24, 2018, at 21:00 hours. However, 
the total duration of data collection varied among the sensors. Some sensors recorded 
measurements for a full period of 2064 hours, until September 18, 2018, at 21:00 hours, while others 
recorded for shorter periods, with the shortest being 1125 hours. 
 
The parameters inferred from the water column pressure include WL, tide, Hs, Hrms, dominant 
period, Tp, energy, as well as infragravity and low-frequency components, both represented also 
by their Hs, Hrms, Tp, and energy. Data for all these parameters were collected on an hourly basis. 
 
Relevant information from the sensors is displayed in Table 1. It can be observed that the position 
is shown in coordinates of longitude and latitude, as well as the elevation, in meters, referenced 
to the local mean sea level. Additionally, the duration of measurements for each sensor is provided. 
It can be noted that there are certain sensors whose duration does not correspond to the total of 
2064 hours. 
 

Sensor Longitude Latitude Elevation Start Time End Time Duration 
C01 

C02 

C04 

C05 

C06 

C09 

C10 

C11 

C12 

C13 

C14 

C16 

C17 

C18 

C19 

C21 

C22 

C23 

C24 

-157.154799 

-157.155172 

-157.155119 

-157.155121 

-157.155143 

-157.155150 

-157.155121 

-157.155137 

-157.155162 

-157.155092 

-157.155144 

-157.155136 

-157.155108 

-157.155093 

-157.155150 

-157.155187 

-157.155119 

-157.155147 

-157.155149 

21.081046 

21.083003 

21.083952 

21.084145 

21.084421 

21.085098 

21.085492 

21.085569 

21.085913 

21.086227 

21.086507 

21.087112 

21.087495 

21.087781 

21.088405 

21.089616 

21.090295 

21.091120 

21.091969 

-24.786127 

-16.747430 

-8.576710 

-6.933797 

-5.184982 

-7.386092 

-4.578356 

-3.787843 

-2.816314 

-2.040946 

-1.439283 

-1.873183 

-2.340674 

-1.398484 

-0.960255 

-0.958671 

-1.222854 

-0.932724 

-0.875177 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-06-24 21:00:00 

2018-09-18 21:00:00 

2018-09-18 21:00:00 

2018-09-03 02:00:00 

2018-09-18 21:00:00 

2018-08-16 10:00:00 

2018-09-18 21:00:00 

2018-08-15 14:00:00 

2018-08-10 18:00:00 

2018-08-11 02:00:00 

2018-08-11 10:00:00 

2018-08-14 11:00:00 

2018-08-20 08:00:00 

2018-08-15 06:00:00 

2018-09-18 21:00:00 

2018-08-14 13:00:00 

2018-09-18 21:00:00 

2018-09-18 21:00:00 

2018-09-18 21:00:00 

2018-09-18 21:00:00 

2064.0 

2064.0 

1685.0 

2064.0 

1261.0 

2064.0 

1241.0 

1125.0 

1133.0 

1141.0 

1214.0 

1355.0 

1233.0 

2064.0 

1216.0 

2064.0 

2064.0 

2064.0 

2064.0 

Table 1. Sensor Data Overview. This table provides an overview of sensor data collected including sensor ID, position (lon, 
lat), elevation (meters), start time, end time, and duration (hours). 

 
We can examine the Hrms measurements from all sensors throughout the entire duration to get 
an understanding of the wave height evolution at the study site. This data is depicted in Figure 5. 
As mentioned earlier, some sensors don't cover the full 2064-hour period. We observe that as we 
move towards the shore, Hrms decrease, starting from the values recorded by the offshore sensor, 
C01, and declining as we approach the coast, reaching their lowest point at sensor C24.  
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The Hrms recorded by the offshore sensor reaches magnitudes of up to 1.06 meters in the month 
of July, with the average offshore sensor Hrms around 0.34 meters in height. By contrast, the 
maximum Hrms recorded by the sensor closest to the coast is around 0.14 meters in height, with 
the Hrms average in this zone of 0.048 meters. This highlights the decrease in wave height as we 
move towards the coast.  
 

 
Figure 5. Temporal evolution of Hrms measured by each sensor deployed in our study area. The horizontal axis 

represents time, in hours, and the vertical one reflects Hrms in meters. (Source: Created by the author). 

 
Furthermore, it's worth mentioning that sensors C04, C05 and C06 record the highest Hrms 
values, peaking at up to 1.48 meters. This increase in height is due to the fact that, as evidenced in 
the following section where the bathymetric profile and detailed sensor positions on the profile 
are shown; they are situated in the reef crest area. Therefore, as waves approach, the decrease in 
bathymetry causes the waves to feel the bottom, leading to wave steepening, initiating the wave-
breaking process in this zone, and waves progressively decrease in height as they approach the 
coast. 
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2.3. Bathymetric profile 
 
Following the presentation of the study area and the spatial distribution of the sensors from which 
we obtained real measurements for calibrating our metamodel, we proceed to obtain the 
bathymetric profile of our area. The bathymetric data corresponds to the 2013 USACE NCMP 
Topobathy Lidar DEM of the southern coast of Molokai, with a resolution of 1.5 meters (National 
Oceanic and Atmospheric Administration, 2013). 
 
Using this dataset in QGIS, we plotted three transects, as shown in Figure 6. These transects 
provide crucial bathymetric data regarding the sensor group, with the exception of the first 
sensor, C01, which is slightly offset to the right of the transects. However, this discrepancy does 
not notably impact the results due to minimal horizontal depth variation at this point. Following 
the plotting of these three transects, an average profile was derived. This profile serves to define 
a comprehensive representation encompassing all sensors, achieved by averaging measurements 
taken along transects perpendicular to the coastline. 
  

 
Figure 6. Bathymetric surface of the southern coast of Molokai, Hawaii, based on the 2013 USACE NCMP Topobathy Lidar 
DEM with a 1.5-meter resolution from NOAA. Three transects plotted in QGIS provide crucial data for the sensor group, 

excluding sensor C01, which is slightly offset. (Source: Created by the author). 
 
Thus, following the aforementioned process, we obtain a bathymetric elevation profile in the study 
area, where we can locate the sensors, with elevation information at every 1.5-meter point. The 
one-dimensional bathymetric profile is presented in Figure 7, showing the position of each sensor. 
 
Over the 2000 meters of the profile, several distinctive geomorphological characteristics 
explained earlier in Section 2.1.1 can be identified. Starting from the coast, in our study area, the 
reef flat extends for about 500 meters, featuring a relatively flat, horizontal rocky platform where 
the water depth varies around 0.7 meters. This is followed by a much rougher area filled with 
grooves extending for about 250 meters, leading to a significantly deeper and wider groove, and 
then to the reef crest.  
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After this, the fore reef extends for approximately 250 meters, transitioning into the sandy seabed 
where the furthest sensor from the coast, sensor C01, is located. This detailed profile provides a 
comprehensive understanding of the coastal environment under study, which is crucial for our 
research on local hydrodynamic processes. 

 
 

Figure 7. One-dimensional bathymetric elevation profile of the study area with sensor positions indicated. Elevation 
information is provided at every 1.5-meter interval. The reference is the local mean sea level.  

(Source: Created by the author). 
 
When conducting our study, we must carefully consider various factors related to the bathymetric 
profile and sensor placement. 
 
1.- Elongation of the Bathymetric Profile. Initially, the profile obtained from the average of the 
three transects was 1500 meters long. However, to position the numerical wave generator outside 
the area of interest, a flat region 500 meters in length at a depth of 25 meters was added before 
the fore reef, extending beyond the first sensor, C01. Consequently, the final profile used for our 
study and the numerical swash model extends over a total of 2000 meters, ranging from the coast 
to a total depth of 25 meters. It's worth mentioning, however, that this elongation will not affect 
the wave evolution in the original profile; it is merely for numerical purposes. This extension 
facilitates stabilization of waves by the time they reach the position corresponding to sensor C01. 
 
2.- Sensor Positioning Discrepancies. It can be observed that sensors like C02 and C09 are slightly 
positioned below the actual bathymetric surface. This discrepancy arises from the fact that the 
represented profile is the average of three transects. As a result, there are slight differences, on 
the order of centimeters, between the bathymetry considered in these points and the actual 
bathymetry where the sensors were placed on the seafloor. This averaging process smooths out 
the bathymetric variations, which explains the minor offsets for these particular sensors. It should 
be highlighted that these differences are centimetric and will not significantly impact the overall 
results.  
 
3.- One-dimensionality of the Profile. As we have seen, the profile where we will launch the 
numerical simulation is one-dimensional. Therefore, it would be logical to consider some wave 
refraction effect for the waves that approach the reef profile obliquely. This means knowing the 
direction from which the waves are coming to determine the Hs that we should launch 
perpendicular to the coast, following the direction of our one-dimensional profile. However, the 
sensors did not record information about the wave direction. This makes such a transformation 
impossible. Given this and considering that the wave heights are generally not very large except 
for some specific moments during the recording period, we make the hypothesis of not 
transforming them according to its wave direction. Instead, we directly use the Hs values 
measured by the offshore C01 sensor to establish the limits of the actual wave conditions. 

D
ep

th
 [

m
]. 

R
ef

er
en

ce
 : 

M
SL

 

X [m] 



Automatic Calibration of Hydrodynamic models for Fringe Reefs   
Pablo Zubía Palazuelos 
October 2024 

20 

 

 

3.  CHySwash Methodology 
 
As previously explained, the methodology to be used for characterizing the friction and breaking 
coefficients is based on the one-dimensional hybrid hydrodynamic metamodel named HySwash 
(Ricondo et al., 2024). The methods presented in this metamodel have been accordingly modified 
to incorporate two new parameters into the numerical model for subsequent calibration. 
Therefore, the new metamodel is called CHySwash, where "C" stands for calibration and 
"HySwash" stands for Hybrid Swash, reflecting the fusion of hybrid techniques with the SWASH 
numerical model to estimate surf-zone hydrodynamics. 
 
A metamodel, often referred to as a "model of models," functions as a streamlined representation 
of intricate systems, providing a manageable and computationally efficient approach to 
understanding their behavior (Figure 8). At its core, the process begins with defining a problem 
using multiple parameters X = {x1, x2, x3, ..., xn} which encapsulate the various inputs influencing 
the system under study. These inputs could encompass a wide array of factors depending on the 
nature of the problem. The heart of the metamodeling process lies in a model, which can take the 
form of an analytical model based on mathematical equations or a numerical model relying on 
computational simulations. This model takes the defined parameters as input and generates 
corresponding outputs, representing the system's response, Y, to different combinations of input 
parameters. 
 

 
 

Figure 8. Schematic overview of metamodel functionality. (Source: Created by the author). 
 
Generating responses involves running simulations or calculations for each unique combination 
of input parameters. This step can be resource-intensive and time-consuming, especially for 
complex systems with numerous variables. To streamline this process, a metamodel is 
constructed. This involves selecting a subset of representative cases instead of simulating every 
possible combination of parameters. These cases are chosen strategically to provide a 
comprehensive yet concise portrayal of the system's behavior. Various selection and classification 
techniques are employed to ensure the chosen cases accurately represent the system's dynamics. 
Once the representative cases are identified, a response function is constructed using 
interpolation methods. This function approximates the behavior of the original model, enabling 
predictions for combinations of input parameters that were not directly simulated by the 
numerical model. 
 
