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Abstract
Free-boundary diffusive logistic model finds applications in diverse fields associated with
population dynamics. These processes often possess stochastic characteristics and involve
parameters with uncertainties. This study focuses on enhancing a two-dimensional diffusive
logistic partial differential model with free boundary by incorporating randomness in the
mean square sense, considering the conditions for well-posedness in the random case, which
is crucial for the further analysis. Both unknown stochastic processes the solution and its
moving front, and the parameters involved in the random problem as random variables, are
constrained by a finite degree of randomness. To tackle this challenge, we propose a random
level set method. Given the complexity of the problem, we employ alternating direction
explicit methods for the interior solvers, to effectively address computational challenges.
Since computing the mean and the standard deviation of both unknown stochastic processes
are required, we combine the sample approach of the difference schemes together withMonte
Carlo technique avoiding the storage accumulation of symbolic expressions of all the previ-
ous levels of the iteration process. Parallel computing is employed to enhance performance.
A careful numerical analysis is performed in the mean square context to ensure stability,
positivity, and boundedness. The set of presented examples illustrates these qualitative prop-
erties, assess numerical convergence and enables us to gain a deeper understanding of the
system’s behavior attending to the geometry of the initial habitat. This approach provides
valuable tools for analyzing and predicting spreading-vanishing dichotomy.
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1 Introduction

The diffusive logistic model finds widespread application in ecological modeling (Malchow
2008), biological invasions (Shigesada and Kawasaki 1997), population dynamics (Aron-
son and Weinberger 1978), among other fields. Traditionally, analyses in these areas have
been framed within a deterministic context. A novel modification of the classical Fisher-KPP
diffusive logistic model (Fisher 1937; Kolmogorov et al. 1937) has been introduced in Du
and Lin (2010) by incorporating a Stefan-type condition for the boundary, thereby convert-
ing the problem into a free boundary problem. This adaptation requires the simultaneous
determination of the moving front and the unknown population density, adding a layer of
complexity and realism to the model. While the initial focus was on one-dimensional sce-
narios (Du and Lin 2010), subsequent research expanded this framework to two-dimensional
cases with radial symmetry (Du and Guo 2011) and general 2D case (Liu et al. 2020). Despite
these advancements, the inherent stochastic characteristics of these processes, including spa-
tial heterogeneity, contact distribution, sexual distribution among the population, the rate of
increase of the population, the speed of the wind in a direction, and environmental conditions,
necessitate the integration of stochastic elements into the modelling framework.

To analyse systems characterized by intrinsic randomness, Stochastic Partial Differen-
tial Equations (SPDEs) can be employed. For instance, Arif et al. (2023), and references
therein, present numerical methods for solving stochastic, time-dependent PDEs. In Méndez
et al. (2011), the authors investigate the density profiles and invasion front velocities in one-
dimensional infinite habitats under environmental fluctuations by transforming a stochastic
reaction-diffusion equation into a deterministic equation that incorporates the systematic
effects of noise. In Cartwright and Gottwald (2019), the authors employ collective coordi-
nates to simplify infinite-dimensional SPDEs with symmetry into a finite set of Stochastic
Differential Equations (SDEs) in application to population dynamics, addressing multiplica-
tive noise and additive symmetry-breaking noise.

An alternative method involves the use of random partial differential equations (RPDEs)
through mean square calculus, Soong (1973), which offer flexibility in modeling by allowing
the randomization of various model components, including initial/boundary conditions and
coefficients. Moreover, this approach permits the assignment of diverse probability distri-
butions to each term of the RPDE, such as exponential, beta or Gaussian distributions, for
instance, offering a more nuanced modeling strategy compared to the uniform application
of a single stochastic pattern across the entire model, as seen with SPDEs. As highlighted in
the literature, parametric RPDEs are increasingly recognized as powerful tools for modeling
real-world problems (Kloeden and Han 2017). In particular, the incorporation of randomness
into the parameters of diffusive logistic models provides a more accurate representation of
phenomena such as population growth and dispersion, more faithfully mirroring the natural
variability observed in environmental systems.

PDE problems often involve an additional degree of difficulty: the domain of the solution
is itself unknown and must be determined as part of the solution process. These are termed
free-boundary PDEs. They play a crucial role in deterministic modeling across diverse fields,
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from physics and engineering (Aiki andMuntean 2013; Mitchell and Vynnycky 2016; Nepal
et al. 2023; Singla et al. 2024), wildfire propagation (Mentrelli and Pagnini 2016) to finance
(Egorova et al. 2017). By incorporating this ingenious concept, free-boundary PDE problems
unlock a deeper understanding of howphenomena spread and interact with their environment.

Free boundary PDE problems pose significant computational challenges. Due to this
complexity, researchers have focused on developing numerical methods to find approximate
solutions, particularly in one or two-dimensional geometries. These methods include the
exponential time differencing method (Liu and Liu 2024), the front-tracking method (Nandi
and Sanyasiraju 2022), the front-fixing method (Piqueras et al. 2017), the level set method
(Khan et al. 2021), among others.

The concept of a free boundary holds particular significance in RPDEs for diffusive
logistic models. In this context, the free boundary represents the random spreading front
of the population or phenomenon under consideration. This random front is influenced by
factors such as population growth, diffusion characteristics, and environmental parameters
that may vary randomly. Hence, the free boundary becomes a stochastic process alongside
the population density, as has been shown in Casabán et al. (2024).

In this study, we expand our investigation into a random diffusive logistic model, building
on the prior work by Casabán et al. (2024), which examined a multidimensional random
scenario characterized by radial symmetry. With this assumption, the complex multidimen-
sional problem is reformulated as a one-dimensional random PDE with a moving radius
of the boundary. To address this problem in a m.s. sense, we have developed the random
front-fixing method and the random front-tracking method for the first time in Casabán et al.
(2024), to our knowledge. Now, we’re taking a step further by not assuming that everything
has to spread out with radial symmetry. This allows us to develop a more detailed model that
better captures the dynamics of a spreading or diffusing quantity in a domain with a moving
boundary.

Given the high-dimensional nature of these problems, numerical methods play a crucial
role in their analysis. These methods provide approximations of the solutions and facilitate
the investigation of system behavior under various scenarios. To efficiently and accurately
solve the random partial differential equation problem and track the random free boundary,
we propose the use of a random explicit Level Set Method (RLSM). This method in the
deterministic scenario, developed in Osher and Sethian (1988), has demonstrated a strong
ability to accurately capture the initial configuration in free boundary problems, producing
stable results even with irregular initial geometries, see for details (Sethian 1996; Gibou
et al. 2018). This approach allows for a detailed representation of complex contours at the
free boundary and adapts as the domain evolves without introducing significant numerical
instabilities. Specifically, LSM is particularly effective in handling problems with nonlinear
dynamics and changing boundary shapes, as it can reliably update geometry over time,
as demonstrated in prior studies (Osher and Fedkiw 2001; Wei et al. 2020). Therefore,
counterpart in the random framework is well-suited for the proposed RPDE model. For the
randomnumerical solution of the underlyingRPDE,we propose various randommean square
finite difference schemes (RFDS) (Casabán et al. 2021). In our study, instead of using the
traditional forward Euler method for the interior solvers, as employed in deterministic cases
like those in Liu et al. (2020), or in random cases with radial symmetry such as Casabán
et al. (2024), we implemented Alternating Direction Explicit (ADE) methods. This choice
enhances stability, particularly when applied in conjunction with the LSM, which excels
at capturing complex initial configurations in free boundary problems, even with irregular
geometries.
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To analyze the resulting RPDE model, we use the Monte Carlo technique, which effec-
tively handles randomness in computational models. Traditional iterative methods, like finite
difference schemes, are unsuitable for random scenarios due to excessive storage demands
from symbolic computations at intermediate levels (Casabán et al. 2020). To address this, we
combine the sample m.s. approach with the Monte Carlo method, achieving efficient compu-
tation without overwhelming storage requirements. Through Monte Carlo simulations, we
calculate the statistical moments of the pairwise of unknown stochastic processes (s.p.’s),
that it, the approximate population density and the moving boundary s.p.’s. This analysis will
provide valuable insights into the probabilistic behavior of the system, particularly its impact
on the spreading-vanishing dichotomy, which represents a fundamental characteristic of the
diffusive logistic model with Stefan-type free boundary condition. Moreover, it is necessary
that the reliability of the numerical results is established due to in many cases the exact
solution in not available. For this purpose, we will use a Cauchy type condition guarantying
the numerical convergence of the Monte Carlo method.

This paper is organized as follows. Section 2 reviews key definitions related to mean
square and mean four calculus. Section 3 introduces a two-dimensional random logistic
diffusion model with a free boundary. Section 4 proposes a RLSM for the model, along with
the underlying RFDS. We consider three RFDS, those qualitative properties are analyzed
in Sect. 5. Section 6 summarizes the proposed numerical algorithm. Numerical examples
and simulations are presented in Sect. 7 to validate and demonstrate the effectiveness of our
approach. We examine the qualitative properties of the proposed random finite difference
schemes, such as stability and convergence of the numerical solutions, and showcase the
practical applicationof our enhancedmodel in various habitat shapes.These examples provide
valuable insights into the behavior of the systemunder stochastic conditions, offering a deeper
understanding of the dynamics and facilitating decision-making in real-world applications.
A set of conclusions are given in Sect. 8.