With the metamodel in place, predicting the system's response for any new combination of input 
parameters becomes straightforward. The metamodel utilizes the response function to estimate 
the response Y efficiently, bypassing the need for extensive computations required by the detailed 
model. This significantly reduces computational time and resources, making it particularly 
valuable in scenarios where running full-scale simulations for every possible input combination is 
impractical due to time or resource constraints. 
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In this context, the proposed CHySwash methodology aims to automate the search for the optimal 
combination of calibration coefficients extending the capabilities of the HySwash metamodel. The 
process begins with case selection algorithms, utilizing the LHS technique to create a synthetic 
database of nearshore wave conditions. Subsequently, the MDA (Camus et al., 2011b) is employed 
to select a reduced number of representative cases. These selected conditions are dynamically 
downscaled using SWASH. The output variables then undergo PCA to reduce their dimensionality 
while preserving spatial structure. Finally, RBFs are used to create an interpolation function that 
models new nearshore conditions and predicts their hydrodynamics evolution along the cross-
shore profile. Numerical validation is conducted through k-fold cross-validation.  
 
Once we have the interpolation surface created from a synthetic case library, we can use it to 
obtain the response evolution of various variables along our profile for a non-modeled 
combination of input variables. Utilizing this feature, we will reconstruct the sea states measured 
by the offshore sensor C01 with the objective of reproducing and comparing the numerical 
evolution with the actual sensor measurements to optimize the combination of calibration 
coefficients. This process ensures precise calibration, systematically adjusting coefficients to 
accurately reflect observed conditions on the reef. This general methodology of the proposed 
metamodel is shown in Figure 9. 
 
The metamodel initiates with synthetic generation and case selection in Section 3.2, focusing on 
the 5 variables chosen in Section 3.1. Section 3.3 follows, detailing the numerical model employed 
for simulating wave-reef interactions. Subsequently, Section 3.4 conducts comprehensive analysis 
and results reconstruction using techniques such as PCA and RBF interpolation. These methods 
reduce data dimensionality and establish an interpolation surface to accurately predict the 
evolution of output variables like Hrms and HsIG along the reef profile. Next, Section 3.5 employs 
K-fold cross-validation to evaluate the metamodel's generalization and reliability across diverse 
input scenarios. Finally, Section 3.6 focuses on model calibration using offshore sensor data to 
optimize coefficients such as Cf and Cr. This step aims to improve the precision of predicting Hrms 
and HsIG along the reef profile. 
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Figure 9. Flow chart of the proposed CHySwash metamodel. (Source: Created by the author). 
 



Automatic Calibration of Hydrodynamic models for Fringe Reefs   
Pablo Zubía Palazuelos 
October 2024 

23 

 

 

3.1. Parameterization 
 
It is essential to carefully select the parameters that will feed into the presented metamodel. The 
numerical model SWASH is designed to solve the Navier-Stokes equations numerically, relying on 
key hydrodynamic boundary conditions. Drawing from previous research on hydrodynamic 
modeling, it has been proven that main boundary conditions to solve wave processes encompass 
Hs, Hs/L0, and offshore WL. These variables are essential for the initial setup of the model.  
 
However, when it comes to simulating the complex process of wave breaking in the nearshore 
zone, SWASH requires additional inputs to accurately reflect real-world conditions. The model 
alone cannot determine these parameters, necessitating user-defined inputs. Therefore, we also 
include the two critical coefficients responsible for governing wave breaking and energy 
dissipation: the Cr and the Cf. Proper calibration of these coefficients is crucial for the model to 
realistically simulate wave behavior and energy dissipation in coral reef environments.  
 
3.1.1. Hydrodynamic parameters 
 
Waves and tidal oscillations are the most relevant predictive offshore hydrodynamic variables for 
flooding (Pearson et al., 2017). These variables include short-term (i.e., local wind waves, distant-
source swells) and long-term (i.e., tides, surges, mean sea level, increasing sea level) processes. 
The metamodel parameters that define the offshore wave and water level conditions are the Hs, 
Hs/L0, and WL. In this manner, to commence the algorithm execution, it is pivotal to acquire 
representative parameter combinations of the hydrodynamic model.  
 

• Significant Wave Height. This is defined as the average height of the highest one-third of 
waves during a specific time period. It provides a measure of the energy and intensity of 
the wave conditions. 
 

• Water Level. This refers to the elevation of the water offshore relative to an established 
reference point, in this case, the local mean sea level.  

 

• Wave steepness. The wave slope is calculated by dividing the significant wave height (Hs) 
by the dominant wavelength (Lo). This parameter is related to the wave period. 

 
The reason for choosing wave steepness instead of directly using the wave period is to produce 
physically plausible combinations of wave heights and periods. By sampling the wave steepness, 
we avoid generating unrealistic scenarios such as very high waves with short periods or very low 
waves with long periods. This approach ensures controlled and realistic combinations of wave 
height and period. The relationship between wave steepness and the wave period is demonstrated 
through the following formula: 
 

𝑇𝑇 = �
2𝜋𝜋 ·  𝐻𝐻𝐻𝐻

𝑔𝑔 ·  (𝐻𝐻𝐻𝐻/𝐿𝐿𝐿𝐿)
      (Eq. 1) 

T : wave period 
Hs : significant wave height 
g : gravitational constant 
Hs/Lo : wave steepness 
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3.1.2. Calibration parameter 1: Wave Breaking Coefficient 
 

Once the hydrodynamic variables are defined, it is necessary to establish the wave breaking 
coefficient for the SWASH model. This coefficient helps determine when wave breaking starts. In 
this numerical model, it is described as follows: If the rate of change of the free surface elevation 
with respect to time exceeds a certain value related to this coefficient, the waves are considered 
to be breaking (Delft University of Technology, n.d.). The mathematical expression for this is: 
 

𝜕𝜕𝜁𝜁 
𝜕𝜕𝑡𝑡

>  𝐶𝐶𝐶𝐶 ·  𝑔𝑔ℎ      (Eq. 2) 

 
𝜕𝜕ζ/𝜕𝜕𝑡𝑡 : rate of change of the free surface elevation. 
Cr : the wave breaking coefficient. 
𝑔𝑔 : the acceleration due to gravity. 
ℎ : the water depth. 

 
By default, SWASH uses a value of 0.6 for this coefficient (Delft University of Technology, n.d.), 
which is generally considered valid for most simulations. However, in our study, we will treat it as 
a calibration parameter, varying it from 0.4 to 0.8. A higher Cr value means that waves require a 
steeper slope on the water surface to break. Conversely, a lower Cr value indicates that waves can 
break even with a gentler slope. 
 

3.1.3. Calibration parameter 2: Friction coefficient 
 

The Cf describes the resistance to water flow due to the seabed. The rougher the seabed surface, 
the higher the friction, which consequently reduces the flow velocity. This coefficient is vital for 
predicting water flow behavior, velocity distribution, and water depth under various conditions. 
Playing a significant role in energy dissipation, this coefficient affects the wave breaking process. 
Higher friction results in greater energy loss as waves travel, leading to changes in wave height 
and potentially altering the location and intensity of wave breaking. 
 
In SWASH, the default value for this coefficient is 0.002. However, we will modify this default value 
for the area within our study profile that is covered by coral structures (Section 3.3.1). 
 

3.2. Sampling and selection 
 

The first step in implementing our metamodel involves generating and selecting specific 
representative cases that combine the variables previously identified. These combinations will 
accurately simulate realistic sea states in SWASH. Therefore, our task is to create realistic 
combinations of these variables to feed into the numerical model later on. 
 
3.2.1. Sampling technique: Latin Hypercube Sampling (LHS) 
 

Firstly, to generate all these potential realistic cases from which we will subsequently feed Swash, 
the initial algorithm we are going to employ is LHS. This algorithm is a statistical technique 
designed to efficiently select parameter values across multiple dimensions while ensuring 
controlled randomness in the sampled data. To implement this technique, we start by establishing 
the limits for each variable. Once each variable has its limits defined, the Latin Hypercube 
Sampling method is applied to generate a set of synthetic cases. This sampling method is a type of 
stratified Monte Carlo technique, which demands less computational effort and time consumption 
than Monte Carlo simulations. 
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LHS operates in a manner that produces a sample size N from the n variables by dividing their 
correspondent ranges into N non-overlapping, equally probable intervals. From each interval, a 
value is picked attending to the probability density that defines it. This procedure is carried out N 
times for each variable, thus having n sets (one per variable) of N values (one per interval). These 
N values of a variable are paired with the N values of another variable randomly, and so forth, until 
reaching the 𝑛𝑛𝑡𝑡ℎ variable. In this way, a set of n · N tuples are constructed. 
 
Below in Figure 10 is a two-dimensional example of how LHS works. The grid shows the number 
of regions for each variable, in this case, we have x and y. A random selection is made for the first 
case, represented by the green point. Any combination involving the same values of x or y is then 
prevented from being selected again. Subsequently, another case is selected, represented by the 
red point, and the corresponding values of x and y are blocked again from being chosen in future 
iterations. This process continues consecutively until the entire space is covered. Therefore, the 
sample size will match the number of partitions of the variables. 
 

 
Figure 10. Two-dimensional example of the Latin Hypercube Sampling. Axes of the graph without units.  

(Source: Méndez, 2024). 
 
As mentioned, it is necessary to establish the limits of the different variables to begin generating 
the cases. In the case of hydrodynamic variables, aiming to set realistic maximum and minimum 
limits, data from sensor C01 is utilized, as it is located offshore, thus providing measurements 
closer to offshore reality. Accessing the recorded data from this sensor, including Hs, Tp, and WL, 
allows us to identify the maximum and minimum limits registered during the recording period. 
Subsequently, the minimum and maximum values of Tp are transformed into wave steepness with 
their corresponding Hs values to generate physically realistic cases, as explained earlier. 
 
On the other hand, to establish the limits of Cr, referring to the Swash manual, it sets the default 
Cr value at 0.6 (Delft University of Technology, n.d.). However, to broaden the range of study for 
this coefficient, we will widen the range from 0.4 to 0.8. Finally, concerning the Manning friction 
coefficient, after consulting various sources, an interval is established ranging from 0.01 to 0.25 
(Karim and Nandasena, 2023 ; Liu et al., 2023). The maximum and minimum limits for each of the 
variables are shown in Table 2. 
 

Variable Boundary Values 
Hs 
Hs/Lo 
WL 
Cf 
Cr 

[0.15, 1.60] m 
[0.0005, 0.009] m/m 
[-0.6, 0.356] m 
[0.025, 0.20] 
[0.40, 0.80]  

Table 2. Upper and lower boundary values used for each variable. 
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Once the limits for each variable are defined, the LHS is applied to generate a set of synthetic 
cases. Initial samples generated for the study area consist of N = 10000 hourly sea states. 
 
3.2.2. Selection technique: Maximum Dissimilarity Algorithm (MDA) 
 
The high computational cost of propagating the entire dataset of N = 10000 cases produced by 
LHS necessitates the use of statistical tools to reduce the data set to a manageable number of 
representative cases for hybrid downscaling. For this purpose, the MDA is implemented. 
 
Given a data sample X = { 𝑥𝑥1, 𝑥𝑥2, …  , 𝑥𝑥𝑁𝑁} consisting of N n-dimensional vectors, a subset of M vectors 
{𝑣𝑣1, 𝑣𝑣2, …  , 𝑣𝑣𝑀𝑀} representing the diversity of the data is obtained by applying this algorithm. The 
selection starts initializing the subset by transferring one vector from the data sample {𝑣𝑣1}. The 
remaining M-1 elements are selected iteratively by calculating the dissimilarity between each data 
point left in the database and the elements already in the subset. The most dissimilar data point is 
then transferred to the subset. Dissimilarities between points are computed using Euclidean 
distance (Eq. 3). The process finishes when the algorithm reaches M iterations. 
 

𝐷𝐷𝑖𝑖 = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�; 𝑖𝑖 = 1, … ,𝑁𝑁 → max{𝐷𝐷𝑖𝑖 ; 𝑖𝑖 = 1, … ,𝑁𝑁}
𝑁𝑁−1

𝑗𝑗=1

     (Eq. 3) 

 
Additionally, the algorithm prioritizes exploring the edges of this space, where combinations of 
extreme wave parameters are located. By focusing on the edges of the multidimensional space, 
MDA effectively represents the parameter population on the boundary, which ensures that the 
selected subset is suitable for accurate interpolation, minimizing the need for extrapolation, which 
tends to be less reliable. 
 

 
Figure 11. Example of a two-dimensional MDA algorithm showing the selection of points (blue) inside  

the big population defined by two variables (red). (Source: Méndez, 2024). 
 

Figure 11 illustrates an example of the MDA algorithm in action. In this scenario, from a total 
population of N red points, we aim to select M representative points, which in this case is 16. The 
selection process begins with an initial subset M containing just one vector, 𝑣𝑣1. From this starting 
point, the algorithm calculates the most dissimilar point in the population based on Euclidean 
distances. This new vector, point 2, is added to the subset, which now consists of 𝑣𝑣1 and 𝑣𝑣2.  
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The algorithm then identifies the most dissimilar point relative to the two points in the subset, 
resulting in the selection of point 3, which is subsequently added to the subset. This process is 
repeated so that we obtain the desired M number of points. 
 
In our case, given the data sample generated by LHS consisting of N (= 10000) n-dimensional (= 5) 
vectors, MDA is used to obtain a subset of M = 700 vectors that represent the diversity of the data, 
as we can see in Figure 12. 
 

 
 

Figure 12. Multidimensional distribution of the LHS synthetically generated dataset (Blue) and the MDA-selected cases 
(Red). In this case for a total of 5 variables: Hs, Hs/Lo, WL, Cr and Cf. (Source: Created by the author). 
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3.3. Numerical Model SWASH 
 
Once the hydrodynamic cases to be numerically simulated have been selected through the MDA 
algorithm, we proceed to launch these cases in SWASH. It is a versatile numerical tool designed to 
simulate a non-hydrostatic, phase-resolving wave model capable of simulating waves from deep 
waters to the shoreline, modeling wave breaking, bottom friction, wave- induced setup and runup, 
and the generation and propagation of infragravity waves (Delft University of Technology, n. d.).  
 
The accuracy of the model is comparable to that of lower order Boussinesq models and has been 
widely used for modeling wave dynamics and inundation on sandy beaches and coral reefs (Liu 
et al., 2021). Leveraging this powerful tool, the wave transformation along the coral reef was 
simulated using one-dimensional SWASH simulations. 
 
It's important to note that while the discussion regarding SWASH and its specific applications is 
presented in a general context, the main focus of this work does not delve into specific details of 
SWASH. For a deeper and more detailed understanding, it is recommended to consult relevant 
literature, including the SWASH user manual. This explanation remains concise to avoid 
unnecessary elaboration, as the primary focus is directed towards other aspects of the metamodel. 
 
3.3.1. Preliminary Setup and Configuration 
 
The following section presents the key and relevant information that must be considered and 
introduced before launching SWASH. This information is crucial for our model. 
 
1.- Cross-shore profile. The propagation of sea states will occur from the offshore position to the 
coastal zone, corresponding with the bathymetry presented in Section 2.3, Figure 7. 
 
2.- Bottom Friction. As we know by this stage of the project, the primary goal is to characterize 
the surface of the reef covered by coral and determine its Cf. SWASH allows users to activate 
bottom friction, and in the default option, the Manning’s coefficient is considered. Our next step 
is to assign the friction coefficient to the specific zones within the computational grid of SWASH.  
 
The friction coefficient values selected by the MDA, representing the coral friction coefficient for 
each case, need to be applied accurately. To do this, we must first identify the areas of the reef 
profile covered by coral structures. Using the Allen Coral Atlas (Allen Coral Atlas, n.d.), we can 
access the benthic map of the study area, which provides detailed information on the seabed's 
distribution and characteristics. This data enables us to establish the start and end points of the 
coral structures within our cross-shore profile. The Figure 13 illustrates the designated coral 
region, marked in pink, where the selected Cf values of the 800 selected cases will be applied to 
the numerical SWASH grid. 
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Figure 13. Coral region (shown in pink) delineated in the cross-shore profile used for the numerical simulations in 
SWASH. Reference is the local mean sea level. (Source: Created by the author). 

 
The Allen Coral Atlas benthic map also offers information about the seabed for the remainder of 
the profile, identifying sandy areas in the offshore zone and rocky areas in the reef flat zone. 
However, our focus is not on characterizing the friction coefficient for these regions. Therefore, 
we will apply the Cf only to the coral-covered region and use the SWASH default bottom friction 
value of 0.002 (Delft University of Technology, n.d.) for the rest of the grid profile. 
 

3.- Boundary Conditions. The boundaries of the computational grid in SWASH are either land, 
beach or water. In our case, the wave condition is imposed on the west boundary of the 
computational domain, so that the wave propagation is pointing eastward. To simulate entering 
waves without some reflections at the wavemaker boundary, a weakly-reflective boundary 
condition allowing outgoing waves is adopted. Here, the boundary conditions are defined as 
irregular unidirectional waves by means of 1D spectrum. Both the initial water level and velocity 
components are set to zero. 
 

4.- Sea States. Once the representative M cases defining our model are selected, we proceed to 
calculate the different sea states of the waves at the start of the profile using a single-peaked 
unidirectional TMA spectrum. The TMA spectrum (Bouws et al., 1985), is a generalized version of 
the JONSWAP spectrum for offshore waves and is valid for waters of any depth. It was designed 
to modify the spectral shape as water depth decreases, limiting the energy of low-frequency waves 
in shallower waters. 
 

To create the TMA spectrum, we multiply the JONSWAP spectrum by a function that depends on 
wave frequency and water depth. For our model, considering an initial depth of 25 meters, we 
transform the JONSWAP spectrum into a TMA spectrum and then rescale it to maintain constant 
energy. This process provides a wave spectrum that is more suitable for simulating the specific 
conditions of our hydrodynamic model in the study area. 
 

5.- Wind and turbulence. The influence of wind action and turbulence are not considered. 
 

6.- Simulation Configuration. In terms of certain parameters that indicate the resolution of the 
simulation, we considered several aspects: 
 

• Simulation Time. The simulation time is set to 2 hours to ensure that the generation of 
infragravity energy is well modeled. 

• Horizontal Resolution. The number of nodes per wavelength dictates the horizontal 
resolution of the numerical model's mesh. For instance, if we consider a value of 60 nodes  
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per wavelength, and the modeled wavelength is 200 meters, the mesh resolution is 3.3 
meters. The resolution therefore varies for every simulation with the case wavelength. 

• Vertical Resolution. Another important parameter is the number of vertical numerical 
layers into which the water column is divided, over which the equations will be solved. 
These layers are in sigma coordinates, so along the length of our profile, the number of 
layers remains constant, adapting to changes in bathymetry while maintaining a constant 
layer thickness. 

 
Based on these three aspects, a sensitivity analysis was conducted to see how they affect the 
numerical simulation using SWASH. Below, Table 3 summarizes the parameters used for each 
simulation, along with graphs showing the output of the numerical model. In this case, the 
simulation corresponds to the conditions measured by the sensors at hour 450. The selection of 
the hour was completely random. 
 

Case 
 

Simulation time 
(sec) 

Horizontal Mesh 
Resolution: number of 
nodes per wavelength 

Number of vertical 
layers in the 

numerical model 

Case resolution 
time (sec) 

Graph Color 

1 7200 30 2 182.36 Blue 
2 7200 60 2 520.37 Yellow 
3 7200 30 3 280.08 Green 
4 7200 60 3 794.78 Red 
5 7200 30 5 441.92 Purple 
6 7200 60 5 1374.43 Brown 

 

 
Table 3. Summary of simulation parameters and their corresponding outputs. Each case varies by simulation time, 

horizontal mesh resolution (nodes per wavelength), and the number of vertical layers in the numerical model. Graph 
colors represent different parameter combinations. (Source: Created by the author). 

 
Based on the graph shown, we can observe that, taking into consideration that the vertical scales 
are not of the same order, the variations in Hrms are not significantly different from each other. 
This magnitude is expressed in centimeters (ranging from 5 to 50 centimeters), and the differences 
between simulations are in millimeters. Therefore, Hrms does not provide much clarity on the 
ideal numerical parameters to use. If we now focus on the SWASH output for HsIG, we can see that, 
with an order of magnitude in millimeters (ranging from 1 mm to 10 mm), there are more noticeable 
differences between cases, particularly in the area closer to the coast, after the wave breaks. Case 
6 (brown) best matches the sensor measurements. 
 
As a result, the selected combination of parameters includes a simulation time of 2 hours, a 
horizontal resolution of 60 nodes per wavelength, and a vertical resolution of 5 layers. We consider 
it not worthwhile to increase the number of vertical layers to 10, for example, because it would 
significantly increase the simulation time without a corresponding significant improvement in the 
results. 
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3.3.2. Analysis of SWASH Output Variables for Model Calibration 
 

The primary output variable generated by SWASH include the time series of water level along the 
profile. This output serves as crucial indicator of the hydrodynamic processes impacting the reef. 
From this SWASH output, we compute various other key variables, particularly the three variables 
chosen for model calibration in our study: Hrms, HsIG, and the Setup (initially chosen for 
calibration but subsequently discarded due to issues that will be discussed later). These variables 
are essential for capturing both low-frequency and high-frequency wave dynamics across the 
spectrum. 
 

1.- The root-mean-square wave height (Hrms). It provides an average measure of wave heights, 
essential for understanding the overall wave energy. It is calculated spectrally using the formula: 
 

𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻 =  √8 𝐻𝐻𝐿𝐿 = √8 𝜎𝜎2       (Eq. 4) 
 

mo : zero moment of the wave spectrum. 
𝜎𝜎2 : the standard deviation of the water surface. 

 

2.- The significant infra-gravity wave height (HsIG). It is crucial to understand the impact of low-
frequency waves on flooding along reef-lined coasts, influenced by resonance modes (Gawehn et 
al., 2016). To calibrate HsIG, we include additional frequency band components extracted from the 
power spectra of the water level signal. In this case, we use a Python library to apply the Welch 
function to estimate the power density of the water level time series, specifically targeting the 
frequency band of 0.004 – 0.04 Hz. 
 

3.- The mean wave setup (𝜼𝜼�). It is calculated by averaging the water level and subtracting the 
offshore water level. Initially intended for model calibration, it has posed challenges due to 
inconsistent bathymetric data alignment with sensor depth readings, preventing accurate 
computation of the residual (water level minus tide). While the model yields reasonable wave setup 
results (Stockdon et al., 2006), significant differences in sensor depths and the uncertainties in 
our bathymetric network prevent us from using this variable for calibration, as these differences 
can induce errors greater than the setup value itself for the analyzed sea states. Moreover, 
considering that the sensors themselves have a measurement uncertainty of 1 cm (Nortek, 2024), 
we will present the setup output later, acknowledging the model's output as good and acceptable 
but not suitable for calibration due to the aforementioned issues. 
 

3.4. Reconstruction : Principal Component Analysis (PCA) and Radial Basis 
Function (RBF) 
 

Based on the M-selected inputs and their M-transformed SWASH-1D outputs, we can approximate 
the spatial relationship between input and output using an interpolation surface. This surface 
allows for estimating output variables for input cases combinations that have not been modeled. 
We employ RBF interpolation, which is particularly effective for high dimensional and irregularly 
distributed data (Alfeld, 1989). For a new vector of input parameters V, the RBF interpolation 
returns a univariate metamodel output y(V).  
 