2 Some preliminaries on themean square (m.s.) andmean four (m.f.)
calculus

In this work the mathematical treatment of randomness in RPDE will be performed using
the so-called L p(�) calculus providing a handle rigorously uncertainty in those equations.
Concretely, we are interested in L2(�) and L4(�) calculus which are usually referred to as
mean square (m.s.) and mean four (m.f.) calculus, see Soong (1973) and Villafuerte et al.
(2010). We note that the m.s. approach has the property that the m.s. solution coincides with
the one obtained in the deterministic case, that is,when the randomdata becomedeterministic.
Although the m.s. calculus is developed in the L2(�) space it requires of the spaces L p(�),

p > 2, to establish some results, such us the m.s. convergence (Soong 1973). These spaces
verify that Lq(�) ⊂ L p(�), for q > p. In the context of this paper we will construct
the solution s.p.’s in the particular cases p = 2 and p = 4. The L p(�) spaces are made
by all real-valued r.v.’s, X(ω), defined on a probabilistic space (�,F,P) satisfying that
statistical moments of order p are finite, that it, E

[|X(ω)|p] < +∞, where E[·] denotes
the expectation operator. Many probability distributions such as binomial, Poisson, beta,
exponential or Gaussian have statistical moments of any order, then they belong to L p(�),

p > 2, and therefore also to L2(�). For short, in the sequel these r.v.’s will be referred to as
p-r.v.’s. The space L p(�) endowed with the following norm,

(
L p(�), ‖ · ‖p

)
, is a Banach
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space (Soong 1973, p. 9)

‖X(ω)‖p = (
E
[|X(ω)|p])1/p =

(∫

�

|X(ω)|p fX(ω) dω

)1/p

< +∞, (1)

where fX(ω) denotes the density function of the r.v. X(ω) and ω ∈ � an event of the
sample space �. There are difficulties with the m.s. operational calculus due to the fact
that the ‖ · ‖p is not sub multiplicative, that is, it does not satisfy the Banach inequality.
But, using Schwarz inequality (Soong 1973, p. 43), one obtains the following inequality
‖X(ω) Y (ω)‖p ≤ ‖X(ω)‖2p ‖Y (ω)‖2p, that is, for p = 2 one gets

‖X(ω) Y (ω)‖2 ≤ ‖X(ω)‖4 ‖Y (ω)‖4, ∀X(ω), Y (ω) ∈ L4(�),

which permits to establish that m.f. convergence entails m.s. convergence by specializing it
for Y (ω) = 1. Then a m.f. calculus is necessary to get the m.s. results for solving linear
RPDE in the m.s. sense. The role of functions are played by stochastic processes (s.p.’s),
which are defined by a sub-sequence of t-indexed r.v.’s {X(t;ω) : t ∈ T ⊂ R} of order
p, called p-s.p.’s, verifying E

[|X(t;ω)|p] < +∞, ∀t ∈ T . We recall that q-convergence
entails p-convergence, whenever q > p. A p-s.p. X(t;ω) is called p-continuous at t ∈ T if

‖X(t + δ;ω) − X(t;ω)‖p → 0 as δ → 0, t, t + δ ∈ T , ∀ω ∈ �.

A p-s.p. is called p-differentiable at t ∈ T if there exists the p-derivative of X(t;ω), namely
X ′(t;ω), verifying

∥∥∥∥
X(t + δ;ω) − X(t;ω)

δ
− X ′(t;ω)

∥∥∥∥
p

→ 0 as δ → 0, t, t + δ ∈ T , ∀ω ∈ �.

3 A 2D-random logistic diffusionmodel

We consider a random two-dimensional (2D) logistic diffusion model in the m.s. sense
where the random population density of a spreading species, depending on time t and spatial
variables (x, y) = x, will be denoted by u(x, t;ω) and the population’s habitat (domain)
by �(t;ω). This model is characterized by a set of equations that dictate the evolution of
u(x, t;ω) over time and across space in the m.s. sense as follows

ut (x, t;ω) − D(ω)�u(x, t;ω) = u(x, t;ω) (α(x) − β(x) u(x, t;ω)) ,

t > 0, x ∈ �(t;ω), ω ∈ �, (2)

subject to the boundary and initial conditions, respectively,

u(x, t;ω) = 0, t > 0, x ∈ ∂ �(t;ω), ω ∈ �, (3)

u(x, 0;ω) = u0(x), x ∈ �(0;ω) = �0, ω ∈ �, (4)

and the random Stefan condition

v(x, t;ω) = −η(ω)∇u(x, t;ω), t > 0, x ∈ ∂ �(t;ω), ω ∈ �. (5)

Here, the couple of unknowns (u(x, t;ω), ∂�(t;ω)) are 4-s.p.’s, with additional conditions
to be specified later, defined in a complete probability space (�,F,P) being ω an event of
the sample space � and ∂ �(t;ω) the edge of the population’s habitat �(t;ω) that changes
in time, that is, the random moving boundary or front of the model. In RPDE (2), Laplacian
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operator � u(x, t;ω) = ∂2u(x,t;ω)

∂x2
+ ∂2u(x,t;ω)

∂ y2
indicates spatial diffusion and D(ω) is a

positive random variable (r.v.) which denotes the diffusion coefficient bounded such that

0 < d1 ≤ D(ω) ≤ d2, ∀ω ∈ �. (6)

The right-hand side of (2) encapsulates a deterministic logistic growth-term, with the positive
continuous real functions α(x) and β(x) such that

∃ κ1, κ2 > 0 : κ1 ≤ α(x) ≤ κ2, κ1 ≤ β(x) ≤ κ2, ∀x ∈ R
2+. (7)

The function α(x) denotes the intrinsic growth rate and the quotient α(x)
β(x) is the carrying

capacity of the species. The random Stefan’s condition (5) describes the random velocity
v(x, t;ω) of the randommoving boundary in relation with the random population gradient at
the points of the randommovingboundary.Thepositive r.v.η(ω),denoting the proportionality
between the random population gradient at the moving boundary and the velocity of the
random moving front, is taking bounded as follows

0 < η0 ≤ η(ω), ∀ω ∈ �. (8)

The initial population density function u0(x) is assumed to have the following properties

u0(x) ∈ C2 (�0); u0(x) > 0, ∀x ∈ �0; u0(x) = 0, ∀x ∈ ∂�0. (9)

For the sake of practical application, we adopt the useful method of specifying a s.p. in
terms of an analytic formula of the real variables x and t containing r.v.’s as parameters
(Soong (1973), p.36–37). In this case the uncertainty into the solution s.p.’s is limited to a
finite degree of randomness, i.e. the

unknown s.p.
u(x, t;ω)

depends on a finite number q of r.v.’s

u(x, t;ω) = g
(
x, t; A1(ω), . . . , Aq(ω)

)
. (10)

where

Ai (ω), Bi (ω), i = 1, . . . , q, are mutually independent r.v.’s;
g is a second order differentiable real function on variable x ;

g is a differentiable real function on variable t .

⎫
⎬

⎭
(11)

This random framework has been presented in recent works involving random Stefan
problems (Casabán et al. 2024), and references therein.

4 A random level set method

The level set method (LSM) is a powerful numerical technique used for tracking evolving
interfaces and shapes, see Osher and Fedkiw (2003) and Osher and Sethian (1988). In this
section we propose a random level set method (RLSM) to address the study of the random
free boundary logistic problem described by (2)–(11). Following the ideas of the LSM, we
are going to employ it to track the random boundary of the population’s habitat, ∂�(t;ω),

ω ∈ �, at each new time-step and a random explicit finite difference scheme (RFDS,Casabán
et al. 2021) to solve numerically the RPDE (2) everywhere away from the random front.
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Initially, level set function ϕ(x, 0) is defined as the signed distance function

ϕ(x, 0) =

⎧
⎪⎨

⎪⎩

−d, x ∈ �0,

0, x ∈ ∂�0,

d, x ∈ R
2 − �0,

(12)

where d is the distance from the point x to the deterministic initial front ∂�0.

For t > 0,we construct a level set 4-s.p.ϕ(x, t;ω), as analytic formula of the real variables
x and t containing a finite number of r.v.,

ϕ(x, t;ω) = f̃
(
x, t;C1(ω), . . . ,Cq(ω)

)
, (13)

where Ci (ω), i = 1, . . . , q, are mutually independent r.v.’s and f̃ is a differentiable real
function on variables x and t .