This applies to any SWASH output evaluated at a specific location in the profile. However, to 
reconstruct the evolution of spatial variables, such as Hrms or HsIG in our case, we would need to 
fit as many RBFs as there are target locations in the profile. This can significantly increase 
computational time and may lead to inconsistencies between adjacent points.  
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Therefore, we use PCA before RBF interpolation to reduce the dataset's dimensionality while 
preserving spatial patterns. PCA projects the original data onto a new space, capturing the 
maximum variance in the sample data. This new space consists of eigenvectors (empirical 
orthogonal functions, EOFs) and the transformed components of the original data over the EOFs, 
known as Principal Components (PCs). The EOFs capture the major oscillation patterns, while the 
PCs represent their variability across the M cases. By selecting the number of EOFs that define a 
desired percentage of explained variance, we achieve dimensionality reduction. 
 
For our project, we decided to retain the principal modes that explain 99.8% of the variance. After 
applying PCA to the SWASH output quantity y1(x; Hrms) and y2(x; HsIG) of dimensions P x M, where 
P is the number of spatial locations (x) along the studied reef profile, the originally modeled output 
for each case can be obtained as a linear combination of EOFs and PCs following: 
 

𝑦𝑦(𝑥𝑥;𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻) =  𝑦𝑦�(𝑥𝑥) + �𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝑥𝑥) · 𝑃𝑃𝐶𝐶𝑛𝑛(𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻)
𝑀𝑀

𝑛𝑛=1

      (Eq. 5) 

 
where 𝑦𝑦�(𝑥𝑥) is the mean of the output variable, in this case Hrms, along the M cases. As the 
interpolated metamodel output must be univariate, we use RBF interpolation to reconstruct the 
reduced set of PCs, one by one.  
 
The general RBF interpolation surface is of the form: 
 

𝑅𝑅𝑅𝑅𝐸𝐸(𝑉𝑉) = 𝑝𝑝(𝑉𝑉) + �𝑎𝑎𝑖𝑖 Φ (‖𝑉𝑉 − 𝑉𝑉𝑖𝑖‖)
𝑀𝑀

𝑖𝑖=1

       (Eq. 6) 

 
where p(V) is a linear polynomial with coefficients 𝑏𝑏 = {𝑏𝑏0,𝑏𝑏1, …  , 𝑏𝑏𝑚𝑚}, m is the dimension of the 
input parameters, ‖ • ‖ is the Euclidean norm, and 𝜙𝜙 is a Gaussian function with a user-specified 
parameter (ε) that modifies the shape of the distributions. This is a commonly used function that 
decreases exponentially with distance, expressed by the following formula:  
 

𝜙𝜙(𝐶𝐶) = 𝑒𝑒−(𝜖𝜖⋅𝑟𝑟2)      (Eq. 7) 
 
As mentioned, ε controls the rate of decay of the influence of each center. As shown in the Figure 
14, we observe how the shape of the function changes based on the value of ε applied to the 
Gaussian function. 
 

 
Figure 14. Effect of the value epsilon in the shape of the interpolation surface. (Source: Méndez, 2024). 
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Here, we adopt the algorithm proposed by Rippa (1999) to obtain the optimal ε parameter. The 
coefficients 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖 need to be found for C principal components that explain the defined 
variance (𝑃𝑃𝑐𝑐1,𝑃𝑃𝐶𝐶2, …  ,𝑃𝑃𝑐𝑐𝑐𝑐). Therefore, the estimated spatial field of the response function is: 
 

𝑦𝑦(𝑥𝑥;𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻) ≈ 𝑦𝑦�(𝑥𝑥) + 𝐸𝐸𝐸𝐸𝐸𝐸1(𝑥𝑥) • 𝑃𝑃𝐶𝐶1(𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻) + ⋯+ 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐(𝑥𝑥) • 𝑃𝑃𝐶𝐶𝑐𝑐(𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻)        (Eq. 8) 
 
Once the coefficients are obtained, multidimensional RBF interpolation can be used to replace the 
SWASH model, enabling the estimation of the principal components of various output quantities 
across the domain for unmodeled forcing conditions. 
 
What we will do next in Section 3.6 is use this interpolation surface subsequently to reconstruct 
all the sea states recorded by the sensors, in order to carry out the corresponding calibration. The 
computational time saved is enormous, as we can instantly reconstruct a specific combination of 
the 5 variables (Hs, Hs/Lo, WL, Cf, and Cr) and obtain the spatial evolution of the selected output 
variables for calibration: Hrms and HsIG. 
 

3.5. Numerical validation : K-fold cross validation 
 
K-fold cross-validation is a widely used technique to assess the performance of a machine learning 
model. This method is particularly useful when we have a limited amount of data, as it provides 
insights into how well the model will perform on unseen data. 
 
In k-fold cross-validation, the dataset is divided into 'k' equally sized folds or subsets. For instance, 
if we have 100 data points and set k=5, the data is split into 5 folds, each containing 20 data points. 
The process involves 'k' iterations of training and testing. In each iteration, 'k-1' folds are used to 
train the model, and the remaining fold is used to test it. For example, in the first iteration, the 
model is trained on folds 1 to 4 and tested on fold 5. In the second iteration, the training is done 
on folds 1, 2, 3, and 5, and testing on fold 4. This process continues until each fold has been used 
exactly once as the test set. 
 
3.5.1. Assessment of Modeled versus Reconstructed Data Accuracy 
 
Using our dataset of 700 cases, we implement the k-fold algorithm to evaluate our model's 
performance. The 700 cases are divided into 5 groups, each containing 140 cases. Each group is 
then reconstructed with the other 4 remaining groups, meaning that the 140 cases are 
reconstructed using the remaining 560 cases. This process is repeated 5 times, ensuring that all 
cases are used for reconstruction. This allows us to create two datasets: one corresponding to 
cases modeled directly by the numerical model and another corresponding to cases reconstructed 
using k-fold cross-validation. We can then compare the evolution of the variables studied in both 
the modeled and reconstructed cases.  
 
In Figure 15, it is represented the evolution of Hrms, HsIG and Setup for the first 20 cases selected 
by the MDA algorithm, comparing the modeled results to the reconstructed ones. As we can 
observe, the reconstruction of the cases is extremely well executed and almost perfectly matches 
the modeled results. This indicates that our model performs exceptionally well, and the 
reconstructions using our model provide highly accurate solutions for unseen data. 
 
 



Automatic Calibration of Hydrodynamic models for Fringe Reefs   
Pablo Zubía Palazuelos 
October 2024 

34 

 

 

 

 

 
 

Figure 15. Comparison of modeled (red line) versus reconstructed (blue line) for both output variables Hrms and HsIG, for 
the first 20 cases of the MDA. 
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3.5.2. Minimum Number of Cases: RMSE Analysis Based on Case Count 
 
To determine the minimum number of cases required to establish an effective metamodel, we 
employ again k-fold cross-validation with k = 5. We conduct multiple iterations with varying case 
counts. Initially, we use 50 cases, dividing them into five folds and performing k-fold validation to 
obtain the mean RMSE. We then incrementally increase the number of cases by 50, repeating the 
process for each case count until we reach 700 cases. This iterative approach allows us to derive 
mean RMSE values corresponding to each case quantity used for reconstruction. 
 
Naturally, as the number of cases used for reconstruction increases, the interpolation surface 
becomes more accurate, resulting in a decrease in RMSE. This trend continues until further 
increments produce minimal reductions in error. This analysis helps us identify the minimum 
number of MDA-selected cases needed for optimal interpolation. 
 

 
Figure 16. K-fold cross validation on Hrms, HsIG and Setup, as a function of the number of cases that set up the 

metamodel. The point is the mean RMSE value, and the error bars are the standard deviation of the k-folds. 
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Figure 16 illustrates the RMSE as a function of the number of cases for the three variables studied 
in this project (Hrms, HsIG, and Setup). Our observations reveal that the accuracy of the metamodel 
improves with an increasing number of cases, as evidenced by the decreasing RMSE and 
associated uncertainty. Additionally, we see that after approximately 300 cases, the reduction in 
error becomes progressively smaller, indicating that a good interpolation surface can be 
established with just the initial 300 MDA cases. 
 
However, given that we have 700 MDA cases available, we will use them to ensure the highest 
accuracy, as both the mean and standard deviation are minimized at this point. We chose to work 
with 700 cases due to computational resource constraints, as executing a larger number of cases 
would require significant memory and the available storage space was limited. Consequently, we 
have determined that using 700 MDA cases is optimal for applying the hybrid method across all 
output magnitudes. 
 

3.6. Automatic Calibration 
 
Once our model has been validated and we have access to the interpolation surface, which allows 
us to obtain the spatial evolution of the variables used for calibration (Hrms and HsIG) for any 
combination of the 5 input parameters (Hs, Hs/Lo, WL, Cf, and Cr), our next step is to reconstruct 
the sea states measured by the sensors using this interpolation function. 
 
The offshore sensor C01 has recorded a total of 2064 hours, during which values for Hs, WL, Tp 
and numerous other variables were obtained. Our approach involves constructing a dataset 
comprising these 2064 sea states measured by the offshore sensor. These sea states will be input 
into the interpolation function along with different combinations of Cf and Cr to obtain the 
evolution of Hrms and HsIG along the profile. Afterwards, the reconstructed evolution using RBF 
interpolation will be compared with the actual evolution measured by the sensors to determine 
the optimal combination of Cf and Cr. The goal is to identify the combination that minimizes the 
error metric that will be presented next (Eq. 12), ensuring that the modeled evolution of both, Hrms 
and HsIG, closely matches the observed data. 
 
For this calibration, we will employ two methods. The first method is a simple approach known as 
Grid Search, where the user selects the values of the coefficients Cf and Cr for each 
reconstruction. On the other hand, we will also use an automatic alternative method using the 
SCE optimization algorithm, which offers significant improvements in accuracy and efficiency 
over traditional techniques. In this automatic method, the SCE algorithm iteratively searches for 
the optimal combination of coefficients without requiring the user to provide different values. By 
specifying the parameter space to explore, the algorithm adjusts these combinations automatically 
until it finds the optimal solution. 
 
3.6.1. Error metric 
 
It is clear that we are engaged in hyperparameter optimization, focusing specifically on identifying 
the optimal combination of parameters — namely, Cf and Cr — within our modeling framework. 
Our goal is to systematically explore a defined subset of potential Cf and Cr values to enhance the 
simulation accuracy of variables such as Hrms and HsIG. This process entails iterating through 
various combinations of these coefficients and evaluating how well they replicate real-world 
observations within our reef ecosystem.  
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To assess the fidelity of each combination in replicating the actual evolution of these variables, we 
calculate the error associated with each combination. The primary objective is to minimize this 
error, thereby achieving the most accurate representation of variable evolution along the profile. 
Here are the steps followed to compute the total error associated with each combination.  
 
Initially, we compute the Root Mean Square Error (RMSE) for each sensor and variable : 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸(𝑚𝑚 ; 𝑣𝑣𝑣𝑣𝑟𝑟) = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=0

        (Eq. 9) 

 
m : denotes the specific sensor for which RMSE is being calculated (total of 19 sensors). 
var: represents the specific variable for which RMSE is being calculated: 𝐻𝐻rms, HsIG, and Mean Setup. 
n : is the total number of measurements by each sensor (ranging between xxx and 2064 measurements). 
𝑦𝑦𝑖𝑖 : stands for the real measurement of the studied variable at instant 𝑖𝑖. 
𝑦𝑦�𝑖𝑖 : represents the modeled value of the studied variable at instant 𝑖𝑖. 

 
After obtaining the RMSE for each sensor, the next step is to average the RMSE values from all 
sensors along the profile to get a representative total error for the specific combination.  
 

𝐸𝐸𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶(𝑣𝑣𝑣𝑣𝑟𝑟) =  
1
𝐻𝐻
�(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖)
𝑚𝑚

𝑖𝑖=0

     (Eq. 10) 

 
m : is the total number of sensors distributed along the profile 
var : represents the specific variable for which RMSE is being calculated: 𝐻𝐻rms, HsIG, and mean setup. 

 
In summary, the process involves first calculating the RMSE for each sensor, then, averaging these 
errors across all sensors to obtain a final error value along the profile. Next, the error 
corresponding to each variable is summed, resulting in a unique total error value associated with 
each combination of coefficients. 
 

𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑇𝑇 𝑐𝑐𝐿𝐿𝐻𝐻𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝐿𝐿𝑛𝑛 𝑒𝑒𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶 =  �𝐸𝐸𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶(𝑣𝑣𝑣𝑣𝑟𝑟)      (Eq. 11) 

 

Having broken down the total error function for a specific combination into parts, we now present 
the entire function to be optimized. 

𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑇𝑇 𝐶𝐶𝐿𝐿𝐻𝐻𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝐿𝐿𝑛𝑛 𝐸𝐸𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶 =  �  
1
𝐻𝐻
�   �

1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=0

𝑚𝑚

𝑖𝑖=0

2

𝑣𝑣𝑣𝑣𝑟𝑟=1

      (Eq. 12) 

 
3.6.2. Grid Search automatic calibration 
 
Grid Search involves defining a grid of potential values for each parameter. The performance of 
each model is typically evaluated using a predefined assessment metric. In our case, we will be 
using the error metric discussed earlier (Eq. 12). During this calibration process, we tested various 
realistic combinations of Cf and Cr to observe how the reconstructions of the variables subject to 
calibration would appear. In total, we explored 189 points in the parameter space, with Cf ranging 
from 0.1 to 0.2 in increments of 0.05, and Cr ranging from 0.4 to 0.8 in increments of 0.05. Figure 
17 displays all the combinations of Cf and Cr for which reconstructions were performed.  
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Figure 17. Exploration of various combinations of Cf and Cr in the study space. Each point in the space corresponds to a 
combination for which the corresponding reconstruction of the variables to be calibrated has been performed, followed 

by the calculation of the error. (Source: Created by the author) 
 
This approach yields output values for Hrms and HsIG at each point along our profile for every 
combination. In this way, by knowing the reconstructed evolutions of both of these variables, 
along with the actual measured evolutions, the error is computed following the process shown in 
Figure 18. This leads to the error surfaces shown in Figure 20, which are detailed in the following 
section. 

 

 
Figure 18. Grid Search automatic calibration workflow. 

 
3.6.3. SCE-based automatic calibration 
 

Metaheuristic algorithms provide an efficient means to search a large solution space and identify 
near-optimal solutions for problems with multiple variables, nonlinear constraints, and complex 
objective functions (Amini et al., 2024). In the present project, a key innovation is the application 
of a metaheuristic optimization algorithm for calibrating the friction and breaking coefficients. 
This enables efficient automated searches to identify optimal values that align with measurements. 
We found that the optimization algorithms rapidly converge to precise coefficients, enhancing 
accuracy and overcoming the limitations of Grid Search calibration, which can be laborious and 
inconsistent. 
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In a Grid Search, the search space is defined by establishing the maximum and minimum limits of 
each variable and the interval between these limits to perform a point sweep. However, with this 
algorithm, there is no need to specify the interval; it will directly search for the optimum with 
decimal precision, which would be very costly and time-consuming to achieve using a Grid Search 
calibration due to the vast number of combinations that would need to be tested.  
 
In this way, there are two fundamental reasons for utilizing this algorithm. First, it allows for rapid 
identification of the optimal solution with greater precision than Grid Search methods. Second, it 
can be adapted for the calibration of additional variables, where the dimensionality of the 
calibration space increases significantly. As the number of coefficients grows, the calibration 
space expands, and Grid Search methods would require immense time and effort. In contrast, this 
algorithm efficiently handles high-dimensional spaces, swiftly offering optimal solutions and 
proving to be a powerful tool for future, more complex calibrations. 
 
SCE Algorithm  
 
The SCE algorithm is a global optimization method designed to solve complex model calibration 
problems (Duan et al., 1994). This algorithm combines several techniques to efficiently explore the 
parameter space and find the optimal solution. Here is a simple explanation of how this algorithm 
works: 
 

1. Sample Generation. First, the algorithm generates an initial set of ‘s’ points (parameters) 
randomly within the allowable parameter space. These points are generated using a 
uniform probability distribution if there is no prior information about the location of the 
global optimum.  

2. Point Ordering. The generated points are ordered according to the value of the objective 
function, so that the first point corresponds to the lowest value (in minimization 
problems). 

3. Partition into Complexes. The set of points is divided into several ‘p’ complexes. Each 
complex is a subset of ‘m’ points selected to maintain good coverage of the parameter 
space. This partitioning is done following a specific pattern to ensure diversity. 

4. Complex Evolution. Each complex evolves independently through a process called 
Competitive Complex Evolution (CCE). In this process, the points within each complex are 
iteratively adjusted to improve the value of the objective function. This adjustment is based 
on a combination of deterministic and probabilistic methods. 

5. Shuffling. Periodically, the complexes are shuffled and reorganized. This reordering 
introduces new points to each complex, helping to prevent the algorithm from getting 
stuck in local optima and promoting better exploration of the parameter space. 

 
In Figure 19, the algorithm's operation is illustrated. Initially, we have a population of 10 points 
divided into 2 complexes of 5 points each. Throughout each iteration, these points are reordered 
and adjusted in an effort to identify the minima. By the second panel, it is evident that each 
complex is nearing a minimum. While the asterisks indicate a relative minimum, the dots represent 
the absolute minimum within the studied space. Despite this, the algorithm does not stop at the 
relative minimum; instead, it persists in its search for the global optimum. This iterative process, 
involving constant reordering and adjustment, ensures a comprehensive exploration of the 
parameter space and convergence to the global minimum. 
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Figure 19. Illustration of the shuffled complex evolution (SCE) method. (Source : Duan et al., 1994) 

 
This algorithm is designed to address complex optimization problems with several key features. 
One of its main strengths is the ability to converge globally, even when multiple regions of 
attraction exist in the parameter space, allowing it to find the best possible solution rather than 
being limited to a local optimum. Additionally, this algorithm is also robust against differences in 
parameter sensitivity and interdependence, making it suitable for problems where parameters 
have varying degrees of influence on the outcome. Finally, the SCE efficiently handles high 
dimensionality in parameters, ensuring thorough exploration of the search space even in cases 
with many parameters.  
 

The effectiveness of the SCE algorithm depends on the appropriate selection of certain 
parameters, the most important being: 
 

• bl and bu: These are the lower and upper boundaries of each parameter. For the friction 
coefficient (Cf) and the wave breaking coefficient (Cr), the boundaries are between 0.1 and 
0.2, and 0.4 and 0.8, respectively. 

• ngs: This is the number of subgroups into which the initial population will be divided. Each 
subgroup independently seeks to minimize the RMSE error, increasing the probability of 
finding the global minimum error. In our case, we have divided the population into 5 
subgroups. 

• peps: This defines the stopping criterion based on the relative improvement of the 
objective function. If the improvement in the objective function (in our case, the RMSE 
error metric) is less than peps, the algorithm considers it has converged. For the current 
case, a value of 0.001 is used, meaning the algorithm will consider it has converged if the 
improvement in RMSE error is less than 0.1% between consecutive iterations. 

• maxn: This is the number of objective function evaluations to be performed. In our case, 
it is set to 100. Once this limit is reached, the algorithm will stop even if it has not yet 
converged. 
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• kstop: This defines the maximum number of evolution cycles without significant 

improvement before the algorithm is considered to have converged. With kstop = 10, if no 
significant improvement in RMSE error is observed after 10 evolution cycles, the algorithm 
will stop, assuming it has reached convergence. 

• pcento: This specifies the allowable percentage change in the objective function during 
kstop evolution cycles before the algorithm is considered to have converged. In the current 
case, a value of pcento = 0.01 is used, meaning the algorithm will consider it has converged 
if the percentage change in RMSE error is less than 1% over 10 consecutive cycles. This 
ensures the RMSE error has stabilized before the algorithm stops. 

 
For the reasons presented above, the algorithm has been selected for our work as it addresses the 
complexity of our problem effectively, being a robust and efficient tool that combines various 
optimization approaches to explore and exploit the parameter space, ensuring a high probability 
of finding the global optimum in our complex calibration problem. 
 
In the following section, we will explore the results provided by this algorithm in terms of 
obtaining the optimal combination of coefficients. Through detailed analysis of the SCE 
algorithm's output, we aim to determine the set of coefficients that most accurately mirrors the 
observed data, ensuring the model's reliability and precision in capturing the actual physical 
phenomena. 
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4. Results  
 
Following the detailed explanation of the CHySwash metamodel's functionality, we now present 
the results for our case study in Molokai where this methodology has been applied. As outlined in 
the previous section, the interpolation surface is utilized to perform reconstructions based on the 
five input parameters (Hs, Hs/Lo, WL, Cf, and Cr). The first three parameters are measured by 
sensors over a period of 2064 hours (86 days), while the latter two are the calibration coefficients. 
These two coefficients are tested by reconstructing the selected output variables, Hrms and HsIG, 
which are then compared with measurements to finally obtain the optimal values of both Cf and 
Cr. 
 

4.1. Error Surfaces and Optimal Combination 
 

After defining the points representing the 189 different combinations (Cf ranging from 0.1 to 0.2 
in increments of 0.05, and Cr ranging from 0.4 to 0.8 in increments of 0.05) (Figure 17), we 
calculated the error for each combination concerning the two output variables, resulting in the 
corresponding error surfaces. To individualize the error for each coefficient combination, the total 
error for a given combination was determined by summing the errors of the Hrms and the HsIG 
variables. The error combination is based on a sum because the errors for both output variables 
are of the same order of magnitude, allowing direct summation without the need for dimensional 
adjustment. Figure 20 shows the error surfaces for the two studied variables and the total error. 
 

 
Figure 20. Error surfaces for the variables Hrms and HsIG, and the total error. (Source: created by the author). 
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As observed, the error surfaces indicate which combinations of the wave breaking coefficient and 
coral friction coefficient yield the most accurate reproduction of hydrodynamic evolution in the 
surf zone. Based on Grid Search calibration, the optimal combination identified is Cf = 0.15 and Cr 
= 0.70. However, one of the project's objectives was also to implement the SCE algorithm for the 
automatic search of the optimal combination that minimizes the error without testing all the 
combinations shown earlier. The algorithm would directly provide the optimal combination of 
coefficients, even with greater decimal precision. Thus, by applying the SCE algorithm to find the 
optimal point, we find that the solution it offers is a Cf of 0.145 and a Cr of 0.708, resulting in a 
total error of 0.066 m. Given the greater accuracy of the latter solution, the finally adopted optimal 
combination of coefficients is: 
 

• A coral-covered zone friction coefficient of 0.145. 
• A wave-breaking coefficient of 0.708. 
 

This combination best reproduces the evolution of Hrms and HsIG along our one-dimensional 
coastal profile of Molokai, concluding that these values accurately reflect the real conditions 
controlling the area's hydrodynamics. 
 
4.2. Spatial evolution of output variables 
 
Using the adopted optimal combination, we can observe how our metamodel reconstructs the 
different variables. The following sections present the evolutions of Hrms, HsIG, and Setup along 
our profile. 
 
4.2.1. Variable 1: Hrms 
 
Figure 21 presents the reconstructions of the Hrms variable for all tested coefficient combinations. 
The light gray lines represent the full set of reconstructions for all coefficient combinations 
evaluated, while the dark gray lines show the reconstruction for the optimal coefficient 
combination (Cf = 0.145, Cr = 0.708) along our studied 1D profile. The reconstructed variable is 
displayed alongside the actual sensor measurements (red points). For illustration, we present four 
randomly selected hours from the total of 2064 measured hours. The reconstructions are highly 
accurate and closely align with the sensor measurements. 
 