For each sample realization ω
 ∈ �, ϕ(x, t;ω
) is defined by

ϕ(x, t;ω
) =

⎧
⎪⎨

⎪⎩

−d(x, t;ω
), x ∈ �(t;ω
),

0, x ∈ ∂�(t;ω
),

d(x, t;ω
), x ∈ R
2 − �(t;ω
),

(14)

where d(x, t;ω
) = minz∈∂�(t;ω
) ‖x − z‖ . Then, for any time t > 0 and for each event
ω
 ∈ �, the expanding front is equal to the zero level set of ϕ(x, t;ω
):

∂�(t;ω
) = {x ∈ �(t;ω
) : ϕ(x, t;ω
) = 0}, ω
 ∈ �. (15)

The evolution of the interface ∂�(t;ω) is subsequently computed by solving the following
RPDE for the level set s.p., as it is done for the deterministic case in Liu et al. (2020):

ϕt (x, t;ω) + V (x, t;ω) |∇ϕ(x, t;ω)| = 0, ω ∈ �, (16)

where V (x, t;ω) is a m.f. continuous extension of 4-s.p. |v(x, t;ω)| described by the Stefan’s
condition (5), from the front ∂�(t;ω) over the whole computational domain. Hence, the
governing RPDE (16) for the level set s.p. can be written as follows,

ϕt (x, t;ω) − η(ω)∇u(x, t;ω) · ∇ϕ(x, t;ω) = 0, ω ∈ �. (17)

Following the ideas developed inCasabán et al. (2021), wewill construct a random explicit
difference scheme for the RPDE (17) to solve it numerically throughout the approximation
of their m.s. derivatives by difference approximations. To this end, we discretize the spatial
domain considering a rectangular computational domain, denoted as � = [xmin, xmax] ×
[ymin, ymax], such that �(t;ω) is a subset of � for all t ∈ [0, T ]. The domain is discretized
using a uniform grid, defined as follows:

xi = xmin + ihx , hx = xmax − xmin

Nx
, i = 0, . . . , Nx , (18)

y j = ymin + jhy, hy = ymax − ymin

Ny
, j = 0, . . . , Ny . (19)

Here, xi and y j denote the coordinates in the x and y directions respectively of a given
(i, j)-grid point. The grid spacing in the x and y directions are represented by hx and hy ,
respectively. The total number of grid points in the computational domain is consequently
(Nx + 1)(Ny + 1). Analogously, the temporal discretization is defined as follows:

tn = nk, k = T

Nt
, n = 0, . . . , Nt . (20)
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The numerical approximation of the population distribution s.p. at the grid points (xi , y j ),
where 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny , at the time level tn (where 0 ≤ n ≤ Nt ) is denoted
byUn

i, j (ω) ≈ u(xi , y j , tn;ω), ω ∈ �. From the initial condition (4), we can deduce that the
initial distribution of the population is given by

U 0
i, j = u0(xi , y j ), 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny . (21)

We denote φn
i, j (ω) ≈ ϕ(xi , y j , tn;ω), ω ∈ �, as the approximation of the level set s.p.

at the grid point (xi , y j ) at time level tn . The initial values are computed as follows

φ0
i, j =

⎧
⎪⎨

⎪⎩

−d, (xi , y j ) ∈ �0,

0, (xi , y j ) ∈ ∂�0,

d, (xi , y j ) ∈ � \ �0,

(22)

where d is the distance from the grid point to the front.
In order to construct a RFDS, we approximate the m.s. time derivative using forward

time-stepping of the first order:

ut (xi , y j , t
n;ω) = Un+1

i, j (ω) −Un
i, j (ω)

k
+ O(k), (23)

ϕt (xi , y j , t
n;ω) = φn+1

i, j (ω) − φn
i, j (ω)

k
+ O(k), (24)

where 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny, ω ∈ �, and we use central finite difference approx-
imations of the second order for the m.s. spatial derivatives in the interior nodes of the
computational domain, where 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1 and ω ∈ �,

ϕx (xi , y j , t
n;ω) = φn

i+1, j (ω) − φn
i−1, j (ω)

2hx
+ O(h2x ), (25)

ux (xi , y j , t
n;ω) = Un

i+1, j (ω) −Un
i−1, j (ω)

2hx
+ O(h2x ), (26)

uxx (xi , y j , t
n;ω) = Un

i+1, j (ω) − 2Un
i, j (ω) +Un

i−1, j (ω)

2hx
+ O(h2x ). (27)

Similar expressions can be derived for the m.s. spatial derivatives with respect to y.
To update the level set s.p. at each time level tn+1, where 0 ≤ n ≤ Nt − 1, we employ

RPDEs (16)–(17), resulting in the following numerical approximation of the level set s.p.,
φn+1
i, j (ω), ω ∈ �, for the interior points of the domain, where 1 ≤ i ≤ Nx − 1 and

1 ≤ j ≤ Ny − 1:

φn+1
i, j (ω) = φn

i, j (ω) − k η(ω)

√√
√
√

(
Un
i+1, j (ω) −Un

i−1, j (ω)

2hx

)2

+
(
Un
i, j+1(ω) −Un

i, j−1(ω)

2hy

)2

×
√√√
√

(
φn
i+1, j (ω) − φn

i−1, j (ω)

2hx

)2

+
(

φn
i, j+1(ω) − φn

i, j−1(ω)

2hy

)2

, ω ∈ �.

(28)

For any ω ∈ �, we recall that an acceptable difference scheme must converge to the
partial differential equation as step sizes of the independent variables vanish. This property
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called consistency requires that the truncation error vanishes as the discretization step sizes
vanish, see Smith (1985).

The numerical scheme (28) for the free boundary update relies on central difference
approximations for the spatial derivatives and a forward method for the temporal one. The
truncation error, therefore, arises from the discretization in both time and space. This indicates
that the method is first-order accurate in time and second-order accurate in space.

Once the habitat �(tn+1;ω), ω ∈ �, is defined, the numerical solution of the RPDE (2)
can be calculated by explicit RFDS, denoted by REFDM:

Un+1
i, j (ω) = Un

i, j (ω) + kD(ω)
Un
i+1, j (ω) − 2Un

i, j (ω) +Un
i−1, j (ω)

h2x

+Un
i, j+1(ω) − 2Un

i, j (ω) +Un
i, j−1(ω)

h2y
+Un

i, j (ω)
(
αi, j − βi, jU

n
i, j (ω)

)
, ω ∈ �,

(29)

for i and j such that (xi , y j ) ∈ �(tn+1; ω). In the scenario of finite degree of randomness
and the involved variables having a truncated range, consistency of a random finite difference
scheme is a consequence of the consistency of the underlying finite difference scheme for
the deterministic case, see Casabán et al. (2021). Hence, the truncation error of the random
explicit scheme (29) arises from discretizing both the spatial and temporal derivatives, intro-
ducing an error of O(k) + O(h2x ) + O(h2y). The overall accuracy of the proposed method is
determined by the combined truncation errors of the interior solver and the level set equation
solver. Therefore, the method as a whole is first-order accurate in time and second-order
accurate in space. This classic explicit scheme is straightforward to implement and condi-
tionally stable. Moreover, as it will be shown further, the stability of the scheme depends on
various factors, including the values of certain parameters, such as D(ω), that are randomly
determined.

To enhance the stability properties of the random numerical algorithm, we adopt a deter-
ministic explicit scheme proposed in Larkin (1964) for the random scenario resulting in the
following

[
z + D(ω)(1 + c2)

]
Un+1
i, j (ω) = [

z − D(ω)(1 + c2)
]
Un
i, j (ω)

+D(ω)
(
Un
i+1, j (ω) +Un+1

i−1, j (ω)
)

+ D(ω)c2
(
Un
i, j+1(ω) +Un+1

i, j−1(ω)
)

+h2xU
n
i, j (ω)

(
αi, j − βi, jU

n
i, j (ω)

)
, ω ∈ �, (30)

where c = hx
hy

, z = h2x
k and i and j such that (xi , y j ) ∈ �(tn+1;ω).This scheme is explicit, if

both indexes are changing in ascending order. Therefore, we refer to it as RIEFDM (Random
Improved Explicit Finite DifferenceMethod). In the deterministic case of the linear diffusion
equation, the sample scheme (30) for every single realization ω
, exhibits stability for any
z > 0 as reported in Larkin (1964). Due to the presence of a nonlinear term in RPDE (2),
the unconditional stability is not guaranteed. In further section dedicated to the numerical
analysis, we study the stability of this scheme demonstrating the conditional stability, but
with less restrictive condition on step-sizes comparing with the REFDS (29).

Let us assume that c = hx
hy

is a constant. The m.s. consistency of the RIEFDM (30) with

the RPDE (2) requires that k
hx

tends to zero as hx tends to zero. This fact is assured under

the condition z = h2x
k = const, allowing the scheme to accurately approximate the PDE.
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With this condition in place, it can be shown that the truncation error of the scheme isO(hx )
assuming that z is a constant, see Larkin (1964).

Consistency can be enhanced by adopting the RandomAverage Larkin Alternating Direc-
tion Explicit (RALADE) method, based on Alternating Direction Explicit method proposed
by Larkin (1964),

[
2z + D(ω)(1 + c2)

]
V n+1
i, j (ω) = [

2z − D(ω)(1 + c2)
]
Un
i, j (ω)

+D(ω)
(
Un
i+1, j (ω) + V n+1

i−1, j (ω)
)

+ D(ω)c2
(
Un
i, j+1(ω) + V n+1

i, j−1(ω)
)

+h2xU
n
i, j (ω)

(
αi, j − βi, jU

n
i, j (ω)

)
, i, j in ascending order, (31)

[
2z + D(ω)(1 + c2)

]
Qn+1

i, j (ω) = [
2z − D(ω)(1 + c2)

]
Un
i, j (ω)

+D(ω)
(
Qn+1

i+1, j (ω) +Un
i−1, j (ω)

)
+ D(ω)c2

(
Qn+1

i, j+1(ω) +Un
i, j−1(ω)

)

+h2xU
n
i, j (ω)

(
αi, j − βi, jU

n
i, j (ω)

)
, i, j in descending order, (32)

Un+1
i, j (ω) = V n+1

i, j (ω) + Qn+1
i, j (ω)

2
, ω ∈ �. (33)

Here, we employ two auxiliary random matrices to store the intermediate time-stepping
results. As demonstrated in Larkin (1964), for the deterministic linear diffusion equation, the
scheme (31)–(33) for a fixed realization ω
, is stable for any z > 0.

The RALADE scheme is absolutely consistent with the nonlinear problem (2), with a

truncation error characterized byO(h2x )+O
(
k3

h2

)
+O(k). In particular, when the condition

z = h2x
k = const is satisfied, the truncation error simplifies toO(h2x ). Therefore, the RALADE

scheme enhances the overall performance and robustness in solving the RPDE.
Following Sect. 5 is focused in the analysis of positivity and stability of the numerical

solution of the studied nonlinear diffusion–reaction problem for the three considered schemes.