4.2.2. Variable 2: HsIG 
 
Figure 22 presents the reconstructions of the HsIG variable for all tested coefficient combinations. 
The light gray lines represent the full set of reconstructions for all coefficient combinations 
evaluated, while the dark gray lines show the reconstruction for the optimal coefficient 
combination (Cf = 0.145, Cr = 0.708) along our studied 1D profile. The reconstructed variable is 
displayed alongside the actual sensor measurements (red points). For illustration, we present four 
randomly selected hours from the total of 2064 measured hours. At first glance, the reconstruction 
may seem less accurate than for Hrms, but we must consider that the values of this variable are 
centimetric. The reconstruction is quite accurate, closely matching the sensor measurements 
with errors of less than 1 centimeter, as seen in the vertical scale of the graph. 
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Figure 21. Reconstruction of the Hrms variable for the optimal coefficient combination (Cf = 0.145, Cr = 0.708) along our 

studied 1D profile. The reconstructed variable (gray line) is shown along with the actual sensor measurements (red 
points). Four random hours are displayed. (Source: Created by the author). 

 
 
 

 
 



Automatic Calibration of Hydrodynamic models for Fringe Reefs   
Pablo Zubía Palazuelos 
October 2024 

45 

 

 
 

 
Figure 22. Reconstruction of the HsIG variable for the optimal coefficient combination (Cf = 0.145, Cr = 0.708) along our 

studied 1D profile. The reconstructed variable (gray line) is shown alongside the actual sensor measurements (red points). 
Four random hours are displayed. 
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4.2.3. Variable 3: Setup  
 
As thoroughly explained in Section 3.3.2, we initially intended to use the Setup (η) for model 
calibration, but ultimately, this was not possible. Nevertheless, we believe that the model provides 
setup outputs that are indeed accurate and considered valid. 
 

 
Figure 23. Reconstruction of the Setup variable for the optimal coefficient combination (Cf = 0.145, Cr = 0.708) along our 

studied 1D profile, where the reconstructed variable is depicted by the gray line. Four random hours are displayed. 
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In Figure 23, we can observe how, for the hours 330, 622, 936 and 1115 recorded by the sensors, 
the evolution of the setup, along the profile follows a coherent trend. In all three cases, the 
setdown begins precisely when the coral friction profile starts, reaching its maximum at the fore 
reef zone.  
 
As previously mentioned, given the small wave magnitudes in this studied region, the setups are 
on the order of centimeters. Therefore, due to the lack of precise data, calibrating this variable is 
nearly impossible due to their small values. Despite the lack of calibration, we conclude that the 
outputs of our metamodel for the setup variable are entirely valid and produce excellent results. 
 

4.3. Two-dimensional Analysis 
 
There is a specific area where our model fails to accurately reconstruct the variable Hrms. This 
area is precisely the reef crest, where sensors C04, C05, and C06 are located. As shown in Figure 
24, the reconstruction for hour 977 is accurate along the entire profile length, including the reef 
crest area. However, for hour 3, the reconstruction is also accurate except for the problematic 
zone where the three mentioned sensors are located. This issue with reproducing Hrms has been 
observed for several sensor hours. While some hours, like hour 977, are perfectly reconstructed, 
others fall short, with no tested Cf and Cr combinations being able to accurately simulate the 
measurements in this zone. 
 

 
Figure 24. Comparison of the reconstructions of the variable Hrms for the hours 3 and 977 recorded by the sensors. 
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To address these discrepancies, we investigated the challenging nature of the reef crest area, 
where wave dynamics are more complex due to the higher interaction with the seafloor and the 
initiation of breaking processes. We believe that bidimensional effects are a primary reason for 
the inaccuracies. Our simulations are one-dimensional and may not account for transverse 
factors. Given that we did not have data on wave direction, we assumed waves were perpendicular 
to the coast, following the direction of our profile. Thus, it is crucial to consider: 
 

• Transverse Effects and Energy Concentration. The placement of sensors in an upwelling 
zone, as indicated by the bathymetric map, suggests the formation of a wave front that 
concentrates wave energy. This phenomenon could lead to local increases in wave heights 
measured in situ, which may not be fully captured by the current model that does not 
explicitly account for complex transverse effects. 

 

• Wave Obliquity. The lack of detailed information on the exact direction of incident waves 
in the study area is another factor to consider. Wave obliquity can cause significant 
variations in wave heights measured in situ, which may be higher than those predicted by 
the model assuming simplified perpendicular incidence. 

 
To explore these bidimensional effects, a series of cases were simulated using the XBeach model 
in non-hydrostatic mode (Roelvink et al., 2009 ; Roelvink et al., 2015), considering different wave 
directions to see their impact on wave propagation at the sensor locations. Figure 25 shows the 
wave height propagation coefficient maps (Kp = Hrms/Hrms0) corresponding to a specific instant 
of the sea state corresponding to hour 3 (case shown in Figure 24) for different directions (ranging 
from 160 to 190). Additionally, Figure 26 presents the evolution of this wave propagation coefficient 
Kp along the transect. Significant changes can be observed for small differences in wave direction, 
particularly at sensors C4, C5 and C6, where the Kp is amplified for wave directions less than 180. 
It is important to emphasize that this was solely a qualitative sensitivity analysis regarding wave 
direction. Therefore, the XBeach model was not calibrated, i.e. all simulations were conducted 
using the default calibration coefficients. 
 
Therefore, the differences observed between some reconstructed sea states using the CHySwash 
calibration metamodel and the in-situ measurements can likely be attributed to several factors. 
First, the absence of wave direction information in the boundary conditions may contribute to the 
differences. Second, measurement errors and the accuracy of the sensors could also play a role. 
Lastly, the methodological limitations of using a profile model that cannot account for transverse 
effects may further explain these inconsistencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Automatic Calibration of Hydrodynamic models for Fringe Reefs   
Pablo Zubía Palazuelos 
October 2024 

49 

 

 

 
Figure 25. Maps of the Hrms propagation coefficient (Kp) for the same instant of the sea state corresponding to hour 3, 

considering different wave directions. 
 

 
Figure 26. Evolution of the Hrms propagation coefficient (Kp) along the transect for the same instant and sea state as in 

Figure 25 and for different wave directions. 
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4.4. Additional applications of CHySwash 
 
The potential of CHySwash methodology extends to different types of studies. Here, we showcase 
a potential application for assessing risks of coastal flooding under different climate scenarios, 
including the consideration of adaptation strategies involving nature-based solutions. To 
demonstrate this application, we define a flood proxy, a variable used to estimate or infer the 
likelihood and extent of flooding in a given area. This flood proxy can be calculated by the following 
expression: 
 

Flood Proxy = WL + Setup + HsIG     (Eq. 13) 
 

By combining water level, setup, and infragravity waves, this measure provides a comprehensive 
estimation of total water level along our bathymetric profile. This combined metric (Eq. 13) 
enhances flood risk assessment by incorporating both immediate water levels and additional 
contributions from waves and infragravity effects. 
 
Having defined the flood proxy, we identify the hour during the sensor-recorded period when this 
indicator reached its highest value, signifying the most intense flood risk. The hour with the 
highest flood proxy value is 1108, with a flood proxy value of 0.449 meters, using the optimal 
coefficient combination (Cf = 0.145 and Cr = 0.708). 
 
Considering the negative impacts of climate change, such as sea level rise and coral degradation 
due to issues like coral bleaching, we project future conditions. Sea levels are expected to rise by 
30 centimeters by 2050 (Nunez, 2017). In this scenario, we simulate the reconstruction of sensor 
data over 2064 hours, assuming a sea level rise of 30 cm and a change in the coral friction 
coefficient to Cf = 0.10, due to coral bleaching, while maintaining Cr = 0.708. Using our fast and 
robust metamodel, which enables us to reconstruct a sea state in seconds, we reconstruct the 
variables under these new input conditions and observe the changes in the flood proxy compared 
to the current scenario. The flood proxy value for the hypothetical 2050 conditions is found to be 
0.679 meters, representing an increase of 0.230 meters compared to the current conditions.  
 
As observed in Figure 27, the flood proxy has increased, and the changes in the three output 
variables of our model are evident. Firstly, for Hrms, the values remain roughly the same in the 
initial part of the profile. However, upon entering the coral friction profile, the heights do not 
attenuate as much, and at the end of the profile, the heights increase from approximately 0.2m to 
0.3m.  
 
In the case of infragravity waves, under the hypothetical 2050 scenario with degraded coral 
structure and 0.3 meters of SLR, the intensity does not decrease once the coral friction profile 
ends, maintaining values around 0.14 meters. In contrast, in the current situation, after reaching 
values of 0.16, the wave decreases to 0.09 meters. Lastly, for setup, there is a noticeable increase. 
Near the coast, the setup value is 0.02 meters in the current situation, whereas, considering the 
increased WL and reduced friction, it reaches 0.035 meters. 
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Figure 27. Variables defining the flood proxy for the current situation (Cf = 0. 145) of the reef.  

The breaking coefficient Cr is considered to be 0.708. Analysis made for the hour 1108. 
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Figure 28. Variables defining the flood proxy for the hypothetical future situation considering a 30 cm increase in WL, 

along with coral degradation reaching a Cf value of 0.10. The breaking coefficient Cr is considered to be 0.708.  
Analysis made for the hour 1108. 
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This demonstrates our model's capability to predict and reconstruct future scenarios based on 
anticipated changes in input parameters. However, this is not the end of our analysis, because 
utilizing our fast metamodel, we can also explore additional solutions. In the context of an extreme 
future scenario driven by climate change, one potential mitigation strategy is to restore the coral 
reef, which, in this context, translate into increase in the friction in the coral-covered area. Our 
study determined that in the extreme 2050 scenario, returning the flood proxy to the current 
value (i.e. no changes) would require increasing the friction coefficient from the degraded value 
of 0.1 to 0.30. Although this increase may seem excessive and significantly high, it is important to 
note that this is merely a simple demonstration of another application of CHySwash, and achieving 
the same flood proxy value as the current situation would likely require a combination of various 
adaptation measures, not just coral reef restoration. 
 
Nonetheless, this is an illustration of an application with CHySwash methodology. Naturally, the 
metamodel would need to be tailored to meet the specific requirements of the application, 
considering other parameters that It is true that may play a significant role in the study. 
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5. Environmental Self-Assessment and Reflection on the 
Project's Contribution to Transitions 
 
This chapter provides a thorough evaluation of the project's environmental impact and its 
contributions to various transitions. First, we will examine the project's alignment with sustainable 
practices and its adherence to green budget principles. Finally, we will conclude with a critical 
reflection on the project's contributions in the context of transitions, offering an in-depth analysis 
of its influence on environmental, digital, and social transitions. 
 

5.1. Environmental Self-Assessment of the Project According to Green Budget 
Criteria 
 
In the context of the current ecological transition, the "green budget" outlines the environmental 
impact of budgetary credits and tax expenditures included in the Finance Bill (PLF). This innovative 
classification system evaluates fiscal expenditures based on their environmental impact and 
identifies public resources dedicated to environmental initiatives. France is the first country in the 
world to have implemented, as early as 2020, a tool for analyzing the environmental impact of its 
budget. The goal is to better integrate environmental issues into the management of public 
policies. The French Parliament made it a legal requirement through the Finance Law of December 
28, 2019, effective from 2020 (Ministry of Economy, Finance, Industrial and Digital Sovereignty, 
2023). 
 