5 Stability Analysis

The RFDS (29), (30) and (31)–(33) can be formulated using matrix notation as follows:

un+1(ω) = A(ω) · un(ω), ω ∈ �, (34)

where A(ω) is a randommatrix of coefficients of the corresponding RFDS, un(ω) is a random
vector of the numerical solution s.p. atn-th time level. In the case of two-dimensional problem,
un(ω) is a flattened version of the randommatrixUn(ω) preserving its column-wise structure
in a one-dimensional vector format.

Now, we recall the definition of ‖·‖p-stability in the fixed station sense of a random
numerical scheme introduced in Casabán et al. (2021).

Definition 1 (‖·‖p-stability of a RFDS) A random numerical scheme (34) is said to be ‖·‖p-
stable in the fixed station sense in the domain� ×[0, T ], if for every partition with temporal
step-size k defined in (20) and spatial step-sizes hx and hy, defined by (18) and (19), respec-
tively, the p-norm of the r.v. Un

i, j (ω), see (1), satisfies
∥∥∥Un

i, j (ω)

∥∥∥
p

≤ C, 0 ≤ n ≤ Nt , 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny, (35)
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where C is independent of the step-sizes and the time level n.

In the context of the sample-function approach, stability analysis is conducted on an
individual basis for each realization within the stochastic framework. Each realization cor-
responds to a deterministic numerical scheme

un+1 = A · un, (36)

transforming the inherently random problem into a collection of deterministic problems.
The core idea hinges on Definition 1, which provides the criteria for stability in the context

of RFDS. Specifically, a random numerical scheme is deemed to be ‖ · ‖p-stable in the fixed
station sense if the deterministic numerical scheme (36) that arises by fixing each realization
ω
 adheres to a stability criterion introduced by Kröner (1997, p. 92), which relies on the
infinity norm.

Definition 2 (‖ · ‖∞-stability of a deterministic FDS) The sample numerical scheme (36) is
said to be ‖ · ‖∞-stable in the fixed station sense in the computational domain, if for every
partition with temporal step-size k defined in (20) and spatial step-sizes hx and hy, defined
by (18) and (19), respectively, the sample infinite norm of the numerical solution un satisfies

∥∥un
∥∥∞ = max

0≤m≤Nx Ny
|unm | = max

i, j
|Un

i, j (ω
)| ≤ K
∥∥u0

∥∥∞ , 0 ≤ n ≤ Nt , (37)

where K > 0 is some constant independent of time-level n and the step sizes hx , hy and k.

Indeed, if condition (37) is satisfied for any fixed realizationω
 ∈ �, then for any i , where
0 ≤ i ≤ Nx , any j , where 0 ≤ j ≤ Ny , and for any fixed level n, it follows that

|Un
i, j (ω
)| ≤ ∥∥un

∥∥∞ ≤ K
∥∥u0

∥∥∞ = KM0, (38)

where M0 = maxi, j u0(xi , y j ) represents the maximum value of the initial condition (4)
over the grid. Consequently,

‖Un
i, j (ω)‖p =

(∫

�

|Un
i, j (ω)|p fUn

i, j (ω)dω

)1/p

≤ KM0

(∫

�

fUn
i, j (ω)dω

)1/p

= KM0,

(39)

where fUn
i, j (ω) is the density function of Un

i, j (ω) and therefore,
∫
�

fUn
i, j (ω)dω = 1. Taking

in (39) C = KM0, the p-norm of Un
i, j (ω) is bounded by C , regardless of ω, step-sizes and

time-level n.

Hence, in the remainder of this section, we focus on studying the stability of the numerical
schemes (36) for a specific realization. This approach allows us to deduce the stability of the
random numerical scheme (34) from analyzing the behavior of any of its sample schemes.
Therefore, the argument ω is omitted.

5.1 Stability and positivity of the REFDM

To study the stability of the classical sample explicit Finite Difference Method (EFDM)
defined by (29), we rewrite it in its sample version:

Un+1
i, j = Un

i, j

[
1 − 2D(1 + c2)

z
+ k(αi, j − βi, jU

n
i, j )

]
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+D

z

(
Un
i−1, j +Un

i+1, j + c2(Un
i, j−1 +Un

i, j+1)
)

, (40)

where c = hx
hy

and z = h2x
k . In the sample EFDS (40), the matrix of coefficients, An = A(un),

is dependent on un , with non-diagonal entries being positive for any positive step-sizes, and
the diagonal element for a fixed row, corresponding to the scheme at the (i, j)-grid point, is
given by:

An
q,q = 1 − 2D(1 + c2)

z
+ k(αq − βqunq), (41)

where sub-index q = i + ( j − 1)Ny maps the two-dimensional spatial coordinates (i, j) to
a singular dimension, signifying that the q-th row of the matrix An contains the coefficients
of the finite-difference equation (40) at the (i, j)-grid point.

The following theorem states the conditions for the positivity and boundedness of the
numerical solution un of (36), as well as for the stability of the sample EFDM (40).

Theorem 1 Under the previous notation, the sample EFDM (40) is ‖·‖∞-stable in the sense
of Definition 2, for all n = 0, . . . , Nt , if the spatial and temporal step sizes, hx and k,
respectively, satisfy the condition:

k <
h2x

2D(1 + c2) + Qh2x
, (42)

where Q = max

{
κ1

(
2

κ22
κ21

− 1

)
; κ2

(
2M0 − κ1

κ2

)}
, being κ1 and κ2 defined in (7), and

M0 = maxi, j u0(xi , y j ) denotes themaximum initial population density. Furthermore, under
condition (42), the numerical solution unq is positive and bounded as:

0 ≤ unq ≤ Umax, Umax = max {M0,C0} , ∀n = 0, . . . , Nt , (43)

where C0 is the maximum carrying capacity defined by the following

C0 = sup
(x,y)∈�0

α(x, y)

β(x, y)
,

κ1

κ2
≤ C0 ≤ κ2

κ1
. (44)

Proof of Theorem 1 The proof is based on the strategy proposed in Casabán et al. (2023).
Firstly, assumingUmax = C0,which corresponds to the casewhenM0 ≤ C0.The principle

of induction begins with n = 0, where the initial condition 0 ≤ u0q ≤ M0 ≤ Umax ensures
positive diagonal elements A0

q,q under the constrain (42), as follows:

A0
q,q = 1 − 2D(1 + c2)

z
+ k(αq − βqu0q) ≥ 1 − k

[
2D(1 + c2)

h2x
+ κ1

(
κ2
2

κ2
1

− 1

)]

> 0,

(45)

which holds true since Q ≥ κ1

(
κ22
κ21

− 1

)
.

Since all coefficients of the sample scheme (40) are positive and 0 ≤ u0q ≤ M0, it directly
implies u1q maintains positivity. In order to prove the boundedness of the solution u1q , we use
a similar idea to Casabán et al. (2023) that u1q can be considered as a function of u

0
q , namely,

u1q = f (u0q) at each fixed grid point. Then the first derivative

∂ f

∂u0q
= A0

q,q − kβqu0q = 1 − 2D(1 + c2)

z
+ k(αq − 2βqu0q) > 0, if (46)
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k <
h2x

2D(1 + c2) + h2x (2βqu0q − αq)
, ∀q. (47)

Since

2βqu0q − αq = αq

(
2
βq

αq
u0q − 1

)
≤ κ1

(

2
κ2
2

κ2
1

− 1

)

≤ Q ∀q, (48)

condition (47) is fulfilled if k satisfies the hypothesis (42), which guarantees that the first
derivative ∂ f

∂u0q
is positive. Hence, u1q is an increasing function of u

0
q , and for 0 ≤ u0q ≤ Umax,

it follows:

u1q ≤ f (C0) =
(
1 + kαq

(
1 − C0

αq/βq

))
C0 ≤ C0 = Umax, (49)

which leads to the boundedness of u1q .
For the inductive step, assuming An−1

q,q > 0 and 0 ≤ unq ≤ C0, now we demonstrate
An
q,q > 0 and 0 ≤ un+1

q ≤ C0. Since it is verified that un+1
q ≤ C0, the positivity of An

q,q
holds under the hypothesis (42):

An
q,q = 1 − 2D(1 + c2)

z
+ k(αq − βqunq) ≥ 1 − k

[
2D(1 + c2)

h2x
+ κ1

(
κ2
2

κ2
1

− 1

)]

> 0.

(50)

The positivity of the matrix An leads to the positivity of the vector un+1 in the scheme
(36). The boundedness of the solution is shown analogously to the base step by considering
the solution at the next time moment as a function of the solution at the n-th time level, which
finishes the proof for the first scenario when M0 ≤ C0.

Now, let us consider the second scenario, when M0 ≥ C0, i.e., when Umax = M0.

Analogously to the previous case, the induction principle is used. At the base step, n = 0,
the solution is bounded due to the initial conditions. Moreover,

M0 ≥ C0 ≥ inf
(x,y)∈�0

α(x, y)

β(x, y)
= κ1

κ2
, (51)

then

αq − βqu0q ≥ αq − βqM0 = βq

(
αq

βq
− M0

)
≥ κ2

(
κ1

κ2
− M0

)
= −κ2

(
M0 − κ1

κ2

)
.

(52)

Hence, under the condition (42), since Q ≥ κ2

(
M0 − κ1

κ2

)
, it holds that

A0
q,q = 1 − 2D(1 + c2)

z
+ k(αq − βqu0q) ≥ 1 − k

[
2D(1 + c2)

h2x
+ κ2

(
M0 − κ1

κ2

)]
> 0,

(53)

which also leads to the positivity of the solution u1. The boundedness is shown by using the
same idea as in previous case. Let us consider the solution at the next time level as a function
of the solution at current time level, i.e. u1q = f (u0q) at each fixed grid-point. Then the first
derivative is positive under the constrain (42):

∂ f

∂u0q
= A0

q,q − kβqu0q = 1 − k

[
2D(1 + c2)

h2x
+ (2βqu0q − αq)

]
> 0, (54)
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since Q ≥ h2x (2κ2M0 − κ1). Hence, u1q is increasing with respect to u
0
q . Taking into account

that 0 ≤ u0q ≤ M0, we get

u1q ≤ f (M0) ≤ M0 − kαq

(
M0

αq/βq
− 1

)
M0 ≤ M0. (55)

At the inductive step, we assume that An−1
q,q > 0 and all unq are positive and unq ≤ M0.

Let us show that An
q,q > 0 and 0 ≤ un+1

q ≤ M0. The positivity of An
q,q holds under the

hypothesis (42):

An
q,q = 1 − 2D(1 + c2)

z
+ k(αq − βqunq)

≥ 1 − k

[
2D(1 + c2)

h2x
+ κ2

(
M0 − κ1

κ2

)]
> 0, (56)

thereby confirming An
q,q > 0 under the specified conditions, and by extension. The positivity

of the matrix An leads to the positivity of the vector un+1 in the scheme (36), hence the
positivity and boundedness of un+1

q through analogous logic applied in the previous case. ��
Applying the results of the Theorem 1 to the random case, the following result can be

established.

Corollary 1 Given the previous notation and considering the boundedness of the random
parameter D(ω) as provided in (6), the REFDM (29) is ‖·‖p-stable in the fixed station sense
for all n = 0, . . . , Nt , ω ∈ �, and the numerical solution s.p. is bounded as follows:

0 ≤ unq(ω) ≤ Umax, for ω ∈ �, (57)

provided that the following condition holds:

k <
h2x

2d2(1 + c2) + Qh2x
. (58)

For the rest of methods, we use similar approach.

5.2 Stability and positivity of the RIEFDM

In this subsection, we study the stability of the RIEFDM (30), which is unconditionally stable
for the linear diffusion equation case, as shown in Larkin (1964). For a particular ω
, the
scheme (30) is rewritten in the following form

[
z + D(1 + c2)

]
Un+1
i, j − DUn+1

i−1, j − Dc2Un+1
i, j−1

=
[
z − D(1 + c2) + h2x

(
αi, j − βi, jU

n
i, j

)]
Un
i, j + DUn

i+1, j + Dc2Un
i, j+1, (59)

and denoted by IEFDM as a sample of RIEFDM. The scheme (59) in matrix form is given
by

F · un+1 = Bn · un, (60)

where un = {Un
i, j } is a vector containing all grid values, F is a lower-triangular matrix of

constant coefficients on the left-hand side, and Bn = B(un) is an upper-triangular matrix
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of coefficients on the right-hand side. Moreover, since off-diagonal entries of F are all non-
positive, F is a M-matrix, and therefore inverse-positive: ∃F−1 and F−1 ≥ 0, see Plemmons
(1977). Since the product of two non-negativematrices is non-negative, An = F−1Bn ≥ 0, if
Bn ≥ 0. The non-diagonal entries of B are positive due to the non-negativity of the diffusion
coefficient D. So, the positivity of the numerical solution un is guaranteed if the diagonal
entries of the matrix Bn are all non-negative at each time level n. The following theorem
established the conditions for the positivity and stability of the proposed numerical scheme
(59).

Theorem 2 With previous notation, the numerical scheme (60) is stable if the spatial and
temporal step sizes, hx and k, respectively, satisfy the condition

k <
h2x

D(1 + c2) + h2x (2κ2Umax − κ1)
. (61)

Under (61), the numerical solution unq is bounded as follows:
0 ≤ unq ≤ Umax. (62)

Proof of Theorem 2 We apply the principle of induction. At the base step, when n = 0, one
gets

B0
q,q = z − D(1 + c2) + h2x

(
αq − βqu0q

)
, (63)

which is positive under condition (61). Indeed, in the worth case, when (αq − βqu0q) < 0,
one gets

B0
q,q = z − D(1 + c2) − h2x

(
βqu0q − αq

)
> 0, if (64)

h2x
k

> D(1 + c2) + h2x
(
βqu0q − αq

)
> 0. (65)

By taking into account the bounds (7), the definition of Umax, and the following bound

h2x (βqu0q − αq) ≤ h2x (κ2Umax − κ1), (66)

we obtain that B0
q,q > 0 if

k <
h2x

D(1 + c2) + h2x (κ2Umax − κ1)
, (67)

which is fulfilled under the condition (61). Hence, the positivity of u1 is guaranteed.
The boundedness of the numerical solution u0 leads from the initial conditions. To show

that u1q ≤ Umax ∀q, we employ the similar strategy as in the study of the stability of the
EFDM above. Let us consider u1q = f (u0q), using explicit form (59):

u1q =
(
z − D(1 + c2) + h2x

(
αq − βqu0q

))
u0q

z + D(1 + c2)

+
D(u0q+1 + u1q−1) + Dc2(u0q+Ny

+ u1q−Ny)

z + D(1 + c2)
. (68)
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Note that in (59) terms with u1q−1 and u
1
q−Ny also depend on u

0
q .Hence, the first derivative

is given by

∂ f

∂u0q
= 1

z + D(1 + c2)

[
z − D(1 + c2) + h2x (αq − 2βqu0q) + D2(1 + c4)

z + D(1 + c2)

]
. (69)

Since D2(1+c4)
z+D(1+c2)

> 0, the following estimation takes place

∂ f

∂u0q
>

1

z + D(1 + c2)

[
z − D(1 + c2) + h2x (αq − 2βqu0q)

]
> 0, if (70)

k <
h2x

D(1 + c2) + h2x (2βqu0q − αq)
, ∀q, (71)

which is fulfilled under condition (61). Hence, u1q is increasing with respect to u0q and the
following bound can be established:

u1q ≤ f (Umax) =
[
1 − h2x

z + D(1 + c2)

(
βqUmax − αq

)
]
Umax ≤ Umax, (72)

due to the fact that Umax ≥ C0.

By induction, analogously to the case of EFDM, if the spatial and temporal discretization
parameters satisfy (61), the IEFDM scheme (59) is found to be stable, and the numerical
solution remains within the bounds of 0 and Umax for all n. ��

It is important to observe that while the scheme delineated by (59) demonstrates uncon-
ditional stability (Larkin 1964), for linear diffusion equations, the nonlinearity of the source
term introduces complexity into the stability analysis, requiring more stringent restrictions
on the step-sizes. However, the stability conditions for the classical EFDM (40) specified in
(42) impose stricter constraints compared to those required for the IEFDM (59) as specified
in (61).

Corollary 2 With previous notation, the RIEFDM (30) is ‖·‖p-stable in the fixed station sense,
and preserves positivity and boundedness of the numerical solution s.p. as follows

0 ≤ unq(ω) ≤ Umax, (73)

for all n = 0, . . . , Nt , ω ∈ �, under the following step-sizes condition

k <
h2x

d2(1 + c2) + h2x (2κ2Umax − κ1)
. (74)

The deterministic case of the scheme (31)–(33) is denoted by ALADE and written as
follows

[
2z + D(1 + c2)

]
V n+1
i, j = [

2z − D(1 + c2)
]
Un
i, j

+D
(
Un
i+1, j + V n+1

i−1, j

)
+ Dc2

(
Un
i, j+1 + V n+1

i, j−1

)

+h2xU
n
i, j

(
αi, j − βi, jU

n
i, j

)
, i, j in ascending order, (75)

[
2z + D(1 + c2)

]
Qn+1

i, j = [
2z − D(1 + c2)

]
Un
i, j

+D
(
Qn+1

i+1, j +Un
i−1, j

)
+ Dc2

(
Qn+1

i, j+1 +Un
i, j−1

)
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+h2xU
n
i, j

(
αi, j − βi, jU

n
i, j

)
, i, j in descending order, (76)

Un+1
i, j = V n+1

i, j + Qn+1
i, j

2
. (77)

Performing similar analysis on the schemes (31)–(33) and (75)–(77) results in the follow-
ing theorem.

Theorem 3 With previous notation, the RALADE (31)–(33) is ‖·‖p-stable in the fixed station
sense, if

k <
2h2x

d2(1 + c2) + h2x (2κ2Umax − κ1)
. (78)

Moreover, if (78) is fulfilled, the numerical solution s.p. unq(ω), ω ∈ �, is non-negative
and bounded by Umax.

Therefore, the proposed numerical schemes ensure stability, positivity, and boundedness
of the numerical solution s.p. upon specific conditions related to step sizes. Notably, the
RALADE scheme (31), is the least restrictive among all the proposed schemes. This scheme
consistently demonstrates stability across all simulations conducted in the subsequent section,
underscoring its robustness and efficiency.

6 Numerical algorithm

Addressing the storage problems associated with computing the expectation and variance
of the approximate solution s.p. by the RLSM and RFDS developed above, we employ a
combination of the sample m.s. approach with the Monte Carlo method.

In our approach, we generate a specified number K of realizations for the random param-
eters involved in the RPDE (2)–(5), and compute the numerical solutions for each realization
ω
 at time horizon [0, T ], {UNt (ω
), 1 ≤ 
 ≤ K

}
.All the steps to compute stable numerical

approximations for RPDE problem (2)–(5) for every fixed realization ω
, are summarized in
Algorithm 1.