Expenditures in the green budget are classified into three types based on their impact: favorable, 
neutral, and unfavorable. Favorable expenditures include those with a primary environmental 
objective or that directly contribute to the production of an environmental good or service, those 
with no environmental objective but with a proven indirect impact, and favorable expenditures 
with a controversial impact due to short-term benefits. Neutral expenditures have no significant 
effect on the environment. Unfavorable expenditures directly harm the environment or encourage 
environmentally harmful behaviors. Expenditures are evaluated according to six environmental 
objectives, both at an aggregated level, including state expenditure norms and total tax 
expenditures, and at the budgetary mission level corresponding to parliamentary votes: 
 

• Combating climate change. 
• Adapting to climate change and preventing natural risks. 
• Managing water resources. 
• Transitioning to a circular economy, managing waste, and preventing technological risks. 
• Combating pollution. 
• Preserving biodiversity and protecting natural, agricultural, and forest areas. 

 
In this section, the impact of the present project will be evaluated in each of these areas to 
determine if the studied methodology and the surrounding context affect each category positively, 
negatively, or neutrally. The following is a detailed analysis for each category, explaining how the 
concepts presented in the work can be applied to each one. 
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5.1.1. Climate change mitigation 
 

As previously mentioned, forecasting coastal dynamics has traditionally relied on high-fidelity 
numerical models, which, although detailed, are computationally expensive. To reduce these 
costs, metamodels have been developed, combining numerical models with statistical techniques 
to predict wave behavior more efficiently. However, these metamodels require complex 
calibration to ensure accuracy, involving the adjustment of parameters to match observed data. 
As the number of parameters and the duration of observations increase, the calibration process 
becomes exponentially more demanding, leading to significant computational challenges and 
potential difficulties in achieving precise results. 
 
The efficient metamodel developed in this project addresses these challenges by allowing the 
reproduction of any case with minimal simulations, drastically reducing computational costs. 
Without this metamodel, conducting the same calibration exercise dynamically would require 
significantly more computational resources and time. This reduction in computational demand 
directly lowers the carbon footprint by reducing the number of computers needed and their 
operational time. Thus, the methodology presented in this project not only enhances tools for 
predicting coastal scenarios but also contributes to climate change mitigation by reducing the 
energy consumption and carbon emissions associated with extensive computational modeling. For 
these reasons, the impact of this project in this category should be considered FAVORABLE. 
 
5.1.2. Adapting to climate change and preventing natural risks 
 

The increasing frequency and intensity of storms and rising sea levels underscore the need for 
effective strategies. Thus, the methodology developed in this project provides precise parameters 
to accurately characterize coastal hydrodynamic spaces and enhance coastal management tools. 
This facilitates informed decision-making and the implementation of proactive measures to 
protect vulnerable coastal communities. 
 
Moreover, coral reef surface roughness is a key indicator of ecosystem health, linked to important 
metrics such as fish biomass, carbonate production, and live coral cover (Price et al., 2019). Our 
methodology allows us to obtain optimal values for reef surface roughness, enabling effective 
monitoring and correlation with coral health. 
 
Being informed about local conditions empowers us to devise flood control strategies and take 
actions to preserve coral health. Understanding the ideal roughness of coral structures also 
facilitates the implementation of alternative approaches. For instance, in scenarios of significant 
coral degradation with suboptimal roughness values, tactics such as installing artificial corals can 
be utilized to mitigate flooding and erosion, thereby ensuring sustainable coastal protection (Kim 
et al., 2022). The overall assessment for this category is FAVORABLE. 
 

5.1.3. Water resources management 
 

The methodology developed in this project plays a crucial role in water resources management, 
particularly in the context of coastal protection and flood control. By accurately calibrating 
parameters such as friction coefficients and wave breaking over coral reefs, this methodology 
enhances our understanding of coastal hydrodynamics, contributing directly to effective 
management of coastal water resources by mitigating impacts from storm-driven flooding and 
reducing coastal erosion. 
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Additionally, coral reefs in nearshore waters degrade more severely compared to offshore reefs 
due to the combined effects of thermal stress caused by global environmental stressors and 
increased sediment and nutrient concentrations resulting from local disturbances (Baumann et 
al., 2021). This decrease in water quality further accelerates coral reef degradation (Nalley et al., 
2021). Thus, if we have the roughness coefficient as an indicator of coral structure health, as 
mentioned earlier, utilizing this methodology to monitor roughness in the area allows us to link 
water quality with roughness. 
 

Regarding water filtration, coral reefs play a crucial role in keeping nearshore waters clean. Many 
corals and sponges are filter feeders, meaning they consume particulate matter, pollutants that 
do not dissolve in water. This prevents these particles from settling on the ocean floor and 
polluting the sea with harmful substances (United Nations Environment Programme, 2020) 
 

In conclusion, the project has a clearly FAVORABLE impact in this category. While the 
methodology primarily focuses on coastal hydrodynamics, its implications for water resources 
management are profound. By enhancing our ability to predict and manage coastal flooding and 
erosion, this project offers a comprehensive tool to support sustainable water resource 
management in coastal areas. Monitoring the role of coral reefs as natural barriers that absorb 
wave energy helps protect coastlines from erosion and flooding. Moreover, by preserving and 
restoring these reefs, the project indirectly contributes to maintaining water quality. Healthier 
reefs reduce the influx of sediments and pollutants into coastal waters, which is crucial for overall 
marine ecosystem health. 
 

5.1.4. Transitioning to a circular economy, managing waste, and preventing technological risks 
 

The methodology developed in this project initially appeared to not directly address these areas, 
with its main contribution focused on improving coastal management through better calibration 
of hydrodynamic models and monitoring coral reef health. However, upon further consideration, 
the impact in this category should be viewed as FAVORABLE.  
 
By providing an efficient metamodel, this project has the potential to significantly reduce 
technological risks, particularly in developing communities with limited computational resources. 
For instance, by offering the metamodel with a pre-established database, these communities can 
make accurate predictions without needing to run complex numerical models. This approach has 
already proven beneficial in places like Pacific Island Countries (PICs) (Cagigal et al., 2024 ; Ricondo 
et al., 2023) where resources are scarce. By enabling these communities to perform high-quality 
predictions without extensive computational demands, the project not only enhances their 
capacity to manage coastal risks but also prevents potential technological challenges associated 
with resource limitations. Therefore, the methodology contributes positively to technological risk 
prevention and supports the transition toward a more sustainable and resilient coastal 
management framework. 
 

5.1.5. Pollution abatement 
 

As previously mentioned, coral reefs play a crucial role in preserving the cleanliness of nearshore 
waters by acting as natural filters. This prevents particles from settling on the ocean floor and thus 
avoids ocean contamination with harmful substances. While the methodology does not directly 
address pollution reduction, its contributions to coral reef health and stability have significant 
secondary benefits.  
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By fostering healthier reef ecosystems, the project indirectly supports efforts to combat marine 
pollution. However, because the direct application of the methodology does not primarily focus 
on pollution control, the impact in this category is considered NEUTRAL. 
 
5.1.6. Biodiversity and sustainable land use  
 
As previously mentioned in earlier categories, there is a direct correlation between coral reef 
surface roughness and its biodiversity (Tucker, 2021). Surface roughness of coral reefs serves as a 
key indicator of ecosystem health and is linked to other important ecosystem metrics such as high 
fish biomass, carbonate production, and live coral cover. However, coral reef surface roughness, 
in terms of benthic structural or architectural complexity, has declined globally over recent 
decades (Alvarez-Filip et al., 2013). A decline in coral reef surface roughness may indicate that the 
coral reef ecosystem is approaching functional collapse (Harvey et al., 2018). Therefore, 
monitoring coral reef ecosystems may include surface roughness as a metric to track ecosystem 
dynamics and enable detailed descriptions of coral reef habitat zones. Thus, the present 
methodology provides valuable insights into the actual roughness values of coral structure in the 
area. 
 
Furthermore, coral reefs are critical habitats for a diverse range of marine species. The current 
methodology, which enhances our understanding and management of local hydrodynamics, can 
aid in favoring coral preservation and, consequently, biodiversity conservation. As emphasized 
throughout various points in the project, healthy coral reefs are pivotal for multiple ecological 
functions, including acting as natural barriers that mitigate wave energy and protect coastlines 
from erosion. Additionally, they significantly contribute to improving water quality. Reefs can trap 
and stabilize sediments and pollutants, preventing these substances from dispersing and causing 
further environmental damage. This natural filtration process is crucial for maintaining the clarity 
and quality of coastal waters. 
 
In conclusion, our project is considered to have a FAVORABLE impact in this category. The 
calibration of friction and wave breaking coefficients in the proposed methodology helps 
understand and predict the behavior of coastal waters. By doing so, it supports the conservation 
and restoration of coral reefs.  
 

 
Figure 29. Overall environmental score of the project based  

on the six impact categories. (Source: Created by the author) 
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The project's methodology significantly enhances our capacity to manage coastal hydrodynamics, 
offering critical insights for the effective management of coastal flooding and erosion. By providing 
an efficient metamodel, the project not only reduces computational demands—thereby lowering 
the carbon footprint and contributing to climate change mitigation—but also empowers resource-
constrained communities to perform accurate predictions without the need for extensive 
computational resources, reducing technological risks. 
 
Moreover, the methodology provides essential parameters, such as coral roughness, which serve 
as indicators of the health and stability of reef ecosystems. These parameters aid in preserving 
coral reefs and indirectly support efforts to improve water quality and biodiversity. By facilitating 
the conservation and restoration of coral reefs, the project contributes to broader ecological 
sustainability and resilience, which is crucial for protecting coastlines, maintaining marine 
biodiversity, and ensuring the long-term health of coastal environments. 
 
Given the favorable impact across multiple environmental categories—including climate change 
mitigation, adaptation to natural risks, water resource management, technological risk 
prevention, and biodiversity conservation— the project is considered GENERALLY FAVORABLE 
overall, underscoring its significant contributions to sustainable coastal management and 
ecosystem conservation, as summarized in Figure 28. 
 

5.2. Critical Reflection on the Project's Contribution to Transitions 
 
Contribution to the Ecological Transition 
 
This project, centered on the automatic calibration of hydrodynamic models, plays a vital role in 
advancing the ecological transition towards more sustainable coastal management. By improving 
our ability to predict and manage coral reefs impact on coastal protection and biodiversity, the 
project aids in the conservation of these crucial ecosystems. The use of coral roughness 
coefficients to assess reef health links water quality with reef structure, addressing degradation 
issues caused by factors like thermal stress and increased sediments. Additionally, the project 
enhances sustainability by reducing computational resource needs, which lowers the overall 
carbon footprint of the modeling process. 
 
Contribution to the Digital Transition 
 
The project incorporates advanced digital technologies and modeling techniques that are 
fundamental to the digital transition in natural resource management. The application of this 
methodology represents a significant advancement in the use of predictive analysis in 
environmental sciences. These techniques allow for greater precision in the calibration of 
hydrodynamic models, facilitating more efficient and effective management of coral reefs. 
Additionally, the development of these digital tools not only enhances researchers' ability to model 
and predict changes in ecosystems but also promotes the adoption of emerging technologies in 
the field of environmental management. This can lead to greater integration of geographic 
information systems (GIS), remote sensors, and real-time data analysis, driving the digitization of 
monitoring and conservation of coastal ecosystems. 
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Contribution to the Social Transition 
 
From a social perspective, the project has the potential to involve local communities in reef 
conservation, promoting sustainable practices and raising awareness about the importance of 
coral reefs. Implementing these practices not only protects marine ecosystems but also supports 
local economies that depend on the health of these ecosystems, such as fishing and tourism. 
Collaboration with local communities is crucial for the continuous monitoring and protection of 
reefs. These communities can provide invaluable data and be at the forefront of conservation 
efforts. Additionally, the project can foster education and training in conservation and monitoring 
techniques, empowering communities to play an active role in protecting their natural 
environment. 
 