The following step is to compute themean and standard deviation of the numerical solution
s.p. simultaneously, using the well-known formulae:

μ[UNt ] = 1

K

K∑


=1

UNt (ω
), σ [UNt ] =
√√√√ 1

K

K∑


=1

(
UNt (ω
)

)2 − (
μ[UNt ])2. (79)

Algorithm 2 provides an overview of the procedure for efficient computing the statistical
moments of the numerical solution s.p. for the RPDE problem (2)–(5).

In order to enhance the computational efficiency, especially when dealing with large-
scale Monte Carlo simulations, we have implemented a parallel computing environment.
This approach enables each processor to independently compute the numerical solutions for
each realization of the random variables. By simultaneously executing computations across
multiple processors, we can significantly improve the efficiency and speed of Monte Carlo
simulations.

For parallel computing, MATLAB provides a specialized tool known as the Parallel Com-
puting Toolbox. This toolbox includes an improved variant of the for loop, referred to as
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Algorithm 1 Random Level Set Method for Random Logistic Diffusion Problem for fixed
ω
 ∈ �

Require: D(ω
), η(ω
), α(x, y), β(x, y), T , U0(x, y), �0, Nx , Ny , xmin,xmax,ymin,ymax
1: Define uniform grid (xi , y j ) by (18)–(19)
2: Choose the RFDS: REFDM (29), RIEFDM (30) or RALADE (31)–(33)
3: Set k verifying stability conditions (58), (74) or (78), respectively
4: Nt ← number of time levels to achieve T
5: Set initial conditions by (21)
6: Compute φ0

i, j (ω
) by (22)
7: for n = 0 to Nt − 1 do
8: Update the level set function by (28)
9: Update the solution Ũn+1

i, j (ω
) by using one of the explicit methods (29), (30) or (31)–(33)
10: Update the
11: Define free boundary at (n + 1) time level:

Un+1
i, j (ω
) =

{
Ũn+1
i, j (ω
), if φn+1

i, j (ω
) < 0,

0, otherwise

12: Enforce boundary conditions on the level-set function:

∇ϕ(xi , y j , t
n+1; ω
) = 0, ∀(xi , y j ) ∈ ∂�

13: end for

Algorithm 2Monte Carlo technique for computing the statistical moments of the numerical
solution s.p. for RPDE problem (2)–(5)
Require: K
1: SUM ← 0
2: SUM2 ← 0
3: for each realization ω
, 1 ≤ 
 ≤ K do
4: Set r.v. parameters D(ω
) and η(ω
) for the problem (2)–(5)
5: UNt (ω
) ← numerical solution of (2)–(5) for ω
 by Algorithm 1
6: SUM ← SUM +UNt (ω
)

7: SUM2 ← SUM2 +
(
UNt (ω
)

)2

8: end for
9: μ[UNt ] ← SUM/K
10:

11: σ [UNt ] ←
√
SUM2/K − (

μ[UNt ])2

parfor. This function enables iterations of a particular code block to be executed a spec-
ified number of times in parallel, thus offering a practical and efficient way to leverage the
advantages of parallel computing in Monte Carlo simulations.

7 Results and discussion

Computation have been carried out by Matlab© software version R2024a for Windows 11
(64-bit), processor 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10 GHz 3.11 GHz.
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Fig. 1 Initial (left) and final at T = 3 (right) population distribution for Example 1 using LSM with ALADE

7.1 Deterministic case

In this section, we present numerical results for a deterministic case, where we consider a
single fixed realization ω
 ∈ �. As it was mentioned in Sect. 2, the m.s. approach has the
property that the m.s. solution coincides with the one obtained in the deterministic case.
These examples aim to compare the proposed methods with other established (Casabán et al.
2024), as well as to explore the stability and other qualitative properties studied above.

Example 1 Model with radial symmetry (Casabán et al. 2023)

We consider a simplified version of themodel delineated by (2)–(4), which is characterized
by radial symmetry. The free boundary logistic diffusive 1D model introduced in Du and Lin
(2010) was extended for the multidimensional case with radial symmetry in Du and Guo
(2011). By adopting this assumption, we can reduce the general multidimensional PDE to a
one-dimensional variant with a singular spatial variable, denoted as r = |x |, where x ∈ R

N .
Within the scope of this paper, our focus is on the case where N = 2, indicating a two-
dimensional problem.

We examine the model with radial symmetry on the initial habitat �0 = {(x, y) ∈ R
2 :

x2 + y2 ≤ H2
0 }, where H0 = 3 with the following parameters

D = 1, η = 2, T = 3, u0(x, y) = 1 − x2 + y2

H2
0

. (80)

The parameters α = 1 and β = 1 are chosen to be constant for simplicity.
In this Example, we define the computational domain as [−10, 10]×[−10, 10] to guaran-

tee the caption of the front growth. We set the grid resolution to Nx = Ny = 200, ensuring a
fine-grained representation of the domain. The time step for the ALADE (75)–(77) is defined
as k = h2, where h = min{hx , hy}.

The initial condition for the level set function, ϕ(x, y), is given by

ϕ(x, y, 0) =
√
x2 + y2 − H0. (81)

This formulation ensures that the level set function is negative within the circle �0, zero
at the boundary of �0, and positive outside �0.

The initial and final population distributions (at t = T ) are depicted in Fig. 1. The
considered method is shown to preserve the radial symmetry as shown in Fig. 2. These
results agree with those previously published in Casabán et al. (2024), obtained using the
front-fixing and front-tracking methods, see Fig. 3.
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Fig. 2 Evolution of the front for Example 1
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Fig. 3 Comparison of the proposed method (LSM with ALADE) versus front-fixing (FF) and front-tracking
(FT) methods for Example 1
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Fig. 4 Spreading-vanishing dichotomy in Example 1 with H0 = 2: spreading for η1 = 2 (left), vanishing for
η2 = 0.2 (right)

In order to measure the population in the habitat, the following formula is used

P(t) =
∫∫

�(t)
u(x, y, t) dx dy. (82)

In this case, the spreading is observed, since the initial population, P(0) = 14.1363
increases to the final value P(T ) = 19.3690, which agrees with previous results.

Based on the previous study of the spreading-vanishing dichotomy, as presented in Theo-
rem 2 of Casabán et al. (2023), when the initial habitat is too small (H0 < R∗ = 2.4048, for
the parameters (80)) and the front expanding rate η is insufficient for propagation (η < η∗),
the population vanishes. In this other study, nowwe set H0 = 2, leading to the corresponding
threshold value of η as η∗ = 0.2682. Figure 4 displays the population growth computed using
formula (82) for two different values of η: η1 = 2 > η∗ and η2 = 0.2 < η∗. The results
clearly demonstrate that the proposed LSM method combined with ALADE preserves the
spreading-vanishing dichotomy in the multi-dimensional case.

Example 2 Stability and numerical convergence of the proposed FDS.

It is well-established that traditional explicit schemes exhibit conditional stability, often
requiring use of smaller time steps and consequently leading to prolonged computational
time. This limitation becomes extremely important in RPDE solvers, where the application
of the Monte Carlo method results in a multiplication of computational time by the number
of realizations.

However, the IEFDM (59) and ALADE (75)–(77) methods have demonstrated superior
stability characteristics, as illustrated in Sect. 5. Let us confirm this with the model in Exam-
ple 1. In Fig. 5, we present population dynamics over time using various time steps keeping
spatial step sizes fixed (Nx = Ny = 200). Solid lines depict solutions meeting the sta-
bility condition for each method (k = k∗), while dashed lines indicate solutions where
the stability condition is broken: for EFDM (40), we set k = 1.01k∗, and for IEFDM and
ALADE, k = 1.5k∗. In the case of EFDM, such a slight increment causes the solution to
begin losing stability, leading to the emergence of negative population values. Hence, we
numerically highlight the significance of the derived stability condition (42) and its strong
sensitivity. Conversely, IEFDM (59) and ALADE (75)–(77) exhibit less sensitivity to the
stability condition.

We also evaluate the convergence of both the IEFDM and ALADE methods. To ensure

consistency in the IEFDMscheme, it is essential that the condition z = h2x
k = const is satisfied.
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Fig. 5 Stability of the methods for Example 2: solid lines depict solutions meeting the stability condition;
dashed lines indicate solutions where the stability condition is broken

To this end, we conduct a series of tests where the spatial discretization is uniformly applied,
setting hx = hy = hm . The spatial grid sizes are defined as hm = 0.05×2m form = 0, . . . , 4,
with the corresponding time steps given by km = h2m .

As the exact solution is not known, we define the mean squared error (MSE) in terms of
the following mean square successive deviations:

MSE(hm, hm+1) = 1

(Nx + 1)(Ny + 1)

Ny∑

j=0

Nx∑

i=0

|UNt
i, j (hm) −UNt

i, j (hm+1)|2, (83)

whereUNt
i, j (hm) is the numerical solution at the node (xi , y j ) at the moment t = T computed

by the numerical scheme with step sizes hx = hy = hm and k = h2m . The errors associated
with the IEFDM and ALADE methods are depicted in Fig. 6.

Next, we calculate the convergence rate γ as follows

γ (hm, hm+1, hm+2) = ln |MSE(hm+1, hm+2)| − ln |MSE(hm, hm+1)|
ln 2

. (84)

The mean convergence rate γ for the IEFDMmethod is 1.53, while the mean convergence
rate for theALADEscheme is 2.02. These results alignwith the theoretical predictions regard-
ing truncation error, demonstrating the efficacy of both methods in achieving convergence.

As a result, in forthcoming exampleswith randomparameters,wewill exclude theREFDM
(40) scheme from consideration and focus primarily on the RALADEmethod (31)–(33). This
choice is made due to the RALADE method’s experimental characteristics being equivalent
to those of the RIEFDM, while it theoretically converges more rapidly. To evaluate the
effectiveness of the proposed RLSM with RALADE method, we conduct tests in a random
scenariowithoutmaking any assumptions about radial symmetry. This approach enables us to
scrutinize the method’s performance in scenarios where radial symmetry cannot be assumed.
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Fig. 6 Mean squared error (83) of the IEFDM and ALADE methods

Table 1 Mean squared error (83) of the IEFDM and ALADE methods

hm MSE(hm , hm+1) of μ[UNt ] MSE(hm , hm+1) of σ [UNt ]
RIEFDM RALADE RIEFDM RALADE

0.05 1.2001e−05 6.8849e−07 3.0950e−07 6.1662e−08

0.1 4.9623e−05 9.8571e−06 1.2449e−06 2.9888e−07

0.2 1.1018e−04 2.7565e−05 9.8503e−06 1.5919e−06

0.4 2.2176e−04 3.7393e−05 5.2915e−05 5.6947e−06

7.2 Random case: numerical convergence and variability

First, we replicate the previous experiment to investigate the numerical convergence of the
proposed RFDS.

Example 3 Numerical convergence of the RFDS.

Let us consider the RPDE problem (2)–(5) with T = 3, α = 1, β = 1, and the random
parameters

D(ω) ∼ N[0.8, 1.2](1, 0.1), η(ω) ∼ Be[1.6, 2.4](2; 4), (85)

that is, D(ω) follows a normal distribution ofmeanμ = 1 and the standard deviationσ = 0.1,
truncated on the interval [0.8, 1.2]; η(ω) has a shifted-beta distribution of parameters (2; 4)
with a support from 1.6 to 2.4. We set the number of Monte Carlo simulations to K = 100.
Themean squared error (MSE) is calculated for both theRIEFDMand theRALADEmethods
using formula (83). However, instead of using the numerical solutionUNt

i, j (hm), we compute
the MSE based on the mean value and standard deviation obtained from the K simulations.
The results are presented in Table 1. The mean convergence rate γ, computed using formula
(84), is found to be 1.40 for the RIEFDM method and 1.92 for the RALADE scheme. These
findings are consistent with previous results obtained for the deterministic case.
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Fig. 7 Mean (left) and standard deviation (right) of the numerical solution s.p.’s at T = 1 for Example 4, for
K = 800

The following example presents a study of the numerical convergence of the proposed
RLSM method combined with the RALADE technique.

We fix the initial area and normalize the initial population density to ensure that at t = 0,
it is equal to 1, as follows:

U0(x, y) = u0(x, y)

P(0)
. (86)

Example 4 Numerical convergence of the Monte Carlo simulations.

Let us consider the RPDE problem (2)–(5) with T = 1, and rest of the parameters from
the previous Example 3. We set the number of spatial step-sizes Nx = Ny = 200, and set
the number of simulations K = 800. The statistical moments for the numerical solution s.p.
are presented in Fig. 7: in the left panel the mean is presented, and the standard deviation is
plotted in the right panel. As expected, the standard deviation is higher where the mean is
higher.

Now, let us consider the results for various number of samples for theMonte Carlomethod.
The expected values of the fronts for different K are plotted in Fig. 8. The right plot presents
a zoom of the left plot. As observed, the fronts are indistinguishable, which implies that
the Monte Carlo method adequately captures the behavior of the system even with a small
number of realizations K without substantial variations in the resulting fronts.

To analyze the numerical convergence, we introduce the following pairwise error mea-
sures:

εK1, K2(μ[UNt ]) =
∣∣∣μK1 [UNt ] − μK2 [UNt ]

∣∣∣ , (87)

εK1, K2(σ [UNt ]) =
∣∣∣σK1 [UNt ] − σK2 [UNt ]

∣∣∣ , (88)

where μK [UNt ] is the mean and σK [UNt ] is the standard deviation at T = 1 computed by
the Algorithm 2 for K samples. The infinite norm of the errors is reported in Table 2.

Example 5 Variability of the numerical solution s.p.

In this example, we investigate how the dispersion of the random parameters affects
variability of the samples of the numerical solution s.p. We consider the RPDE problem with
parameters defined in Example 4. To estimate the impact from the dispersion of the random
parameter η(ω), we perform K = 100 Monte Carlo simulations with a fixed diffusion
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Fig. 8 The mean of the fronts at T = 1 for varying numbers of samples K in the Monte Carlo method for
Example 4

Table 2 Infinite norm of the
pairwise error measure (87)–(88)
for the numerical solution s.p. of
Example 4

{K1, K2}
∥
∥∥εK1, K2 (μ[UNt ])

∥
∥∥∞

∥
∥∥εK1, K2 (σ [UNt ])

∥
∥∥∞

{25, 50} 2.4282e−02 1.3450e−02

{50, 100} 2.2753e−02 4.0889e−02

{100, 200} 3.5122e−03 2.8235e−02

{200, 400} 4.1622e−02 1.5423e−03

{400, 800} 2.9250e−02 6.3869e−03

coefficient D = 1. We consider two scenarios: η1(ω) ∼ Be[1.6, 2.4](2; 4), and η2(ω) ∼
Be[1.6, 2.4](200; 400). The mean of a shifted beta distribution Be[a,b](α, β) is calculated as
follows

E[η1(ω)] = a + (b − a)
α

α + β
= 1.6 + 0.8

2

6
= 1.87, E[η2(ω)] = 1.87. (89)

Hence, while expected values of both distributions are the same, their standard deviations
differ:

σ [η1(ω)] = (b − a)

√
αβ

(α + β)2(α + β + 1)
= 0.14, σ [η2(ω)] = 0.015. (90)

Figure 9 compares the population samples in both scenarios.
We now repeat the experiment for the normal distribution. We fix η = 2 for all

K = 100 simulations and consider two scenarios: D1(ω) ∼ N[0.8, 1.2](1, 0.1) and D2(ω) ∼
N[0.8, 1.2](1, 0.01).Results are plotted in Fig. 10. As expected, increasing the standard devia-
tion σ of the random parameter D(ω) leads to a wider spread in the samples of the numerical
solution. Furthermore, the case with σ = 0.1 shows the presence of a spreading-vanishing
dichotomy.
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Fig. 9 Population samples for K = 100 in Example 5, where D = 1; left: η1(ω) ∼ Be[1.6, 2.4](2; 4), right:
η2(ω) ∼ Be[1.6, 2.4](200; 400)

Fig. 10 Population samples for Example 5, where η = 2; left: D1(ω) ∼ N[0.8, 1.2](1, 0.1), right: D2(ω) ∼
N[0.8, 1.2](1, 0.01)

7.3 Random case: spreading-vanishing dichotomy depending on the geometry of
the habitat

In this subsection, we analyze how the spreading or vanishing behavior of the population
depends not only on the parameters of the problem but also on the geometry of the initial
habitat. We consider three main shapes of the habitat: an ellipse with a particular case of a
circle, a rectangle with a particular case of a square, and an equilateral triangle.

Let us consider a RPDE (2)–(5) with T = 5, α = 1, β = 1, and the random parameters
D(ω) ∼ N[0.8, 1.2](1, 0.1), η(ω) ∼ Be[1.6, 2.4](2; 4).

We perform K = 100 realizations of the Monte Carlo method on a domain [−10, 10] ×
[−10, 10] using a grid of 200 × 200 spatial nodes. As mentioned above, for underlying
numerical scheme the RALADE method is employed.

For all cases, we fix the initial area and normalize the initial population density to ensure
that at t = 0, it is equal to 1, as follows:

U0(x, y) = u0(x, y)

P(0)
. (91)

Example 6 Ellipse habitat: �0 = {(x, y) ∈ R
2 : x2

a2
+ y2

b2
≤ 1}.
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Fig. 11 Spreading-vanishing dichotomy of the population P(t) in Example 6 for the habitat �0 = {(x, y) ∈
R
2 : x2

a2
+ y2

b2
≤ 1}with the initial population density defined by (92). The red line represents the mean across

all K = 100 realizations. Left plot shows the circular case with a = b = 2.2, while the right plot displays the
ellipse case with a = 3.67 and b = 1.32

u0(x, y) = 1 −
(
x2

a2
+ y2

b2

)
. (92)

We compare the propagation for various combinations of the parameters a and b with a
normalized initial population density, specifically P(0) = 1. Let us introduce the parameter
r = 2.2, which is the radius of the circle. Initially, we set a = b = r . In the deterministic
case, with D = 1 and η = 2, we observe a scenario where vanishing behavior transforms
into spreading, leading the population to recover the initial apparent vanishing values and
subsequently continue growing. In the random case, we expect both spreading and vanishing
due to the variability of the parameters. The population in each realization, in total K = 100
realizations, along with the corresponding mean depicted in solid line, is plotted in the left
panel in Fig. 11.

Now, let us consider a general elliptic case. To maintain the initial area equal to that of
the previously considered case (πr2 = πab), we keep r = 2.2. For a given value of b,

we calculate a = r2
b . For instance, we set a = 3.67 and b = 1.32. The population in each

realization, along with the corresponding mean, is shown in the right plot of Fig. 11.
Observing the results plotted in Fig. 11, we notice that the initial circular habitat is more

prone to spreading,whereaswith the elliptical shape and the same initial population, vanishing
is observed. Moreover, in the circular case, the mean population recovers the initial value
(with further growth), whereas in the elliptical case, it steadily decreases. In other words,
as eccentricity of the ellipse decreases the population behavior tends to be more prone to
spreading.