Future Perspectives and Recommendations 
 

Based on the project's findings, several recommendations can be proposed to enhance coral reef 
conservation: 
 

• Implementation of Conservation Policies. It is essential for local and national authorities 
to implement specific policies for coral reef conservation, based on scientific data 
obtained from projects like this. Integrating this methodology into reef restoration 
programs could significantly improve their effectiveness. 

 

• Collaboration with Local Communities. Collaboration with local communities and 
scientists is crucial for continuous monitoring and protection of reefs. These communities 
can provide invaluable data and be at the forefront of conservation efforts. 
 

• Nature-Based Solutions (NBS). Nature-Based Solutions refer to approaches that work 
with nature to address various environmental challenges while providing benefits to 
people and ecosystems. These solutions leverage natural processes and ecosystems to 
enhance resilience and mitigate adverse impacts from environmental changes. In the 
context of coral reef conservation, NBS involve integrating natural processes and habitats 
to support reef health and coastal protection. 
 

1. Use of artificial reefs. Artificial reefs are human-made structures placed in marine 
environments to simulate natural reef habitats, offering several benefits for reef 
conservation and coastal protection. These reefs act as barriers that absorb and 
dissipate wave energy, which helps to reduce coastal erosion by shielding shorelines 
from the full force of incoming waves. Additionally, artificial reefs create new habitats 
for marine species, providing refuge, breeding grounds, and feeding areas, which 
supports and enhances biodiversity. By introducing these structures into the marine 
environment, artificial reefs attract a variety of species that might not otherwise be 
present, leading to increased biodiversity as they become colonized by diverse marine 
organisms such as fish, invertebrates, and algae. 

 

2. Exploring Additional Measures. While artificial reefs are a valuable tool, they should 
be considered as part of a broader strategy that includes other nature-based solutions. 

 

• Mangroves. Planting and preserving mangrove forests can provide critical 
coastal protection by stabilizing sediments and reducing wave energy. 
Mangroves also serve as important breeding and nursery grounds for many 
marine species, contributing to the health of coral reef ecosystems. 
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• Seagrass Meadows. Protecting and restoring seagrass meadows can enhance 

water quality and provide habitat for marine life. Seagrasses help to trap 
sediments, reduce turbidity, and support diverse marine communities, all of 
which benefit coral reefs. 

 

• Grey Solutions. In addition to natural approaches, integrating 'grey solutions' 
(such as coastal engineering techniques) with nature-based solutions can offer 
a comprehensive approach to coastal management. Combining these 
strategies can provide more robust and adaptable solutions for managing and 
protecting coastal ecosystems. 

 
Incorporating artificial reefs into conservation efforts represents a proactive step towards 
enhancing coastal resilience and biodiversity. However, their effectiveness can be further 
amplified when combined with other nature-based solutions. This holistic approach 
ensures that multiple layers of protection and support are provided to coral reef 
ecosystems, contributing to their long-term sustainability and health. 

 
In conclusion, the project's contribution to environmental, digital, and social transitions is 
multifaceted. Environmentally, it strengthens sustainable coastal management by providing 
advanced tools for hydrodynamic model calibration. Digitally, the project employs advanced 
modeling and data analysis techniques, representing a significant advancement in scientific 
methodology for ecosystem management. Socially, the project has the potential to involve local 
communities in reef conservation, promoting sustainable practices and raising awareness about 
the importance of coral reefs. The project not only offers a valuable tool for the management and 
conservation of coral reefs but also lays the foundation for future research and policies that 
promote the sustainability and resilience of coastal ecosystems. 
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6. Conclusions and future research lines 
 
The development of this project marks a significant advancement in the field of hydrodynamic 
modeling, particularly for coastal regions with fringing coral reefs. The primary objective of this 
study was to create a hybrid metamodel capable of automatic calibration of hydrodynamic models, 
which has been successfully achieved.  
 
We highlight the versatility of the presented methodology, which combines sampling, clustering, 
interpolation, and optimization tools within a numerical framework, creating a robust system 
adaptable to any numerical model or parameter requiring calibration. It is not confined to SWASH 
model but can be extended to numerical models or fields beyond coastal engineering. By defining 
input variables for numerical simulations and customizing the model to achieve desired outputs, 
this methodology can effectively address a wide range of engineering challenges. 
 
In the specific case study carried out in this project, the methodology has yielded satisfactory 
results when applied to coastal engineering. The tool has proven effectiveness in predicting the 
optimal combination of coefficients that govern wave-breaking behavior and coral roughness in 
coastal areas with fringing corals. Through a rigorous calibration process, the most effective 
combination of these coefficients was determined, accurately simulating the hydrodynamic 
conditions observed in the field data collected from the study area. Finally, the optimal 
combination of coefficients found consists of a Cf of 0.145 and a Cr of 0.708. 
 
With the optimized coefficients, coastal risk assessments can incorporate more reliable 
predictions of wave impacts, inundation levels, and potential damage to coastal infrastructure and 
ecosystems, which is particularly valuable for areas with fringing corals where wave dynamics are 
complex and highly influenced by coral morphology. 
 
Another major innovation of this project is the hybrid technology's capacity to drastically reduce 
computation time. By constructing a response function through interpolation, the model 
approximates the behavior of the original simulations, enabling efficient prediction and 
reconstruction of hydrodynamic variables. This approach has proven particularly beneficial in 
processing extensive datasets, such as the 2064 hours of sensor data used in this study. The goal 
was to reconstruct this data using our metamodel, enabling comparison of simulated data with 
real measurements. Without this methodology, finding the optimal combination of friction and 
wave breaking coefficients would require performing 2064 sea states multiplied by the 189 
different combinations of coefficients that have been used for Grid Search calibration, resulting 
in 390,096 SWASH simulations. Given that each simulation took 30 min to run in an Ubuntu (x86-
64) PC, using up to eight 3 GHz Intel i7-9700 processors and 32 GB of RAM, this would total 195,048 
hours, or 22.26 years of simulation time, which is computationally impossible. 
 
However, our method of selecting representative cases and reconstructing the interpolation 
surface allows us to build a comprehensive case library with only 700 simulations. This translates 
to a total of 350 hours, or approximately 15 days of simulation. From this library, we can almost 
instantaneously reconstruct the evolution of Hrms and HsIG along the entire profile based on 
different combinations of the five selected input variables: 
 

Hrms (x ; Hs, Hs/Lo, WL, Cr, Cf) 
HsIG (x ; Hs, Hs/Lo, WL, Cr, Cf) 
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The impact of this project extends far beyond its technical innovations, making significant 
contributions across multiple areas. Environmentally, it advances sustainable coastal management 
by providing sophisticated calibration tools. Digitally, it represents a major methodological 
advancement in ecosystem management. Socially, it has the potential to engage local communities 
in reef conservation, fostering sustainability and raising awareness about the crucial role of coral 
reefs. 
 
Looking ahead, the successful development of the hybrid metamodel opens up several promising 
avenues for future research: 
 

• Friction Mapping. In this study, the focus has been on calibrating the friction coefficient 
specifically within coral-covered reef areas. However, it is also highly beneficial to extend 
the analysis to include the entire bathymetric profile. By analyzing friction coefficients 
across the complete bathymetric profile, researchers can generate a comprehensive 
friction map. 
 

• Application to Diverse Coastal Areas. Expanding the application of the calibration 
methodology to other coastal environments beyond coral reefs. Adapting the metamodel 
parameters to different coastal settings with varying challenges will enhance its versatility 
and utility. This includes incorporating diverse environmental conditions and coastal 
features to generate robust and adaptable calibration frameworks. 

 

• 2D Analysis and Enhanced Parameterization. Future research should focus on 
conducting 2D studies in additional coral reef regions where detailed data on reef 
morphology and friction coefficients are available. This will facilitate the development of 
more comprehensive parameterizations, such as friction curves, that capture the nuances 
of different reef types and conditions.  

 

• Incorporating Climate Change and Adaptation Measures. Redefining the metamodel to 
account for climate change impacts and various nature-based solutions (NBS) is essential. 
Future studies could explore how different adaptation strategies, including mangrove 
restoration or flood defenses, affect coastal dynamics. This will enhance the metamodel’s 
ability to predict and manage coastal resilience under changing climate conditions. 

 

• Addressing Other Coastal Phenomena. Adapting the metamodel to tackle other coastal 
phenomena, such as saltwater intrusion or sediment transport issues, will broaden its 
application. This includes developing calibration parameters specific to these phenomena 
and exploring its relevance in other fields that require numerical model calibration, such 
as river systems or urban flood management. 

 
In summary, this project not only advances hydrodynamic model calibration but also lays a strong 
foundation for future research and applications. The blend of methodological versatility, 
computational efficiency, and potential for real-time use establishes a solid base for further 
studies aimed at improving the understanding and management of coastal and hydrodynamic 
systems. 
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Spatial Evolution of Output Variables
The metamodel reconstructions for Hrms and HsIG, using the optimal combination 
of coefficients, closely align with sensor measurements, demonstrating high 
accuracy in the results.

CHySwash
Automatic Calibration of Hydrodynamic models for Fringing Reefs

Pablo Zubía Palazuelos

Objectives

Results

CHySwash Methodology
• Develop the CHySwash metamodel, which 

integrates statistical techniques with numerical 
simulations to efficiently predict nearshore 
wave dynamics while reducing computational 
time.

• Apply the CHySwash metamodel to the Molokai 
study area, using real sensor data to accurately 
reconstruct wave characteristics and calibrate 
key parameters such as wave-breaking (Cr) and 
coral friction coefficients (Cf).

• Implement the Shuffled Complex Evolution 
(SCE) optimization algorithm to automate the 
calibration process, ensuring that the model 
finds the best combination of coefficients to 
match observed data and improve prediction 
accuracy.

Study Area and Data
The project is located on the southern coast of 
Molokai (Hawaii), an area with a 53 km coral reef 
that serves as a barrier against erosion and 
provides marine habitat. For calibration, data from 
19 sensors (U.S. Geological Survey, 2020) were 
used, which collected measurements over a total 
period of 2064 hours. Additionally, a one-
dimensional bathymetric profile (National 
Oceanic and Atmospheric Administration, 2013) of 
the study area was created, essential for 
subsequent simulations with the SWASH 
numerical model.

Conclusions

References
• U.S. Geological Survey. 2020. Waiakane, Molokai, Hawaiian Islands, wave and water level data, 2018.

Science Base.
• National Oceanic and Atmospheric Administration. 2013. Topobathy Lidar DEM : Molokai.

One-dimensional bathymetric elevation profile of the study area with 
sensor positions indicated. Elevation information is provided at every 
1.5-meter interval. The reference is the local mean sea level. 

Optimal combination
The optimal combination of the 
numerical model calibration 
coefficients is found :

Cf = 0.145
Cr = 0.708

which minimizes the defined 
error metric. This combination 
of coefficients best represents 
the hydrodynamic conditions 
in Molokai.

Flow chart of the proposed CHySwash metamodel.

Reconstruction of the Hrms variable for the optimal coefficient combination (Cf = 0.145, Cr = 0.708) along the 
studied 1D profile. The reconstructed variable (dark gray line) is shown along with the actual sensor measurements 
(red points).

• The project successfully developed a hybrid metamodel capable of automatically 
calibrating hydrodynamic models, particularly for coastal areas with fringing 
coral reefs.

• The methodology combines sampling, clustering, interpolation, and optimization 
tools, making it adaptable to various numerical models and engineering 
challenges.

• The metamodel proved effective in predicting the optimal friction and wave-
breaking coefficients for the Molokai coastal area, accurately reflecting real-
world conditions.

• The hybrid technology drastically reduces simulation time, enabling the 
reconstruction of large datasets.

• Future studies should expand the calibration to other coastal areas, conduct 2D 
analyses, integrate climate change impacts, and apply the metamodel to other 
coastal phenomena.
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