Next, let us check how the initial population density distribution impacts the spreading.
For that purpose, we consider the shifted function

u0(x, y) =
√(

y2 − 2(b + 1)y + 1 + (b + 1)2
) (
x2 − 2(a + 1)x + 1 + (a + 1)2

)

×
(
1 − x2

a2
− y2

b2

)
. (93)

As in the previous case, we distinguish circular and elliptical initial habitats. The
spreading-vanishing dichotomy remains similar to the previous case. Figures 12 and 13
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Fig. 12 Initial population distribution u0(x, y) defined by (93) (left plot) and the mean population distribution
at T = 5 (right plot) for circular initial habitat shape in Example 6

Fig. 13 Initial population distribution u0(x, y) defined by (93) (left plot) and mean population distribution at
T = 5 (right plot) for elliptical initial habitat shape in Example 6

present the initial distribution and mean final distribution at T = 5 for the circular and
elliptical forms, respectively. Upon observing the results, we note that the epicenter (core)
tends to the center of the circle/ellipse. Furthermore, it is evident that elliptical forms tend to
transform into circular forms over time.

Now,we examine the dynamics of populationswithin rectangular habitats, which provides
a useful contrast to themore symmetric shapes studied earlier, offering insights into the effects
of habitat shape on spreading capabilities.

Example 7 Rectangle habitat: �0 = {(x, y) ∈ R
2 : |x | ≤ a, |y| ≤ b}.

Initial population distribution is given as follows

u0(x, y) = (x2 − a2)(y2 − b2). (94)

To maintain the same initial habitat area, for a fixed a, we set b = πr2
4a , where r is the

radius of the circular habitat in the previous example. Note that a = r
√

π

2 corresponds to the
square habitat. In the case of r = 2.2, a = b = 1.9497. For the rectangular form, we set
a = 1.3648 and b = 2.7853.

The front at the initial moment, and its mean at instants T = 5 and T = 10 for the square
and rectangular habitat shapes are shown in Fig. 14. In both cases, the front tends to the
circular form over time.
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Fig. 14 Evolution of the mean of the population front at different times T = {0, 5, 10} for the square (left
plot) and rectangular (right plot) habitats in Example 7

Example 8 Equilateral triangle habitat:�0 = {(x, y) ∈ R
2 : barycentric coordinates λ1, λ2,

λ3 satisfy λ1 + λ2 + λ3 = 1 and λ1, λ2, λ3 ≥ 0}, where λ1, λ2, λ3 are the barycentric coor-
dinates for the triangle defined as follows:

λ1(x, y) = (y − y2)(x3 − x2) − (x − x2)(y3 − y2)

(y1 − y2)(x3 − x2) − (x1 − x2)(y3 − y2)
,

λ2(x, y) = (y − y3)(x1 − x3) − (x − x3)(y1 − y3)

(y2 − y3)(x1 − x3) − (x2 − x3)(y2 − y3)
,

λ3(x, y) = 1 − λ1(x, y) − λ2(x, y),

for the side length a, height h = a
√
3

2 and triangle vertex coordinates v1 = (x1, y1) =
(−a/2, −h/3), v2 = (x2, y2) = (a/2, −h/3) and v3 = (x3, y3) = (0, 2h/3).

Following the ideas of Liu et al. (2020), we define the level set function as follows

φ0(x, y) = −min(λ1, λ2, λ3), (95)

and the initial population distribution is given by

u0(x, y) = λ1 · λ2 · λ3. (96)

To maintain the same initial habitat area as in previous examples, we set a = r
√

4π√
3
,

where r is the radius of the circular habitat. The evolution of the mean of the population front
is presented in Fig. 16. As observed in previous examples, the habitat also tends to take on a
circular shape. The population P(t), depicted in Fig. 16 across K = 100 simulations of the
Monte Carlo method, exhibits a spreading-vanishing dichotomy depending on the values of
the r.v.’s D(ω) and η(ω).

To estimate the impact of initial habitat geometry on spreading, we analyze the previously
described examples with different parameters in the following example.

Example 9 Evolution of the statistical moments of the approximations to the population
density s.p. and the moving front s.p. attending to the initial habitat geometry.
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Fig. 15 Evolution of the mean of the population front at different times T = {0, 5, 10} for the triangular
habitat in Example 8

Fig. 16 Spreading-vanishing dichotomy of the population P(t) in Example 8. The red line represents the mean
across all K = 100 realizations

Table 3 collects the results of the comparison of various habitat geometries (column
“Shape”). Specifically, we compare the mean population at the moment T = 5 (column
“μ[P(T )]”), considering that the initial population for all simulations is set to one. For each
example, we calculate the percentage growth of the mean habitat area (column “Habitat
Growth, %”).
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Table 3 Summary of simulation results (K = 100 samples of the Monte Carlo method) for different habitat
shapes and normalized initial population P(0) = 1 at the moment T = 5

Shape μ[P(T )] Habitat growth, % Observations

Circle, r = 2.2 1.02 36.33 Vanishing-spreading

Circle, r = 2.2, shifted core 1.01 36.01 Vanishing-spreading

Ellipse, b = 1.32 0.2079 24.36 Vanishing

Ellipse, b = 1.32, shifted core 0.2090 24.36 Vanishing

Square, a = 1.95 0.8529 32.91 Vanishing-spreading

Rectangle, a = 1.3648, b = 2.7853 0.3795 27.25 Vanishing

Triangle, a = 5.9258 0.4513 29.56 Vanishing-spreading

Circle, r = 2.4 1.7290 35.56 Spreading

Ellipse, b = 1.44 0.3990 23.62 Vanishing

Square, a = 2.13 1.4851 32.68 Spreading

Rectangle, a = 1.2762, b = 3.5449 0.2731 22.29 Vanishing

Triangle, a = 6.4645 0.9196 29.31 Vanishing-spreading

Fig. 17 Mean (left) and standard deviation (right) of the population P(t) over time for various initial habitat
shapes in Example 9 with K = 100 simulations

The simulations are divided into two groups. The first group corresponds to Examples 6, 7,
and 8, where the initial habitat area is 15.2 square units for all cases. The second group of
simulations has an initial habitat area of 18.1 square units, corresponding to the case of
a circle with a radius r = 2.4. Hence, in each group, simulations are conducted with the
same population distributed in habitats of different shapes but with equal areas. For each
simulation case, we observewhether spreading or vanishing occurs (column “Observations”).
It’s important to note that if the population initially decreases and then starts to increase, we
denote this situation vanishing-spreading behavior.

In Fig. 17, the mean and standard deviation of the population P(t) are shown for the first
group of the simulations. The standard deviation is higher when there are more opportunities
for the population to spread. When the average population approaches zero, the standard
deviation is smaller.

The comparison of results presented in Table 3 and Fig. 17 suggests that shapes with a
more “rounded” profile exhibit a greater tendency for spreading when compared to more
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“squashed” shapes. In the case of elliptical and rectangular shapes, there exists a critical ratio
between the dimensions a and b that transitions vanishing behavior to spreading. A notable
observation is that, even in instances of vanishing, the habitat area continues to increase,
although at a slower rate. Across all considered cases, the habitat growth does not exceed
30% in the event of vanishing.

8 Conclusion

This study introduces a novel random numerical algorithm in the m.s. context to solve
a random logistic free-boundary diffusion problems that integrates the RLSM and three
explicit RFDS: REFDM, RIEFDM and RALADE. The extension from deterministic to the
random framework is not so easy as it could be expected at a first glance due to storage
accumulation task. Assuming sufficient conditions over both unknown stochastic processes:
random front and random population density as well as over the random coefficients, we
established conditions to formulate a well-posedness random system.

A key advantage of the RLSM lies in its ability to adapt to any habitat shape. This
significantly enhances the versatility of our proposed algorithm. Unlike traditional models,
the RLSM does not require the assumption of radial symmetry. This allows our approach to
comprehensively investigate how the initial habitat’s shape impacts the outcomes of spreading
or vanishing phenomena. Our analysis revealed that habitats with more rounded and circular
forms are inherently more prone to spreading. While habitats with flatter geometries show a
greater resistance to spread, requiring more sources for expansion. The findings suggest that
regardless of the initial shape, habitats tend to evolve towards a more circular geometry over
time.

The numerical analysis of three proposed RFDS focuses on ensuring its m.s. stability,
positivity, and boundedness. We established specific step size conditions that guarantee these
properties, contributing to the algorithm’s robustness. The m.s. consistency of the RFDS is
studied in terms of the truncation error under hypotheses (6)–(7) and (10)–(11).

Numerical examples further validate these theoretical findings and provide an in-depth
analysis of the numerical convergence of the interior solvers (RIEFDM and RALADE),
alongside the convergence behavior of the Monte Carlo simulations. The use of the Monte
Carlo method is a key piece to overcome the computational drawbacks related to the storage
problems associated with computing of the expectation and variance of the approximate
solution s.p. by the RLSM and RFDS developed above. Theoretical and numerical analyses
reveal that RALADE emerges as the most favorable option among the considered RFDS due
to its relaxed stability condition and better convergence properties.

In conclusion, this work introduces an efficient numerical algorithm for two-dimensional
random logistic models with a free boundary, providing insights into the impact of habitat
geometry on spreading and vanishing dynamics.
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